WO2016072339A1 - 熱交換器用内面溝付管及びその製造方法 - Google Patents
熱交換器用内面溝付管及びその製造方法 Download PDFInfo
- Publication number
- WO2016072339A1 WO2016072339A1 PCT/JP2015/080495 JP2015080495W WO2016072339A1 WO 2016072339 A1 WO2016072339 A1 WO 2016072339A1 JP 2015080495 W JP2015080495 W JP 2015080495W WO 2016072339 A1 WO2016072339 A1 WO 2016072339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat treatment
- copper alloy
- tube
- heat exchanger
- grooved tube
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/20—Making helical or similar guides in or on tubes without removing material, e.g. by drawing same over mandrels, by pushing same through dies ; Making tubes with angled walls, ribbed tubes and tubes with decorated walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/02—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
- B21D53/06—Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/05—Alloys based on copper with manganese as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Definitions
- the present invention relates to an internally grooved tube excellent in workability as a heat transfer tube of a cross fin type heat exchanger such as an air conditioner or an eco cute.
- These heat exchangers are mainly composed of a copper tube (hereinafter referred to as an internally grooved tube) having an inner surface provided with a spiral groove and a fin made of aluminum or an aluminum alloy plate (hereinafter referred to as an aluminum fin).
- the heat transfer part of the heat exchanger passes a copper pipe bent into a U shape (hereinafter, hairpin bending process) through the through hole of the aluminum fin, and a jig is inserted into the copper pipe subjected to the hairpin bending process.
- hairpin bending process a copper pipe bent into a U shape
- a jig is inserted into the copper pipe subjected to the hairpin bending process.
- the open end of the hairpin bent copper tube is expanded, and a bend copper tube bent into a U shape is inserted into the expanded open end, and the bend copper tube is brazed with a brazing material such as phosphor copper braze.
- a brazing material such as phosphor copper braze.
- the sum of the average area ratios of Cu orientation, S orientation, and Brass orientation belonging to the ⁇ fiber of the rolling texture is in the range of 10 to 25%, so that the fracture strength of the copper tube It has been proposed that bending workability can be improved (Patent Document 2).
- an object of the present invention is to solve such a conventional problem, and to provide an internally grooved copper tube for a heat exchanger having excellent bending workability.
- the present inventors have made the composition of the copper alloy a specific composition, and when producing an internally grooved tube using the copper alloy having the composition, an intermediate heat treatment is performed.
- the outer diameter reduction rate is set to 6 to 16%, and the orientation density of the Goss orientation of the recrystallized texture is controlled to 3.2 or less, so that inner surface grooves with excellent workability are provided. It has been found that a tube can be obtained, and the present invention has been completed.
- the present invention (1) is a copper alloy inner grooved tube for a heat exchanger,
- the copper alloy contains 0.004 to 0.040 mass% of P, with the balance being Cu and inevitable impurities,
- the Goss orientation density of the recrystallized texture of the copper alloy is greater than 0 and less than or equal to 3.2;
- An internally grooved tube for a heat exchanger is provided.
- the copper alloy further contains one or more elements selected from the group consisting of Fe, Mn, Mg, Cr, Ti and Zr in a total amount of 0.07 mass. % Or less is provided, and the inner grooved tube for a heat exchanger according to (1) is provided.
- this invention (3) performs a casting process, a hot extrusion process, a cold work, an intermediate heat treatment, a rolling process, and a final heat treatment in order, or a casting process and a cold work. And an intermediate heat treatment, a rolling process, and a final heat treatment in order, a method for producing an internally grooved tube for a heat exchanger,
- the outer diameter reduction rate in the processing from the intermediate heat treatment to the final heat treatment is 6 to 16%,
- tube for heat exchangers characterized by these is provided.
- the copper alloy further contains one or more elements selected from the group consisting of Fe, Mn, Mg, Cr, Ti, and Zr in a total amount of 0.07 mass.
- the inner grooved tube for heat exchanger of the present invention is an inner grooved tube for heat exchanger made of copper alloy,
- the copper alloy contains 0.004 to 0.040 mass% of P, with the balance being Cu and inevitable impurities,
- the Goss orientation density of the recrystallized texture of the copper alloy is greater than 0 and less than or equal to 3.2;
- the crystal grains are finely and uniformly present in the recrystallized texture, and the orientation density in the Goss orientation is 3.2 or less. And low.
- a polycrystalline material such as copper often has a texture in which crystal grains are oriented in some specific orientation, that is, a texture.
- the orientation include a Cube orientation, a Goss orientation, a Brass orientation, an S orientation, and a Copper orientation.
- the crystal orientation is uniformly dispersed and there is no accumulation, the texture is said to be random.
- the plastic anisotropy changes as the volume fraction of the texture changes.
- Copper pipes are generally manufactured by extrusion.
- the extrusion surface of the extruded element tube and the direction of extrusion are the same as in the case of a texture of sheet material by rolling.
- the rolling surface and rolling direction are the same as in the case of a texture of sheet material by rolling.
- the extrusion surface is represented by a Miller index (h k l) representing the surface
- the extrusion direction is represented by a Miller index [u v w] representing the direction (h, k, l, u, v and w are integers).
- the orientation density of the texture is the ratio of the strength of each orientation relative to a random orientation.
- azimuth deviations within ⁇ 10 degrees from these azimuths are defined as the same azimuth.
- azimuth deviations within ⁇ 9 degrees are defined as the same azimuth.
- the orientation density distribution is measured, for example, by obtaining a crystal orientation distribution function (ODF) using an X-ray diffraction method. Specifically, the orientation density of each crystal orientation is obtained by obtaining ODF by three-dimensional orientation analysis from the pole figure measured by the X-ray diffractometer. In ODF, the expansion order of even terms is calculated as 22nd and the expansion order of odd terms is calculated as 19th by the series expansion method proposed by Bunge.
- the azimuth density is indicated by a ratio between the azimuth density of a specific azimuth and the azimuth density of a sample having a random azimuth, and is expressed as a random ratio.
- the random intensity Ir is calculated from the specimen sample intensity Ic by the following formula.
- ⁇ and ⁇ are measurement angles, and ⁇ s is a step angle.
- an allowable amount of Goss orientation density in the “random texture” of the copper alloy forming the inner grooved tube is 3 .2 or less, and the orientation density of the Goss orientation as low as possible.
- the orientation density of the Goss orientation of the copper alloy forming the inner grooved tube is greater than zero.
- the inner grooved tube for a heat exchanger of the present invention has a bend inner side in a hairpin bending process because the orientation density of the Goss orientation of the copper alloy forming the inner grooved tube is larger than 0 and 3.2 or less. Since it can suppress buckling and flatness at the bent part, it has excellent workability.
- the Goss orientation density of the copper alloy forming the inner grooved tube exceeds 3.2, there are too many crystal grains having Goss orientation in the texture of the copper tube.
- the r value of the copper tube is remarkably reduced, and the inner grooved tube cannot be deformed in a balanced manner in the hairpin bending process. As a result, buckling occurs inside the bent portion of the internally grooved tube, flattening at the bent portion, and in extreme cases, cracking occurs.
- the orientation density in each of the above-mentioned orientations other than the Goss orientation constituting the random texture is within 10 for each of the normal inner grooved tube manufacturing conditions or manufacturing method, for example, it is almost larger than 10, for example. Absent.
- the orientation density of each said direction other than the Goss direction of the copper alloy which forms the internal grooved tube is 10 or less, respectively, and manufacture of an internal grooved tube In the process, a large change hardly occurs and does not greatly affect the hairpin bending workability of the internally grooved tube.
- the average crystal grain size of the copper alloy forming the inner grooved tube is 30 ⁇ m or less.
- the thickness of the inner grooved tube is relatively large, there is not much influence, but when the thickness of the inner grooved tube is reduced to 200 ⁇ m or less due to the demand for weight reduction and thinning, this crystal grain size The effect of the size of the is significantly increased.
- the average crystal grain size of the copper alloy is too large, it cannot avoid “strain concentration” when cracking occurs due to the tensile force applied in the circumferential direction of the inner grooved tube, which is good for hairpin bending Cannot be transformed.
- the orientation density of the Goss orientation is controlled, it may be difficult to maintain good hairpin bending workability.
- the average crystal grain size of the copper alloy is determined by measuring the average crystal grain size in the thickness direction of the inner grooved tube on the surface parallel to the axial direction of the inner grooved tube by the cutting method defined in JISH0501. Are averaged to obtain an average crystal grain size ( ⁇ m).
- the copper alloy forming the internally grooved tube for a heat exchanger of the present invention contains 0.004 to 0.040 mass% of P, with the balance being Cu and inevitable impurities.
- the copper alloy forming the inner grooved tube for heat exchanger of the present invention is one or two selected from the group consisting of Fe, Mn, Mg, Cr, Ti and Zr.
- the total amount of the above elements can be 0.07% by mass or less. That is, the copper alloy forming the inner grooved tube for heat exchanger of the present invention has 0.004 to 0.040 mass% P and a total of 0.07 mass% or less of Fe, Mn, Mg, Cr. And one or more elements selected from the group consisting of Ti and Zr, with the balance being Cu and inevitable impurities.
- the P content of the copper alloy forming the internally grooved tube for a heat exchanger of the present invention is 0.004 to 0.040 mass%.
- Fe, Mn, Mg, Cr, Ti, and Zr all improve the strength, pressure fracture strength, and heat resistance of the copper alloy, refine the crystal grains, and improve the bending workability of the internally grooved tube.
- the copper alloy contains one or more elements selected from the group consisting of Fe, Mn, Mg, Cr, Ti and Zr, the total content of these elements is 0.07% by mass. Exceeding this will increase the extrusion pressure, so if you want to perform extrusion with the same pushing force as those without adding these elements, it will be necessary to increase the hot extrusion temperature, which will cause surface oxidation of the extruded material. Therefore, surface defects frequently occur in the internally grooved tube.
- the copper alloy forming the inner grooved tube for a heat exchanger of the present invention contains one or more elements selected from the group consisting of Fe, Mn, Mg, Cr, Ti and Zr.
- the total content of these elements contained in the copper alloy is 0.07% by mass or less, preferably 0.01 to 0.07% by mass.
- the ratio of the wall thickness to the outer diameter (t / D) of the inner grooved tube for heat exchanger of the present invention is preferably 0.020 to 0.050, particularly preferably 0.025 to 0.050.
- the method for producing an internally grooved tube for a heat exchanger includes a casting process, a hot extrusion process, a cold process, an intermediate heat treatment, a rolling process, and a final heat treatment in order, or a casting process. It is a manufacturing method of an internally grooved tube for a heat exchanger that performs a process, a cold working, an intermediate heat treatment, a rolling process, and a final heat treatment in order.
- casting step casting a copper alloy containing 0.004 to 0.040 mass% of P, with the balance being Cu and inevitable impurities;
- the outer diameter reduction rate in the processing from the intermediate heat treatment to the final heat treatment is 6 to 16%, Is a manufacturing method of an internally grooved tube for a heat exchanger.
- the method for producing an internally grooved tube for a heat exchanger includes a casting process, a hot extrusion process, a cold process, an intermediate heat treatment, a rolling process, and a final heat treatment in order, or A method for producing an internally grooved tube for a heat exchanger, in which a casting process, cold working, intermediate heat treatment, rolling process, and final heat treatment are sequentially performed,
- a casting process, cold working, intermediate heat treatment, rolling process, and final heat treatment are sequentially performed
- the casting step one or more selected from the group consisting of 0.004 to 0.040 mass% P and a total of 0.07 mass% Fe, Mn, Mg, Cr, Ti and Zr
- the outer diameter reduction rate in the processing from the intermediate heat treatment to the final heat treatment is 6 to 16%, Is a manufacturing method of an internally grooved tube for a heat exchanger.
- a casting process, a hot extrusion process, a cold process, an intermediate heat treatment, a rolling process, and a final heat treatment are sequentially performed, or casting A process, a cold working, an intermediate heat treatment, a rolling process, and a final heat treatment are sequentially performed.
- various processes or heat treatments can be performed between these processes as needed within a range not impairing the effects of the present invention.
- a copper alloy ingot containing a predetermined amount of a predetermined chemical component is cast to produce a billet having a predetermined size.
- the raw electrolytic copper is melted in a charcoal-coated state, and after the copper is dissolved, P is added as a Cu-15 mass% P intermediate alloy also serving as deoxidation.
- a billet having a predetermined size is produced by semi-continuous casting.
- the billet is heated to a predetermined temperature in a heating furnace and homogenized.
- the hot extrusion is performed by mandrel extrusion, i.e., hot extrusion is performed with the mandrel inserted into a billet that has been previously perforated cold before processing, or a billet that has been perforated hot before extrusion.
- mandrel extrusion i.e., hot extrusion is performed with the mandrel inserted into a billet that has been previously perforated cold before processing, or a billet that has been perforated hot before extrusion.
- the seamless hot-extrusion tube obtained by performing the hot extrusion process is quickly cooled after the hot extrusion. Cooling is performed by extruding the seamless hot-extrusion element tube into water or by introducing the seamless hot-extrusion element tube after hot extrusion into water.
- the rolling process in the rolling process is facilitated by heating at a holding temperature of 400 to 700 ° C.
- the temperature increase rate of the intermediate heat treatment is 20 ° C./min or more, preferably 40 ° C./min or more.
- Rolling is a process that forms a groove on the inner surface of the pipe material, and a rolling plug with a spiral groove on the outer surface is placed in the seamless pipe after the intermediate heat treatment. In this way, a plurality of rolling balls rotating at high speed are pressed from the outer diameter of the tube to transfer the groove of the rolling plug to the inner surface of the tube. Moreover, usually, after performing the intermediate heat treatment, the rolling process is performed together with the diameter reducing process for reducing the diameter of the copper pipe.
- the intermediate heat treatment is performed before the final heat treatment, but the method for producing an internally grooved tube for a heat exchanger according to the present invention. Then, after performing the intermediate heat treatment, before the final heat treatment is performed, the rolling process is performed in accordance with the diameter reduction process.
- the degree of outer diameter processing in the processing after performing the intermediate heat treatment and before performing the final heat treatment greatly affects the formation of the recrystallized texture. Therefore, in the method for manufacturing an internally grooved tube for a heat exchanger according to the present invention, the reduction rate of the outer diameter in the processing from the intermediate heat treatment to the final heat treatment is 16% or less, so that the Goss orientation in the recrystallized texture is reduced.
- the orientation density can be 3.2 or less.
- the outer diameter reduction rate in the processing from the intermediate heat treatment to the final heat treatment is 6 to 16%.
- the outer diameter reduction rate in the processing from the intermediate heat treatment to the final heat treatment is calculated by the formula “((outer diameter before processing ⁇ outer diameter after processing) / outer diameter before processing) ⁇ 100”.
- the diameter of the pipe after the diameter reduction and the rolling process is reduced with respect to the outer diameter of the pipe before the diameter reduction and the rolling process. This is the decrease rate of the outer diameter.
- the holding temperature is preferably 400 to 600 ° C.
- the treatment time for the final heat treatment is appropriately selected so that the tensile strength, 0.2% proof stress and elongation of the internally grooved tube are within a predetermined range.
- the cooling rate in the final heat treatment is slow, the Goss orientation is likely to develop during the cooling process, and it is difficult to reduce the orientation density of the Goss orientation in the texture of the internally grooved tube to 3.2 or less.
- the cooling rate of the final heat treatment is 1.0 ° C./min or more, preferably 5.0 ° C./min or more, and particularly preferably 20.0 ° C./min or more.
- the average temperature increase rate from room temperature to a predetermined temperature in the final heat treatment is also high.
- the average rate of temperature increase from room temperature to a predetermined temperature in the final heat treatment is preferably 5 ° C./min or more.
- An example of an internally grooved copper tube is shown below.
- Ingots of chemical components shown in Table 1 were melted and cast to produce billets for hot extrusion.
- (2) The billet was heated and subjected to hot extrusion at 850 ° C. to obtain an extruded tube.
- the extruded extruded tube was extruded into water and quenched.
- the inner diameter was about 75 mm perforated before extrusion.
- the outer diameter of the extruded element tube was 102 mm, and the inner diameter was 75 mm.
- the extruded blank was cold-rolled with a Birger mill to obtain a rolled blank.
- -The rolling tube had an outer diameter of 46 mm and an inner diameter of 39.8 mm.
- Cross-sectional reduction rate (%) ((cross-sectional area before processing ⁇ cross-sectional area after processing) / cross-sectional area before processing) ⁇ 100 (4)
- the above-mentioned rolled blank was cold drawn a plurality of times to obtain a drawn blank.
- the outer diameter of the drawn element tube was 7.8 to 10.0 mm, and the bottom wall thickness was 0.19 to 0.25 mm. ⁇
- the workability of the entire cold drawing was 97.1 to 98.3% in terms of cross-sectional reduction.
- the total degree of cold rolling and cold drawing, that is, the total degree of cold working was 99.8 to 99.9% in terms of the cross-section reduction rate.
- the average crystal grain size, crystal orientation distribution function (ODF), tensile properties, and hairpin bending workability were evaluated by the following methods. The results are listed in Table 2.
- ⁇ Average crystal grain size> For the plane parallel to the axial direction of the copper tube, the average crystal grain size in the thickness direction of the copper tube is measured by the cutting method defined in JISH0501, and this is measured at any 10 locations in the axial direction of the copper tube. The results were averaged to obtain an average crystal grain size ( ⁇ m).
- ⁇ Crystal orientation distribution function (ODF)> The orientation density of each crystal orientation was obtained by obtaining ODF by three-dimensional orientation analysis from the pole figure measured with an X-ray diffractometer (RINT2000 manufactured by Rigaku Corporation).
- the ODF was calculated by the series expansion method proposed by Bunge with the expansion order of even terms as 22nd order and the expansion order of odd terms as 19th order.
- the azimuth density is indicated by a ratio between the azimuth density of a specific azimuth and the azimuth density of a sample having a random azimuth and is expressed as a random ratio.
- the random intensity Ir was calculated from the specimen sample intensity Ic by the following formula.
- the r value was measured by a tensile test.
- the test piece was a JIS Z2201 No. 11 test piece, and the grip portion was punched into a flat piece.
- the test piece was strained by 20% with an Instron precision universal testing machine, the amount of change in the outer diameter and thickness of the copper tube was measured, and the r value was calculated.
- Flatness ratio (%) ((maximum outer diameter ⁇ minimum outer diameter) / nominal outer diameter) ⁇ 100
- the measurement positions are 45 °, 90 °, and 135 ° positions of the hairpin bending portion, and the nominal outer diameter is 7.0 mm in this example.
- 45 °, 90 °, and 135 ° of the hairpin bending portion are a position where the inner grooved tube is bent by 45 ° (symbol a), a position where 90 ° is bent (symbol b), 135 ° Bent position (reference c).
- the flatness of each inner grooved tube tested was determined, and the case where the average value of the flatness was 15% or less was determined to be acceptable ( ⁇ ).
- Example E1 to E6 as shown in Table 1, by setting the outer diameter reduction rate in the rolling process to 6 to 16%, the orientation density of Goss orientation in the recrystallized texture shown in Table 2 is 3. The r value is as high as 1 or more. Also in E7 to E12, by setting the outer diameter reduction rate to 6 to 16%, the orientation density of the Goss orientation becomes 3.2 or less, and the r value is as high as 1 or more. As a result, in Examples E1 to E12, good hairpin bending workability is obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Extraction Processes (AREA)
Abstract
本発明は、銅合金製の熱交換器用内面溝付管であり、該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、を特徴とする熱交換器用内面溝付管である。また、本発明は、鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行い、該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、を特徴とする熱交換器用内面溝付管の製造方法である。本発明によれば、優れた曲げ加工性を有する熱交換器用内面溝付管を提供することができる。
Description
本発明は、エアコン、エコキュートなどのクロスフィン型熱交換器の伝熱管用として、加工性に優れる内面溝付管に関する。
従来より、ルームエアコン、パッケージエアコンなどの空調機用熱交換器の伝熱管又は冷媒配管には、銅継目無管が多く採用されており、強度や加工性、伝熱性等の諸物性、並びに材料及び加工コストにバランスの取れたりん脱酸銅管(JIS H3300 C1220T)が使用されてきた。
これらの熱交換器では、主として、内面にらせん状の溝加工を施した銅管(以下、内面溝付管)と、アルミニウム又はアルミニウム合金板からなるフィン(以下、アルミニウムフィン)から構成される。具体的には、熱交換器の伝熱部は、U字形に曲げ加工(以下、ヘアピン曲げ加工)した銅管をアルミニウムフィンの貫通孔に通し、ヘアピン曲げ加工した銅管内に治具を挿入して拡管することにより、内面溝付管とアルミニウムフィンとを密着させる。そして、更に、このヘアピン曲げ銅管の開放端を拡管して、この拡管開放端部に、同じくU字形に曲げ加工したベンド銅管を挿入し、りん銅ろう等のろう材により、ベンド銅管を内面溝付管の拡管開放端部にろう付けすることにより接続して、熱交換器とされる。
近年、伝熱管として用いられる銅管では、伝熱性能の向上やコストダウンの要求により重量の低減、すなわち細径化及び薄肉化が必要となってきており、ヘアピン曲げ加工条件においてもヘアピン曲げピッチが小さく厳しくなる傾向にある。具体的には、外径に対する肉厚の比(t/D)が0.04以下まで薄肉化がなされ、ヘアピン曲げピッチが小さく厳しいヘアピン曲げ条件で行われる場合には、ヘアピン曲げの内側部分にしわが発生したり、曲げ部分が偏平したり、外観品質上の価値を著しく損ない、極端な場合、破断が生じるという課題があった。
このような曲げ加工性の改善を検討した銅管としては、0.1~3.0質量%のSn、0.005~0.1質量%のPを含む銅合金において、平均結晶粒径を30μm以下に安定して制御することで加工性に優れることが見出されている(特許文献1)。
また、集合組織に着目し、圧延集合組織のβファイバーに属するCu方位、S方位、Brass方位の各方位の平均面積率の和を10~25%の範囲とすることで、銅管の破壊強度と曲げ加工性を改善できることが提案されている(特許文献2)。
しかし、上記の従来技術は、平滑管においては、大きな効果が期待できるものの、伝熱管として多く用いられる内面溝付管では、平滑管の製造工程である熱間押出、冷間圧延、冷間抽伸に加え、更に中間焼鈍、冷間抽伸、仕上焼鈍が行なわれており、内面溝付銅管において未だ十分な対策ができているとは言えない。
従って、本発明の目的は、かかる従来の問題点を解決することであり、優れた曲げ加工性を有する熱交換器用内面溝付銅管を提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、銅合金の組成を特定の組成とし、その組成を有する銅合金を用いて内面溝付管を製造するときに、中間熱処理から最終熱処理までの間の加工において、外径減少率を6~16%として、再結晶集合組織のGoss方位の方位密度を3.2以下に制御することにより、加工性に優れた内面溝付管が得られることを見出し、本発明を完成させるに至った。
すなわち、本発明(1)は、銅合金製の熱交換器用内面溝付管であり、
該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、
該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、
を特徴とする熱交換器用内面溝付管を提供するものである。
該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、
該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、
を特徴とする熱交換器用内面溝付管を提供するものである。
また、本発明(2)は、前記銅合金が、更に、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を、合計で0.07質量%以下含有することを特徴とする(1)記載の熱交換器用内面溝付管を提供するものである。
また、本発明(3)は、鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う熱交換器用内面溝付管の製造方法であり、
該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法を提供するものである。
該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法を提供するものである。
また、本発明(4)は、前記銅合金が、更に、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を、合計で0.07質量%以下含有することを特徴とする(3)記載の熱交換器用内面溝付管の製造方法を提供するものである。
本発明によれば、優れた曲げ加工性を有する熱交換器用内面溝付管を提供することができる。
本発明の熱交換器用内面溝付管は、銅合金製の熱交換器用内面溝付管であり、
該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、
該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、
を特徴とする熱交換器用内面溝付管である。
該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、
該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、
を特徴とする熱交換器用内面溝付管である。
先ず、本発明の熱交換器用内面溝付管を形成している銅合金の集合組織及び特性について説明する。
本発明の熱交換器用内面溝付管を形成している銅合金は、その再結晶集合組織において、結晶粒が微細に一様に存在しており、Goss方位への方位密度が3.2以下と低い。
ここで、銅材料の集合組織について説明する。銅等の多結晶材料は、いくつかの特定方位に結晶粒が配向した組織、すなわち集合組織を持つことが多い。上記方位としては、Cube方位、Goss方位、Brass方位、S方位、Copper方位等がある。また、結晶方位が均一に分散して集積がないとき、集合組織はランダムであるという。また、集合組織の体積分率が変化すると、塑性異方性が変化することが知られている。
上記の集合組織は、同一の結晶系であっても加工方法によって異なる。銅管は、一般的に押出によって製造されるが、押出による銅管の集合組織の場合も、圧延による板材の集合組織の場合と同様に、押出素管の押出面と押出方向(押出素管を圧延加工する場合は圧延面と圧延方向)で表される。押出面は面を表すミラー指数(h k l)で表現され、押出方向は方向を表すミラー指数[u v w]で表現される(h、k、l、u、v及びwは整数)。そして、hu+kv+lw=0の条件を満たすように、h、k及びlとu、v及びwの順番を入れ替えて得られる24通りの等価な方位群を取りまとめて、{h,k,l}<u,v,w>と表し,方位の一般的表示としている。
かかる表現方法に基づいて、上記各方位は以下のように示される。
Cube方位:{001}<100>
Goss方位:{011}<100>
Brass方位:{011}<211>
Copper方位:{112}<111>
S方位:{123}<634>
Cube方位:{001}<100>
Goss方位:{011}<100>
Brass方位:{011}<211>
Copper方位:{112}<111>
S方位:{123}<634>
上記集合組織の方位密度とは、ランダムな方位に対する各方位の強度を比率で示したものである。本発明ではこれらの方位から±10度以内の方位のずれは同一の方位であると定義する。ただし、Copper方位及びS方位に関しては、±9度以内の方位のずれを同一の方位であると定義する。
上記方位密度の分布は、例えば、X線回折法を用いて、結晶方位分布関数(ODF)を求めることにより測定される。具体的には、X線回折装置で測定した極点図から、3次元方位解析によりODFを求めることで、各結晶方位の方位密度を求める。ODFではBungeの提唱した級数展開法により偶数項の展開次数を22次、奇数項の展開次数を19次として計算する。なお、方位密度は、特定方位の方位密度とランダム方位を有する試料の方位密度との比で示し、ランダム比と表記する。ランダム強度Irについては、検体試料強度Icから次式により算出する。
上記数式中、α,βは測定角度,Δsはステップ角度である。
本発明の熱交換器用内面溝付管では、曲げ加工性向上の観点から、内面溝付管を形成している銅合金の「ランダムな集合組織」における、Goss方位の方位密度の許容量を3.2以下とし、できるだけGoss方位の方位密度を低くする。なお、内面溝付管を形成している銅合金のランダムな集合組織におけるGoss方位を無くす(方位密度を0とする)ことは、製造上困難であるので、本発明の熱交換器用内面溝付管では、内面溝付管を形成している銅合金のGoss方位の方位密度は0より大きくなる。
そして、本発明の熱交換器用内面溝付管では、内面溝付管のヘアピン曲げ加工性を低下させるGoss方位の方位密度を3.2以下とすれば、r値が1以上となり、ヘアピン曲げ加工における曲げ部内側での座屈、曲げ部での扁平を抑制することができる。つまり、本発明の熱交換器用内面溝付管は、内面溝付管を形成する銅合金のGoss方位の方位密度が0より大きく且つ3.2以下であることにより、ヘアピン曲げ加工における曲げ部内側での座屈、曲げ部での扁平を抑制することができるので、優れた加工性を有する。
これに対して、内面溝付管を形成している銅合金のGoss方位の方位密度が3.2を超えると、銅管の集合組織におけるGoss方位を有した結晶粒が多過ぎることとなるため、銅管のr値が著しく小さくなり、ヘアピン曲げ加工において内面溝付管をバランスよく変形させることができなくなる。この結果、内面溝付管の曲げ部内側での座屈や、曲げ部での扁平化、極端な場合、割れが生じてしまう。
ランダムな集合組織を構成するGoss方位以外の上記各方位の方位密度は、通常の内面溝付管の製造条件又は製造方法であれば、各々10以内となり、例えば10を超えて大きくなることはほとんどない。そして、本発明の熱交換器用内面溝付管では、内面溝付管を形成している銅合金のGoss方位以外の上記各方位の方位密度は、各々10以内であり、内面溝付管の製造工程上、大きな変化は生じ難く、内面溝付管のヘアピン曲げ加工性には、大きく影響しない。
また、本発明の熱交換器用内面溝付管では、内面溝付管を形成している銅合金の平均結晶粒径が30μm以下であることが好ましい。内面溝付管の厚みが比較的厚い場合にはあまり影響ないが、軽量化、薄肉化の要求により、内面溝付管の厚みが特に200μm以下に薄肉化される場合には、この結晶粒径の大きさの影響が著しく大きくなる。すなわち、銅合金の平均結晶粒径が大き過ぎると、内面溝付管の円周方向に加わる引張力によって亀裂が発生する際の「ひずみの集中」を避けることができず、ヘアピン曲げ加工において良好な変形を行うことができない。この結果、上記Goss方位の方位密度を制御しても、良好なヘアピン曲げ加工性を維持することが困難となる場合がある。
銅合金の平均結晶粒径は、内面溝付管の軸方向に平行の面について、JISH0501に定められた切断法により、内面溝付管の肉厚方向の平均結晶粒径を測定して、これを内面溝付管の軸方向の任意の10箇所で測定した結果を平均し、平均結晶粒径(μm)とする。
次に、本発明の熱交換器用内面溝付管を形成している銅合金の成分組成について説明する。本発明の熱交換器用内面溝付管を形成している銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる。
また、本発明の熱交換器用内面溝付管を形成している銅合金は、Pに加え、更に、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択された1種又は2種以上の元素を合計で0.07質量%以下含有することができる。つまり、本発明の熱交換器用内面溝付管を形成している銅合金は、0.004~0.040質量%のPと、合計で0.07質量%以下のFe、Mn、Mg、Cr、Ti及びZrからなる群から選択された1種又は2種以上の元素と、を含有し、残部がCu及び不可避的不純物からなる。
銅合金中のPの含有量が0.04質量%を超えると、応力腐食割れ感受性が高くなると共に、熱伝導率が大きく低下し、また、Pの含有量が0.004質量%未満であると、脱酸不足により酸素量が増加して水素脆化の感受性が高まり、鋳塊の健全性が低下する。よって、本発明の熱交換器用内面溝付管を形成している銅合金のP含有量は、0.004~0.040質量%である。
Fe、Mn、Mg、Cr、Ti及びZrはいずれも、銅合金の強度、耐圧破壊強度及び耐熱性を向上させ、結晶粒を微細化して、内面溝付管の曲げ加工性を向上させる。ただし、銅合金がFe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を含有する場合、これらの元素の合計含有量が0.07質量%を超えると、押出圧力が上昇するため、これらの元素を添加しないものと同一の押出力で押出を行おうとすると、熱間押出温度を上げることが必要になり、このことにより、押出材の表面酸化が多くなるので、内面溝付管において表面欠陥が多発してしまう。また、銅合金中のFe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素の合計含有量が0.07質量%を超えると、Goss方位の方位密度が3.2を超えてしまう。よって、本発明の熱交換器用内面溝付管を形成している銅合金が、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を含有する場合、銅合金中に含有されるこれらの元素の含有量の合計は、0.07質量%以下、好ましくは0.01~0.07質量%である。
本発明の熱交換器用内面溝付管の外径に対する肉厚の比(t/D)は、好ましくは0.020~0.050、特に好ましくは0.025~0.050である。
本発明の熱交換器用内面溝付管の製造方法は、鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う熱交換器用内面溝付管の製造方法であり、
該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法である。
該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法である。
また、本発明の熱交換器用内面溝付管の製造方法は、鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う熱交換器用内面溝付管の製造方法であり、
該鋳造工程で、0.004~0.040質量%のPと、合計で0.07質量%のFe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素と、を含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法である。
該鋳造工程で、0.004~0.040質量%のPと、合計で0.07質量%のFe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素と、を含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法である。
本発明の熱交換器用内面溝付管の製造方法では、鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理とを順に行うか、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理とを順に行う。なお、これら工程を順に行っているのであれば、これらの工程間に必要に応じて、本発明の効果を損なわない範囲で、種々の加工又は熱処理を行うことができる。
鋳造工程では、所定の化学成分が所定量含有されている銅合金の鋳塊を鋳造し、所定の寸法のビレットを作製する。例えば、鋳造工程では、原料の電気銅を木炭被覆の状態で溶解し、銅が溶解した後、脱酸を兼ねてCu-15質量%P中間合金としてPを添加する。成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。
熱間押出加工では、先ず、熱間押出加工前に上記ビレットを加熱炉にて所定の温度に加熱し、均質化処理を行なう。そして、熱間押出は、マンドレル押出により行われ、すなわち、加工前に冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行って、継目無熱間押出素管を得る。
熱間押出加工を行うことにより得られた継目無熱間押出素管を、熱間押出後、速やかに冷却する。冷却は、継目無熱間押出素管を水中へ押し出すこと又は熱間押出後の継目無熱間押出素管を水中へ投入することによって行われる。
冷間加工では、押出素管に圧延加工及び抽伸加工を行ない、外径と肉厚を低減させる。圧延加工では、加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減できる。抽伸加工は、通常、複数回の加工により行われるが、1回の抽伸における加工率(断面減少率)を35%以下にすることにより、素管における表面欠陥及び内部割れを低減できる。
中間熱処理では、保持温度400~700℃で加熱することにより、転造加工工程での転造加工をし易くする。中間熱処理の昇温速度は、20℃/分以上、好ましくは40℃/分以上である。中間熱処理での保持温度が、400℃未満だと、Goss方位の集合組織が発達し過ぎるため、Goss方位の方位密度が3.2を超えてしまい、良好なヘアピン曲げ加工性が得られず、また、700℃を超えると、結晶粒が粗大化されて、転造加工での外観不良の原因となる。
転造加工は、管材料の内面に、内面溝を形成させる転造加工を行う工程であり、中間熱処理後の継目無管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外径から押圧して、管の内面に転造プラグの溝を転写することにより行われる。また、通常、中間熱処理を行った後、銅管の径を減ずる縮径加工とあわせて転造加工を行う。
本発明の熱交換器用内面溝付管の製造方法において、中間熱処理を行った後、最終熱処理を行う前までの間の加工についてであるが、本発明の熱交換器用内面溝付管の製造方法では、中間熱処理を行った後、最終熱処理を行う前までの間に、縮径加工をあわせた転造加工を行う。そして、中間熱処理を行った後から最終熱処理を行う前までの間の加工での外径加工度は、再結晶集合組織の形成に大きく影響を与える。そこで、本発明の熱交換器用内面溝付管の製造方法では、中間熱処理から最終熱処理までの間の加工での外径減少率を16%以下とすることで、再結晶集合組織におけるGoss方位の方位密度を3.2以下とすることができる。しかし、転造加工での外径減少率を6%未満としようとしても、内面に溝付け加工を行うためのプラグを保持できずに転造加工を行うことができない。よって、本発明の熱交換器用内面溝付管の製造方法では、中間熱処理から最終熱処理までの間の加工での外径減少率を6~16%とする。なお、中間熱処理から最終熱処理までの間の加工での外径減少率とは、「((加工前の外径-加工後の外径)/加工前の外径)×100」の式で算出され、縮径加工と転造加工とを行う本発明の熱交換器用内面溝付管の製造方法では、縮径及び転造加工前の管の外径に対する縮径及び転造加工後の管の外径の減少率である。
最終熱処理では、保持温度を400~600℃とすることが好ましい。また、最終熱処理の処理時間は、内面溝付管の引張強さ、0.2%耐力及び伸びが所定の範囲となるように、適宜選択される。
ここで、最終熱処理での冷却速度が遅いと、冷却過程でGoss方位が発達し易くなり、内面溝付管の集合組織におけるGoss方位の方位密度を3.2以下とすることが難しくなり、また、冷却過程で結晶粒が粗大化し易くなる。このため、最終熱処理の冷却速度は、1.0℃/分以上、好ましくは5.0℃/分以上、特に好ましくは20.0℃/分以上である。また、結晶粒を粗大化させないためには、最終熱処理での室温から所定温度までの平均昇温速度も速いほうが好ましい。最終熱処理での昇温速度が、5℃/分より遅いと、同じ温度に加熱しても結晶粒が粗大化し易く、耐圧破壊強度及びヘアピン曲げ加工性が低くなり易く、また、生産性を阻害することになる。そのため、最終熱処理での室温から所定温度までの平均昇温速度は5℃/分以上が好ましい。
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
以下に,内面溝付銅管の実施例を示す。
(1)表1に示す化学成分の鋳塊を溶解及び鋳造し、熱間押出用のビレットを作製した。(2)上記ビレットを加熱し、850℃にて熱間押出を行い、押出素管を得た。次いで、熱間押出した押出素管を、水中に押出して急冷した。
・押出前に熱間で内径約75mm穿孔した。
・押出素管の外径は102mm,内径は75mmであった。
(3)上記押出素管を、ビルガーミル圧延機によって冷間圧延し、圧延素管を得た。
・圧延素管の外径は46mm、内径は39.8mmであった。
・冷間圧延での加工度(断面減少率)は、88.9%であった。
断面減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
(4)上記の圧延素管を、冷間にて抽伸を複数回行い、抽伸素管を得た。
・抽伸素管の外径は7.8~10.0mm、底肉厚は0.19~0.25mmであった。・冷間抽伸全体での加工度は、断面減少率で97.1~98.3%であった。
・冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.8~99.9%であった。
(5)上記の抽伸素管を中間熱処理し、転造加工に供するための原管を得た。
・中間熱処理は保持温度530℃で実施した。
(6)上記の原管を、ボール転造加工して、内面溝付管を得た。
<内面溝付管の寸法諸元>
・外径:7.0mm
・肉厚(図2中、符号t):0.17mm
・フィン高さ(図2中、符号h):0.16mm
・フィン頂角(図2中、符号γ):10°
・溝条数:45条
・リード角α(図3中、符号α):30°
・転造加工での加工度は、次式により算出した。
断面積減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
外径減少率(%)=((加工前の外径-加工後の外径)/加工前の外径)×100
肉厚減少率(%)=((加工前の底肉厚-加工後の底肉厚)/加工前の肉厚)×100
(7)上記の内面溝付管を、円筒状の整列多層巻きに巻き取り、内面側から巻き解かれる方式のLWCを作製した。その後,下記の条件の最終熱処理を行い、内面溝付管(レベルワウンドコイル(LWC))を得た。
・熱処理方法:ローラーハース連続焼鈍炉にて行った。
・条件:保持温度は500℃で実施した。
(1)表1に示す化学成分の鋳塊を溶解及び鋳造し、熱間押出用のビレットを作製した。(2)上記ビレットを加熱し、850℃にて熱間押出を行い、押出素管を得た。次いで、熱間押出した押出素管を、水中に押出して急冷した。
・押出前に熱間で内径約75mm穿孔した。
・押出素管の外径は102mm,内径は75mmであった。
(3)上記押出素管を、ビルガーミル圧延機によって冷間圧延し、圧延素管を得た。
・圧延素管の外径は46mm、内径は39.8mmであった。
・冷間圧延での加工度(断面減少率)は、88.9%であった。
断面減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
(4)上記の圧延素管を、冷間にて抽伸を複数回行い、抽伸素管を得た。
・抽伸素管の外径は7.8~10.0mm、底肉厚は0.19~0.25mmであった。・冷間抽伸全体での加工度は、断面減少率で97.1~98.3%であった。
・冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.8~99.9%であった。
(5)上記の抽伸素管を中間熱処理し、転造加工に供するための原管を得た。
・中間熱処理は保持温度530℃で実施した。
(6)上記の原管を、ボール転造加工して、内面溝付管を得た。
<内面溝付管の寸法諸元>
・外径:7.0mm
・肉厚(図2中、符号t):0.17mm
・フィン高さ(図2中、符号h):0.16mm
・フィン頂角(図2中、符号γ):10°
・溝条数:45条
・リード角α(図3中、符号α):30°
・転造加工での加工度は、次式により算出した。
断面積減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
外径減少率(%)=((加工前の外径-加工後の外径)/加工前の外径)×100
肉厚減少率(%)=((加工前の底肉厚-加工後の底肉厚)/加工前の肉厚)×100
(7)上記の内面溝付管を、円筒状の整列多層巻きに巻き取り、内面側から巻き解かれる方式のLWCを作製した。その後,下記の条件の最終熱処理を行い、内面溝付管(レベルワウンドコイル(LWC))を得た。
・熱処理方法:ローラーハース連続焼鈍炉にて行った。
・条件:保持温度は500℃で実施した。
製造した内面溝付管に関して、以下の方法で平均結晶粒径、結晶方位分布関数(ODF)、引張特性、ヘアピン曲げ加工性を評価した。その結果を表2に記載する。
<平均結晶粒径>
銅管の軸方向に平行の面について、JISH0501に定められた切断法により、銅管の肉厚方向の平均結晶粒径を測定して、これを銅管の軸方向の任意の10箇所で測定した結果を平均し、平均結晶粒径(μm)とした。
銅管の軸方向に平行の面について、JISH0501に定められた切断法により、銅管の肉厚方向の平均結晶粒径を測定して、これを銅管の軸方向の任意の10箇所で測定した結果を平均し、平均結晶粒径(μm)とした。
<結晶方位分布関数(ODF)>
X線回折装置(株式会社リガク製RINT2000)で測定した極点図から、3次元方位解析によりODFを求めることで、各結晶方位の方位密度を求めた。ODFについてはBungeの提唱した級数展開法により偶数項の展開次数を22次、奇数項の展開次数を19次として計算した。なお、方位密度は、特定方位の方位密度とランダム方位を有する試料の方位密度との比で示し、ランダム比と表記した。ランダム強度Irについては検体試料強度Icから次式により算出した。
X線回折装置(株式会社リガク製RINT2000)で測定した極点図から、3次元方位解析によりODFを求めることで、各結晶方位の方位密度を求めた。ODFについてはBungeの提唱した級数展開法により偶数項の展開次数を22次、奇数項の展開次数を19次として計算した。なお、方位密度は、特定方位の方位密度とランダム方位を有する試料の方位密度との比で示し、ランダム比と表記した。ランダム強度Irについては検体試料強度Icから次式により算出した。
<引張特性>
引張試験によりr値を測定した。試験片は、JIS Z2201の11号試験片とし、つかみ部はつち打ちして平片とした。その試験片をインストロン型精密万能試験機にて20%のひずみを加えて、銅管の外径変化量、肉厚変化量を測定し、r値を算出した。
引張試験によりr値を測定した。試験片は、JIS Z2201の11号試験片とし、つかみ部はつち打ちして平片とした。その試験片をインストロン型精密万能試験機にて20%のひずみを加えて、銅管の外径変化量、肉厚変化量を測定し、r値を算出した。
<ヘアピン曲げ加工性>
芯金の外径を6.15mm、曲げピッチを16mmとして、ヘアピン加工性の評価を行った。各実施例及び比較例の内面溝付管について,20本ずつ試験を行った。評価は以下の通りとした。
(I)しわ発生
ヘアピン曲げの内側部分にしわが発生している内面溝付管の数を数え、下記式にて、しわ発生率を求めた。しわ発生率が0%の場合を合格(○)とした。
しわ発生率(%)=(しわが発生した管の本数/試験した管の本数)×100
(II)扁平率
ヘアピン曲げ後の曲げ部の扁平率を下記にて算出した。
扁平率(%)=((最大外径-最小外径)/呼称外径)×100
なお,測定位置は、ヘアピン曲げ部の45°、90°、135°位置であり、呼称外径は、本例では7.0mmである。なお、ヘアピン曲げ部の45°、90°、135°とは、図1に示すように、内面溝付管を45°曲げた位置(符号a)、90°曲げた位置(符号b)、135°曲げた位置(符号c)である。試験した各内面溝付管の扁平率を求め、扁平率の平均値が15%以下の場合を合格(○)とした。
芯金の外径を6.15mm、曲げピッチを16mmとして、ヘアピン加工性の評価を行った。各実施例及び比較例の内面溝付管について,20本ずつ試験を行った。評価は以下の通りとした。
(I)しわ発生
ヘアピン曲げの内側部分にしわが発生している内面溝付管の数を数え、下記式にて、しわ発生率を求めた。しわ発生率が0%の場合を合格(○)とした。
しわ発生率(%)=(しわが発生した管の本数/試験した管の本数)×100
(II)扁平率
ヘアピン曲げ後の曲げ部の扁平率を下記にて算出した。
扁平率(%)=((最大外径-最小外径)/呼称外径)×100
なお,測定位置は、ヘアピン曲げ部の45°、90°、135°位置であり、呼称外径は、本例では7.0mmである。なお、ヘアピン曲げ部の45°、90°、135°とは、図1に示すように、内面溝付管を45°曲げた位置(符号a)、90°曲げた位置(符号b)、135°曲げた位置(符号c)である。試験した各内面溝付管の扁平率を求め、扁平率の平均値が15%以下の場合を合格(○)とした。
実施例E1~E6では、表1に示すように転造工程での外径減少率を6~16%とすることで、表2に示される再結晶集合組織におけるGoss方位の方位密度が3.2以下となり、r値は1以上と高い。また、E7~E12においても、外径減少率を6~16%とすることで、Goss方位の方位密度が3.2以下となり、r値は1以上と高い。これらのことにより、実施例E1~E12では、良好なヘアピン曲げ加工性が得られている。
比較例C1、C2については、転造加工での外径減少率が6%未満であるために内面に溝付け加工を行うためのプラグを保持できずに転造加工を行うことができなかった。
比較例C3~C5では,転造加工を行うことができたものの,外径減少率が16%を超えたためにGoss方位の方位密度が3.2よりも高くなり、r値が1未満に下がり、必要なヘアピン曲げ加工性が得られなかった。
比較例C6~C12では、成分組成が規定量を越えているために、外径減少率を6~16%としても、Goss方位の方位密度が高くなり、ヘアピン曲げ加工性が低くなった。
l 管軸
P 曲げピッチ
t 肉厚(底肉厚)
h フィン高さ
s 内面溝の最も深い位置
γ フィン頂角
α リード角
P 曲げピッチ
t 肉厚(底肉厚)
h フィン高さ
s 内面溝の最も深い位置
γ フィン頂角
α リード角
Claims (4)
- 銅合金製の熱交換器用内面溝付管であり、
該銅合金は、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなり、
該銅合金の再結晶集合組織のGoss方位の方位密度が、0より大きく且つ3.2以下であること、
を特徴とする熱交換器用内面溝付管。 - 前記銅合金が、更に、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を、合計で0.07質量%以下含有することを特徴とする請求項1記載の熱交換器用内面溝付管。
- 鋳造工程と、熱間押出加工と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う、あるいは、鋳造工程と、冷間加工と、中間熱処理と、転造加工と、最終熱処理と、を順に行う熱交換器用内面溝付管の製造方法であり、
該鋳造工程で、0.004~0.040質量%のPを含有し、残部がCu及び不可避的不純物からなる銅合金を鋳造すること、
該中間熱処理から該最終熱処理までの間の加工での外径減少率が6~16%であること、
を特徴とする熱交換器用内面溝付管の製造方法。 - 前記銅合金が、更に、Fe、Mn、Mg、Cr、Ti及びZrからなる群から選択される1種又は2種以上の元素を、合計で0.07質量%以下含有することを特徴とする請求項3記載の熱交換器用内面溝付管の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580060474.8A CN107109531A (zh) | 2014-11-05 | 2015-10-29 | 换热器用内面带槽管及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014225010A JP6388398B2 (ja) | 2014-11-05 | 2014-11-05 | 熱交換器用内面溝付管及びその製造方法 |
JP2014-225010 | 2014-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072339A1 true WO2016072339A1 (ja) | 2016-05-12 |
Family
ID=55909065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/080495 WO2016072339A1 (ja) | 2014-11-05 | 2015-10-29 | 熱交換器用内面溝付管及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6388398B2 (ja) |
CN (1) | CN107109531A (ja) |
MY (1) | MY181594A (ja) |
WO (1) | WO2016072339A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024075797A1 (ja) * | 2022-10-07 | 2024-04-11 | 株式会社 Kmct | 耐食性銅合金、銅合金管および熱交換器 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6964498B2 (ja) * | 2016-11-30 | 2021-11-10 | 三菱アルミニウム株式会社 | 内面螺旋溝付管および熱交換器と内面螺旋溝付管の製造方法 |
JP7491960B2 (ja) * | 2021-04-19 | 2024-05-28 | 株式会社Kmct | 耐食性銅合金、銅合金管および熱交換器 |
WO2022224940A1 (ja) * | 2021-04-19 | 2022-10-27 | 株式会社 Kmct | 耐食性銅合金、銅合金管および熱交換器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102690A (ja) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | 破壊強度に優れた熱交換器用銅合金管 |
JP2011168846A (ja) * | 2010-02-19 | 2011-09-01 | Kobe Steel Ltd | 破壊強度および曲げ加工性に優れた熱交換器用銅管 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6244588B2 (ja) * | 2013-03-11 | 2017-12-13 | 株式会社Uacj | 伝熱管用銅合金継目無管 |
-
2014
- 2014-11-05 JP JP2014225010A patent/JP6388398B2/ja active Active
-
2015
- 2015-10-29 MY MYPI2017701517A patent/MY181594A/en unknown
- 2015-10-29 WO PCT/JP2015/080495 patent/WO2016072339A1/ja active Application Filing
- 2015-10-29 CN CN201580060474.8A patent/CN107109531A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102690A (ja) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | 破壊強度に優れた熱交換器用銅合金管 |
JP2011168846A (ja) * | 2010-02-19 | 2011-09-01 | Kobe Steel Ltd | 破壊強度および曲げ加工性に優れた熱交換器用銅管 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024075797A1 (ja) * | 2022-10-07 | 2024-04-11 | 株式会社 Kmct | 耐食性銅合金、銅合金管および熱交換器 |
Also Published As
Publication number | Publication date |
---|---|
JP2016089217A (ja) | 2016-05-23 |
JP6388398B2 (ja) | 2018-09-12 |
MY181594A (en) | 2020-12-29 |
CN107109531A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101053007B1 (ko) | 열교환기용 구리합금관 | |
JP3794341B2 (ja) | 内面溝付管及びその製造方法 | |
WO2016072339A1 (ja) | 熱交換器用内面溝付管及びその製造方法 | |
JP5534777B2 (ja) | 銅合金継目無管 | |
JP2008266738A (ja) | 3層クラッドアルミニウム管およびアルミニウム製内面溝付き管の製造方法 | |
JP2013040397A (ja) | 高強度及び高伝導性のパイプ用銅合金材及びその製造方法 | |
JP6244213B2 (ja) | 熱交換器用銅管 | |
JP5107841B2 (ja) | 曲げ加工性に優れた熱交換器用銅合金管 | |
JP5132845B2 (ja) | 継目無管、コイル、レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法 | |
JP6271826B1 (ja) | 高耐食性銅管 | |
JP6114939B2 (ja) | 継目無管、レベルワウンドコイル及びクロスフィンチューブ型熱交換器及びその製造方法 | |
WO2018061277A1 (ja) | 高耐食性銅管 | |
JP2014109040A (ja) | レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法 | |
JP5404139B2 (ja) | 熱交換器用銅合金管 | |
JP5357403B2 (ja) | 成形性に優れたアルミニウム製内面溝付き管およびその製造方法 | |
JP6101969B2 (ja) | レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法 | |
JP2017036468A (ja) | 銅合金管 | |
WO2013157461A1 (ja) | レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法 | |
JP5208562B2 (ja) | 継目無管 | |
JP2014109041A (ja) | レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法 | |
JP6402043B2 (ja) | 高強度銅合金管 | |
JP2011094175A (ja) | 銅合金継目無管 | |
JP2011094176A (ja) | 銅合金継目無管 | |
JP2013224768A (ja) | 内面溝付き2層クラッドアルミニウム合金管、及び、熱交換器、並びに、内面溝付き2層クラッドアルミニウム合金管の製造方法 | |
JP2016003373A (ja) | 銅合金管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857894 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15857894 Country of ref document: EP Kind code of ref document: A1 |