WO2016080165A1 - 刺激値直読型の測色測光計 - Google Patents

刺激値直読型の測色測光計 Download PDF

Info

Publication number
WO2016080165A1
WO2016080165A1 PCT/JP2015/080436 JP2015080436W WO2016080165A1 WO 2016080165 A1 WO2016080165 A1 WO 2016080165A1 JP 2015080436 W JP2015080436 W JP 2015080436W WO 2016080165 A1 WO2016080165 A1 WO 2016080165A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
signal
colorimetric
component
weighted sum
Prior art date
Application number
PCT/JP2015/080436
Other languages
English (en)
French (fr)
Inventor
幹夫 上松
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016560135A priority Critical patent/JP6555276B2/ja
Priority to US15/527,055 priority patent/US10337921B2/en
Publication of WO2016080165A1 publication Critical patent/WO2016080165A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/465Measurement of colour; Colour measuring devices, e.g. colorimeters taking into account the colour perception of the eye; using tristimulus detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/505Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • G01J3/524Calibration of colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0285Testing optical properties by measuring material or chromatic transmission properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6033Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer using test pattern analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6052Matching two or more picture signal generators or two or more picture reproducers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0693Calibration of display systems

Definitions

  • the present invention relates to a stimulus value direct reading type colorimetry photometer that measures both a colorimetric value and a photometric value.
  • CIE1931XYZ color matching function The color matching function of the XYZ color system adopted by the International Commission on Illumination (CIE) in 1931 (hereinafter referred to as “CIE1931XYZ color matching function”) is used to obtain an objective color index. Is a kind of evaluation function for colorimetry.
  • the CIE1931XYZ color matching function has been used for a long period of time as a standard colorimetric evaluation function for measuring colors of displays, lamps, and the like.
  • Patent document 1 is an example.
  • the colorimetric value obtained when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function does not necessarily match the actual human visual feeling as described in Patent Document 2.
  • a color matching function obtained by correcting the CIE1931XYZ color matching function (hereinafter referred to as “corrected color matching function”) has been proposed.
  • Vos and Judd (1978) modified color matching function, TR-170-1 modified color matching function, Stockman and Sharpe (1998) modified color matching function, and the like have been proposed.
  • the colorimetric value obtained when the modified color matching function is selected as the colorimetric evaluation function is compared with the colorimetric value obtained when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function. , More consistent with the actual human visual feeling.
  • the spectral luminous efficiency (hereinafter referred to as “standard spectral luminous efficiency”) defined in 1924 by CIE is a kind of evaluation function for photometry. Standard spectral luminous efficiency has been adopted for a long time as an evaluation function for photometry. The standard spectral luminous efficiency matches the y component of the CIE1931XYZ color matching function. Therefore, the photometric value when the standard spectral luminous efficiency is selected as the photometric evaluation function can be accurately derived from the y component of the stimulus value when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function. .
  • Patent Document 3 describes an invention that alleviates the mismatch between the spectral response of the colorimetric optical system and the color matching function by calculating the weighted sum of the three signal values.
  • the colorimetric value obtained when the modified color matching function is selected as the colorimetric evaluation function is the colorimetric value obtained when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function. Compared with the value, it more closely matches the actual human visual feeling. For this reason, it may be desired to select a corrected color matching function as an evaluation function for colorimetry and measure a colorimetric value.
  • standard spectral luminous efficiency has occupied the position of standard photometric evaluation functions for a long period of time, so standard spectral luminous efficiency is used for photometric evaluation functions for comparison with past measurement data. In some cases, it may be desired to measure the photometric value.
  • the photometric value when the standard spectral luminous efficiency is selected as the photometric evaluation function is accurately derived from the y component of the stimulus value when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function.
  • the photometric value when the standard spectral luminous efficiency is selected as the photometric evaluation function is accurately calculated. The problem that it cannot be derived arises.
  • This problem is that when the spectral luminous efficiency does not approximate a part of the color matching function, the color measurement value when the color matching function is selected as the color measuring evaluation function and the spectral luminous efficiency is evaluated for photometry. Generally occurs when measuring both photometric values when selected as a function.
  • the invention described in the detailed description of the invention aims to solve the above problems.
  • the problem to be solved by the invention described in the detailed description of the invention is that even when the spectral luminous efficiency does not approximate a part of the color matching function, the color matching function is selected as an evaluation function for color measurement. Both the colorimetric value and the photometric value when the spectral luminous efficiency is selected as an evaluation function for photometry are measured with high accuracy using a stimulus value direct-reading type colorimetric photometer.
  • the first colorimetry optical system, the second colorimetry optical system, and the third colorimetry optical system provided in the colorimetry optical system group have the same color matching function.
  • 1st signal, 2nd signal, and 3rd signal which have the spectral response approximate to 1 part, 2nd part, and 3rd part, and have the intensity
  • the deriving unit derives, from at least three signals, the colorimetric value when the color matching function is selected as the colorimetric evaluation function and the photometric value when the spectral luminous efficiency is selected as the photometric evaluation function. To do.
  • the spectral luminous efficiency does not match any of the first part, the second part, and the third part.
  • the color luminance meter according to the first embodiment has a chromaticity x ′ and y ′ when a modified color matching function is selected as an evaluation function for colorimetry.
  • both the luminance Lv when the standard spectral luminous efficiency is selected as the photometric evaluation function are measured.
  • the CIE1931XYZ color matching function, the modified color matching function, and the standard spectral luminous efficiency will be described prior to describing the color luminance meter.
  • the evaluation function for color measurement indicates the magnitude of the contribution of each wavelength component of the light under measurement to the color measurement value, and is expressed as a function of wavelength.
  • a product of the evaluation function for colorimetry and the spectral intensity is integrated with the wavelength, and a colorimetric value is obtained by further multiplying the coefficient as necessary.
  • the evaluation function for photometry indicates the magnitude of the contribution of each wavelength component of the light under measurement to the photometric value, and is expressed as a function of wavelength.
  • a photometric value can be obtained by integrating the product of the photometric evaluation function and the spectral intensity with the wavelength and further multiplying the coefficient as necessary.
  • the CIE1931XYZ color matching function has an x component xbar (lambda), a y component ybar (lambda), and a z component zbar (lambda).
  • the x component xbar (lambda), the y component ybar (lambda), and the z component zbar (lambda) are functions of the wavelength lambda.
  • the x component xbar (lambda) has peaks at around 442 nm and around 599 nm.
  • the y component ybar (lambda) has a peak around 555 nm.
  • the z component zbar (lambda) has a peak around 446 nm.
  • the x component xbar (lambda) can be divided into a short wavelength side xbar1 (lambda) and a long wavelength side xbar2 (lambda).
  • the short wavelength side xbar1 (lambda) is a portion of the wavelength range that includes the short wavelength side peak of the x component xbar (lambda) but does not include the long wavelength side peak.For example, in the wavelength range portion of 500 nm or less is there.
  • the long wavelength side xbar2 (lambda) is the part of the wavelength range that includes the long wavelength side peak of the x component xbar (lambda) but does not include the short wavelength side peak, for example, the part of the wavelength range of 500 nm or more. is there.
  • the boundary between the short wavelength side xbar1 (lambda) and the long wavelength side xbar2 (lambda) is, for example, not less than 490 nm and not more than 510 nm.
  • the stimulus values X, Y, and Z in the XYZ color system are expressed using the coefficient k and the spectral radiance L (lambda) of the measured light, respectively. It is calculated by the following equations (1), (2) and (3). By multiplying the coefficient k, the appropriate units are given to the stimulus values X, Y and Z.
  • the chromaticities x and y in the Yxy color system are calculated by the following equations (4) and (5), respectively.
  • the modified color matching function has an x component xbar ′ (lambda), a y component ybar ′ (lambda), and a z component zbar ′ (lambda), similar to the CIE1931XYZ color matching function.
  • the x component xbar '(lambda), y component ybar' (lambda) and z component zbar '(lambda) of the modified color matching function are the x component xbar (lambda), y component ybar (lambda) and y component y of the CIE1931XYZ color matching function, respectively.
  • the x component xbar ′ (lambda) of the modified color matching function can be divided into the short wavelength side xbar1 ′ (lambda) and the long wavelength side xbar2 ′ (lambda), similarly to the xbar (lambda) of the CIE1931XYZ color matching function.
  • the modified color matching function is significantly different from the CIE1931XYZ color matching function in the wavelength range below 500 nm, particularly in the wavelength range from 400 nm to 500 nm. In the above wavelength range, it is not significantly different from the CIE1931XYZ color matching function.
  • the short wavelength side xbar1 '(lambda) of the x component xbar' (lambda) of the modified color matching function having a large relative intensity in the wavelength range of 500 nm or less is the x component xbar (lambda) of the x component xbar (lambda) of the CIE1931XYZ color matching function.
  • the z component zbar ′ (lambda) of the modified color matching function is significantly different from the z component zbar (lambda) of the CIE1931XYZ color matching function.
  • the long wavelength side xbar2 '(lambda) of the x component xbar' (lambda) of the modified color matching function is not significantly different from the long wavelength side xbar2 (lambda) of the x component xbar (lambda) of the CIE1931XYZ color matching function.
  • the CIE1931XYZ color matching function has been modified from the long wavelength side xbar2 (lambda) of the x component xbar (lambda).
  • the y component ybar '(lambda) of the modified color matching function is not significantly different from the y component ybar (lambda) of the CIE1931XYZ color matching function, but has been corrected from the y component ybar (lambda) of the CIE1931XYZ color matching function. .
  • the graph of FIG. 2 shows the Vos and Judd (1978) modified color matching function and the CIE1931XYZ color matching function.
  • the graph of FIG. 3 shows the TR-170-1 modified color matching function and the CIE1931XYZ color matching function.
  • the short wavelength side xbar1 '(lambda) of x component xbar' (lambda) of Vos and Judd (1978) modified color matching function is the short of x component xbar (lambda) of CIE1931XYZ color matching function. It is significantly different from the wavelength side xbar1 (lambda). Also, the z component zbar ′ (lambda) of the Vos and Judd (1978) modified color matching function is significantly different from the z component zbar (lambda) of the CIE1931XYZ color matching function.
  • the long wavelength side xbar2 (lambda) of the x component xbar '(lambda) of the x component xbar' (lambda) of the Vos and Judd (1978) modified color matching function is the long wavelength side xbar2 (lambda) of the x component xbar (lambda) of the CIE1931XYZ color matching function
  • the long wavelength side xbar2 (lambda) of the x component xbar (lambda) of the CIE1931XYZ color matching function Although not significantly different from the above, it has been corrected from the long wavelength side xbar2 (lambda) of the x component xbar (lambda) of the CIE1931XYZ color matching function.
  • the y component ybar '(lambda) of the Vos and Judd (1978) modified color matching function is not significantly different from the y component ybar (lambda) of the CIE1931XYZ color matching function, but the y component ybar (lambda) of the CIE1931XYZ color matching function ) Has been corrected.
  • the standard spectral luminous efficiency V (lambda) matches the y component ybar (lambda) of the CIE1931XYZ color matching function, but does not match the y component ybar '(lambda) of the modified color matching function. .
  • the correct luminance Lv can be derived from the signal output by the colorimetric optical system having a spectral response approximate to the y component ybar (lambda) of the CIE1931XYZ color matching function, but the y component ybar of the modified color matching function
  • An accurate luminance Lv cannot be derived from a signal output by a colorimetric optical system having a spectral response approximate to '(lambda).
  • the standard spectral luminous efficiency V (lambda) does not coincide with any of the x component xbar ′ (lambda) and the z component zbar ′ (lambda) of the modified color matching function.
  • the luminance Lv cannot be derived from the signal output by the colorimetric optical system having a spectral response approximate to the x component xbar ′ (lambda) or zbar ′ (lambda) of the modified color matching function.
  • the luminance Lv in the Yxy color system is calculated by the following equation (6) using the maximum luminous efficacy Km and the spectral radiance L (lambda) of the measured light. By multiplying the maximum visual effect degree Km, a luminance unit is given to the luminance Lv.
  • the x component xbar is used as the first portion, the second portion, and the third portion necessary for deriving the chromaticities x ′ and y ′, respectively.
  • '(lambda), y component ybar' (lambda) and z component zbar '(lambda) are extracted from the modified color matching function.
  • the chromaticities x ′ and y ′ can be derived from the first part, the second part and the third part, the first part, the second part and the third part from the modified color matching function
  • the extraction location may be changed.
  • the long wavelength side xbar2 '(lambda), the y component ybar' (lambda), and the z component zbar '(lambda) of the x component xbar' (lambda) as the first part, the second part, and the third part, respectively. May be extracted from the modified color matching function.
  • the long wavelength side xbar2 '(lambda) of the x component xbar' (lambda) can be extracted instead of the x component xbar '(lambda) because the short wavelength side xbar1' (lambda) of the x component xbar '(lambda) is z This is because it can be approximated by a factor multiple of the component zbar '(lambda).
  • FIG. 5 shows the color luminance meter 1000 of the first embodiment.
  • the color luminance meter 1000 includes a measurement probe 1010 and a measuring instrument main body 1011.
  • Color luminance meter 1000 measures the color of the display surface 1030 of the liquid crystal display 1020.
  • the color luminance meter 1000 may measure the color of the display surface of a flat panel display other than the liquid crystal display 1020.
  • the color luminance meter 1000 may measure the color of a luminescent material other than the flat panel display.
  • the color luminance meter 1000 may measure the color of the non-light emitting material.
  • the color luminance meter 1000 measures chromaticity x ′ and y ′ and luminance Lv in the Yxy color system.
  • the device may be called by a name other than the color luminance meter.
  • the photometric value to be measured is illuminance
  • the device is called a color illuminometer.
  • colorimetric values and devices that measure photometric values are collectively referred to as colorimetric photometers. Colorimetric values other than chromaticity may be measured in a colorimetric photometer.
  • lightness index and chromaticness index in L * a * b * color system For example, lightness index and chromaticness index in L * a * b * color system, lightness index, saturation and hue angle in L * C * h color system, hue, lightness and saturation in Munsell color system, L * u * v * Lightness index and chromaticness index in the color system, stimulus values in the XYZ color system, stimulus values in the RGB color system, color temperature, and the like may be measured. A color difference may be measured.
  • Photometric values other than luminance may be measured in the colorimetric photometer. For example, illuminance, luminous flux, luminous intensity, etc. may be measured.
  • the color luminance meter 1000 is a kind of stimulus value direct reading type colorimetry photometer that measures colorimetric values and photometric values by a stimulus value direct reading method.
  • the measurement probe 1010 is arranged in a measurement posture in front of the display surface 1030 of the liquid crystal display 1020 when measurement is performed.
  • the measurement probe 1010 faces the display surface 1030, and light to be measured emitted from the display surface 1030 enters the measurement probe 1010.
  • the measuring instrument main body 1011 When the measuring instrument main body 1011 detects that the operation has been performed, the measuring instrument main body 1011 transmits a control signal for causing the measurement probe 1010 to perform processing according to the detected operation. When receiving the control signal, the measurement probe 1010 performs processing according to the control signal, detects the intensity of the X component, the Y component, and the Z component of the light to be measured, and detects the X component, the Y component, and the Z of the light to be measured. The signal values X′c, Y′c and Z′c representing the component intensities are output to the measuring instrument main body 1011.
  • the measuring instrument main body 1011 derives chromaticity x ′ and y ′ from the signal values X′c, Y′c and Z′c when the signal values X′c, Y′c and Z′c are input. , And display chromaticity x 'and y'. In addition, when the signal values X′c, Y′c and Z′c are input, the measuring instrument main body 1011 derives the luminance Lv from the signal values X′c, Y′c and Z′c, and the luminance Lv Is displayed.
  • the measurement probe 1010 may be responsible for all or part of the function of the measuring instrument main body 1011.
  • the measuring instrument main body 1011 may take part of the function of the measurement probe 1010.
  • the measuring instrument main body 1011 When the measurement probe 1010 is responsible for all the functions of the measuring instrument main body 1011, the measuring instrument main body 1011 may be omitted and the measuring probe 1010 may be stand-alone.
  • the measurement probe 1010 may be called a measurement head, a sensor head, or the like.
  • FIG. 6 shows the optical system of the measurement probe 1010.
  • the block diagram of FIG. 7 shows the electrical system of the measurement probe 1010 and the measuring instrument main body 1011.
  • the measurement probe 1010 includes an objective optical system 1040, a branching optical system 1041, a colorimetric optical system group 1042, a signal processing circuit 1043, and the like.
  • the measured light 1050 is converged by an objective optical system 1040 such as a lens, branched by a branching optical system 1041 such as a bundle fiber, and received by the colorimetric optical system group 1042.
  • the measured light 1050 may be diverged by the objective optical system 1040 or may be collimated.
  • the measured light 1050 may pass through an optical system other than the objective optical system 1040 and the branching optical system 1041. In some cases, both or one of the objective optical system 1040 and the branching optical system 1041 may be omitted.
  • the colorimetric optical system group 1042 outputs signals S (X′c), S (Y′c), and S (Z′c).
  • the signal processing circuit 1043 receives the signals S (X′c), S (Y′c), and S (Z'c) is processed, and signal values X'c, Y'c and Z'c representing the intensities of the signals S (X'c), S (Y'c) and S (Z'c) are respectively obtained.
  • the signal values X′c, Y′c and Z′c are transmitted to the measuring instrument main body 1011.
  • the colorimetric optical system group 1042 includes colorimetric optical systems 1070, 1071, and 1072.
  • the colorimetric optical systems 1070, 1071 and 1072 are provided with condenser lens groups 1080, 1081 and 1082, respectively, are provided with color filters 1090, 1091 and 1092 and are respectively provided with light receiving sensors 1100, 1101 and 1102.
  • each of the colorimetric optical systems 1070, 1071, and 1072 receives the light beam branched by the branching optical system 1041.
  • the light bundles received by the colorimetric optical systems 1070, 1071 and 1072 are collected by the condenser lens groups 1080, 1081 and 1082, respectively, and transmitted through the color filters 1090, 1091 and 1092, respectively, and the light receiving sensors 1100, 1101 and 1102, respectively. 1102 receives the light.
  • the condensing lens groups 1080, 1081 and 1082 may be omitted.
  • the light receiving sensor 1100 outputs a signal S (X'c).
  • the intensity of the signal S (X′c) depends on the spectral intensity of the measured light 1050.
  • the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the intensity of the signal S (X′c) approximates the x component xbar ′ (lambda) of the modified color matching function.
  • the light receiving sensor 1101 outputs a signal S (Y'c).
  • the intensity of the signal S (Y′c) depends on the spectral intensity of the measured light 1050.
  • the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the intensity of the signal S (Y′c) approximates the y component ybar ′ (lambda) of the modified color matching function.
  • the light receiving sensor 1102 outputs a signal S (Z'c).
  • the intensity of the signal S (Z′c) depends on the spectral intensity of the measured light 1050.
  • the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the intensity of the signal S (Z′c) approximates the z component zbar ′ (lambda) of the modified color matching function.
  • the approximation of the spectral response to the color matching function means that the difference between the colorimetric value derived from the signal output from the colorimetric optical system having the spectral response and the true colorimetric value is the error of the color luminance meter. This means that the spectral response reflects the color matching function so as to satisfy the specifications.
  • the graph in FIG. 8 shows the spectral transmittance of the color filter, the spectral transmittance of the objective optical system, the spectral transmittance of the branching optical system, the spectral transmittance of the condenser lens group, and the light receiving sensor. Spectral sensitivity and overall spectral response are shown.
  • the transmittance of the objective optical system, the transmittance of the branching optical system, the transmittance of the condenser lens group, and the sensitivity of the light receiving sensor depend on the wavelength.
  • the overall spectral response indicating the relationship with the intensity of the signal output from the sensor is not determined solely by the spectral transmittance of the color filter, but the spectral transmittance of the objective optical system, the spectral transmittance of the branching optical system, and the condenser lens group. Is affected by the spectral transmittance.
  • the overall spectral responsivity is affected by the spectral transmittance of lenses constituting the objective optical system, the spectral transmittance of bundle fibers constituting the branching optical system, and the like.
  • the overall spectral response is also affected by the spectral transmittance of the optical system.
  • the overall spectral response may be affected by other factors.
  • the overall spectral response may be affected by the spectral reflectance of the light receiving surface of the light receiving sensor.
  • the spectral transmittance of the color filter 1090 is not selected so that the spectral transmittance itself of the color filter 1090 approximates the x component xbar ′ (lambda) of the modified color matching function, but the overall spectral response is modified. It is chosen to approximate the x component xbar '(lambda) of the color function. That is, the spectral transmittance of the color filter 1090 is a spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 incident on the color luminance meter 1000 and the intensity of the signal S (X′c) output from the colorimetric optical system 1070.
  • the degree is chosen to approximate the x component xbar '(lambda) of the modified color matching function.
  • the spectral transmittance of the color filter 1091 is a spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 incident on the color luminance meter 1000 and the intensity of the signal S (Y′c) output from the colorimetric optical system 1071.
  • the degree is chosen to approximate the y component ybar '(lambda) of the modified color matching function.
  • the spectral transmittance of the color filter 1092 is a spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 incident on the color luminance meter 1000 and the intensity of the signal S (Z′c) output from the colorimetric optical system 1072. It is chosen to approximate the z component ybar '(lambda) of the modified color matching function.
  • Each of the color filters 1090, 1091 and 1092 may be a laminated body of a plurality of absorption filters, an interference filter, or a combination of an absorption filter and an interference filter.
  • the material of the interference film constituting the interference filter is a dielectric, for example, an oxide.
  • the signal processing circuit 1043 includes amplification circuits 1110, 1111 and 1112, analog / digital converters 1120, 1121 and 1122, and the like as shown in FIG. Depending on the specifications of the light receiving sensors 1100, 1101 and 1102 and the analog / digital converters 1120, 1121 and 1122, the amplifier circuits 1110, 1111 and 1112 may be omitted.
  • the amplifier circuits 1110, 1111 and 1112 are respectively connected to the signals S (X′c), S (Y′c) and S (Z′c) are amplified, and the analog / digital converters 1120, 1121 and 1122 respectively amplify the signals S (X′c), S (Y′c) and S (Z 'c) is converted into signal values X'c, Y'c and Z'c.
  • the measuring instrument main body 1011 includes an embedded computer 1130, a storage unit 1131, an operation unit 1132, and a display unit 1133 as shown in FIG.
  • the embedded computer 1130 performs the following functions by executing the installed firmware. Hardware without software may be responsible for all or part of the following functions.
  • the storage unit 1131 is a flash memory, a hard disk drive, or the like.
  • the operation unit 1132 is a keyboard, a pointing device, a touch panel, a switch, a dial, or the like.
  • the display unit 1133 is a display, a lamp, a printer, or the like.
  • the embedded computer 1130 When the embedded computer 1130 detects that an operation has been performed on the operation unit 1132, the embedded computer 1130 performs processing according to the detected operation.
  • the embedded computer 1130 uses the correction coefficient read from the storage unit 1131 to change the color from the signal values X′c, Y′c, and Z′c.
  • the degrees x ′ and y ′ and the luminance Lv are calculated, and the chromaticity x ′ and y ′ and the luminance Lv are displayed on the display unit 1133.
  • the chromaticity deriving unit 1140, the luminance deriving unit 1141, the stimulus value calculating unit 1150, and the chromaticity calculating unit 1151 shown in FIG. 9 indicate processing performed by the embedded computer 1130.
  • the stimulus value calculation unit 1150 and the chromaticity calculation unit 1151 belong to the chromaticity derivation unit 1140.
  • the chromaticity deriving unit 1140 derives chromaticity x ′ and y ′ from the signal values X′c, Y′c and Z′c.
  • the stimulus value calculation unit 1150 uses the stimulus values X′m, Y′m and Z′m when the corrected color matching function is selected as the colorimetric evaluation function as signal values X′c, Y′c and Z ′. Calculate from c. When the stimulus values X'm, Y'm and Z'm are calculated, the signal values X'c, Y'c and Z'c are as shown in the following equations (9), (10) and (11). Is corrected.
  • the stimulus value X′m is obtained by calculating the weighted sum of the signal values X′c, Y′c and Z′c using the correction coefficients m11, m12 and m13 which are weighting coefficients. Correction coefficients m11, m12 and m13 are multiplied by signal values X′c, Y′c and Z′c, respectively. The correction coefficients m11, m12, and m13 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value X′m approximates the x component xbar ′ (lambda) of the modified color matching function.
  • the correction coefficients m11, m12, and m13 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value X′m approximates the x component xbar ′ (lambda) of the modified color matching function.
  • the stimulus value Y′m is obtained by calculating the weighted sum of the signal values X′c, Y′c and Z′c using the correction coefficients m21, m22 and m23 which are weighting coefficients. Correction coefficients m21, m22, and m23 are multiplied by signal values X′c, Y′c, and Z′c, respectively. The correction coefficients m21, m22, and m23 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value Y′m approximates the y component ybar ′ (lambda) of the modified color matching function.
  • the correction coefficients m21, m22, and m23 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value Y′m approximates the y component ybar ′ (lambda) of the modified color matching function.
  • the stimulus value Z′m is obtained by calculating the weighted sum of the signal values X′c, Y′c and Z′c using the correction coefficients m31, m32 and m33 which are weighting coefficients. Correction coefficients m31, m32, and m33 are multiplied by signal values X′c, Y′c, and Z′c, respectively. The correction coefficients m31, m32 and m33 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value Z′m approximates the z component zbar ′ (lambda) of the modified color matching function.
  • the correction coefficients m31, m32 and m33 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value Z′m approximates the z component zbar ′ (lambda) of the modified color matching function.
  • the spectral responsivity of the colorimetric optical system is approximated to the color matching function selected as the colorimetric evaluation function, but is completely different from the color matching function selected as the colorimetric evaluation function. Does not match. This will be described using an example in which the CIE1931XYZ color matching function is selected as an evaluation function for colorimetry.
  • the graph of FIG. 10 shows the CIE1931XYZ color matching function and the spectral response of the colorimetric optical system.
  • the spectral response of the color measurement optical system for the x component, the spectral response of the color measurement optical system for the y component, and the spectral response of the color measurement optical system for the z component are respectively CIE1931XYZ. Approximate the x component xbar (lambda), y component ybar (lambda) and z component zbar (lambda) of the color matching function, but the x component xbar (lambda), y component ybar (lambda) and z of the CIE1931XYZ color matching function, respectively. Does not completely match the component zbar (lambda).
  • the relative relationship between the spectral response of the color measurement optical system for the x component, the spectral response of the color measurement optical system for the y component, and the spectral response of the color measurement optical system for the z component is CIE1931XYZ, etc.
  • the relative relationship among the x component xbar (lambda) of the function, the y component ybar (lambda) of the CIE1931XYZ color matching function, and the z component zbar (lambda) of the CIE1931XYZ color matching function does not match. The same applies to the case where the corrected color matching function is selected as the colorimetric evaluation function.
  • the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the signal values X′c, Y′c, and Z′c is the x component xbar of the modified color matching function.
  • x component xbar' (lambda), y-component ybar '(lambda) and z-component zbar of the modified color matching function respectively It doesn't exactly match '(lambda).
  • the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the signal value X′c the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the signal value Y′c, and the measured light 1050.
  • the relative relationship between the spectral intensities and the spectral responsiveness indicating the relationship between the signal intensity Z'c is the x component xbar '(lambda) of the modified color matching function, the y component ybar' (lambda) of the modified color matching function and It does not agree with the relative relationship between z components zbar '(lambda) of the modified color matching function.
  • Correction coefficients m11, m12, m13, m21, m22, m23, m31, m32 and m33 are determined so as to alleviate these mismatches.
  • the chromaticity calculation unit 1151 calculates chromaticity x ′ and y ′ from the stimulus values X′m, Y′m and Z′m as in the following formulas (12) and (13).
  • the luminance deriving unit 1141 derives the luminance Lv from the signal values X′c, Y′c and Z′c.
  • the stimulus value Ym is obtained by correcting the signal values X′c, Y′c and Z′c as in the following equation (14), and the following equation (15)
  • the stimulus value Ym is set as the luminance value Lv.
  • the stimulus value Ym is obtained by calculating the weighted sum of the signal values X′c, Y′c and Z′c using the correction coefficients L21, L22 and L23 which are weighting coefficients.
  • Correction coefficients L21, L22 and L23 are multiplied by signal values X′c, Y′c and Z′c, respectively.
  • the correction coefficients L21, L22 and L23 indicate that the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the stimulus value Ym is the y component ybar (lambda) of the CIE1931XYZ color matching function, that is, the standard spectral luminous efficiency V ( chosen to approximate lambda).
  • the exact luminance Lv cannot be derived from the signal value Y'c, but the stimulus value Since Ym can be identified with the y component of the stimulus value when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function, an accurate luminance Lv can be derived from the stimulus value Ym.
  • Correction coefficients m11, m12, m13, m21, m22, m23, m31, m32, and m33 and correction coefficients L21, L22, and L23 are determined by calibration work performed in advance.
  • a first light source, a second light source, and a third light source whose true values of stimulation values are known are prepared. Further, the color luminance meter 1000 measures the colors of the first light source, the second light source, and the third light source. Further, correction coefficients m11, m12, m13, m21, m22, m23, m31, m32 and m33 are determined as in the following expression (16), and correction coefficients L21, L22 and L23 are determined as in the following expression (17). Is determined.
  • the stimulus values X′r, Y′r, and Z′r are the x component, y component, and z component of the stimulus value of the first light source when the corrected color matching function is selected as the colorimetric evaluation function, respectively. True value.
  • the stimulus values X′g, Y′g, and Z′g are the x component, y component, and z component of the stimulus value of the second light source when the modified color matching function is selected as the colorimetric evaluation function, respectively.
  • the stimulus values X′b, Y′b, and Z′b are the x component, y component, and z component of the stimulus value of the third light source when the corrected color matching function is selected as the colorimetric evaluation function, respectively. True value.
  • the stimulus value Yr is the true value of the y component of the stimulus value of the first light source when the CIE1931XYZ color matching function is selected as an evaluation function for colorimetry.
  • the stimulus value Yg is the true value of the y component of the stimulus value of the second light source when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function.
  • the stimulus value Yb is the true value of the y component of the stimulus value of the third light source when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function.
  • the signal values X′cr, Y′cr and Z′cr are the signal values X′c, Y′c and Z′c obtained when the first light source is measured with the color luminance meter 1000, respectively.
  • the signal values X′cg, Y′cg, and Z′cg are signal values X′c, Y′c, and Z′c obtained when the second light source is measured by the color luminance meter 1000, respectively.
  • the signal values X′cb, Y′cb and Z′cb are signal values X′c, Y′c and Z′c obtained when the third light source is measured by the color luminance meter 1000, respectively.
  • the colors of the first light source, the second light source, and the third light source are selected so that they cannot be expressed by a mixture of the colors of the remaining two light sources.
  • the colors of the first light source, the second light source, and the third light source are the three primary colors red, green, and blue, respectively.
  • the first light source, the second light source, and the third color are the three primary colors red, green, and blue, respectively, when measuring a light source that reproduces colors by additive color mixing of the three primary colors, such as a liquid crystal display
  • the chromaticity x ′ and y ′ and the luminance Lv can be measured with high accuracy.
  • the signal processing circuit 1043 and the embedded computer 1130 constitute a derivation mechanism 1160.
  • the derivation mechanism 1160 derives the chromaticity x ′ and y ′ and the luminance Lv from the signals S (X′c), S (Y′c), and S (Z′c) as a whole.
  • the color luminance meter 1000 measurement is started when it is detected that an operation for instructing the start of measurement is performed on the measuring instrument main body 1011.
  • the trigger for starting measurement may be changed.
  • the chromaticities x ′ and y ′ and the luminance Lv are calculated.
  • the order of calculation of chromaticity x ′ and y ′ and luminance Lv is not limited, but in the following description, luminance Lv is calculated in steps 1174 to 1176 after chromaticity x ′ and y ′ are calculated in steps 1171 to 1173. Suppose that it is calculated.
  • correction coefficients m11, m12, m13, m21, m22, m23, m31, m32, and m33 are read from the storage unit 1131 in step 1171, and correction coefficients are calculated in step 1172.
  • Stimulus values X'm, Y'm and Z 'by correcting signal values X'c, Y'c and Z'c using m11, m12, m13, m21, m22, m23, m31, m32 and m33 m is obtained, and chromaticity x ′ and y ′ are calculated from the stimulus values X′m, Y′m and Z′m in step 1173.
  • the correction coefficients L21, L22, and L23 are read from the storage unit 1131 in step 1174, and the signal values X′c, Y′c using the correction coefficients L21, L22, and L23 in step 1175.
  • the stimulus value Ym is obtained by correcting Z′c, and in step 1176, the stimulus value Ym is set to the luminance Lv.
  • step 1177 the chromaticity x ′ and y ′ and the luminance Lv are displayed on the display unit 1133.
  • the light to be measured is dispersed by a spectroscopic element such as a diffraction grating, the intensity of each wavelength component is detected by a light receiving sensor array consisting of a number of light receiving sensors, and the spectral spectrum
  • the colorimetric value and the photometric value are calculated from According to the spectral colorimetry method, even when the spectral luminous efficiency does not match a part of the color matching function, both the colorimetric value corresponding to the color matching function and the photometric value corresponding to the spectral luminous efficiency are obtained from the spectral spectrum. Can calculate with high accuracy.
  • the spectrocolorimetric method requires a complex optical system such as a spectroscopic element and a high-resolution bright lens system, and requires a large number of light receiving sensors, resulting in a large and expensive colorimetric photometer.
  • a light-receiving sensor group consisting of three light-receiving sensors and a colorimetric optical system having a spectral response approximate to a color matching function.
  • a stimulus value is detected, and a colorimetric value and a photometric value are calculated from the stimulus value.
  • the stimulus value direct reading method a complicated optical system is not required, a large number of light receiving sensors are not required, and the colorimetric photometer is small and low cost.
  • the spectral luminous efficiency does not match a part of the color matching function
  • the colorimetric value corresponding to the color matching function can be accurately calculated from the stimulus value.
  • the photometric value corresponding to the efficiency cannot be calculated accurately from the stimulus value.
  • the stimulus value direct reading method adopted by the first embodiment even if the spectral luminous efficiency does not match a part of the color matching function, it corresponds to the colorimetric value and spectral luminous efficiency corresponding to the color matching function. Both of the measured photometric values can be calculated with high accuracy.
  • the chromaticities x and y are derived from the stimulus values X, Y, and Z, and the luminance Lv is derived from the stimulus value Y.
  • the chromaticities x ′ and y ′ are derived from the stimulus values X ′, Y ′, and Z ′, and the luminance Lv is derived from the stimulus value Y ′.
  • the chromaticity x ′ and y ′ are derived based on the corrected color matching function. Therefore, the chromaticity x ′ and y when the corrected color matching function is selected as the evaluation function for color measurement. 'Can be derived accurately.
  • the luminance Lv is derived based on the y component ybar '(lambda) of the modified color matching function that does not match the standard spectral luminous efficiency V (lambda)
  • the standard spectral luminous efficiency V (lambda) is used for photometry.
  • the luminance Lv when selected as the evaluation function cannot be derived with high accuracy.
  • each has a spectral responsivity approximate to the x component xbar ′ (lambda), the y component ybar ′ (lambda), and the z component zbar ′ (lambda) of the modified color matching function 3
  • One colorimetric optical system is provided.
  • three signal values derived from the three colorimetric optical systems are corrected using correction coefficients for colorimetry, and stimulus values X ′, Y ′, and Z ′ are derived.
  • Three signal values derived from one colorimetric optical system are corrected using a photometric correction coefficient, and a stimulus value Y is derived.
  • the chromaticities x ′ and y ′ are derived from the stimulus values X ′, Y ′, and Z ′, and the luminance Lv is derived from the stimulus value Y.
  • the chromaticity x ′ and y ′ are derived based on the corrected color matching function, the chromaticity x ′ when the corrected color matching function is selected as the colorimetric evaluation function and y 'can be derived with high accuracy.
  • the correction for photometry that can be regarded as the luminance Lv is derived based on the y component ybar '(lambda) of the modified color matching function that matches the standard spectral luminous efficiency V (lambda)
  • standard correction is performed.
  • the luminance Lv when the spectral luminous efficiency V (lambda) is selected as an evaluation function for photometry can be derived with high accuracy.
  • LEDs white light emitting diodes
  • lighting fixtures using a white LED as a light source liquid crystal displays, and the like are widely used.
  • white LEDs obtain white light consisting of a blue excitation light component and a yellow fluorescence component by exciting a yellow phosphor with blue excitation light emitted from a blue LED and causing the yellow phosphor to emit yellow fluorescence. It has been adopted.
  • the accuracy of measurement in the wavelength range from 400 nm to 500 nm to which the excitation light component belongs is important. The reason will be explained.
  • FIG. 13 is a graph showing the spectral intensity of light emitted by the white LED for each individual.
  • the spectral intensity of the fluorescent component is relatively stable, whereas the spectral intensity of the excitation light component is relatively unstable.
  • the spectral intensity of the excitation light component has an individual difference of about 10 nm for the peak wavelength, and an individual difference of about 10% for the peak intensity.
  • the peak wavelength of the spectral intensity of the excitation light component varies by about 2 nm depending on the temperature even for the same individual.
  • the spectral intensity peak of the fluorescent component is relatively gentle, whereas the spectral intensity peak of the excitation light component is relatively steep.
  • the color luminance meter 1000 that can measure both the colorimetric value corresponding to the modified color matching function and the photometric value corresponding to the standard spectral luminous efficiency corresponding to the y component of the CIE1931XYZ color matching function can meet these demands. Particularly suitable for color evaluation of light emitted from white LEDs.
  • the signal processing circuit 1043 may further include an amplifier circuit 1113 and an analog / digital converter 1123 as a reference circuit for measuring the dark current in the colorimetric optical system group 1042. .
  • a signal indicating the intensity of dark current output from the colorimetric optical system group is amplified by an amplifier circuit 1113, converted into a signal value by an analog / digital converter 1123, and sent to an embedded computer. In accordance with this signal value, zero adjustment is performed in the measuring instrument body.
  • This configuration makes it possible to perform zero adjustment by measuring dark current in real time even during measurement.
  • Second Embodiment 2.1 Difference between First Embodiment and Second Embodiment The second embodiment relates to a colorimetric photometer.
  • the schematic diagram of FIG. 15 shows an outline of calculation of chromaticity x ′ and y and luminance Lv.
  • the x component xbar '(lambda), the y component ybar' (lambda), and the z component zbar '(lambda) of the modified color matching function are provided with three colorimetric optical systems each having a spectral response close to.
  • one colorimetric optical system having a spectral response approximate to the y component ybar (lambda) of the CIE1931XYZ color matching function is provided. Therefore, in the second embodiment, four colorimetric optical systems are provided.
  • the second embodiment unlike the first embodiment, four signal values derived from the four colorimetric optical systems are corrected using the colorimetric correction coefficients, and the stimulus values X ′, Y ′ and Z ′ is derived. In the second embodiment, four signal values derived from the four colorimetric optical systems are corrected using the photometric correction coefficient, and the stimulus value Y is derived.
  • the chromaticities x ′ and y ′ are derived from the stimulus values X ′, Y ′, and Z as in the first embodiment.
  • the luminance Lv is derived from the stimulus value Y, as in the first embodiment.
  • the chromaticity x ′ and y ′ are derived based on the corrected color matching function, the chromaticity x ′ when the corrected color matching function is selected as an evaluation function for colorimetry and y 'is derived with high accuracy.
  • the luminance Lv is derived based on the y component ybar (lambda) of the CIE1931XYZ color matching function that matches the standard spectral luminous efficiency V (lambda). Luminance Lv is accurately derived when (lambda) is selected as an evaluation function for photometry.
  • FIG. 16 shows the electrical system of the measurement probe 2010 and the measuring instrument main body 2011.
  • the electrical system and measuring instrument main body 2011 of the measurement probe 2010 of the second embodiment replace the electrical system and measuring instrument main body 1011 of the measurement probe 1010 of the first embodiment, respectively.
  • the measurement probe 2010 includes a colorimetric optical system group 2042, a signal processing circuit 2043, and the like.
  • the colorimetric optical system group 2042 outputs signals S (X′c), S (Y′c), S (Z′c), and S (Yc).
  • the signal processing circuit 2043 receives the signals S (X′c), S (Y 'c), S (Z'c) and S (Yc) are processed to express the intensity of signals S (X'c), S (Y'c), S (Z'c) and S (Yc), respectively.
  • the signal values X′c, Y′c, Z′c and Yc to be obtained are obtained, and the signal values X′c, Y′c, Z′c and Yc are transmitted to the measuring instrument main body 2011.
  • the colorimetric optical system group 2042 includes colorimetric optical systems 2070, 2071, 2072 and 2073.
  • the colorimetric optical systems 2070, 2071 and 2072 of the second embodiment are the same as the colorimetric optical systems 1070, 1071 and 1072 of the first embodiment, respectively.
  • the colorimetric optical system 2073 includes a condenser lens group, a color filter, and a light receiving sensor, like the colorimetric optical systems 1070, 1071, and 1072 of the first embodiment.
  • the light receiving sensor provided in the colorimetric optical system 2073 outputs a signal S (Yc).
  • the intensity of the signal S (Yc) depends on the spectral intensity of the measured light 1050.
  • the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the intensity of the signal S (Yc) approximates the y component ybar (lambda) of the CIE1931XYZ color matching function, that is, the standard spectral luminous efficiency V (lambda). To do.
  • the signal processing circuit 2043 includes amplification circuits 2110, 2111, 1122, and 2113, analog / digital converters 2120, 2121, 2122, and 2123, as shown in FIG.
  • the amplifier circuits 2110, 2111 and 2112 of the second embodiment are the same as the amplifier circuits 1110, 1111 and 1112 of the first embodiment, respectively.
  • the analog / digital converters 2120, 2121 and 2122 of the second embodiment are the same as the analog / digital converters 1120, 1121 and 1122 of the first embodiment, respectively.
  • the amplifier circuit 2113 When the signal S (Yc) is input to the signal processing circuit 2043, the amplifier circuit 2113 amplifies the signal S (Yc), and the analog / digital converter 2123 converts the amplified signal S (Yc) to the signal value Yc. Convert.
  • the measuring instrument main body 2011 includes an embedded computer 2130, a storage unit 2131, an operation unit 2132, and a display unit 2133 as shown in FIG.
  • the embedded computer 2130 uses the correction coefficient read from the storage unit 2131 to signal values X′c, Y′c, Z′c, and Yc. Then, the chromaticity x ′ and y ′ and the luminance Lv are calculated from the above, and the chromaticity x ′ and y ′ and the luminance Lv are displayed on the display unit 2133.
  • the stimulus value calculation unit 2150 and the chromaticity calculation unit 2151 belong to the chromaticity derivation unit 2140.
  • the chromaticity derivation unit 2140 derives chromaticity x ′ and y ′ from the signal values X′c, Y′c, Z′c, and Yc.
  • the stimulation value calculation unit 2150 calculates the stimulation values X′m, Y′m, and Z′m from the signal values X′c, Y′c, Z′c, and Yc.
  • the stimulation values X'm, Y'm and Z'm are calculated, the signal values X'c, Y'c and Z'c are as shown in the following equations (18), (19) and (20). Is corrected.
  • the stimulus value X′m is obtained by calculating the weighted sum of the signal values X′c, Y′c, Z′c and Yc using the correction coefficients m11, m12, m13 and m14 which are weighting coefficients. Correction coefficients m11, m12, m13 and m14 are multiplied by signal values X′c, Y′c, Z′c and Yc, respectively. The correction coefficients m11, m12, and m13 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value X′m approximates the x component xbar ′ (lambda) of the modified color matching function.
  • the correction coefficients m11, m12, and m13 are selected so that the spectral response indicating the relationship between the spectral intensity of the light to be measured 1050 and the stimulus value X′m approximates the x component xbar ′ (lamb
  • the stimulus value Y′m is obtained by calculating the weighted sum of the signal values X′c, Y′c, Z′c and Yc using the correction coefficients m21, m22, m23 and m24 which are weighting coefficients. Correction coefficients m21, m22, m23 and m24 are multiplied by signal values X′c, Y′c, Z′c and Yc, respectively.
  • the correction coefficients m21, m22, m23 and m24 are set so that the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the stimulus value Y′m approximates the y component ybar ′ (lambda) of the modified color matching function. Selected.
  • the stimulus value Z′m is obtained by calculating a weighted sum of the signal values X′c, Y′c, Z′c and Yc using correction coefficients m31, m32, m33 and m34 which are weighting coefficients. Correction coefficients m31, m32, m33 and m34 are multiplied by signal values X′c, Y′c, Z′c and Yc, respectively.
  • the correction coefficients m31, m32, m33, and m34 are set so that the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the stimulus value Z′m approximates the y component zbar ′ (lambda) of the modified color matching function. Selected.
  • the chromaticity calculation unit 2151 calculates chromaticity x ′ and y ′ from the stimulus values X′m, Y′m and Z′m as in the following formulas (21) and (22).
  • the luminance deriving unit 2141 derives the luminance Lv from the signal values X′c, Y′c, Z′c, and Yc.
  • the stimulation value Ym is obtained by correcting the signal values X′c, Y′c, Z′c and Yc as in the following equation (23), and the following equation (24 ),
  • the stimulus value Ym is set as the luminance value Lv.
  • the stimulus value Ym is obtained by calculating the weighted sum of the signal values X′c, Y′c, Z′c and Yc using the correction coefficients L21, L22, L23 and L24 which are weighting coefficients.
  • Correction coefficients L21, L22, L23 and L24 are multiplied by signal values X′c, Y′c, Z′c and Yc, respectively.
  • the correction coefficients L21, L22, L23 and L24 indicate that the spectral response indicating the relationship between the spectral intensity of the measured light 1050 and the stimulus value Ym is the y component ybar (lambda) of the CIE1931XYZ color matching function, that is, the standard spectral luminous efficiency.
  • V (lambda) Selected to approximate V (lambda). Since the signal value Y'c is the y component of the stimulus value when the modified color matching function is selected as the colorimetric evaluation function, the exact luminance Lv cannot be derived from the signal value Y'c, but the stimulus value Since Ym can be identified with the y component of the stimulus value when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function, an accurate luminance Lv can be derived from the stimulus value Ym.
  • the signal processing circuit 2043 and the embedded computer 2130 constitute a derivation mechanism 2160.
  • the derivation mechanism 2160 derives the chromaticities x ′ and y ′ and the luminance Lv from the signals S (X′c), S (Y′c) and S (Z′c) and S (Yc) as a whole.
  • Correction coefficients m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33 and m34 and correction coefficients L21, L22, L23 and L24 are determined by calibration work performed in advance.
  • a first light source, a second light source, a third light source, and a fourth light source whose true values of stimulation values are known are prepared. Moreover, the color of a 1st light source, a 2nd light source, a 3rd light source, and a 4th light source is measured with a color luminance meter. Further, correction coefficients m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33 and m34 and correction coefficients L21, L22, L23 and L24 are determined as in the following equation (25). .
  • the stimulus values X′r, Y′r, and Z′r are the x component, y component, and z component of the stimulus value of the first light source when the corrected color matching function is selected as the colorimetric evaluation function, respectively. True value.
  • the stimulus values X′g, Y′g, and Z′g are the x component, y component, and z component of the stimulus value of the second light source when the modified color matching function is selected as the colorimetric evaluation function, respectively.
  • the stimulus values X′b, Y′b, and Z′b are the x component, y component, and z component of the stimulus value of the third light source when the corrected color matching function is selected as the colorimetric evaluation function, respectively.
  • the stimulus values X′f, Y′f and Z′f are the x component, y component and z component of the stimulus value of the fourth light source when the modified color matching function is selected as the colorimetric evaluation function, respectively. True value.
  • the stimulus value Yr is the true value of the y component of the stimulus value of the first light source when the CIE1931XYZ color matching function is selected as an evaluation function for colorimetry.
  • the stimulus value Yg is the true value of the y component of the stimulus value of the second light source when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function.
  • the stimulus value Yb is the true value of the y component of the stimulus value of the third light source when the CIE1931XYZ color matching function is selected as the colorimetry evaluation function.
  • the stimulus value Yf is the true value of the y component of the stimulus value of the fourth light source when the CIE1931XYZ color matching function is selected as the colorimetric evaluation function.
  • the signal values X′cr, Y′cr, Z′cr and Ycr are the signal values X′c, Y′c, Z′c and Yc obtained when the first light source is measured with a color luminance meter, respectively.
  • the signal values X′cg, Y′cg, Z′cg, and Ycg are signal values X′c, Y′c, Z′c, and Yc obtained when the second light source is measured with a color luminance meter, respectively. .
  • the signal values X′cb, Y′cb, Z′cb, and Ycb are signal values X′c, Y′c, Z′c, and Yc obtained when the third light source is measured with a color luminance meter, respectively.
  • the signal values X′cf, Y′cf, Z′cf and Ycf are signal values X′c, Y′c, Z′c and Yc obtained when the fourth light source is measured with a color luminance meter, respectively. .
  • the colors of the first light source, the second light source, and the third light source are selected in the same manner as in the first embodiment.
  • the color of the fourth light source is preferably selected to be significantly different from the colors of the first light source, the second light source, and the third light source.
  • the third embodiment relates to an arithmetic algorithm that replaces the arithmetic algorithm of the second embodiment.
  • the schematic diagram of FIG. 18 shows an outline of calculation of chromaticity x ′ and y ′ and luminance Lv.
  • the x component xbar ′ (lambda), the y component ybar ′ (lambda), and the z component zbar ′ (lambda) of the modified color matching function are provided with three colorimetric optical systems each having a spectral response close to.
  • one colorimetric optical system having a spectral response approximate to the y component ybar (lambda) of the CIE1931XYZ color matching function is provided.
  • the three signal values derived from the former three colorimetric optical systems are corrected using the correction coefficients for colorimetry, and the stimulus values X ′, Y 'And Z' are derived.
  • one signal value derived from the latter one colorimetric optical system is corrected by using a photometric correction coefficient, and a stimulus value Y is derived. Is done.
  • chromaticities x ′ and y ′ are derived from the stimulus values X ′, Y ′, and Z ′ as in the second embodiment.
  • the luminance Lv is derived from the stimulus value Y as in the second embodiment.
  • the chromaticity x ′ and y ′ are derived based on the corrected color matching function, the chromaticity x ′ when the corrected color matching function is selected as the evaluation function for colorimetry and y 'can be derived with high accuracy.
  • the luminance Lv is derived based on the y component ybar (lambda) of the CIE1931XYZ color matching function that matches the standard spectral luminous efficiency V (lambda). The luminance Lv when (lambda) is selected as the photometric evaluation function can be derived with high accuracy.
  • FIG. 19 shows the arithmetic algorithm of the third embodiment.
  • a chromaticity deriving unit 3140, a luminance deriving unit 3141, a stimulus value calculating unit 3150, and a chromaticity calculating unit 3151 indicate processing performed by the embedded computer 2130.
  • the stimulus value calculation unit 3150 and the chromaticity calculation unit 3151 belong to the chromaticity derivation unit 3140.
  • the chromaticity deriving unit 3140 derives the chromaticities x ′ and y ′ from the signal values X′c, Y′c and Z′c in the same manner as the chromaticity deriving unit 1140 of the first embodiment. Similar to the stimulus value calculator 1150 of the first embodiment, the stimulus value calculator 3150 obtains the stimulus values X′m, Y′m and Z′m from the signal values X′c, Y′c and Z′c. Calculate. The chromaticity calculation unit 3151 calculates chromaticity x ′ and y ′ from the stimulus values X′m, Y′m and Z′m in the same manner as the chromaticity calculation unit 1151 of the first embodiment.
  • the luminance deriving unit 3141 derives the luminance Lv from the signal value Yc.
  • the stimulus value Ym is obtained by correcting the signal value Yc as shown in the following equation (26), and the stimulus value Ym is calculated as the luminance value Lv as shown in the following equation (27). Is done.
  • the stimulus value Ym is obtained by multiplying the signal value Yc by the correction coefficient L24. It is also permissible for the correction coefficient L24 to be 1, that is, substantially no correction is performed.
  • the correction coefficient L24 is determined by a calibration work performed in advance.
  • a part of the arithmetic algorithm of the second embodiment and a part of the arithmetic algorithm of the third embodiment may be combined.
  • the calculation of chromaticity x ′ and y ′ in the second embodiment and the calculation of luminance Lv in the third embodiment may be combined.
  • the calculation of the luminance Lv of the second embodiment and the calculation of chromaticity x ′ and y ′ of the third embodiment may be combined.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 分光視感効率が等色関数の一部分に近似しない場合でも測色値及び測光値の両方を精度良く測定する。刺激値直読型の測色測光計において、第1の測色光学系、第2の測色光学系及び第3の測色光学系が、それぞれ等色関数の第1の部分、第2の部分及び第3の部分に近似した分光応答度を有する。導出部は、等色関数が測色用の評価関数として選択された場合の測色値及び分光視感効率が測光用の評価関数として選択された場合の測光値を3個の信号から導出する。分光視感効率は、第1の部分、第2の部分及び第3の部分のいずれにも一致しない。第4の測色光学系が分光視感効率に近似した分光応答度を有してもよく、導出部が等色関数が測色用の評価関数として選択された場合の測色値及び分光視感効率が測光用の評価関数として選択された場合の測光値を4個の信号から導出してもよい。

Description

刺激値直読型の測色測光計
 本発明は、測色値及び測光値の両方を測定する刺激値直読型の測色測光計に関する。
 国際照明委員会(CIE)において1931年に採択されたXYZ表色系の等色関数(以下では「CIE1931XYZ等色関数」という。)は、客観的な数値で表現された色の指標を求めるための測色用の評価関数の一種である。CIE1931XYZ等色関数は、ディスプレイ、ランプ等の色を測定する場合の標準的な測色用の評価関数として長期間に渡って採用されてきた。特許文献1は、その一例である。
 しかし、CIE1931XYZ等色関数が測色用の評価関数として選択された場合に得られる測色値は、特許文献2に記載されているように、実際の人間の目視感と必ずしも一致しない。このため、CIE1931XYZ等色関数を修正した等色関数(以下では「修正等色関数」という。)が提案されている。例えば、Vos and Judd(1978)修正等色関数、TR-170-1修正等色関数、Stockman and Sharpe(1998)修正等色関数等が提案されている。修正等色関数が測色用の評価関数として選択された場合に得られる測色値は、CIE1931XYZ等色関数が測色用の評価関数として選択された場合に得られる測色値と比較して、実際の人間の目視感とより一致する。
 CIEにより1924年に定められた分光視感効率(以下では「標準分光視感効率」という。)は、測光用の評価関数の一種である。標準分光視感効率は、測光用の評価関数として長期間に渡って採用されてきた。標準分光視感効率は、CIE1931XYZ等色関数のy成分と一致する。このため、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の刺激値のy成分から標準分光視感効率が測光用の評価関数として選択された場合の測光値を正確に導出できる。
 特許文献3には、3個の信号値の重み付け和を演算することにより測色光学系の分光応答度と等色関数との不一致を緩和する発明が記載されている。
特開平11-6766号公報 特表2011-517783号公報 特開平6-323910号公報
 上記のように、修正等色関数が測色用の評価関数として選択された場合に得られる測色値は、CIE1931XYZ等色関数が測色用の評価関数として選択された場合に得られる測色値と比較して、実際の人間の目視感とより一致する。このため、修正等色関数を測色用の評価関数として選択し測色値を測定することが望まれる場合がある。
 一方、標準分光視感効率は、長期間にわたって標準的な測光用の評価関数の地位を占めてきたため、過去の測定データーとの比較等のために、標準分光視感効率を測光用の評価関数として選択し測光値を測定することが望まれる場合がある。
 ここで、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の刺激値のy成分からは標準分光視感効率が測光用の評価関数として選択された場合の測光値を正確に導出できるが、修正等色関数が測色用の評価関数として選択された場合の刺激値のy成分からは、標準分光視感効率が測光用の評価関数として選択された場合の測光値を正確に導出できないという問題が生じる。
 この問題は、分光視感効率が等色関数の一部分に近似しない場合に当該等色関数が測色用の評価関数として選択された場合の測色値及び当該分光視感効率が測光用の評価関数として選択された場合の測光値の両方を測定する場合に一般に生じる。
 発明の詳細な説明に記載された発明は、上記の問題を解決することを目的とする。発明の詳細な説明に記載された発明が解決しようとする課題は、分光視感効率が等色関数の一部分に近似しない場合でも、当該等色関数が測色用の評価関数として選択された場合の測色値及び当該分光視感効率が測光用の評価関数として選択された場合の測光値の両方を、刺激値直読型の測色測光計により精度良く測定することである。
 刺激値直読型の測色測光計において、測色光学系群に備えられる第1の測色光学系、第2の測色光学系及び第3の測色光学系が、それぞれ等色関数の第1の部分、第2の部分及び第3の部分に近似した分光応答度を有し、それぞれ被測定光の分光強度に応じた強度を有する第1の信号、第2の信号及び第3の信号を出力する。導出部は、等色関数が測色用の評価関数として選択された場合の測色値及び分光視感効率が測光用の評価関数として選択された場合の測光値を少なくとも3個の信号から導出する。分光視感効率は、第1の部分、第2の部分及び第3の部分のいずれにも一致しない。
 これらの及びこれら以外の発明の目的、特徴、局面及び利点は、添付図面とともに考慮された場合に下記の発明の詳細な説明によってより明白となる。
CIE1931XYZ等色関数を示すグラフである。 Vos and Judd(1978)修正等色関数及びCIE1931XYZ等色関数を示すグラフである。 TR-170-1修正等色関数及びCIE1931XYZ等色関数を示すグラフである。 標準分光視感効率を示すグラフである。 色彩輝度計の模式図である。 測定プローブの光学系の模式図である。 測定プローブの電気系及び計測器本体のブロック図である。 色フィルターの分光透過率等を示すグラフである。 演算アルゴリズムを示すブロック図である。 CIE1931XYZ等色関数及び測色光学系の分光応答度を示すグラフである。 測定の流れを示すフローチャートである。 色度及び輝度の演算の概略を示す模式図である。 白色LEDが発する光の分光強度を個体ごとに示すグラフである。 色彩輝度計の変形例を示す模式図である。 色度及び輝度の演算の概略を示す模式図である。 測定プローブの電気系及び計測器本体のブロック図である。 演算アルゴリズムを示すブロック図である。 色度及び輝度の演算の概略を示す模式図である。 演算アルゴリズムを示すブロック図である。
 1 第1実施形態
 1.1 等色関数及び分光視感効率
 第1実施形態の色彩輝度計は、修正等色関数が測色用の評価関数として選択された場合の色度x'及びy'並びに標準分光視感効率が測光用の評価関数として選択された場合の輝度Lvの両方を測定する。下記の説明においては、色彩輝度計について説明するのに先立って、CIE1931XYZ等色関数、修正等色関数及び標準分光視感効率について説明する。
 測色用の評価関数は、被測定光の各波長成分の測色値への寄与の大きさを示し、波長の関数として表現される。測色用の評価関数と分光強度との積を波長で積分し必要に応じて係数をさらに乗じることにより測色値が得られる。
 測光用の評価関数は、被測定光の各波長成分の測光値への寄与の大きさを示し、波長の関数として表現される。測光用の評価関数と分光強度との積を波長で積分し必要に応じて係数をさらに乗じることにより測光値が得られる。
 1.2 CIE1931XYZ等色関数
 図1のグラフは、CIE1931XYZ等色関数を示す。
 図1に示されるように、CIE1931XYZ等色関数は、x成分xbar(lambda)、y成分ybar(lambda)及びz成分zbar(lambda)を有する。x成分xbar(lambda)、y成分ybar(lambda)及びz成分zbar(lambda)は、波長lambdaの関数である。x成分xbar(lambda)は、442nm付近及び599nm付近にピークを有する。y成分ybar(lambda)は、555nm付近にピークを有する。z成分zbar(lambda)は、446nm付近にピークを有する。x成分xbar(lambda)は、短波長側xbar1(lambda)及び長波長側xbar2(lambda)に分割できる。短波長側xbar1(lambda)は、x成分xbar(lambda)のうちの短波長側のピークを含むが長波長側のピークを含まない波長範囲の部分であり、例えば500nm以下の波長範囲の部分である。長波長側xbar2(lambda)は、x成分xbar(lambda)のうちの長波長側のピークを含むが短波長側のピークを含まない波長範囲の部分であり、例えば500nm以上の波長範囲の部分である。短波長側xbar1(lambda)と長波長側xbar2(lambda)との境界は、例えば490nm以上510nm以下である。
 CIE1931XYZ等色関数が測色用の評価関数として選択された場合のXYZ表色系における刺激値X,Y及びZは、係数k及び被測定光の分光放射輝度L(lambda)を用いて、それぞれ下記の式(1),(2)及び(3)により演算される。係数kを乗ずることにより、適切な単位が刺激値X,Y及びZに付与される。
Figure JPOXMLDOC01-appb-M000001
 CIE1931XYZ等色関数が測色用の評価関数として選択された場合のYxy表色系における色度x及びyは、それぞれ下記の式(4)及び(5)により演算される。
Figure JPOXMLDOC01-appb-M000002
 1.3 修正等色関数
 修正等色関数は、CIE1931XYZ等色関数と同じく、x成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)を有する。修正等色関数のx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)は、それぞれCIE1931XYZ等色関数のx成分xbar(lambda)、y成分ybar(lambda)及びz成分zbar(lambda)を置き換える。修正等色関数のx成分xbar'(lambda)は、CIE1931XYZ等色関数のxbar(lambda)と同じく、短波長側xbar1'(lambda)及び長波長側xbar2'(lambda)に分割できる。
 1.4 CIE1931XYZ等色関数と修正等色関数との比較
 修正等色関数は、500nm以下の波長範囲において、特に400nmから500nmまでの波長範囲において、CIE1931XYZ等色関数と顕著に相違するが、500nm以上の波長範囲において、CIE1931XYZ等色関数と顕著に相違しない。
 このため、500nm以下の波長範囲において大きな相対強度を持つ、修正等色関数のx成分xbar'(lambda)の短波長側xbar1'(lambda)は、CIE1931XYZ等色関数のx成分xbar(lambda)の短波長側xbar1(lambda)と顕著に相違する。また、修正等色関数のz成分zbar'(lambda)は、CIE1931XYZ等色関数のz成分zbar(lambda)と顕著に相違する。
 一方、修正等色関数のx成分xbar'(lambda)の長波長側xbar2'(lambda)は、CIE1931XYZ等色関数のx成分xbar(lambda)の長波長側xbar2(lambda)と顕著に相違しないが、CIE1931XYZ等色関数のx成分xbar(lambda)の長波長側xbar2(lambda)から修正されている。また、修正等色関数のy成分ybar'(lambda)は、CIE1931XYZ等色関数のy成分ybar(lambda)と顕著に相違しないが、CIE1931XYZ等色関数のy成分ybar(lambda)から修正されている。
 Vos and Judd(1978)修正等色関数及びTR-170-1修正等色関数を例にこれらのことを説明する。
 図2のグラフは、Vos and Judd(1978)修正等色関数及びCIE1931XYZ等色関数を示す。図3のグラフは、TR-170-1修正等色関数及びCIE1931XYZ等色関数を示す。
 図2に示されるように、Vos and Judd(1978)修正等色関数のx成分xbar'(lambda)の短波長側xbar1'(lambda)は、CIE1931XYZ等色関数のx成分xbar(lambda)の短波長側xbar1(lambda)と顕著に相違する。また、Vos and Judd(1978)修正等色関数のz成分zbar'(lambda)は、CIE1931XYZ等色関数のz成分zbar(lambda)と顕著に相違する。
 しかし、Vos and Judd(1978)修正等色関数のx成分xbar'(lambda)の長波長側xbar2'(lambda)は、CIE1931XYZ等色関数のx成分xbar(lambda)の長波長側xbar2(lambda)と顕著に相違しないが、CIE1931XYZ等色関数のx成分xbar(lambda)の長波長側xbar2(lambda)から修正されている。また、Vos and Judd(1978)修正等色関数のy成分ybar'(lambda)は、CIE1931XYZ等色関数のy成分ybar(lambda)と顕著に相違しないが、CIE1931XYZ等色関数のy成分ybar(lambda)から修正されている。
 図3に示されるように、TR-170-1修正等色関数についても同様のことがいる。
 1.5 標準分光視感効率
 図4のグラフは、標準分光視感効率を示す。
 図4に示されるように、標準分光視感効率V(lambda)は、CIE1931XYZ等色関数のy成分ybar(lambda)に一致するが、修正等色関数のy成分ybar'(lambda)に一致しない。このため、CIE1931XYZ等色関数のy成分ybar(lambda)に近似した分光応答度を有する測色光学系により出力された信号からは正確な輝度Lvを導出できるが、修正等色関数のy成分ybar'(lambda)に近似した分光応答度を有する測色光学系により出力された信号からは正確な輝度Lvを導出できない。また、標準分光視感効率V(lambda)は、修正等色関数のx成分xbar'(lambda)及びz成分zbar'(lambda)のいずれとも全く一致しない。このため、修正等色関数のx成分xbar'(lambda)又はzbar'(lambda)に近似した分光応答度を有する測色光学系により出力された信号からは輝度Lvを導出できない。
 Yxy表色系における輝度Lvは、最大視感効果度Km及び被測定光の分光放射輝度L(lambda)を用いて、下記の式(6)により演算される。最大視感効果度Kmを乗ずることにより、輝度Lvに輝度単位が付与される。
Figure JPOXMLDOC01-appb-M000003
 標準分光視感効率V(lambda)がCIE1931XYZ等色関数のy成分ybar(lambda)に一致することから、上記の式(6)は下記の式(7)に書き換えられる。
Figure JPOXMLDOC01-appb-M000004
 上記の式(7)は、式(2)により、下記の式(8)に書き換えられる。
Figure JPOXMLDOC01-appb-M000005
 1.6 測色値の導出に用いる部分
 下記の説明においては、色度x'及びy'を導出するために必要な第1の部分、第2の部分及び第3の部分としてそれぞれx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)が修正等色関数から抽出される。第1の部分、第2の部分及び第3の部分から色度x'及びy'を導出可能である限り、修正等色関数からの第1の部分、第2の部分及び第3の部分の抽出箇所が変更されても良い。例えば、第1の部分、第2の部分及び第3の部分としてそれぞれx成分xbar'(lambda)の長波長側xbar2'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)が修正等色関数から抽出されても良い。x成分xbar'(lambda)に代えてx成分xbar'(lambda)の長波長側xbar2'(lambda)を抽出できるのは、x成分xbar'(lambda)の短波長側xbar1'(lambda)はz成分zbar'(lambda)の係数倍により近似可能であるためである。
 1.7 色彩輝度計
 図5の模式図は、第1実施形態の色彩輝度計1000を示す。
 図5に示されるように、色彩輝度計1000は、測定プローブ1010及び計測器本体1011を備える。
 色彩輝度計1000は、液晶ディスプレイ1020の表示面1030の色を測定する。色彩輝度計1000が液晶ディスプレイ1020以外のフラットパネルディスプレイの表示面の色を測定しても良い。色彩輝度計1000がフラットパネルディスプレイ以外の発光物の色を測定しても良い。色彩輝度計1000が非発光物の色を測定しても良い。
 色彩輝度計1000は、Yxy表色系における色度x'及びy'並びに輝度Lvを測定する。測定の対象、測定される測色値、測定される測光値、測定の精度等によっては、装置が色彩輝度計以外の名称で呼ばれる場合がある。例えば、測定される測光値が照度である場合は、装置が色彩照度計と呼ばれる。この出願書類においては、測色値及び測光値を測定する装置が測色測光計と総称される。測色測光計において色度以外の測色値が測定されても良い。例えば、L*a*b*表色系における明度指数及びクロマティクネス指数、L*C*h表色系における明度指数、彩度及び色相角、マンセル表色系における色相、明度及び彩度、L*u*v*表色系における明度指数及びクロマティクネス指数、XYZ表色系における刺激値、RGB表色系における刺激値、色温度等が測定されても良い。色差が測定されても良い。測色測光計において輝度以外の測光値が測定されても良い。例えば、照度、光束、光度等が測定されても良い。色彩輝度計1000は、刺激値直読方式により測色値及び測光値を測定する刺激値直読型の測色測光計の一種である。
 測定プローブ1010は、測定が行われる場合に、液晶ディスプレイ1020の表示面1030の前方に測定姿勢で配置される。測定プローブ1010が測定姿勢で配置された場合は、測定プローブ1010が表示面1030に対向し、表示面1030が発する被測定光が測定プローブ1010に入射する。
 計測器本体1011は、操作が行われたことを検出した場合に、検出した操作に応じた処理を測定プローブ1010に行わせるための制御信号を測定プローブ1010へ送信する。測定プローブ1010は、制御信号を受信した場合に、制御信号にしたがって処理を行い、被測定光のX成分、Y成分及びZ成分の強度を検出し、被測定光のX成分、Y成分及びZ成分の強度をそれぞれ表現する信号値X'c,Y'c及びZ'cを計測器本体1011へ出力する。計測器本体1011は、信号値X'c,Y'c及びZ'cが入力された場合に、信号値X'c,Y'c及びZ'cから色度x'及びy'を導出し、色度x'及びy'を表示する。また、計測器本体1011は、信号値X'c,Y'c及びZ'cが入力された場合に、信号値X'c,Y'c及びZ'cから輝度Lvを導出し、輝度Lvを表示する。測定プローブ1010が計測器本体1011の機能の全部又は一部を担っても良い。計測器本体1011が測定プローブ1010の機能の一部を担っても良い。測定プローブ1010が計測器本体1011の機能の全部を担う場合は、計測器本体1011が省略され測定プローブ1010がスタンドアローンとなっても良い。測定プローブ1010は、測定ヘッド、センサーヘッド等と呼ばれる場合もある。
 1.8 測定プローブ
 図6の模式図は、測定プローブ1010の光学系を示す。図7のブロック図は、測定プローブ1010の電気系及び計測器本体1011を示す。
 図6及び図7に示されるように、測定プローブ1010は、対物光学系1040、分岐光学系1041、測色光学系群1042、信号処理回路1043等を備える。
 被測定光1050は、レンズ等の対物光学系1040により収束させられ、バンドルファイバー等の分岐光学系1041により分岐させられ、測色光学系群1042に受光される。被測定光1050が対物光学系1040により発散させられる場合又はコリメート化される場合もある。被測定光1050が、対物光学系1040及び分岐光学系1041以外の光学系を経由しても良い。対物光学系1040及び分岐光学系1041の両方又は片方が省略される場合もある。
 測色光学系群1042は、信号S(X'c),S(Y'c)及びS(Z'c)を出力する。
 信号処理回路1043は、信号S(X'c),S(Y'c)及びS(Z'c)が入力された場合に、信号S(X'c),S(Y'c)及びS(Z'c)を処理し、信号S(X'c),S(Y'c)及びS(Z'c)の強度をそれぞれ表現する信号値X'c,Y'c及びZ'cを得、信号値X'c,Y'c及びZ'cを計測器本体1011へ送信する。
 1.9 測色光学系群
 測色光学系群1042は、測色光学系1070,1071及び1072を備える。測色光学系1070,1071及び1072は、それぞれ集光レンズ群1080,1081及び1082を備え、それぞれ色フィルター1090,1091及び1092を備え、それぞれ受光センサー1100,1101及び1102を備える。
 測色光学系群1042が光線束を受光する場合は、測色光学系1070,1071及び1072の各々が、分岐光学系1041により分岐された光線束を受光する。測色光学系1070,1071及び1072が受光した光線束は、それぞれ集光レンズ群1080,1081及び1082により集光され、それぞれ色フィルター1090,1091及び1092を透過し、それぞれ受光センサー1100,1101及び1102に受光される。集光レンズ群1080,1081及び1082が省略される場合もある。
 受光センサー1100は、信号S(X'c)を出力する。信号S(X'c)の強度は、被測定光1050の分光強度に応じる。被測定光1050の分光強度と信号S(X'c)の強度との関係を示す分光応答度は、修正等色関数のx成分xbar'(lambda)に近似する。
 受光センサー1101は、信号S(Y'c)を出力する。信号S(Y'c)の強度は、被測定光1050の分光強度に応じる。被測定光1050の分光強度と信号S(Y'c)の強度との関係を示す分光応答度は、修正等色関数のy成分ybar'(lambda)に近似する。
 受光センサー1102は、信号S(Z'c)を出力する。信号S(Z'c)の強度は、被測定光1050の分光強度に応じる。被測定光1050の分光強度と信号S(Z'c)の強度との関係を示す分光応答度は、修正等色関数のz成分zbar'(lambda)に近似する。
 分光応答度が等色関数に近似することは、当該分光応答度を有する測色光学系から出力される信号から導出される測色値と真の測色値との差が色彩輝度計の誤差に関する仕様を満たすように分光応答度が等色関数を反映することを意味する。
 1.10 色フィルターの分光透過率
 図8のグラフは、色フィルターの分光透過率、対物光学系の分光透過率、分岐光学系の分光透過率、集光レンズ群の分光透過率、受光センサーの分光感度及び全体の分光応答度を示す。
 図8に示されるように、対物光学系の透過率、分岐光学系の透過率、集光レンズ群の透過率及び受光センサーの感度は、波長に依存するので、被測定光の分光強度と受光センサーが出力する信号の強度との関係を示す全体の分光応答度は、色フィルターの分光透過率だけでは決まらず、対物光学系の分光透過率、分岐光学系の分光透過率及び集光レンズ群の分光透過率の影響を受ける。例えば、全体の分光応答度は、対物光学系を構成するレンズの分光透過率、分岐光学系を構成するバンドルファイバーの分光透過率等の影響を受ける。被測定光が対物光学系、分岐光学系及び集光レンズ群以外の光学系を経由する場合は、全体の分光応答度は、当該光学系の分光透過率の影響も受ける。全体の分光応答度がその他の要素の影響を受ける場合もある。例えば、全体の分光応答度が受光センサーの受光面の分光反射率の影響を受ける場合もある。
 色フィルター1090の分光透過率は、色フィルター1090の分光透過率そのものが修正等色関数のx成分xbar'(lambda)に近似するように選択されるのではなく、全体の分光応答度が修正等色関数のx成分xbar'(lambda)に近似するように選択される。すなわち、色フィルター1090の分光透過率は、色彩輝度計1000に入射する被測定光1050の分光強度と測色光学系1070が出力する信号S(X'c)の強度との関係を示す分光応答度が修正等色関数のx成分xbar'(lambda)に近似するように選択される。同じく、色フィルター1091の分光透過率は、色彩輝度計1000に入射する被測定光1050の分光強度と測色光学系1071が出力する信号S(Y'c)の強度との関係を示す分光応答度が修正等色関数のy成分ybar'(lambda)に近似するように選択される。色フィルター1092の分光透過率は、色彩輝度計1000に入射する被測定光1050の分光強度と測色光学系1072が出力する信号S(Z'c)の強度との関係を示す分光応答度が修正等色関数のz成分ybar'(lambda)に近似するように選択される。
 色フィルター1090,1091及び1092の各々は、複数の吸収フィルターの積層体であっても良いし、干渉フィルターであっても良いし、吸収フィルターと干渉フィルターとの組み合わせであっても良い。干渉フィルターを構成する干渉膜の材料は、誘電体であり、例えば、酸化物からなる。
 1.11 信号処理回路
 信号処理回路1043は、図7に示されるように、増幅回路1110,1111及び1112、アナログ/デジタル変換器1120,1121及び1122等を備える。受光センサー1100,1101及び1102並びにアナログ/デジタル変換器1120,1121及び1122の仕様によっては増幅回路1110,1111及び1112が省略される場合もある。
 信号S(X'c),S(Y'c)及びS(Z'c)が信号処理回路1043に入力された場合は、増幅回路1110,1111及び1112がそれぞれ信号S(X'c),S(Y'c)及びS(Z'c)を増幅し、アナログ/デジタル変換器1120,1121及び1122がそれぞれ増幅された信号S(X'c),S(Y'c)及びS(Z'c)を信号値X'c,Y'c及びZ'cへ変換する。
 1.12 計測器本体
 計測器本体1011は、図7に示されるように、組み込みコンピューター1130、記憶部1131、操作部1132及び表示部1133を備える。組み込みコンピューター1130は、インストールされたファームウェアを実行することにより下記の機能を担う。ソフトウェアを伴わないハードウェアが下記の機能の全部又は一部を担っても良い。記憶部1131は、フラッシュメモリー、ハードディスクドライブ等である。操作部1132は、キーボード、ポインティングデバイス、タッチパネル、スイッチ、ダイヤル等である。表示部1133は、ディスプレイ、ランプ、プリンタ等である。
 組み込みコンピューター1130は、操作部1132に対して操作が行われたことを検出した場合に、検出した操作に応じた処理を行う。
 組み込みコンピューター1130は、信号値X'c,Y'c及びZ'cを受信した場合に、記憶部1131から読み出した補正係数を用いて信号値X'c,Y'c及びZ'cから色度x'及びy'並びに輝度Lvを演算し、色度x'及びy'並びに輝度Lvを表示部1133に表示させる。
 1.13 演算アルゴリズム
 図9のブロック図は、演算アルゴリズムを示す。
 図9に示される色度導出部1140、輝度導出部1141、刺激値演算部1150及び色度演算部1151は、組み込みコンピューター1130が担う処理を示す。刺激値演算部1150及び色度演算部1151は、色度導出部1140に属する。
 1.14 色度導出部
 色度導出部1140は、信号値X'c,Y'c及びZ'cから色度x'及びy'を導出する。
 刺激値演算部1150は、修正等色関数が測色用の評価関数として選択された場合の刺激値X'm,Y'm及びZ'mを信号値X'c,Y'c及びZ'cから演算する。刺激値X'm,Y'm及びZ'mが演算される場合は、下記の式(9),(10)及び(11)のように信号値X'c,Y'c及びZ'cが補正される。
Figure JPOXMLDOC01-appb-M000006
 刺激値X'mは、重み付け係数である補正係数m11,m12及びm13を用いて信号値X'c,Y'c及びZ'cの重み付け和を演算することにより得られる。補正係数m11,m12及びm13は、それぞれ信号値X'c,Y'c及びZ'cに乗じられる。補正係数m11,m12及びm13は、被測定光1050の分光強度と刺激値X'mとの関係を示す分光応答度が修正等色関数のx成分xbar'(lambda)に近似するように選択される。
 刺激値Y'mは、重み付け係数である補正係数m21,m22及びm23を用いて信号値X'c,Y'c及びZ'cの重み付け和を演算することにより得られる。補正係数m21,m22及びm23は、それぞれ信号値X'c,Y'c及びZ'cに乗じられる。補正係数m21,m22及びm23は、被測定光1050の分光強度と刺激値Y'mとの関係を示す分光応答度が修正等色関数のy成分ybar'(lambda)に近似するように選択される。
 刺激値Z'mは、重み付け係数である補正係数m31,m32及びm33を用いて信号値X'c,Y'c及びZ'cの重み付け和を演算することにより得られる。補正係数m31,m32及びm33は、それぞれ信号値X'c,Y'c及びZ'cに乗じられる。補正係数m31,m32及びm33は、被測定光1050の分光強度と刺激値Z'mとの関係を示す分光応答度が修正等色関数のz成分zbar'(lambda)に近似するように選択される。
 一般的に言って、測色光学系の分光応答度は、測色用の評価関数として選択される等色関数に近似させられるが、測色用の評価関数として選択される等色関数と完全には一致しない。このことを、CIE1931XYZ等色関数が測色用の評価関数として選択された場合を例に説明する。
 図10のグラフは、CIE1931XYZ等色関数及び測色光学系の分光応答度を示す。
 図10に示されるように、x成分用の測色光学系の分光応答度、y成分用の測色光学系の分光応答度及びz成分用の測色光学系の分光応答度は、それぞれCIE1931XYZ等色関数のx成分xbar(lambda)、y成分ybar(lambda)及びz成分zbar(lambda)に近似するが、それぞれCIE1931XYZ等色関数のx成分xbar(lambda)、y成分ybar(lambda)及びz成分zbar(lambda)と完全には一致しない。また、x成分用の測色光学系の分光応答度、y成分用の測色光学系の分光応答度及びz成分用の測色光学系の分光応答度の間の相対関係は、CIE1931XYZ等色関数のx成分xbar(lambda)、CIE1931XYZ等色関数のy成分ybar(lambda)及びCIE1931XYZ等色関数のz成分zbar(lambda)の間の相対関係と一致しない。このことは、修正等色関数が測色用の評価関数として選択された場合も同様である。
 このため、色彩輝度計1000においても、被測定光1050の分光強度と信号値X'c,Y'c及びZ'cとの関係を示す分光応答度は、それぞれ修正等色関数のx成分xbar'(lambda),y成分ybar'(lambda)及びz成分zbar'(lambda)に近似するが、それぞれ修正等色関数のx成分xbar'(lambda),y成分ybar'(lambda)及びz成分zbar'(lambda)と完全には一致しない。また、被測定光1050の分光強度と信号値X'cとの関係を示す分光応答度、被測定光1050の分光強度と信号値Y'cとの関係を示す分光応答度及び被測定光1050の分光強度と信号値Z'cとの関係を示す分光応答度の間の相対関係は、修正等色関数のx成分xbar'(lambda)、修正等色関数のy成分ybar'(lambda)及び修正等色関数のz成分zbar'(lambda)の間の相対関係と一致しない。補正係数m11,m12,m13,m21,m22,m23,m31,m32及びm33は、これらの不一致を緩和するように決定される。
 色度演算部1151は、下記の式(12)及び(13)のように刺激値X'm,Y'm及びZ'mから色度x'及びy'を演算する。
Figure JPOXMLDOC01-appb-M000007
 1.15 輝度導出部
 輝度導出部1141は、信号値X'c,Y'c及びZ'cから輝度Lvを導出する。輝度Lvが導出される場合は、下記の式(14)のように信号値X'c,Y'c及びZ'cを補正することにより刺激値Ymが得られ、下記の式(15)のように刺激値Ymが輝度値Lvとされる。
Figure JPOXMLDOC01-appb-M000008
 刺激値Ymは、重み付け係数である補正係数L21,L22及びL23を用いて信号値X'c,Y'c及びZ'cの重み付け和を演算することにより得られる。補正係数L21,L22及びL23は、それぞれ信号値X'c,Y'c及びZ'cに乗じられる。補正係数L21,L22及びL23は、被測定光1050の分光強度と刺激値Ymとの関係を示す分光応答度がCIE1931XYZ等色関数のy成分ybar(lambda)、すなわち、標準分光視感効率V(lambda)に近似するように選択される。信号値Y'cは修正等色関数が測色用の評価関数として選択された場合の刺激値のy成分であるため、信号値Y'cからは正確な輝度Lvを導出できないが、刺激値YmはCIE1931XYZ等色関数が測色用の評価関数として選択された場合の刺激値のy成分と同一視できるため、刺激値Ymからは正確な輝度Lvを導出できる。
 1.16 補正係数
 補正係数m11,m12,m13,m21,m22,m23,m31,m32及びm33並びに補正係数L21,L22及びL23は、あらかじめ行われる校正作業により決定される。
 校正作業においては、刺激値の真値が既知である第1の光源、第2の光源及び第3の光源が準備される。また、第1の光源、第2の光源及び第3の光源の色が色彩輝度計1000により測定される。さらに、下記の式(16)のように補正係数m11,m12,m13,m21,m22,m23,m31,m32及びm33が決定され、下記の式(17)のように補正係数L21,L22及びL23が決定される。
Figure JPOXMLDOC01-appb-M000009
 刺激値X'r,Y'r及びZ'rは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第1の光源の刺激値のx成分、y成分及びz成分の真値である。刺激値X'g,Y'g及びZ'gは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第2の光源の刺激値のx成分、y成分及びz成分の真値である。刺激値X'b,Y'b及びZ'bは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第3の光源の刺激値のx成分、y成分及びz成分の真値である。
 刺激値Yrは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第1の光源の刺激値のy成分の真値である。刺激値Ygは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第2の光源の刺激値のy成分の真値である。刺激値Ybは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第3の光源の刺激値のy成分の真値である。
 信号値X'cr,Y'cr及びZ'crは、それぞれ第1の光源を色彩輝度計1000で測定した場合に得られる信号値X'c,Y'c及びZ'cである。信号値X'cg,Y'cg及びZ'cgは、それぞれ第2の光源を色彩輝度計1000で測定した場合に得られる信号値X'c,Y'c及びZ'cである。信号値X'cb,Y'cb及びZ'cbは、それぞれ第3の光源を色彩輝度計1000で測定した場合に得られる信号値X'c,Y'c及びZ'cである。
 第1の光源、第2の光源及び第3の光源の各々の色は、残余の2個の光源の色の混合で表現できないように選択される。望ましくは、第1の光源、第2の光源及び第3の光源の色は、それぞれ、三原色の赤色、緑色及び青色である。第1の光源、第2の光源及び第3の色がそれぞれ三原色の赤色、緑色及び青色である場合は、液晶ディスプレイのような三原色の加法混色により色を再現している光源を測定する場合に色度x'及びy'並びに輝度Lvを精度良く測定できる。
 1.17 導出機構(導出部)
 信号処理回路1043及び組み込みコンピューター1130は、導出機構1160を構成する。導出機構1160は、全体として、信号S(X'c),S(Y'c)及びS(Z'c)から色度x'及びy'並びに輝度Lvを導出する。
 1.18 測定の流れ
 図11のフローチャートは、測定の流れを示す。
 色彩輝度計1000においては、測定の開始を指示する操作が計測器本体1011に対して行われたことが検出された場合に、測定が開始される。測定の開始のトリガーが変更されても良い。
 測定が開始された場合は、ステップ1170において信号値X'c,Y'c及びZ'cが取得された後に、色度x'及びy'並びに輝度Lvが演算される。色度x'及びy'並びに輝度Lvの演算の順序は制限されないが、下記の説明ではステップ1171から1173までにおいて色度x'及びy'が演算された後にステップ1174から1176までにおいて輝度Lvが演算されるとする。
 色度x'及びy'が演算される場合は、ステップ1171において補正係数m11,m12,m13,m21,m22,m23,m31,m32及びm33が記憶部1131から読み出され、ステップ1172において補正係数m11,m12,m13,m21,m22,m23,m31,m32及びm33を用いて信号値X'c,Y'c及びZ'cを補正することにより刺激値X'm,Y'm及びZ'mが得られ、ステップ1173において刺激値X'm,Y'm及びZ'mから色度x'及びy'が演算される。
 輝度Lvが演算される場合は、ステップ1174において補正係数L21,L22及びL23が記憶部1131から読み出され、ステップ1175において補正係数L21,L22及びL23を用いて信号値X'c,Y'c及びZ'cを補正することにより刺激値Ymが得られ、ステップ1176において刺激値Ymが輝度Lvとされる。
 色度x'及びy'並びに輝度Lvが導出された後に、ステップに1177において色度x'及びy'並びに輝度Lvが表示部1133に表示される。
 1.19 分光測色方式に対する刺激値直読方式の利点
 測色の方式は、分光測色方式及び刺激値直読方式に大別される。
 分光測色方式により測色及び測光が行われる場合は、回折格子等の分光素子により被測定光が分光され、多数の受光センサーからなる受光センサーアレイにより各波長成分の強度が検出され、分光スペクトルから測色値及び測光値が演算される。分光測色方式によれば、分光視感効率が等色関数の一部分に一致しない場合でも当該等色関数に対応した測色値及び当該分光視感効率に対応した測光値の両方を分光スペクトルから精度良く演算できる。しかし、分光測色方式においては、分光素子、分解能が高く明るいレンズ系等の複雑な光学系が必要になり、多数の受光センサーが必要になり、測色測光計が大きく高コストになる。
 これに対して、一般的な刺激値直読方式により測色及び測光が行われる場合は、3個の受光センサーからなる受光センサー群及び等色関数に近似した分光応答度を有する測色光学系により刺激値が検出され、刺激値から測色値及び測光値が演算される。刺激値直読方式によれば、複雑な光学系が不要になり、多数の受光センサーが不要になり、測色測光計が小さく低コストになる。しかし、一般的な刺激値直読方式においては、分光視感効率が等色関数の一部分に一致しない場合に当該等色関数に対応する測色値を刺激値から精度よく演算できるが当該分光視感効率に対応する測光値を刺激値から精度良く演算できない。
 これに対して、第1実施形態が採用する刺激値直読方式においては、分光視感効率が等色関数の一部分に一致しない場合でも等色関数に対応した測色値及び分光視感効率に対応した測光値の両方を精度良く演算できる。
 1.20 第1実施形態における色度及び輝度の演算
 図12の模式図は、色度及び輝度の演算の概略を示す。
 図12に示されるように、参考例1においては、CIE1931XYZ等色関数xbar(lambda),ybar(lambda)及びzbar(lambda)に近似した分光応答度を有する3個の測色光学系が設けられる。
 参考例1においては、3個の測色光学系に由来する3個の信号値が測色用の補正係数を用いて補正され、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の刺激値X,Y及びZが導出される。
 参考例1においては、刺激値X,Y及びZから色度x及びyが導出され、刺激値Yから輝度Lvが導出される。
 参考例1によれば、CIE1931XYZ等色関数に基づいて色度x及びyが導出されるため、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の色度x及びyを精度良く導出できる。また、参考例1によれば、標準分光視感効率V(lambda)と一致するCIE1931XYZ等色関数のy成分ybar(lambda)に基づいて輝度Lvが導出されるため、標準分光視感効率V(lambda)が測光用の評価関数として選択された場合の輝度Lvを精度良く導出できる。
 参考例2においては、修正等色関数のx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)に近似した分光応答度をそれぞれ有する3個の測色光学系が設けられる。
 参考例2においては、3個の測色光学系に由来する3個の信号値が測色用の補正係数を用いて補正され、刺激値X',Y'及びZ'が導出される。
 参考例2においては、刺激値X',Y'及びZ'から色度x'及びy'が導出され、刺激値Y'から輝度Lvが導出される。
 参考例2によれば、修正等色関数に基づいて色度x'及びy'が導出されるため、修正等色関数が測色用の評価関数として選択された場合の色度x'及びy'を精度良く導出できる。しかし、標準分光視感効率V(lambda)と一致しない修正等色関数のy成分ybar'(lambda)に基づいて輝度Lvが導出されるため、標準分光視感効率V(lambda)が測光用の評価関数として選択された場合の輝度Lvを精度良く導出できない。
 これらに対して、第1実施形態においては、修正等色関数のx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)に近似した分光応答度をそれぞれ有する3個の測色光学系が設けられる。
 第1実施形態においては、3個の測色光学系に由来する3個の信号値が測色用の補正係数を用いて補正され、刺激値X',Y'及びZ'が導出され、3個の測色光学系に由来する3個の信号値が測光用の補正係数を用いて補正され、刺激値Yが導出される。
 第1実施形態においては、刺激値X',Y'及びZ'から色度x'及びy'が導出され、刺激値Yから輝度Lvが導出される。
 第1実施形態によれば、修正等色関数に基づいて色度x'及びy'が導出されるため、修正等色関数が測色用の評価関数として選択された場合の色度x'及びy'を精度良く導出できる。また、標準分光視感効率V(lambda)と一致する修正等色関数のy成分ybar'(lambda)に基づいて輝度Lvを導出したのと同一視しうる測光用の補正が行われるため、標準分光視感効率V(lambda)が測光用の評価関数として選択された場合の輝度Lvを精度良く導出できる。
 1.21 特に適する用途
 白色発光ダイオード(LED)を光源とする装置が広く普及している。例えば、白色LEDを光源とする照明器具、液晶ディスプレイ等が広く普及している。白色LEDとしては、青色LEDが発する青色の励起光で黄色蛍光体を励起し黄色蛍光体に黄色の蛍光を発光させ、青色の励起光成分及び黄色の蛍光成分からなる白色光を得るものが多く採用されている。
 当該白色LEDが発する光の色評価においては、励起光成分が属する400nmから500nmまでの波長範囲における測定の精度が重要である。その理由を説明する。
 図13は、白色LEDが発する光の分光強度を個体ごとに示すグラフである。
 一般的にいって、図13に示されるように、蛍光成分の分光強度は相対的に安定であるのに対して、励起光成分の分光強度は相対的に不安定である。励起光成分の分光強度は、ピーク波長については10nm程度の個体差を有し、ピーク強度については10%程度の個体差を有する。加えて、励起光成分の分光強度のピーク波長は、同一の個体であっても、温度により2nm程度変動する。
 また、蛍光成分の分光強度のピークは相対的に緩やかであるのに対して、励起光成分の分光強度のピークは相対的に急峻である。
 これらのことから、白色LEDが発する光の色評価においては、励起光成分が属する400nmから500nmまでの波長範囲における測定の精度が測色値に与える影響、特に、刺激値のZ成分に与える影響が大きい。
 このため、白色LEDが発する光の色評価においては、等色関数のz成分の選択が重要であり、人間の目視感に一致するz成分を有する修正等色関数に対応する測色値を得られるようにすることへの要望が強い。
 一方で、過去の測定結果と比較を行う場合等のために、CIE1931XYZ等色関数のy成分に一致する標準分光視感効率に対応する測光値を得られるようにすることへの要望が強い。
 修正等色関数に対応する測色値及びCIE1931XYZ等色関数のy成分に一致する標準分光視感効率に対応する測光値の両方を測定できる色彩輝度計1000は、これらの要望に応えることができ、白色LEDが発する光の色評価に特に適する。
 <変形例>
 図14に示されるように、信号処理回路1043が、測色光学系群1042における暗電流を測定するためのリファレンス用回路として、増幅回路1113、アナログ/デジタル変換機1123をさらに備えていてもよい。
 測色光学系群から出力された暗電流の強度を示す信号は、増幅回路1113によって増幅され、アナログ/デジタル変換器1123によって信号値に変換されて、組み込みコンピューターに送られる。この信号値に応じて計測器本体においてゼロ調整が行われる。
 このような構成にすることにより、測定時においてもリアルタイムで暗電流を測定してゼロ調整を行なうことが可能になる。
 2 第2実施形態
 2.1 第1実施形態と第2実施形態との相違
 第2実施形態は、測色測光計に関する。
 図15の模式図は、色度x'及びy並びに輝度Lvの演算の概略を示す。
 図15に示されるように、第2実施形態においては、第1実施形態と同じく、修正等色関数のx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)に近似した分光応答度をそれぞれ有する3個の測色光学系が設けられる。また、第2実施形態においては、CIE1931XYZ等色関数のy成分ybar(lambda)に近似した分光応答度を有する1個の測色光学系が設けられる。したがって、第2実施形態においては、4個の測色光学系が設けられる。
 第2実施形態においては、第1実施形態と異なり、4個の測色光学系に由来する4個の信号値が測色用の補正係数を用いて補正され、刺激値X',Y'及びZ'が導出される。また、第2実施形態においては、4個の測色光学系に由来する4個の信号値が測光用の補正係数を用いて補正され、刺激値Yが導出される。
 第2実施形態においては、第1実施形態と同じく、刺激値X',Y'及びZから色度x'及びy'が導出される。また、第2実施形態においては、第1実施形態と同じく、刺激値Yから輝度Lvが導出される。
 第2実施形態によれば、修正等色関数に基づいて色度x'及びy'が導出されるため、修正等色関数が測色用の評価関数として選択された場合の色度x'及びy'が精度良く導出される。また、第2実施形態によれば、標準分光視感効率V(lambda)と一致するCIE1931XYZ等色関数のy成分ybar(lambda)に基づいて輝度Lvが導出されるため、標準分光視感効率V(lambda)が測光用の評価関数として選択された場合の輝度Lvが精度良く導出される。
 2.2 測定プローブ
 図16のブロック図は、測定プローブ2010の電気系及び計測器本体2011を示す。第2実施形態の測定プローブ2010の電気系及び計測器本体2011は、それぞれ、第1実施形態の測定プローブ1010の電気系及び計測器本体1011を置き換える。
 図16に示されるように、測定プローブ2010は、測色光学系群2042、信号処理回路2043等を備える。
 測色光学系群2042は、信号S(X'c),S(Y'c),S(Z'c)及びS(Yc)を出力する。
 信号処理回路2043は、信号S(X'c),S(Y'c),S(Z'c)及びS(Yc)が入力された場合に、信号S(X'c),S(Y'c),S(Z'c)及びS(Yc)を処理し、信号S(X'c),S(Y'c),S(Z'c)及びS(Yc)の強度をそれぞれ表現する信号値X'c,Y'c,Z'c及びYcを得、信号値X'c,Y'c,Z'c及びYcを計測器本体2011へ送信する。
 2.3 測色光学系群
 測色光学系群2042は、測色光学系2070,2071,2072及び2073を備える。第2実施形態の測色光学系2070,2071及び2072は、それぞれ第1実施形態の測色光学系1070,1071及び1072と同じものである。
 測色光学系2073は、第1実施形態の測色光学系1070,1071及び1072と同じく、集光レンズ群、色フィルター及び受光センサーを備える。測色光学系2073が備える受光センサーは、信号S(Yc)を出力する。信号S(Yc)の強度は、被測定光1050の分光強度に応じる。被測定光1050の分光強度と信号S(Yc)の強度との関係を示す分光応答度は、CIE1931XYZ等色関数のy成分ybar(lambda)、すなわち、標準分光視感効率V(lambda)に近似する。
 2.4 信号処理回路
 信号処理回路2043は、図16に示されるように、増幅回路2110,2111,2112及び2113、アナログ/デジタル変換器2120,2121,2122及び2123等を備える。第2実施形態の増幅回路2110,2111及び2112は、それぞれ第1実施形態の増幅回路1110,1111及び1112と同じものである。第2実施形態のアナログ/デジタル変換器2120,2121及び2122は、それぞれ第1実施形態のアナログ/デジタル変換器1120,1121及び1122と同じものである。
 信号S(Yc)が信号処理回路2043に入力された場合は、増幅回路2113が信号S(Yc)を増幅し、アナログ/デジタル変換器2123が増幅された信号S(Yc)を信号値Ycへ変換する。
 2.5 計測器本体
 計測器本体2011は、図16に示されるように、組み込みコンピューター2130、記憶部2131、操作部2132及び表示部2133を備える。
 組み込みコンピューター2130は、信号値X'c,Y'c及びZ'cを受信した場合に、記憶部2131から読み出した補正係数を用いて信号値X'c,Y'c,Z'c及びYcから色度x'及びy'並びに輝度Lvを演算し、色度x'及びy'並びに輝度Lvを表示部2133に表示させる。
 2.6 演算アルゴリズム
 図17のブロック図は、演算アルゴリズムを示す。
 図17に示される色度導出部2140、輝度導出部2141、刺激値演算部2150及び色度演算部2151は、組み込みコンピューター2130が担う処理を示す。刺激値演算部2150及び色度演算部2151は、色度導出部2140に属する。
 2.7 色度
 色度導出部2140は、信号値X'c,Y'c,Z'c及びYcから色度x'及びy'を導出する。
 刺激値演算部2150は、信号値X'c,Y'c,Z'c及びYcから刺激値X'm,Y'm及びZ'mを演算する。刺激値X'm,Y'm及びZ'mが演算される場合は、下記の式(18),(19)及び(20)のように信号値X'c,Y'c及びZ'cが補正される。
Figure JPOXMLDOC01-appb-M000010
 刺激値X'mは、重み付け係数である補正係数m11,m12,m13及びm14を用いて信号値X'c,Y'c,Z'c及びYcの重み付け和を演算することにより得られる。補正係数m11,m12,m13及びm14は、それぞれ信号値X'c,Y'c,Z'c及びYcに乗じられる。補正係数m11,m12及びm13は、被測定光1050の分光強度と刺激値X'mとの関係を示す分光応答度が修正等色関数のx成分xbar'(lambda)に近似するように選択される。
 刺激値Y'mは、重み付け係数である補正係数m21,m22,m23及びm24を用いて信号値X'c,Y'c,Z'c及びYcの重み付け和を演算することにより得られる。補正係数m21,m22,m23及びm24は、それぞれ信号値X'c,Y'c,Z'c及びYcに乗じられる。補正係数m21,m22,m23及びm24は、被測定光1050の分光強度と刺激値Y'mとの関係を示す分光応答度が修正等色関数のy成分ybar'(lambda)に近似するように選択される。
 刺激値Z'mは、重み付け係数である補正係数m31,m32,m33及びm34を用いて信号値X'c,Y'c,Z'c及びYcの重み付け和を演算することにより得られる。補正係数m31,m32,m33及びm34は、それぞれ信号値X'c,Y'c,Z'c及びYcに乗じられる。補正係数m31,m32,m33及びm34は、被測定光1050の分光強度と刺激値Z'mとの関係を示す分光応答度が修正等色関数のy成分zbar'(lambda)に近似するように選択される。
 色度演算部2151は、下記の式(21)及び(22)のように刺激値X'm,Y'm及びZ'mから色度x'及びy'を演算する。
Figure JPOXMLDOC01-appb-M000011
 2.8 輝度
 輝度導出部2141は、信号値X'c,Y'c,Z'c及びYcから輝度Lvを導出する。輝度Lvが導出される場合は、下記の式(23)のように信号値X'c,Y'c,Z'c及びYcを補正することにより刺激値Ymが得られ、下記の式(24)のように刺激値Ymが輝度値Lvとされる。
Figure JPOXMLDOC01-appb-M000012
 刺激値Ymは、重み付け係数である補正係数L21,L22,L23及びL24を用いて信号値X'c,Y'c,Z'c及びYcの重み付け和を演算することにより得られる。補正係数L21,L22,L23及びL24は、それぞれ信号値X'c,Y'c,Z'c及びYcに乗じられる。補正係数L21,L22,L23及びL24は、被測定光1050の分光強度と刺激値Ymとの関係を示す分光応答度がCIE1931XYZ等色関数のy成分ybar(lambda)、すなわち、標準分光視感効率V(lambda)に近似するように選択される。信号値Y'cは修正等色関数が測色用の評価関数として選択された場合の刺激値のy成分であるため、信号値Y'cからは正確な輝度Lvを導出できないが、刺激値YmはCIE1931XYZ等色関数が測色用の評価関数として選択された場合の刺激値のy成分と同一視できるため、刺激値Ymからは正確な輝度Lvを導出できる。
 2.9 導出機構(導出部)
 信号処理回路2043及び組み込みコンピューター2130は、導出機構2160を構成する。導出機構2160は、全体として、信号S(X'c),S(Y'c)及びS(Z'c)及びS(Yc)から色度x'及びy'並びに輝度Lvを導出する。
 2.10 補正係数
 補正係数m11,m12,m13,m14,m21,m22,m23,m24,m31,m32,m33及びm34並びに補正係数L21,L22,L23及びL24は、あらかじめ行われる校正作業により決定される。
 校正作業においては、刺激値の真値が既知である第1の光源、第2の光源、第3の光源及び第4の光源が準備される。また、第1の光源、第2の光源、第3の光源及び第4の光源の色が色彩輝度計により測定される。さらに、下記の式(25)のように補正係数m11,m12,m13,m14,m21,m22,m23,m24,m31,m32,m33及びm34及び補正係数L21,L22,L23及びL24が決定される。
Figure JPOXMLDOC01-appb-M000013
 刺激値X'r,Y'r及びZ'rは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第1の光源の刺激値のx成分、y成分及びz成分の真値である。刺激値X'g,Y'g及びZ'gは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第2の光源の刺激値のx成分、y成分及びz成分の真値である。刺激値X'b,Y'b及びZ'bは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第3の光源の刺激値のx成分、y成分及びz成分の真値である。刺激値X'f,Y'f及びZ'fは、それぞれ修正等色関数が測色用の評価関数として選択された場合の第4の光源の刺激値のx成分、y成分及びz成分の真値である。
 刺激値Yrは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第1の光源の刺激値のy成分の真値である。刺激値Ygは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第2の光源の刺激値のy成分の真値である。刺激値Ybは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第3の光源の刺激値のy成分の真値である。刺激値Yfは、CIE1931XYZ等色関数が測色用の評価関数として選択された場合の第4の光源の刺激値のy成分の真値である。
 信号値X'cr,Y'cr,Z'cr及びYcrは、それぞれ第1の光源を色彩輝度計で測定した場合に得られる信号値X'c,Y'c,Z'c及びYcである。信号値X'cg,Y'cg,Z'cg及びYcgは、それぞれ第2の光源を色彩輝度計で測定した場合に得られる信号値X'c,Y'c,Z'c及びYcである。信号値X'cb,Y'cb,Z'cb及びYcbは、それぞれ第3の光源を色彩輝度計で測定した場合に得られる信号値X'c,Y'c,Z'c及びYcである。信号値X'cf,Y'cf,Z'cf及びYcfは、それぞれ第4の光源を色彩輝度計で測定した場合に得られる信号値X'c,Y'c,Z'c及びYcである。
 第1の光源、第2の光源及び第3の光源の色は、第1実施形態の場合と同様に選択される。第4の光源の色は、望ましくは第1の光源、第2の光源及び第3の光源の色と大きくことなるように選択される。
 3 第3実施形態
 3.1 第2実施形態と第3実施形態との相違
 第3実施形態は、第2実施形態の演算アルゴリズムを置き換える演算アルゴリズムに関する。
 図18の模式図は、色度x'及びy'並びに輝度Lvの演算の概略を示す。
 図18に示されるように、第3実施形態においては、第2実施形態と同じく、修正等色関数のx成分xbar'(lambda)、y成分ybar'(lambda)及びz成分zbar'(lambda)に近似した分光応答度をそれぞれ有する3個の測色光学系が設けられる。また、第3実施形態においては、第2実施形態と同じく、CIE1931XYZ等色関数のy成分ybar(lambda)に近似した分光応答度を有する1個の測色光学系が設けられる。
 第3実施形態においては、第2実施形態と異なり、前者の3個の測色光学系に由来する3個の信号値が測色用の補正係数を用いて補正され、刺激値X',Y'及びZ'が導出される。また、第3実施形態においては、第2実施形態と異なり、後者の1個の測色光学系に由来する1個の信号値が測光用の補正係数を用いて補正され、刺激値Yが導出される。
 第3実施形態においては、第2実施形態と同じく、刺激値X',Y'及びZ'から色度x'及びy'が導出される。また、第3実施形態においては、第2実施形態と同じく、刺激値Yから輝度Lvが導出される。
 第3実施形態によれば、修正等色関数に基づいて色度x'及びy'が導出されるため、修正等色関数が測色用の評価関数として選択された場合の色度x'及びy'を精度良く導出できる。また、第3実施形態によれば、標準分光視感効率V(lambda)と一致するCIE1931XYZ等色関数のy成分ybar(lambda)に基づいて輝度Lvが導出されるため、標準分光視感効率V(lambda)が測光用の評価関数として選択された場合の輝度Lvを精度良く導出できる。
 3.2 演算アルゴリズム
 図19のブロック図は、第3実施形態の演算アルゴリズムを示す。
 図19に示されるように、色度導出部3140、輝度導出部3141、刺激値演算部3150及び色度演算部3151は、組み込みコンピューター2130が担う処理を示す。刺激値演算部3150及び色度演算部3151は、色度導出部3140に属する。
 色度導出部3140は、第1実施形態の色度導出部1140と同じように、信号値X'c,Y'c及びZ'cから色度x'及びy'を導出する。刺激値演算部3150は、第1実施形態の刺激値演算部1150と同じように、信号値X'c,Y'c及びZ'cから刺激値X'm,Y'm及びZ'mを演算する。色度演算部3151は、第1実施形態の色度演算部1151と同じように、刺激値X'm,Y'm及びZ'mから色度x'及びy'を演算する。
 輝度導出部3141は、信号値Ycから輝度Lvを導出する。輝度Lvが導出される場合は、下記の式(26)のように信号値Ycを補正することにより刺激値Ymが得られ、下記の式(27)のように刺激値Ymが輝度値Lvとされる。
Figure JPOXMLDOC01-appb-M000014
 刺激値Ymは、補正係数L24を信号値Ycに乗じることにより得られる。補正係数L24が1であること、すなわち、実質的に補正が行われないことも許される。補正係数L24は、あらかじめ行われる校正作業により決定される。
 第2実施形態の演算アルゴリズムが第3実施形態の演算アルゴリズムに置き換えられた場合は、導出機構2160は、全体として、信号S(X'c),S(Y'c)及びS(Z'c)から色度x'及びy'を導出し、信号S(Yc)から輝度Lvを導出する。
 第2実施形態の演算アルゴリズムの一部と第3実施形態の演算アルゴリズムの一部とが組み合わされてもよい。例えば、第2実施形態の色度x'及びy'の演算と第3実施形態の輝度Lvの演算とが組み合わされてもよい。第2実施形態の輝度Lvの演算と第3実施形態の色度x'及びy'の演算とが組み合わされてもよい。
 発明は詳細に示され記述されたが、上記の記述は全ての局面において例示であって限定的ではない。したがって、発明の範囲からはずれることなく無数の修正及び変形が案出されうると解される。
 1000 色彩輝度計
 1010 測定プローブ
 1011 計測器本体

Claims (16)

  1.  第1の測色光学系、第2の測色光学系及び第3の測色光学系を備え、前記第1の測色光学系、前記第2の測色光学系及び前記第3の測色光学系がそれぞれ等色関数の第1の部分、第2の部分及び第3の部分に近似した分光応答度を有し、前記第1の測色光学系、前記第2の測色光学系及び前記第3の測色光学系がそれぞれ被測定光の分光強度に応じた強度を有する第1の信号、第2の信号及び第3の信号を出力する測色光学系群と、
     分光視感効率が前記第1の部分、前記第2の部分及び前記第3の部分のいずれにも一致しない場合に、前記等色関数が測色用の評価関数として選択されたときの測色値及び前記分光視感効率が測光用の評価関数として選択されたときの測光値を少なくとも前記3個の信号から導出する導出部と、
    を備える刺激値直読型の測色測光計。
  2.  前記測色光学系群からは第4の信号がさらに出力され、
     前記導出部が、前記第1の信号、前記第2の信号、前記第3の信号及び前記第4の信号から前記測色値及び前記測光値を導出する
    請求項1の刺激値直読型の測色測光計。
  3.  前記導出部は、
     前記第1の信号、前記第2の信号及び前記第3の信号の強度をそれぞれ表現する第1の信号値、第2の信号値及び第3の信号値を得る信号処理回路と、
     前記第1の信号値、前記第2の信号値及び前記第3の信号値から前記測色値を導出する測色値導出部と、
     重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の重み付け和を演算し、前記重み付け和を前記測光値にし、被測定光の分光強度と前記重み付け和との関係を示す分光応答度が前記分光視感効率に近似するように前記重み付け係数が選択されている測光値導出部と、
    を備える請求項1または請求項2の刺激値直読型の測色測光計。
  4.  前記測色値導出部は、
     第1の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第1の重み付け和を演算し、第2の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第2の重み付け和を演算し、第3の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第3の重み付け和を演算し、前記第1の重み付け和、前記第2の重み付け和及び前記第3の重み付け和をそれぞれ前記等色関数が測色用の評価関数として選択された場合の刺激値の第1の成分、第2の成分及び第3の成分にし、被測定光の分光強度と前記第1の重み付け和との関係を示す分光応答度が前記第1の部分に近似するように前記第1の重み付け係数が選択されており、被測定光の分光強度と前記第2の重み付け和との関係を示す分光応答度が前記第2の部分に近似するように前記第2の重み付け係数が選択されており、被測定光の分光強度と前記第3の重み付け和との関係を示す分光応答度が前記第3の部分に近似するように前記第3の重み付け係数が選択されている刺激値演算部
    を備える請求項3の刺激値直読型の測色測光計。
  5.  前記測色値導出部は、
     前記刺激値から前記測色値を演算する測色値演算部
    をさらに備える請求項4の刺激値直読型の測色測光計。
  6.  前記第4の信号は、前記測色光学系群における暗電流の強度を示す、請求項2の刺激値直読型の測色測光計。
  7.  前記測色光学系群は、第4の測色光学系をさらに備え、
     前記第4の測色光学系が、前記分光視感効率に近似した分光応答度を有し、
     前記第4の測色光学系が、被測定光の分光強度に応じた強度を有する第4の信号を出力し、
     前記導出部が、前記第1の信号、前記第2の信号、前記第3の信号及び前記第4の信号から前記測色値及び前記測光値を導出する請求項1の刺激値直読型の測色測光計。
  8.  前記導出部は、
     前記第1の信号、前記第2の信号、前記第3の信号及び前記第4の信号の強度をそれぞれ表現する第1の信号値、第2の信号値、第3の信号値及び第4の信号値を得る信号処理回路と、
     前記第1の信号値、前記第2の信号値、前記第3の信号値及び前記第4の信号値から前記測色値を導出する測色値導出部と、
     重み付け係数を用いて前記第1の信号値、前記第2の信号値、前記第3の信号値及び前記第4の信号値の重み付け和を演算し、前記重み付け和を前記測光値にし、被測定光の分光強度と前記重み付け和との関係を示す分光応答度が前記分光視感効率に近似するように前記重み付け係数が選択されている測光値導出部と、
    を備える請求項7の刺激値直読型の測色測光計。
  9.  前記測色値導出部は、
     第1の重み付け係数を用いて前記第1の信号値、前記第2の信号値、前記第3の信号値及び前記第4の信号値の第1の重み付け和を演算し、第2の重み付け係数を用いて前記第1の信号値、前記第2の信号値、前記第3の信号値及び前記第4の信号値の第2の重み付け和を演算し、第3の重み付け係数を用いて前記第1の信号値、前記第2の信号値、前記第3の信号値及び前記第4の信号値の第3の重み付け和を演算し、前記第1の重み付け和、前記第2の重み付け和及び前記第3の重み付け和をそれぞれ前記等色関数が測色用の評価関数として選択された場合の刺激値の第1の成分、第2の成分及び第3の成分にし、被測定光の分光強度と前記第1の重み付け和との関係を示す分光応答度が前記第1の部分に近似するように前記第1の重み付け係数が選択されており、被測定光の分光強度と前記第2の重み付け和との関係を示す分光応答度が前記第2の部分に近似するように前記第2の重み付け係数が選択されており、被測定光の分光強度と前記第3の重み付け和との関係を示す分光応答度が前記第3の部分に近似するように前記第3の重み付け係数が選択されている刺激値演算部
    を備える請求項8の刺激値直読型の測色測光計。
  10.  前記測色値導出部は、
     前記刺激値から前記測色値を演算する測色値演算部
    をさらに備える請求項9の刺激値直読型の測色測光計。
  11.  前記測色光学系群が、第4の測色光学系をさらに備え、
     前記第4の測色光学系が、前記分光視感効率に近似した分光応答度を有し、
     前記第4の測色光学系が、被測定光の分光強度に応じた強度を有する第4の信号を出力し、
     前記導出部が、前記第1の信号、前記第2の信号及び前記第3の信号から前記測色値を導出し、前記第4の信号から前記測光値を導出する
    請求項1の刺激値直読型の測色測光計。
  12.  前記導出部は、
     前記第1の信号、前記第2の信号、前記第3の信号及び前記第4の信号の強度をそれぞれ表現する第1の信号値、第2の信号値、第3の信号値及び第4の信号値を得る信号処理回路と、
     前記第1の信号値、前記第2の信号値及び前記第3の信号値から前記測色値を導出する測色値導出部と、
     前記第4の信号値から前記測光値を導出する測光値導出部と、
    を備える請求項11の刺激値直読型の測色測光計。
  13.  前記測色値導出部は、
     第1の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第1の重み付け和を演算し、第2の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第2の重み付け和を演算し、第3の重み付け係数を用いて前記第1の信号値、前記第2の信号値及び前記第3の信号値の第3の重み付け和を演算し、前記第1の重み付け和、前記第2の重み付け和及び前記第3の重み付け和をそれぞれ前記等色関数が測色用の評価関数として選択された場合の刺激値の第1の成分、第2の成分及び第3の成分にし、被測定光の分光強度と前記第1の重み付け和との関係を示す分光応答度が前記第1の部分に近似するように前記第1の重み付け係数が選択されており、被測定光の分光強度と前記第2の重み付け和との関係を示す分光応答度が前記第2の部分に近似するように前記第2の重み付け係数が選択されており、被測定光の分光強度と前記第3の重み付け和との関係を示す分光応答度が前記第3の部分に近似するように前記第3の重み付け係数が選択されている刺激値演算部
    を備える請求項12の刺激値直読型の測色測光計。
  14.  前記測色値導出部は、
     前記刺激値から前記測色値を演算する測色値演算部
    をさらに備える請求項13の刺激値直読型の測色測光計。
  15.  前記第1の部分、前記第2の部分及び前記第3の部分が、それぞれ前記等色関数のx成分、y成分及びz成分である
    請求項1から14までのいずれかの刺激値直読型の測色測光計。
  16.  前記等色関数が、国際照明委員会において1931年に採択されたXYZ表色系の等色関数を修正した修正等色関数である
    請求項1から15までのいずれかの刺激値直読型の測色測光計。
PCT/JP2015/080436 2014-11-19 2015-10-28 刺激値直読型の測色測光計 WO2016080165A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016560135A JP6555276B2 (ja) 2014-11-19 2015-10-28 刺激値直読型の測色測光計
US15/527,055 US10337921B2 (en) 2014-11-19 2015-10-28 Direct-stimulus-valve-reading-type colorimetric photometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-234703 2014-11-19
JP2014234703 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080165A1 true WO2016080165A1 (ja) 2016-05-26

Family

ID=56013720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080436 WO2016080165A1 (ja) 2014-11-19 2015-10-28 刺激値直読型の測色測光計

Country Status (3)

Country Link
US (1) US10337921B2 (ja)
JP (1) JP6555276B2 (ja)
WO (1) WO2016080165A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3404382A1 (en) * 2017-05-16 2018-11-21 ams AG Optical sensor and method for detecting electromagnetic radiation
ES2723287A1 (es) * 2018-02-19 2019-08-23 Ledyspa S L Nuevo sistema matisse de analisis espectral orientado a la optimizacion de la iluminacion de objetos

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360683A (en) * 1976-11-12 1978-05-31 Uragami Riko Kk Light detector for photometer
JPH02107928A (ja) * 1988-10-17 1990-04-19 Agency Of Ind Science & Technol 測光装置
JPH08320273A (ja) * 1995-05-26 1996-12-03 Minolta Co Ltd 光学的角度特性測定装置
JP2008180520A (ja) * 2007-01-23 2008-08-07 Ayako Matsuzaki 色成分抽出用カメラ装置
JP2009050399A (ja) * 2007-08-24 2009-03-12 New Industry Research Organization 分光視感効率測定システムおよび分光視感効率測定方法
JP2010243300A (ja) * 2009-04-03 2010-10-28 Sharp Corp 光検出器およびそれを備える電子機器
JP2011013201A (ja) * 2009-07-03 2011-01-20 Yoji Shindo 三刺激値直読型測色装置,その測色方法、およびそのキャリブレーション方法
US20110025703A1 (en) * 2009-07-31 2011-02-03 Edge Christopher J Method for reproducing an image on an imaging device
JP2011220770A (ja) * 2010-04-07 2011-11-04 Topcon Corp 測光機器の受光装置
JP2014109562A (ja) * 2012-12-04 2014-06-12 Paparabo:Kk 色彩輝度表示装置および色彩輝度表示方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2699688B2 (ja) * 1991-04-19 1998-01-19 松下電器産業株式会社 誤差自己補正式色彩計
JP3143508B2 (ja) * 1992-01-08 2001-03-07 キヤノン株式会社 画像処理方法及び装置
JPH06323910A (ja) 1993-05-13 1994-11-25 Minolta Camera Co Ltd 光源色測色計
JPH116766A (ja) 1997-06-17 1999-01-12 Minolta Co Ltd 色測定装置及びその光学系
US8031938B2 (en) 2008-04-14 2011-10-04 Eastman Kodak Company Method and apparatus for providing improved human observer XYZ functions and calculations for CIELAB
JP5065204B2 (ja) * 2008-08-28 2012-10-31 キヤノン株式会社 測色方法、測色装置及び記録媒体
KR101144653B1 (ko) * 2010-08-02 2012-05-11 한국표준과학연구원 적분구 광도계 및 그 측정 방법
JP5616719B2 (ja) * 2010-08-25 2014-10-29 キヤノン株式会社 画像形成装置及び画像形成方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360683A (en) * 1976-11-12 1978-05-31 Uragami Riko Kk Light detector for photometer
JPH02107928A (ja) * 1988-10-17 1990-04-19 Agency Of Ind Science & Technol 測光装置
JPH08320273A (ja) * 1995-05-26 1996-12-03 Minolta Co Ltd 光学的角度特性測定装置
JP2008180520A (ja) * 2007-01-23 2008-08-07 Ayako Matsuzaki 色成分抽出用カメラ装置
JP2009050399A (ja) * 2007-08-24 2009-03-12 New Industry Research Organization 分光視感効率測定システムおよび分光視感効率測定方法
JP2010243300A (ja) * 2009-04-03 2010-10-28 Sharp Corp 光検出器およびそれを備える電子機器
JP2011013201A (ja) * 2009-07-03 2011-01-20 Yoji Shindo 三刺激値直読型測色装置,その測色方法、およびそのキャリブレーション方法
US20110025703A1 (en) * 2009-07-31 2011-02-03 Edge Christopher J Method for reproducing an image on an imaging device
JP2011220770A (ja) * 2010-04-07 2011-11-04 Topcon Corp 測光機器の受光装置
JP2014109562A (ja) * 2012-12-04 2014-06-12 Paparabo:Kk 色彩輝度表示装置および色彩輝度表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WOLD, J. H. ET AL.: "The derivation of XYZ tristimulus spaces: A comparison of two alternative methods", COLOR RES. APPL., vol. 26, no. Issue S1, 2001, pages S222 - S224 *

Also Published As

Publication number Publication date
JP6555276B2 (ja) 2019-08-07
US10337921B2 (en) 2019-07-02
JPWO2016080165A1 (ja) 2017-08-31
US20170370774A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6676398B2 (ja) ディスプレイ検査のための測色システム
CN102327156B (zh) 牙齿色度映射
KR100437583B1 (ko) 발광 다이오드 또는 그 외의 스펙트럼 광원을 이용한이미저 장치 컬러 보정 방법
CN102331301B (zh) 牙齿阴影映射
CN105588642B (zh) 色度计的校准
TWI411769B (zh) Metering device
KR20150137196A (ko) 휘도 및 색도 분포 측정 장치
KR101705818B1 (ko) 색도 및 휘도 측정 장치, 시스템 및 측정방법
JP6555276B2 (ja) 刺激値直読型の測色測光計
JP2007093477A (ja) 色測定装置の校正方法および校正装置、色測定方法、色測定装置
JP6631001B2 (ja) 刺激値直読型の測色計
Krüger et al. Spectral mismatch correction factor estimation for white LED spectra based on the photometer’s f1′ value
JP6565174B2 (ja) 刺激値直読型の測色計
JP2015178995A (ja) 色調校正装置、撮像装置及び色調検査装置
JP5396211B2 (ja) 色評価方法及び色評価システム
JP2010169427A (ja) 測色方法及び測色装置
Eppeldauer et al. Improved accuracy photometric and tristimulus-color scales based on spectral irradiance responsivity
TWI839658B (zh) 色度量測方法及裝置
JP2011002287A (ja) 分光データから色度値を求める方法および測色計
WO2022220196A1 (ja) 補正装置、測定器、補正方法及びプログラム
TW202321672A (zh) 色度量測方法及裝置
TWI424151B (zh) 組合式光源之色度測量方法與系統
CN117073841A (zh) 面向成像系统高动态范围颜色管理的色标数据生成方法
CN116884326A (zh) 一种显示光场辐射测量方法
JP2012122942A (ja) 色温度成分分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560135

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15527055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862032

Country of ref document: EP

Kind code of ref document: A1