WO2016080139A1 - 消失模型鋳造方法 - Google Patents

消失模型鋳造方法 Download PDF

Info

Publication number
WO2016080139A1
WO2016080139A1 PCT/JP2015/079751 JP2015079751W WO2016080139A1 WO 2016080139 A1 WO2016080139 A1 WO 2016080139A1 JP 2015079751 W JP2015079751 W JP 2015079751W WO 2016080139 A1 WO2016080139 A1 WO 2016080139A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating agent
hole
casting
molten metal
model
Prior art date
Application number
PCT/JP2015/079751
Other languages
English (en)
French (fr)
Inventor
一之 堤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/520,009 priority Critical patent/US10099274B2/en
Priority to CN201580062100.XA priority patent/CN107107166B/zh
Priority to DE112015005231.3T priority patent/DE112015005231B4/de
Priority to KR1020177012566A priority patent/KR101950125B1/ko
Publication of WO2016080139A1 publication Critical patent/WO2016080139A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • B22C7/023Patterns made from expanded plastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/046Use of patterns which are eliminated by the liquid metal in the mould

Definitions

  • the present invention relates to a vanishing model casting method for casting a casting having a hole.
  • the disappearance model casting method is considered to be the most suitable method for forming a hole in a casting by casting (referred to as “casting”).
  • the disappearance model casting method is a method in which a mold formed by applying a coating agent on the surface of the foam model is buried in the casting sand, and then a molten metal is poured into the mold to disappear the foam model. It is a method of casting a casting by replacing it.
  • Patent Document 1 discloses a disappearance model casting method in which the casting time during casting is set according to the modulus of the model (model volume / model surface area).
  • the casting agent applied to the surface of the hole portion of the foam model and the casting sand filled in the hole portion from the periphery during casting in the course of solidification.
  • the heat load is large, and various external forces act from the molten metal.
  • the hole part of a foaming model is a part in which a hole is formed by casting. Therefore, as shown in FIG. 18, which is a conceptual diagram, the coating agent 24 is damaged at the hole end portion 23 a and the central portion 23 b of the hole portion 23, and the molten metal 26 is poured into the casting sand 25 filled in the hole portion 23. May ooze out.
  • the coating agent 24 is damaged, thereby causing “burning” in which the molten metal 26 and the cast sand 25 are fused, and the finished state is good. It becomes difficult to form a narrow hole.
  • a narrow hole having a diameter of 18 mm or less and a length of 50 mm or more is not punched, and a thin hole is made by machining later on the cast casting.
  • a narrow hole having a diameter of 18 mm or less and a length of 50 mm or more is cast out. Stable manufacturing is difficult.
  • An object of the present invention is to provide a disappearing model casting method capable of casting a fine hole having a diameter of 18 mm or less and having a good finished state.
  • the thickness of the coating agent applied to the foamed model is t (mm)
  • the hole When the diameter of the hole portion of the foamed model that is a portion formed is D (mm) and the bending strength at room temperature of the dried coating agent is ⁇ c (MPa), the peripheral portion of the hole portion
  • the coating agent satisfying the following formula is used.
  • the solidification end time te (second) at which the solidification of the molten metal is completed in the peripheral portion of the hole is applied.
  • a coating agent satisfying the above formula is used within the time t0 when the thermal decomposition of the mold is completed.
  • the bending strength of the coating agent that was heated to the resin decomposition until it was decomposed and then returned to room temperature was about the normal bending strength of the resin binder obtained by drying the coating agent as it was.
  • the bending strength of the coating agent that is not a complete sintered body is the coating mold that is a completely sintered body. It is presumed to be higher than the bending strength of the agent.
  • the strength of the coating agent as the resin binder is ⁇ c at room temperature, and decreases with the progress of thermal decomposition of the resin, and becomes 0 when the decomposition rate is 100%.
  • the solidification end time te (second) at which the solidification of the molten metal ends in the peripheral part of the hole is within the time t0 (second) when the thermal decomposition of the coating agent is completed, the resin binder is bonded to the coating agent. Strength remains.
  • the above formula is obtained. Therefore, by using a mold agent satisfying the above formula, the mold agent can be prevented from being damaged even when a casting having a narrow hole having a diameter of 18 mm or less is cast. Thereby, since seizure does not occur at the time of casting, it is possible to cast a fine hole having a diameter of 18 mm or less and having a good finished state.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is an enlarged view of the principal part B of FIG. It is a side view of a casting_mold
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG. It is an enlarged view of the principal part D of FIG. It is a figure which shows the relationship between the bending strength of the mold agent which returned to normal temperature after heating until resin decomposition, and the diameter which can be cast.
  • a mold formed by applying a coating agent on the surface of a foam model is buried in casting sand (dry sand), and then a molten metal is poured into the mold to foam.
  • This is a method for casting a casting having a hole having a diameter of 18 mm or less and a length of 1 (mm) by eliminating the model and replacing it with molten metal.
  • This vanishing model casting method is considered to be the most suitable method for casting, for example, a casting having a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more by “casting”.
  • the vanishing model casting method includes a melting step of melting metal (cast iron) to form a molten metal, a molding step of forming a foamed model, and a coating step of applying a coating agent on the surface of the foamed model to form a mold.
  • the disappearance model casting method melts the foamed model by pouring molten metal (molten metal) into the casting mold and filling the casting sand into the casting mold by filling the casting mold in the casting sand.
  • a casting step for replacing the molten metal has a cooling step of cooling the molten metal poured into the mold to form a casting, and a separation step of separating the casting from the casting sand.
  • gray cast iron JIS-FC250
  • spheroidal graphite cast iron JIS-FCD450
  • foam model a foam resin such as polystyrene foam
  • coating agent a silica-based aggregate coating agent or the like can be used.
  • silica-based aggregate coating agent or the like can be used.
  • silica-based aggregate coating agent or the like can be used.
  • silica-based aggregate coating agent or the like can be used.
  • silica-based aggregate coating agent or the like can be used as the sand.
  • sica sand containing SiO 2 as a main component
  • the thickness of the coating agent is preferably 3 mm or less. When the thickness of the coating agent is 3 mm or more, it is necessary to repeat coating and drying of the coating agent three times or more, which is troublesome and the thickness tends to be non-uniform.
  • the solidification end time te (second) is within the time t0 (second)
  • the coating agent satisfying the formula (1) is used.
  • the solidification end time te (seconds) is the time at which the solidification of the molten metal ends in the peripheral part of the hole of the foam model.
  • the time t0 (second) is the time when the thermal decomposition of the coating agent is completed.
  • the hole part of a foaming model is a part in which a hole is formed by casting.
  • ⁇ c ⁇ ⁇ t0 / (t0 ⁇ te) ⁇ ⁇ (1.5 ⁇ 10 ⁇ 4 ⁇ l 2 / t 2 + 160 / D 2 )
  • l is the length (mm) of the hole formed in the casting
  • t is the thickness (mm) of the coating agent applied to the foam model
  • D is the diameter (mm) of the hole of the foam model
  • ⁇ c is dried.
  • FIG. 1A is a top view of the mold
  • FIG. 1B is a side view of the mold.
  • a mold having a hole 3 having a diameter D (mm) and a length 1 (mm) penetrating from the upper surface to the lower surface in the center of a rectangular foam model 2 Considering the case of casting a casting having a narrow hole having a diameter of 18 mm or less and a length of 1 (mm) using No. 1.
  • the hole part 3 is provided so that an angle may be formed between the hole end part 3a and the surface of the foam model 2. That is, the hole end portion 3a is not processed with a taper or the like.
  • the diameter D of the hole 3 is the length between the surfaces of the hole 3 across the center line of the hole 3, and is the length between the surfaces of the coating agent applied to the surface of the hole 3. Absent.
  • the diameter of the narrow hole is preferably 10 mm or more.
  • the diameter of the narrow hole is more preferably 18 mm or less. This is because when a coating agent having a thickness of 3 mm is applied to the surface of a fine hole having a diameter of 10 mm, the inner diameter of the space inside the fine hole becomes 4 mm, and it becomes difficult to throw casting sand into the fine hole.
  • a load acting on the coating agent applied to the surface of the hole 3 of the foam model 2 is predicted.
  • the following external force acts on the coating agent applied to the hole end 3 a of the hole 3.
  • Melt static pressure ( ⁇ p) (2) Dynamic pressure due to molten metal flow ( ⁇ m) (3) Thermal contraction / expansion difference ( ⁇ thout) during solidification of coating agent and molten metal (4) Thermal contraction / expansion difference ( ⁇ thin) between casting sand in hole 3 and coating agent (5) Pressure of gas generated by combustion of foam model (Pgout) ( ⁇ gout) (6) Internal pressure (Pgin) ( ⁇ gin) generated when the gas generated by the combustion of the foam model is accumulated inside the hole 3
  • FIG. 2 which is a side view of the mold 1
  • the casting sand 5 filled around the foamed model 2 receives the static pressure of the molten metal 6.
  • FIG. 3 which is a cross-sectional view taken along the line AA of FIG. 2, the coating agent 4 applied to the surface of the hole 3 receives a compressive force in the circumferential direction.
  • FIG. 4 is an enlarged view of the main part B of FIG.
  • the static pressure of the molten metal 6 and the reaction force from the casting sand 5 are balanced. Therefore, the axial load of the hole 3 can be ignored.
  • the diameter of the hole 3 is D (mm)
  • the acceleration of gravity is g
  • the density of the molten metal 6 is ⁇ m (kg / mm 3 ).
  • the external force w (N / mm) to the hole 3 (semicircle) due to the static pressure of the molten metal 6 is the average head difference (the difference in vertical height between the molten metal gate and the hole 3) h (mm).
  • the molten metal gate is a portion where the molten metal is poured into the casting sand surrounding the foamed model above the hole.
  • FIG. 5 is a side view of the mold 1
  • the foam model 2 disappears and is replaced with the molten metal 6
  • the casting sand 5 filled around the foam model 2 is gas generated by the combustion of the foam model 2. Under pressure.
  • FIG. 6 which is a CC cross-sectional view of FIG. 5
  • the coating agent 4 applied to the surface of the hole 3 receives a compressive force in the circumferential direction.
  • FIG. 7 which is an enlarged view of the main part D of FIG. 5
  • a tensile force of the following expression (5) is given in the axial direction of the hole 3.
  • ⁇ b> ⁇ p + ⁇ gout ( ⁇ / 8) ⁇ mghl 2 / t 2 + kPgout / D 2 + ⁇ (8)
  • k is a proportional constant
  • ⁇ m + ⁇ thout + ⁇ thin + ⁇ gin ⁇ 0.
  • Equation (8) is the most severe condition that is established when there is no reaction force of the sand. Therefore, if each term is replaced with a coefficient in consideration of the reaction force of casting sand, the function is a function of the diameter D and length l of the hole 3 and the thickness t of the coating agent as shown in equation (9). Can do.
  • Equation (9) can be expressed by Equation (10).
  • the thickness of the coating agent applied to the foamed model is 1 mm or more, thereby providing a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more. Even if a casting is cast, the coating agent can be prevented from being damaged.
  • said Formula (10) is calculated
  • the bending strength ⁇ n of the coating agent heated until it decomposes into a resin to be sintered and then returned to room temperature is the resistance to normal temperature as a resin binder obtained by drying the coating agent as it is. It is reduced to about 1/7 or less of the bending strength ⁇ c. From this fact, the bending strength of the coating agent in which the resin decomposition is not completely completed, that is, not completely sintered, is the bending strength ⁇ n of the coating agent completely sintered. Is estimated to be higher.
  • Fig. 9 shows the relationship between the temperature of the coating agent during casting and the strength of the coating agent.
  • the bending strength of the coating agent is ⁇ c
  • the bonding strength of the aggregate by the resin determines the strength of the coating agent.
  • the resin decomposition of the coating agent is started by heating, the strength of the coating agent decreases as the thermal decomposition of the resin proceeds.
  • the bending strength of the coating agent becomes the bending strength ⁇ n of the sintered body which is returned to room temperature (RT).
  • FIG. 10 shows the relationship between the temperature of the coating agent during casting and the strength of the coating agent.
  • the resin decomposition of the coating agent is completely completed when the solidification of the molten metal is completed in the peripheral part of the hole. It is expected that the sintered body is not a complete sintered body. If the coating agent is not a completely sintered body, the strength as a resin binder remains in the coating agent, and the strength is the bending strength ⁇ n of the coating agent in the sintered body. Is estimated to be higher.
  • the strength as a resin binder remains in the coating agent.
  • the resin is caking into the coating agent.
  • the strength as a body remains.
  • the bending strength of the coating agent which is not a complete sintered body is higher than the bending strength ⁇ n of the coating agent which is a sintered body. For this reason, it can be said that when the strength as a resin binder remains in the coating agent, the coating agent is less likely to be damaged and “burn-in” is less likely to occur.
  • reaction rate formula of the thermal decomposition of the resin used for the coating agent can be expressed by the following formula (11).
  • kt f ( ⁇ ) (11)
  • k is a reaction rate constant
  • t is a reaction time (second)
  • is a decomposition rate
  • f ( ⁇ ) is a function of the decomposition rate ⁇ .
  • the hot strength ⁇ b of the coating agent can be expressed by the following formula (12).
  • g ( ⁇ ) is a function that determines the hot strength ⁇ b at the decomposition rate ⁇ .
  • the time t0 at which the thermal decomposition of the coating agent is completed can be approximated to 1600 seconds.
  • the solidification end time te (second) at which the solidification of the molten metal ends in the peripheral portion of the hole is within the time t0 (second) at which the thermal decomposition of the coating agent is completed, Since it can be said that the strength remains, Equation (13) is obtained.
  • Equation (14) When ⁇ and ⁇ in Equation (9) are obtained from test results (details will be described later) in a mold having a short side of a cross section perpendicular to the axial direction of the hole of 100 mm, the following Equation (14) is obtained.
  • Equation (12) is a linear equation
  • equation (16) Substituting equation (16) into equation (15) yields equation (17).
  • equation (17) By using a coating agent that satisfies this formula (17), it is possible to prevent “burn-in” from occurring.
  • the shape of the mold is not limited to a rectangular parallelepiped, and may be a prismatic shape such as a triangular prism or a pentagonal prism, or a cylindrical shape.
  • the solidification end time te at which the solidification of the molten metal is completed in the peripheral portion of the hole is the short side T ( (See FIG. 1A).
  • equation (20) ⁇ c ⁇ t0 / (t0 + 1.03 ⁇ 10 ⁇ 3 T 2 ⁇ 16.5T) ⁇ (1.5 ⁇ 10 ⁇ 4 ⁇ l 2 / t 2 + 160 / D 2 ) (20)
  • the length of the narrow hole formed by casting is set to 100 mm.
  • the diameters of the agent, the casting sand, and the hole 3 were varied, and the feasibility of casting was evaluated.
  • the size of the three blocks is 100 (mm) ⁇ 200 (mm) ⁇ 100 (mm), 50 (mm) ⁇ 200 (mm) ⁇ 100 (mm) in the order of short side T, long side, and height, respectively. 25 (mm) ⁇ 200 (mm) ⁇ 100 (mm).
  • FIG. 11A shows a top view of a block having a short side T of 100 mm
  • FIG. 11A shows a top view of a block having a short side T of 100 mm
  • FIG. 11B shows a side view thereof.
  • a top view of a block having a short side T of 50 mm is shown in FIG. 12A and a side view thereof is shown in FIG. 12B.
  • FIG. 13A shows a top view
  • FIG. 13B shows a side view of a block having a short side T of 25 mm.
  • Table 1 shows the types of coating agents.
  • Table 2 shows the results of whether or not casting is possible. This evaluation is performed by the same casting method using gray cast iron (JIS-FC250) having the same components.
  • the bending strength ⁇ n of the coating agent heated to the resin decomposition until it was made into a sintered body and then returned to room temperature was the normal temperature as the resin binder obtained by drying the coating agent as it was. It turns out that it falls to about 1/7 or less of the bending strength ⁇ c. From this fact, the bending strength of the coating agent in which the resin decomposition is not completely completed, that is, not completely sintered, is the bending strength ⁇ n of the coating agent completely sintered. Is estimated to be higher.
  • Casting software JSCAST (Qualica) was used to determine the solidification time around the hole with a diameter of 14 mm when the short side T of the block was varied.
  • a perspective view of the block is shown in FIG.
  • the long side and height of the block were 100 mm and 200 mm, respectively, and the short side T of the block was different from 100 mm, 50 mm, and 25 mm.
  • the block was provided with holes in the center in the height direction, the upper stage (position 50 mm from the upper end face), and the lower stage (position 50 mm from the lower end face).
  • the molten metal was assumed to be gray cast iron (JIS-FC250) and its physical property values were given.
  • FIG. 15A shows a cooling curve in the periphery of the hole in a block having a short side T of 100 mm. Moreover, the cooling curve in the peripheral part of a hole part in the block whose short side T is 50 mm is shown to FIG. 15B. Moreover, the cooling curve in the peripheral part of a hole part in the block whose short side T is 25 mm is shown to FIG. 15C.
  • “hole center”, “casting surface layer”, and “casting second layer”, which are measurement locations, are the locations shown in FIG. Due to the latent heat of solidification when the melt solidifies, the temperature of the melt gradually decreases until the melt is completely solidified. Then, after the molten metal is completely solidified, the temperature of the molten metal quickly decreases. Therefore, the inflection point in the cooling curve may be considered as the solidification completion time.
  • the block is also affected by heat removal from the height direction. Therefore, the solidification rate of the holes provided in the upper stage of the block (position 50 mm from the upper end face) and the lower stage of the block (position 50 mm from the lower end face) is higher than that of the hole provided in the center of the block. fast.
  • Table 3 shows the results of solidification time and castability of the upper and lower holes provided in the block having a short side T of 100 mm in FIG.
  • the coating agent used for the block having a short side T of 100 mm does not satisfy the formula (10).
  • the experimental results shown in Table 3 show that the solidification time around the upper and lower hole portions of the block is less than 1600 seconds, and it is possible to cast a fine hole with a good finished state.
  • the solidification time around the middle hole of the block is longer than 1600 seconds, and it can be seen that a fine hole with a good finished state cannot be cast. Therefore, it can be seen that “casting” is possible at the upper and lower stages where the solidification rate is high, even if the condition of the expression (10) is not satisfied.
  • the relationship between the short side T and the solidification end time te is shown in FIG. From FIG. 16, it can be seen that the condition of the formula (10) needs to be satisfied when the solidification end time te is 1600 seconds or more. From this, the solidification end time te needs to be within 1600 seconds, and thus it can be seen that the time t0 at which the thermal decomposition of the coating agent ends can be approximated to 1600 seconds.
  • the central hole of the block having a short side T of 100 mm is the limit (t0 ⁇ 1600 (seconds)) of the expression (10). Therefore, two conditions, ie, the casting limit of the coating agent A (diameter 8 mm where the casting is impossible) and the diameter 14 mm of the coating agent B, which are representative examples of the punching test results shown in Table 2, are respectively set. Substituting into equation (9) to solve the simultaneous equations and find ⁇ and ⁇ , equation (14) is obtained. ⁇ b> 1.5 ⁇ 10 ⁇ 4 ⁇ l 2 / t 2 + 160 / D 2 Formula (14)
  • the coating agent satisfying the formula (17) or the formula (18) it is possible to prevent the coating agent from being damaged even when casting a casting having a narrow hole having a diameter of 18 mm or less. I understand.
  • the coating agent satisfying the formula (20) or the formula (21) it is possible to prevent the coating agent from being damaged even if a casting having a narrow hole having a diameter of 18 mm or less is cast. I understand.
  • the bending strength of the coating agent in which the resin decomposition is not completely completed, that is, not a complete sintered body is more than the bending strength of the coating agent that is a completely sintered body.
  • the strength of the coating agent as the resin binder is ⁇ c at room temperature, and decreases with the progress of thermal decomposition of the resin, and becomes 0 when the decomposition rate is 100%.
  • the solidification end time te (second) at which the solidification of the molten metal ends in the peripheral part of the hole is within the time t0 (second) when the thermal decomposition of the coating agent is completed, the resin binder is bonded to the coating agent. Strength remains.
  • the above formula (17) is obtained. Therefore, by using a coating agent satisfying the above formula (17), it is possible to prevent the coating agent from being damaged even if a casting having a narrow hole having a diameter of 18 mm or less is cast. Thereby, since seizure does not occur at the time of casting, it is possible to cast a fine hole having a diameter of 18 mm or less and having a good finished state.
  • the coating agent is used when the solidification completion time te (seconds) at which the solidification of the molten metal ends at the periphery of the hole is within 1600 seconds.
  • the strength as a resin caking body remains. Therefore, at this time, it is possible to prevent the coating agent from being damaged by using the coating agent satisfying the above formula (18).
  • the solidification end time te at which the solidification of the molten metal is completed in the peripheral portion of the hole is expressed by the above formula (19) as a function of the short side T of the cross section orthogonal to the axial direction of the hole in the mold. Therefore, when this relationship is satisfied, the coating agent can be prevented from being damaged by using the coating agent satisfying the above formulas (20) and (21).

Abstract

 直径が18mm以下であって、仕上がり状態が良好な細穴を鋳抜くことができるようにする。以下の式において、発泡模型2に塗布する塗型剤の厚みをt(mm)、穴部3の直径をD(mm)、乾燥させた塗型剤の常温の抗折強度をσc(MPa)とする。直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造するに際して、穴部3の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0(秒)以内のときに、以下の式を満たす塗型剤を用いる。σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2

Description

消失模型鋳造方法
 本発明は、穴を備えた鋳物を鋳造する消失模型鋳造方法に関する。
 一般的な砂型鋳造による方法に対して、寸法精度の優れた鋳物を鋳造する方法がいくつか提案されている。例えば、インベストメント鋳造法(別名、ロストワックス法)、石膏鋳型鋳造法、消失模型鋳造法などが開発されている。
 その中でも、消失模型鋳造法は、鋳造によって鋳物の内部に穴を形成する(「鋳抜き」と呼ばれる)のに最も適した方法であると考えられる。ここで、消失模型鋳造法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、鋳型内に金属の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、鋳物を鋳造する方法である。
 特許文献1には、鋳造時の鋳込み時間を、模型のモジュラス(模型の体積÷模型の表面積)に応じて設定する消失模型鋳造法が開示されている。
特開2011-110577号公報
 ところで、消失模型鋳造法では、鋳造中(凝固進行中)において、発泡模型の穴部の表面に塗布された塗型剤、および、穴部の内部に充填された鋳砂に対して、周囲からの熱負荷が大きく、また、溶湯から様々な外力が作用する。なお、発泡模型の穴部は、鋳抜きによって穴が形成される部分である。そのため、概念図である図18に示すように、穴部23の穴端部23aや中央部23bにおいて塗型剤24が損傷して、穴部23の内部に充填された鋳砂25に溶湯26が染み出すことがある。特に、直径が18mm以下の細穴を鋳抜きする場合には、塗型剤24に損傷が生じることで、溶湯26と鋳砂25とが融着する「焼き付き」が生じて、仕上がり状態が良好な細穴を形成することが困難になる。
 そこで、通常、直径が18mm以下で長さが50mm以上の細穴は鋳抜きせずに、鋳造した鋳物に後から機械加工で細穴をあけている。あるいは、数度の試作を行って塗型剤の材質や鋳造条件(注湯時の溶湯温度)を決めることで、直径が18mm以下で長さが50mm以上の細穴を鋳抜いているが、安定的な製造は難しい。
 本発明の目的は、直径が18mm以下であって、仕上がり状態が良好な細穴を鋳抜くことが可能な消失模型鋳造方法を提供することである。
 本発明は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に金属の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造する消失模型鋳造方法において、前記発泡模型に塗布する前記塗型剤の厚みをt(mm)、前記穴が形成される部分である前記発泡模型の穴部の直径をD(mm)、乾燥させた前記塗型剤の常温の抗折強度をσc(MPa)とすると、前記穴部の周辺部において前記溶湯の凝固が終了する凝固終了時間te(秒)が、前記塗型剤の熱分解が終了する時間t0(秒)以内のときに、以下の式を満たす前記塗型剤を用いることを特徴とする。
 σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2
 本発明によると、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造するに際して、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0以内のときに、上記の式を満たす塗型剤を用いる。ここで、塗型剤の高温強度を直接測定することは困難である。しかし、塗型剤を樹脂分解するまで加熱して焼結体にした後に常温に戻したものの抗折強度が、塗型剤をそのまま乾燥させた樹脂粘結体としての常温の抗折強度の約1/7以下に低下することから、樹脂分解が完全に終了していない、即ち、完全な焼結体になっていない塗型剤の抗折強度は、完全に焼結体になった塗型剤の抗折強度よりも高いものと推定される。樹脂粘結体としての塗型剤の強度は、常温においてσcであり、樹脂の熱分解の進行にともなって低下していき、分解率が100%のときに0となる。しかし、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0(秒)以内であれば、塗型剤に樹脂粘結体としての強度が残存する。そこで、塗型剤に残存している樹脂粘結体としての強度を考慮すると、上記の式が得られる。よって、上記の式を満たす塗型剤を用いることで、直径が18mm以下の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。これにより、鋳造時に焼き付きが生じないので、直径が18mm以下であって、仕上がり状態が良好な細穴を鋳抜くことができる。
鋳型の上面図である。 鋳型の側面図である。 鋳型の側面図である。 図2のA-A断面図である。 図2の要部Bの拡大図である。 鋳型の側面図である。 図5のC-C断面図である。 図5の要部Dの拡大図である。 樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、鋳抜き可能径との関係を示す図である。 鋳造中の塗型剤の温度と塗型剤の強度との関係を示す図である。 鋳造中の塗型剤の温度と塗型剤の強度との関係を示す図である。 ブロックの上面図である。 ブロックの側面図である。 ブロックの上面図である。 ブロックの側面図である。 ブロックの上面図である。 ブロックの側面図である。 凝固時間の解析に用いたブロックの斜視図である。 穴部の周辺部における冷却曲線を示す図である。 穴部の周辺部における冷却曲線を示す図である。 穴部の周辺部における冷却曲線を示す図である。 短辺Tと凝固終了時間teとの関係を示す図である。 短辺Tと凝固終了時間teとの関係を示す図である。 消失模型鋳造法による鋳造の概念図である。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
(消失模型鋳造方法)
 本発明の実施形態による消失模型鋳造方法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂(乾燥砂)の中に埋めた後に、鋳型内に金属の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造する方法である。この消失模型鋳造方法は、「鋳抜き」によって、例えば、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造するのに最も適した方法であると考えられる。
 消失模型鋳造方法は、金属(鋳鉄)を溶解して溶湯とする溶解工程と、発泡模型を成形する成形工程と、発泡模型の表面に塗型剤を塗布して鋳型とする塗布工程と、を有している。そして、消失模型鋳造方法は、鋳型を鋳砂の中に埋めて鋳型の隅々にまで鋳砂を充填する造型工程と、鋳型内に溶湯(溶融金属)を注ぎ込むことで、発泡模型を溶かして溶湯と置換する鋳込工程と、を有している。さらに、消失模型鋳造方法は、鋳型内に注ぎ込んだ溶湯を冷却して鋳物にする冷却工程と、鋳物と鋳砂とを分離する分離工程と、を有している。
 溶湯にする金属としては、ねずみ鋳鉄(JIS-FC250)や球状黒鉛鋳鉄(JIS-FCD450)などを用いることができる。また、発泡模型としては、発泡スチロールなどの発泡樹脂を用いることができる。また、塗型剤としては、シリカ系骨材の塗型剤などを用いることができる。また、鋳砂としては、SiO2を主成分とする「けい砂」や、ジルコン砂、クロマイト砂、合成セラミック砂などを用いることができる。なお、鋳砂に粘結剤や硬化剤を添加してもよい。
 なお、塗型剤の厚みは3mm以下が好ましい。塗型剤の厚みが3mm以上になると、塗型剤の塗布と乾燥とを3回以上繰り返す必要があり手間がかかる上に、厚みが不均一になりやすいからである。
 ここで、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造するに際して、本実施形態では、凝固終了時間te(秒)が時間t0(秒)以内のときに、以下の式(1)を満たす塗型剤を用いている。ここで、凝固終了時間te(秒)は、発泡模型の穴部の周辺部において溶湯の凝固が終了する時間である。また、時間t0(秒)は、塗型剤の熱分解が終了する時間である。なお、発泡模型の穴部とは、鋳抜きによって穴が形成される部分である。
 σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2) ・・・式(1)
 ここで、lは鋳物に形成する穴の長さ(mm)、tは発泡模型に塗布する塗型剤の厚み(mm)、Dは発泡模型の穴部の直径(mm)、σcは乾燥させた塗型剤の常温の抗折強度(曲げ強さ)(MPa)である。
 図1Aは鋳型の上面図であり、図1Bは鋳型の側面図である。図1Aおよび図1Bに示すように、直方体の発泡模型2の中央部に、直径がD(mm)で長さがl(mm)の穴部3が上面から下面にかけて貫通して設けられた鋳型1を用いて、直径が18mm以下で長さがl(mm)の細穴を備えた鋳物を鋳造する場合について考える。なお、穴部3は、その穴端部3aにおいて発泡模型2の面との間に角が生じるように設けられている。即ち、穴端部3aにテーパなどの加工は施されていない。また、穴部3の直径Dは、穴部3の中心線を挟んだ穴部3の表面間の長さであり、穴部3の表面に塗布された塗型剤の表面間の長さではない。
 ここで、細穴の直径は、10mm以上であることが好ましい。また、細穴の直径は、18mm以下であることがより好ましい。直径10mmの細穴の表面に厚み3mmの塗型剤を塗布すると、細穴の内側の空間の内径が4mmとなり、細穴の内部に鋳砂を投入するのが困難になるからである。
 まず、基本的な鋳造条件にしたがって、発泡模型2の穴部3の表面に塗布された塗型剤に作用する負荷を予測する。ここで、細穴を鉛直方向に沿って設ける場合、穴部3の穴端部3aに塗布した塗型剤には以下の外力が作用する。
(1)溶湯の静圧(σp)
(2)溶湯の流れによる動圧(σm)
(3)塗型剤と溶湯との凝固時の熱収縮・膨張差(σthout)
(4)穴部3内の鋳砂と塗型剤との熱収縮・膨張差(σthin)
(5)発泡模型の燃焼で発生したガスの圧力(Pgout)(σgout)
(6)発泡模型の燃焼で発生したガスが穴部3の内部に溜まって生じる内圧(Pgin)(σgin)
 したがって、溶湯(溶融金属)の温度と同等の高温下における塗型剤の強度(熱間強度)をσbとすると、以下の式(2)が成立すれば、塗型剤の損傷による溶湯と鋳砂との「焼き付き」を生じさせることなく、「鋳抜き」することが可能となる。
 σb>σp+σm+σthout+σthin+σgout+σgin ・・・式(2)
 以下、各外力について検討する。
(溶湯の静圧)
 鋳型1の側面図である図2に示すように、発泡模型2を消失させて溶湯6と置換すると、発泡模型2の周囲に充填された鋳砂5は、溶湯6の静圧を受ける。図2のA-A断面図である図3に示すように、穴部3の表面に塗布された塗型剤4は、周方向に圧縮力を受ける。
 ここで、発泡模型2の周囲に充填された鋳砂5の量が十分である場合には、図2の要部Bの拡大図である図4に示すように、穴端部3aに塗布された塗型剤4において、溶湯6の静圧と鋳砂5からの反力とが釣り合う。よって、穴部3の軸方向の負荷は無視することができる。
 一方、穴部3の内部に充填された鋳砂5の量が不十分である場合には、穴端部3aに塗布された塗型剤4には、溶湯6の静圧(浮力)による曲げ応力が作用する。
 ここで、穴部3の直径をD(mm)、重力加速度をg、溶湯6の密度をρm(kg/mm3)とする。そして、溶湯6の静圧による穴部3(半円)への外力w(N/mm)は、平均ヘッド差(溶湯の湯口と穴部3との鉛直方向高さの差)h(mm)として、次式(3)で求めることができる。なお、溶湯の湯口とは、穴部よりも上方において、発泡模型を囲む鋳砂に開口されて、溶湯が注ぎ込まれる箇所である。
 w=ρmgh×∫(D/2sinθ×θ)dθ
  =ρmghD/2×∫sin2θdθ
  =ρmghD/2〔θ/2-sin2θ/4〕
  =(π/4)ρmghD ・・・式(3)
 穴部3の表面に塗布された厚みt(mm)の塗型剤4に作用する応力は、穴部3の内部に充填された鋳砂5からの反力が無いと仮定して平板に近似すると、梁理論から次式(4)のσc(MPa)となる。
 σc≒M/I×t/2=(π/8)ρmghl2/t2 ・・・式(4)
 ここで、Mは穴部3の両端に作用するモーメント、Iは半円筒の断面2次モーメントである。
 M=(π/48)ρmghDl2
 I=Dt3/12
(溶湯の流れによる動圧)
 溶湯の流れによる動圧は、溶湯の流れが静かであることを前提とすると、無視することができる。
(塗型剤と溶湯との凝固時の熱収縮・膨張差)
 線膨張率は、鋳砂より鋳鉄の方が大きい。よって、塗型剤と溶湯との凝固時の熱収縮・膨張差は、塗型剤の軸方向に圧縮力を与える。この圧縮力は、塗型剤が形成する円管が座屈により破壊される原因になりうるが、無視できるほど小さいと考えられる。また、塗型剤の周方向の応力も無視することができる。
(穴部内の鋳砂と塗型剤との熱収縮・膨張差)
 穴部3内の鋳砂や塗型剤は、溶湯よりも温度変化が小さい。よって、穴部3内の鋳砂と塗型剤との熱収縮・膨張差による影響は、塗型剤と溶湯との凝固時の熱収縮・膨張差よりも小さく、無視することができる。
(発泡模型の燃焼で発生したガスの圧力)
 鋳型1の側面図である図5に示すように、発泡模型2を消失させて溶湯6と置換すると、発泡模型2の周囲に充填された鋳砂5は、発泡模型2の燃焼で発生したガスの圧力を受ける。
 図5のC-C断面図である図6に示すように、穴部3の表面に塗布された塗型剤4は、周方向に圧縮力を受ける。しかし、図5の要部Dの拡大図である図7に示すように、穴部3の軸方向には、次式(5)の引張力を与える。
 σgout∝Pgout/D2 ・・・式(5)
 なお、図7に示すように、発泡模型2の周囲に充填された鋳砂5の量が十分である場合には、ガスの圧力と鋳砂5からの反力とが釣り合うので、穴部3の軸方向の負荷は無視することができる。
(発泡模型の燃焼で発生したガスが穴部の内部に溜まって生じる内圧)
 発泡模型2の燃焼で発生したガスが穴部3の内部に溜まって生じる内圧は、塗型剤に式(6)の周方向の応力、および、式(7)の軸方向の応力を生じさせる。
 σgin≒D×Pgin/t ・・・式(6)
 σginz≒D×Pgin/(2t) ・・・式(7)
 ここで、穴部3の直径Dが小さいほど鋳抜きがし難いことから、式(6)、式(7)で表される外力の影響は無視できるほど小さいといえる。
 以上から、鋳砂の充填量が十分である場合には、塗型剤への負荷は小さい。しかし、実際には、鋳砂からの反力は十分ではなく、塗型剤には、溶湯の静圧による曲げ応力、および、発泡模型2の燃焼で発生したガスの圧力による軸方向の引張力が作用する。よって、塗型剤は、これらに耐えうる熱間強度を有する必要がある。したがって、鋳抜き条件として、式(2)は、式(4)と式(5)とを用いて、式(8)のように近似することができる。
 σb>σp+σgout=(π/8)ρmghl2/t2+kPgout/D2+γ ・・・式(8)
 ここで、kは比例定数、γ=σm+σthout+σthin+σgin≒0である。
 式(8)は、鋳砂の反力が無いときに成立する、もっとも厳しい条件である。そこで、鋳砂の反力も加味して各項を係数に置き換えると、式(9)のような、穴部3の直径Dと長さl、および、塗型剤の厚みtの関数とすることができる。
 σb>α・l2/t2+β/D2 ・・・式(9)
 ここで、塗型剤の熱間強度を直接測定することは困難である。そこで、塗型剤の熱間強度σb(MPa)の代わりに、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度σn(MPa)を用いる。樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、穴部の鋳抜き可能な直径(鋳抜き可能径)との関係を図8に示す。すると、この関係から、式(9)は式(10)で表すことができる。
 σn≧-0.36+140/D2 ・・・式(10)
 よって、上記の式(10)を満たす塗型剤を用いて、発泡模型に塗布する塗型剤の厚みを1mm以上とすることで、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。
(塗型剤の抗折強度)
 ここで、上記の式(10)は、穴部の軸方向に直交する断面の短辺が100mmの鋳型を用いて求められている。そして、穴部の周辺部において溶湯の凝固が完了するまでに、穴部の塗型剤は焼結体になっている。よって、「焼き付き」を生じさせないためには、塗型剤の焼結体としての熱間強度が、浮力などの外力の合計を上回る必要がある。
 一方、鋳型において、穴部の軸方向に直交する断面の短辺(図1Aの短辺T)が薄くなると、穴部の周辺部において溶湯の凝固が完了するまでに要する時間が短くなる。この場合、穴部の周辺部において溶湯の凝固が完了したときに、塗型剤を構成する樹脂の分解が完全には終了していない、つまり完全な焼結体になっていないことが予想される。
 後述するように、塗型剤を樹脂分解するまで加熱して焼結体にした後に常温に戻したものの抗折強度σnは、塗型剤をそのまま乾燥させた樹脂粘結体としての常温の抗折強度σcの約1/7以下に低下する。このことから、樹脂分解が完全に終了していない、即ち、完全な焼結体になっていない塗型剤の抗折強度は、完全に焼結体になった塗型剤の抗折強度σnよりも高いものと推定される。
 鋳造中の塗型剤の温度と塗型剤の強度との関係を図9に示す。常温(RT)において塗型剤の抗折強度はσcであり、樹脂による骨材の結合力(樹脂粘結体としての強度)が塗型剤の強度を決めている。加熱により塗型剤の樹脂分解が開始されると、樹脂の熱分解の進行にともなって塗型剤の強度は低下していく。そして、樹脂分解が完全に終了すると、塗型剤の抗折強度は、焼結体にした後に常温(RT)に戻したものの抗折強度σnとなる。
 穴部の周辺部において溶湯の凝固が終了するまでの時間が長い場合、図9に示すように、穴部の周辺部において溶湯の凝固が終了するまでに塗型剤の樹脂分解が完全に終了して塗型剤が焼結体となる。図10は、鋳造中の塗型剤の温度と塗型剤の強度との関係を示す。図10に示すように、穴部の周辺部において溶湯の凝固が終了するまでの時間が短い場合、穴部の周辺部において溶湯の凝固が終了した時点で塗型剤の樹脂分解は完全に終了していない、つまり完全な焼結体になっていないことが予想される。そして、塗型剤が完全な焼結体になっていないと、塗型剤には樹脂粘結体としての強度が残存し、その強度は焼結体になった塗型剤の抗折強度σnよりも高いものと推定される。
 したがって、塗型剤の熱分解が終了するまでに、穴部の周辺部の溶湯の凝固が終了するとき、塗型剤に樹脂粘結体としての強度が残存する。言い換えれば、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0(秒)以内のときに、塗型剤に樹脂粘結体としての強度が残存する。そして、完全な焼結体になっていない塗型剤の抗折強度は、焼結体になった塗型剤の抗折強度σnよりも高いと推定される。そのため、塗型剤に樹脂粘結体としての強度が残存している方が、塗型剤が損傷しにくく、「焼き付き」が生じにくいといえる。
 ここで、塗型剤に用いられている樹脂の熱分解の反応速度式は、次の式(11)で表せる。
 kt=f(α) ・・・式(11)
ここで、kは反応速度定数、tは反応時間(秒)、αは分解率、f(α)は分解率αの関数である。
 すると、穴部の周辺部において溶湯の凝固が完了した時(t=te)の塗型剤の熱間強度σbは、次の式(12)で表せる。
 σb=g(α)=g(f-1 (kte))=h(te) ・・・式(12)
ここで、g(α)は分解率αにおける熱間強度σbを決める関数である。
 h(te)は、g(f-1 )と表せるので、熱間強度σbは、凝固完了までの時間の関数となる。
 ここで、後述するように、塗型剤の熱分解が終了する時間t0は1600秒と近似できる。穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0(秒)以内のときに、塗型剤に樹脂粘結体としての強度が残存しているといえるので、式(13)となる。
 te≦t0≒1600(秒) ・・・式(13)
 穴部の軸方向に直交する断面の短辺が100mmの鋳型における試験結果(詳細は後述)から、式(9)のαとβとを求めると、以下の式(14)のようになる。
 σb>1.5×10-4 ×l2/t2+160/D2 ・・・式(14)
 塗型剤内の樹脂分解が終わっていないとき、つまり、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teが、塗型剤の熱分解が終了する時間t0以内のときであれば、樹脂粘結体としての塗型剤の抗折強度σcを用いて、式(14)は、以下の式(15)のように近似することができる。
 kσc≧1.5×10-4 ×l2/t2+160/D2 ・・・式(15)
ここで、kは樹脂分解状況で変わる係数である。
 塗型剤の熱間強度は、樹脂の分解率が0%のときにσb=σcで、分解率が100%のときにσb=0(実際は焼結体としての強度は有する)である。式(12)を一次式と仮定すると、式(16)となる。
 k=1-te/t0 ・・・式(16)
 式(16)を式(15)に代入すると、式(17)となる。この式(17)を満たす塗型剤を使用することで、「焼き付き」が生じないようにすることができる。
 σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2) ・・・式(17)
 また、式(13)を式(17)に代入すると、次の式(18)となる。
 σc≧{1600/(1600-te)}×(1.5×10-4 ×l2/t2+160/D2) ・・・式(18)
 なお、鋳型の形状は直方体に限定されず、三角柱や5角柱等の角柱状や円柱状であってもよい。
 また、鋳型の形状が直方体である場合、後述するように、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teは、鋳型における穴部の軸方向に直交する断面の短辺T(図1A参照)の関数で表わすことができる。鋳造に一般的な鋳砂を用いた場合、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teは、式(19)で近似できる。
 te=-1.03×10-3 T2+16.5T ・・・式(19)
 式(17)に式(19)を代入すると、式(20)となる。
 σc≧t0/(t0+1.03×10-3 T2-16.5T)×(1.5×10-4 ×l2/t2+160/D2) ・・・式(20)
 また、式(18)に式(19)を代入すると、式(21)となる。
 σc≧1600/(1600+1.03×10-3 T2-16.5T)×(1.5×10-4×l2/t2+160/D2) ・・・式(21)
(鋳抜き評価)
 次に、穴部の軸方向に直交する断面の短辺Tの長さが異なる3体のブロック(鋳型)に対し、鋳抜きで形成する細穴の長さを100mmとした場合について、塗型剤、鋳砂、および、穴部3の直径をそれぞれ異ならせて、鋳抜きの可否を評価した。3体のブロックのサイズは、短辺T、長辺、高さの順にそれぞれ、100(mm)×200(mm)×100(mm)、50(mm)×200(mm)×100(mm)、25(mm)×200(mm)×100(mm)である。短辺Tが100mmのブロックの上面図を図11Aに、側面図を図11Bにそれぞれ示す。また、短辺Tが50mmのブロックの上面図を図12Aに、側面図を図12Bにそれぞれ示す。また、短辺Tが25mmのブロックの上面図を図13Aに、側面図を図13Bにそれぞれ示す。また、塗型剤の種類を表1に示す。また、鋳抜き可否の結果を表2に示す。なお、この評価は、同じ成分のねずみ鋳鉄(JIS-FC250)を用いて、同じ鋳造方法で行っている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 評価の結果、同じ種類の塗型剤と鋳砂との組み合わせでも、ブロックの短辺Tが薄いほど鋳抜きがし易いことがわかる。この理由として、ブロックの短辺Tが薄くなり、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teが短くなると、塗型剤を構成する樹脂の分解が完全には終了していない、つまり完全な焼結体になっていないことが予想される。
 また、表1から、塗型剤を樹脂分解するまで加熱して焼結体にした後に常温に戻したものの抗折強度σnは、塗型剤をそのまま乾燥させた樹脂粘結体としての常温の抗折強度σcの約1/7以下に低下することがわかる。このことから、樹脂分解が完全に終了していない、即ち、完全な焼結体になっていない塗型剤の抗折強度は、完全に焼結体になった塗型剤の抗折強度σnよりも高いものと推定される。
 鋳造ソフトJSCAST(クオリカ社)を用いて、ブロックの短辺Tを異ならせたときの直径が14mmの穴部の周辺の凝固時間を求めた。ブロックの斜視図を図14に示す。ブロックの長辺および高さをそれぞれ100mm、200mmとし、ブロックの短辺Tを100mm、50mm、25mmと異ならせた。また、ブロックには、高さ方向の中央と、上段(上端面から50mmの位置)と、下段(下端面から50mmの位置)とにそれぞれ穴部を設けた。なお、溶湯はねずみ鋳鉄(JIS-FC250)と仮定し、その物性値を与えた。
 短辺Tが100mmのブロックにおける、穴部の周辺部における冷却曲線を図15Aに示す。また、短辺Tが50mmのブロックにおける、穴部の周辺部における冷却曲線を図15Bに示す。また、短辺Tが25mmのブロックにおける、穴部の周辺部における冷却曲線を図15Cに示す。ここで、測定箇所である「穴中心」、「鋳物表層」、「鋳物2層目」は、図14にそれぞれ示した箇所である。溶湯が凝固するときの凝固潜熱により、溶湯が完全に凝固するまでは溶湯の温度は緩やかに降下する。そして、溶湯が完全に凝固した後は溶湯の温度は速やかに降下する。よって、冷却曲線における変曲点を凝固完了時間と考えてよい。
 なお、図14において、ブロックは高さ方向からの抜熱の影響も受ける。よって、ブロックの中央に設けられた穴部よりも、ブロックの上段(上端面から50mmの位置)およびブロックの下段(下端面から50mmの位置)にそれぞれ設けられた穴部の方が凝固速度は速い。
 図14における短辺Tが100mmのブロックに設けられた上下段の穴部、および、中央の穴部の凝固時間および鋳抜き可否の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ここで、短辺Tが100mmのブロックに使用された塗型剤は、式(10)を満足していない。しかし、表3に示す実験結果から、ブロックの上下段の穴部の周辺の凝固時間は1600秒未満であり、仕上がり状態が良好な細穴を鋳抜くことができることがわかる。これに対し、ブロックの中段の穴部の周辺の凝固時間は1600秒より長く、仕上がり状態が良好な細穴を鋳抜くことができないことがわかる。よって、式(10)の条件を満たさなくても、凝固速度の速い上下段では「鋳抜き」が可能であることがわかる。
 以上の実験結果を踏まえて、短辺Tと凝固終了時間teとの関係を図16に示す。図16から、凝固終了時間teが1600秒以上となるときに、式(10)の条件を満足する必要があることがわかる。このことから、凝固終了時間teは1600秒以内である必要があるので、塗型剤の熱分解が終了する時間t0は1600秒で近似できることがわかる。
 また、短辺Tが100mmのブロックの中央の穴部が、式(10)の成立限界(t0≒1600(秒))になる。そこで、表2に示す鋳抜き試験結果の代表例である、塗型剤Aの鋳抜き限界(鋳抜き不可となった直径8mm)、および、塗型剤Bの直径14mmの2条件を、それぞれ式(9)に代入して連立方程式を解きαとβとを求めると、式(14)となる。
 σb>1.5×10-4 ×l2/t2+160/D2 ・・・式(14)
 塗型剤内の樹脂分解が終わっていないとき、つまり、穴部の周辺の凝固終了時間teが、塗型剤の熱分解が終了する時間t0以内のときであれば、樹脂粘結体としての塗型剤の常温の抗折強度σcを用いて、式(17)が得られる。また、式(17)にt0≒1600(秒)を代入すると、式(18)が得られる。
 σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2) ・・・式(17)
 σc≧{1600/(1600-te)}×(1.5×10-4 ×l2/t2+160/D2) ・・・式(18)
 よって、式(17)または式(18)を満たす塗型剤を用いることで、直径が18mm以下の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができることがわかる。
 また、前述した数値解析結果を用いて、短辺Tとブロックの中央の穴部の周辺部の凝固終了時間teとの関係を求めた。短辺Tと凝固終了時間teとの関係を図17に示す。計算条件として、鋳造に一般的な鋳砂を用いた場合、図17から、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teは、式(19)で近似できることがわかる。
 te=-1.03×10-3 T2+16.5T ・・・式(19)
 よって、式(19)を式(17)、式(18)にそれぞれ代入すると、式(20)および式(21)が得られる。
 σc≧t0/(t0+1.03×10-3 T2-16.5T)×(1.5×10-4 ×l2/t2+160/D2) ・・・式(20)
 σc≧1600/(1600+1.03×10-3 T2-16.5T)×(1.5×10-4×l2/t2+160/D2) ・・・式(21)
 よって、式(20)または式(21)を満たす塗型剤を用いることで、直径が18mm以下の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができることがわかる。
(実施例)
 次に、ねずみ鋳鉄(JIS-FC250)を溶湯として用いて、50(mm)×100(mm)×200(mm)の直方体の発泡模型に、上面から下面にかけて貫通する、長さ100mmで直径14mmの穴部を配置した鋳型を用いて、細穴を備えた鋳物を鋳造した。
 式(21)にT=50(mm)、l=100(mm)、D=14(mm)を代入し、さらに表1の塗型剤Bを2度塗りした標準厚みt=0.9(mm)を代入すると、右辺は5.7となった。塗型剤Bの常温の抗折強度σcは4.4MPaよりも大きいが、5.7MPa以下の場合もあるため、鋳抜きできない可能性が高い。そこで、塗型剤Bを3度塗りして厚みtを1.4mmとすることで、式(21)を満足した。
 発泡模型に塗型剤Bを3度塗りして鋳造を行った結果、「焼き付き」を生じさせることなく、仕上がり状態が良好な細穴を鋳抜くことができた。
(効果)
 以上に述べたように、本実施形態に係る消失模型鋳造方法によると、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造するに際して、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0以内のときに、上記の式(17)を満たす塗型剤を用いる。ここで、塗型剤の高温強度を直接測定することは困難である。しかし、塗型剤を樹脂分解するまで加熱して焼結体にした後に常温に戻したものの抗折強度が、塗型剤をそのまま乾燥させた樹脂粘結体としての常温の抗折強度の約1/7以下に低下する。このことから、樹脂分解が完全に終了していない、即ち、完全な焼結体になっていない塗型剤の抗折強度は、完全に焼結体になった塗型剤の抗折強度よりも高いものと推定される。樹脂粘結体としての塗型剤の強度は、常温においてσcであり、樹脂の熱分解の進行にともなって低下していき、分解率が100%のときに0となる。しかし、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が、塗型剤の熱分解が終了する時間t0(秒)以内であれば、塗型剤に樹脂粘結体としての強度が残存する。そこで、塗型剤に残存している樹脂粘結体としての強度を考慮すると、上記の式(17)が得られる。よって、上記の式(17)を満たす塗型剤を用いることで、直径が18mm以下の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。これにより、鋳造時に焼き付きが生じないので、直径が18mm以下であって、仕上がり状態が良好な細穴を鋳抜くことができる。
 また、塗型剤の熱分解が終了する時間t0が1600秒であるので、穴部の周辺部において溶湯の凝固が終了する凝固終了時間te(秒)が1600秒以内のときに、塗型剤に樹脂粘結体としての強度が残存する。よって、このときに、上記の式(18)を満たす塗型剤を用いることで、塗型剤が損傷しないようにすることができる。
 また、穴部の周辺部において溶湯の凝固が終了する凝固終了時間teは、鋳型における穴部の軸方向に直交する断面の短辺Tの関数として上記の式(19)で表わされる。よって、この関係を満たすときに、上記の式(20)、式(21)を満たす塗型剤を用いることで、塗型剤が損傷しないようにすることができる。
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 1 鋳型
 2 発泡模型
 3 穴部
 3a 穴端部
 4 塗型剤
 5 鋳砂
 6 溶湯
23 穴部
23a 穴端部
23b 中央部
24 塗型剤
25 鋳砂
26 溶湯

Claims (3)

  1.  発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に金属の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、直径が18mm以下で長さがl(mm)の穴を備えた鋳物を鋳造する消失模型鋳造方法において、
     前記発泡模型に塗布する前記塗型剤の厚みをt(mm)、前記穴が形成される部分である前記発泡模型の穴部の直径をD(mm)、乾燥させた前記塗型剤の常温の抗折強度をσc(MPa)とすると、前記穴部の周辺部において前記溶湯の凝固が終了する凝固終了時間te(秒)が、前記塗型剤の熱分解が終了する時間t0(秒)以内のときに、以下の式を満たす前記塗型剤を用いることを特徴とする消失模型鋳造方法。
     σc≧{t0/(t0-te)}×(1.5×10-4 ×l2/t2+160/D2
  2.  前記塗型剤の熱分解が終了する時間t0が1600秒であることを特徴とする請求項1に記載の消失模型鋳造方法。
  3.  前記鋳型の形状は直方体であり、
     前記鋳型における前記穴部の軸方向に直交する断面の短辺をTとすると、以下の式を満たすことを特徴とする請求項1又は2に記載の消失模型鋳造方法。
     te=-1.03×10-3 T2+16.5T
PCT/JP2015/079751 2014-11-19 2015-10-21 消失模型鋳造方法 WO2016080139A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/520,009 US10099274B2 (en) 2014-11-19 2015-10-21 Evaporative pattern casting method
CN201580062100.XA CN107107166B (zh) 2014-11-19 2015-10-21 消失模铸造法
DE112015005231.3T DE112015005231B4 (de) 2014-11-19 2015-10-21 Verdampfungsmustergiessverfahren
KR1020177012566A KR101950125B1 (ko) 2014-11-19 2015-10-21 소실 모형 주조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014234455A JP6231465B2 (ja) 2014-11-19 2014-11-19 消失模型鋳造方法
JP2014-234455 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080139A1 true WO2016080139A1 (ja) 2016-05-26

Family

ID=56013696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079751 WO2016080139A1 (ja) 2014-11-19 2015-10-21 消失模型鋳造方法

Country Status (7)

Country Link
US (1) US10099274B2 (ja)
JP (1) JP6231465B2 (ja)
KR (1) KR101950125B1 (ja)
CN (1) CN107107166B (ja)
DE (1) DE112015005231B4 (ja)
TW (1) TWI592229B (ja)
WO (1) WO2016080139A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106077474A (zh) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 一种后桥壳体热处理工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183744A (ja) * 1987-01-26 1988-07-29 Nabeya:Kk 多孔性鋳造品の製造方法
JPH01266941A (ja) * 1988-04-20 1989-10-24 Mitsubishi Heavy Ind Ltd 消失模型用塗型剤
JP2003290873A (ja) * 2002-04-08 2003-10-14 Kao Corp 消失模型鋳造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154847A (ja) * 1987-12-09 1989-06-16 Morikawa Sangyo Kk 消失性模型を用いる鋳物の鋳造方法
US5203398A (en) * 1992-01-31 1993-04-20 The Board Of Trustees Of Western Michigan University Low temperature process for evaporative pattern casting
US5848351A (en) 1995-04-03 1998-12-08 Mitsubishi Materials Corporation Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery
TW381981B (en) 1995-09-27 2000-02-11 Mitsubishi Materials Corp Method and apparatus for making sintered porous metal plate
JP2006175494A (ja) * 2004-12-24 2006-07-06 Mie Katan Kogyo Kk ダクタイル鋳鉄のフェライト地鋳物の製造方法
CN101503774B (zh) * 2009-03-09 2010-12-08 西北工业大学 铸造镁合金材料的制备方法
JP5491144B2 (ja) 2009-11-26 2014-05-14 本田技研工業株式会社 消失模型鋳造法
CN102686333B (zh) 2009-11-26 2014-11-19 本田技研工业株式会社 消失模具铸造法
JP6235448B2 (ja) * 2014-12-02 2017-11-22 花王株式会社 消失模型用塗型剤組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183744A (ja) * 1987-01-26 1988-07-29 Nabeya:Kk 多孔性鋳造品の製造方法
JPH01266941A (ja) * 1988-04-20 1989-10-24 Mitsubishi Heavy Ind Ltd 消失模型用塗型剤
JP2003290873A (ja) * 2002-04-08 2003-10-14 Kao Corp 消失模型鋳造法

Also Published As

Publication number Publication date
TWI592229B (zh) 2017-07-21
US20170312811A1 (en) 2017-11-02
KR101950125B1 (ko) 2019-02-19
CN107107166B (zh) 2019-04-19
DE112015005231T5 (de) 2017-08-24
KR20170068541A (ko) 2017-06-19
DE112015005231B4 (de) 2022-11-24
CN107107166A (zh) 2017-08-29
JP2016097415A (ja) 2016-05-30
US10099274B2 (en) 2018-10-16
TW201637751A (zh) 2016-11-01
JP6231465B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6470141B2 (ja) 消失模型鋳造方法
Ben Saada et al. Assessment of the effect of 3D printed sand mold thickness on solidification process of AlSi13 casting alloy
JP6231465B2 (ja) 消失模型鋳造方法
JP2010052019A (ja) 砂型鋳物のシミュレーション方法
WO2016080132A1 (ja) 消失模型鋳造方法
WO2012104096A1 (en) Sand additives for molds/cores for metal casting
JP6014087B2 (ja) 消失模型鋳造方法
Weise et al. New core technology for light metal casting
Peters et al. Effect of mould expansion on pattern allowances in sand casting of steel
JP2018058103A (ja) 押湯形成体及びその押湯形成体を用いた鋳物の製造方法
WO2016088517A1 (ja) 浮力伝達治具
JP2021016896A (ja) 横穴の鋳抜き可否評価方法
JP2017177217A (ja) 消失模型鋳造方法
Anggono et al. Casting design, simulation and manufacturing validation of air compressor fan blade
JP6605305B2 (ja) 鋳造方法
BOČKUS et al. Investigation of Ductile Casting Iron Risers in the Simulation Method
JP2018196889A (ja) 中子の変形量予測方法
US20090000756A1 (en) Reducing residual stresses during sand casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520009

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177012566

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005231

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860486

Country of ref document: EP

Kind code of ref document: A1