WO2016078239A1 - 垂直配向型液晶显示器 - Google Patents

垂直配向型液晶显示器 Download PDF

Info

Publication number
WO2016078239A1
WO2016078239A1 PCT/CN2015/072502 CN2015072502W WO2016078239A1 WO 2016078239 A1 WO2016078239 A1 WO 2016078239A1 CN 2015072502 W CN2015072502 W CN 2015072502W WO 2016078239 A1 WO2016078239 A1 WO 2016078239A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
substrate
pixel electrode
disposed
Prior art date
Application number
PCT/CN2015/072502
Other languages
English (en)
French (fr)
Inventor
李泳锐
钟新辉
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/423,691 priority Critical patent/US20160341991A1/en
Publication of WO2016078239A1 publication Critical patent/WO2016078239A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133703Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a vertical alignment type liquid crystal display.
  • Liquid Crystal Display has many advantages such as thin body, power saving, no radiation, etc., and has been widely used, such as mobile phones, personal digital assistants (PDAs), digital cameras, computer screens or laptop screens. Wait.
  • PDAs personal digital assistants
  • LCD Liquid Crystal Display
  • TFT-LCDs thin film transistor liquid crystal displays
  • TFT-LCDs can be divided into three categories, namely, twisted nematic/super twisted nematic (TN/STN) type, planar conversion (IPS) type, and Vertical alignment (VA) type.
  • TN/STN twisted nematic/super twisted nematic
  • IPS planar conversion
  • VA Vertical alignment
  • the VA type liquid crystal display has a very high contrast ratio compared with other types of liquid crystal displays, generally reaching 4000-8000, and has a very wide application in large-size display, such as television.
  • VA type liquid crystal display has extremely high contrast is because liquid crystal molecules are arranged perpendicular to the surface of the substrate in the uncharged dark state, no phase difference is generated, the light leakage is extremely low, the dark state brightness is small, and the dark state brightness is lower. , the higher the contrast.
  • FIG. 1 in order to enable liquid crystal molecules in a VA liquid crystal display to be aligned perpendicular to the surface of the substrate, vertical alignment processing of the liquid crystal molecules 300 is required.
  • the most common practice is to specify the inner surfaces of the upper substrate 100 and the lower substrate 200.
  • the region is coated with a vertical alignment agent, and the alignment agent generally contains a large amount of chemical solvent N-methylpyrrolidone (NMP) and a polymer material polyimide (PI), and then the substrate is at a high temperature (generally 200 degrees Celsius or higher).
  • NMP chemical solvent N-methylpyrrolidone
  • PI polymer material polyimide
  • multi-domain VA (MVA) is usually adopted, that is, one sub-pixel is divided into a plurality of regions, and the liquid crystal in each region is applied. The voltages are then undone in different directions, so that the effects seen in each direction tend to average.
  • MVA multi-domain VA
  • ITO Indium Tin Oxide
  • FIG. 2 is a top plan view of a side of a lower substrate 200 of an MVA type liquid crystal display, wherein 210 and 220 are scan lines and data lines, respectively.
  • FIG. 3 is a schematic cross-sectional view of the MVA liquid crystal display, wherein 700 is a passivation layer of silicon nitride (SiNx) material.
  • the MVA type liquid crystal display has The process is simple, the contrast is high, the aperture ratio is high, and the response time is fast.
  • the alignment agent contains a large amount of NMP solvent, the process of forming the alignment layer is a high energy consumption, extremely environmentally friendly, and easy to be applied to the human body.
  • auxiliary alignment agent dissolves directly in the liquid crystal without using other solvents, and is used together with the liquid crystal, eliminating the coating device of the original alignment agent and the high-temperature baking equipment, and is more clean, environmentally friendly and energy-saving because no additional solvent is needed.
  • the mechanism of action of the auxiliary alignment agent is that one end of the auxiliary alignment agent molecule 301 has a special affinity with the inorganic material on the surface of the substrate, such as silicon nitride constituting the passivation layer 700 and ITO constituting the pixel electrode 800, and can be adsorbed on the surface of the substrate to assist
  • the other end of the alignment agent molecule 301 has a strong force with the liquid crystal molecules 300, thereby guiding the liquid crystal molecules 300 to be aligned perpendicular to the surface of the substrate, eventually achieving the effect as shown in FIG.
  • the ITO pixel electrode 800 Since the ITO pixel electrode 800 has a "m-shaped" slit pattern, the portion where the pixel electrode is located is covered by the ITO pixel electrode 800, and the portion where the ITO pixel electrode 800 is absent, the surface is the passivation layer 700, that is, SiNx.
  • the PI alignment layer when the alignment is adsorbed on the surface of the substrate by the auxiliary alignment agent, the difference between the ITO and the SiNx on the surface of the substrate causes a difference in the force between the auxiliary alignment agent and the substrate surface, resulting in poor alignment and easy application of voltage. Causes dark or bright line defects.
  • the object of the present invention is to provide a vertical alignment type liquid crystal display, which can improve the liquid crystal display of the vertical alignment of liquid crystal molecules by using an auxiliary alignment agent, and can solve the difference of alignment force and bright dark line caused by patterning of pixel electrodes. Show defect issues.
  • the present invention provides a vertical alignment type liquid crystal display, comprising a CF substrate, a TFT substrate disposed opposite to the CF substrate, and a liquid crystal layer disposed between the CF substrate and the TFT substrate;
  • the TFT substrate includes a glass substrate, a gate electrode and a scan line disposed on the glass substrate, a gate insulating layer covering the gate and the scan line on the glass substrate, an active layer disposed on the gate insulating layer above the gate, and a source disposed on the active layer and the gate insulating layer And a drain, a data line disposed on the gate insulating layer, a passivation layer disposed on the gate insulating layer covering the source/drain and the data line, and a pattern disposed on the passivation layer a pixel electrode; the pixel electrode is in contact with the source/drain via the passivation layer via;
  • auxiliary alignment agent is dissolved in the liquid crystal layer, and the auxiliary alignment agent vertically aligns liquid crystal molecules on a surface of the TFT substrate;
  • the passivation layer includes at least one layer, wherein the contact layer with the pixel electrode is an oxide layer whose surface characteristics are close to the pixel electrode, thereby making the force of the auxiliary alignment agent and the surface of the TFT substrate uniform.
  • the oxide layer whose surface characteristics are close to the pixel electrode is a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer.
  • the passivation layer is a two-layer or three-layer structure, including an uppermost layer and other layers, the uppermost layer is a contact layer with the pixel electrode; the other layer is a silicon nitride layer, a silicon dioxide layer, One or two of an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer.
  • the passivation layer is a single layer structure, and the passivation layer of the single layer is a contact layer with the pixel electrode.
  • the passivation layer is formed by a chemical vapor deposition method.
  • the present invention also provides a vertical alignment type liquid crystal display, comprising a CF substrate, a TFT substrate disposed opposite to the CF substrate, and a liquid crystal layer disposed between the CF substrate and the TFT substrate;
  • the TFT substrate includes a glass substrate, a gate electrode and a scan line disposed on the glass substrate, a gate insulating layer covering the gate electrode and the scan line on the glass substrate, and a gate electrode disposed above the gate electrode
  • An active layer on the insulating layer, a source/drain provided on the active layer and the gate insulating layer, a data line disposed on the gate insulating layer, and a cover source disposed on the gate insulating layer a passivation layer of the drain/data line, a patterned pixel electrode disposed on the passivation layer, and a planar layer covering the pixel electrode and the passivation layer; the pixel electrode via the passivation layer via Contact with source/drain;
  • auxiliary alignment agent is dissolved in the liquid crystal layer, and the auxiliary alignment agent vertically aligns liquid crystal molecules on a surface of the TFT substrate;
  • the flat layer uniformizes the surface characteristics of the TFT substrate, thereby making the force of the auxiliary alignment agent and the surface of the TFT substrate uniform.
  • the flat layer is a silicon nitride layer, a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer.
  • the flat layer has a thickness of 50 nm to 1000 nm.
  • the flat layer is formed by a chemical vapor deposition method.
  • a vertical alignment type liquid crystal display provided by the present invention
  • Some liquid crystal displays using an auxiliary alignment agent for vertical alignment of liquid crystal molecules are improved by providing a contact layer of a passivation layer and a pixel electrode as an oxide layer having surface characteristics close to a pixel electrode; or by providing a pixel electrode covering
  • the flat layer makes the force of the auxiliary alignment agent dissolved in the liquid crystal layer and the surface of the TFT substrate uniform, and can solve the problem of the alignment force difference and the bright dark line display defect caused by the patterning of the pixel electrode.
  • FIG. 1 is a schematic cross-sectional view showing a conventional vertical alignment type liquid crystal display using an alignment layer
  • FIG. 2 is a top plan view showing a side of a lower substrate of an existing MVA type liquid crystal display using an alignment layer;
  • FIG. 3 is a schematic cross-sectional view showing a conventional MVA type liquid crystal display using an alignment layer
  • FIG. 4 is a schematic cross-sectional view showing a conventional vertical alignment type liquid crystal display using an auxiliary alignment agent
  • FIG. 5 is a cross-sectional view showing a first embodiment of a first embodiment of a vertical alignment type liquid crystal display of the present invention
  • Figure 6 is a cross-sectional view showing a second embodiment of the first embodiment of the vertical alignment type liquid crystal display of the present invention.
  • FIG. 7 is a top plan view showing a side of a TFT substrate of a first embodiment of a vertical alignment type liquid crystal display according to the present invention.
  • Figure 8 is a cross-sectional view showing a second embodiment of a vertical alignment type liquid crystal display of the present invention.
  • FIG. 9 is a top plan view showing a side of a TFT substrate of a second embodiment of the vertical alignment type liquid crystal display of the present invention.
  • the vertical alignment type liquid crystal display includes a CF substrate 1, a TFT substrate 2 disposed opposite to the CF substrate 1, and a liquid crystal layer 3 provided between the CF substrate 1 and the TFT substrate 2.
  • the auxiliary alignment agent 31 is dissolved in the liquid crystal layer 3.
  • One end of the auxiliary alignment agent 31 molecule It has a special affinity with the surfaces of the TFT substrate 2 and the CF substrate 1, and can be adsorbed on the surfaces of the TFT substrate 2 and the CF substrate 1.
  • the other end of the auxiliary alignment agent 31 molecules and the liquid crystal molecules in the liquid crystal layer 3 are extremely strong.
  • the force is such that liquid crystal molecules are vertically aligned on the surfaces of the TFT substrate 2 and the CF substrate 1.
  • the present invention does not use the PI alignment layer, but uses the auxiliary alignment agent 31 to realize the vertical alignment of the liquid crystal molecules, thereby eliminating the need for the PI alignment layer process.
  • a large number of harmful solvents and high-temperature baking processes can save the machine and its energy loss, be more environmentally friendly, save energy, and reduce the yield loss caused by poor PI.
  • the TFT substrate 2 includes a glass substrate 21, a gate electrode 221 and a scan line 222 disposed on the glass substrate 21, and a gate insulating layer 23 covering the gate electrode 221 and the scan line 222 on the glass substrate 21.
  • An active layer 24 disposed on the gate insulating layer 23 above the gate electrode 221, a source/drain 251 disposed on the active layer 24 and the gate insulating layer 23, and the gate insulating layer 23 a data line 252, a passivation layer 26 disposed on the gate insulating layer 23 covering the source/drain 251 and the data line 252, and a patterned pixel electrode 27 disposed on the passivation layer 26;
  • the pixel electrode 27 is in contact with the source/drain 251 via the passivation layer via 260.
  • the pixel electrode 27 has a "m-shaped" slit pattern, and is located in a region where the scanning line 222 and the data line 252 are alternately defined.
  • the passivation layer 26 is formed by Chemical Vapor Deposition (CVD), which includes at least one layer, wherein the contact layer with the pixel electrode 27 is an oxide layer whose surface characteristics are close to the pixel electrode 27.
  • the oxide layer whose surface characteristics are close to the pixel electrode 27 is a silicon dioxide (SiO2) layer, an aluminum oxide (Al2O3) layer, a zirconium dioxide (ZrO2) layer, or a titanium dioxide (TiO2) layer.
  • the passivation layer 26 is a two-layer structure including an uppermost layer 263 and other layers 261.
  • the uppermost layer 263 is a contact layer with the pixel electrode 27, that is, the uppermost layer 263 is an oxide layer whose surface characteristics are close to the pixel electrode 27, such as a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer. Or a titanium dioxide layer or the like; the other layer 261 may be a silicon nitride layer, a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer.
  • the passivation layer 26 may be composed of a silicon nitride layer and a silicon dioxide layer, or a silicon nitride layer and an aluminum oxide layer, or a silicon nitride layer and a zirconium dioxide layer, or a silicon nitride layer and titanium dioxide. a layer, or a silicon dioxide layer and an aluminum oxide layer, or a silicon dioxide layer and a zirconium dioxide layer, or a silicon dioxide layer and a titanium dioxide layer.
  • the passivation layer 26 may also have a three-layer structure, the uppermost layer 263 is a contact layer with the pixel electrode 27; and the other layer 261 of the passivation layer 26 is a silicon nitride layer, silicon dioxide. Two of the layers, the aluminum oxide layer, the zirconium dioxide layer, or the titanium dioxide layer.
  • the passivation layer 26 may be composed of a silicon nitride layer, a silicon dioxide layer, an aluminum oxide layer, or a silicon nitride layer, silicon dioxide. a layer, a zirconium dioxide layer, or a silicon nitride layer, an aluminum oxide layer, a zirconium dioxide layer, or the like.
  • the first embodiment improves the passivation layer 26 from the existing single silicon nitride layer into a two-layer or three-layer structure, wherein the uppermost layer 263 in contact with the pixel electrode 27 is a silicon dioxide layer and an aluminum oxide layer. a zirconium dioxide layer, a titanium dioxide layer or the like, and the material constituting the pixel electrode 27 is indium tin oxide, which is also an oxide, and is closer to silica, alumina, zirconia, or titania.
  • the surface energy and the surface characteristics can reduce the difference in the force of the auxiliary alignment agent 31 dissolved in the liquid crystal layer 3 and the surface of the different regions of the TFT substrate 2, thereby making the force of the auxiliary alignment agent 31 and the surface of the TFT substrate 2 uniform. It is possible to solve the problem of the alignment force difference and the bright dark line display defect caused by the patterning of the pixel electrode 27.
  • FIG. 6 and FIG. 7 is a second embodiment of the first embodiment of the vertical alignment type liquid crystal display of the present invention.
  • the second embodiment is different from the first embodiment in that the passivation layer 26 is a single layer structure, and the single layer passivation layer 26 is a contact layer with the pixel electrode 27, that is, the single layer is blunt.
  • the layer 26 is a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer, and the like, and the difference in the force between the auxiliary alignment agent 31 dissolved in the liquid crystal layer 3 and the surface of the TFT substrate 2 can be reduced.
  • the vertical alignment type liquid crystal display includes a CF substrate 1, a TFT substrate 2 disposed opposite to the CF substrate 1, and a liquid crystal layer 3 provided between the CF substrate 1 and the TFT substrate 2.
  • the auxiliary alignment agent 31 is dissolved in the liquid crystal layer 3.
  • One end of the auxiliary alignment agent 31 has a specific affinity with the surfaces of the TFT substrate 2 and the CF substrate 1, and can be adsorbed on the surfaces of the TFT substrate 2 and the CF substrate 1, and the other end of the auxiliary alignment agent 31 molecules and the liquid crystal layer
  • the liquid crystal molecules in 3 have an extremely strong force, whereby liquid crystal molecules are vertically aligned on the surfaces of the TFT substrate 2 and the CF substrate 1.
  • the present invention does not use the PI alignment layer, but uses the auxiliary alignment agent 31 to realize the vertical alignment of the liquid crystal molecules, thereby eliminating the need for the PI alignment layer process.
  • a large number of harmful solvents and high-temperature baking processes can save the machine and its energy loss, be more environmentally friendly, save energy, and reduce the yield loss caused by poor PI.
  • the TFT substrate 2 includes a glass substrate 21, a gate electrode 221 and a scan line 222 disposed on the glass substrate 21, and a gate insulating layer 23 covering the gate electrode 221 and the scan line 222 on the glass substrate 21.
  • An active layer 24 disposed on the gate insulating layer 23 above the gate electrode 221, a source/drain 251 disposed on the active layer 24 and the gate insulating layer 23, and the gate insulating layer 23
  • the upper data line 252 is disposed on the gate insulating layer 23 to cover the source/drain 251 and the data line 252.
  • the pixel electrode 27 passes through the passivation layer
  • the hole 260 is in contact with the source/drain 251.
  • the pixel electrode 27 has a "m-shaped" slit pattern, and is located in a region where the scanning line 222 and the data line 252 are alternately defined.
  • the passivation layer 26 is not particularly required, and the same silicon nitride layer as in the prior art can be used.
  • the flat layer 28 is formed by a chemical vapor deposition method and has a thickness of 50 nm to 1000 nm.
  • the flat layer 28 may be a silicon nitride layer, a silicon dioxide layer, an aluminum oxide layer, a zirconium dioxide layer, or a titanium dioxide layer or the like.
  • the flat layer 28 covers the pixel electrode 27 and the passivation layer 26 to uniformize the surface characteristics of the TFT substrate 2, the force of the auxiliary alignment agent 31 dissolved in the liquid crystal layer 3 and the surface of the different regions of the TFT substrate 2 can be eliminated.
  • the difference is such that the force of the auxiliary alignment agent 31 and the surface of the TFT substrate 2 is uniform, and the problem of the alignment force difference and the bright and dark line display defect due to the patterning of the pixel electrode 27 can be solved.
  • the vertical alignment type liquid crystal display of the present invention improves the conventional liquid crystal display in which the auxiliary alignment agent performs vertical alignment of liquid crystal molecules by setting the contact layer of the passivation layer and the pixel electrode to the surface.
  • the difference in alignment force and the bright and dark lines show defects.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种垂直配向型液晶显示器,对现有的利用辅助配向剂进行液晶分子的垂直配向的液晶显示器进行改进,通过将钝化层(26)与像素电极(27)的接触层设置为表面特性与像素电极(27)相接近的氧化物层;或通过设置覆盖像素电极(27)的平坦层(28),使得溶解在液晶层(3)中的辅助配向剂(31)与TFT基板(2)表面的作用力均匀,能够解决由于像素电极(27)的图案化造成的配向力差异与亮暗线显示缺陷问题。

Description

垂直配向型液晶显示器 技术领域
本发明涉及显示技术领域,尤其涉及一种垂直配向型液晶显示器。
背景技术
液晶显示器(Liquid Crystal Display,LCD)具有机身薄、省电、无辐射等众多优点,得到了广泛的应用,如:移动电话、个人数字助理(PDA)、数字相机、计算机屏幕或笔记本电脑屏幕等。
就目前主流市场上的薄膜晶体管液晶显示器(TFT-LCD)而言,可分为三大类,分别是扭曲向列/超扭曲向列(TN/STN)型、平面转换(IPS)型、及垂直配向(VA)型。其中VA型液晶显示器相对其它种类的液晶显示器具有极高的对比度,一般可达到4000-8000,在大尺寸显示,如电视等方面具有非常广的应用。
VA型液晶显示器之所以具有极高对比度是因为在不加电的暗态时,液晶分子垂直于基板表面排列,不产生任何相位差,漏光极低,暗态亮度很小,暗态亮度越低,则对比度越高。如图1所示,为了使VA型液晶显示器中的液晶分子能够垂直于基板表面排列,需要对液晶分子300进行垂直配向处理,现行最为普遍的做法是在上基板100与下基板200内表面特定区域涂布垂直配向剂,配向剂一般包含大量的化学溶剂N-甲基吡咯烷酮(NMP)以及高分子材料聚酰亚胺(Polyimide,PI)等成分,然后将基板在高温下(一般200摄氏度以上)进行长时间烘烤,使配向剂中溶剂被烤干,从而在玻璃基板表面形成PI配向层310。
为了使VA型液晶显示器获得更好的广视角特性,通常会采取多区域VA技术(multi-domain VA,MVA),即将一个亚像素划分成多个区域,并使每个区域中的液晶在施加电压后倒伏向不同的方向,从而使各个方向看到的效果趋于平均。实现MVA技术的方法有多种,请参阅图2与图3,其中一种方法是在一侧的氧化铟锡(Indium Tin Oxide,ITO)像素电极800上形成“米字型”狭缝图案,由于特殊的ITO像素电极图形,其产生的倾斜电场可以诱导不同区域中的液晶分子300倒向不同的方向。图2所示为一种MVA型液晶显示器下基板200一侧的平面俯视示意图,其中210与220分别为扫描线与数据线。图3所示为该MVA型液晶显示器的剖面示意图,其中700为氮化硅(SiNx)材质的钝化层。该MVA型液晶显示器具有 制程简单,对比度高,开口率高,响应时间快等优势。
然而,为了实现VA配向,需要在基板表面涂布垂直配向剂,进行高温烘烤制程,由于配向剂中含有大量NMP溶剂,所以形成配向层的制程是一个高能耗、极其不环保、易对人体造成危害的过程;此外,由于配向层均匀性、缺涂、不粘以及异物等问题,还会对产品良率造成损失,导致资源浪费与产品成本提高。
出于以上诸多因素考虑,需开发出不需要PI配向层的VA型液晶显示器。如图4所示,通过改变液晶配方,在液晶中加入一类辅助配向剂的物质,使液晶分子300在没有配向层的情况下即可在液晶显示装置的基板表面垂直排列。该类辅助配向剂无需其它溶剂溶解,直接溶解于液晶之中,与液晶一起使用,省去原本配向剂的涂布设备与高温烘烤设备,因无需额外溶剂,所以更加干净、环保、节能。辅助配向剂的作用机理是,辅助配向剂分子301一端与基板表面无机材料,如构成钝化层700的氮化硅及构成像素电极800的ITO等具有特别的亲和力,能够吸附在基板表面,辅助配向剂分子301另外一端与液晶分子300有极强的作用力,由此引导液晶分子300垂直于基板表面排列,最终达到如图4所示的效果。由于ITO像素电极800具有“米字型”狭缝图案的关系,像素电极所在的区域部分被ITO像素电极800覆盖,部分没有ITO像素电极800,则其表面为钝化层700即SiNx,在不使用PI配向层的情况下,依靠辅助配向剂吸附于基板表面进行配向时,由于基板表面存在ITO与SiNx的差异,导致辅助配向剂与基板表面作用力的差异,形成配向不良,施加电压之后容易导致暗线或亮线缺陷。
因此有必要对垂直配向型液晶显示器进行改进,在去除PI配向层、利用辅助配向剂实现垂直配向的情况下,解决由于MVA像素电极图案化造成的配向力差异与亮暗线显示缺陷等问题,实现均匀配向。
发明内容
本发明的目的在于提供一种垂直配向型液晶显示器,对现有的利用辅助配向剂进行液晶分子的垂直配向的液晶显示器进行改进,能够解决由于像素电极的图案化造成的配向力差异与亮暗线显示缺陷问题。
为实现上述目的,本发明提供一种垂直配向型液晶显示器,包括CF基板、与所述CF基板相对设置的TFT基板、及设于所述CF基板与TFT基板之间的液晶层;
所述TFT基板包括玻璃基板、设于所述玻璃基板上的栅极与扫描线, 设于所述玻璃基板上覆盖栅极与扫描线的栅极绝缘层、于所述栅极上方设于栅极绝缘层上的活性层、设于所述活性层与栅极绝缘层上的源/漏极、设于所述栅极绝缘层上的数据线、设于所述栅极绝缘层上覆盖源/漏极与数据线的钝化层、及设于所述钝化层上的图案化的像素电极;所述像素电极经由钝化层过孔与源/漏极接触;
所述液晶层中溶解有辅助配向剂,所述辅助配向剂使液晶分子在TFT基板的表面垂直排列;
所述钝化层至少包括一层,其中与所述像素电极的接触层为表面特性与像素电极相接近的氧化物层,从而使所述辅助配向剂与TFT基板表面的作用力均匀。
所述表面特性与像素电极相接近的氧化物层为二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层。
所述钝化层为双层或三层结构,包括一最上层与其它层,所述最上层是与所述像素电极的接触层;所述其它层为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层之中的一种或两种。
所述钝化层为单层结构,该单层的钝化层是与所述像素电极的接触层。
所述钝化层通过化学气相沉积法形成。
本发明还提供一种垂直配向型液晶显示器,包括CF基板、与所述CF基板相对设置的TFT基板、及设于所述CF基板与TFT基板之间的液晶层;
所述TFT基板包括玻璃基板、设于所述玻璃基板上的栅极与扫描线,设于所述玻璃基板上覆盖栅极与扫描线的栅极绝缘层、于所述栅极上方设于栅极绝缘层上的活性层、设于所述活性层与栅极绝缘层上的源/漏极、设于所述栅极绝缘层上的数据线、设于所述栅极绝缘层上覆盖源/漏极与数据线的钝化层、设于所述钝化层上的图案化的像素电极、及覆盖所述像素电极与钝化层的平坦层;所述像素电极经由钝化层过孔与源/漏极接触;
所述液晶层中溶解有辅助配向剂,所述辅助配向剂使液晶分子在TFT基板的表面垂直排列;
所述平坦层使TFT基板的表面特性均一化,从而使所述辅助配向剂与TFT基板表面的作用力均匀。
所述平坦层为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层。
所述平坦层的厚度为50nm-1000nm。
所述平坦层通过化学气相沉积法形成。
本发明的有益效果:本发明提供的一种垂直配向型液晶显示器,对现 有的利用辅助配向剂进行液晶分子的垂直配向的液晶显示器进行改进,通过将钝化层与像素电极的接触层设置为表面特性与像素电极相接近的氧化物层;或通过设置覆盖像素电极的平坦层,使得溶解在液晶层中的辅助配向剂与TFT基板表面的作用力均匀,能够解决由于像素电极的图案化造成的配向力差异与亮暗线显示缺陷问题。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为一种现有的使用配向层的垂直配向型液晶显示器的剖面示意图;
图2为一种现有的使用配向层的MVA型液晶显示器的下基板一侧的平面俯视示意图;
图3为一种现有的使用配向层的MVA型液晶显示器的剖面示意图;
图4为一种现有的使用辅助配向剂的垂直配向型液晶显示器的剖面示意图;
图5为本发明垂直配向型液晶显示器的第一种实施方式的第一实施例的剖面示意图;
图6为本发明垂直配向型液晶显示器的第一种实施方式的第二实施例的剖面示意图;
图7为本发明垂直配向型液晶显示器的第一种实施方式的TFT基板一侧的平面俯视示意图;
图8为本发明垂直配向型液晶显示器的第二种实施方式的剖面示意图;
图9为本发明垂直配向型液晶显示器的第二种实施方式的TFT基板一侧的平面俯视示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段极其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请同时参阅图5、图7,为本发明垂直配向型液晶显示器的第一种实施方式的第一实施例。该垂直配向型液晶显示器包括CF基板1、与所述CF基板1相对设置的TFT基板2、及设于所述CF基板1与TFT基板2之间的液晶层3。
所述液晶层3中溶解有辅助配向剂31。所述辅助配向剂31分子的一端 与TFT基板2及CF基板1的表面具有特别的亲和力,能够吸附在TFT基板2及CF基板1的表面,所述辅助配向剂31分子的另一端与液晶层3中的液晶分子有极强的作用力,由此使液晶分子在TFT基板2及CF基板1的表面垂直排列。与现有的使用PI配向层的垂直配向型液晶显示器相比,本发明不使用PI配向层,而是采用辅助配向剂31实现液晶分子的垂直配向,由此省去了PI配向层制程中涉及的大量有害溶剂、与高温烘烤制程,能够节省机台及其能量损耗,更加环保、节能,并能够降低由于PI不良导致的良率损失。
所述TFT基板2包括玻璃基板21、设于所述玻璃基板21上的栅极221与扫描线222,设于所述玻璃基板21上覆盖栅极221与扫描线222的栅极绝缘层23、于所述栅极221上方设于栅极绝缘层23上的活性层24、设于所述活性层24与栅极绝缘层23上的源/漏极251、设于所述栅极绝缘层23上的数据线252、设于所述栅极绝缘层23上覆盖源/漏极251与数据线252的钝化层26、及设于所述钝化层26上的图案化的像素电极27;所述像素电极27经由钝化层过孔260与源/漏极251接触。具体的,所述像素电极27具有“米字型”狭缝图案,位于扫描线222与数据线252相互交错限定出来的区域。
所述钝化层26通过化学气相沉积法(Chemical Vapor Deposition,CVD)形成,其至少包括一层,其中与所述像素电极27的接触层为表面特性与像素电极27相接近的氧化物层。所述表面特性与像素电极27相接近的氧化物层为二氧化硅(SiO2)层、氧化铝(Al2O3)层、二氧化锆(ZrO2)层、或二氧化钛(TiO2)层。如图5所示的该第一实施例中,所述钝化层26为双层结构,其包括一最上层263与其它层261。所述最上层263是与所述像素电极27的接触层,即所述最上层263为表面特性与像素电极27相接近的氧化物层,如二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层等;所述其它层261为可为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层。例如,所述钝化层26的组成可为氮化硅层与二氧化硅层、或氮化硅层与氧化铝层、或氮化硅层与二氧化锆层、或氮化硅层与二氧化钛层、或二氧化硅层与氧化铝层、或二氧化硅层与二氧化锆层、或二氧化硅层与二氧化钛层等。
当然,所述钝化层26也可为三层结构,其最上层263是与所述像素电极27的接触层;而所述钝化层26的其它层261为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层之中的两种。例如,所述钝化层26的组成可为氮化硅层、二氧化硅层、与氧化铝层,或氮化硅层、二氧化硅 层、与二氧化锆层、或氮化硅层、氧化铝层与二氧化锆层等。
该第一实施例将钝化层26由现有的单一氮化硅层改进为双层或三层结构,其中与所述像素电极27相接触的最上层263为二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层等,由于构成所述像素电极27的材料为氧化铟锡,也是一种氧化物,与二氧化硅、氧化铝、二氧化锆、或二氧化钛等具有更接近的表面能与表面特性,因此能够减少溶解在液晶层3中的辅助配向剂31与TFT基板2的不同区域表面的作用力差异,从而使所述辅助配向剂31与TFT基板2表面的作用力均匀,能够解决由于像素电极27的图案化造成的配向力差异与亮暗线显示缺陷问题。
请同时参阅图6、图7,为本发明垂直配向型液晶显示器的第一种实施方式的第二实施例。该第二实施例与第一实施例的区别在于,所述钝化层26为单层结构,该单层的钝化层26是与所述像素电极27的接触层,即该单层的钝化层26为二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层等,同样能够减少溶解在液晶层3中的辅助配向剂31与TFT基板2的不同区域表面的作用力差异,从而使所述辅助配向剂31与TFT基板2表面的作用力均匀,能够解决由于像素电极27的图案化造成的配向力差异与亮暗线显示缺陷问题。其它与第一实施例相同,此处不再赘述。
请同时参阅图8、图9,为本发明垂直配向型液晶显示器的第二种实施方式。该垂直配向型液晶显示器包括CF基板1、与所述CF基板1相对设置的TFT基板2、及设于所述CF基板1与TFT基板2之间的液晶层3。
所述液晶层3中溶解有辅助配向剂31。所述辅助配向剂31分子的一端与TFT基板2及CF基板1的表面具有特别的亲和力,能够吸附在TFT基板2及CF基板1的表面,所述辅助配向剂31分子的另一端与液晶层3中的液晶分子有极强的作用力,由此使液晶分子在TFT基板2及CF基板1的表面垂直排列。与现有的使用PI配向层的垂直配向型液晶显示器相比,本发明不使用PI配向层,而是采用辅助配向剂31实现液晶分子的垂直配向,由此省去了PI配向层制程中涉及的大量有害溶剂、与高温烘烤制程,能够节省机台及其能量损耗,更加环保、节能,并能够降低由于PI不良导致的良率损失。
所述TFT基板2包括玻璃基板21、设于所述玻璃基板21上的栅极221与扫描线222,设于所述玻璃基板21上覆盖栅极221与扫描线222的栅极绝缘层23、于所述栅极221上方设于栅极绝缘层23上的活性层24、设于所述活性层24与栅极绝缘层23上的源/漏极251、设于所述栅极绝缘层23上的数据线252、设于所述栅极绝缘层23上覆盖源/漏极251与数据线252 的钝化层26、设于所述钝化层26上的图案化的像素电极27、及覆盖所述像素电极27与钝化层26的平坦层28;所述像素电极27经由钝化层过孔260与源/漏极251接触。具体的,所述像素电极27具有“米字型”狭缝图案,位于扫描线222与数据线252相互交错限定出来的区域。
该第二种实施方式,对所述钝化层26无特殊要求,可采用与现有技术相同的氮化硅层。所述平坦层28通过化学气相沉积法形成,其厚度为50nm-1000nm。所述平坦层28可为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层等。
由于所述平坦层28覆盖像素电极27与钝化层26,使TFT基板2的表面特性均一化,能够消除溶解在液晶层3中的辅助配向剂31与TFT基板2的不同区域表面的作用力差异,从而使所述辅助配向剂31与TFT基板2表面的作用力均匀,能够解决由于像素电极27的图案化造成的配向力差异与亮暗线显示缺陷问题。
综上所述,本发明的一种垂直配向型液晶显示器,对现有的利用辅助配向剂进行液晶分子的垂直配向的液晶显示器进行改进,通过将钝化层与像素电极的接触层设置为表面特性与像素电极相接近的氧化物层;或通过设置覆盖像素电极的平坦层,使得溶解在液晶层中的辅助配向剂与TFT基板表面的作用力均匀,能够解决由于像素电极的图案化造成的配向力差异与亮暗线显示缺陷问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种垂直配向型液晶显示器,包括CF基板、与所述CF基板相对设置的TFT基板、及设于所述CF基板与TFT基板之间的液晶层;
    所述TFT基板包括玻璃基板、设于所述玻璃基板上的栅极与扫描线,设于所述玻璃基板上覆盖栅极与扫描线的栅极绝缘层、于所述栅极上方设于栅极绝缘层上的活性层、设于所述活性层与栅极绝缘层上的源/漏极、设于所述栅极绝缘层上的数据线、设于所述栅极绝缘层上覆盖源/漏极与数据线的钝化层、及设于所述钝化层上的图案化的像素电极;所述像素电极经由钝化层过孔与源/漏极接触;
    所述液晶层中溶解有辅助配向剂,所述辅助配向剂使液晶分子在TFT基板的表面垂直排列;
    所述钝化层至少包括一层,其中与所述像素电极的接触层为表面特性与像素电极相接近的氧化物层,从而使所述辅助配向剂与TFT基板表面的作用力均匀。
  2. 如权利要求1所述的垂直配向型液晶显示器,其中,所述表面特性与像素电极相接近的氧化物层为二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层。
  3. 如权利要求2所述的垂直配向型液晶显示器,其中,所述钝化层为双层或三层结构,包括一最上层与其它层,所述最上层是与所述像素电极的接触层;所述其它层为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层之中的一种或两种。
  4. 如权利要求2所述的垂直配向型液晶显示器,其中,所述钝化层为单层结构,该单层的钝化层是与所述像素电极的接触层。
  5. 如权利要求1所述的垂直配向型液晶显示器,其中,所述钝化层通过化学气相沉积法形成。
  6. 一种垂直配向型液晶显示器,包括CF基板、与所述CF基板相对设置的TFT基板、及设于所述CF基板与TFT基板之间的液晶层;
    所述TFT基板包括玻璃基板、设于所述玻璃基板上的栅极与扫描线,设于所述玻璃基板上覆盖栅极与扫描线的栅极绝缘层、于所述栅极上方设于栅极绝缘层上的活性层、设于所述活性层与栅极绝缘层上的源/漏极、设于所述栅极绝缘层上的数据线、设于所述栅极绝缘层上覆盖源/漏极与数据线的钝化层、设于所述钝化层上的图案化的像素电极、及覆盖所述像素电 极与钝化层的平坦层;所述像素电极经由钝化层过孔与源/漏极接触;
    所述液晶层中溶解有辅助配向剂,所述辅助配向剂使液晶分子在TFT基板的表面垂直排列;
    所述平坦层使TFT基板的表面特性均一化,从而使所述辅助配向剂与TFT基板表面的作用力均匀。
  7. 如权利要求6所述的垂直配向型液晶显示器,其中,所述平坦层为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层。
  8. 如权利要求6所述的垂直配向型液晶显示器,其中,所述平坦层的厚度为50nm-1000nm。
  9. 如权利要求6所述的垂直配向型液晶显示器,其中,所述平坦层通过化学气相沉积法形成。
  10. 一种垂直配向型液晶显示器,包括CF基板、与所述CF基板相对设置的TFT基板、及设于所述CF基板与TFT基板之间的液晶层;
    所述TFT基板包括玻璃基板、设于所述玻璃基板上的栅极与扫描线,设于所述玻璃基板上覆盖栅极与扫描线的栅极绝缘层、于所述栅极上方设于栅极绝缘层上的活性层、设于所述活性层与栅极绝缘层上的源/漏极、设于所述栅极绝缘层上的数据线、设于所述栅极绝缘层上覆盖源/漏极与数据线的钝化层、设于所述钝化层上的图案化的像素电极、及覆盖所述像素电极与钝化层的平坦层;所述像素电极经由钝化层过孔与源/漏极接触;
    所述液晶层中溶解有辅助配向剂,所述辅助配向剂使液晶分子在TFT基板的表面垂直排列;
    所述平坦层使TFT基板的表面特性均一化,从而使所述辅助配向剂与TFT基板表面的作用力均匀;
    其中,所述平坦层为氮化硅层、二氧化硅层、氧化铝层、二氧化锆层、或二氧化钛层;
    其中,所述平坦层的厚度为50nm-1000nm;
    其中,所述平坦层通过化学气相沉积法形成。
PCT/CN2015/072502 2014-11-21 2015-02-09 垂直配向型液晶显示器 WO2016078239A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/423,691 US20160341991A1 (en) 2014-11-21 2015-02-09 Vertical alignment liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410677228.4 2014-11-21
CN201410677228.4A CN104503169B (zh) 2014-11-21 2014-11-21 垂直配向型液晶显示器

Publications (1)

Publication Number Publication Date
WO2016078239A1 true WO2016078239A1 (zh) 2016-05-26

Family

ID=52944574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072502 WO2016078239A1 (zh) 2014-11-21 2015-02-09 垂直配向型液晶显示器

Country Status (3)

Country Link
US (1) US20160341991A1 (zh)
CN (1) CN104503169B (zh)
WO (1) WO2016078239A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845644B (zh) * 2015-05-27 2017-03-15 深圳市华星光电技术有限公司 一种液晶介质组合物
CN104932158B (zh) * 2015-06-25 2018-11-23 深圳市华星光电技术有限公司 像素电极及液晶显示面板
CN104880872A (zh) * 2015-06-25 2015-09-02 深圳市华星光电技术有限公司 像素电极及液晶显示面板
CN107463029B (zh) * 2017-08-25 2020-11-24 深圳市华星光电技术有限公司 自取向液晶显示面板及其制作方法
CN107797354A (zh) * 2017-11-27 2018-03-13 深圳市华星光电半导体显示技术有限公司 Tft基板
CN109887930A (zh) * 2019-02-20 2019-06-14 深圳市华星光电技术有限公司 显示面板及其制作方法
CN111427205A (zh) * 2020-03-12 2020-07-17 Tcl华星光电技术有限公司 阵列基板及其制备方法、液晶显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992293A (zh) * 2005-12-29 2007-07-04 Lg.菲利浦Lcd株式会社 薄膜晶体管阵列基板系统及其制造方法
CN101075029A (zh) * 2006-05-18 2007-11-21 中华映管股份有限公司 液晶显示面板
CN101211076A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 多域垂直配向型液晶显示面板
US20110228207A1 (en) * 2010-03-22 2011-09-22 Samsung Mobile Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN102270644A (zh) * 2010-06-04 2011-12-07 三星电子株式会社 薄膜晶体管显示面板及其制造方法
CN103492531A (zh) * 2011-02-05 2014-01-01 默克专利股份有限公司 具有垂面取向的液晶显示器
CN103728780A (zh) * 2013-12-31 2014-04-16 深圳市华星光电技术有限公司 一种液晶显示装置及其制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981816A (en) * 1972-11-15 1976-09-21 Matsushita Electric Industrial Co., Ltd. Liquid crystal display device
US6344888B2 (en) * 1996-10-22 2002-02-05 Seiko Epson Corporation Liquid crystal panel substrate liquid crystal panel and electronic device and projection display device using the same
KR20060075502A (ko) * 2004-12-28 2006-07-04 엘지.필립스 엘시디 주식회사 광시야각을 갖는 액정표시장치
JP4829501B2 (ja) * 2005-01-06 2011-12-07 シャープ株式会社 液晶表示装置
KR20060104707A (ko) * 2005-03-31 2006-10-09 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
US8072059B2 (en) * 2006-04-19 2011-12-06 Stats Chippac, Ltd. Semiconductor device and method of forming UBM fixed relative to interconnect structure for alignment of semiconductor die
KR101422747B1 (ko) * 2007-03-21 2014-07-25 엘지디스플레이 주식회사 수직정렬모드 액정표시장치
KR101398641B1 (ko) * 2008-01-07 2014-05-26 삼성디스플레이 주식회사 액정 표시 장치
JP5299768B2 (ja) * 2009-01-26 2013-09-25 Nltテクノロジー株式会社 薄膜トランジスタアレイ基板及びその製造方法並びに液晶表示装置
JP5525226B2 (ja) * 2009-10-06 2014-06-18 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置の製造方法
JP2011133603A (ja) * 2009-12-24 2011-07-07 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法および電子機器
KR20130096456A (ko) * 2012-02-22 2013-08-30 부산대학교 산학협력단 액정 표시 장치
TWI495932B (zh) * 2012-10-12 2015-08-11 Innocom Tech Shenzhen Co Ltd 液晶顯示面板及其裝置
TWI494672B (zh) * 2012-11-30 2015-08-01 Au Optronics Corp 液晶顯示面板之畫素結構
TW201428398A (zh) * 2013-01-09 2014-07-16 Wintek Corp 形成液晶配向膜之方法、顯示面板的製作方法以及顯示面板
KR101960827B1 (ko) * 2013-05-03 2019-03-22 삼성디스플레이 주식회사 액정 조성물, 액정 표시 장치 및 액정 표시 장치 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992293A (zh) * 2005-12-29 2007-07-04 Lg.菲利浦Lcd株式会社 薄膜晶体管阵列基板系统及其制造方法
CN101075029A (zh) * 2006-05-18 2007-11-21 中华映管股份有限公司 液晶显示面板
CN101211076A (zh) * 2006-12-29 2008-07-02 群康科技(深圳)有限公司 多域垂直配向型液晶显示面板
US20110228207A1 (en) * 2010-03-22 2011-09-22 Samsung Mobile Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
CN102270644A (zh) * 2010-06-04 2011-12-07 三星电子株式会社 薄膜晶体管显示面板及其制造方法
CN103492531A (zh) * 2011-02-05 2014-01-01 默克专利股份有限公司 具有垂面取向的液晶显示器
CN103728780A (zh) * 2013-12-31 2014-04-16 深圳市华星光电技术有限公司 一种液晶显示装置及其制造方法

Also Published As

Publication number Publication date
CN104503169B (zh) 2018-03-06
CN104503169A (zh) 2015-04-08
US20160341991A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2016078239A1 (zh) 垂直配向型液晶显示器
WO2016078238A1 (zh) 垂直配向液晶显示器及其制作方法
US7589808B2 (en) Wide viewing angle transflective liquid crystal displays
JP5344253B2 (ja) 横電界方式の液晶表示装置
US9063383B2 (en) Liquid crystal display device
WO2013146635A1 (ja) 液晶駆動方法及び液晶表示装置
US8711315B2 (en) Liquid crystal display having particular pixel structure
JP2008020669A (ja) 半透過型液晶表示装置
WO2016149974A1 (zh) 高穿透率va型液晶显示面板及其制作方法
WO2013086906A1 (zh) Tft阵列基板及其制作方法和显示装置
WO2018094865A1 (zh) 液晶面板及其液晶配向方法、液晶显示器
US20100259469A1 (en) Liquid crystal display panel and liquid crystal display device
WO2018192052A1 (zh) 阵列基板结构及阵列基板的制备方法
US9766510B2 (en) Pixel unit and array substrate
US8064026B2 (en) Liquid crystal display device with the pixel electrode being electrically coupled to the active element via a portion defining a clearance between the counter electrodes
WO2013058157A1 (ja) 液晶表示パネル及び液晶表示装置
US9740043B2 (en) Liquid crystal display device with antistatic polarizing layer and method of manufacturing the same
US20140049735A1 (en) Array substrate, liquid crystal display apparatus and alignment rubbing method
US20160147093A1 (en) Display panel and display device
US8237902B2 (en) Array substrate of LCD with wide viewing angle and method for manufacturing the same
WO2019062395A1 (zh) 显示面板、显示装置及其驱动方法
US20170322470A1 (en) Liquid crystal display device
WO2007129480A1 (ja) 半透過型液晶表示装置及びその製造方法
US9964808B2 (en) Curved liquid crystal display device
CN107315288B (zh) 一种阵列基板、液晶面板及其制作工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14423691

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861160

Country of ref document: EP

Kind code of ref document: A1