WO2016072253A1 - 回路素子、及び回路素子の製造方法 - Google Patents
回路素子、及び回路素子の製造方法 Download PDFInfo
- Publication number
- WO2016072253A1 WO2016072253A1 PCT/JP2015/079604 JP2015079604W WO2016072253A1 WO 2016072253 A1 WO2016072253 A1 WO 2016072253A1 JP 2015079604 W JP2015079604 W JP 2015079604W WO 2016072253 A1 WO2016072253 A1 WO 2016072253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solder paste
- flux
- point metal
- circuit element
- melting
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H69/00—Apparatus or processes for the manufacture of emergency protective devices
- H01H69/02—Manufacture of fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/143—Electrical contacts; Fastening fusible members to such contacts
Definitions
- the present invention relates to a circuit element that retains flux such as a protective element and a short-circuit element that protects a circuit connected on the current path by fusing the current path, and a method for manufacturing the circuit element.
- protective elements mounted on secondary battery devices and the like have not only an overcurrent but also an overvoltage prevention function.
- the protective element is formed by laminating a soluble conductor composed of a heating element and a low-melting-point metal body on a substrate, and is formed so that the soluble conductor is blown by an overcurrent.
- the heating element is energized, and the heat of the heating element melts the soluble conductor.
- the melting of the fusible conductor is caused when the fusible conductor, which is a low melting point metal, is melted, and the molten low melting point metal is attracted onto the electrode due to the good wettability to the connected electrode surface.
- the molten conductor is divided to interrupt the current.
- Patent Document 1 Since the flux is rich in thermal fluidity, when it is exposed to a thermal environment such as a reflow furnace when mounting the protection element on the circuit board, the flux applied to the surface of the soluble conductor will not flow out and remain, The function may not be exhibited and may cause a fusing failure of the soluble conductor.
- Patent Document 1 and Patent Document 2 there is a protective element that enables rapid and accurate fusing of a soluble conductor at the time of abnormality by holding the flux on the soluble conductor in a predetermined position by an insulating cover portion. It is disclosed.
- Patent Document 3 by providing a flux-impregnated multi-gap metal body in the vicinity of a soluble conductor, the molten alloy is sucked into a metal mesh or the like while maintaining the flux action satisfactorily, thereby speeding up the operation speed.
- An illustrated alloy-type thermal fuse is disclosed.
- Patent Document 3 discloses that the flux action is satisfied by providing a flux-impregnated multi-gap metal body in the vicinity of a soluble conductor to hold the flux. There is no mention of stabilization of the fusing characteristics.
- the present invention has been made in view of the above problems, and a novel and improved circuit element capable of stabilizing its operating characteristics by sealing and holding a flux in a highly dispersed state, and It aims at providing the manufacturing method of a circuit element.
- One embodiment of the present invention is a circuit element that holds a flux in any of the portions that contact a soluble conductor, and includes at least one pair of electrodes provided on an insulating substrate, the electrode, and the soluble conductor.
- a gap in a highly dispersed state is provided in a connection medium that connects a soluble conductor and an electrode, and the flux is held in the gap to seal the flux in a highly dispersed state. Therefore, it is possible to stabilize the operating characteristics of the flux.
- the void portion has a gap diameter of 0.01 to 0.1 mm and a ratio of the gap diameter of 0.1 to 0.2 mm.
- the composition may be 40 to 80%.
- the flux can be more uniformly sealed and held in a highly dispersed state, so that the operational characteristics of the flux can be reliably stabilized.
- connection medium may include a low melting point metal and a high melting point metal, and each of the voids may be formed by being surrounded by particles of the high melting point metal.
- the gap for holding the flux can be formed in a uniform size, so that the flux is hermetically sealed and held in a more uniform and highly dispersed state so that its operating characteristics can be reliably stabilized.
- a method of manufacturing a circuit element that holds a flux in any of the portions that come into contact with a soluble conductor, the at least one pair of electrodes provided on an insulating substrate and the soluble conductor.
- a solder paste manufacturing step for forming a solder paste for forming a connection medium for connecting the solder paste, and a solder paste melting step for melting the solder paste, and in either the solder paste manufacturing step or the solder paste melting step
- a plurality of voids are formed in the connection medium formed by the solder paste, and at the same time, the flux is held in these voids.
- a high-dispersion void is intentionally formed in the solder paste in the process of generating a solder paste that connects the soluble conductor and the electrode, and at the same time, the flux is retained in the void. become able to.
- the low melting point metal and the high melting point metal are prepared in a predetermined weight ratio in the solder paste manufacturing step, and then the solder paste is melted in the solder paste melting step.
- the proportion of the connection medium having a void diameter of 0.01 to 0.1 mm is 1 to 40%, and the proportion of the void diameter of 0.1 to 0.2 mm0.1 is 40 to 80% to form the void portion.
- the flux may naturally be held in the gap.
- the flux can be more uniformly sealed and held in a highly dispersed state, so that the operational characteristics of the flux can be reliably stabilized.
- the predetermined weight ratio of the low melting point metal to the high melting point metal may be blended at 10:90 to 90:10.
- the low melting point metal melts and connects to the soluble conductor, whereas the high melting point metal does not melt, so the metal constituting the high melting point metal
- the metal constituting the high melting point metal By gathering a plurality of particles, voids surrounded by the metal particles are generated in a highly dispersed state, and flux can be held in the voids.
- the low-melting-point metal and the high-melting-point metal that are raw materials of the solder paste are each in a granular form, and the particle size of the low-melting-point metal is larger than the particle size of the high-melting-point metal. May be large.
- the high melting point metal can be covered more easily, and the void portion can be easily formed by the particles of the high melting point metal.
- the solder paste melting step includes a preheating step of heating to a predetermined temperature in advance, a main heating step of performing main soldering on the solder paste, and the main heating step.
- a cooling step of cooling after the end of the step, and in the solder paste melting step, the temperature condition of any of the preheating step, the main heating step, or the cooling step is adjusted to change the melting condition of the solder paste.
- the voids for holding the flux in the connection medium made of the solder paste can be formed in a highly dispersed state.
- a gap in a highly dispersed state is provided in a connection medium made of a solder paste that connects a soluble conductor and an electrode, and the flux is held in the gap. Characteristics can be stabilized. For this reason, it becomes possible to prevent the soluble conductor surface from being oxidized by the flux and to improve the fusing characteristics of the soluble conductor.
- FIG. 1 is a plan view of a protection element as an example of a circuit element according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along line AA of the protection element as an example of the circuit element according to the embodiment of the present invention shown in FIG.
- FIG. 3 is an enlarged view of a main part of a connection medium provided in a protection element as an example of a circuit element according to an embodiment of the present invention.
- FIG. 4 is an enlarged view of a gap formed in a connection medium provided in a protection element as an example of a circuit element according to an embodiment of the present invention.
- FIG. 5 is a cross-sectional view of a protection element as an example of a circuit element according to another embodiment of the present invention.
- FIG. 1 is a plan view of a protection element as an example of a circuit element according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along line AA of the protection element as an example of the circuit element according
- FIG. 6 is an enlarged view of a main part of a connection medium provided in a protection element as an example of a circuit element according to another embodiment of the present invention.
- FIG. 7 is an explanatory diagram showing temperature conditions in a method for manufacturing a circuit element according to another embodiment of the present invention.
- FIG. 1 is a plan view of a protection element as an example of a circuit element according to an embodiment of the present invention
- FIG. 2 is a protection element as an example of a circuit element according to an embodiment of the present invention shown in FIG. FIG.
- a protection element 10 As shown in FIG. 1, a protection element 10 according to an embodiment of the present invention has a heating element 12 and a soluble conductor 13 on an insulating substrate 11, and a soluble conductor that becomes a current path by the heat generation of the heating element 12. By fusing 13, the circuit connected on the current path is protected.
- the protective element 10 has a pair of electrodes 14 (14A, 14B) formed at both ends of the upper surface of the insulating base substrate 11, and other opposing edges that are orthogonal to the pair of electrodes 12 also have other elements.
- a pair of electrodes 15 (15A, 15B) is provided.
- a heating element 12 made of a resistor is connected between the electrodes 15A and 15B.
- a conductor layer 17 connected to one electrode 15 ⁇ / b> A is laminated on the heating element 12 via an insulating layer 16 disposed so as to cover the heating element 12.
- the central portion of the fusible conductor 13 which is a fuse made of a low melting point metal connected to the pair of electrodes 14 (14 ⁇ / b> A, 14 ⁇ / b> B), is wettable with respect to the molten fusible conductor 13. It is connected via a connection medium 18 (18C) made of a solder paste containing a good metal component.
- connection medium 18 made of solder paste, as shown in FIG. Details of the material and the like of the solder paste 18 forming the connection medium will be described later.
- the insulating substrate 11 is formed of an insulating member such as alumina, glass ceramics, mullite, zirconia, or the like.
- a material used for a printed wiring board such as a glass epoxy board or a phenol board may be used, but it is necessary to select a material while paying attention to the temperature at the time of blowing the fuse.
- a cover member formed of an insulating member may be placed on the insulating substrate 11 in order to protect the inside of the protection element 10.
- the heating element 12 is a conductive member that has a relatively high resistance value and generates heat when energized, and is made of, for example, W, Mo, Ru, or the like. These alloys, compositions, or compound powders are mixed with a resin binder or the like to form a paste on the insulating substrate 11 by patterning using a screen printing technique and firing.
- the fusible conductor 13 is made of a low melting point metal that is quickly melted by the heat generated by the heating element 12, and for example, Pb-free solder containing Sn as a main component can be suitably used.
- the soluble conductor 13 may be a laminate of a low melting point metal and a high melting point metal such as Ag, Cu, or an alloy containing these as a main component.
- the protection element 10 includes a soluble conductor 13 connected in series via a conductor layer 17 and a soluble conductor 13 by energizing and generating heat through a connection point of the soluble conductor 13.
- This is a circuit configuration comprising a heating element 12 that melts.
- the fusible conductor 13 is connected in series on the charge / discharge current path via the electrodes 14A and 14B, and the heating element 12 is connected to, for example, the current control element via the electrode 15B. Connected.
- the protection element 10 having such a circuit configuration can reliably melt the soluble conductor 13 on the current path by the heat generated by the heating element 12.
- a plurality of voids 19 are formed in a highly dispersed state in the connection medium 18 formed of solder paste, and at least one of these voids 19 is formed on the surface of the soluble conductor 13. Filled with a flux 19A used for preventing oxidation and improving fusing characteristics. That is, the protection element 10 of the present embodiment includes the connection mediums 18A and 18B for connection between the fusible conductor 13 serving as a fuse element and the electrodes 14A and 14B, and the fusible conductor 13 and the conductor layer 17.
- a plurality of voids 19 formed of holes, voids, surface depressions, and the like are formed in the connection medium 18C in a highly dispersed state, and the flux 19A is held in any of these voids 19.
- a known flux such as a rosin-based flux can be used.
- a halogen-free flux that does not contain a halogen element such as bromine is preferable, and the viscosity and the like are arbitrary.
- the gap 19 is formed in a highly dispersed state in any part where the protective element 10 contacts the soluble conductor 13, and the flux 19 ⁇ / b> A is provided in at least one of these gaps 19. Is configured to hold. For this reason, when the heating element 12 generates heat and the soluble conductor 13 is melted, the melting state of the soluble conductor 13 at the position where it is thermally coupled to the heating element 12 is made uniform, and the division of the soluble conductor 13 is promoted. As a result, the variation in fusing characteristics is reduced. That is, more uniform and reliable flux supply is possible, and stable melting operation characteristics are realized. Further, since it is not necessary to separately provide a space for placing the flux on the upper portion of the fusible conductor and a mechanism for holding it as in the prior art, it is possible to achieve a structure that can further reduce the height of the protective element 10. .
- FIG. 3 is an enlarged view of a main part of a connection medium provided in a protection element as an example of a circuit element according to an embodiment of the present invention
- FIG. 4 is an example of a circuit element according to an embodiment of the present invention. It is an enlarged view of the space
- the metal composition, the particle diameter, and the blending ratio of the connection medium 18 formed by the solder paste are adjusted to make the connection medium 18 porous, thereby forming a uniform size.
- a plurality of voids 19 are formed in a highly dispersed state.
- the solder paste that forms the connection medium 18 contains a metal component that has good wettability with respect to the meltable soluble conductor 13, and a lead-free material is used as a suitable material.
- the metal composition for producing the solder paste forming the connection medium 18 is a high melting point metal having a melting point higher than 300 ° C., such as silver Ag or copper Cu, and tin Sn or bismuth Bi.
- a low melting point metal having a melting point of 300 ° C. or less is blended, and the weight ratio thereof is adjusted to be in the range of 10:90 to 90:10, whereby the connection medium 18 is made porous.
- the low-melting point metal and the high-melting point metal are mixed at a predetermined weight ratio, so that the plurality of voids 19 are intentionally uniform in the connection medium 18.
- the flux 19A is held in at least one of the gaps 19.
- the ratio of the refractory metal is 90% or more, the connection medium 18 and the soluble conductor 13 cannot be connected.
- the ratio of the low melting point metal is 90% or more, the gap portion 19 is hardly formed in the connection medium 18.
- the weight ratio of the low-melting point metal to the high-melting point metal is mixed at 10:90 to 90:10.
- the voids 19 are formed in a highly dispersed state with a uniform size. Specifically, the formation conditions of the void portion 19 are 1 to 40% for the void diameter of 0.01 to 0.1 mm, and 40 for the void diameter of 0.1 to 0.2 mm.
- the gap 19 is formed so as to have a configuration of ⁇ 80%. It should be noted that “uniform” described in the present specification with respect to the size of the gap portion 19 includes completely uniform to substantially uniform.
- the low melting point metal 18D can be melted as shown in FIG. It connects with the molten conductor 13 (refer FIG. 2).
- the refractory metal does not melt, when a plurality of metal particles 18E constituting the refractory metal are gathered, as shown in FIG. 4, the void 19 surrounded by the metal particles 18E is high.
- the flux 19A is naturally held in at least one of the voids 19 with a high probability. In this way, since the flux 19A is more uniformly maintained in a highly dispersed state, the operational characteristics of the flux 19A can be reliably stabilized.
- the low-melting point metal and the high-melting point metal that are the raw materials of the solder paste are each granular, and the particle size of the low-melting point metal Is characterized by being prepared using a material having a particle size larger than that of the refractory metal.
- the particle diameter of the metal particles is 1 to 100 ⁇ m for the low melting point metal and 0.5 to 50 ⁇ m for the high melting point metal.
- the particle size of the metal particles used as the raw material referred to here refers to the particle sizes of the low melting point metal and the high melting point metal before mounting reflow (before melting).
- the particle size is larger than that of the refractory metal.
- the difference in particle size between the low melting point metal and the high melting point metal is small. That is, the particle size of the low-melting-point metal and the high-melting-point metal is appropriately adjusted according to various purposes such as when the reliability of the function as the protection element 10 is important or when the space-saving of the protection element 10 is important. To do.
- the amount of the flux 19A previously blended in the solder paste forming the connection medium 18 is also important.
- the content of the flux 19A is large.
- the amount of the flux 19A is too large, the printability and the shape retention after printing which are originally required for the solder paste forming the connection medium 18 are affected.
- the protection element 10 of this embodiment it is necessary to adjust the content of the flux 19A within an appropriate range.
- the flux 19A is naturally held in at least one of the voids 19 formed in the connection medium 18 made of solder paste. Will come to be.
- the mixing ratio and the particle size of the low melting point metal and the high melting point metal constituting the solder paste forming the connection medium 18 are adjusted, so that the connection medium 18 has a uniform gap.
- the part 18 is intentionally formed to be dispersed and made porous, and the flux 19A is held in the gap part 18. For this reason, since the operation characteristics of the flux 19A can be stabilized, the surface of the soluble conductor 13 can be prevented from being oxidized by the flux 19A, and the fusing characteristics of the soluble conductor 13 can be improved.
- At least one of the gaps 19 is formed at the same time that the gaps 19 for intentionally holding the flux 19A are formed in a highly dispersed state in the connection medium 18 made of a solder paste provided in a portion in contact with the soluble conductor 13. Since the flux 19A is held more than one, the flux 19A can be supplied to the soluble conductor 13 more uniformly. For this reason, since the fusing characteristic of the soluble conductor 13 does not vary, the function as the protective element 10 due to the stable fusing characteristic is improved.
- FIG. 5 is a cross-sectional view of a protection element as an example of a circuit element according to another embodiment of the present invention
- FIG. 6 is provided in the protection element as an example of a circuit element according to another embodiment of the present invention. It is a principal part enlarged view of a connection medium.
- the protection element 20 according to another embodiment of the present invention has substantially the same configuration as the protection element 10 of the embodiment described above, the plan view thereof is the same as FIG.
- FIG. 5 is a cross-sectional view of a protection element according to another embodiment corresponding to the AA cross-sectional view of FIG.
- the protection element 20 includes a heating element 22 and a fusible conductor 23 on an insulating substrate 21, and a fusible element that becomes a current path due to heat generation of the heating element 22. By fusing the conductor 23, the circuit connected on the current path is protected. Further, in the present embodiment, the protection element 20 has a pair of electrodes 24 (24A, 24B) formed on both ends of the upper surface of the insulating base substrate 21, and opposed edges perpendicular to these electrodes 24A, 24B. In addition, another pair of electrodes (not shown) is provided.
- a heating element 22 made of a resistor is connected between the other pair of electrodes, and the other heating element 22 is connected to the heating element 22 via an insulating layer 26 disposed so as to cover the heating element 22.
- a conductor layer 27 connected to one of the electrodes is laminated.
- the insulating substrate 21, the heating element 22, the soluble conductor 23, the electrode 24, the insulating layer 26, and the conductor layer 27 included in the protection element 20 according to the present embodiment are included in the protection element 10 according to the above-described embodiment. Since it is the same, the detailed description is abbreviate
- the protective element 20 of the present embodiment intentionally forms voids 29 that become voids in the connection medium 28 in a highly dispersed state by adjusting the melting conditions of the solder paste that forms the connection medium 28. At least one of 29 is made to hold flux 29A.
- a material containing a metal component having good wettability with respect to the melted soluble conductor 23 is used in the same manner as the conventional one, and a lead-free material is preferable.
- a (Sn) silver (Ag) copper (Cu) -based paste material can be used. Details of the adjustment of the specific melting conditions of the connection medium 28 according to the present embodiment will be described later.
- connection medium 28 is formed in a general solder paste with a plurality of voids 29 in a highly dispersed state by adjusting a melting condition such as a temperature condition, and at least one of the voids 29, that is, a part thereof.
- the flux 29 ⁇ / b> A is held in the void 29.
- the voids 29 in which the flux 29A is held are mixed to some extent with the flux 29A not being held but forming only a simple gap.
- the size and arrangement of the voids 29 are random, the balance between connection stability and flux retention is somewhat inferior to that of the above-described embodiment.
- the voids 29 formed on the connection medium 28 made of solder paste have a non-uniform particle size and shape, but the conventional protection element that does not adjust the melting conditions of the solder paste forming the connection medium.
- the risk of flux flowing out of the internal metal due to the alloying of the internal metal and no formation of voids therein is reduced. That is, since the flux 29A is more securely held in at least a part of the voids 29 than the connection medium made of the conventional solder paste in which almost no voids are formed, the surface of the soluble conductor 23 is prevented from being oxidized by the flux 29A.
- the fusing characteristics of the fusible conductor 23 can be improved, which is a preferable state.
- FIG. 7 is an explanatory diagram showing temperature conditions in a method for manufacturing a circuit element according to another embodiment of the present invention.
- the melting temperature of the solder paste forming the connection medium 28 in the main heating process is set to about 200 to 300 ° C., which is lower than the conventional temperature.
- the duration of this heating step is about 30 seconds
- the peak temperature is about 255 ° C. ⁇ 5 ° C.
- the duration of the peak temperature is 5 seconds
- a plurality of connection media 28 made of solder paste are provided on the connection medium 28.
- the flux 29A is held in the voids 29.
- finished it anneals by leaving it to stand at normal temperature.
- the melting temperature of the solder paste forming the connection medium 28 in the preheating step is set to about 150 to 200 ° C., which is lower than the conventional temperature.
- the duration of the preheating process is about 90 seconds ⁇ 30 seconds, a plurality of voids 29 are formed in a highly dispersed state in the connection medium 28 and at the same time, the flux 29A is held in at least one of the voids 29. Will come to be.
- the temperature gradient at the time of shifting from the preheating process to the main heating process is sharply increased, or as shown in P2 of FIG. 7, the cooling process after the main heating process is suddenly increased.
- the drop 29 is performed and rapidly dropped, a plurality of voids 29 are formed in a highly dispersed state in the connection medium 28 made of solder paste, and at the same time, the flux 29A is held in at least one of the voids 29. .
- the flux 29A can be held by increasing the connection area and making it difficult for the void 29 to escape.
- the gap 29 for holding the flux 29A on the connection medium 28 is intentionally formed in a highly dispersed state.
- the flux 29 ⁇ / b> A is held in at least one of the gaps 29.
- connection medium is intentionally adjusted by adjusting the melting condition of the solder paste forming the connection medium 28.
- the flux 29A can be held to some extent in at least one of the voids 29. For this reason, compared with the conventional one, it is possible to prevent the surface of the soluble conductor 23 from being oxidized by the flux 29A and to improve the fusing characteristics of the soluble conductor 23.
- abuts a soluble conductor like a short circuit element, a switching element, a current fuse, etc. It can also be applied to a circuit element that holds flux in any of the above. That is, the circuit element according to the present embodiment can be applied to a circuit element having a structure that effectively functions a flux used for assisting melting of a fuse-soluble conductor, aging, and thermal history change suppression.
- each embodiment of the present invention to a protective element device such as an SCP, a current fuse, a short-circuit element, and a switching element that use a fusible conductor, and a circuit element, the operation characteristics can be stabilized by reliably holding the flux. And a reduction in the height of the circuit element by reducing the amount of flux retained on the soluble conductor and the retention mechanism.
- a protective element device such as an SCP, a current fuse, a short-circuit element, and a switching element that use a fusible conductor, and a circuit element
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Fuses (AREA)
Abstract
フラックスを高分散状態で密閉して保持することによって、その動作特性を安定化させるために、可溶導体(13)と当接する部位の何れかにフラックス(19A)を保持する回路素子(10)であって、絶縁基板(11)上に設けられる少なくとも1対の電極(15A、15B)と、電極と可溶導体とを接続するソルダーペーストからなる接続媒体(18A、18B)と、接続媒体に設けられる複数の空隙部(19)と、を備え、フラックスは、空隙部の少なくとも1つ以上に充填されることによって保持されることを特徴とする。
Description
本発明は、電流経路を溶断することにより、電流経路上に接続された回路を保護する保護素子や短絡素子等のフラックスを保持する回路素子、及び当該回路素子の製造方法に関する。本出願は、日本国において2014年11月5日に出願された日本特許出願番号特願2014-225240を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
従来、二次電池装置等に搭載される保護素子は、過電流だけでなく過電圧防止機能も有するものが用いられている。保護素子は、基板上に発熱体と低融点金属体から成る可溶導体が積層され、過電流により可溶導体が溶断されるように形成されていると共に、過電圧が生じた場合も保護素子内の発熱体に通電され、発熱体の熱により可溶導体が溶断する。可溶導体の溶断は、低融点金属である可溶導体の溶融時に、接続された電極表面に対する濡れ性の良さに起因して、溶融した低融点金属が電極上に引き寄せられ、その結果、可溶導体が分断されて電流が遮断される。
一方、近年の携帯機器等の電子機器の小型化に伴い、当該電子機器に搭載される電源の保護回路に実装される保護素子にも小型化・薄型化が要求された上で、動作の安定性と高速化が求められている。保護素子の動作の安定性と高速化を図るために、絶縁基板上に低融点金属体の可溶導体を配置して、当該可溶導体を絶縁カバーで封止して、かつ、可溶導体にフラックスの塗布がなされている。このように、フラックスを可溶導体に塗布することによって、可溶導体の表面の酸化防止を図ると共に、可溶導体の加熱時に迅速に安定して溶融が促進され、溶断特性が高まるようになる。
フラックスは、熱流動性に富むため、保護素子を回路基板に実装する際に、リフロー炉等の熱環境下に曝されると、可溶導体表面に塗布したフラックスが流出して残存しないため、その機能が発揮されず可溶導体の溶断不良の原因となることがあった。特許文献1及び特許文献2には、可溶導体上のフラックスを絶縁カバー部によって所定の位置に保持することによって、異常時における可溶導体の迅速、かつ正確な溶断を可能にした保護素子が開示されている。また、特許文献3には、可溶導体に近接してフラックス含浸多間隙金属体を設けることによって、フラックス作用を満足に保持させつつ、金網等に溶融合金を吸い込ませて作動速度の迅速化を図った合金型温度ヒューズが開示されている。
フラックスは、揮発性成分等も含むため、大気や湿気に直接さらされると、その特性が劣化し易い。このため、可溶導体の表面の酸化防止を図ると共に、可溶導体の溶断特性を高めるためには、保護素子を絶縁カバー等で完全密封した状態とすることが望まれる。しかしながら、リフロー時やヒューズ溶断時に絶縁カバー等の外装部にクラックが発生するという問題があり、保護素子等の回路素子を密封型の構成にするのが容易でない。また、可溶導体上部にフラックスを配置する場合には、フラックスを保持するための空間や保持するための機構が必要になり、低背化が容易にできないという問題があった。さらに、フラックスによる可溶導体表面の酸化防止や可溶導体の溶断特性向上を図るためには、フラックスが可溶導体により均一に分散されることが望ましい。
特許文献1及び2の保護素子では、フラックスの動作前に所定位置で保持する構成とすることによって、保護素子の溶断特性を高められるが、保護素子の低背化とフラックスの高分散化による溶断特性の安定化には、課題が残る。また、特許文献3では、可溶導体に近接してフラックス含浸多間隙金属体を設けてフラックスを保持することによって、フラックス作用を満たすことについては、開示されているが、フラックスの高分散化による溶断特性の安定化については、言及していない。
本発明は、上記課題に鑑みてなされたものであり、フラックスを高分散状態で密閉して保持することによって、その動作特性を安定化させることの可能な、新規かつ改良された回路素子、及び回路素子の製造方法を提供することを目的とする。
本発明の一態様は、可溶導体と当接する部位の何れかにフラックスを保持する回路素子であって、絶縁基板上に設けられる少なくとも1対の電極と、前記電極と前記可溶導体とを接続する接続媒体と、前記接続媒体に設けられる複数の空隙部と、を備え、前記フラックスは、前記空隙部の少なくとも1つ以上に充填されることによって保持されることを特徴とする。
本発明の一態様によれば、可溶導体と電極を接続する接続媒体に高分散状態の空隙部が設けられて、当該空隙部にフラックスが保持されることによって、フラックスを高分散状態で密閉して保持できるので、フラックスの動作特性の安定化が図れる。
このとき、本発明の一態様では、前記空隙部は、空隙径が0.01~0.1mmのものの割合が1~40%であり、空隙径が0.1~0.2mmのものの割合が40~80%である構成となっていることとしてもよい。
このようにすれば、フラックスがより均等に高分散状態に密閉して保持できるので、フラックスの動作特性の安定化が確実に図れる。
また、本発明の一態様では、前記接続媒体は、低融点金属と高融点金属を含み、前記空隙部のそれぞれは、前記高融点金属の粒子に囲まれることによって形成されることとしてもよい。
このようにすれば、フラックスを保持する空隙部が均一な大きさに形成できるので、フラックスをより均一な高分散状態で密閉して保持して、その動作特性の安定化が確実に図れるようになる。
また、本発明の他の態様は、可溶導体と当接する部位の何れかにフラックスを保持する回路素子の製造方法であって、絶縁基板上に設けられる少なくとも1対の電極と前記可溶導体とを接続する接続媒体を形成するソルダーペーストを作製するソルダーペースト作製工程と、前記ソルダーペーストを溶融するソルダーペースト溶融工程と、を含み、前記ソルダーペースト作製工程または前記ソルダーペースト溶融工程の何れかにおいて、前記ソルダーペーストにより形成される前記接続媒体に複数の空隙部を形成すると同時に、これらの空隙部に前記フラックスを保持させることを特徴とする。
本発明の他の態様によれば、可溶導体と電極を接続するソルダーペーストを生成する過程で当該ソルダーペーストに高分散状態の空隙部を意図的に形成すると同時に、当該空隙部にフラックスを保持できるようになる。
このとき、本発明の他の態様では、前記ソルダーペースト作製工程で低融点金属と高融点金属とを所定の重量比で調合してから、前記ソルダーペースト溶融工程で前記ソルダーペーストを溶融することにより、前記接続媒体に空隙径が0.01~0.1mmのものの割合が1~40%であり、空隙径が0.1~0.2mm のものの割合が40~80%で前記空隙部を形成すると同時に、該空隙部に前記フラックスが自ずと保持されることとしてもよい。
このようにすれば、フラックスがより均等に高分散状態に密閉して保持できるので、フラックスの動作特性の安定化が確実に図れる。
また、本発明の他の態様では、前記ソルダーペースト作製工程では、前記低融点金属と前記高融点金属の前記所定の重量比として10:90~90:10で調合することとしてもよい。
このようにすれば、実装リフローの熱がかかった場合に、低融点金属は、溶けて可溶導体と接続するのに対して、高融点金属は、溶けないので、高融点金属を構成する金属粒子が複数集結することによって、当該金属粒子に囲まれた空隙部が高分散状態で生成され、かかる空隙部にフラックスを保持できるようになる。
また、本発明の他の態様では、前記ソルダーペーストの原料となる前記低融点金属と前記高融点金属は、それぞれ粒状であり、前記低融点金属の粒径は、前記高融点金属の粒径よりも大きいこととしてもよい。
このようにすれば、実装リフロー時において低融点金属が溶け出したときに、高融点金属をよりカバーし易くなり、かつ、高融点金属の粒子によって空隙部を形成し易くできる。
また、本発明の他の態様では、前記ソルダーペースト溶融工程は、事前に所定の温度に加熱する予熱工程と、前記ソルダーペーストを本加熱してはんだ付けを行う本加熱工程と、前記本加熱工程の終了後に冷却する冷却工程と、を含み、前記ソルダーペースト溶融工程では、前記予熱工程、前記本加熱工程、または前記冷却工程の何れかの温度条件を調整して前記ソルダーペーストの溶融条件を変更することによって、前記空隙部が前記接続媒体に形成されると同時に、前記空隙部の少なくとも1つ以上に前記フラックスを保持させることとしてもよい。
このようにすれば、ソルダーペーストの溶融条件を調整することによって、ソルダーペーストからなる接続媒体にフラックスを保持するための空隙部が高分散状態に形成できる。
以上説明したように本発明によれば、可溶導体と電極を接続するソルダーペーストからなる接続媒体に高分散状態の空隙部を設けて、当該空隙部にフラックスが保持されるので、フラックスの動作特性を安定化できる。このため、フラックスによる可溶導体表面の酸化防止や可溶導体の溶断特性の向上が図れるようになる。
以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
まず、本発明の一実施形態に係る回路素子の構成について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る回路素子の一例となる保護素子の平面図であり、図2は、図1に示す本発明の一実施形態に係る回路素子の一例となる保護素子のA-A断面図である。
本発明の一実施形態に係る保護素子10は、図1に示すように、絶縁基板11上に発熱体12及び可溶導体13を有し、発熱体12の発熱により電流経路となる可溶導体13を溶断することによって、電流経路上に接続された回路を保護する機能を有する。本実施形態では、保護素子10は、絶縁性のベース基板11の上面両端に形成された一対の電極14(14A、14B)を有し、一対の電極12と直交する対向縁部にも、他の一対の電極15(15A、15B)が設けられている。
電極15A、15B間には、抵抗体からなる発熱体12が接続されている。発熱体12には、当該発熱体12を覆うように配置される絶縁層16を介して、一方の電極15Aに接続された導体層17が積層されている。導体層17には、一対の電極14(14A、14B)に接続された低融点金属からなるヒューズである可溶導体13の中央側の部位が、溶融した可溶導体13に対して濡れ性の良い金属成分を含有したソルダーペーストからなる接続媒体18(18C)を介して接続されている。また、可溶導体13と電極14(14A、14B)は、図2に示すように、ソルダーペーストからなる接続媒体18(18A、18B)によって接続されている。なお、接続媒体を形成するソルダーペースト18の材質等の詳細については、後述する。
絶縁基板11は、例えば、アルミナ、ガラスセラミックス、ムライト、ジルコニア等の絶縁性を有する部材によって形成される。その他、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよいが、ヒューズ溶断時の温度に留意して材質を選ぶ必要がある。また、絶縁基板11の上には、保護素子10の内部を保護するために、絶縁性を有する部材によって形成されるカバー部材を載置してもよい。
発熱体12は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、例えば、W、Mo、Ru等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合して、ペースト状にしたものを絶縁基板11上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成する。
可溶導体13は、発熱体12の発熱により速やかに溶断される低融点金属からなり、例えば、Snを主成分とするPbフリーハンダを好適に用いることができる。また、可溶導体13は、低融点金属と、Ag、Cu又はこれらを主成分とする合金等の高融点金属との積層体であってもよい。
本発明の一実施形態に係る保護素子10は、導体層17を介して直列接続された可溶導体13と、可溶導体13の接続点を介して通電して発熱させることによって可溶導体13を溶融する発熱体12とからなる回路構成である。このように、保護素子10では、例えば、可溶導体13が電極14A、14Bを介して、充放電電流経路上に直列接続され、発熱体12が電極15Bを介して、例えば、電流制御素子と接続される。このような回路構成からなる保護素子10は、発熱体12の発熱により、電流経路上の可溶導体13を確実に溶断することができる。
また、本実施形態では、ソルダーペーストにより形成される接続媒体18には、複数の空隙部19が高分散状態で形成され、これらの空隙部19の少なくとも1つ以上に可溶導体13の表面の酸化防止や溶断特性の向上のために使用されるフラックス19Aが充填されている。すなわち、本実施形態の保護素子10は、ヒューズエレメントとなる可溶導体13と電極14A、14Bとの間の接続用の接続媒体18A、18B、及び可溶導体13と導体層17との間の接続媒体18Cに孔やボイド、表面の窪み等からなる複数の空隙部19を高分散状態に形成して、これらの空隙部19の何れかにフラックス19Aを保持する構造となっている。なお、フラックス19Aとしては、ロジン系フラックス等、公知のフラックスを使用することができ、臭素等のハロゲン元素を有しない、ハロゲンフリーのフラックスが好ましく、粘度等も任意である。
このように、本実施形態では、保護素子10を可溶導体13と当接する部位の何れかに空隙部19を高分散状態に形成して、これらの空隙部19の少なくとも1つ以上にフラックス19Aを保持する構成としている。このため、発熱体12が発熱して可溶導体13の溶融時に、可溶導体13の発熱体12と熱的に結合する位置における溶融状態が均一化されて、可溶導体13の分断が促進されるので、溶断特性のばらつきが低減される。すなわち、より均一に確実なフラックス供給が可能となり、安定した溶融動作特性が実現される。また、従来のように可溶導体の上部にフラックスを配置するための空間や保持するための機構を別途設ける必要がなくなるので、より保護素子10の低背化が可能な構造とすることができる。
次に、本発明の一実施形態に係る回路素子の一例となる保護素子に備わる接続媒体の材質等の詳細について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る回路素子の一例となる保護素子に備わる接続媒体の要部拡大図であり、図4は、本発明の一実施形態に係る回路素子の一例となる保護素子に備わる接続媒体に形成された空隙部の拡大図である。
本実施形態では、ソルダーペーストにより形成される接続媒体18の金属組成や粒子径、配合比を調整して、当該接続媒体18を多孔質化することによって、均一な大きさの構成となっている複数の空隙部19を高分散状態に形成することを特徴とする。接続媒体18を形成するソルダーペーストの材質としては、溶融した可溶導体13に対して濡れ性の良い金属成分を含有したもので、鉛フリーのものが好適な材料として使用される。具体的には、接続媒体18を形成するソルダーペーストを作製する金属組成を銀Agや銅Cu等のように、融点が300℃より高い高融点金属と、錫SnやビスマスBi等のように、融点が300℃以下の低融点金属を配合して、これらの重量比が10:90~90:10の範囲となるように調整することによって、接続媒体18の多孔質化を図る。
すなわち、ソルダーペーストから接続媒体18を作製する工程において、低融点金属と高融点金属を所定の重量比で調合することによって、意図的に接続媒体18に複数の空隙部19をそれぞれ均一な大きさに形成すると同時に、これらの空隙部19の少なくとも1つ以上にフラックス19Aを保持する。このとき、高融点金属の割合が90%以上の場合だと、接続媒体18と可溶導体13との接続ができない。一方、低融点金属の割合が90%以上の場合だと、接続媒体18に空隙部19が殆ど形成されない。
このため、本実施形態では、ソルダーペーストから接続媒体18を作製する工程において、低融点金属と高融点金属の重量比を10:90~90:10で調合することによって、接続媒体18に複数の空隙部19を均一な大きさで高分散状態に形成する。具体的には、空隙部19の形成条件としては、空隙径が0.01~0.1mmのものの割合が1~40%であり、空隙径が0.1~0.2mmのものの割合が40~80%である構成となるように、空隙部19が形成される。なお、本明細書中で空隙部19の大きさについて記載した「均一」には、完全に均一なものから略均一なものまでを含むものとする。
このように低融点金属と高融点金属を調合してから、ソルダーペーストを溶融する工程で実装リフローの熱がかかった場合に、図4に示すように、低融点金属18Dは、溶融して可溶導体13(図2参照)と接続する。これに対して、高融点金属は、溶融しないので、高融点金属を構成する金属粒子18Eが複数集結することによって、図4に示すように、当該金属粒子18Eに囲まれた空隙部19が高分散状態で生成されると同時に、かかる空隙部19の少なくとも1つ以上にフラックス19Aが自ずと高い確率で保持されるようになる。このようにして、フラックス19Aがより均等に高分散状態に保持されるので、フラックス19Aの動作特性の安定化が確実に図れるようになる。
また、本実施形態では、接続媒体18を形成するソルダーペーストを作製する工程において、当該ソルダーペーストの原料となる低融点金属と高融点金属は、それぞれ粒状であり、かつ、低融点金属の粒径は、高融点金属の粒径よりも大きいものを使用して調合することを特徴とする。具体的は金属粒子の粒径として、低融点金属は、1~100μm、高融点金属は、0.5~50μmとする。ソルダーペーストからなる接続媒体18を作製する低融点金属と高融点金属をこのような粒子径とすることによって、実装リフロー時において低融点金属18Dが溶け出したときに、高融点金属18Eをよりカバーし易くなり、かつ、高融点金属を構成する金属粒子18Eによって空隙部19を形成し易くできる。ここで言及する原料となる金属粒子の粒径とは、実装リフロー前(溶融前)の低融点金属及び高融点金属の粒径を指す。
なお、低融点金属粒子がより小さいと、低融点金属溶融時に高融点金属をカバーし難く、空隙部19を形成し易いことから、可溶導体13との接続性の面では、低融点金属が高融点金属より粒径が大きい方が好ましい。一方、空隙部19を大きくするためには、低融点金属と高融点金属の粒径差が小さい方が好ましい。すなわち、保護素子10としての機能の信頼性を重視する場合や、保護素子10の省スペース化を重視する場合等の各種目的に応じて、適宜、低融点金属と高融点金属の粒径を調整する。
また、本実施形態では、空隙部19内にフラックス19Aを保持する構造のため、接続媒体18を形成するソルダーペースト内に予め配合するフラックス19Aの量も重要となる。フラックス19Aの動作特性を確実に図るためには、フラックス19Aの含有量が多いほうが好ましい。しかしながら、フラックス19Aが多すぎると、接続媒体18を形成するソルダーペーストにそもそも求められている印刷性や印刷後の形状保持性等に影響が出る。
このため、本実施形態の保護素子10を製造する際に、フラックス19Aの含有量を適切な範囲で調整する必要がある。具体的には、低融点金属と高融点金属の合計重量とフラックスの重量の比が80:20~99.5:0.5の範囲となるように、目的に応じて適宜、配合するフラックスの量を調整する。このような重量比で接続媒体18を形成するソルダーペーストにフラックス19Aを事前に配合させることによって、ソルダーペーストからなる接続媒体18に形成された空隙部19の少なくとも1つ以上にフラックス19Aが自ずと保持されるようになる。
前述したように、本実施形態では、接続媒体18を形成するソルダーペーストを構成する低融点金属と高融点金属の配合比と粒子径を調整して、当該接続媒体18に均一な大きさの空隙部18を分散するように意図的に形成して多孔質化して、当該空隙部18にフラックス19Aを保持する構成としている。このため、フラックス19Aの動作特性を安定化できるので、フラックス19Aによる可溶導体13の表面の酸化防止や可溶導体13の溶断特性の向上が図れるようになる。
特に、可溶導体13と当接する部位に設けられるソルダーペーストからなる接続媒体18に意図的にフラックス19Aを保持するための空隙部19を高分散状態で形成すると同時に、当該空隙部19の少なくとも1つ以上にフラックス19Aを保持させるので、より均一にフラックス19Aを可溶導体13に供給できるようになる。このため、可溶導体13の溶断特性がばらつくことがなくなるので、安定した溶断特性による保護素子10としての機能が向上する。
次に、本発明の他の実施形態に係る回路素子の構成について、図面を使用しながら説明する。図5は、本発明の他の実施形態に係る回路素子の一例となる保護素子の断面図であり、図6は、本発明の他の実施形態に係る回路素子の一例となる保護素子に備わる接続媒体の要部拡大図である。なお、本発明の他の実施形態に係る保護素子20は、前述した一実施形態の保護素子10と略同一の構成となっているので、その平面図は、図1と同様であり、また、図5は、図1のA-A断面図に対応した他の実施形態に係る保護素子の断面図となる。
本発明の他の実施形態に係る保護素子20は、図5に示すように、絶縁基板21上に発熱体22及び可溶導体23を有し、発熱体22の発熱により電流経路となる可溶導体23を溶断することによって、電流経路上に接続された回路を保護する機能を有する。また、本実施形態では、保護素子20は、絶縁性のベース基板21の上面両端に形成された一対の電極24(24A、24B)を有し、これらの電極24A、24Bと直交する対向縁部にも、不図示の他の一対の電極が設けられている。これらの他の一対の電極間には、抵抗体からなる発熱体22が接続され、発熱体22には、当該発熱体22を覆うように配置される絶縁層26を介して、他の一対の電極の一方の電極に接続された導体層27が積層されている。
導体層27には、一対の電極24(24A、24B)に接続された低融点金属からなるヒューズである可溶導体23の中央側の部位が、溶融した可溶導体23に対して濡れ性の良い金属成分を含有したソルダーペーストからなる接続媒体28(28C)を介して接続されている。また、可溶導体23と電極24(24A、24B)は、図5に示すように、接続媒体28(28A、28B)によって接続されている。なお、本実施形態に係る保護素子20に備わる絶縁基板21、発熱体22、可溶導体23、電極24、絶縁層26、導体層27は、前述した一実施形態の保護素子10に備わるものと同様であるので、その詳細な説明は、省略する。
本実施形態の保護素子20は、接続媒体28を形成するソルダーペーストの溶融条件を調整することによって、意図的に接続媒体28に空隙部となるボイド29を高分散状態に形成して、当該ボイド29の少なくとも1つ以上にフラックス29Aを保持させることを特徴とする。接続媒体28を形成するソルダーペーストの材質としては、従来のものと同様に溶融した可溶導体23に対して濡れ性の良い金属成分を含有したもので、鉛フリーのものが好ましく、例えば、錫(Sn)銀(Ag)銅(Cu)系のペースト材を用いることが出来る。なお、本実施形態に係る接続媒体28の具体的な溶融条件の調整の詳細については、後述する。
本実施形態では、接続媒体28は、一般的なはんだペーストに温度条件等の溶融条件の調整によって複数のボイド29を高分散状態に形成され、かかるボイド29の少なくとも1つ以上、すなわち、一部のボイド29にフラックス29Aが保持されている。このため、ボイド29には、図6に示すように、その内部にフラックス29Aが保持されたものに、フラックス29Aが保持されずに単なる空隙だけを形成したものがある程度混在している。また、ボイド29の大きさや配置等もランダムであることから、接続安定性とフラックス保持性のバランスに関しては、前述した一実施形態と比べると幾分劣ってしまう。
しかしながら、本実施形態では、ソルダーペーストからなる接続媒体28に形成されるボイド29が不均一な粒径及び形状であるが、接続媒体を形成するソルダーペーストの溶融条件を調整しない従来の保護素子のように、内部金属が合金化して内部にボイドが形成されないことによる当該内部金属外にフラックスが流れ出るリスクが低減される。すなわち、ボイドが殆ど形成されない従来のソルダーペーストからなる接続媒体よりも、フラックス29Aが少なくとも一部のボイド29内で確実に保持されていることから、フラックス29Aによる可溶導体23の表面の酸化防止や可溶導体23の溶断特性の向上が図れ、好ましい状態となる。
次に、本発明の他の実施形態に係る回路素子の製造方法における溶融条件の調整について、図面を使用しながら説明する。図7は、本発明の他の実施形態に係る回路素子の製造方法における温度条件を示す説明図である。
本実施形態では、接続媒体28を形成するソルダーペーストを溶融する工程では、事前に所定の温度に加熱する予熱工程と、接続媒体28を形成するソルダーペーストを本加熱してはんだ付けを行う本加熱工程と、本加熱工程の終了後に冷却する冷却工程と、を含む。そして、予熱工程、本加熱工程、または冷却工程の何れかの温度条件を調整して接続媒体28を形成するソルダーペーストの溶融条件を変更することによって、接続媒体28に空隙部となるボイド29を高分散状態に形成すると同時に、当該ボイド29にフラックス29Aが保持される。
具体的には、図7に示すように、本加熱工程における接続媒体28を形成するソルダーペーストの溶融温度を200~300℃程度と従来よりも低めにする。このとき、本加熱工程の継続時間を30秒程度として、かつ、そのピーク温度を255℃±5℃程度、当該ピーク温度の継続時間を5秒とすると、ソルダーペーストからなる接続媒体28に複数のボイド29が高分散状態に形成されると同時に、当該ボイド29にフラックス29Aが保持されるようになる。なお、本加熱工程が終了したら、常温で自然放置することにより徐冷する。
また、図7に示すように、予熱工程における接続媒体28を形成するソルダーペーストの溶融温度を150~200℃程度と従来よりも低めにする。このとき、予熱工程の継続時間を90秒±30秒程度とすると、接続媒体28に複数のボイド29が高分散状態に形成されると同時に、当該ボイド29の少なくとも1つ以上にフラックス29Aが保持されるようになる。
さらに、図7のP1に示すように、予熱工程から本加熱工程に移行する際の温度勾配をきつくして急上昇させたり、図7のP2に示すように、本加熱工程後の冷却工程を急激に行って急降下させることによっても、ソルダーペーストからなる接続媒体28に複数のボイド29が高分散状態に形成されると同時に、当該ボイド29の少なくとも1つ以上にフラックス29Aが保持されるようになる。また、接続面積を広くして、ボイド29を抜け難くすることによっても、フラックス29Aが保持されるようになる。
このように、本実施形態では、接続媒体28を形成するソルダーペーストの溶融条件を調整することによって、意図的に接続媒体28にフラックス29Aを保持するための空隙部29を高分散状態に形成すると同時に、当該空隙部29の少なくとも1つ以上にフラックス29Aを保持させる。このため、フラックス29Aの動作特性を安定化させた状態で保持できるので、フラックス29Aによる可溶導体23の表面の酸化防止や可溶導体23の溶断特性の向上が図れるようになる。すなわち、接続媒体28を形成するソルダーペーストの溶融条件を調整しない従来の場合と比べて、本実施形態では、接続媒体28を形成するソルダーペーストの溶融条件を調整することによって、意図的に接続媒体28に空隙部29を高分散状態に形成すると同時に、当該空隙部29の少なくとも1つ以上にフラックス29Aをある程度保持できる。このため、従来のものと比べて、フラックス29Aによる可溶導体23の表面の酸化防止や可溶導体23の溶断特性の向上が図れる。
なお、前述した一実施形態と他の実施形態では、回路素子として保護素子に適用した場合について説明しているが、短絡素子、切替素子、電流ヒューズ等のように、可溶導体と当接する部位の何れかにフラックスを保持する回路素子にも適用できる。すなわち、本実施形態に係る回路素子を適用して、ヒューズ可溶導体の溶融補助、経年及び熱履歴変化抑制に用いるフラックスを有効に機能させる構造を有する回路素子にも適用できる。
このように、可溶導体を用いるSCP、電流ヒューズ、短絡素子、切替素子等の保護素子デバイス、回路素子に本発明の各実施形態を適用することによって、フラックスの確実な保持による動作特性の安定化と、可溶導体上のフラックス保持量及び保持機構の削減による回路素子の低背化が実現される。
なお、上記のように本発明の各実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、回路素子の構成、動作も本発明の各実施形態で説明したものに限定されず、種々の変形実施が可能である。
10、20 保護素子(回路素子)、11、21 絶縁基板、12、22 発熱体、13、23 可溶導体、14、14A、14B、15、15A、15B、24、24A、24B 電極、16、26 絶縁部材、17、27 導体層、18、18A、18B、18C、28、28A、28B、28C 接続媒体、18D 低融点金属、18E 高融点金属(金属粒子)、19、29 空隙部、19A、29A フラックス
Claims (8)
- 可溶導体と当接する部位の何れかにフラックスを保持する回路素子であって、
絶縁基板上に設けられる少なくとも1対の電極と、
前記電極と前記可溶導体とを接続する接続媒体と、
前記接続媒体に設けられる複数の空隙部と、を備え、
前記フラックスは、前記空隙部の少なくとも1つ以上に充填されることによって保持されることを特徴とする回路素子。 - 前記空隙部は、空隙径が0.01~0.1mmのものの割合が1~40%であり、空隙径が0.1~0.2mmのものの割合が40~80%である構成となっていることを特徴とする請求項1に記載の回路素子。
- 前記接続媒体は、低融点金属と高融点金属を含み、前記空隙部のそれぞれは、前記高融点金属の粒子に囲まれることによって形成されることを特徴とする請求項1又は2に記載の回路素子。
- 可溶導体と当接する部位の何れかにフラックスを保持する回路素子の製造方法であって、
絶縁基板上に設けられる少なくとも1対の電極と前記可溶導体とを接続する接続媒体を形成するソルダーペーストを作製するソルダーペースト作製工程と、
前記ソルダーペーストを溶融するソルダーペースト溶融工程と、を含み、
前記ソルダーペースト作製工程または前記ソルダーペースト溶融工程の何れかにおいて、前記ソルダーペーストにより形成される前記接続媒体に複数の空隙部を形成すると同時に、これらの空隙部の少なくとも1つ以上に前記フラックスを保持させることを特徴とする回路素子の製造方法。 - 前記ソルダーペースト作製工程で低融点金属と高融点金属とを所定の重量比で調合してから、前記ソルダーペースト溶融工程で前記ソルダーペーストを溶融することにより、前記接続媒体に空隙径が0.01~0.1mmのものの割合が1~40%であり、空隙径が0.1~0.2mm のものの割合が40~80%で前記空隙部を形成すると同時に、該空隙部に前記フラックスが自ずと保持されることを特徴とする請求項4に記載の回路素子の製造方法。
- 前記ソルダーペースト作製工程では、前記低融点金属と前記高融点金属の前記所定の重量比として10:90~90:10で調合することを特徴とする請求項5に記載の回路素子の製造方法。
- 前記ソルダーペーストの原料となる前記低融点金属と前記高融点金属は、それぞれ粒状であり、前記低融点金属の粒径は、前記高融点金属の粒径よりも大きいことを特徴とする請求項5又は6に記載の回路素子の製造方法。
- 前記ソルダーペースト溶融工程は、
事前に所定の温度に加熱する予熱工程と、
前記ソルダーペーストを本加熱してはんだ付けを行う本加熱工程と、
前記本加熱工程の終了後に冷却する冷却工程と、を含み、
前記ソルダーペースト溶融工程では、前記予熱工程、前記本加熱工程、または前記冷却工程の何れかの温度条件を調整して前記ソルダーペーストの溶融条件を変更することによって、前記空隙部が前記接続媒体に形成されると同時に、前記空隙部の少なくとも1つ以上に前記フラックスを保持させることを特徴とする請求項4に記載の回路素子の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014225240 | 2014-11-05 | ||
JP2014-225240 | 2014-11-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072253A1 true WO2016072253A1 (ja) | 2016-05-12 |
Family
ID=55908980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079604 WO2016072253A1 (ja) | 2014-11-05 | 2015-10-20 | 回路素子、及び回路素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016096134A (ja) |
TW (1) | TW201621955A (ja) |
WO (1) | WO2016072253A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452558B (zh) * | 2017-08-30 | 2020-03-31 | Aem科技(苏州)股份有限公司 | 一种表面贴装熔断器及其制造方法 |
KR102280596B1 (ko) * | 2019-11-28 | 2021-07-22 | 주식회사 인세코 | 이차전지용 대전류 보호소자 및 이를 포함하는 배터리 팩 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02276125A (ja) * | 1989-04-18 | 1990-11-13 | Fujikura Ltd | ヒューズ回路形成方法 |
JPH11126553A (ja) * | 1997-10-23 | 1999-05-11 | Uchihashi Estec Co Ltd | 合金型温度ヒュ−ズ |
-
2015
- 2015-10-07 JP JP2015199136A patent/JP2016096134A/ja active Pending
- 2015-10-20 WO PCT/JP2015/079604 patent/WO2016072253A1/ja active Application Filing
- 2015-10-26 TW TW104135020A patent/TW201621955A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02276125A (ja) * | 1989-04-18 | 1990-11-13 | Fujikura Ltd | ヒューズ回路形成方法 |
JPH11126553A (ja) * | 1997-10-23 | 1999-05-11 | Uchihashi Estec Co Ltd | 合金型温度ヒュ−ズ |
Also Published As
Publication number | Publication date |
---|---|
JP2016096134A (ja) | 2016-05-26 |
TW201621955A (zh) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102049712B1 (ko) | 퓨즈 엘리먼트, 퓨즈 소자, 및 발열체 내장 퓨즈 소자 | |
US20100245024A1 (en) | Protective element | |
US20120112871A1 (en) | Protective device | |
JP6580504B2 (ja) | 保護素子 | |
JP2007059295A (ja) | 回路保護素子及び回路の保護方法 | |
WO2019138752A1 (ja) | ヒューズ素子 | |
JP7050019B2 (ja) | 保護素子 | |
JP2010165685A (ja) | 保護素子及びバッテリーパック | |
WO2017163766A1 (ja) | 保護素子 | |
TWI676202B (zh) | 保護元件 | |
WO2016072253A1 (ja) | 回路素子、及び回路素子の製造方法 | |
JP2002184282A (ja) | ヒューズ素子及びチップ型ヒューズ | |
JP7349954B2 (ja) | 保護素子 | |
JP5511501B2 (ja) | 抵抗温度ヒューズ、ならびに抵抗温度ヒューズパッケージ | |
JP6711704B2 (ja) | バイパス電極付き保護素子 | |
JP2014044955A (ja) | 保護素子及びバッテリーパック | |
JP4409747B2 (ja) | 合金型温度ヒューズ | |
JP2004363630A (ja) | 保護素子の実装方法 | |
JP4735874B2 (ja) | 保護素子 | |
JP7040886B2 (ja) | 保護素子 | |
CN113939890B (zh) | 保险丝单元、保险丝元件和保护元件 | |
JP2012059719A (ja) | 保護素子及びバッテリーパック | |
JP2021018983A (ja) | 保護素子 | |
JP6959964B2 (ja) | 保護素子 | |
JP2007165087A (ja) | ヒューズ素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15857536 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |