WO2016080105A1 - セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ - Google Patents

セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ Download PDF

Info

Publication number
WO2016080105A1
WO2016080105A1 PCT/JP2015/078602 JP2015078602W WO2016080105A1 WO 2016080105 A1 WO2016080105 A1 WO 2016080105A1 JP 2015078602 W JP2015078602 W JP 2015078602W WO 2016080105 A1 WO2016080105 A1 WO 2016080105A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic heater
outer cylinder
glow plug
housing part
housing
Prior art date
Application number
PCT/JP2015/078602
Other languages
English (en)
French (fr)
Inventor
勝美 高津
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to US15/528,315 priority Critical patent/US20170321899A1/en
Priority to EP15860789.5A priority patent/EP3222916A4/en
Priority to JP2016560110A priority patent/JP6245716B2/ja
Publication of WO2016080105A1 publication Critical patent/WO2016080105A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • F23Q2007/004Manufacturing or assembling methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the present invention relates to a method for manufacturing a ceramic heater type glow plug used as a starting aid for a diesel engine and a ceramic heater type glow plug.
  • the ceramic heater type glow plug includes a ceramic heater having a heat generating portion and an outer cylinder made of stainless steel (for example, SUS430) that holds one end side of the ceramic heater in a state where the heat generating portion protrudes to the outside.
  • one end side of the outer cylinder is inserted and fixed in a housing made of high carbon steel (for example, S45C) which is a fitting for mounting on the cylinder head of the engine.
  • the fixing of the outer cylinder to the housing is realized by abutting one end of the outer cylinder to the tip of the housing and laser welding the abutting portion (for example, refer to Patent Document 1).
  • the present invention has been made in view of the above problems, and a method for manufacturing a ceramic heater type glow plug and ceramics that can stably supply a filler metal to a laser welded portion and suppress the occurrence of cracks.
  • An object is to provide a heater type glow plug.
  • the present invention is a ceramic heater type comprising a ceramic heater and a metal outer cylinder that holds the ceramic heater at one end and is fixed by being inserted into a metal housing at the other end.
  • a method for manufacturing a glove lug wherein the housing has a first housing part and a second housing part that are coaxially arranged with each other, and the ceramic heater is inserted into the outer cylinder; With the annular filler material sandwiched between the first housing portion and the second housing portion, the outer cylinder is connected to the first housing portion, the second housing portion, and the filler material. And a step of joining the first housing part, the second housing part and the outer cylinder by welding at a position where the filler material is provided. And having a flop, a.
  • the filler material is formed of any one of nickel, a nickel alloy, and a manganese alloy.
  • the filler material is made of nickel and nickel plating is formed on the surfaces of the first housing portion and the second housing portion.
  • first housing part and the second housing part are made of carbon steel and the outer cylinder is made of stainless steel.
  • a metallized layer is formed on at least a part of the surface region held by the outer cylinder in the ceramic heater, and at least the metallized layer of the ceramic heater is It is preferable that the outer cylinder and the metallized layer are joined by press-fitting into the outer cylinder and heating.
  • the lead wire for energizing the ceramic heater and the ceramic heater are brazed simultaneously with the joining of the outer cylinder and the metallized layer.
  • the surface of the lead wire facing the caulking portion of the outer cylinder is knurled.
  • an antioxidant layer made of an oxidation-resistant material at a connection portion of the lead wire for energizing the ceramic heater with the ceramic heater.
  • the oxidation resistant material is preferably silver or nickel.
  • the present invention is a ceramic heater-type globe lug comprising a ceramic heater and a metal outer cylinder that holds the ceramic heater at one end and is fixed by being inserted into a metal housing at the other end.
  • An annular filler material is provided, and the first housing portion, the second housing portion, and the outer cylinder are joined by welding at a position where the filler material is provided.
  • the filler material is formed of any one of nickel, a nickel alloy, and a manganese alloy.
  • the filler material is preferably made of nickel, and nickel plating is preferably formed on the surfaces of the first housing part and the second housing part.
  • first housing part and the second housing part are made of carbon steel, and the outer cylinder is made of stainless steel.
  • a metallized layer is formed on at least a part of the surface region held by the outer cylinder in the ceramic heater, and the metallized layer is press-fitted into the outer cylinder and joined to the outer cylinder by heating. It is preferable.
  • a lead wire for energizing the ceramic heater is provided, and the lead wire is fixed to the outer cylinder by caulking the outer cylinder.
  • a heat resistant resin is provided on the surface of the lead wire facing the caulking portion of the outer cylinder.
  • the surface of the lead wire facing the caulking portion of the outer cylinder is knurled.
  • an oxidation prevention layer made of an oxidation resistant material is provided at a connection portion between the lead wire and the ceramic heater.
  • the oxidation resistant material is preferably silver or nickel.
  • the filler metal can be stably supplied to the laser welded portion, and the occurrence of cracks can be suppressed.
  • FIG. 1 It is a longitudinal cross-sectional view of the ceramic heater type glow plug concerning Embodiment 1 of this invention.
  • FIG. 1 it is the longitudinal cross-sectional view of the ceramic heater type glow plug which expanded the ceramic assembly vicinity. It is a figure explaining the manufacturing method of the ceramic heater type glow plug concerning Embodiment 1 of this invention. It is a longitudinal cross-sectional view of the ceramic heater type glow plug concerning Embodiment 2 of this invention.
  • FIG. 1 is a longitudinal sectional view of a ceramic heater glow plug 1 for a diesel engine according to Embodiment 1 of the present invention.
  • FIG. 2 is a longitudinal sectional view of a ceramic heater type glow plug in which the vicinity of the ceramic assembly in FIG. 1 is enlarged.
  • the glow plug 1 includes a ceramic heater assembly 10, a housing 14, a lead bar 16, and the like.
  • the cross section used below means a cut surface perpendicular to the longitudinal axis of the ceramic heater type glow plug 1.
  • the longitudinal section used below means a cut surface including the longitudinal axis of the ceramic heater type glow plug 1.
  • the ceramic heater assembly 10 includes a ceramic heater 11, a metal outer cylinder (sheath) 12, a large-diameter lead portion 13, and the like.
  • the ceramic heater 11 is a portion that is heated by energization, and a ceramic heating element 112 formed in a U shape is embedded in the ceramic heater 11 inside the ceramic insulating base 111 that constitutes the main body of the ceramic heater 11. .
  • a positive electrode 114 and a negative electrode 115 are provided on both ends of the ceramic heating element 112 via metal leads 113, respectively.
  • the negative electrode 115 is taken out on the outer peripheral surface of the ceramic insulating substrate 111, and a negative electrode side metallized portion 116 as a metallized layer is formed on the outer peripheral surface of the ceramic insulating substrate 111 including the negative electrode 115.
  • the negative electrode side metallized part 116 is formed of, for example, a silver paste containing 30% by weight or less of copper (Cu) and 10% by weight or less of titanium (Ti) with respect to the total weight of the negative electrode side metallized part 116. .
  • the outer cylinder 12 is formed from a conductive metal material, for example, stainless steel (SUS430).
  • the outer cylinder 12 is formed in a cylindrical shape with a stepped outer peripheral surface capable of deep drawing. Here, the reason that the outer cylinder 12 can be formed by deep drawing is to reduce the manufacturing cost.
  • the outer cylinder 12 has an inner diameter that is large enough to allow the ceramic heater 11 to be press-fitted.
  • the ceramic heater 11 When the ceramic heater 11 is press-fitted into the outer cylinder 12, the inner cylinder 123 of the outer cylinder 12 and the ceramic heater 11 It is formed so that there is almost no large gap between it and the outer peripheral surface 118. Specifically, the ceramic heater 11 and the outer cylinder 12 are joined by semi-melting the material forming the negative electrode side metallized part 116 in a state where the negative electrode side metallized part 116 of the ceramic heater 11 is press-fitted and fixed in the outer cylinder 12. This is performed by heating the ceramic heater 11 and the outer cylinder 12 at a temperature at which the state is reached, and transferring the substance between the solid layers of the outer cylinder 12 and the negative electrode side metallized portion 116.
  • the positive electrode 114 is taken out to the outer surface of the ceramic insulating substrate 111 on the rear end side opposite to the front end side where the ceramic heating element 112 is embedded.
  • a positive side metallized portion 117 is formed on the rear end surface of the ceramic insulating base 111 including the positive side electrode 114.
  • the positive side metallized portion 117 is joined to the tip surface 131 of the large diameter lead portion 13 by brazing or the like, and the positive side electrode 114 and the large diameter lead portion 13 are electrically connected.
  • a chamfered portion 111 a is formed on the rear end surface of the ceramic insulating base 111.
  • the distance between the ceramic insulating base 111 and the outer cylinder 12 can be increased around the joint between the ceramic insulating base 111 and the large-diameter lead portion 13. Therefore, in the case of brazing, the insulation between the brazing material and the outer cylinder 12 is enhanced, and the dielectric breakdown can be reduced.
  • the large-diameter lead portion 13 is formed, for example, as a lead rod (lead wire for energizing the ceramic heater) having a relatively large diameter and having a cross-sectional area of 20% or more of the cross-sectional area of the ceramic insulating base 111. Has been.
  • the cross-sectional area of the large-diameter lead portion 13 is preferably 40% or less of the cross-sectional area of the ceramic insulating base 111, for example. Further, the length of the large-diameter lead portion 13 is preferably set to be twice or more the diameter of the large-diameter lead portion 13.
  • the large-diameter lead portion 13 is made of a material having lower rigidity and higher electrical conductivity than the lead rod 16 (lead wire for energizing the ceramic heater) that functions as an external connection terminal. Examples of such a material include copper (Cu), aluminum (Al), and alloys thereof. Alternatively, an iron alloy or cast iron having low rigidity and high electrical conductivity can be used.
  • the distal end portion including the distal end surface 131 of the large-diameter lead portion 13 is coated with a silver paste as the antioxidant layer 135 in order to improve oxidation resistance.
  • the antioxidant layer 135 is not limited to silver paste, and may be baked with a material having oxidation resistance such as nickel.
  • the large diameter lead portion 13 may be subjected to nickel (Ni) plating or the like in order to improve heat resistance.
  • Ni nickel
  • the surface of the central portion in the axial direction of the large-diameter lead portion 13 is knurled over the entire circumference, and a heat resistant resin 136 is filled between the knurled portion 133 and the outer cylinder 12.
  • the heat resistant resin 136 it is preferable to use polyphenylene sulfide (PPS) resin, polyether ether ketone (PEEK) resin, or the like.
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketone
  • the outer cylinder 12 and the heat-resistant resin 136 are pressed against the knurled portion 133 of the large-diameter lead portion 13, and the large-diameter lead portion 13 can be fixed to the outer cylinder 12. That is, a knurled portion 133 is formed on the surface of the large-diameter lead portion 13 facing the caulked portion of the outer cylinder 12, and a heat resistant resin 136 is provided.
  • the housing 14 is a fitting for attaching to a cylinder head of an engine (not shown), and accommodates the outer cylinder 12 and the large-diameter lead portion 13.
  • the housing 14 is formed in, for example, a cylindrical shape, and the ceramic heater assembly 10 configured as described above is joined and fixed by laser welding. Specifically, the other end side of the outer cylinder 12 is fixed inside the housing 14 by laser welding.
  • the housing 14 includes a first housing portion 14a and a second housing portion 14b that are arranged coaxially with the ceramic heater assembly 10, and these are divided from each other. Since the 1st housing part 14a and the 2nd housing part 14b require high intensity
  • S45C carbon steel
  • a second housing part 14 b is provided at the tip of the first housing part 14 a, and the second housing part 14 b is disposed at a position closer to the ceramic heater assembly 10.
  • An annular filler 18 into which the outer cylinder 12 is inserted is provided between the first housing part 14a and the second housing part 14b.
  • the first housing portion 14a and the second housing portion 14b are joined to the outer tube 12 together with the filler material 18 by laser welding at a position where the filler material 18 is provided.
  • the filler material 18 is preferably made of nickel, nickel alloy, or manganese alloy. However, the filler material 18 is made of nickel, and the first housing portion 14a and the second housing portion 14b. By forming nickel plating on the surface, the surfaces of the housing 14 and the filler material 18 can be unified with nickel, which is also preferable from an aesthetic point of view.
  • the lead bar 16 is accommodated in the housing 14 and joined to the rear end portion of the large-diameter lead portion 13 by welding.
  • the lead rod 16 is held by the insulator 171 on the rear end side of the housing 14, and the rear end portion is exposed to the outside of the housing 14 and connected to the round pin 172. That is, the lead bar 16 is held and fixed to the outer cylinder 12 by caulking through the large-diameter lead portion 13 at the front end side, and is held and fixed to the insulator 171 at the rear end side.
  • FIG. 3 is a diagram for explaining a method of manufacturing a ceramic heater type glow plug according to an embodiment of the present invention.
  • the ceramic heater 11 and the outer cylinder 12 are prepared.
  • the negative electrode side metallized portion 116 is formed on the outer peripheral surface thereof.
  • the ceramic heater 11 is press-fitted into the inner hole 121 of the outer cylinder 12.
  • the ceramic heater 11 is press-fitted into the outer cylinder 12 to a position where at least the entire area of the negative side metallized portion 116 formed in the ceramic heater 11 is accommodated in the outer cylinder 12. To do.
  • the tip surface 131 of the large-diameter lead portion 13 subjected to knurling is placed on the positive side metallized portion 117 of the ceramic heater 11.
  • a brazing material 175 is placed between the positive electrode side metallized portion 117 and the large-diameter lead portion 13.
  • a heat resistant resin 136 is filled between the knurled portion 133 of the large diameter lead portion 13 and the inner peripheral surface of the outer cylinder 12.
  • the assembly is heated to 800 to 900 ° C. in a vacuum or an inert gas environment in a state where the outer cylinder 12, the ceramic heater 11, and the large-diameter lead portion 13 are temporarily assembled.
  • the temperature of 800 to 900 ° C. is a temperature at which the silver paste forming the negative electrode side metallized portion 116 is in a semi-molten state. Bonding by mass transfer between the solid surface of the peripheral surface and the negative electrode side metallized portion 116 is performed. Thereby, the outer cylinder 12 and the ceramic heater 11 are joined. Simultaneously with the joining, the ceramic heater 11 and the large-diameter lead portion 13 are brazed by the brazing material 175.
  • the outer cylinder 12 is caulked and the large-diameter lead portion 13 is fixed to the outer cylinder 12. Further, the lead rod 16 and the large-diameter lead portion 13 are joined and fixed by welding (for example, spot welding). In addition, by crimping the outer cylinder 12 with the end of the large-diameter lead 13 pressed against the end of the ceramic heater 11 with a predetermined force, the large-diameter lead 13 is fixed to the outer cylinder 12 and the thick A method of connecting the diameter lead portion 13 and the ceramic heater 11 may be used.
  • the annular filler 18 is sandwiched between the first housing portion 14a and the second housing portion 14b, and the second housing portion 14b side.
  • the lead rod 16 and the outer cylinder 12 are inserted in this order, and the outer cylinder 12 is inserted into the first housing portion 14 a, the second housing portion 14 b and the filler material 18.
  • the 1st housing part 14a, the 2nd housing part 14b, and the outer cylinder 12 are joined by laser welding in the position where the filler material 18 is provided.
  • the 1st housing part 14a, the 2nd housing part 14b, the outer cylinder 12, and the filler material 18 are joined integrally, and the outer cylinder 12 can be fixed to the housing 14.
  • the housing 14 is divided into the first housing portion 14a and the second housing portion 14b that are coaxially arranged, and the first housing portion 14a and the second housing portion 14b are separated from each other.
  • the outer cylinder 12 is inserted into the first housing portion 14a, the second housing portion 14b, and the filler material 18 with the annular filler material 18 sandwiched therebetween, and then the filler material 18 is provided.
  • the first housing part 14a, the second housing part 14b, the outer cylinder 12 and the outer cylinder 12 are joined by laser welding.
  • the additive 18 can be integrally joined and fixed.
  • the filler material 18 is interposed in the welded portion between the housing 14 and the outer cylinder 12, the carbon concentration of the welded portion is diluted, under the environment of rapid heating and cooling in a short time of laser welding. Moreover, generation
  • the melt material 18 excellent in corrosion resistance can be provided by forming the melt material 18 from any one of nickel, a nickel alloy, and a manganese alloy.
  • the surface of the housing 14 and the filler material 18 is unified with nickel by forming the filler material 18 from nickel and forming nickel plating on the surfaces of the first housing portion 14a and the second housing portion 14b. Can improve aesthetics.
  • the housing 14 is made of carbon steel and the outer cylinder 12 is made of stainless steel, the occurrence of cracks after welding can be suppressed by the intervention of the filler material 18.
  • the outer cylinder 12 can be fixed to the large-diameter lead portion 13 by caulking the outer cylinder 12, the large-diameter lead by filling a filler between the large-diameter lead portion 13 and the outer cylinder 12 or the like. There is no need to fix the portion 13. Further, since the large-diameter lead portion 13 can be fixed to the outer cylinder 12 by one operation of caulking, this process can be performed easily and in a short time.
  • the positive electrode side metallized portion 117 of the ceramic heater 11 is connected to the lead bar 16 using the large diameter lead portion 13, the resistance of the large diameter lead portion 13 can be reduced, and the configuration can be simplified. Further, even when a high temperature and a large current flow, self-heating is suppressed, and the temperature of the large-diameter lead portion 13 can be prevented from exceeding the heat resistance temperature. Therefore, deterioration due to oxidation of the large diameter lead portion 13 can be prevented over a long period of time. Further, by using the large-diameter lead portion 13, the form of the other constituent members can be simplified, and the manufacturing process can be simplified.
  • the large-diameter lead portion 13 is easily bent, and the joint portion between the large-diameter lead portion 13 and the positive side metallized portion 117 of the ceramic heater 11 is obtained.
  • the stress concentration on can be relaxed. Specifically, even when bending stress is generated in the joint due to vibration during driving of the engine or stress applied to the periphery of each joint during assembly of the glow plug 1, the large-diameter lead portion 13 is bent. Thus, concentration of bending stress on the joint can be avoided.
  • the large diameter lead part 13 consists of copper, copper alloy, aluminum, aluminum alloy, or cast iron, it can be set as the large diameter lead part 13 with comparatively low rigidity and high electrical conductivity. By increasing the electrical conductivity, the effect of suppressing self-heating by increasing the diameter of the lead wire can be further enhanced. Moreover, when the diameter of the large-diameter lead portion 13 is 1.0, the large-diameter lead portion 13 is sufficiently bent by setting the axial length of the large-diameter lead portion 13 to a value of 2.0 or more. It becomes possible.
  • the cross-sectional area of the ceramic heater 11 is 1.0
  • the cross-sectional area of the large-diameter lead portion 13 is set to a value within the range of 0.2 to 0.4.
  • the joint strength of the joint part with the joint part with the side metallized part 117 can be increased. Therefore, it is possible to obtain a bonding strength that can withstand vibrations that occur when used while being fixed to a vehicle engine or the like, and stress that is applied when the glow plug 1 is manufactured. Furthermore, electrical insulation between the large-diameter lead portion 13 and the outer cylinder 12 can be ensured.
  • the heat resistance of the large diameter lead portion 13 can be further increased. Further, by increasing the thermal conductivity of the large-diameter lead portion 13, the heat transmitted from the ceramic heater 11 can be efficiently transmitted to the lead rod 16, and the heat resistance of the large-diameter lead portion 13 is further increased. Can be increased. Moreover, the durability (particularly oxidation resistance) of the large-diameter lead portion 13 can be improved by covering the large-diameter lead portion 13 with silver (Ag).
  • FIG. 4 is a longitudinal sectional view of a ceramic heater type glow plug 2 according to Embodiment 2 of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the large lead portion 13 in the housing 14 is fixed as shown in FIG.
  • the large diameter lead portion 13 is not fixed to the outer cylinder 12, but is fixed to the lead rod 16 by fixing the lead rod 16 to the inner surface of the first housing portion 14 a.
  • the large-diameter lead portion 13 is also fixed in the first housing 14a.
  • the lead rod 16 is accommodated in the first housing portion 14a and fixed by a filler 173 and a seal ring 174 made of resin or low melting point glass filled between the first housing portion 14a. Has been.
  • the glow plug described above shows one aspect of the present invention and does not limit the present invention, and each embodiment can be arbitrarily changed within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Resistance Heating (AREA)

Abstract

 レーザ溶接部に溶加材を安定して供給し、クラックの発生を抑制すること。 セラミックスヒータ(11)と、一端でセラミックスヒータを保持すると共に他端が金属製のハウジング(14)内に挿入されて固定される金属製の外筒(12)とを備えるセラミックスヒータ型グローブラグ(1)の製造方法であって、ハウジングは、互いに同軸上に配置される第1のハウジング部(14a)と第2のハウジング部(14b)とを有し、セラミックスヒータを外筒内に挿入するステップと、第1のハウジング部と第2のハウジング部との間に環状の溶加材(18)を挟み込んだ状態で、外筒を第1のハウジング部、第2のハウジング部及び溶加材内に挿入するステップと、溶加材が設けられている位置で、第1のハウジング部、第2のハウジング部及び外筒を溶接により接合するステップと、を有する。

Description

セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
 本発明は、ディーゼルエンジンの始動補助用として使用されるセラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグに関する。
 ディーゼルエンジンの始動補助に使用されるセラミックスヒータ型グロープラグが知られている。セラミックスヒータ型グロープラグは、発熱部を有するセラミックスヒータと、発熱部を外部に突出させた状態でセラミックスヒータの一端側を保持するステンレス鋼(例えば、SUS430)製の外筒とを備えている。このようなグロープラグは、外筒の一端側がエンジンのシリンダヘッドへの取り付け金具である高炭素鋼(例えば、S45C)製のハウジング内に挿入されて固定されている。ハウジングへの外筒の固定は、ハウジングの先端部に外筒の一端を突き合わせ、突き合わせ部分をレーザ溶接することにより実現される(例えば、特許文献1参照)。
特開2008-8607号公報
 ところで、高炭素鋼とステンレス鋼とのレーザ溶接は、溶接部分及びその周辺が急冷固化されるので、硬度の高いマルテンサイトが生成され、クラックが生じやすくなる。クラックの発生を抑制するため、レーザ溶接時に外筒とハウジングとの間に溶加材を供給して溶接部分の炭素濃度を希釈する溶接方法が用いられている。
 しかしながら、ハウジングの直径は比較的小さく、ハウジング及び外筒を高速で回転させながらレーザ溶接を行うため、レーザ溶接部への溶加材の安定した供給が困難であった。
 そこで、本発明は、上記課題に鑑みてなされたものであり、レーザ溶接部に溶加材を安定して供給し、クラックの発生を抑制することができるセラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグを提供することを目的とする。
 上記課題を解決するため、本発明は、セラミックスヒータと、一端で前記セラミックスヒータを保持すると共に他端が金属製のハウジング内に挿入されて固定される金属製の外筒とを備えるセラミックスヒータ型グローブラグの製造方法であって、前記ハウジングは、互いに同軸上に配置される第1のハウジング部と第2のハウジング部とを有し、前記セラミックスヒータを前記外筒内に挿入するステップと、前記第1のハウジング部と前記第2のハウジング部との間に環状の溶加材を挟み込んだ状態で、前記外筒を前記第1のハウジング部、前記第2のハウジング部及び前記溶加材内に挿入するステップと、前記溶加材が設けられている位置で、前記第1のハウジング部、前記第2のハウジング部及び前記外筒を溶接により接合するステップと、を有することを特徴とする。
 また、前記溶加材を、ニッケル、ニッケル合金、マンガン合金のいずれかから形成することが好ましい。
 また、前記溶加材をニッケルから形成し、前記第1のハウジング部及び前記第2のハウジング部の表面にニッケルメッキを形成することが好ましい。
 また、前記第1のハウジング部及び前記第2のハウジング部を炭素鋼から形成し、前記外筒をステンレス鋼から形成することが好ましい。
 また、前記セラミックスヒータを前記外筒内に挿入する際に、前記セラミックスヒータにおける前記外筒に保持される少なくとも一部の表面領域にメタライズ層を形成し、前記セラミックスヒータの少なくとも前記メタライズ層を前記外筒に圧入し、圧入後、加熱によって前記外筒と前記メタライズ層とを接合することが好ましい。
 また、前記外筒と前記メタライズ層の接合と同時に、前記セラミックスヒータに通電するリード線と前記セラミックスヒータとをロウ付けすることが好ましい。
 また、前記リード線と前記セラミックスヒータとをロウ付けした後に、前記外筒をかしめて、前記リード線を前記外筒に固定することが好ましい。
 また、前記外筒のかしめ部分に対向する前記リード線の表面に耐熱樹脂を設けることが好ましい。
 また、前記外筒のかしめ部分に対向する前記リード線の表面にローレット加工を施すことが好ましい。
 また、前記セラミックスヒータに通電するリード線における前記セラミックスヒータとの接続部位に、耐酸化性材料による酸化防止層を形成することが好ましい。
 また、前記耐酸化性材料は、銀又はニッケルであることが好ましい。
 本発明は、セラミックスヒータと、一端で前記セラミックスヒータを保持すると共に他端が金属製のハウジングに挿入されて固定される金属製の外筒とを備えるセラミックスヒータ型グローブラグであって、前記ハウジングは、互いに同軸上に配置される第1のハウジング部と第2のハウジング部とを有し、前記第1のハウジング部と前記第2のハウジング部との間に、前記外筒が挿入される環状の溶加材が設けられており、前記溶加材が設けられている位置で、前記第1のハウジング部、前記第2のハウジング部及び前記外筒が溶接によって接合されていることを特徴とする。
 また、前記溶加材は、ニッケル、ニッケル合金、マンガン合金のいずれかから形成されていることが好ましい。
 また、前記溶加材は、ニッケルから形成されており、前記第1のハウジング部及び前記第2のハウジング部の表面には、ニッケルメッキが形成されていることが好ましい。
 また、前記第1のハウジング部及び前記第2のハウジング部は、炭素鋼から形成されており、前記外筒は、ステンレス鋼から形成されていることが好ましい。
 また、前記セラミックスヒータにおける前記外筒に保持される少なくとも一部の表面領域にはメタライズ層が形成されており、前記メタライズ層は、前記外筒に圧入されて、加熱によって前記外筒と接合されていることが好ましい。
 また、前記セラミックスヒータに通電するリード線を備え、前記リード線は、前記外筒がかしめられることによって前記外筒に固定されていることが好ましい。
 また、前記外筒のかしめ部分に対向する前記リード線の表面に耐熱樹脂が設けられていることが好ましい。
 また、前記外筒のかしめ部分に対向する前記リード線の表面にローレット加工が施されていることが好ましい。
 また、前記リード線と前記セラミックスヒータとの接続部位に、耐酸化性材料による酸化防止層が設けられていることが好ましい。
 また、前記耐酸化性材料は、銀又はニッケルであることが好ましい。
 本発明によれば、レーザ溶接部に溶加材を安定して供給し、クラックの発生を抑制することができる。
本発明の実施形態1にかかるセラミックスヒータ型グロープラグの縦断面図である。 図1において、セラミックスアセンブリ付近を拡大視したセラミックスヒータ型グロープラグの縦断面図である。 本発明の実施形態1にかかるセラミックスヒータ型グロープラグの製造方法を説明する図である。 本発明の実施形態2にかかるセラミックスヒータ型グロープラグの縦断面図である。
 本発明の好ましい実施形態について、図面を参照しながら説明する。なお、以下に示す実施形態は一つの例示であり、本発明の範囲において、種々の実施形態をとり得る。
[実施形態1]
 図1は、本発明の実施形態1にかかるディーゼルエンジン用のセラミックスヒータ型グロープラグ1の縦断面図である。図2は、図1において、セラミックスアセンブリ付近を拡大視したセラミックスヒータ型グロープラグの縦断面図である。図1、図2に示すように、グロープラグ1は、セラミックスヒータアセンブリ10と、ハウジング14と、リード棒16等を備えている。なお、以下で使用される横断面とは、セラミックスヒータ型グロープラグ1の長手方向の軸線に垂直な切断面を意味する。また、以下で使用される縦断面とは、セラミックスヒータ型グロープラグ1の長手方向の軸線を含む切断面を意味する。
<セラミックスヒータ型グロープラグの構成>
(セラミックスヒータ型アセンブリ)
 セラミックスヒータアセンブリ10は、セラミックスヒータ11と、金属製の外筒(シース)12と、太径リード部13等を備えている。
 セラミックスヒータ11は、通電により加熱される部位であり、セラミックスヒータ11には、その本体部を構成するセラミックス絶縁基体111の内部に、U字状に形成されたセラミックス発熱体112が埋設されている。このセラミックス発熱体112の両端側には、それぞれ金属リード113を介して正側電極114及び負側電極115が設けられている。負側電極115は、セラミックス絶縁基体111の外周面に取り出され、負側電極115を含むセラミックス絶縁基体111の外周面には、メタライズ層としての負極側メタライズ部116が形成されている。
 負極側メタライズ部116は、例えば、負極側メタライズ部116全体の重量に対して30重量%以下の銅(Cu)と、10重量%以下のチタン(Ti)を含有する銀ペーストから形成されている。
 セラミックスヒータ11のうち、少なくとも負極側メタライズ部116は、外筒12の一端側の内面に接合され、負側電極115は外筒12に電気的に接続されている。すなわち、外筒12は、導電性を有する金属材料、例えば、ステンレス鋼(SUS430)から形成されている。外筒12は、深絞り加工が可能な、外周面が段付きの円筒状に形成されている。ここで、外筒12を深絞り加工で形成できるような形状としているのは、製造コストを低減するためである。外筒12は、その内径がセラミックスヒータ11を圧入できる程度の大きさに形成されており、セラミックスヒータ11を外筒12に圧入した際に、外筒12の内周面123とセラミックスヒータ11の外周面118との間に大きな隙間がほとんどできないように形成されている。
 具体的に、セラミックスヒータ11と外筒12との接合は、外筒12内にセラミックスヒータ11の負極側メタライズ部116を圧入、固定した状態で、負極側メタライズ部116を形成する材料が半溶融状態となる温度で、セラミックスヒータ11及び外筒12を加熱して、外筒12と負極側メタライズ部116の固層間での物質移動によって行われる。
 正側電極114は、セラミックス発熱体112が埋設されている先端側とは反対の後端側においてセラミックス絶縁基体111の外面に取り出されている。正側電極114を含むセラミックス絶縁基体111の後端面には正極側メタライズ部117が形成されている。この正極側メタライズ部117はロウ付け等によって太径リード部13の先端面131に接合され、正側電極114と太径リード部13とが電気的に接続されている。
 ここで、セラミックス絶縁基体111の後端面には、面取加工部111aが形成されている。これによって、セラミックス絶縁基体111と太径リード部13の接合部の周囲において、セラミックス絶縁基体111と外筒12との距離を稼ぐことができる。したがって、ロウ付けする場合において、ロウ材と外筒12との絶縁性が高められ、絶縁破壊を低減することができるようになっている。
 グロープラグ1の作動時において、太径リード部13には高温かつ大きな電流(例えば4~30アンペア)が流れることから、太径リード部13の直径が例えば1mm未満のように小さすぎると、自己発熱も加わって、短時間で酸化するおそれがある。そのため、太径リード部13は、例えば、セラミックス絶縁基体111の横断面積の20%以上の横断面積を有する、比較的太い直径を有するリード棒(セラミックスヒータへの通電のためのリード線)として形成されている。
 一方で、太径リード部13の直径が大きすぎると、太径リード部13と外筒12との間の距離を十分に確保することができず、絶縁破壊を生じるおそれがある。よって、太径リード部13の横断面積は、例えば、セラミックス絶縁基体111の横断面積の40%以下であることが好ましい。また、太径リード部13の長さは、太径リード部13の直径の2倍以上の長さとすることが好ましい。
 太径リード部13は、外部接続端子として機能するリード棒16(セラミックスヒータへの通電のためのリード線)よりも剛性が低く、電気導電率が高い材料からなる。このような材料としては、例えば、銅(Cu)やアルミニウム(Al)、あるいはそれらの合金が挙げられる。あるいは、低剛性であり電気導電率が高い鉄合金や鋳鉄とすることもできる。
 太径リード部13の先端面131を含む先端部には、耐酸化性を向上させるために酸化防止層135としての銀ペーストが被覆されている。なお、酸化防止層135は、銀ペーストに限らず、ニッケル等の耐酸化性を有する材料を焼き付けてもよい。また、太径リード部13には、耐熱性を改善するためにニッケル(Ni)メッキ等を施してもよい。
 太径リード部13の軸線方向の中央部表面には、全周にわたってローレット加工が施されており、このローレット加工部133と外筒12との間には、耐熱樹脂136が充填されている。ここで、耐熱樹脂136としては、ポリフェニレンサルファイド(PPS)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂等を用いることが好ましい。
 耐熱樹脂136は、外筒12と共にかしめられており、外筒12が他の部分よりも縮径されている。外筒12をかしめることにより、外筒12及び耐熱樹脂136は、太径リード部13のローレット加工部133に押しつけられ、外筒12に太径リード部13を固定することができる。すなわち、外筒12のかしめ部分に対向する太径リード部13の表面には、ローレット加工部133が形成されるとともに、耐熱樹脂136が設けられている。
(ハウジング)
 ハウジング14は、図示しないエンジンのシリンダヘッドへの取付金具であり、外筒12や太径リード部13を収容するものである。ハウジング14は、例えば、円筒状に形成され、上記のように構成されるセラミックスヒータアセンブリ10が、レーザ溶接により接合されて固定されている。具体的には、ハウジング14の内部に外筒12の他端側がレーザ溶接により固定されている。
 ハウジング14は、互いにセラミックスヒータアセンブリ10と同軸上に配置される第1のハウジング部14a及び第2のハウジング部14bを備えており、これらは互いに分割されている。第1のハウジング部14a及び第2のハウジング部14bは、高い強度が要求されるため、例えば、炭素含有量の多い炭素鋼(S45C)から形成されている。
 第1のハウジング部14aの先端部に第2のハウジング部14bが設けられており、第2のハウジング部14bは、セラミックスヒータアセンブリ10により近い位置に配置されている。第1のハウジング部14aと第2のハウジング部14bとの間には、外筒12が挿入される環状の溶加材(フイラー)18が設けられている。第1のハウジング部14a及び第2のハウジング部14bは、溶加材18が設けられている位置で、溶加材18と共に外筒12とレーザ溶接によって接合されている。
 溶加材18は、ニッケル、ニッケル合金、マンガン合金のいずれかから形成されていることが好ましいが、溶加材18は、ニッケルから形成し、第1のハウジング部14a及び第2のハウジング部14bの表面に、ニッケルメッキを形成することにより、ハウジング14と溶加材18の表面をニッケルで統一することができるので、美観上も好ましい。
(リード棒)
 リード棒16は、ハウジング14内に収容され、太径リード部13の後端部に溶接によって接合されている。
 リード棒16は、ハウジング14の後端側でインシュレータ171に保持されるとともに、その後端部はハウジング14外部に露出して、ラウンドピン172と接続されている。
 すなわち、リード棒16は、その先端側で太径リード部13を介して外筒12にかしめによって保持、固定されており、後端側でインシュレータ171に保持、固定されている。
<セラミックスヒータ型グロープラグの製造方法>
 図3に基づいて、セラミックスヒータ型グロープラグ1の製造方法について説明する。
 図3は、本発明の実施形態にかかるセラミックスヒータ型グロープラグの製造方法を説明する図である。
 最初に、セラミックスヒータ11と外筒12を準備する。ここで、セラミックスヒータ11の一端(組み立てた際の後端側)近傍には、その外周面に負極側メタライズ部116を形成する。
 次に、図3(a)に示すように、外筒12の内部孔121内にセラミックスヒータ11を圧入する。圧入に際しては、図3(b)に示すように、少なくともセラミックスヒータ11に形成された負極側メタライズ部116の全域が外筒12内に収容される位置までセラミックスヒータ11を外筒12内に圧入する。
 次に、図3(b)に示すように、ローレット加工を施した太径リード部13の先端面131を、セラミックスヒータ11の正極側メタライズ部117上に置く。その際、正極側メタライズ部117と太径リード部13との間には、ロウ材175を置く。また、太径リード部13のローレット加工部133と外筒12の内周面との間に耐熱樹脂136を充填する。
 その後、外筒12、セラミックスヒータ11、太径リード部13を仮組みした状態で、このアッセンブリを真空又は不活性ガスの環境下で800~900℃まで加熱する。ここで、800~900℃という温度は、負極側メタライズ部116を形成する銀ペーストが半溶融状態となる温度であるため、加熱により負極側メタライズ部116は半溶融状態となり、外筒12の内周面と負極側メタライズ部116の固層間での物質移動による接合が行われる。これによって、外筒12とセラミックスヒータ11とが接合される。この接合と同時に、セラミックスヒータ11と太径リード部13とが、ロウ材175によってロウ付けされる。
 次に、図3(c)に示すように、外筒12をかしめて外筒12に太径リード部13を固定する。また、リード棒16と太径リード部13とを溶接(例えばスポット溶接)よって接合し、固定する。
 なお、太径リード部13の端部をセラミックスヒータ11の端部に所定の力で押しつけた状態で外筒12をかしめることにより、太径リード部13を外筒12に固定するとともに、太径リード部13とセラミックスヒータ11とを接続するような方法を用いてもよい。
 次に、図3(d)に示すように、第1のハウジング部14aと第2のハウジング部14bとの間に環状の溶加材18を挟み込んだ状態で、第2のハウジング部14b側からリード棒16、外筒12の順に挿通していき、外筒12を第1のハウジング部14a、第2のハウジング部14b及び溶加材18内に挿入する。
 その後、溶加材18が設けられている位置で、第1のハウジング部14a、第2のハウジング部14b及び外筒12をレーザ溶接により接合する。これにより、第1のハウジング部14a、第2のハウジング部14b、外筒12及び溶加材18が一体に接合され、ハウジング14に外筒12を固定することができる。
 最後に、図3(e)に示すように、ハウジング14の内部孔143の後端を、インシュレータ171によって塞ぎ、リード棒16の後端部にラウンドピン172を接続する。この際、インシュレータ171とハウジング14との間にはOリング177を設ける。
 以上の工程をもって、セラミックスヒータ型グロープラグ1が完成する。
<効果>
 上述した構成によれば、ハウジング14を互いに同軸上に配置される第1のハウジング部14aと第2のハウジング部14bとに分割し、第1のハウジング部14aと第2のハウジング部14bとの間に環状の溶加材18を挟み込んだ状態で、外筒12を第1のハウジング部14a、第2のハウジング部14b及び溶加材18内に挿入し、その後、溶加材18が設けられている位置で、第1のハウジング部14a、第2のハウジング部14b及び外筒12をレーザ溶接により接合することで、第1のハウジング部14a、第2のハウジング部14b、外筒12及び溶加材18を一体に接合して固定することができる。
 ここで、溶加材18は、ハウジング14と外筒12との溶接部に介在しているので、溶接部の炭素濃度を希釈して、レーザ溶接の短時間における急速加熱、冷却の環境下においても、溶接部のクラックの発生を抑制することができる。また、レーザ溶接の際には、ハウジング14及び外筒12を回転させるが、溶加材18は、外筒12の外周に環状に配置されているので、レーザ溶接部には常に溶加材18が存在することとなり、レーザ溶接部に溶加材18を安定して供給することができる。
 また、溶加材18をニッケル、ニッケル合金、マンガン合金のいずれかから形成することにより、耐食性に優れた溶加材18を提供できる。
 また、溶加材18をニッケルから形成し、第1のハウジング部14a及び第2のハウジング部14bの表面にニッケルメッキを形成することにより、ハウジング14及び溶加材18の表面をニッケルで統一することができるので、美観を向上することができる。
 また、ハウジング14を炭素鋼から形成し、外筒12をステンレス鋼から形成しているような場合においても、溶加材18の介在により、溶接後のクラックの発生を抑制することができる。
 また、外筒12をかしめることによって太径リード部13に外筒12を固定することができるので、太径リード部13と外筒12との間に充填剤を充填する等による太径リード部13の固定を行う必要がない。また、かしめるという一つの作業で太径リード部13を外筒12に固定することができるので、この工程を簡易に短時間で行うことができる。
 また、太径リード部13を用いてセラミックスヒータ11の正極側メタライズ部117をリード棒16に接続しているので、太径リード部13の抵抗を低減させることができ、構成を簡素化できる。また、高温かつ大きな電流が流れた場合であっても自己発熱が抑えられ、太径リード部13の温度がその耐熱温度以上になることを防ぐことができる。よって、太径リード部13の酸化による劣化を、長期間に亘って防ぐことができる。また、太径リード部13を用いることで、他の構成部材の形態も簡素なものとすることができ、製造工程をも簡素化することができる。
 また、太径リード部13の剛性をリード棒16よりも低くすることにより、太径リード部13が撓みやすくなって、太径リード部13とセラミックスヒータ11の正極側メタライズ部117との接合部への応力集中を緩和することができる。具体的には、エンジン駆動時の振動や、グロープラグ1の組み立て時に各接合部周辺に印加される応力によって当該接合部に曲げ応力が生じた場合であっても、太径リード部13が撓んで当該接合部への曲げ応力の集中を避けることができる。
 また、太径リード部13が銅、銅合金、アルミニウム、アルミニウム合金、又は鋳鉄からなることにより、比較的剛性が低く、電気導電率の高い太径リード部13とすることができる。電気導電率を高くすることにより、リード線の太径化による自己発熱抑制の効果をさらに高めることができる。
 また、太径リード部13の直径を1.0としたときに、太径リード部13の軸方向長さを2.0以上の値とすることにより、太径リード部13を十分に撓ませることが可能になる。よって、エンジン駆動時の振動や、グロープラグ1の組み立て時に各接合部周辺に印加される応力によって当該接合部に曲げ応力が生じた場合であっても、太径リード部13が撓んで当該接合部への曲げ応力の集中を避けることができる。
 また、セラミックスヒータ11の横断面積を1.0としたときに、太径リード部13の横断面積を0.2~0.4の範囲内の値とすることにより、太径リード部13と正極側メタライズ部117との接合部との接合部の接合強度を高めることができる。よって、車両のエンジン等に固定されて使用される場合に発生する振動や、グロープラグ1製造時に付加される応力等にも耐え得る接合強度を得ることができる。さらに、太径リード部13と外筒12との電気絶縁性を確保することができる。
 また、太径リード部13にニッケル(Ni)メッキ等を施すことにより、太径リード部13の耐熱性をより高めることができる。また、太径リード部13の熱伝導率をより高くすることで、セラミックヒータ11から伝達される熱を効率的にリード棒16に伝達させることができ、太径リード部13の耐熱性をさらに高めることができる。
 また、太径リード部13を銀(Ag)により被覆することで、太径リード部13の耐久性(特に耐酸化性)を向上させることができる。
 また、太径リード部13に酸化防止層135として銀ペーストを設けることで、太径リード部13の先端に可撓性が付与され、正極側メタライズ部117との接触面積が増加し、結果として接触抵抗を軽減できる。
[実施形態2]
 図4は、本発明の実施形態2にかかるセラミックスヒータ型グロープラグ2の縦断面図である。なお、図4において、実施形態1と同じ構成には同一符号を付して説明を省略する。
 実施形態3は、ハウジング14内における太径リード部13の固定を、図4に示すような構成にしたものである。
 セラミックスヒータ型グロープラグ2においては、太径リード部13を外筒12に固定するのではなく、リード棒16を第1のハウジング部14aの内面に固定することにより、リード棒16に接合されている太径リード部13も第1のハウジング14a内に固定するものである。
 具体的に、リード棒16は、第1のハウジング部14a内に収容され、第1のハウジング部14aとの間に充填された樹脂又は低融点ガラス等からなる充填剤173及びシールリング174によって固定されている。
 このような構成においては、充填剤173及びシールリング174を設ける必要があるものの、外筒12をかしめる必要がないため、外筒12と太径リード部13との間に耐熱樹脂136を充填する必要がない。また、太径リード部13にローレット加工部133も形成する必要がない。
 以上説明したグロープラグは、本発明の一態様を示すものであってこの発明を限定するものではなく、それぞれの実施形態は本発明の範囲内で任意に変更することが可能である。

Claims (21)

  1.  セラミックスヒータと、一端で前記セラミックスヒータを保持すると共に他端が金属製のハウジング内に挿入されて固定される金属製の外筒とを備えるセラミックスヒータ型グローブラグの製造方法であって、
     前記ハウジングは、互いに同軸上に配置される第1のハウジング部と第2のハウジング部とを有し、
     前記セラミックスヒータを前記外筒内に挿入するステップと、
     前記第1のハウジング部と前記第2のハウジング部との間に環状の溶加材を挟み込んだ状態で、前記外筒を前記第1のハウジング部、前記第2のハウジング部及び前記溶加材内に挿入するステップと、
     前記溶加材が設けられている位置で、前記第1のハウジング部、前記第2のハウジング部及び前記外筒を溶接により接合するステップと、
     を有することを特徴とするセラミックスヒータ型グロープラグの製造方法。
  2.  前記溶加材を、ニッケル、ニッケル合金、マンガン合金のいずれかから形成することを特徴とする請求項1に記載のセラミックスヒータ型グロープラグの製造方法。
  3.  前記溶加材をニッケルから形成し、
     前記第1のハウジング部及び前記第2のハウジング部の表面にニッケルメッキを形成することを特徴とする請求項2に記載のセラミックスヒータ型グロープラグの製造方法。
  4.  前記第1のハウジング部及び前記第2のハウジング部を炭素鋼から形成し、
     前記外筒をステンレス鋼から形成することを特徴とする請求項1から3までのいずれか一項に記載のセラミックスヒータ型グロープラグの製造方法。
  5.  前記セラミックスヒータを前記外筒内に挿入する際に、
     前記セラミックスヒータにおける前記外筒に保持される少なくとも一部の表面領域にメタライズ層を形成し、
     前記セラミックスヒータの少なくとも前記メタライズ層を前記外筒に圧入し、
     圧入後、加熱によって前記外筒と前記メタライズ層とを接合することを特徴とする請求項1から4までのいずれか一項に記載のセラミックスヒータ型グロープラグの製造方法。
  6.  前記外筒と前記メタライズ層の接合と同時に、前記セラミックスヒータに通電するリード線と前記セラミックスヒータとをロウ付けすることを特徴とする請求項5に記載のセラミックスヒータ型グロープラグの製造方法。
  7.  前記リード線と前記セラミックスヒータとをロウ付けした後に、前記外筒をかしめて、前記リード線を前記外筒に固定することを特徴とする請求項6に記載のセラミックスヒータ型グロープラグの製造方法。
  8.  前記外筒のかしめ部分に対向する前記リード線の表面に耐熱樹脂を設けることを特徴とする請求項7に記載のセラミックスヒータ型グロープラグの製造方法。
  9.  前記外筒のかしめ部分に対向する前記リード線の表面にローレット加工を施すことを特徴とする請求項7又は8に記載のセラミックスヒータ型グロープラグの製造方法。
  10.  前記セラミックスヒータに通電するリード線における前記セラミックスヒータとの接続部位に、耐酸化性材料による酸化防止層を形成することを特徴とする請求項6から9までのいずれか一項に記載のセラミックスヒータ型グロープラグの製造方法。
  11.  前記耐酸化性材料は、銀又はニッケルであることを特徴とする請求項10に記載のセラミックスヒータ型グロープラグの製造方法。
  12.  セラミックスヒータと、一端で前記セラミックスヒータを保持すると共に他端が金属製のハウジングに挿入されて固定される金属製の外筒とを備えるセラミックスヒータ型グローブラグであって、
     前記ハウジングは、互いに同軸上に配置される第1のハウジング部と第2のハウジング部とを有し、
     前記第1のハウジング部と前記第2のハウジング部との間に、前記外筒が挿入される環状の溶加材が設けられており、
     前記溶加材が設けられている位置で、前記第1のハウジング部、前記第2のハウジング部及び前記外筒が溶接によって接合されていることを特徴とするセラミックスヒータ型グローブラグ。
  13.  前記溶加材は、ニッケル、ニッケル合金、マンガン合金のいずれかから形成されていることを特徴とする請求項12に記載のセラミックスヒータ型グロープラグ。
  14.  前記溶加材は、ニッケルから形成されており、
     前記第1のハウジング部及び前記第2のハウジング部の表面には、ニッケルメッキが形成されていることを特徴とする請求項13に記載のセラミックスヒータ型グロープラグ。
  15.  前記第1のハウジング部及び前記第2のハウジング部は、炭素鋼から形成されており、
     前記外筒は、ステンレス鋼から形成されていることを特徴とする請求項12から14までのいずれか一項に記載のセラミックスヒータ型グロープラグ。
  16.  前記セラミックスヒータにおける前記外筒に保持される少なくとも一部の表面領域にはメタライズ層が形成されており、
     前記メタライズ層は、前記外筒に圧入されて、加熱によって前記外筒と接合されていることを特徴とする請求項12から15までのいずれか一項に記載のセラミックスヒータ型グロープラグ。
  17.  前記セラミックスヒータに通電するリード線を備え、
     前記リード線は、前記外筒がかしめられることによって前記外筒に固定されていることを特徴とする請求項12から16までのいずれか一項に記載のセラミックスヒータ型グロープラグ。
  18.  前記外筒のかしめ部分に対向する前記リード線の表面に耐熱樹脂が設けられていることを特徴とする請求項17に記載のセラミックスヒータ型グロープラグ。
  19.  前記外筒のかしめ部分に対向する前記リード線の表面にローレット加工が施されていることを特徴とする請求項17又は18に記載のセラミックスヒータ型グロープラグ。
  20.  前記リード線と前記セラミックスヒータとの接続部位に、耐酸化性材料による酸化防止層が設けられていることを特徴とする請求項17から19までのいずれか一項に記載のセラミックスヒータ型グロープラグ。
  21.  前記耐酸化性材料は、銀又はニッケルであることを特徴とする請求項20に記載のセラミックスヒータ型グロープラグ。
PCT/JP2015/078602 2014-11-21 2015-10-08 セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ WO2016080105A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/528,315 US20170321899A1 (en) 2014-11-21 2015-10-08 Method for manufacturing ceramic heater-type glow plug, and ceramic heater-type glow plug
EP15860789.5A EP3222916A4 (en) 2014-11-21 2015-10-08 Method for manufacturing ceramic heater-type glow plug and ceramic heater-type glow plug
JP2016560110A JP6245716B2 (ja) 2014-11-21 2015-10-08 セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014236137 2014-11-21
JP2014-236137 2014-11-21

Publications (1)

Publication Number Publication Date
WO2016080105A1 true WO2016080105A1 (ja) 2016-05-26

Family

ID=56013663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078602 WO2016080105A1 (ja) 2014-11-21 2015-10-08 セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ

Country Status (4)

Country Link
US (1) US20170321899A1 (ja)
EP (1) EP3222916A4 (ja)
JP (1) JP6245716B2 (ja)
WO (1) WO2016080105A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124367A (ja) * 2018-01-11 2019-07-25 株式会社デンソー グロープラグ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10514017B2 (en) 2017-03-21 2019-12-24 Pratt & Whitney Canada Corp. Internal combustion engine with igniter cooling sleeve
CN113635012B (zh) * 2021-08-19 2023-01-24 珠海格力智能装备有限公司 装配设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114622A (ja) * 1987-10-28 1989-05-08 Kyocera Corp 自己制御型セラミックグロープラグ
JP2009257733A (ja) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd グロープラグ
WO2010134320A1 (ja) * 2009-05-18 2010-11-25 シチズンファインテックミヨタ株式会社 燃焼圧センサ及び燃焼圧センサ付グロープラグ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177782A (ja) * 2005-11-30 2007-07-12 Ngk Spark Plug Co Ltd 燃焼圧力センサ付きグロープラグ
DE102005061879A1 (de) * 2005-12-23 2007-07-05 Robert Bosch Gmbh Glühstiftkerze
JP2007247994A (ja) * 2006-03-17 2007-09-27 Ngk Spark Plug Co Ltd セラミックグロープラグおよびセラミックグロープラグの製造方法
JP4968786B2 (ja) * 2006-05-31 2012-07-04 日本特殊陶業株式会社 グロープラグおよびその製造方法
JP2009243709A (ja) * 2008-03-28 2009-10-22 Ngk Spark Plug Co Ltd グロープラグおよびグロープラグの製造方法
JP5425558B2 (ja) * 2009-08-11 2014-02-26 日本特殊陶業株式会社 グロープラグ用ハウジング及びグロープラグ
US8893545B2 (en) * 2011-02-25 2014-11-25 Ngk Spark Plug Co., Ltd. Glow plug with combustion pressure sensor
JP5838033B2 (ja) * 2011-02-25 2015-12-24 日本特殊陶業株式会社 燃焼圧力センサ付きグロープラグ
JP5525106B2 (ja) * 2012-03-12 2014-06-18 日本特殊陶業株式会社 セラミックグロープラグ
EP2884180B1 (en) * 2012-08-09 2016-12-21 Bosch Corporation Pressure sensor type glow plug
JPWO2015146554A1 (ja) * 2014-03-27 2017-04-13 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JP6265570B2 (ja) * 2014-04-24 2018-01-24 ボッシュ株式会社 セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114622A (ja) * 1987-10-28 1989-05-08 Kyocera Corp 自己制御型セラミックグロープラグ
JP2009257733A (ja) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd グロープラグ
WO2010134320A1 (ja) * 2009-05-18 2010-11-25 シチズンファインテックミヨタ株式会社 燃焼圧センサ及び燃焼圧センサ付グロープラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3222916A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124367A (ja) * 2018-01-11 2019-07-25 株式会社デンソー グロープラグ

Also Published As

Publication number Publication date
JPWO2016080105A1 (ja) 2017-06-29
EP3222916A1 (en) 2017-09-27
JP6245716B2 (ja) 2017-12-13
US20170321899A1 (en) 2017-11-09
EP3222916A4 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6265570B2 (ja) セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
JP6245716B2 (ja) セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
JP4870640B2 (ja) グロープラグおよびその製造方法
JP2012506988A (ja) 改良されたシールを備えたグロープラグ、そのためのヒータプローブアセンブリおよびその構築方法
JP6005175B2 (ja) セラミックスヒータ型グロープラグ及びその製造方法
JP2011069550A (ja) グロープラグ及びその製造方法
WO2002033149A1 (en) Ceramic heater type glow plug and method of manufacturing the glow plug
JP6270185B2 (ja) セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
WO2015146554A1 (ja) セラミックスヒータ型グロープラグ
JP4309757B2 (ja) セラミックヒーター
US10113744B2 (en) Ceramic heater-type glow plug
JP6456278B2 (ja) スパークプラグ
JP6665495B2 (ja) セラミックヒータ
JP2004327424A (ja) ヒータ
JP6746453B2 (ja) グロープラグ
JP2011017504A (ja) グロープラグ
JP6720039B2 (ja) グロープラグ
WO2014073267A1 (ja) セラミックスヒータ型グロープラグ
JP2002158082A (ja) セラミックヒーター装置
JP6532779B2 (ja) セラミックヒータ及びセンサ
JPH07253213A (ja) セラミックヒータ素子、セラミックヒータ及びセラミックグロープラグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560110

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015860789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015860789

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15528315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE