WO2016080438A1 - エチレン-ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法 - Google Patents

エチレン-ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法 Download PDF

Info

Publication number
WO2016080438A1
WO2016080438A1 PCT/JP2015/082390 JP2015082390W WO2016080438A1 WO 2016080438 A1 WO2016080438 A1 WO 2016080438A1 JP 2015082390 W JP2015082390 W JP 2015082390W WO 2016080438 A1 WO2016080438 A1 WO 2016080438A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
resin
evoh
layer
laminate
Prior art date
Application number
PCT/JP2015/082390
Other languages
English (en)
French (fr)
Inventor
耕太 井上
綾平 小室
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to US15/527,101 priority Critical patent/US11207873B2/en
Priority to JP2015557279A priority patent/JP6743387B2/ja
Priority to EP15861495.8A priority patent/EP3222419B1/en
Priority to CN201580062198.9A priority patent/CN107000412A/zh
Publication of WO2016080438A1 publication Critical patent/WO2016080438A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/22Boxes or like containers with side walls of substantial depth for enclosing contents
    • B65D1/26Thin-walled containers, e.g. formed by deep-drawing operations
    • B65D1/28Thin-walled containers, e.g. formed by deep-drawing operations formed of laminated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers

Definitions

  • the present invention relates to an ethylene-vinyl ester copolymer saponification material on at least one surface of a layer containing a saponified ethylene-vinyl ester copolymer (hereinafter sometimes referred to as “EVOH resin”) via an adhesive resin layer.
  • EVOH resin saponified ethylene-vinyl ester copolymer
  • a laminate in which a thermoplastic resin layer other than a coalesced saponified product is laminated more specifically, even when the laminate is secondarily molded into a bottomed container shape, it has an excellent appearance in which no streaks are observed in the molded product
  • the present invention also relates to a laminate that can provide a secondary molded product.
  • EVOH resin is excellent in transparency, gas barrier properties, fragrance retention, solvent resistance, oil resistance, etc., so it can be used as food packaging materials, pharmaceutical packaging materials, industrial chemical packaging materials, agricultural chemical packaging materials, etc. Alternatively, it is used by being molded into a bottomed container such as a bottle or a cup. Sheets, films, and containers as packaging materials can be made of EVOH resin alone, but usually a layer containing an adhesive resin (hereinafter referred to as “water resistance”, strength improvement, and other functions).
  • thermoplastic resin layer also referred to as an “adhesive resin layer”
  • other thermoplastic resin layer a laminate in which a layer containing a thermoplastic resin (other thermoplastic resin) other than the EVOH resin (hereinafter also referred to as “other thermoplastic resin layer”) is laminated.
  • EVOH resin is a resin that is difficult to stretch as compared with other thermoplastic resins, there is a problem in that appearance defects occur when a film, sheet, container, or the like is accompanied by a heat stretching process. Therefore, it is necessary to improve the stretchability of the EVOH resin so that it can follow the elongation of other thermoplastic resins.
  • the EVOH resin tends to have better stretchability as the content of the ethylene structural unit (hereinafter simply referred to as “ethylene content”) is higher.
  • ethylene content the content of the ethylene structural unit
  • the higher the ethylene content the lower the gas barrier property.
  • Patent Document 1 proposes a composition using EVOH resins having different ethylene contents and different saponification degrees.
  • an EVOH resin composition in which the difference in ethylene content between the two types of EVOH resins used in combination is 4 mol% or more, the difference in saponification degree is 3 mol% or more, and the difference in solubility parameter is more than a predetermined value. It is described that a molded article obtained by vacuum-pressure forming a laminate obtained by laminating an intermediate layer and a polystyrene layer was excellent in transparency and appearance, free from cracks and uneven thickness, and excellent in gas barrier properties.
  • Patent Document 2 discloses an EVOH resin composition containing two types of EVOH resins having a difference in ethylene content of 3 to 20 mol% and having a specific boron concentration. Has been. A laminated film in which the EVOH resin composition is used as an intermediate layer and a polypropylene layer is laminated via an adhesive resin layer can be whitened, streaks, etc. even when heated and stretched (in the order of 4 times in the vertical direction and 6 times in the horizontal direction) It was disclosed that no stretching unevenness was observed.
  • the EVOH resin compositions disclosed in Patent Documents 1 and 2 improve the moldability of the EVOH resin while ensuring gas barrier properties.
  • the bottomed container is molded by heating and softening a sheet or film of a laminate, and then bringing the sheet or film into close contact with a molding die by vacuum suction or blowing of compressed air.
  • Such vacuum compression molding is considered to be a stricter process as compared with uniaxial and biaxial stretching of laminated films and sheets. It was found that when a cup was formed by vacuum / pressure forming using the laminated film disclosed in Patent Document 2, streaks that were not recognized in the stretched film or sheet were generated.
  • Patent Document 1 performs vacuum / pressure forming (drawing ratio 1 (stretching ratio 7 times)) and stretch blow molding (stretching ratio 10 times) to form a bottomed container. Appearance evaluation of the obtained molded product As such, transparency, presence / absence of cracks, and presence / absence of uneven thickness are merely evaluated visually, and the presence / absence of streaks is not evaluated.
  • the present invention is a laminate in which a thermoplastic resin layer other than EVOH resin is laminated on at least one surface of an EVOH resin-containing layer via an adhesive resin layer, and preferably a laminate excellent in appearance
  • an object of the present invention is to provide a laminate in which a thermoplastic resin layer other than the EVOH resin is laminated on at least one surface of a layer containing two or more types of EVOH resins having different ethylene contents via an adhesive resin layer. .
  • the laminated body which has a layer containing EVOH resin by which generation
  • Another object of the present invention is to provide a method for producing a bottomed container such as a cup having excellent gas barrier properties and appearance by vacuum / pressure forming or the like using the laminate.
  • the inventors have conducted various studies on appearance defects that occur when a laminate in which an adhesive resin layer and another thermoplastic resin layer are laminated on a layer containing an EVOH resin is formed by vacuum-pressure forming.
  • the inventors have conducted various studies on streaks that occur when a laminate using two or more types of EVOH resins having different ethylene contents as the above-mentioned EVOH resin is formed by vacuum-pressure forming.
  • the flow of the resin in the molten state of each resin layer is different, so that the resin flow tends to be disturbed at the junction (interface) in the feed block.
  • the molding of a bottomed container by vacuum / pressure forming is different from the stretching process of a film that is uniformly stretched as a whole, and the tension applied during stretching differs depending on the site.
  • a laminated body containing minute interface disturbances is applied to such vacuum pressure forming, it is considered that the minute interface disturbance portions are extended and become streaks.
  • the present inventors provide a thermoplastic resin layer other than EVOH via an adhesive resin layer on at least one surface of a layer containing an EVOH resin, particularly a layer containing two or more types of EVOH resins having different ethylene contents.
  • a layer containing an EVOH resin particularly a layer containing two or more types of EVOH resins having different ethylene contents.
  • the shear rate of the EVOH / adhesive resin interface in the feed block is 0. It was found to be about 01 to 10 [1 / s]. That is, in order to suppress the interface roughness generated at the EVOH / adhesive resin interface, it is necessary to control the resin fluidity within the shear rate range.
  • the laminate of the present invention is a laminate in which a layer containing a thermoplastic resin other than the EVOH resin is laminated on at least one surface of the layer containing the EVOH resin via a layer containing an adhesive resin,
  • the shear viscosity ratio of the EVOH resin and the adhesive resin (EVOH resin / adhesive resin) is 0.70 to 1.50 at a shear rate of 0.1 [1 / s] and a shear rate of 1.0 [1 / s]. In this case, 0.90 to 1.10.
  • the laminated body of this invention is related with the laminated body using the mixture of 2 or more types of EVOH resin from which ethylene content rate differs especially as EVOH resin.
  • the content difference ( ⁇ Et) between the highest ethylene content and the lowest ethylene structural unit is 10 to 25 mol%. It is preferable.
  • the layer containing the saponified ethylene-vinyl ester copolymer contains 350 to 800 ppm of a higher fatty acid zinc salt relative to the content of the saponified ethylene-vinyl ester copolymer. It is preferable.
  • thermoplastic resin is polypropylene.
  • the present invention according to another aspect is a secondary molded article having excellent gas barrier properties and appearance using the laminate of the present invention.
  • the present invention is a method for producing a bottomed container excellent in gas barrier properties and appearance by using the laminate of the present invention. That is, the step of heat-softening the sheet or film of the laminate of the present invention; the step of bringing the sheet or film into close contact with the mold by vacuum suction and / or compressed air; This is a method for producing a bottomed container excellent in gas barrier properties and appearance including a step of obtaining a container.
  • a laminate in which a layer containing a thermoplastic resin other than the EVOH resin is laminated on at least one surface of the layer containing the EVOH resin of the present invention via an adhesive resin layer is formed by vacuum-pressure forming the laminate. Even so, it is possible to obtain a bottomed container excellent in appearance without generation of streaks or the like.
  • the laminate of the present invention comprises a layer containing a thermoplastic resin other than the EVOH resin (another thermoplastic resin) via a layer containing the adhesive resin (adhesive resin layer) on at least one surface of the layer containing the EVOH resin. Layer).
  • the EVOH resin used in the present invention is usually a resin obtained by saponifying a copolymer of ethylene and a vinyl ester monomer (ethylene-vinyl ester copolymer), and is a water-insoluble thermoplastic resin. It is.
  • the polymerization method can also be carried out using any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization, etc., but generally solution polymerization using methanol as a solvent is used.
  • Saponification of the obtained ethylene-vinyl ester copolymer can also be performed by a known method, for example, a method of adding an alkali catalyst to an ethylene-vinyl ester copolymer solution from which unreacted vinyl ester monomers have been removed.
  • the EVOH resin produced in this manner mainly comprises ethylene-derived structural units (ethylene structural units) and vinyl alcohol structural units, and contains a slight amount of vinyl ester structural units remaining without being saponified.
  • vinyl ester monomer vinyl acetate is typically used from the viewpoint of market availability and good impurity treatment efficiency during production.
  • examples of other vinyl ester monomers include, for example, fats such as vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, and vinyl versatate.
  • Aromatic vinyl esters such as aromatic vinyl esters and vinyl benzoates, and the like.
  • aliphatic vinyl esters having 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, and particularly preferably 4 to 7 carbon atoms are used. It can. These are usually used alone, but a plurality of them may be used simultaneously as necessary.
  • the content of the ethylene structural unit in the EVOH resin is a value measured based on ISO 14663 (1999), and is usually 20 to 60 mol%, preferably 25 to 50 mol%, particularly preferably 25 to 35 mol%.
  • the content is too low, the gas barrier property and melt moldability under high humidity tend to be lowered, and when it is too high, the gas barrier property tends to be insufficient.
  • the saponification degree of the vinyl ester component in EVOH resin is a value measured based on JIS K6726 (1994) (however, EVOH resin is a solution uniformly dissolved in water / methanol solvent), and is usually 90 to 100 mol%. , Preferably 95 to 100 mol%, particularly preferably 99 to 100 mol%.
  • degree of saponification is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to decrease.
  • the melt flow rate (MFR) (210 ° C., load 2,160 g) of the EVOH resin is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 3 to 35 g. / 10 minutes.
  • MFR melt flow rate
  • the EVOH resin used in the present invention may contain an ethylene structural unit, a vinyl alcohol structural unit (including an unsaponified vinyl ester structural unit), and a structural unit derived from a comonomer shown below.
  • a comonomer examples include ⁇ -olefins such as propylene, isobutene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene; 3-buten-1-ol, 4-penten-1-ol, 3-butene-1, 2- Hydroxy group-containing ⁇ -olefins such as diols, and hydroxy group-containing ⁇ -olefin derivatives such as esterified products and acylated products thereof; unsaturated carboxylic acids or salts thereof, partial alkyl esters, fully alkyl esters, nitriles, amides or anhydrides; Examples thereof include unsaturated sulfonic acid or a salt thereof; vinyl silane compound; vinyl chloride
  • post-modified EVOH-based resins such as urethanization, acetalization, cyanoethylation, oxyalkyleneation and the like can also be used.
  • EVOH resins in which primary hydroxyl groups are introduced into the side chains by copolymerization are preferred in that secondary moldability such as stretching and vacuum / pressure forming is improved.
  • EVOH resins having a diol structure in the side chain are preferred.
  • a compounding agent generally blended with the EVOH resin for example, a heat stabilizer, an antioxidant, an antistatic agent, a colorant, an ultraviolet absorber, within a range not inhibiting the effects of the present invention.
  • Lubricant, plasticizer, light stabilizer, surfactant, antibacterial agent, drying agent, antiblocking agent, flame retardant, crosslinking agent, curing agent, foaming agent, crystal nucleating agent, antifogging agent, biodegradation additive, silane A coupling agent, an oxygen absorbent, etc. may be contained.
  • the heat stabilizer is an organic acid such as acetic acid, propionic acid, butyric acid, lauric acid, stearic acid, oleic acid, behenic acid, or an alkali thereof for the purpose of improving various physical properties such as heat stability during melt molding.
  • Metal salts sodium, potassium, etc.
  • alkaline earth metal salts calcium, magnesium, etc.
  • salts such as zinc salts
  • inorganic acids such as sulfuric acid, sulfurous acid, carbonic acid, phosphoric acid, boric acid, or alkali metals thereof
  • Additives such as salts such as salts (sodium, potassium, etc.), alkaline earth metal salts (calcium, magnesium, etc.), zinc salts, etc. may be added in small amounts in advance.
  • the EVOH resin used in the present invention may be a mixture with other different EVOH resins.
  • examples of such other EVOH resins include those having different ethylene contents, those having different saponification degrees, and degrees of polymerization. May be different, other copolymer components may be different, and the content of 1,2-diol structural units may be different.
  • the present invention relates to a laminate in which a thermoplastic resin layer other than the EVOH resin is laminated on at least one surface of layers containing two or more types of EVOH resins having different ethylene contents via an adhesive resin layer.
  • a laminated body having a layer containing an EVOH resin in which generation of streaks is suppressed even when vacuum / pressure forming is applied while maintaining gas barrier properties can be achieved.
  • two types of EVOH resins are used will be described.
  • the two types of EVOH resins used in the present invention are combinations of EVOH resins selected from the above EVOH resins.
  • a combination of EVOH resins having a content difference ( ⁇ Et) between the highest and lowest ethylene structural units of 10 to 25 mol% is preferred, more preferably 10 to 23 mol%, particularly preferably 10 to 20 mol%. If the difference in content between the highest ethylene content and the lowest ethylene content is too small, it tends to be difficult to maintain a balance between moldability and gas barrier properties. Due to the difference in stretchability, there is a tendency that streaks are likely to occur during secondary molding, and if many streaks are generated, a transparent molded product may not be obtained.
  • EVOH resin having a lower ethylene content low ethylene EVOH resin
  • EVOH resin having a higher ethylene content high ethylene EVOH resin
  • the low ethylene EVOH resin has an ethylene content of 20 to 40 mol%, preferably 22 to 38 mol%, particularly preferably 25 to 33 mol%. If the ethylene content is too low, the decomposition temperature and melting point tend to be too close, making melt molding of the resin composition difficult, and conversely if too high, the gas barrier property imparted by the low ethylene EVOH resin tends to be insufficient. There is.
  • the saponification degree of the vinyl ester component in the low ethylene EVOH resin is usually 90 mol% or more, preferably 95 to 99.99 mol%, particularly preferably 98 to 99.99 mol%.
  • the saponification degree is too low, the gas barrier property imparting effect of the low ethylene EVOH resin tends to be insufficient.
  • melt flow rate (MFR) (210 ° C., load 2,160 g) of the low EVOH resin is usually 1 to 100 g / 10 minutes, preferably 3 to 50 g / 10 minutes, particularly preferably 3 to 10 g / 10. Minutes. If the MFR is too large, the mechanical strength of the molded product tends to decrease, and if it is too small, the extrudability tends to decrease.
  • the ethylene content of the high ethylene EVOH resin is usually 40 to 60 mol%, preferably 42 to 56 mol%, particularly preferably 44 to 53 mol%.
  • the ethylene content is too low, the effect of improving the stretchability by the high ethylene EVOH resin is small, and as a result, the secondary formability tends to decrease.
  • the ethylene content is too high, the difference in ethylene content is within a predetermined range. Therefore, the ethylene content of the low ethylene EVOH resin must be increased, and as a result, the gas barrier property of the resin composition layer becomes insufficient.
  • the saponification degree of the vinyl ester component in the high ethylene EVOH resin is usually 90 mol% or more, preferably 93 to 99.99 mol%, particularly preferably 98 to 99.99 mol%.
  • the saponification degree is too low, the gas barrier property of the high ethylene EVOH resin tends to be insufficient.
  • melt flow rate (MFR) (210 ° C., load 2,160 g) of the high ethylene EVOH resin is usually 1 to 100 g / 10 min, preferably 3 to 50 g / 10 min, particularly preferably 3 to 30 g / min. 10 minutes. If the MFR is too large, the mechanical strength of the molded product tends to decrease, and if it is too small, the extrudability tends to decrease.
  • the blending ratio (A1 / A2) (weight ratio) of the low ethylene EVOH resin (A1) to the high ethylene EVOH resin (A2) is usually 90/10 to 60/40, preferably 85/15 to 65/35. Particularly preferred is 80/20 to 70/30.
  • the ratio of the low ethylene EVOH resin (A1) is too small, the gas barrier property of the composition layer tends to be insufficient, and when it is too large, the stretching improvement effect due to the high ethylene EVOH resin tends to decrease.
  • Adhesive resin used in the present invention will be described. What is necessary is just to use a well-known thing as adhesive resin.
  • Such an adhesive resin varies depending on the type of base resin, and may be appropriately selected.
  • an unsaturated carboxylic acid or its anhydride is chemically bonded to a polyolefin resin by an addition reaction or a graft reaction.
  • the modified olefin polymer containing the carboxyl group obtained can be mentioned.
  • maleic anhydride-modified polyolefin is preferable as the adhesive resin
  • a combination of polyolefin, particularly polypropylene is preferable as the base resin.
  • maleic anhydride-modified polyolefin examples include maleic anhydride graft-modified polyethylene, maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block and random) copolymer, maleic anhydride graft-modified ethylene-ethyl acrylate
  • the copolymer examples include a maleic anhydride graft-modified ethylene-vinyl acetate copolymer, and one or a mixture of two or more selected from these is preferable.
  • adhesive resins include EVOH resin compositions for forming a layer containing the EVOH resin of the present invention, EVOH resins other than the EVOH resin used in the resin composition, polyisobutylene, ethylene-propylene rubber, etc. It is also possible to blend rubber / elastomer components, and other thermoplastic resins described later. In particular, blending a polyolefin resin that is different from the polyolefin resin of the base of the adhesive resin is useful because the adhesiveness may be improved.
  • thermoplastic resins Another thermoplastic resin used in the present invention will be described.
  • the other thermoplastic resin is a thermoplastic resin other than the EVOH resin.
  • base resin examples include polyethylenes such as linear low density polyethylene, low density polyethylene, ultra low density polyethylene, medium density polyethylene, and high density polyethylene.
  • base resins may appropriately contain conventionally known antioxidants, antistatic agents, lubricants, core materials, antiblocking agents, ultraviolet absorbers, waxes and the like.
  • the layer structure of the laminate includes a layer containing the EVOH resin of the present invention, that is, an EVOH resin composition layer formed from the EVOH resin composition, a (a1, a2,...), And an adhesive resin layer b ( b1, b2,..., and when the base resin layer is c (c1, c2,...), not only a / b two-layer structure but also a / b / c, b / a / c A1 / b / a2, b1 / a / b2, c1 / b / a / b / c2, c1 / b1 / a / b2 / c2, c1 / a1 / b1 / a / b2 / c2, c1 / a1 / b1 / a1 / b2 Any combination such as / a2 / b3 / c2 is
  • the thickness of the base resin layer and the adhesive resin layer of the laminate cannot be said unconditionally depending on the layer configuration, the type of thermoplastic resin used as the base material, the type of adhesive resin, the application and packaging form, the required physical properties, etc.
  • the base resin layer is usually selected from the range of 0.1 to 5000 ⁇ m, preferably 1 to 1000 ⁇ m, and the adhesive resin layer is selected from the range of 0.1 to 500 ⁇ m, preferably 1 to 250 ⁇ m.
  • the thickness of the EVOH resin composition layer varies depending on required gas barrier properties, but is usually 0.1 to 500 ⁇ m.
  • the thickness is preferably 0.1 to 250 ⁇ m, particularly preferably 0.1 to 100 ⁇ m. If the thickness is too thin, sufficient gas barrier properties tend not to be obtained, and conversely, if the thickness is too thick, the flexibility of the film tends to be insufficient. It is in.
  • the ratio of the thickness of the EVOH resin composition layer and the base resin layer in the laminate is the ratio of the thickest layers when there are multiple layers, Usually, it is 1/99 to 50/50, preferably 5/95 to 45/55, particularly preferably 10/90 to 40/60.
  • the thickness ratio of the resin composition layer to the adhesive resin layer in the laminate (resin composition layer / adhesive resin layer) is usually 10/90 to the ratio of the thickest layers when there are a plurality of layers. 99/1, preferably 20/80 to 95/5, particularly preferably 30/70 to 90/10.
  • the lamination of the EVOH resin composition layer, the adhesive resin layer, and the base resin layer can be performed by a known method.
  • the lamination of the EVOH resin and the adhesive resin can be performed by coextrusion molding in the apparatus.
  • a method in which a feed block is used to develop the product width in the die after joining each layer a method in which each layer is joined to the product width using a multi-manifold die, and an EVOH resin and an adhesive resin by the above method
  • a method in which the film is extended to a base material made of another resin layer.
  • a method of coextrusion molding of the entire EVOH resin composition layer, the adhesive resin layer, and the base resin layer is preferable.
  • the EVOH resin and the adhesive resin when the co-extrusion molding is performed, have a shear viscosity ratio (EVOH resin / adhesive resin) of 0.70 to 1.50 at a shear rate of 0.1 [1 / s]. And the shear viscosity ratio (EVOH resin / adhesive resin) at a shear rate of 1.0 [1 / s] is 0.90 to 1.10.
  • the shear viscosity ratio (EVOH resin / adhesive resin) at a shear rate of 0.1 [1 / s] between the EVOH resin and the adhesive resin is 0.70 to 1.50, preferably 0.80 to 1.45.
  • the shear viscosity ratio (EVOH resin / adhesive resin) at a shear rate of 1.0 [1 / s] between the EVOH resin and the adhesive resin is preferably 0.90 to 1.40. .10, preferably 0.95 to 1.05, particularly preferably 0.99 to 1.01.
  • streaks or the like tend to occur when such a laminate is vacuum-pressure molded, and appearance defects tend to occur.
  • the shear viscosity in the present invention is measured using a rotary rheometer under the following conditions. (Measurement condition) Atmosphere: Under nitrogen atmosphere, temperature: 210 [° C.], strain: 5 [%], measuring jig; ⁇ 25 mm parallel-parallel plate, preheating time: 10 [min]
  • the shear viscosity difference in the specific shear region within a predetermined range it is not particularly limited, but it can be performed by appropriately combining the following methods.
  • (1) In the method of adjusting the shear viscosity of the EVOH resin for example, it is possible to adjust by changing at least one of the molecular weight, ethylene content, saponification degree and MFR of the EVOH resin, or using a plurality of EVOH resins in combination. It is. However, these methods are difficult to apply because other properties such as moldability and gas barrier properties change greatly. A method that uses a small amount of an additive having a large effect on the shear viscosity and does not affect other characteristics is preferable.
  • additives include (i) polyamide resins that are reactive resins with respect to EVOH resins, (ii) polyolefins that are non-reactive resins with respect to EVOH resins, polyesters, polystyrenes, polycarbonates, Examples thereof include polymers, (iii) inorganic substances such as fillers and glass fibers, and (iv) higher fatty acid metal salts such as higher fatty acid zinc salts.
  • the shear viscosity of the adhesive resin for example, an adhesive resin having a different molecular weight or a resin having a different composition is blended, or the degree of acid modification is changed.
  • it is desirable that the problem can be solved by adjusting the EVOH resin according to the adhesive resin to be used.
  • the difference in shear viscosity in the target specific shear region can be obtained. It is possible to make it within the predetermined range.
  • the higher fatty acid salt used in the higher fatty acid zinc salt refers to a fatty acid having 8 or more carbon atoms (preferably having 12 to 30 carbon atoms, more preferably 12 to 20 carbon atoms).
  • lauric acid, tridecylic acid examples include myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, oleic acid, capric acid, behenic acid, linoleic acid and the like.
  • stearic acid, oleic acid, and lauric acid are preferably used.
  • Such higher fatty acid zinc salt is an EVOH resin, particularly a resin composition in which two types of EVOH resins having a content difference ( ⁇ Et) of 10 to 25 mol% between the highest and lowest ethylene contents coexist. Secondary formability can be improved. In particular, a molded product in which the generation of streaks is suppressed can be obtained even if it is subjected to a treatment in which the tension varies depending on the part, such as vacuum / pressure forming, and the tension is applied from all directions as in diameter expansion processing. . The reason is not clear, but higher fatty acid zinc salt increases the miscibility of two types of EVOH resins with different ethylene contents when melted, and suppresses minute interface disturbances that occur during coextrusion molding with other resins. Seem. Such an inhibitory effect is surprising because it is an effect not found in other metal salts of higher fatty acids or zinc salts of lower fatty acids.
  • the blending amount of the higher fatty acid zinc salt is preferably 350 to 800 ppm, more preferably 400 to 750 ppm, particularly preferably 450 to 700 ppm based on the EVOH resin.
  • the blending amount of the higher fatty acid zinc salt is too small, the effect of suppressing the generation of streaks during secondary molding is reduced, and when a large number of streaks are generated, the transparency of the molded product is impaired.
  • metal salts of higher fatty acids generally catalyze the decomposition of molten EVOH resin, so if the concentration of higher fatty acid zinc salt becomes too high, gas is generated due to decomposition of EVOH resin, and melt molding, coextrusion There is a possibility of adversely affecting the production of a laminate by molding.
  • the blending amount with respect to the EVOH resin is 450 to 700 ppm with respect to the EVOH resin.
  • a plasticizer In the EVOH resin composition layer used for the laminate of the present invention, a plasticizer, a filler, an antiblocking agent, an antioxidant, in addition to the above components, in a range that does not impair the spirit of the present invention (for example, 1% by weight or less), Known additives such as a colorant, an antistatic agent, an ultraviolet absorber and a lubricant can be appropriately blended.
  • a method for preparing an EVOH resin composition by blending a higher fatty acid zinc salt with the EVOH resin used in the laminate of the present invention is not particularly limited.
  • An EVOH resin and a higher fatty acid zinc salt may be blended at a predetermined ratio, and a resin composition may be prepared by melt kneading or the like, or each component may be dry blended at a predetermined ratio.
  • the preparation method by dry blending is advantageous in production because a combination of EVOH resins can be appropriately selected as necessary, and can be prepared by adding a higher fatty acid zinc salt as necessary.
  • the preparation method by dry blend is preferable from a viewpoint of the decomposition
  • a high-fatty acid zinc salt may be blended with a dry blend of a low ethylene EVOH resin and a high ethylene EVOH resin, or a compound of two types of EVOH resin mixture prepared in advance, You may mix
  • Two kinds of EVOH resins and higher fatty acid zinc salts may be blended in a dry blend.
  • one EVOH resin and a higher fatty acid zinc salt may be dry blended, and the other EVOH resin may be blended, or one of the previously prepared EVOH resin and higher fatty acid zinc salt may be mixed with the other EVOH resin.
  • EVOH resin may be blended.
  • a dry blend of one EVOH resin and a higher fatty acid zinc salt may be blended with a dry blend of the other EVOH resin and a higher fatty acid zinc salt. You may mix
  • the laminate having the above configuration is usually used after being subjected to a heat stretching treatment. Since the EVOH resin composition layer of the present invention has excellent gas barrier properties as a gas barrier layer and is considered to have reduced interface disturbance at the lamination interface, various known heat stretching processes can be applied.
  • uniaxial stretching or biaxial stretching for grasping and widening both ears of the laminate sheet; drawing forming process for heating and softening the laminate sheet and forming a bottomed container using a press; vacuum suction or
  • a method of processing a preformed laminate such as a parison by a tubular stretching method, a stretching blow method, or the like, in which a laminate sheet is brought into close contact with a mold by blowing compressed air or the like; Can be mentioned.
  • the laminate having the EVOH resin of the present invention has reduced disturbance at the interface with the adjacent layer and has excellent heat stretchability, only uniaxial stretching and biaxial stretching that sequentially stretches in different directions.
  • it is also suitable for stretch molding or blow molding by close contact with a mold that is stretched in the radial direction at the same time.
  • the temperature at which the heat-stretching is performed is selected from the range of about 40 to 300 ° C., preferably about 50 to 160 ° C., as the temperature of the laminate (temperature near the laminate).
  • the draw ratio is usually 2 to 50 times, preferably 2 to 10 times in terms of area ratio.
  • the heating of the laminate is preferably performed uniformly by a hot air oven, a heater-type oven or a combination of both, and is appropriately selected depending on the type of stretch molding method.
  • the laminate obtained by co-extrusion molding and further by heat stretching may be extrusion coated with another substrate, or a film or sheet of another substrate may be laminated using an adhesive.
  • a base material not only the thermoplastic resin described above as a base resin but also a base material having poor stretchability (paper, metal foil, woven fabric, non-woven fabric, metallic cotton, wood, etc.) can be used.
  • the laminate of the present invention is suitable for the production of secondary molded products, particularly bottomed containers such as cups and trays, by vacuum forming and pressure forming. Since the laminate of the present invention is considered to have little turbulence in the resin flow at the laminate interface, a secondary molded product having an excellent appearance can be obtained.
  • the method for producing a bottomed container excellent in gas barrier properties and appearance comprises a step of heating and softening the sheet or film of the laminate of the present invention in the vicinity of a mold; by vacuum suction and / or compressed air, A step of bringing the sheet or film into close contact with the mold; and a step of releasing after cooling to obtain a bottomed container.
  • the shape of the bottomed container is not particularly limited.
  • a molded product with a drawing ratio (depth of molded product (mm) / maximum diameter of molded product (mm)) of usually 0.1 to 3 is used, such as cups and trays, particularly rapid stretching treatment
  • a molded product with an excellent appearance because the tension applied to the resin is different between the cup side surface and the bottom surface when vacuum pressure forming is performed.
  • the tension applied at the time of molding differs depending on the site, and even when subjected to cup-shaped molding by vacuum / pressure molding, the gas barrier properties are not impaired.
  • a molded product having an appearance can be obtained.
  • the heating temperature in the heat softening step is selected from the range of about 40 to 300 ° C., preferably 50 to 170 ° C., particularly preferably about 60 to 160 ° C., as the temperature of the laminate (temperature near the laminate). If the heating temperature is too low, softening is insufficient, and there is a tendency that a molded article having an excellent appearance cannot be obtained. If it is too high, the balance of the melt viscosity of each layer is lost, and a molded article having an excellent appearance is obtained. May not be obtained.
  • the heating time is a time during which the laminated body temperature can be heated to such an extent that a necessary and sufficient softening state can be achieved.
  • the layer structure of the laminated body, the component composition of each layer forming the laminated body, and heating are used. It is appropriately set depending on the heater temperature and the like.
  • the drawing ratio (depth of molded product (mm) / maximum diameter of molded product (mm)) of vacuum / pressure forming is usually 0.1 to 3, preferably 0, although it depends on the shape of the intended bottomed container. .2 to 2.5, particularly preferably 0.3 to 2. When this value is too large, cracks and the like of the EVOH resin composition layer are likely to occur, and when it is too small, uneven thickness tends to occur in the wall thickness.
  • the thickness of the thermoplastic resin layer and adhesive resin layer of the laminate after the secondary molding as described above is generally determined depending on the layer structure, the type of thermoplastic resin, the type of adhesive resin, the use and packaging form, the required physical properties, etc.
  • the thermoplastic resin layer is usually selected from the range of about 0.1 to 3000 ⁇ m, preferably 1 to 500 ⁇ m
  • the adhesive resin layer is selected from the range of about 0.1 to 300 ⁇ m, preferably about 1 to 100 ⁇ m.
  • the thickness of the EVOH resin composition layer of the present invention after the above stretching treatment varies depending on the required gas barrier properties, but is usually 0.1 to 300 ⁇ m, preferably 0.1 to 100 ⁇ m, particularly preferably 0. When the thickness is too thin, sufficient gas barrier properties tend not to be obtained. Conversely, when the thickness is too thick, the flexibility of the film tends to be insufficient.
  • the thickness ratio between the EVOH resin composition layer and the adhesive resin layer, the total thickness thickness of the EVOH resin composition layer and the total thickness ratio of the thermoplastic resin layer does not change greatly between before and after heating and stretching, It becomes the same value as the case.
  • the bottomed container produced by the method of the present invention has excellent gas barrier properties inherently possessed by the EVOH resin composition layer, is excellent in transparency, and has no uneven thickness. Furthermore, the generation of streaks that are visually recognized in a container that is a molded product is suppressed. As a result, the EVOH resin composition layer of the laminate used as a raw material is suppressed from being disturbed at the interface between adjacent layers in the laminate, and the minute interface disturbance that causes streaks is reduced. It is thought that it is because. Therefore, it has an excellent appearance, so it is useful as a container for various packaging materials such as seasonings such as mayonnaise and dressings, fermented foods such as miso, fats and oils such as salad oil, beverages, cosmetics, and pharmaceuticals. It is.
  • EVOH resins and higher fatty acid metal salts used in the following examples and comparative examples are as follows.
  • EVOH resin 1 ethylene structural unit content 29 mol%, saponification degree 99.6 mol%, MFR 4.0 g / 10 min (210 ° C., load 2160 g)
  • EVOH resin 2 content of ethylene structural unit 44 mol%, saponification degree 98.5 mol%, MFR 4.0 g / 10 min (210 ° C., load 2160 g) ⁇
  • Higher fatty acid metal salt Zinc stearate
  • Example 1 [Production of EVOH resin composition] Using the two types of EVOH resins shown above, 75 parts of EVOH resin 1 having a lower ethylene content and 25 parts of EVOH resin 2 having a higher ethylene content are blended, and a higher fatty acid zinc salt is added to EVOH1 and EVOH2. An EVOH resin composition was prepared by blending 500 ppm with respect to 100 parts by weight and dry blending.
  • Example 2 The EVOH resin composition was prepared by blending 25 parts of EVOH resin 1 and 75 parts of EVOH resin 2 using the two types of EVOH resins shown above and dry blending them.
  • the EVOH resin composition was prepared by blending 75 parts of EVOH resin 1 and 25 parts of EVOH resin 2 using the two types of EVOH resins shown above and dry blending.
  • EVOH resin composition was prepared by blending 50 parts of EVOH resin 1 and 50 parts of EVOH resin 2 and dry blending using the two types of EVOH resins shown above.
  • the mold temperature of the vacuum / pressure forming machine (plug assist type vacuum / pressure forming machine manufactured by Asano Laboratories) was set to 50 ° C. and the heater temperature was set to 500 ° C. 40 mm ⁇ 40 mm, thickness 1000 ⁇ m, EVOH resin composition layer thickness 50 ⁇ m), a conical bottomed container whose upper surface is wider than the opening (top diameter 48 mm, bottom diameter 80 mm, depth 52 mm, aperture
  • the ratio (depth of molded product (mm) / maximum diameter of molded product (mm)) was 0.65).
  • the heating time for heating and softening the laminated film was set to 22 seconds, 24 seconds or 26 seconds, and a molded product was obtained in each case, and the secondary formability was evaluated based on the following criteria.
  • the shear viscosity ratio (EVOH resin / adhesive resin) of EVOH and adhesive resin is set within a predetermined range at shear rates of 0.1 [1 / s] and 1.0 [1 / s].
  • the obtained bottomed container suppresses the generation of streaks or does not generate any streaks, and exhibits the effect of suppressing the generation of streaks by vacuum / pressure forming.
  • the laminate of the present invention is useful as a raw material for producing a bottomed container excellent in gas barrier properties and appearance.

Abstract

 本発明の積層体は、エチレン-ビニルエステル系共重合体ケン化物を含有する層の少なくとも一面に、接着樹脂を含有する層を介して、EVOH樹脂以外の熱可塑性樹脂を含有する層が積層されている積層体であって、該エチレン-ビニルエステル系共重合体ケン化物と該接着樹脂のせん断粘度比(エチレン-ビニルエステル系共重合体ケン化物/接着樹脂)を、せん断速度0.1[1/s]において0.70~1.50、かつせん断速度1.0[1/s]において0.90~1.10とする。

Description

エチレン-ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法
 本発明は、エチレン-ビニルエステル系共重合体ケン化物(以下、「EVOH樹脂」と称することがある)を含有する層の少なくとも一面に、接着樹脂層を介して、エチレン-ビニルエステル系共重合体ケン化物以外の熱可塑性樹脂層が積層されている積層体に関し、更に詳しくは、かかる積層体を有底容器状に二次成形した場合でも、成形体にスジなどが認められない外観に優れた二次成形品を提供できる積層体に関する。
 EVOH樹脂は、透明性、ガスバリア性、保香性、耐溶剤性、耐油性などに優れていることから、食品包装材料、医薬品包装材料、工業薬品包装材料、農薬包装材料等として、フィルムやシート、或いはボトルやカップ等の有底容器に成形されて利用されている。包装材料としてのシート、フィルム、容器は、EVOH樹脂単独で作製することは可能であるが、通常、耐水性や強度アップ、他の機能の付与などのために、接着樹脂を含有する層(以下、「接着樹脂層」ともいう)を介して、EVOH樹脂以外の熱可塑性樹脂(他の熱可塑性樹脂)を含有する層(以下、「他の熱可塑性樹脂層」ともいう)を積層した積層体として用いられる。
 EVOH樹脂は他の熱可塑性樹脂と比べて延伸しにくい樹脂であるため、フィルムやシート、容器などの成形に際して、加熱延伸処理を伴う場合、外観不良が発生する問題があった。よって、他の熱可塑性樹脂の伸びに追随できるように、EVOH樹脂の延伸性を改善する必要がある。
 また、一般に、EVOH樹脂は、エチレン構造単位の含有率(以下、単に「エチレン含有率」という)が高い程、延伸性が優れる傾向にある。一方、エチレン含有率が高くなるほど、ガスバリア性が低下する。ガスバリア性と延伸性の両立のために、エチレン含有率が低いEVOH樹脂と、エチレン含有率が高いEVOH樹脂を併用することが提案されている。
 例えば、日本国特開昭63-230757号公報(特許文献1)は、エチレン含有率、ケン化度が異なるEVOH樹脂を併用した組成物を提案している。特許文献1では、併用する2種類のEVOH樹脂のエチレン含有率の差が4モル%以上、ケン化度の差が3モル%以上であり、さらに溶解度パラメータの差が所定以上のEVOH樹脂組成物を中間層とし、ポリスチレン層と積層した積層体を真空圧空成形した成形品は、透明性、外観に優れ、クラック、偏肉がなく、ガスバリア性も優れていたと記載されている。
 日本国特開平8-311276号公報(特許文献2)には、エチレン含有率の差が3~20モル%の2種類のEVOH樹脂を含有し、特定のホウ素濃度を有するEVOH樹脂組成物が開示されている。当該EVOH樹脂組成物を中間層とし、接着樹脂層を介してポリプロピレン層を積層した積層フィルムは、加熱延伸(縦方向に4倍、横方向に6倍の順)しても、白化、スジなどの延伸ムラは認められなかったことが開示されている。
日本国特開昭63-230757号公報 日本国特開平8-311276号公報
 特許文献1、2に開示されたEVOH樹脂組成物は、ガスバリア性を確保しつつ、EVOH樹脂の成形性を改善するものである。ところで、有底容器の成形は、一般に、積層体のシート又はフィルムを加熱軟化させ、真空吸引又は圧縮空気の吹き込みにより、成形型に密着させて行われる。このような真空圧縮成形は、積層フィルム、シートの一軸、二軸延伸と比べて、より厳しい処理であると考えられる。特許文献2に開示の積層フィルムを用いて真空圧空成形によりカップを成形した場合、延伸フィルム又はシートでは認められなかったスジが発生することが判明した。
 特許文献1は、真空圧空成形(絞り比1(延伸倍率7倍))、延伸ブロー成形(延伸倍率10倍)を行い、有底容器を成形しているが、得られた成形品の外観評価としては、透明性、クラックの有無、偏肉の有無を目視で評価しているにすぎず、スジの発生の有無は評価されていない。
 本発明は、EVOH樹脂を含有する層の少なくとも一面に、接着樹脂層を介して、EVOH樹脂以外の熱可塑性樹脂層が積層されている積層体であって、好ましくは、外観に優れた積層体、特にエチレン含有率が異なる2種類以上のEVOH樹脂を含有する層の少なくとも一面に、接着樹脂層を介して、EVOH樹脂以外の熱可塑性樹脂層が積層されている積層体を提供することにある。そして、ガスバリア性を保持しつつ、真空圧空成形を適用した場合にもスジの発生が抑制されたEVOH樹脂を含有する層を有する積層体を提供することにある。そしてまた、本発明は、当該積層体を用いて真空圧空成形等によりガスバリア性及び外観に優れたカップ等の有底容器を製造する方法を提供することにある。
 EVOH樹脂を含有する層に、接着樹脂層と他の熱可塑性樹脂層を積層した積層体を真空圧空成形した場合に生じる外観不良について、発明者らは種々検討した。特に、上記EVOH樹脂として、エチレン含有率が異なる2種類以上のEVOH樹脂を用いた積層体を真空圧空成形した場合に生じるスジについて、発明者らは種々検討した。
 異なる樹脂を共押出成形する場合、各樹脂層の溶融状態の樹脂の流動性が異なるために、フィードブロック中の合流部(界面)で樹脂流れに乱れが生じやすい。エチレン含有率が異なる2種類以上のEVOH樹脂を含有する層内には、異なる溶融粘度を有する樹脂が混在した状態となっている。このため、エチレン含有率が大きく異なるEVOH樹脂を含有する組成物層を積層体の中間層として、接着樹脂層、他の熱可塑性樹脂層を共押出成形する場合、EVOH樹脂組成物層とその隣接する層との合流部(界面)では、異なる樹脂層との界面で発生する樹脂乱れに加えて、異なるEVOH樹脂と隣接する層の樹脂(接着樹脂)との合流が入り混じった状態となり、通常の界面で生じる乱れよりも微小な乱れも生じた状態になっていると考えられる。一方、真空圧空成形による有底容器の成形は、全体において均一に延伸処理されるフィルムの延伸処理と異なり、延伸時に加わる張力が部位によって異なる。微小な界面乱れが含まれている積層体を、このような真空圧空成形に適用すると、微小な界面乱れ部分が伸ばされて、スジとなって顕在化されたと考える。
 そこで、本発明者らは、EVOH樹脂を含有する層、特にエチレン含有率が異なる2種類以上のEVOH樹脂を含有する層の少なくとも一面に、接着樹脂層を介して、EVOH以外の熱可塑性樹脂層が積層されている積層体の製造方法において、溶融状態の樹脂の流動性とスジの発生との関係をさらに詳しく検討し、本発明に到達した。
 一般に、EVOH樹脂を含有する層を積層体の中間層として、接着樹脂層、他の熱可塑性樹脂層を共押出成形する場合、フィードブロック内でのEVOH/接着樹脂界面のせん断速度は、0.01~10[1/s]程度である事がわかった。つまり、EVOH/接着樹脂界面で発生する界面荒れを抑制するためには、当該せん断速度範囲内での樹脂流動性をコントロールする必要がある。
 本発明の積層体は、EVOH樹脂を含有する層の少なくとも一面に、接着樹脂を含有する層を介して、EVOH樹脂以外の熱可塑性樹脂を含有する層が積層されている積層体であって、該EVOH樹脂と該接着樹脂のせん断粘度比(EVOH樹脂/接着樹脂)が、せん断速度0.1[1/s]において0.70~1.50、かつせん断速度1.0[1/s]において0.90~1.10とする。
 また、上記EVOH樹脂として、エチレン含有率が異なる2種類以上のEVOH樹脂を用いた場合、エチレン含有率が大きく異なる2種類のEVOH樹脂は、溶融時に完全に相溶せずに海島構造を形成し、この海島構造に起因して、該EVOH樹脂組成物の低せん断速度域(例えば、1.0[1/s]以下)でのせん断粘度が増加することが判明した。よって、本発明の積層体は、EVOH樹脂として、特にエチレン含有率が異なる2種類以上のEVOH樹脂の混合物を用いた積層体に関するものである。
 本発明において、2種類以上のエチレン-ビニルエステル系共重合体ケン化物の内、エチレン構造単位のエチレン含有率が最も高いものと最も低いものの含有量差(ΔEt)が10~25モル%であることが好ましい。
 また、本発明において、エチレン-ビニルエステル系共重合体ケン化物を含有する層が、エチレン-ビニルエステル系共重合体ケン化物の含有量に対して、350~800ppmの高級脂肪酸亜鉛塩を含有することが好ましい。
 そしてまた、前記熱可塑性樹脂は、ポリプロピレンであることが好ましい。
 別の見地による本発明は、本発明の積層体を用いたガスバリア性及び外観に優れた二次成形品である。
 さらに別の見地による本発明は、本発明の積層体を用いて、ガスバリア性及び外観に優れた有底容器を製造する方法である。すなわち、本発明の積層体のシート又はフィルムを加熱軟化させる工程;真空吸引及び/又は圧縮空気により、前記シート又はフィルムを前記成形型に密着させる工程;及び冷却後、離型して、有底容器を得る工程を含むガスバリア性及び外観に優れた有底容器を製造する方法である。
 本発明のEVOH樹脂を含有する層の少なくとも一面に、接着樹脂層を介して、EVOH樹脂以外の熱可塑性樹脂を含有する層が積層されている積層体は、かかる積層体を真空圧空成形した場合であっても、スジ等の発生がない外観に優れた有底容器を得ることができる。
 以下、本発明の構成につき詳細に説明するが、これらは望ましい実施態様の一例を示すものであり、これらの内容に特定されるものではない。
 本発明の積層体は、EVOH樹脂を含有する層の少なくとも一面に、接着樹脂を含有する層(接着樹脂層)を介して、EVOH樹脂以外の熱可塑性樹脂を含有する層(他の熱可塑性樹脂層)が積層されている積層体である。
<EVOH樹脂>
 本発明で用いるEVOH樹脂は、通常、エチレンとビニルエステル系モノマーとの共重合体(エチレン-ビニルエステル系共重合体)をケン化させることにより得られる樹脂であり、非水溶性の熱可塑性樹脂である。重合法も公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合等を用いて行うことができるが、一般的にはメタノールを溶媒とする溶液重合が用いられる。得られたエチレン-ビニルエステル系共重合体のケン化も公知の方法、例えば、未反応ビニルエステル系モノマーを除去したエチレン-ビニルエステル系共重合体溶液に、アルカリ触媒を添加する方法で行い得る。
 このようにして製造されるEVOH樹脂は、エチレン由来の構造単位(エチレン構造単位)とビニルアルコール構造単位を主とし、ケン化されずに残存した若干量のビニルエステル構造単位を含む。
 上記ビニルエステル系モノマーとしては、市場入手性や製造時の不純物処理効率がよい点から、代表的には酢酸ビニルが用いられる。他のビニルエステル系モノマーとしては、例えばギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等が挙げられ、通常炭素数3~20、好ましくは炭素数4~10、特に好ましくは炭素数4~7の脂肪族ビニルエステルを用いることができる。これらは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。
 EVOH樹脂におけるエチレン構造単位の含有量は、ISO14663(1999)に基づいて測定した値で、通常20~60モル%、好ましくは25~50モル%、特に好ましくは25~35モル%である。かかる含有量が低すぎる場合は、高湿下のガスバリア性、溶融成形性が低下する傾向があり、逆に高すぎる場合は、ガスバリア性が不足する傾向がある。
 EVOH樹脂におけるビニルエステル成分のケン化度は、JIS K6726(1994)(ただし、EVOH樹脂は水/メタノール溶媒に均一に溶解した溶液にて)に基づいて測定した値で、通常90~100モル%、好ましくは95~100モル%、特に好ましくは99~100モル%である。かかるケン化度が低すぎる場合にはガスバリア性、熱安定性、耐湿性等が低下する傾向がある。
 また、該EVOH樹脂のメルトフローレート(MFR)(210℃、荷重2,160g)は、通常0.5~100g/10分であり、好ましくは1~50g/10分、特に好ましくは3~35g/10分である。かかるMFRが大きすぎる場合には、製膜性が不安定となる傾向があり、小さすぎる場合には粘度が高くなり過ぎて溶融押出しが困難となる傾向がある。
 本発明に用いられるEVOH樹脂には、エチレン構造単位、ビニルアルコール構造単位(未ケン化のビニルエステル構造単位を含む)の他、以下に示すコモノマーに由来する構造単位が、さらに含まれていてもよい。前記コモノマーとしては、プロピレン、イソブテン、α-オクテン、α-ドデセン、α-オクタデセン等のα-オレフィン;3-ブテン-1-オール、4-ペンテン-1-オール、3-ブテン-1、2-ジオール等のヒドロキシ基含有α-オレフィン類やそのエステル化物、アシル化物などのヒドロキシ基含有α-オレフィン誘導体;不飽和カルボン酸又はその塩,部分アルキルエステル,完全アルキルエステル,ニトリル,アミド若しくは無水物;不飽和スルホン酸又はその塩;ビニルシラン化合物;塩化ビニル;スチレン等が挙げられる。
 さらに、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の「後変性」されたEVOH系樹脂を用いることもできる。
 以上のような変性物の中でも、共重合によって一級水酸基が側鎖に導入されたEVOH樹脂は、延伸処理や真空圧空成形などの二次成形性が良好になる点で好ましく、中でも1,2-ジオール構造を側鎖に有するEVOH樹脂が好ましい。
 本発明で用いられるEVOH樹脂には、本発明の効果を阻害しない範囲において、一般にEVOH樹脂に配合する配合剤、例えば、熱安定剤、酸化防止剤、帯電防止剤、着色剤、紫外線吸収剤、滑剤、可塑剤、光安定剤、界面活性剤、抗菌剤、乾燥剤、アンチブロッキング剤、難燃剤、架橋剤、硬化剤、発泡剤、結晶核剤、防曇剤、生分解用添加剤、シランカップリング剤、酸素吸収剤などが含有されていてもよい。
 上記熱安定剤としては、溶融成形時の熱安定性等の各種物性を向上させる目的で、酢酸、プロピオン酸、酪酸、ラウリル酸、ステアリン酸、オレイン酸、ベヘニン酸等の有機酸類またはこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)、亜鉛塩などの塩;または、硫酸、亜硫酸、炭酸、リン酸、ホウ酸等の無機酸類、またはこれらのアルカリ金属塩(ナトリウム、カリウム等)、アルカリ土類金属塩(カルシウム、マグネシウム等)、亜鉛塩などの塩等の添加剤を予め少量添加してもよい。
 また、本発明で使用されるEVOH樹脂は、異なる他のEVOH樹脂との混合物であってもよく、かかる他のEVOH樹脂としては、エチレン含有率が異なるもの、ケン化度が異なるもの、重合度が異なるもの、他の共重合成分が異なるもの、1,2-ジオール構造単位の含有量が異なるものなどを挙げることができる。
 特に、本発明は、エチレン含有率が異なる2種類以上のEVOH樹脂を含有する層の少なくとも一面に、接着樹脂層を介して、EVOH樹脂以外の熱可塑性樹脂層が積層されている積層体において、ガスバリア性を保持しつつ、真空圧空成形を適用した場合にもスジの発生が抑制されたEVOH樹脂を含有する層を有する積層体を達成することができる。以下、例えば、2種類のEVOH樹脂を用いた場合について説明する。
 本発明で用いられる2種類のEVOH樹脂は、以上のようなEVOH樹脂から選択されるEVOH樹脂の組み合わせである。エチレン構造単位のエチレン含有率が最も高いものと最も低いものの含有量差(ΔEt)が10~25モル%であるEVOH樹脂の組み合わせが好ましく、より好ましくは10~23モル%、特に好ましくは10~20モル%である。エチレン含有率が最も高いものと最も低いものの含有量差が小さすぎる場合には、成形性とガスバリア性のバランス保持が困難となる傾向があり、大きすぎる場合には互いの相溶性が低下し、延伸性の違いから二次成形の際にスジが発生しやすくなる傾向があり、スジが多く発生してしまうと透明な成形品が得られないことがある。
 具体的には、下記のようなエチレン含有率が低い方のEVOH樹脂(低エチレンEVOH樹脂)とエチレン含有率が高い方のEVOH樹脂(高エチレンEVOH樹脂)との組み合わせが好ましく用いられる。
 上記低エチレンEVOH樹脂は、エチレン含有率が20~40モル%、好ましくは22~38モル%、特に好ましくは25~33モル%である。エチレン含有率が低すぎる場合、分解温度と融点が接近しすぎて樹脂組成物の溶融成形が困難になる傾向があり、逆に高すぎる場合は、低エチレンEVOH樹脂によるガスバリア性付与が不足する傾向がある。
 また、低エチレンEVOH樹脂におけるビニルエステル成分のケン化度は、通常90モル%以上、好ましくは95~99.99モル%、特に好ましくは98~99.99モル%である。かかるケン化度が低すぎる場合には、低エチレンEVOH樹脂によるガスバリア性付与効果が不足する傾向がある。
 さらに、低EVOH樹脂のメルトフローレート(MFR)(210℃、荷重2,160g)は、通常1~100g/10分であり、好ましくは3~50g/10分、特に好ましくは3~10g/10分である。MFRが大きすぎる場合には、成形物の機械強度が低下する傾向があり、小さすぎる場合には押出加工性が低下する傾向がある。
 一方、上記高エチレンEVOH樹脂のエチレン含有率は、通常40~60モル%、好ましくは42~56モル%、特に好ましくは44~53モル%である。エチレン含有率が低すぎる場合は、高エチレンEVOH樹脂による延伸性の改善効果が小さいため、結果として二次成形性が低下する傾向があり、逆に高すぎる場合は、エチレン含有率差を所定範囲内にするために、低エチレンEVOH樹脂のエチレン含有率を高くせざるを得ず、結果として樹脂組成物層のガスバリア性が不足することになる。
 また、高エチレンEVOH樹脂におけるビニルエステル成分のケン化度は、通常90モル%以上、好ましくは93~99.99モル%、特に好ましくは98~99.99モル%である。かかるケン化度が低すぎる場合には高エチレンEVOH樹脂のガスバリア性が不足する傾向がある。
 さらに、高エチレンEVOH樹脂のメルトフローレート(MFR)(210℃、荷重2,160g)は、通常1~100g/10分であり、好ましくは3~50g/10分、特に好ましくは3~30g/10分である。MFRが大きすぎる場合には、成形物の機械強度が低下する傾向があり、小さすぎる場合には押出加工性が低下する傾向がある。
 低エチレンEVOH樹脂(A1)と高エチレンEVOH樹脂(A2)の配合比率(A1/A2)(重量比)としては、通常90/10~60/40であり、好ましくは85/15~65/35、特に好ましくは80/20~70/30である。低エチレンEVOH樹脂(A1)の比率が小さすぎる場合には、組成物層のガスバリア性が不足する傾向があり、大きすぎる場合には、高エチレンEVOH樹脂による延伸改善効果が低下する傾向がある。
<接着樹脂>
 本発明で用いられる接着樹脂について説明する。
 接着樹脂としては、公知のものを使用すればよい。かかる接着樹脂は基材樹脂の種類によって異なるため、適宜選択すればよいが、代表的には不飽和カルボン酸またはその無水物をポリオレフィン系樹脂に付加反応やグラフト反応等により化学的に結合させて得られるカルボキシル基を含有する変性オレフィン系重合体を挙げることができる。中でも、接着樹脂として、無水マレイン酸変性ポリオレフィンが好ましく、基材樹脂としてポリオレフィン、特にポリプロピレンとの組み合わせが好ましい。
 無水マレイン酸変性ポリオレフィンとしては、例えば、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン-プロピレン(ブロックおよびランダム)共重合体、無水マレイン酸グラフト変性エチレン-エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン-酢酸ビニル共重合体等であり、これらから選ばれた1種または2種以上の混合物が好ましい。
 またこれらの接着樹脂には、本発明のEVOH樹脂を含有する層を形成するためのEVOH樹脂組成物、当該樹脂組成物に用いたEVOH樹脂以外のEVOH樹脂、ポリイソブチレン、エチレン-プロピレンゴム等のゴム・エラストマー成分、さらには後述の他の熱可塑性樹脂等をブレンドすることも可能である。特に、接着樹脂の母体のポリオレフィン系樹脂と異なるポリオレフィン系樹脂をブレンドすることにより、接着性が向上することがあり有用である。
<他の熱可塑性樹脂>
 本発明で用いられる他の熱可塑性樹脂について説明する。本発明においては、上記他の熱可塑性樹脂は、EVOH樹脂以外の熱可塑性樹脂である。
 ここで用いられる他の熱可塑性樹脂(「基材樹脂」と称する)としては、例えば、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等のポリエチレン類、ポリプロピレン、エチレン-プロピレン(ブロックおよびランダム)共重合体、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体、ポリブテン、ポリペンテン等のポリオレフィン類;これらポリオレフィン類を不飽和カルボン酸又はそのエステルでグラフト変性したグラフト化ポリオレフィン類;アイオノマー、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体等のエチレン-ビニル化合物共重合体;ポリエステル系樹脂;ポリアミド系樹脂(共重合ポリアミドも含む);ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン等のハロゲン化ポリオレフィン;ビニルエステル系樹脂;ポリエステルエラストマー、ポリウレタンエラストマー等のエラストマー;アクリル系樹脂;ポリスチレン;芳香族または脂肪族ポリケトン、更にこれらを還元して得られるポリアルコール類等が挙げられるが、積層体の物性(特に強度)等の実用性の点から、ポリオレフィン系樹脂やポリアミド系樹脂が好ましく、特にはポリエチレン、ポリプロピレンが好ましく用いられる。
 これら基材樹脂には、従来知られているような酸化防止剤、帯電防止剤、滑剤、核材、ブロッキング防止剤、紫外線吸収剤、ワックス等を適宜含んでいてもよい。
<積層体>
 積層体の層構成は、本発明のEVOH樹脂を含有する層、即ち、EVOH樹脂組成物から形成されるEVOH樹脂組成物層をa(a1、a2、・・・)、接着樹脂層をb(b1、b2、・・・)、基材樹脂層をc(c1、c2、・・・)とするとき、a/bの二層構造のみならず、a/b/c、b/a/c、a1/b/a2、b1/a/b2、c1/b/a/b/c2、c1/b1/a/b2/c2、c1/a1/b/a2/c2、c1/b1/a1/b2/a2/b3/c2等任意の組み合わせが可能である。また、該積層体を製造する過程で発生する端部や不良品当等を再溶融成形して得られる、該EVOH樹脂組成物と基材樹脂との混合物を含むリサイクル層をR(R1、R2、・・・)とするとき、c/R/b/a、b1/R/a/b2、c1/R1/a/R2/c2、c/a1/R/a2/b、c1/R1/b1/a/b2/R2/c2、c1/R1/a1/R2/a2/R3/c2等とすることも可能である。
 積層体の基材樹脂層および接着樹脂層の厚みは、層構成、基材として用いる熱可塑性樹脂の種類、接着樹脂の種類、用途や包装形態、要求される物性などにより一概に言えないが、基材樹脂層は通常0.1~5000μm、好ましくは1~1000μm、接着樹脂層は0.1~500μm、好ましくは1~250μm程度の範囲から選択される。
 また、EVOH樹脂組成物層の厚みは要求されるガスバリア性などによって異なるが、通常は0.1~500μmである。好ましくは0.1~250μm、特に好ましくは0.1~100μmであり、かかる厚みが薄すぎると十分なガスバリア性が得られない傾向があり、逆に厚すぎるとフィルムの柔軟性が不足する傾向にある。
 さらに、積層体におけるEVOH樹脂組成物層と基材樹脂層との厚みの比(樹脂組成物層/基材樹脂層)は、各層が複数ある場合は最も厚みの厚い層同士の比にて、通常1/99~50/50、好ましくは5/95~45/55、特に好ましくは10/90~40/60である。また、積層体における樹脂組成物層と接着樹脂層の厚み比(樹脂組成物層/接着樹脂層)は、各層が複数ある場合は最も厚みの厚い層同士の比にて、通常10/90~99/1、好ましくは20/80~95/5、特に好ましくは30/70~90/10である。
 EVOH樹脂組成物層、接着樹脂層、及び基材樹脂層の積層は、公知の方法にて行うことができる。例えば、EVOH樹脂と接着樹脂の積層については、装置内合流の共押出成形にて行うことができる。具体的には、フィードブロックを用いて各層合流後にダイ内で成形品幅に展開される方法、マルチマニフォールドダイを用いて製品幅に展開後に各層を合流させる方法、上記手法によってEVOH樹脂と接着樹脂が積層された後で他樹脂層からなる基材に延展される手法等が挙げられる。コストや環境の観点から考慮して、EVOH樹脂組成物層、接着樹脂層、及び基材樹脂層の全層を共押出成形する方法が好ましい。
 本発明は、かかる共押出成形する際に、該EVOH樹脂と該接着樹脂において、せん断速度0.1[1/s]におけるせん断粘度比(EVOH樹脂/接着樹脂)が0.70~1.50、かつせん断速度1.0[1/s]におけるせん断粘度比(EVOH樹脂/接着樹脂)が0.90~1.10、とすることを最大の特徴とする。
<せん断粘度>
 本発明において、EVOH樹脂と接着樹脂のせん断速度0.1[1/s]におけるせん断粘度比(EVOH樹脂/接着樹脂)は、0.70~1.50、好ましくは0.80~1.45、特に好ましくは0.90~1.40であり、さらに、EVOH樹脂と接着樹脂のせん断速度1.0[1/s]におけるせん断粘度比(EVOH樹脂/接着樹脂)は、0.90~1.10、好ましくは0.95~1.05、特に好ましくは0.99~1.01である。
 かかるせん断粘度比が大きくなると、かかる積層体を真空圧空成形した場合に、スジ等が発生し、外観不良が発生し易い傾向がある。
 本発明におけるせん断粘度は、回転型レオメーターを用いて、下記条件下にて測定されたものである。
(測定条件)
雰囲気;窒素雰囲気下、温度;210[℃]、ひずみ;5[%]、測定冶具;φ25mmパラレル-パラレルプレート、予熱時間;10[min]
 かかる特定せん断領域におけるせん断粘度差を所定範囲内に満足させるには、特に限定されないが、下記方法等を適宜組み合わせることにより可能となる。
(1)EVOH樹脂のせん断粘度を調整する方法において
 例えば、EVOH樹脂の分子量、エチレン含有率、ケン化度及びMFRのうちの少なくとも1つを変える、あるいは複数のEVOH樹脂を併用することで調整可能である。ただし、これらの方法だと成形性やガスバリア性など、他の特性も大きく変化するため、適用が難しい。
 せん断粘度に及ぼす効果が大きい添加剤を微量用いて、他の特性に影響を与えない方法が好ましい。
 かかる添加剤としては、例えば、(i)EVOH樹脂に対して反応系樹脂であるポリアミド系樹脂、(ii)EVOH樹脂に対して非反応系樹脂であるポリオレフィン、ポリエステル、ポリスチレン、ポリカーボネート、それらの共重合体、(iii)フィラー、ガラスファイバー等の無機物、(iv)高級脂肪酸亜鉛塩等の高級脂肪酸金属塩等が挙げられる。
(2)接着樹脂のせん断粘度を調整する方法において
 例えば、分子量の異なる接着樹脂や組成の異なる樹脂を配合する、酸変性の度合いを変更するなどが挙げられる。ただし、成形品の剥離強度を実用的なレベルに維持するためには、使用する接着樹脂に合わせたEVOH樹脂の調整で解決できることが望ましい。
 特にこれらの中でも、EVOH樹脂のせん断粘度を調整する方法において、EVOH樹脂に添加剤として、高級脂肪酸金属塩、特に高級脂肪酸亜鉛塩を添加することで、目的とする特定せん断領域におけるせん断粘度差を所定範囲内にすることが好適に可能となるのである。
 高級脂肪酸亜鉛塩に用いられる高級脂肪酸塩は、炭素数8以上(好ましくは炭素数12~30、より好ましくは炭素数12~20)の脂肪酸をいい、具体的には、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、オレイン酸、カプリン酸、ベヘニン酸、リノール酸等を挙げることができる。これらの中でも、ステアリン酸、オレイン酸、ラウリン酸が好適に用いられる。
 このような高級脂肪酸亜鉛塩は、EVOH樹脂、特にエチレン含有率が最も高いものと最も低いものの含有量差(ΔEt)が10~25モル%である2種類のEVOH樹脂が共存する樹脂組成物の二次成形性を改善することができる。特に真空圧空成形のように、部位によりかかる張力が異なり、拡径加工のように張力があらゆる方向から加わるような処理に供されても、スジの発生が抑制された成形品を得ることができる。
 理由は明らかではないが、高級脂肪酸亜鉛塩は、エチレン含有率が異なる2種類のEVOH樹脂の溶融時の混和性を高め、他の樹脂との共押出成形時に発生する微小な界面乱れを抑制すると思われる。このような抑制効果は、高級脂肪酸の他の金属塩、あるいは低級脂肪酸の亜鉛塩では見られない効果であり、驚くべきことである。
 高級脂肪酸亜鉛塩の配合量としては、EVOH樹脂に対して、350~800ppmであることが好ましく、より好ましくは400~750ppm、特に好ましくは450~700ppmである。高級脂肪酸亜鉛塩の配合量が少なすぎる場合には、二次成形時のスジ発生の抑制効果が低下し、スジが多く発生してしまうと成形品の透明性が損なわれる。一方、高級脂肪酸の金属塩は、一般に溶融状態にあるEVOH樹脂の分解を触媒するため、高級脂肪酸亜鉛塩の濃度が高くなりすぎると、EVOH樹脂の分解によりガスが発生し、溶融成形、共押出成形による積層体の製造に、悪影響を及ぼすおそれがある。
 特に、高級脂肪酸亜鉛として、ステアリン酸亜鉛を用いた場合のEVOH樹脂に対する配合量は、EVOH樹脂に対して、450~700ppmである。
〔その他の添加物〕
 本発明の積層体に用いられるEVOH樹脂組成物層には、本発明の趣旨を阻害しない範囲(例えば1重量%以下)において、上記成分以外に可塑剤、フィラー、ブロッキング防止剤、酸化防止剤、着色剤、帯電防止剤、紫外線吸収剤、滑剤等の公知の添加剤を適宜配合することができる。
<EVOH樹脂組成物の調製方法>
 本発明の積層体に用いられるEVOH樹脂に高級脂肪酸亜鉛塩を配合してEVOH樹脂組成物を調製する方法については、特に限定しない。EVOH樹脂、高級脂肪酸亜鉛塩を所定割合で配合して、溶融混練等により樹脂組成物を調製してもよいし、各成分を所定割合でドライブレンドするだけでもよい。ドライブレンドによる調製方法は、必要に応じてEVOH樹脂の組合せを適宜選択することができ、高級脂肪酸亜鉛塩を必要に応じて添加することで調製できるので、生産上有利である。また、ドライブレンドによる調製方法は、溶融状態のEVOH樹脂に対する高級脂肪酸亜鉛塩による分解抑制という観点から好ましい。すなわち、本発明の樹脂組成物の調製方法は、ドライブレンドによって、各EVOH樹脂表面に、高級脂肪酸亜鉛塩が付着して存在している状態が好ましい。
 ドライブレンドの方法としては、例えば、低エチレンEVOH樹脂と高エチレンEVOH樹脂をドライブレンドしたものに、高級脂肪酸亜鉛塩を配合してもよいし、予め作成した2種類のEVOH樹脂混合物のコンパウンドに、高級脂肪酸亜鉛塩を配合してもよい。2種類のEVOH樹脂及び高級脂肪酸亜鉛塩をドライブレンドで配合してもよい。
 また、いずれか一方のEVOH樹脂と高級脂肪酸亜鉛塩をドライブレンドしたものに、他方のEVOH樹脂を配合してもよいし、予め作成した一方のEVOH樹脂と高級脂肪酸亜鉛塩とのコンパウンドに、他方のEVOH樹脂を配合してもよい。
 さらに、一方のEVOH樹脂と高級脂肪酸亜鉛塩とをドライブレンドしたものに、他方のEVOH樹脂と高級脂肪酸亜鉛塩とをドライブレンドしたものを配合してもよいし、予め作成した一方のEVOH樹脂と高級脂肪酸亜鉛塩とのコンパウンドに、予め作成した他方のEVOH樹脂と高級脂肪酸亜鉛塩とのコンパウンドを配合してもよい。
<積層体の用途>
 以上のような構成を有する積層体は、通常、加熱延伸処理を施して用いられる。本発明のEVOH樹脂組成物層がガスバリア層として優れたガスバリア性を有し、しかも積層界面における界面乱れが低減されていると考えられるので、公知の種々の加熱延伸処理を適用することができる。
 例えば具体的には、積層体シートの両耳を把んで拡幅する一軸延伸、二軸延伸;積層体シートを加熱軟化させ、プレス等を用いて有底容器を成形する絞り成形加工;真空吸引又は圧縮空気の吹き込み等により積層体シートを金型に密着させる真空成形、圧空成形、真空圧空成形;パリソン等の予備成形された積層体を、チューブラー延伸法、延伸ブロー法等で加工する方法が挙げられる。本発明のEVOH樹脂を有する積層体は、隣接する層との界面における乱れが低減され、優れた加熱延伸性を有しているので、一軸延伸、逐次的に異なる方向に延伸する二軸延伸だけでなく、同時に放射方向に延伸されることになる金型密着による延伸加工成形やブロー成形にも適している。
 上記加熱延伸成形を行う温度は、積層体の温度(積層体近傍温度)で、通常40~300℃、好ましくは50~160℃程度の範囲から選ばれる。延伸倍率は、面積比にて、通常2~50倍、好ましくは2~10倍である。
 また、積層体の加熱は、熱風オーブン、加熱ヒーター式オーブン又は両者の併用などにより均一に加熱することが好ましく、延伸成形方法の種類により適宜選択する。
 共押出成形、さらには熱延伸処理により得られた積層体に、さらに他の基材を押出コートしたり、他の基材のフィルム、シート等を、接着剤を用いてラミネートしてもよい。かかる基材としては、基材樹脂として前述した熱可塑性樹脂だけでなく、延伸性に乏しい基材(紙、金属箔、織布、不織布、金属綿状、木質等)も使用可能である。さらに、積層体上に、蒸着等により、金属、金属酸化物からなる無機物層を形成してもよい。
 上記のようにして得られたフィルム、シート、延伸フィルムからなる袋およびカップ、トレイ、チューブ、ボトル等からなる容器等の成形品は、一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品等の各種の包装材料、包装容器や蓋材として有用である。
〔真空成型・圧空成形による二次成形品の製造〕
 本発明の積層体は、真空成型、圧空成形により二次成形品、特にカップやトレイ等の有底容器の製造に適している。本発明の積層体は、積層界面での微小な樹脂流れ乱れが少ないと考えられることから、外観に優れた二次成形品を得ることができる。
 すなわち、本発明のガスバリア性及び外観に優れた有底容器を製造する方法は、上記本発明の積層体のシート又はフィルムを成形型近傍で加熱軟化させる工程;真空吸引及び/又は圧縮空気により、前記シート又はフィルムを前記成形型に密着させる工程;及び冷却後、離型して、有底容器を得る工程を含む。
 有底容器の形状としては、特に限定せず、円筒有底容器、角筒有底容器、さらには異形有底容器、開口部から底部にむけて縮径又は拡径している円錐形有底容器、開口部面積より底面積が小さい角錐有底容器、半球状の容器、開口部から2段階で底部が小さくなっている段付き有底容器、さらには、これらの容器にフランジや凸部が形成されたものであってもよい。
 カップやトレイ等の、絞り比(成形品の深さ(mm)/成形品の最大直径(mm))が通常0.1~3である成形物を目的とする場合、特に、急激な延伸処理が含まれる真空圧空成形が採用されるが、真空圧空成形する場合、カップ側面部分と底面部分とでは、樹脂にかかる張力の大きさが異なるため、優れた外観の成形品を製造することが難しい。しかしながら、本発明の樹脂組成物を用いた積層体では、成形加工時に付加される張力が部位によって異なる、真空圧空成形法によるカップ状の成形に供しても、ガスバリア性を損なうことなく、優れた外観を有する成形品を得ることができる。
 加熱軟化工程における加熱温度は、積層体の温度(積層体近傍温度)で、通常40~300℃、好ましくは50~170℃、特に好ましくは60~160℃程度の範囲から選ばれる。かかる加熱温度が低すぎる場合は軟化不十分で、優れた外観を有する成形品を得られない傾向があり、高すぎる場合は、各層の溶融粘度のバランスがくずれ、優れた外観を有する成形品を得られないおそれがある。
 加熱時間は、成形に必要十分な軟化状態を達成できる程度にまで、積層体温度を加熱することができる時間であり、積層体の層構成、積層体を形成する各層の成分組成、加熱に用いるヒーター温度等により適宜設定される。
 真空圧空成形の絞り比(成形品の深さ(mm)/成形品の最大直径(mm))は、目的とする有底容器の形状にもよるが、通常0.1~3、好ましくは0.2~2.5、特に好ましくは0.3~2とすることが好ましい。かかる値が大きすぎる場合、EVOH樹脂組成物層のクラック等が入りやすくなり、小さすぎる場合は壁面の厚みに偏肉が生じやすくなる。
 上記のような二次成形後の積層体の熱可塑性樹脂層および接着樹脂層の厚みは、層構成、熱可塑性樹脂の種類、接着樹脂の種類、用途や包装形態、要求される物性などにより一概に言えないが、熱可塑性樹脂層は通常0.1~3000μm、好ましくは1~500μm、接着樹脂層は0.1~300μm、好ましくは1~100μm程度の範囲から選択される。
 また、上記延伸処理後の本発明のEVOH樹脂組成物層の厚みは要求されるガスバリア性などによって異なるが、通常は0.1~300μmであり、好ましくは0.1~100μm、特に好ましくは0.1~50μmであり、かかる厚みが薄すぎると十分なガスバリア性が得られない傾向があり、逆に厚すぎるとフィルムの柔軟性が不足する傾向にある。
 さらに、EVOH樹脂組成物層と接着樹脂層の厚み比、EVOH樹脂組成物層の厚み総計と熱可塑性樹脂層の厚み総計比は、加熱延伸前後で大きく変化するものではなく、上記した積層体の場合と同様の値となる。
 本発明の方法により製造される有底容器は、EVOH樹脂組成物層が本来有する優れたガスバリア性を保持しつつ、透明性に優れ、偏肉がない。さらに、成形品である容器に目視で認められるようなスジの発生が抑制されている。原料として用いた積層体のEVOH樹脂組成物層は、結果として、積層体における隣接する層との間の界面での乱れが抑制され、スジの原因となるような微小な界面乱れが低減されているためと考えられる。よって、外観も優れているので、一般的な食品の他、マヨネーズ、ドレッシング等の調味料、味噌等の発酵食品、サラダ油等の油脂食品、飲料、化粧品、医薬品等の各種の包装材料容器として有用である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を超えない限り、実施例の記載に限定されるものではない。
 尚、例中「部」とあるのは、断りのない限り重量基準を意味する。
 以下の実施例、比較例で使用したEVOH樹脂、高級脂肪酸金属塩は以下の通りである。
・EVOH樹脂1:エチレン構造単位の含有率29モル%、ケン化度99.6モル%、MFR4.0g/10分(210℃、荷重2160g)
・EVOH樹脂2:エチレン構造単位の含有率44モル%、ケン化度98.5モル%、MFR4.0g/10分(210℃、荷重2160g)
・高級脂肪酸金属塩:ステアリン酸亜鉛
(実施例1)
〔EVOH樹脂組成物の製造〕
 上記に示す2種類のEVOH樹脂を用い、エチレン含有率が低い方のEVOH樹脂1を75部、高い方のEVOH樹脂2を25部配合し、さらに高級脂肪酸亜鉛塩を、EVOH1とEVOH2の合計量100重量部に対して500ppm配合し、ドライブレンドすることにより、EVOH樹脂組成物を調製した。
(実施例2)
 上記に示す2種類のEVOH樹脂を用い、EVOH樹脂1を25部、EVOH樹脂2を75部配合し、ドライブレンドすることにより、EVOH樹脂組成物を調製した。
(比較例1)
 上記に示す2種類のEVOH樹脂を用い、EVOH樹脂1を75部、EVOH樹脂2を25部配合し、ドライブレンドすることにより、EVOH樹脂組成物を調製した。
(比較例2)
 上記に示す2種類のEVOH樹脂を用い、EVOH樹脂1を50部、EVOH樹脂2を50部配合し、ドライブレンドすることにより、EVOH樹脂組成物を調製した。
〔積層体の製造〕
 3種5層共押出しTダイシート製膜装置に、上記で調製したEVOH樹脂組成物、ポリプロピレン(日本ポリプロ社製「EG47FT」)、接着樹脂(三井化学社製「Admer QF551」)を供給して、共押出成形により、ポリプロピレン層/接着樹脂層/EVOH樹脂組成物層/接着樹脂層/ポリプロピレン層の3種5層構造の積層体(フィルム)を得た。積層体の各層の厚み(μm)は、450/25/50/25/450である。
 成形装置のダイ温度は、全て210℃に設定した。
[せん断粘度の測定]
 上記で調製したEVOH樹脂組成物、及び接着樹脂のせん断粘度(Pa・s)を、回転型レオメーター(アントンパール社製、『MCR301』)を用い、下記条件にて測定した。
(測定条件)
雰囲気;窒素雰囲気下、温度;210[℃]、ひずみ;5[%]、測定冶具;φ25mmパラレル-パラレルプレート、予熱時間;10[min]
 また、得られたせん断粘度(Pa・s)を用い、せん断速度:0.1[1/s]、及び1.0[1/s]におけるせん断粘度比(EVOH樹脂/接着樹脂)を算出した。結果を表1に示す。
[積層体の二次成形]
 真空圧空成形機(浅野研究所製プラグアシスト型真空圧空成形機)の金型温度を50℃、ヒーター温度を500℃に設定し、上記で得た3種5層の積層フィルム(縦×横=40mm×40mm、厚み1000μm、EVOH樹脂組成物層の厚み50μm)を用いて、開口部よりも底面の方が広がっている円錐形有底容器(上面径48mm、底面径80mm、深さ52mm、絞り比(成形品の深さ(mm)/成形品の最大直径(mm))が0.65)を作製した。
 積層フィルムの加熱軟化のための加熱時間(ヒーター温度500℃)を、22秒間、24秒間又は26秒間として、各場合について成形品を得、下記基準に基づき二次成形性を評価した。
〔二次成形性の評価〕
 得られた成形品(カップ)の外観を目視観察して、スジの発生度合いを評価した。
A:スジがない、もしくは僅かにスジ(太さ200μm未満)がみられる程度である。
B:部分的に太さ200μm以上300μm未満のスジがある。
C:部分的に太さ300μm以上500μm以下のスジがある。
D:太さ300~500μmのスジが成形品全体にわたって発生した。
Figure JPOXMLDOC01-appb-T000001
 上記結果より、EVOHと接着樹脂のせん断粘度比(EVOH樹脂/接着樹脂)が、せん断速度0.1[1/s]及び1.0[1/s]において、所定範囲内にすることによって製造した積層体を用いた場合、得られる有底容器は、スジの発生が抑制ないし、全く発生せず、真空圧空成形によるスジの発生抑制効果が発揮されていることがわかる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2014年11月18日出願の日本特許出願(特願2014-233819)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の積層体は、ガスバリア性及び外観に優れた有底容器の製造原料として有用である。

Claims (7)

  1.  エチレン-ビニルエステル系共重合体ケン化物を含有する層の少なくとも一面に、接着樹脂を含有する層を介して、エチレン-ビニルエステル系共重合体ケン化物以外の熱可塑性樹脂を含有する層が積層されている積層体であって、該エチレン-ビニルエステル系共重合体ケン化物と該接着樹脂のせん断粘度比(エチレン-ビニルエステル系共重合体ケン化物/接着樹脂)が、せん断速度0.1[1/s]において0.70~1.50、かつせん断速度1.0[1/s]において0.90~1.10である積層体。
  2.  エチレン-ビニルエステル系共重合体ケン化物が、エチレン構造単位の含有率が異なる2種類以上のエチレン-ビニルエステル系共重合体ケン化物の混合物である請求項1記載の積層体。
  3.  2種類以上のエチレン-ビニルエステル系共重合体ケン化物の内、エチレン構造単位のエチレン含有率が最も高いものと最も低いものの含有量差(ΔEt)が10~25モル%である請求項2記載の積層体。
  4.  エチレン-ビニルエステル系共重合体ケン化物を含有する層が、エチレン-ビニルエステル系共重合体ケン化物の含有量に対して、350~800ppmの高級脂肪酸亜鉛塩を含有する請求項1~3のいずれか1項に記載の積層体。
  5.  熱可塑性樹脂が、ポリプロピレンである請求項1~4のいずれか1項に記載の積層体。
  6.  請求項1~5のいずれか1項に記載の積層体を用いた二次成形品。
  7.  請求項1~5のいずれか1項に記載の積層体のシート又はフィルムを加熱軟化させる工程;
     真空吸引及び圧縮空気の少なくとも一方により、前記シート又はフィルムを成形型に密着させる工程;及び
     冷却後、離型して、有底容器を得る工程
    を含む有底容器を製造する方法。
PCT/JP2015/082390 2014-11-18 2015-11-18 エチレン-ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法 WO2016080438A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/527,101 US11207873B2 (en) 2014-11-18 2015-11-18 Laminate having layer containing saponified ethylene/vinyl ester copolymer, secondary molded article thereof, and method for manufacturing bottomed container
JP2015557279A JP6743387B2 (ja) 2014-11-18 2015-11-18 エチレン−ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法
EP15861495.8A EP3222419B1 (en) 2014-11-18 2015-11-18 Secondary molded article having layer containing saponified ethylene/vinyl ester copolymer, and method for manufacturing bottomed container
CN201580062198.9A CN107000412A (zh) 2014-11-18 2015-11-18 具有含乙烯‑乙烯基酯系共聚物皂化物的层的层叠体、其二次成形品和有底容器的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233819 2014-11-18
JP2014-233819 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016080438A1 true WO2016080438A1 (ja) 2016-05-26

Family

ID=56013973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082390 WO2016080438A1 (ja) 2014-11-18 2015-11-18 エチレン-ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法

Country Status (5)

Country Link
US (1) US11207873B2 (ja)
EP (1) EP3222419B1 (ja)
JP (1) JP6743387B2 (ja)
CN (1) CN107000412A (ja)
WO (1) WO2016080438A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131320A1 (ja) * 2020-12-17 2022-06-23 株式会社クラレ 樹脂ペレット群およびそれを用いた層構造体
WO2022131321A1 (ja) * 2020-12-17 2022-06-23 株式会社クラレ 樹脂ペレット群およびそれを用いた層構造体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083000A1 (ja) * 2017-10-27 2019-05-02 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体樹脂組成物、多層構造体および包装体
JP2021104579A (ja) * 2018-04-06 2021-07-26 株式会社クラレ ジオメンブレン並びにこれを用いたランドフィルシート及びラドンバリアフィルム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113526A (ja) * 1985-11-13 1987-05-25 Kuraray Co Ltd 多層成形物および多層延伸フイルムの製造方法
JPH08239528A (ja) * 1994-12-07 1996-09-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物及びその用途
JP2000167998A (ja) * 1998-10-01 2000-06-20 Nippon Synthetic Chem Ind Co Ltd:The 積層体およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796636B2 (ja) 1987-03-19 1995-10-18 株式会社クラレ 樹脂組成物
JP2915324B2 (ja) 1995-05-19 1999-07-05 日本合成化学工業株式会社 エチレン−酢酸ビニル系共重合体ケン化物樹脂組成物及びそれを用いた多層構造体
EP0990514B1 (en) 1998-10-01 2004-11-24 The Nippon Synthetic Chemical Industry Co., Ltd. Polypropylene/evoh laminate
CA2310925C (en) 1999-06-11 2005-10-11 Kuraray Co., Ltd. Multilayered structure
EP2194093B8 (en) 2007-09-25 2013-07-24 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition, molding resin composition prepared by using the same, laminates, and process for the production of laminates
JP5801199B2 (ja) 2008-09-12 2015-10-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 金属カルボン酸塩を含むエチレンビニルアルコール組成物
JP5466982B2 (ja) 2010-04-08 2014-04-09 出光ユニテック株式会社 容器本体およびその製造方法、並びに包装容器
US20120241352A1 (en) 2011-03-22 2012-09-27 Pramanik Pranabes K Articles formed from a multi-layer sheet structure
CN105555860B (zh) * 2013-09-20 2018-04-03 日本合成化学工业株式会社 乙烯‑乙烯醇共聚物组合物,以及使用其的层叠体和二次成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113526A (ja) * 1985-11-13 1987-05-25 Kuraray Co Ltd 多層成形物および多層延伸フイルムの製造方法
JPH08239528A (ja) * 1994-12-07 1996-09-17 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物系樹脂組成物及びその用途
JP2000167998A (ja) * 1998-10-01 2000-06-20 Nippon Synthetic Chem Ind Co Ltd:The 積層体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222419A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022131320A1 (ja) * 2020-12-17 2022-06-23 株式会社クラレ 樹脂ペレット群およびそれを用いた層構造体
WO2022131321A1 (ja) * 2020-12-17 2022-06-23 株式会社クラレ 樹脂ペレット群およびそれを用いた層構造体
JP7137734B1 (ja) * 2020-12-17 2022-09-14 株式会社クラレ 樹脂ペレット群およびそれを用いた層構造体

Also Published As

Publication number Publication date
CN107000412A (zh) 2017-08-01
EP3222419B1 (en) 2022-08-03
EP3222419A4 (en) 2018-10-17
EP3222419A1 (en) 2017-09-27
US20180170025A1 (en) 2018-06-21
US11207873B2 (en) 2021-12-28
JPWO2016080438A1 (ja) 2017-11-09
JP6743387B2 (ja) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6408313B2 (ja) エチレンービニルアルコール共重合体組成物、並びにこれを用いた積層体及びその二次成形品
JP6498925B2 (ja) Evoh樹脂を用いた溶融成形材料
JP6743387B2 (ja) エチレン−ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法
US11020945B2 (en) Multilayer structure, and packaging material formed from the multilayer structure
JP7375363B2 (ja) 多層構造体
JP6534151B2 (ja) 多層構造体
TW201925247A (zh) 乙烯-乙烯醇系共聚物組成物、熔融成形用材料、多層結構體及熱成形容器用材料
JP5185182B2 (ja) 樹脂組成物及び当該樹脂組成物を用いた多層構造体
US11345806B2 (en) Resin composition, melt-forming material, multilayer structure, and liquid packaging material
JP2018027673A (ja) 樹脂組成物およびそれを用いた多層構造体並びにその製造方法
JP6805513B2 (ja) 多層構造体
JP2016190485A (ja) 多層構造体
JP6866640B2 (ja) 樹脂組成物およびそれを用いた溶融成形品、ならびに多層構造体
JP7156035B2 (ja) 樹脂組成物、溶融成形用材料、多層構造体および液体包装用材料

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015557279

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527101

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015861495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE