WO2016072066A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2016072066A1
WO2016072066A1 PCT/JP2015/005422 JP2015005422W WO2016072066A1 WO 2016072066 A1 WO2016072066 A1 WO 2016072066A1 JP 2015005422 W JP2015005422 W JP 2015005422W WO 2016072066 A1 WO2016072066 A1 WO 2016072066A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
internal combustion
combustion engine
engine
retarded
Prior art date
Application number
PCT/JP2015/005422
Other languages
English (en)
French (fr)
Inventor
智洋 金谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/523,427 priority Critical patent/US20170314495A1/en
Priority to KR1020177010358A priority patent/KR20170056667A/ko
Publication of WO2016072066A1 publication Critical patent/WO2016072066A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/356Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear making the angular relationship oscillate, e.g. non-homokinetic drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34459Locking in multiple positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34463Locking position intermediate between most retarded and most advanced positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34479Sealing of phaser devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34483Phaser return springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/042Crankshafts position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/503Battery correction, i.e. corrections as a function of the state of the battery, its output or its type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/06Engine stall and related control features, e.g. for automatic restart
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a control device for an internal combustion engine including a variable valve timing device with an intermediate lock mechanism that locks a rotation phase (VCT phase) of a cam shaft with respect to a crankshaft of the internal combustion engine at an intermediate lock phase.
  • VCT phase rotation phase
  • valve timing of an intake valve or an exhaust valve is changed by changing the rotation phase (VCT phase) of the camshaft with respect to the crankshaft of the internal combustion engine for the purpose of improving output, reducing fuel consumption, and reducing emissions. Equipped with a variable valve timing device that changes (open / close timing).
  • Some hydraulic drive type variable valve timing devices are provided with an intermediate lock mechanism that locks the VCT phase with an intermediate lock phase located within the adjustable range (for example, a VCT phase suitable for starting).
  • the intermediate lock mechanism is configured to fix the VCT phase at the intermediate lock phase by protruding a lock pin and fitting the lock pin into the fitting hole.
  • the VCT phase is locked at the intermediate lock phase before the internal combustion engine is stopped, and the internal combustion engine is started with the VCT phase locked at the intermediate lock phase at the next start.
  • the startability is improved.
  • the lock mode in which the lock pin of the intermediate lock mechanism protrudes may also be used for starting / stopping the internal combustion engine during normal operation of the internal combustion engine or in a locked state.
  • the oil supply to the retard chamber is cut off or suppressed, but the oil is not actively discharged from the advance chamber or the retard chamber. This is to avoid the difficulty in phase control when the advance chamber and retard chamber are not filled with oil during phase control after the lock mode. To this end, the oil in the advance chamber and retard chamber is kept as much as possible. Like to do.
  • the VCT phase is changed to the intermediate lock phase by utilizing the rotational fluctuation due to the cam torque fluctuation during cranking.
  • the following conditions can occur:
  • the VCT phase can be vibrated with sufficient amplitude only by rotational fluctuation due to cam torque fluctuation. May not be able to be locked by changing the VCT phase to the intermediate lock phase. For this reason, there is a possibility that the time until the start is completed is abnormally long. Moreover, it is difficult to measure or estimate the remaining oil amount in the advance chamber or retard chamber, and if the VCT phase does not move during start-up in the unlocked state, whether the cause is locking pin fixation or advance It is impossible to determine whether high-viscosity oil remains in the corner chamber or the retard chamber, and there is a possibility that a significant delay occurs in the response.
  • the internal combustion engine is driven by a motor having a higher output than a conventional general starter, such as a hybrid vehicle having an internal combustion engine and a motor as a power source for the vehicle and a vehicle having a motor that assists the internal combustion engine.
  • a conventional general starter such as a hybrid vehicle having an internal combustion engine and a motor as a power source for the vehicle and a vehicle having a motor that assists the internal combustion engine.
  • the internal combustion engine can be cranked at a higher speed than the conventional general cranking rotational speed.
  • the VCT phase can be vibrated with a sufficient amplitude because it is not easily affected by the fluctuation of the cam torque and the fluctuation of the rotation due to the fluctuation of the cam torque cannot be obtained sufficiently. Therefore, there is a possibility that the VCT phase cannot be changed to the intermediate lock phase and locked. For this reason, there is a possibility that the time until the start is completed becomes abnormally long.
  • a ratchet mechanism that restricts the VCT phase from returning in the reverse direction (the direction away from the intermediate lock phase) when the VCT phase is changed to the intermediate lock phase using the rotation fluctuation due to the cam torque fluctuation.
  • a variable valve timing device but in this case, since the configuration is complicated, the lock pin may be fixed.
  • the present disclosure provides control of an internal combustion engine that can quickly start the internal combustion engine without locking the VCT phase at the start in the unlocked state (the next start when the internal combustion engine stops in the unlocked state).
  • An object is to provide an apparatus.
  • a control device for an internal combustion engine includes a hydraulically driven variable valve timing device that changes a valve timing by changing a rotation phase (VCT phase) of a camshaft with respect to a crankshaft of the internal combustion engine; An intermediate lock mechanism that locks the VCT phase with an intermediate lock phase located within the adjustable range, and locks the VCT phase with the intermediate lock phase before stopping the internal combustion engine, and at the next start, the VCT phase is set with the intermediate lock phase. And a control unit that starts the internal combustion engine in a locked state.
  • VCT phase rotation phase
  • the control unit sets the VCT phase to the most retarded phase or within a predetermined range from the most retarded phase at the next start (The most retarded angle starting process is performed to start the internal combustion engine under the control of the vicinity of the most retarded phase.
  • the VCT phase is set to the vicinity of the most retarded angle phase (the latest retarded phase) at the next start-up.
  • the most retarded angle starting process is performed to start the internal combustion engine by controlling the angle phase or within the predetermined range from the most retarded angle phase.
  • the VCT phase is displaced to the most retarded angle phase, or the most retarded angle phase is set.
  • the internal combustion engine can be started in the close state.
  • the internal combustion engine can be started quickly without locking the VCT phase when starting in the unlocked state.
  • FIG. 1 is a diagram illustrating a schematic configuration of an engine control system according to a first embodiment of the present disclosure.
  • FIG. 2 is a longitudinal side view for explaining the configuration of the variable valve timing device and the hydraulic control circuit.
  • FIG. 3 is a longitudinal front view of the variable valve timing device.
  • FIG. 4 is a cross-sectional view of the intermediate lock mechanism.
  • FIG. 5 is a diagram for explaining the control mode of the hydraulic control valve.
  • FIG. 6 is a diagram for explaining the cranking rotation speed.
  • FIG. 7 is a time chart showing an execution example of the most retarded angle starting process.
  • FIG. 8 is a time chart showing an execution example of the most advanced angle starting process.
  • FIG. 9 is a time chart showing an execution example of the intermediate start process.
  • FIG. 10 is a flowchart showing the flow of processing of the main control routine.
  • FIG. 11 is a flowchart showing the flow of the normal start processing routine.
  • FIG. 12 is a flowchart showing the flow of processing of the most retarded start permission determination routine.
  • FIG. 13 is a flowchart showing the flow of processing of the most retarded angle start processing routine.
  • FIG. 14 is a flowchart showing the flow of processing of the most advanced angle start processing routine.
  • FIG. 15 is a flowchart showing the flow of the intermediate start processing routine.
  • FIG. 16 is a flowchart showing the flow of processing of the most retarded angle start processing routine of the second embodiment.
  • Example 1 of the present disclosure will be described with reference to FIGS.
  • VCT hydraulically driven variable valve timing device 18
  • VCT phase the rotational phase of the intake side camshaft 16 with respect to the crankshaft 12
  • a cam angle sensor 19 that outputs a cam angle signal pulse at a specific cam angle for cylinder discrimination is installed on the outer peripheral side of the intake side cam shaft 16, while on the outer peripheral side of the crankshaft 12,
  • a crank angle sensor 20 that outputs a crank angle signal pulse at every predetermined crank angle is installed.
  • Output signals from the cam angle sensor 19 and the crank angle sensor 20 are input to the engine control circuit 21.
  • the engine control circuit 21 calculates the actual valve timing (actual VCT phase) of the intake valve based on the phase difference between the output signal pulses of the cam angle sensor 19 and the crank angle sensor 20, and outputs the output pulse of the crank angle sensor 20.
  • the engine speed is calculated based on the frequency (pulse interval).
  • output signals from various sensors input to the engine control circuit 21.
  • the engine control circuit 21 performs fuel injection control and ignition control according to the engine operating state detected by the various sensors, and sets the actual valve timing (actual VCT phase) of the intake valve according to the engine operating state.
  • the hydraulic pressure for driving the variable valve timing device 18 is controlled so as to coincide with the target valve timing (target VCT phase).
  • a starter 30 is provided for rotationally driving (cranking) the crankshaft 12 when the engine 11 is started.
  • the engine 11 is cranked by the starter 30 so that the engine 11 can be cranked in a high rotation region at a predetermined rotation speed or higher.
  • the high rotational speed region above the predetermined rotational speed is, for example, a high rotational speed region above the rotational speed at which the engine 11 can be started by the most retarded angle starting process described later in a normal temperature state.
  • the rotational speed is higher than the ranking rotational speed (for example, 130 to 300 rpm).
  • the normal temperature state is a temperature state higher than an extremely low temperature (for example, ⁇ 30 ° C. or lower).
  • the engine 11 is cranked by using the motor for the hybrid vehicle as a starter 30.
  • the engine 11 can be cranked in a high rotation region (for example, 650 to 900 rpm) higher than a predetermined rotation speed (see FIG. 6).
  • the engine 11 is cranked by using the assisting motor as the starter 30.
  • a high output starter (a starter having a higher output than a conventional general starter) capable of cranking the engine 11 in a high rotation region (for example, 250 to 450 rpm) higher than a predetermined rotation speed is used. Also good.
  • the conventional general starter (hereinafter referred to as “normal starter”) can crank the engine 11 in a high rotation region (for example, 250 to 450 rpm) higher than a predetermined rotation speed. May be.
  • a normal starter may be used as the starter 30, but any of a hybrid vehicle motor, an assist motor, and a high-power starter may be used.
  • variable valve timing device 18 Next, the configuration of the variable valve timing device 18 will be described with reference to FIGS.
  • the housing 31 of the variable valve timing device 18 is fastened and fixed with bolts 32 to the sprocket 14 rotatably supported on the outer periphery of the intake side camshaft 16. Thereby, the rotation of the crankshaft 12 is transmitted to the sprocket 14 and the housing 31 via the timing chain 13, and the sprocket 14 and the housing 31 rotate in synchronization with the crankshaft 12.
  • a rotor 35 is fastened and fixed to one end of the intake side camshaft 16 with a bolt 37.
  • the rotor 35 is housed in the housing 31 so as to be relatively rotatable.
  • a plurality of vane storage chambers 40 are formed inside the housing 31, and each vane storage chamber 40 is retarded from the advance chamber 42 by the vane 41 formed on the outer peripheral portion of the rotor 35. It is partitioned into a chamber 43.
  • a stopper portion 56 is formed that restricts the relative rotation range of the rotor 35 (vane 41) with respect to the housing 31, and the actual VCT phase (cam shaft phase) is adjusted by the stopper portion 56.
  • the most retarded angle phase and the most advanced angle phase of the possible range are regulated.
  • variable valve timing device 18 has a VCT phase with an intermediate lock phase located between the most retarded angle phase and the most advanced angle phase of the adjustable range (for example, substantially in the middle).
  • An intermediate locking mechanism 50 for locking is provided in the intermediate lock mechanism 50.
  • a lock pin accommodation hole 57 is provided in any one (or a plurality of) vanes 41, and relative rotation between the housing 31 and the rotor 35 (vane 41) is caused in the lock pin accommodation hole 57.
  • a lock pin 58 for locking is accommodated so as to protrude.
  • the VCT phase is locked at an intermediate lock phase located approximately in the middle of the adjustable range.
  • This intermediate lock phase is set to a phase suitable for starting the engine 11.
  • the lock hole 59 may be provided in the housing 31.
  • the lock pin 58 is urged in the lock direction (projection direction) by the spring 62.
  • an unlocking hydraulic chamber 60 for controlling the hydraulic pressure for driving the lock pin 58 in the unlocking direction (the direction opposite to the locking direction). Is formed.
  • the housing 31 is provided with a spring 55 such as a torsion coil spring that urges the rotor 35 in the advance direction.
  • a spring 55 such as a torsion coil spring that urges the rotor 35 in the advance direction.
  • the torque of the intake side camshaft 16 acts in a direction that retards the VCT phase. Therefore, the spring 55 has a direction opposite to the torque direction of the intake side camshaft 16. Will be urged in the advance direction.
  • the range in which the urging force of the spring 55 acts is set to a range from the most retarded phase to the almost intermediate lock phase.
  • the hydraulic control valve 25 that controls the hydraulic pressure that drives the variable valve timing device 18 and the intermediate lock mechanism 50 is a hydraulic control valve function for phase control that controls the hydraulic pressure that drives the VCT phase.
  • a hydraulic control valve for example, an electromagnetically driven spool valve
  • Oil (operating oil) in the oil pan 27 is pumped up by an oil pump 28 driven by the power of the engine 11 and supplied to the hydraulic control valve 25.
  • the control amount (spool position) of the hydraulic control valve 25 is divided into five control areas: a lock mode, a filling mode, an advance angle mode, a hold mode, and a retard angle mode.
  • the engine control circuit 21 switches the control mode of the hydraulic control valve 25 among the lock mode, the filling mode, the advance angle mode, the holding mode, and the retard angle mode, and controls the control amount of the hydraulic control valve 25 in the control mode. Set in the area.
  • the lock release port communicating with the lock release hydraulic chamber 60 is connected to the drain port, the hydraulic pressure in the lock release hydraulic chamber 60 is released, and the lock pin 58 protrudes in the lock direction by the spring 62. .
  • the lock pin 58 is fitted in the lock hole 59, the VCT phase is locked at the intermediate lock phase.
  • the advance port connected to the advance chamber 42 is connected to the main supply port, and the retard port connected to the retard chamber 43 is connected to the drain port.
  • the advance port connected to the advance chamber 42 is connected to the main supply port to supply oil to the advance chamber 42.
  • the unlock port connected to the unlocking hydraulic chamber 60 is connected to the drain port or disconnected from the drain port, and the retard port connected to the retard chamber 43 is connected to the drain port.
  • the lock release port communicating with the lock release hydraulic chamber 60 is connected to the sub supply port to release the lock release hydraulic pressure.
  • the chamber 60 is filled with oil, and the lock pin 58 is driven in the unlocking direction by the hydraulic pressure of the unlocking hydraulic chamber 60. As a result, the lock pin 58 comes out of the lock hole 59, and the lock of the VCT phase is released.
  • the retard port communicating with the retard chamber 43 is connected to the drain port to release the hydraulic pressure of the retard chamber 43, and the advance port communicating with the advance chamber 42 is used as the main supply port. Connect and supply oil to the advance chamber 42 to advance the VCT phase. At that time, the amount of oil supplied to the advance chamber 42 is changed according to the control amount (spool position) of the hydraulic control valve 25 to change the advance speed of the VCT phase.
  • the advance port communicating with the advance chamber 42 and the retard port communicating with the retard chamber 42 are disconnected from the drain port, and the hydraulic pressure of the advance chamber 42 and the retard chamber 43 is reduced. Hold to keep the VCT phase from moving.
  • the advance port connected to the advance chamber 42 is connected to the drain port to release the hydraulic pressure of the advance chamber 42, and the retard port connected to the retard chamber 43 is used as the main supply port. Connect to supply oil to the retard chamber 43 to retard the VCT phase. At this time, the amount of oil supplied to the retard chamber 43 is changed according to the control amount (spool position) of the hydraulic control valve 25 to change the retard speed of the VCT phase.
  • the engine control circuit 21 calculates the target VCT phase (target valve timing) according to the engine operating state and the like, and sets the control amount of the hydraulic control valve 25 so that the actual VCT phase (actual valve timing) matches the target VCT phase.
  • the phase F / B control is executed to perform the F / B control to F / B control the hydraulic pressure supplied to the advance chamber 42 and the retard chamber 43 of the variable valve timing device 18.
  • F / B means “feedback”.
  • the control region of this phase F / B control extends over the control region of the advance mode, the holding mode, and the retard mode.
  • the engine control circuit 21 sets the target VCT phase in the vicinity of the intermediate lock phase (intermediate lock phase or its vicinity), and the actual VCT phase is set to the intermediate lock phase by the phase F / B control. Control near (target VCT phase). Thereafter, the control mode of the hydraulic control valve 25 is switched to the lock mode (the control amount of the hydraulic control valve 25 is set in the control region of the lock mode), and the lock pin 58 is protruded in the lock direction. As a result, the lock pin 58 is fitted into the lock hole 59 before the engine is stopped, and the VCT phase is locked with the intermediate lock phase. When the engine is next started, the engine 11 is started in a locked state in which the VCT phase is locked with the intermediate lock phase (a pin fitting state in which the lock pin 58 is fitted in the lock hole 59).
  • the VCT phase is not locked with the intermediate lock phase (the lock pin 58 is locked).
  • the engine 11 may stop when the pin is not fitted to the pin 59 (not fitted).
  • the engine control circuit 21 executes the routines shown in FIGS. 10 to 15 described later. The following control is performed.
  • the VCT phase is controlled near the most retarded phase (or within the predetermined range from the most retarded phase or the most retarded phase) at the next start. Then, the most retarded angle starting process for starting the engine 11 is performed. Thereby, at the time of starting in the unlocked state (the next start when the engine 11 is stopped in the unlocked state), the VCT phase is displaced to the most retarded angle phase or close to the most retarded angle phase. Then, the engine 11 is started. As a result, the engine 11 is quickly started without locking the VCT phase when starting in the unlocked state.
  • the pin non-fitting flag is “1”
  • temperature information and battery voltage are determined. Based on this, it is determined whether or not the engine 11 can be started in the most retarded angle starting process.
  • the most retarded start process is performed as shown in FIG.
  • the engine 11 is cranked in a high rotation area that is equal to or higher than a predetermined rotation speed (a high rotation area that is equal to or higher than the rotation speed at which the engine 11 can be started by the most retarded angle starting process in a normal temperature state).
  • the VCT phase is controlled near the most retarded phase (or the most retarded phase or within a predetermined range from the most retarded phase).
  • the hydraulic pressure is quickly increased by cranking at a high speed, the VCT phase is quickly controlled near the most retarded phase, and the fluctuation width of the VCT phase is reduced as the oil is filled.
  • fuel injection and ignition of the engine 11 are started and the engine 11 is started.
  • the most advanced angle starting process is performed as shown in FIG.
  • the engine 11 is cranked in a high revolution region at a predetermined rotational speed or higher, and the VCT phase is close to the most advanced angle phase (the most advanced angle phase or within a predetermined range from the most advanced angle phase).
  • the hydraulic pressure is quickly increased by cranking at high speed, the VCT phase is quickly controlled near the most advanced angle phase, and the fluctuation width of the VCT phase is reduced as the oil is filled.
  • fuel injection and ignition of the engine 11 are started and the engine 11 is started.
  • an intermediate start process may be performed as shown in FIG.
  • the engine 11 is cranked in a high rotation region at a predetermined rotation speed or higher, and the VCT phase is controlled near the most retarded phase.
  • the hydraulic pressure is quickly increased by cranking at a high speed, the VCT phase is quickly controlled near the most retarded phase, and the fluctuation width of the VCT phase is reduced as the oil is filled.
  • the VCT phase is controlled to an intermediate phase on the advance side by a predetermined amount from the vicinity of the most retarded phase, and at the time t4 when the VCT phase becomes the intermediate phase. Then, fuel injection and ignition of the engine 11 are started to start the engine 11.
  • the main control routine shown in FIG. 10 is executed after the engine control circuit 21 is turned on and serves as a control unit.
  • step 101 after the initialization process is executed, the processes in and after step 102 are executed in a predetermined cycle (time synchronization).
  • step 102 after reading the pin non-engagement flag stored in the backup RAM when the engine was stopped last time, the process proceeds to step 103 to determine whether or not the engine is stopped.
  • step 103 If it is determined in step 103 that the engine is stopped, the process proceeds to step 104, where it is determined whether an engine start request has been generated. If it is determined that no engine start request has been generated, The processing of steps 105 to 119 is skipped and the processing proceeds to step 120.
  • step 104 determines whether or not an engine start request has been generated.
  • step 104 determines whether or not an engine start request has been generated.
  • step 105 determines whether or not the pin non-fitting flag is “0”. It is determined whether or not there is.
  • step 105 If it is determined in this step 105 that the pin non-engagement flag is “0”, it is determined that it is in the locked state (pin-engaged state), and the process proceeds to step 106 where the normal state of FIG.
  • a normal start process is performed by executing the start process routine. In this normal start process, the engine 11 is cranked in a locked state in which the VCT phase is locked with the intermediate lock phase, and the engine 11 is started by starting fuel injection and ignition of the engine 11.
  • step 105 if it is determined in step 105 that the pin non-fitting flag is “1”, it is determined that the pin is not locked (pin non-fitting state), and the process proceeds to step 107.
  • the non-lock start flag is set to “1”.
  • step 108 it is determined whether or not the engine 11 can be started by the most retarded start processing based on the temperature information and the battery voltage by executing the most retarded start permission determination routine of FIG. It is determined whether or not the most retarded start is permitted or the most retarded start is prohibited according to the determination result.
  • step 109 it is determined whether or not the most retarded start is permitted based on the determination result of the most retarded start permission determining routine (step 108). That is, it is determined whether or not the engine 11 can be started by the most retarded start process.
  • step 109 If it is determined in step 109 that the most retarded start is permitted, the process proceeds to step 110, and the most retarded start process is executed by executing the most retarded start process routine of FIG. .
  • the engine 11 In this most retarded angle starting process, the engine 11 is cranked in a high revolution region that is equal to or higher than a prescribed rotational speed, and the VCT phase is close to the most retarded phase (or within the prescribed range from the most retarded phase or the most retarded angle phase). Control. Thereafter, when the VCT phase becomes close to the most retarded phase, fuel injection and ignition of the engine 11 are started to start the engine 11.
  • step 109 if it is determined in step 109 that the most retarded start is prohibited (the engine 11 cannot be started in the most retarded start process), the process proceeds to step 111, and the most retarded start in FIG.
  • the advance angle start process routine the most advance angle start process is executed.
  • the engine 11 is cranked in a high revolution region at a predetermined rotational speed or higher, and the VCT phase is close to the most advanced angle phase (the most advanced angle phase or within a predetermined range from the most advanced angle phase). Control. Thereafter, when the VCT phase becomes close to the most advanced angle phase, fuel injection and ignition of the engine 11 are started to start the engine 11.
  • the intermediate start process may be performed by executing an intermediate start process routine of FIG.
  • this intermediate starting process first, the engine 11 is cranked in a high rotation region at a predetermined rotation speed or higher, and the VCT phase is controlled near the most retarded phase. Thereafter, when the VCT phase is near the most retarded phase, the VCT phase is controlled to an intermediate phase on the advance side by a predetermined amount from the vicinity of the most retarded phase, and when the VCT phase becomes the intermediate phase, 11 starts fuel injection and ignition to start the engine 11.
  • step 112 normal engine control is performed. If it is determined in step 103 that the engine is not stopped (that is, the engine is operating), the processing in steps 104 to 111 is skipped and the routine proceeds to step 112, where normal engine control is performed. Thereafter, the process proceeds to step 113, and the non-lock start flag is reset to “0”.
  • step 114 it is determined whether an engine stop request has been generated. If it is determined that no engine stop request has been generated, the process returns to step 112 above.
  • step 114 determines whether or not the engine stop request has been generated.
  • This immediate engine stop request is, for example, an engine stop request that needs to immediately stop the engine 11 in a situation where priority should be given to parts protection, user operation, and the like.
  • step 115 If it is determined in this step 115 that it is an immediate engine stop request, the process proceeds to step 116, where an immediate engine stop process is executed and the engine 11 is immediately stopped. In this case, the engine 11 stops in an unlocked state (pin not fitted state) where the VCT phase is not locked with the intermediate lock phase, so the routine proceeds to step 117 and the pin unfit flag is set to “1”. Set and store in backup RAM.
  • step 115 if it is determined in step 115 that the engine stop request is not immediately requested, the process proceeds to step 118 where the VCT phase is locked at the intermediate lock phase before the engine is stopped (the lock pin 58 is fitted in the lock hole 59). After that, an engine stop process is executed to stop the engine 11. Thereafter, the process proceeds to step 119, where the pin non-fitting flag is reset to “0” and stored in the backup RAM.
  • step 120 it is determined whether or not the key is turned off.
  • the process returns to step 102.
  • step 120 normal key-off processing (for example, learning processing) is executed, and this routine is terminated.
  • the unlock start flag is set to “1” in step 107.
  • the present invention is not limited to this.
  • the unlock start flag is set to “1” in step 117. You may make it store in backup RAM.
  • the normal start processing routine shown in FIG. 11 is a subroutine executed in step 106 of the main control routine of FIG.
  • starter start-up control is executed, and the starter 30 (a hybrid vehicle motor, an assist motor, a high-power starter, a normal starter, or the like) is used to crank the engine 11 in a high rotation region at a predetermined rotation speed or higher.
  • step 202 the air amount start-time control is executed to control the throttle opening to the throttle opening at the normal start (for example, the throttle opening set according to the water temperature at the start).
  • step 203 fuel injection start control is executed, and the fuel injection amount and fuel injection timing are set according to the fuel injection amount and fuel injection timing at the normal start (for example, the fuel temperature at start time etc.) Volume and fuel injection timing).
  • step 204 ignition start control is executed to control the ignition timing to the ignition timing at the normal start (for example, the ignition timing set according to the water temperature at the start).
  • step 205 the control mode of the hydraulic control valve 25 is maintained in the lock mode and maintained in the locked state (pin fitting state).
  • the control mode of the hydraulic control valve 25 may be switched to the filling mode to fill the oil while maintaining the locked state (pin fitting state).
  • Maximum retard start permission judgment routine The most retarded angle start permission determination routine shown in FIG. 12 is a subroutine executed in step 108 of the main control routine of FIG. 10, and serves as a determination unit.
  • step 301 temperature information (for example, at least one of water temperature, oil temperature, intake air temperature, outside air temperature, etc.) and battery voltage are read.
  • step 302 it is determined whether or not the engine 11 can be started by the most retarded start process based on the temperature information and the battery voltage (whether or not the most retarded start condition is satisfied). judge.
  • temperature information for example, water temperature, oil temperature, intake air temperature, outside air temperature, etc.
  • the engine 11 If at least one of them is monitored, it can be determined whether or not the engine 11 can be started in the most retarded start process.
  • the battery voltage if the battery voltage is too low, the engine 11 may not be cranked in a high rotation region at a predetermined rotation speed or higher. Therefore, if the battery voltage is monitored, the engine 11 is operated in a high rotation region at a predetermined rotation speed or higher. Can be determined (that is, the engine 11 can be started by the most retarded angle starting process).
  • the engine 11 it is determined whether or not the engine 11 can be started by the most retarded angle start process depending on whether or not the most retarded angle start condition is satisfied.
  • the most retarded start condition include the following conditions (1) and (2).
  • the temperature information or the temperature judgment parameter generated from the temperature information is within a predetermined maximum retarded startable range (a range corresponding to a temperature higher than the extremely low temperature).
  • the lower limit value of the battery voltage at which the engine 11 can be cranked in a high speed region higher than the rotational speed is equal to or greater than the above condition (2). It may be changed to “beyond speed”.
  • an estimated output of the starter 30 is calculated based on the battery voltage, and an estimated cranking rotation speed is calculated based on the estimated output.
  • step 302 If it is determined in step 302 that the most retarded start condition is satisfied, it is determined that the engine 11 can be started by the most retarded start process, and the process proceeds to step 303, where the latest retard is started. It is determined that corner start is permitted.
  • step 302 determines whether the most retarded start condition is satisfied. If it is determined in step 302 that the most retarded start condition is not satisfied, it is determined that the engine 11 cannot be started by the most retarded start process, and the process proceeds to step 304 to retard the retard start. It is determined to be prohibited.
  • the most retarded start processing routine The most retarded angle starting process routine shown in FIG. 13 is a subroutine executed in step 110 of the main control routine of FIG. In step 401, after prohibiting fuel injection, the routine proceeds to step 402, where the actual VCT phase is calculated based on the crank angle signal and the cam angle signal.
  • step 403 the control mode of the hydraulic control valve 25 is switched to the retard mode (the control amount of the hydraulic control valve 25 is set in the control region of the retard mode), and the VCT phase is retarded. .
  • the control amount (spool position) of the hydraulic control valve 25 is set so that the amount of oil supplied to the retard chamber 43 becomes the maximum value.
  • step 404 the air amount start time control is executed to control the throttle opening to the normal start throttle opening.
  • the throttle opening may be made larger than the throttle opening at the normal start.
  • step 405 starter start-up control is executed, and the engine 11 is operated in a high rotation region where the starter 30 (a hybrid vehicle motor, an assist motor, a high output starter, a normal starter, etc.) exceeds a predetermined rotation speed.
  • the starter 30 a hybrid vehicle motor, an assist motor, a high output starter, a normal starter, etc.
  • the cranking rotational speed is set to the cranking rotational speed at the normal start as required. It may be made higher.
  • the cranking rotation speed is changed to a rotation speed at which the engine 11 can be reliably started by changing the target cranking rotation speed according to the temperature information (for example, the target cranking rotation speed is increased as the water temperature is lower). Increase speed.
  • step 406 the actual VCT phase is in the vicinity of the most retarded phase (the most retarded phase or within a predetermined range from the most retarded phase) and the actual VCT phase fluctuation width (for example, between the peak value and the bottom value). It is determined whether or not (difference) has become a predetermined value or less.
  • step 406 If it is determined “No” in step 406, the process returns to step 402.
  • step 406 when it is determined in step 406 that the actual VCT phase is near the most retarded phase and the fluctuation width of the actual VCT phase has become equal to or less than a predetermined value, the process proceeds to step 407, after fuel injection is permitted, Proceeding to 408, fuel injection start time control is executed to control the fuel injection amount and fuel injection timing to the fuel injection amount and fuel injection time at normal start.
  • the fuel injection timing may be advanced from the fuel injection timing at the normal start.
  • step 409 ignition start time control is executed to control the ignition timing to the ignition timing at the normal start time.
  • the ignition timing may be advanced from the ignition timing at the normal start.
  • step 410 it is determined whether or not the engine 11 has been started by, for example, whether or not the engine speed has exceeded a complete explosion determination value, and it is determined that the engine 11 has not been started. Then, the process returns to step 402 above.
  • step 410 Thereafter, when it is determined in step 410 that the start of the engine 11 has been completed, the process proceeds to step 411 to return to the most retarded start prohibition and this routine is terminated.
  • the most advanced start processing routine shown in FIG. 14 is a subroutine executed in step 111 of the main control routine of FIG. In step 501, after prohibiting fuel injection, the process proceeds to step 502, where an actual VCT phase is calculated based on the crank angle signal and the cam angle signal.
  • step 503 the control mode of the hydraulic control valve 25 is switched to the advance mode (the control amount of the hydraulic control valve 25 is set in the control region of the advance mode), and the VCT phase is advanced. .
  • the control amount (spool position) of the hydraulic control valve 25 is set so that the amount of oil supplied to the advance chamber 42 becomes the maximum value.
  • step 504 the air amount start time control is executed to control the throttle opening to the throttle opening at the normal start.
  • the throttle opening may be made larger than the throttle opening at the normal start.
  • step 505 starter start-up control is executed, and the engine 11 is cranked by the starter 30 in a high rotation region at a predetermined rotation speed or higher.
  • the cranking rotational speed may be set higher than the cranking rotational speed at the time of normal starting as required.
  • step 506 whether or not the actual VCT phase is in the vicinity of the most advanced angle phase (the most advanced angle phase or within a predetermined range from the most advanced angle phase) and whether or not the actual VCT phase has a fluctuation width equal to or smaller than a predetermined value. Determine.
  • step 506 If it is determined “No” in step 506, the process returns to step 502.
  • step 506 when it is determined that the actual VCT phase is near the most advanced angle phase and the fluctuation width of the actual VCT phase is equal to or smaller than a predetermined value, the process proceeds to step 507, after fuel injection is permitted, Proceeding to 508, fuel injection start time control is executed to control the fuel injection amount and fuel injection timing to the fuel injection amount and fuel injection time at normal start.
  • the fuel injection timing may be advanced from the fuel injection timing at the normal start.
  • step 509 ignition start control is executed to control the ignition timing to the ignition timing at the normal start.
  • the ignition timing may be advanced from the ignition timing at the normal start.
  • step 510 it is determined whether or not the engine 11 has been started. If it is determined that the engine 11 has not been started, the process returns to step 502.
  • the intermediate start processing routine shown in FIG. 15 is a subroutine executed in step 111 of the main control routine of FIG.
  • step 601 after fuel injection is prohibited, the process proceeds to step 602, where the actual VCT phase is calculated based on the crank angle signal and the cam angle signal.
  • step 603 the control mode of the hydraulic control valve 25 is switched to the retard mode (the control amount of the hydraulic control valve 25 is set within the control region of the retard mode), and the VCT phase is retarded. .
  • the control amount (spool position) of the hydraulic control valve 25 is set so that the amount of oil supplied to the retard chamber 43 becomes the maximum value.
  • step 604 the air amount start time control is executed to control the throttle opening to the throttle opening at the normal start.
  • the throttle opening may be made larger than the throttle opening at the normal start.
  • step 605 starter start-up control is executed, and the engine 11 is cranked by the starter 30 in a high rotation region at a predetermined rotation speed or higher.
  • the cranking rotational speed may be set higher than the cranking rotational speed at the time of normal starting as required.
  • step 606 whether or not the actual VCT phase is in the vicinity of the most retarded phase (the most retarded phase or within the predetermined range from the most retarded phase), and whether or not the actual VCT phase fluctuation width has become a predetermined value or less. Determine.
  • step 606 If it is determined “No” in step 606, the process returns to step 602.
  • step 606 when it is determined in step 606 that the actual VCT phase is close to the most retarded phase and the fluctuation width of the actual VCT phase is equal to or smaller than a predetermined value, the process proceeds to step 607 and the target VCT phase is set to the most retarded phase.
  • the actual VCT phase is controlled to the target VCT phase (intermediate phase) by phase F / B control.
  • step 608 it is determined whether or not the absolute value of the deviation between the target VCT phase (intermediate phase) and the actual VCT phase is equal to or smaller than a predetermined value and the fluctuation width of the actual VCT phase is equal to or smaller than the predetermined value.
  • step 608 If it is determined “No” in step 608, the process returns to step 607.
  • step 608 when it is determined in step 608 that the absolute value of the deviation between the target VCT phase (intermediate phase) and the actual VCT phase is equal to or smaller than a predetermined value and the fluctuation width of the actual VCT phase is equal to or smaller than a predetermined value. Proceeding to 609, after permitting fuel injection, the routine proceeds to step 610, where fuel injection start time control is executed to control the fuel injection amount and fuel injection timing to the fuel injection amount and fuel injection time during normal start.
  • the fuel injection timing may be advanced from the fuel injection timing at the normal start.
  • step 611 ignition start control is executed to control the ignition timing to the ignition timing at the normal start.
  • the ignition timing may be advanced from the ignition timing at the normal start.
  • step 612 it is determined whether or not the engine 11 has been started. If it is determined that the engine 11 has not been started, the process returns to step 607.
  • step 612 determines that the start of the engine 11 has been completed.
  • the VCT phase is controlled near the most retarded phase at the next start. 11 is executed to start the most retarded angle.
  • the engine 11 can be started in a state where the VCT phase is displaced to the most retarded angle phase or close to the most retarded angle phase, and the engine is not locked without locking the VCT phase. 11 can be started quickly. In this case, it is not necessary to lock the VCT phase at the start in the unlocked state, and the following effects (1) to (5) can be obtained.
  • variable valve timing device with an expensive and complicated structure like a ratchet mechanism is not required (the ratchet mechanism can be omitted), the cost can be reduced and the safety factor and reliability can be improved. be able to.
  • Cranking time is shortened compared to the conventional method of starting the engine after judging whether or not oil is filled when starting in the non-locked state (pin not fitted state). can do.
  • lock mode ⁇ locking pin fitting
  • it is determined that oil has been filled or pin is fixed ⁇ engine start by another action is performed in this order, and a considerable time is required.
  • the engine 11 can be cranked in a high rotation region of a predetermined rotation speed or higher (for example, a high rotation region of a rotation speed higher than the rotation speed at which the engine 11 can be started by the most retarded angle start processing in a normal temperature state). I am doing so. As a result, the engine 11 can be cranked and started in a high rotation region of a predetermined rotation speed or higher even when the VCT phase is in the vicinity of the most retarded angle phase during the most retarded angle starting process.
  • the engine when starting in the unlocked state, the engine is subjected to the most retarded start processing based on temperature information (at least one of water temperature, oil temperature, intake air temperature, outside air temperature, etc.) and battery voltage.
  • 11 is determined whether or not the engine 11 can be started.
  • the most retarded start process is performed. Accordingly, the most retarded start process can be performed only when it is determined that the engine 11 can be started by the most retarded start process, and the engine 11 can be started by the most retarded start process.
  • the most advanced angle start process for starting the engine 11 by controlling the VCT phase near the most advanced angle phase is performed. I am doing so.
  • an intermediate start process for starting the engine 11 by controlling the VCT phase from the vicinity of the most retarded angle phase to an intermediate phase on the advance side by a predetermined amount is performed. ing.
  • the cranking rotational speed is increased to the rotational speed at which the engine 11 can be reliably started during the most retarded start process. Can be started.
  • Example 2 of the present disclosure will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.
  • a state in which the engine 11 cannot be started continues for a predetermined period or longer even when the most retarded start process is performed by executing the most retarded start process routine of FIG.
  • an intermediate start process for starting the engine 11 by controlling the VCT phase from the vicinity of the most retarded phase to an intermediate phase on the advance side by a predetermined amount is performed.
  • the routine of FIG. 16 executed in the second embodiment adds the processing of step 407a after the processing of step 407 of the routine of FIG. 13 described in the first embodiment, and after steps 410a to 410c. Processing is added, and the processing of each step other than that is the same as FIG.
  • step 402 the actual VCT phase is calculated based on the crank angle signal and the cam angle signal. Thereafter, the process proceeds to step 403, where the control mode of the hydraulic control valve 25 is switched to the retard mode, and the VCT phase is retarded.
  • step 404 the air amount start time control is executed to control the throttle opening to the normal start throttle opening.
  • the throttle opening may be made larger than the throttle opening at the normal start.
  • step 405 starter start-up control is executed, and the starter 30 cranks the engine 11 in a high rotation region at a predetermined rotation speed or higher.
  • the cranking rotational speed may be set higher than the cranking rotational speed at the time of normal starting as required.
  • step 406 it is determined whether or not the actual VCT phase is near the most retarded phase and the amplitude of the actual VCT phase is equal to or smaller than a predetermined value. In this step 406, "No" is determined. Then, the process returns to step 402 above.
  • step 406 when it is determined in step 406 that the actual VCT phase is in the vicinity of the most retarded phase and the fluctuation width of the actual VCT phase is equal to or smaller than a predetermined value, the process proceeds to step 407 and fuel injection is permitted. Thereafter, the process proceeds to step 407a, and an injection permission time timer for counting the elapsed time since the fuel injection is permitted is counted up.
  • step 408 fuel injection start time control is executed to control the fuel injection amount and fuel injection timing to the fuel injection amount and fuel injection time at the normal start time.
  • the fuel injection timing may be advanced from the fuel injection timing at the normal start.
  • step 409 ignition start time control is executed to control the ignition timing to the ignition timing at the normal start time.
  • the ignition timing may be advanced from the ignition timing at the normal start.
  • step 410 determines whether or not the engine 11 has been started.
  • step 410 If it is determined in step 410 that the start of the engine 11 has not been completed, the process proceeds to step 410a, and the most retarded start process is performed depending on whether the count value of the injection permission time timer has reached a predetermined value or more. It is determined whether or not the engine 11 cannot be started even if the operation is continued for a predetermined time or longer.
  • step 410a If it is determined in step 410a that the count value of the injection permission time timer has not reached the predetermined value, the process returns to step 402.
  • step 410 determines whether the engine 11 has been started. If it is determined in step 410 that the engine 11 has been started, the process proceeds to step 411 to return to the most retarded start prohibition, and this routine is terminated.
  • step 410a if it is determined in step 410a that the count value of the injection permission time timer has reached a predetermined value or more, the state in which the engine 11 cannot be started continues for a predetermined time or more even if the most retarded start processing is performed. And the process proceeds to step 410b.
  • step 410b the target VCT phase is set to an intermediate phase that is advanced by a predetermined amount from the most retarded phase, and the actual VCT phase is controlled to the target VCT phase (intermediate phase) by phase F / B control.
  • Step 410c it is determined whether or not the engine 11 has been started. If it is determined that the engine 11 has not been started, the process returns to Step 410a.
  • step 410c the process proceeds to step 411 to return to the most retarded start prohibition and this routine is terminated.
  • the VCT phase is advanced by a predetermined amount from the vicinity of the most retarded phase.
  • An intermediate start process for starting the engine 11 by controlling to an intermediate phase is performed. Even in this case, when the engine 11 cannot be started by the most retarded angle starting process at the start in the unlocked state, the engine 11 can be started by the intermediate start process without locking the VCT phase.
  • the present invention is not limited to this, and in the case of a system that can further increase the cranking rotation speed (for example, when a hybrid vehicle motor or an assist motor is used as the starter 30), steps 108, 109, and 111 of the routine of FIG. This process may be omitted, and the most retarded angle starting process may always be performed when starting in the unlocked state.
  • the target cranking rotational speed is changed in accordance with the temperature information during the most retarded starting process (for example, the target cranking rotational speed is increased as the water temperature is lower) to ensure that the engine 11 is maintained even at extremely low temperatures. It is preferable to increase the cranking rotational speed to a rotational speed at which the engine can be started. Further, when the state in which the engine 11 cannot be started even if the most retarded start process is performed continues for a predetermined period or longer, the intermediate start process may be performed.
  • the present disclosure is applied to the variable valve timing device for the intake valve.
  • the present disclosure is not limited to this, and the present disclosure may be applied to the variable valve timing device for the exhaust valve.
  • the present disclosure can be implemented with various changes without departing from the gist, such as the configuration of the variable valve timing device, the configuration of the intermediate lock mechanism, the configuration of the hydraulic control valve, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

非ロック状態での始動時(VCT位相を中間ロック位相でロックしていない非ロック状態でエンジン(11)が停止した場合の次回の始動時)に、最遅角始動処理でエンジン始動可能な状態であるか否かを判定する。最遅角始動処理でエンジン始動可能な状態であると判定した場合には、最遅角始動処理を実施する。この最遅角始動処理では、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)に制御した状態で、燃料噴射及び点火を開始してエンジン(11)を始動させる。これにより、非ロック状態での始動時にVCT位相をロックすることなくエンジン(11)を速やかに始動させる。

Description

内燃機関の制御装置 関連出願の相互参照
 本出願は、2014年11月4日に出願された日本特許出願番号2014-224764号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関のクランク軸に対するカム軸の回転位相(VCT位相)を中間ロック位相でロックする中間ロック機構付きの可変バルブタイミング装置を備えた内燃機関の制御装置に関する発明である。
 車両に搭載される内燃機関においては、出力向上、燃費節減、エミッション低減等を目的として、内燃機関のクランク軸に対するカム軸の回転位相(VCT位相)を変化させて吸気バルブや排気バルブのバルブタイミング(開閉タイミング)を変化させる可変バルブタイミング装置を搭載している。
 油圧駆動式の可変バルブタイミング装置においては、VCT位相をその調整可能範囲内に位置する中間ロック位相(例えば始動に適したVCT位相)でロックする中間ロック機構を設けるようにしたものがある。この中間ロック機構は、例えば、ロックピンを突出させて嵌合穴に嵌め込むことでVCT位相を中間ロック位相で固定するように構成されている。このような中間ロック機構を備えたシステムでは、内燃機関の停止前にVCT位相を中間ロック位相でロックしておき、次回の始動時にVCT位相を中間ロック位相でロックした状態で内燃機関を始動させることで、始動性を向上させるようにしている。
 しかし、内燃機関の運転中に部品保護やユーザー操作等を優先すべき状況になって急な停止要求が発生すると、VCT位相を中間ロック位相でロックしていない非ロック状態で内燃機関が停止してしまう場合もある。このように非ロック状態で内燃機関が停止した場合の対策として、例えば、特許文献1(特開2012-36735号公報)に記載の可変バルブタイミング装置がある。この可変バルブタイミング装置は、内燃機関のクランキング中にカムトルクの変動による回転変動(回転脈動)を利用してVCT位相を振動させながら中間ロック位相まで変化させてVCT位相を中間ロック位相でロックして、内燃機関を始動させるようにしている。
 また、中間ロック機構のロックピンを突出させるロックモードは、通常の内燃機関の運転中やロック状態での内燃機関の始動/停止にも使用することがあり、可変バルブタイミング装置の進角室や遅角室へのオイル供給を遮断又は抑制するが、進角室や遅角室からの積極的なオイル排出は行わない。これはロックモード後の位相制御時に進角室や遅角室がオイル未充填の状態で位相制御が困難になることを避けるためであり、そのために進角室や遅角室のオイルを極力保持するようにしている。
 しかし、非ロック状態での始動時(非ロック状態で内燃機関が停止した場合の次回の始動時)にクランキング中のカムトルクの変動による回転変動を利用してVCT位相を中間ロック位相まで変化させてロックするシステムでは、次のような状態が発生する可能性がある。
 非ロック状態での始動時にロックモードで進角室や遅角室にオイル(特に高粘度のオイル)が残っていると、カムトルクの変動による回転変動だけではVCT位相を十分な振幅で振動させることができず、VCT位相を中間ロック位相まで変化させてロックすることができない可能性がある。このため、始動完了までの時間が異常に長くる可能性がある。しかも、進角室や遅角室のオイル残量を計測又は推定することは困難であり、非ロック状態での始動時にVCT位相が動かない場合に、その原因がロックピンの固着なのか、進角室や遅角室に高粘度オイルが残っているのかを特定することができず、対応に大幅な遅れが生じる可能性がある。
 また、近年、燃費向上のために内燃機関のフリクションを小さくする傾向にあり、カムトルクが小さい内燃機関も検討されている。このような内燃機関では、カムトルクが小さく、カムトルクの変動による回転変動を十分に得られないため、VCT位相を十分な振幅で振動させることができず、VCT位相を中間ロック位相まで変化させてロックすることができない可能性がある。このため、始動完了までの時間が異常に長くなる可能性がある。
 更に、車両の動力源として内燃機関とモータとを備えたハイブリッド車や、内燃機関をアシストするモータを備えた車両のように、従来の一般的なスタータよりも高出力のモータで内燃機関をクランキングするシステムでは、従来の一般的なクランキング回転速度よりも高回転で内燃機関をクランキングすることができる。このように高回転で内燃機関をクランキングするシステムでは、カムトルクの変動の影響を受け難く、カムトルクの変動による回転変動を十分に得られないため、VCT位相を十分な振幅で振動させることができず、VCT位相を中間ロック位相まで変化させてロックすることができない可能性がある。このため、始動完了までの時間が異常に長くなる可能性がある。
 また、カムトルクの変動による回転変動を利用してVCT位相を中間ロック位相まで変化させる際に、VCT位相が逆方向(中間ロック位相から離れる方向)に戻ることを制限するラチェット機構を設けるようにした可変バルブタイミング装置もあるが、この場合、構成が複雑化するため、ロックピンが固着する可能性もある。
特開2012-36735号公報
 本開示は、非ロック状態での始動時(非ロック状態で内燃機関が停止した場合の次回の始動時)にVCT位相をロックすることなく内燃機関を速やかに始動させることができる内燃機関の制御装置を提供することを目的とする。
 本開示の一態様によれば、内燃機関の制御装置は、内燃機関のクランク軸に対するカム軸の回転位相(VCT位相)を変化させてバルブタイミングを変化させる油圧駆動式の可変バルブタイミング装置と、VCT位相をその調整可能範囲内に位置する中間ロック位相でロックする中間ロック機構と、内燃機関の停止前にVCT位相を中間ロック位相でロックして、次回の始動時にVCT位相を中間ロック位相でロックした状態で内燃機関を始動させる制御部とを備える。制御部は、VCT位相を中間ロック位相でロックしていない非ロック状態で内燃機関が停止した場合には、次回の始動時にVCT位相を最遅角位相又は該最遅角位相から所定範囲内(最遅角位相付近)に制御して内燃機関を始動させる最遅角始動処理を実施する。
 近年、従来の一般的なクランキング回転速度よりも高回転で内燃機関をクランキングすることができるシステムが普及してきており、このようなシステムでは、内燃機関を始動可能なVCT位相の領域が拡大し、VCT位相が最遅角位相でも内燃機関を始動することが可能である。
 この点に着目して、本開示は、VCT位相を中間ロック位相でロックしていない非ロック状態で内燃機関が停止した場合には、次回の始動時にVCT位相を最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)に制御して内燃機関を始動させる最遅角始動処理を実施するようにしている。
 このようにすれば、非ロック状態での始動時(非ロック状態で内燃機関が停止した場合の次回の始動時)に、VCT位相を最遅角位相に変位させるか、または最遅角位相に近付けた状態で内燃機関を始動させることができる。これにより、非ロック状態での始動時にVCT位相をロックすることなく内燃機関を速やかに始動させることができる。この場合、非ロック状態での始動時にVCT位相をロックする必要がないため、非ロック状態での始動時にVCT位相をロックする場合に起こり得る事象の発生を防止することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は本開示の実施例1におけるエンジン制御システムの概略構成を示す図である。 図2は可変バルブタイミング装置と油圧制御回路の構成を説明する縦断側面図である。 図3は可変バルブタイミング装置の縦断正面図である。 図4は中間ロック機構の断面図である。 図5は油圧制御弁の制御モードを説明する図である。 図6はクランキング回転速度を説明する図である。 図7は最遅角始動処理の実行例を示すタイムチャートである。 図8は最進角始動処理の実行例を示すタイムチャートである。 図9は中間始動処理の実行例を示すタイムチャートである。 図10はメイン制御ルーチンの処理の流れを示すフローチャートである。 図11は通常始動処理ルーチンの処理の流れを示すフローチャートである。 図12は最遅角始動許可判定ルーチンの処理の流れを示すフローチャートである。 図13は最遅角始動処理ルーチンの処理の流れを示すフローチャートである。 図14は最進角始動処理ルーチンの処理の流れを示すフローチャートである。 図15は中間始動処理ルーチンの処理の流れを示すフローチャートである。 図16は実施例2の最遅角始動処理ルーチンの処理の流れを示すフローチャートである。
 以下、本開示を実施するための形態を具体化した幾つかの実施例を説明する。
 本開示の実施例1を図1乃至図15に基づいて説明する。
 図1に示すように、内燃機関であるエンジン11は、クランク軸12からの動力がタイミングチェーン13(又はタイミングベルト)により各スプロケット14,15を介して吸気側カム軸16と排気側カム軸17とに伝達されるようになっている。吸気側カム軸16には、油圧駆動式の可変バルブタイミング装置18(VCT)が設けられている。この可変バルブタイミング装置18によって、クランク軸12に対する吸気側カム軸16の回転位相(以下「VCT位相」という)を変化させることで、吸気側カム軸16によって開閉駆動される吸気バルブ(図示せず)のバルブタイミング(開閉タイミング)を変化させるようになっている。
 また、吸気側カム軸16の外周側には、気筒判別のために特定のカム角でカム角信号のパルスを出力するカム角センサ19が設置され、一方、クランク軸12の外周側には、所定クランク角毎にクランク角信号のパルスを出力するクランク角センサ20が設置されている。これらカム角センサ19及びクランク角センサ20の出力信号は、エンジン制御回路21に入力される。このエンジン制御回路21は、カム角センサ19とクランク角センサ20の出力信号パルスの位相差に基づいて吸気バルブの実バルブタイミング(実VCT位相)を演算すると共に、クランク角センサ20の出力パルスの周波数(パルス間隔)に基づいてエンジン回転速度を演算する。その他、エンジン運転状態を検出する各種センサ(吸気圧センサ22、冷却水温センサ23、スロットルセンサ24等)の出力信号がエンジン制御回路21に入力される。
 このエンジン制御回路21は、上記各種センサで検出したエンジン運転状態に応じて燃料噴射制御や点火制御を行うと共に、吸気バルブの実バルブタイミング(実VCT位相)を、エンジン運転状態に応じて設定した目標バルブタイミング(目標VCT位相)に一致させるように可変バルブタイミング装置18を駆動する油圧を制御する。
 また、エンジン11の始動時にクランク軸12を回転駆動(クランキング)するためのスタータ30が設けられている。このスタータ30でエンジン11をクランキングすることで、エンジン11を所定回転速度以上の高回転領域でクランキングできるように構成されている。ここで、所定回転速度以上の高回転領域は、例えば、通常の温度状態において後述する最遅角始動処理でエンジン11を始動可能な回転速度以上の高回転領域であり、従来の一般的なクランキング回転速度(例えば130~300rpm)よりも高い回転速度である。また、通常の温度状態は、極低温(例えば-30℃以下)よりも高い温度状態とする。
 車両の動力源としてエンジン11とモータ[例えばMG(モータジェネレータ)]とを搭載したハイブリッド車の場合には、このハイブリッド車用のモータをスタータ30として使用してエンジン11をクランキングすることで、エンジン11を所定回転速度以上の高回転領域(例えば650~900rpm)でクランキングできるようになっている(図6参照)。
 また、エンジン11をアシストするモータ[例えばISG(インテグレーテッドスタータジェネレータ)]を搭載した車両の場合には、このアシスト用のモータをスタータ30として使用してエンジン11をクランキングすることで、エンジン11を所定回転速度以上の高回転領域(例えば250~450rpm)でクランキングできるようになっている(図6参照)。
 また、スタータ30として、エンジン11を所定回転速度以上の高回転領域(例えば250~450rpm)でクランキング可能な高出力スタータ(従来の一般的なスタータよりも高出力のスタータ)を用いるようにしても良い。
 また、エンジン11を低フリクション化することで、従来の一般的なスタータ(以下「ノーマルスタータ」という)でもエンジン11を所定回転速度以上の高回転領域(例えば250~450rpm)でクランキングできるようにしても良い。この場合、スタータ30として、ノーマルスタータを用いるようにしても良いが、ハイブリッド車用モータ、アシスト用モータ、高出力スタータのうちのいずれかを用いるようにしても良い。
 次に、図2乃至図4に基づいて可変バルブタイミング装置18の構成を説明する。
 可変バルブタイミング装置18のハウジング31は、吸気側カム軸16の外周に回動自在に支持されたスプロケット14にボルト32で締め付け固定されている。これにより、クランク軸12の回転がタイミングチェーン13を介してスプロケット14とハウジング31に伝達され、スプロケット14とハウジング31がクランク軸12と同期して回転する。一方、吸気側カム軸16の一端部には、ロータ35がボルト37で締め付け固定されている。このロータ35は、ハウジング31内に相対回動自在に収納されている。
 図3に示すように、ハウジング31の内部には、複数のベーン収容室40が形成され、各ベーン収容室40が、ロータ35の外周部に形成されたベーン41によって進角室42と遅角室43とに区画されている。少なくとも1つのベーン41の両側部には、ハウジング31に対するロータ35(ベーン41)の相対回動範囲を規制するストッパ部56が形成され、このストッパ部56によって実VCT位相(カム軸位相)の調整可能範囲の最遅角位相と最進角位相が規制されている。
 図3及び図4に示すように、可変バルブタイミング装置18には、VCT位相をその調整可能範囲の最遅角位相と最進角位相との間(例えば略中間)に位置する中間ロック位相でロックする中間ロック機構50が設けられている。この中間ロック機構50は、いずれか1つ(又は複数)のベーン41にロックピン収容孔57が設けられ、このロックピン収容孔57に、ハウジング31とロータ35(ベーン41)との相対回動をロックするためのロックピン58が突出可能に収容されている。このロックピン58がスプロケット14側に突出してスプロケット14のロック穴59に嵌り込むことで、VCT位相がその調整可能範囲の略中間に位置する中間ロック位相でロックされる。この中間ロック位相は、エンジン11の始動に適した位相に設定されている。尚、ロック穴59をハウジング31に設けた構成としても良い。ロックピン58は、スプリング62によってロック方向(突出方向)に付勢されている。また、ロックピン58の外周部とロックピン収容孔57との間には、ロックピン58をロック解除方向(ロック方向と逆方向)に駆動する油圧を制御するためのロック解除用油圧室60が形成されている。
 また、図2に示すように、ハウジング31には、ロータ35を進角方向に付勢するねじりコイルばね等のばね55が設けられている。吸気バルブの可変バルブタイミング装置18では、吸気側カム軸16のトルクがVCT位相を遅角させる方向に作用することから、上記ばね55は、VCT位相を吸気側カム軸16のトルク方向と反対方向である進角方向に付勢することになる。ばね55の付勢力が作用する範囲は、最遅角位相からほぼ中間ロック位相までの範囲に設定されている。
 図1及び図2に示すように、可変バルブタイミング装置18及び中間ロック機構50を駆動する油圧を制御する油圧制御弁25は、VCT位相を駆動する油圧を制御する位相制御用の油圧制御弁機能とロックピン58を駆動する油圧を制御するロック制御用の油圧制御弁機能とを一体化した油圧制御弁(例えば電磁駆動式のスプール弁)により構成されている。エンジン11の動力によって駆動されるオイルポンプ28により、オイルパン27内のオイル(作動油)が汲み上げられて油圧制御弁25に供給される。
 図5に示すように、油圧制御弁25の制御量(スプール位置)は、ロックモードと充填モードと進角モードと保持モードと遅角モードの五つの制御領域に区分されている。エンジン制御回路21は、油圧制御弁25の制御モードをロックモードと充填モードと進角モードと保持モードと遅角モードとの間で切り換えて、油圧制御弁25の制御量をその制御モードの制御領域内に設定する。
 ロックモードの制御領域では、ロック解除用油圧室60に連通するロック解除ポートをドレンポートに接続してロック解除用油圧室60の油圧を抜いて、スプリング62によってロックピン58をロック方向に突出させる。これにより、ロックピン58がロック穴59に嵌まり込むと、VCT位相が中間ロック位相でロックされる。尚、進角室42に連通する進角ポートは主供給ポートに接続し、遅角室43に連通する遅角ポートはドレンポートに接続する。
 充填モードの制御領域では、進角室42に連通する進角ポートを主供給ポートに接続して進角室42にオイルを供給する。尚、ロック解除用油圧室60に連通するロック解除ポートはドレンポートに接続するか又はドレンポートとの接続を遮断し、遅角室43に連通する遅角ポートはドレンポートに接続する。
 ロックモードと充填モード以外の制御領域(進角モードと保持モードと遅角モードの制御領域)では、ロック解除用油圧室60に連通するロック解除ポートを副供給ポートに接続してロック解除用油圧室60にオイルを充填して、ロック解除用油圧室60の油圧によってロックピン58をロック解除方向に駆動する。これにより、ロックピン58がロック穴59から抜け出て、VCT位相のロックが解除される。
 進角モードの制御領域では、遅角室43に連通する遅角ポートをドレンポートに接続して遅角室43の油圧を抜くと共に、進角室42に連通する進角ポートを主供給ポートに接続して進角室42にオイルを供給してVCT位相を進角させる。その際、油圧制御弁25の制御量(スプール位置)に応じて進角室42へのオイルの供給量を変化させてVCT位相の進角速度を変化させる。
 保持モードの制御領域では、進角室42に連通する進角ポート及び遅角室42に連通する遅角ポートとドレンポートとの接続を遮断して進角室42及び遅角室43の油圧を保持してVCT位相が動かないように保持する。
 遅角モードの制御領域では、進角室42に連通する進角ポートをドレンポートに接続して進角室42の油圧を抜くと共に、遅角室43に連通する遅角ポートを主供給ポートに接続して遅角室43にオイルを供給してVCT位相を遅角させる。その際、油圧制御弁25の制御量(スプール位置)に応じて遅角室43へのオイルの供給量を変化させてVCT位相の遅角速度を変化させる。
 エンジン制御回路21は、エンジン運転状態等に応じて目標VCT位相(目標バルブタイミング)を算出し、実VCT位相(実バルブタイミング)を目標VCT位相に一致させるように油圧制御弁25の制御量をF/B制御して可変バルブタイミング装置18の進角室42と遅角室43に供給する油圧をF/B制御する位相F/B制御を実行する。「F/B」は「フィードバック」を意味する。この位相F/B制御の制御領域は、進角モードと保持モードと遅角モードの制御領域に跨がっている。
 また、エンジン制御回路21は、エンジン停止要求が発生したときには、目標VCT位相を中間ロック位相付近(中間ロック位相又はその付近)に設定して、位相F/B制御により実VCT位相を中間ロック位相付近(目標VCT位相)に制御する。この後、油圧制御弁25の制御モードをロックモードに切り換えて(油圧制御弁25の制御量をロックモードの制御領域内に設定して)、ロックピン58をロック方向に突出させる。これにより、エンジン停止前にロックピン58をロック穴59に嵌め込んで、VCT位相を中間ロック位相でロックする。次回のエンジン始動時には、VCT位相を中間ロック位相でロックしたロック状態(ロックピン58がロック穴59に嵌合したピン嵌合状態)でエンジン11を始動させる。
 しかし、エンジン運転中に部品保護やユーザー操作等を優先すべき状況になって急なエンジン停止要求が発生すると、VCT位相を中間ロック位相でロックしていない非ロック状態(ロックピン58がロック穴59に嵌合していないピン未嵌合状態)でエンジン11が停止してしまう場合もある。
 このように非ロック状態(ピン未嵌合状態)でエンジン11が停止した場合の対策として、本実施例1では、エンジン制御回路21により後述する図10乃至図15の各ルーチンを実行することで、次のような制御を行う。
 非ロック状態(ピン未嵌合状態)でエンジン11が停止した場合には、次回の始動時にVCT位相を最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)に制御してエンジン11を始動させる最遅角始動処理を実施する。これにより、非ロック状態での始動時(非ロック状態でエンジン11が停止した場合の次回の始動時)に、VCT位相を最遅角位相に変位させるか、最遅角位相近傍に近付けた状態でエンジン11を始動させる。これにより、非ロック状態での始動時にVCT位相をロックすることなくエンジン11を速やかに始動させる。
 具体的には、図7乃至図9に示すように、エンジン運転中に部品保護やユーザー操作等を優先すべき状況になって即エンジン停止要求が発生した場合には、その時点t1 で、速やかにエンジン11を停止させる。この場合、VCT位相を中間ロック位相でロックしていない非ロック状態(ロックピン58がロック穴59に嵌合していないピン未嵌合状態)でエンジン11が停止してしまうため、エンジン停止後にピン未嵌合フラグを「1」にセットする。
 その後、次回のエンジン始動要求が発生した時点t2 で、ピン未嵌合フラグが「1」の場合には、非ロック状態(ピン未嵌合状態)であると判断して、温度情報やバッテリ電圧に基づいて最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定する。
 その結果、最遅角始動処理でエンジン11を始動可能な状態であると判定された場合には、図7に示すように、最遅角始動処理を実施する。この最遅角始動処理では、エンジン11を所定回転速度以上の高回転領域(通常の温度状態において最遅角始動処理でエンジン11を始動可能な回転速度以上の高回転領域)でクランキングすると共に、VCT位相を最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)に制御する。この際、高回転のクランキングにより油圧が速やかに上昇して、VCT位相が速やかに最遅角位相付近に制御されると共に、オイルの充填に伴ってVCT位相の振れ幅が減少していく。その後、VCT位相が最遅角位相付近になった時点t3 で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 一方、最遅角始動処理でエンジン11を始動可能な状態ではないと判定された場合には、図8に示すように、最進角始動処理を実施する。この最進角始動処理では、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最進角位相付近(最進角位相又は該最進角位相から所定範囲内)に制御する。この際、高回転のクランキングにより油圧が速やかに上昇して、VCT位相が速やかに最進角位相付近に制御されると共に、オイルの充填に伴ってVCT位相の振れ幅が減少していく。その後、VCT位相が最進角位相付近になった時点t3 で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 或は、最遅角始動処理でエンジン11を始動可能な状態ではないと判定された場合に、図9に示すように、中間始動処理を実施するようにしても良い。この中間始動処理では、まず、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最遅角位相付近に制御する。この際、高回転のクランキングにより油圧が速やかに上昇して、VCT位相が速やかに最遅角位相付近に制御されると共に、オイルの充填に伴ってVCT位相の振れ幅が減少していく。その後、VCT位相が最遅角位相付近になった時点t3 で、VCT位相を最遅角位相付近から所定量だけ進角側の中間位相に制御し、VCT位相が中間位相になった時点t4 で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 以下、本実施例1でエンジン制御回路21が実行する図10乃至図15の各ルーチンの処理内容を説明する。
[メイン制御ルーチン]
 図10に示すメイン制御ルーチンは、エンジン制御回路21の電源オン後に実行され、制御部としての役割を果たす。ステップ101で、イニシャライズ処理を実行した後、ステップ102以降の処理を所定周期(時間同期)で実行する。
 ステップ102で、前回のエンジン停止時にバックアップRAMに格納したピン未嵌合フラグを読み込んだ後、ステップ103に進み、エンジン停止中であるか否かを判定する。
 このステップ103で、エンジン停止中と判定された場合には、ステップ104に進み、エンジン始動要求が発生したか否かを判定し、エンジン始動要求が発生していないと判定された場合には、ステップ105~119の処理を飛ばして、ステップ120に進む。
 その後、上記ステップ104で、エンジン始動要求が発生したと判定された時点で、ステップ105に進み、ピン未嵌合フラグが「0」であるか否かによって、ロック状態(ピン嵌合状態)であるか否かを判定する。
 このステップ105で、ピン未嵌合フラグが「0」であると判定された場合には、ロック状態(ピン嵌合状態)であると判断して、ステップ106に進み、後述する図11の通常始動処理ルーチンを実行することで、通常始動処理を実施する。この通常始動処理では、VCT位相を中間ロック位相でロックしたロック状態でエンジン11をクランキングすると共に、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 これに対して、上記ステップ105で、ピン未嵌合フラグが「1」であると判定された場合には、非ロック状態(ピン未嵌合状態)であると判断して、ステップ107に進み、非ロック始動フラグを「1」にセットする。
 この後、ステップ108に進み、後述する図12の最遅角始動許可判定ルーチンを実行することで、温度情報やバッテリ電圧に基づいて最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定し、その判定結果に応じて最遅角始動許可か又は最遅角始動禁止と判定する。
 この後、ステップ109に進み、最遅角始動許可判定ルーチン(ステップ108)の判定結果に基づいて最遅角始動許可であるか否かを判定する。すなわち、最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定する。
 このステップ109で、最遅角始動許可であると判定された場合には、ステップ110に進み、後述する図13の最遅角始動処理ルーチンを実行することで、最遅角始動処理を実施する。この最遅角始動処理では、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)に制御する。その後、VCT位相が最遅角位相付近になった時点で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 一方、上記ステップ109で、最遅角始動禁止である(最遅角始動処理でエンジン11を始動可能な状態ではない)と判定された場合には、ステップ111に進み、後述する図14の最進角始動処理ルーチンを実行することで、最進角始動処理を実施する。この最進角始動処理では、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最進角位相付近(最進角位相又は該最進角位相から所定範囲内)に制御する。その後、VCT位相が最進角位相付近になった時点で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 或は、ステップ111で、後述する図15の中間始動処理ルーチンを実行することで、中間始動処理を実施するようにしても良い。この中間始動処理では、まず、エンジン11を所定回転速度以上の高回転領域でクランキングすると共に、VCT位相を最遅角位相付近に制御する。その後、VCT位相が最遅角位相付近になった時点で、VCT位相を最遅角位相付近から所定量だけ進角側の中間位相に制御し、VCT位相が中間位相になった時点で、エンジン11の燃料噴射及び点火を開始してエンジン11を始動させる。
 エンジン11の始動後は、ステップ112に進み、通常のエンジン制御を実施する。また、上記ステップ103で、エンジン停止中ではない(つまりエンジン運転中)と判定された場合には、上記ステップ104~111の処理を飛ばして、ステップ112に進み、通常のエンジン制御を実施する。この後、ステップ113に進み、非ロック始動フラグを「0」にリセットする。
 エンジン運転中は、ステップ114に進み、エンジン停止要求が発生したか否かを判定し、エンジン停止要求が発生していないと判定されれば、上記ステップ112に戻る。
 その後、上記ステップ114で、エンジン停止要求が発生したと判定された時点で、ステップ115に進み、即エンジン停止要求であるか否かを判定する。この即エンジン停止要求は、例えば、部品保護やユーザー操作等を優先すべき状況になって即座にエンジン11を停止させる必要があるエンジン停止要求である。
 このステップ115で、即エンジン停止要求であると判定された場合には、ステップ116に進み、即エンジン停止処理を実行して、速やかにエンジン11を停止させる。この場合、VCT位相を中間ロック位相でロックしていない非ロック状態(ピン未嵌合状態)のままエンジン11が停止してしまうため、ステップ117に進み、ピン未嵌合フラグを「1」にセットしてバックアップRAMに格納する。
 一方、上記ステップ115で、即エンジン停止要求ではないと判定された場合には、ステップ118に進み、エンジン停止前にVCT位相を中間ロック位相でロック(ロックピン58をロック穴59に嵌合)した後、エンジン停止処理を実行して、エンジン11を停止させる。この後、ステップ119に進み、ピン未嵌合フラグを「0」にリセットしてバックアップRAMに格納する。
 この後、ステップ120に進み、キーオフされたか否かを判定し、キーオフされていないと判定された場合には、上記ステップ102に戻る。一方、上記ステップ120で、キーオフされたと判定された場合には、ステップ121に進み、通常のキーオフ処理(例えば学習処理等)を実行して、本ルーチンを終了する。
 尚、図10のルーチンでは、ステップ107で非ロック始動フラグを「1」にセットするようにしたが、これに限定されず、例えば、ステップ117で非ロック始動フラグを「1」にセットしてバックアップRAMに格納するようにしても良い。
[通常始動処理ルーチン]
 図11に示す通常始動処理ルーチンは、前記図10のメイン制御ルーチンのステップ106で実行されるサブルーチンである。ステップ201で、スタータ始動時制御を実行して、スタータ30(ハイブリッド車用モータ、アシスト用モータ、高出力スタータ、ノーマルスタータ等)でエンジン11を所定回転速度以上の高回転領域でクランキングする。
 この後、ステップ202に進み、空気量始動時制御を実行して、スロットル開度を通常始動時のスロットル開度(例えば始動時水温等に応じて設定したスロットル開度)に制御する。
 この後、ステップ203に進み、燃料噴射始動時制御を実行して、燃料噴射量及び燃料噴射時期を通常始動時の燃料噴射量及び燃料噴射時期(例えば始動時水温等に応じて設定した燃料噴射量及び燃料噴射時期)に制御する。
 この後、ステップ204に進み、点火始動時制御を実行して、点火時期を通常始動時の点火時期(例えば始動時水温等に応じて設定した点火時期)に制御する。
 この後、ステップ205に進み、油圧制御弁25の制御モードをロックモードに維持して、ロック状態(ピン嵌合状態)に維持する。尚、油圧制御弁25の制御モードを充填モードに切り換えて、ロック状態(ピン嵌合状態)に維持したままオイルを充填するようにしても良い。
[最遅角始動許可判定ルーチン]
 図12に示す最遅角始動許可判定ルーチンは、前記図10のメイン制御ルーチンのステップ108で実行されるサブルーチンであり、判定部としての役割を果たす。ステップ301で、温度情報(例えば、水温、油温、吸気温、外気温等のうちの少なくとも一つ)とバッテリ電圧を読み込む。
 この後、ステップ302に進み、温度情報とバッテリ電圧に基づいて、最遅角始動処理でエンジン11を始動可能な状態であるか否か(最遅角始動条件が成立しているか否か)を判定する。
 極低温時(例えば-30℃以下のとき)には、最遅角始動処理ではエンジン11を始動させることが困難になるため、温度情報(例えば、水温、油温、吸気温、外気温等のうちの少なくとも一つ)を監視すれば、最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定することができる。また、バッテリ電圧が低下し過ぎると、所定回転速度以上の高回転領域でエンジン11をクランキングできなくなる可能性があるため、バッテリ電圧を監視すれば、所定回転速度以上の高回転領域でエンジン11をクランキングできる状態(つまり最遅角始動処理でエンジン11を始動可能な状態)であるか否かを判定することができる。
 具体的には、最遅角始動処理でエンジン11を始動可能な状態であるか否かを、最遅角始動条件が成立しているか否かによって判定する。この最遅角始動条件としては、例えば、次の(1) と(2) の条件がある。
 (1) 温度情報又は温度情報から生成した温度判定パラメータが所定の最遅角始動可能領域(極低温よりも高い温度に相当する領域)内であること
 (2) バッテリ電圧が許容下限値(所定回転速度以上の高回転領域でエンジン11をクランキング可能なバッテリ電圧の下限値)以上であること
 尚、上記(2) の条件を「バッテリ電圧に基づいて算出した推定クランキング回転速度が所定回転速度以上であること」に変更しても良い。この場合、例えば、バッテリ電圧に基づいてスタータ30の推定出力を算出し、この推定出力に基づいて推定クランキング回転速度を算出する。
 上記(1) と(2) の条件を両方とも満たせば、最遅角始動条件が成立するが、上記(1) と(2) の条件のどちらか一方でも満たさない条件があれば、最遅角始動条件が不成立となる。
 このステップ302で、最遅角始動条件が成立していると判定された場合には、最遅角始動処理でエンジン11を始動可能な状態であると判断して、ステップ303に進み、最遅角始動許可と判定する。
 一方、上記ステップ302で、最遅角始動条件が不成立と判定された場合には、最遅角始動処理でエンジン11を始動可能な状態ではないと判断して、ステップ304に進み、遅角始動禁止と判定する。
[最遅角始動処理ルーチン]
 図13に示す最遅角始動処理ルーチンは、前記図10のメイン制御ルーチンのステップ110で実行されるサブルーチンである。ステップ401で、燃料噴射を禁止した後、ステップ402に進み、クランク角信号とカム角信号に基づいて実VCT位相を演算する。
 この後、ステップ403に進み、油圧制御弁25の制御モードを遅角モードに切り換えて(油圧制御弁25の制御量を遅角モードの制御領域内に設定して)、VCT位相を遅角させる。この際、油圧制御弁25の制御量(スプール位置)を遅角室43へのオイルの供給量が最大値となるように設定する。
 この後、ステップ404に進み、空気量始動時制御を実行して、スロットル開度を通常始動時のスロットル開度に制御する。尚、スロットル開度を通常始動時のスロットル開度よりも大きくするようにしても良い。
 この後、ステップ405に進み、スタータ始動時制御を実行して、スタータ30(ハイブリッド車用モータ、アシスト用モータ、高出力スタータ、ノーマルスタータ等)でエンジン11を所定回転速度以上の高回転領域でクランキングする。尚、クランキング回転速度を更に高くできるシステムの場合(例えばスタータ30としてハイブリッド車用モータ又はアシスト用モータを用いる場合)には、必要に応じてクランキング回転速度を通常始動時のクランキング回転速度よりも高くするようにしても良い。具体的には、温度情報に応じて目標クランキング回転速度を変更して(例えば水温が低いほど目標クランキング回転速度を高くして)、エンジン11を確実に始動可能な回転速度までクランキング回転速度を上昇させる。
 この後、ステップ406に進み、実VCT位相が最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)で且つ実VCT位相の振れ幅(例えばピーク値とボトム値との差)が所定値以下になったか否かを判定する。
 このステップ406で、「No」と判定されれば、上記ステップ402に戻る。
 その後、上記ステップ406で、実VCT位相が最遅角位相付近で且つ実VCT位相の振れ幅が所定値以下になったと判定された時点で、ステップ407に進み、燃料噴射を許可した後、ステップ408に進み、燃料噴射始動時制御を実行して、燃料噴射量及び燃料噴射時期を通常始動時の燃料噴射量及び燃料噴射時期に制御する。尚、燃料噴射時期を通常始動時の燃料噴射時期よりも進角するようにしても良い。
 この後、ステップ409に進み、点火始動時制御を実行して、点火時期を通常始動時の点火時期に制御する。尚、点火時期を通常始動時の点火時期よりも進角するようにしても良い。
 この後、ステップ410に進み、エンジン11の始動が完了したか否かを、例えば、エンジン回転速度が完爆判定値を越えたか否かによって判定し、エンジン11の始動が完了していないと判定されれば、上記ステップ402に戻る。
 その後、上記ステップ410で、エンジン11の始動が完了したと判定された時点で、ステップ411に進み、最遅角始動禁止に戻して、本ルーチンを終了する。
[最進角始動処理ルーチン]
 図14に示す最進角始動処理ルーチンは、前記図10のメイン制御ルーチンのステップ111で実行されるサブルーチンである。ステップ501で、燃料噴射を禁止した後、ステップ502に進み、クランク角信号とカム角信号に基づいて実VCT位相を演算する。
 この後、ステップ503に進み、油圧制御弁25の制御モードを進角モードに切り換えて(油圧制御弁25の制御量を進角モードの制御領域内に設定して)、VCT位相を進角させる。この際、油圧制御弁25の制御量(スプール位置)を進角室42へのオイルの供給量が最大値となるように設定する。
 この後、ステップ504に進み、空気量始動時制御を実行して、スロットル開度を通常始動時のスロットル開度に制御する。尚、スロットル開度を通常始動時のスロットル開度よりも大きくするようにしても良い。
 この後、ステップ505に進み、スタータ始動時制御を実行して、スタータ30でエンジン11を所定回転速度以上の高回転領域でクランキングする。尚、クランキング回転速度を更に高くできるシステムの場合には、必要に応じてクランキング回転速度を通常始動時のクランキング回転速度よりも高くするようにしても良い。
 この後、ステップ506に進み、実VCT位相が最進角位相付近(最進角位相又は該最進角位相から所定範囲内)で且つ実VCT位相の振れ幅が所定値以下になったか否かを判定する。
 このステップ506で、「No」と判定されれば、上記ステップ502に戻る。
 その後、上記ステップ506で、実VCT位相が最進角位相付近で且つ実VCT位相の振れ幅が所定値以下になったと判定された時点で、ステップ507に進み、燃料噴射を許可した後、ステップ508に進み、燃料噴射始動時制御を実行して、燃料噴射量及び燃料噴射時期を通常始動時の燃料噴射量及び燃料噴射時期に制御する。尚、燃料噴射時期を通常始動時の燃料噴射時期よりも進角するようにしても良い。
 この後、ステップ509に進み、点火始動時制御を実行して、点火時期を通常始動時の点火時期に制御する。尚、点火時期を通常始動時の点火時期よりも進角するようにしても良い。
 この後、ステップ510に進み、エンジン11の始動が完了したか否かを判定し、エンジン11の始動が完了していないと判定されれば、上記ステップ502に戻る。
 その後、上記ステップ510で、エンジン11の始動が完了したと判定された時点で、ステップ511に進み、最遅角始動禁止に維持したまま、本ルーチンを終了する。
[中間始動処理ルーチン]
 図15に示す中間始動処理ルーチンは、前記図10のメイン制御ルーチンのステップ111で実行されるサブルーチンである。本ルーチンが起動されると、まず、ステップ601で、燃料噴射を禁止した後、ステップ602に進み、クランク角信号とカム角信号に基づいて実VCT位相を演算する。
 この後、ステップ603に進み、油圧制御弁25の制御モードを遅角モードに切り換えて(油圧制御弁25の制御量を遅角モードの制御領域内に設定して)、VCT位相を遅角させる。この際、油圧制御弁25の制御量(スプール位置)を遅角室43へのオイルの供給量が最大値となるように設定する。
 この後、ステップ604に進み、空気量始動時制御を実行して、スロットル開度を通常始動時のスロットル開度に制御する。尚、スロットル開度を通常始動時のスロットル開度よりも大きくするようにしても良い。
 この後、ステップ605に進み、スタータ始動時制御を実行して、スタータ30でエンジン11を所定回転速度以上の高回転領域でクランキングする。尚、クランキング回転速度を更に高くできるシステムの場合には、必要に応じてクランキング回転速度を通常始動時のクランキング回転速度よりも高くするようにしても良い。
 この後、ステップ606に進み、実VCT位相が最遅角位相付近(最遅角位相又は該最遅角位相から所定範囲内)で且つ実VCT位相の振れ幅が所定値以下になったか否かを判定する。
 このステップ606で、「No」と判定されれば、上記ステップ602に戻る。
 その後、上記ステップ606で、実VCT位相が最遅角位相付近で且つ実VCT位相の振れ幅が所定値以下になったと判定された時点で、ステップ607に進み、目標VCT位相を最遅角位相よりも所定量だけ進角側の中間位相に設定して、位相F/B制御により実VCT位相を目標VCT位相(中間位相)に制御する。
 この後、ステップ608に進み、目標VCT位相(中間位相)と実VCT位相との偏差の絶対値が所定値以下で且つ実VCT位相の振れ幅が所定値以下になったか否かを判定する。
 このステップ608で、「No」と判定されれば、上記ステップ607に戻る。
 その後、上記ステップ608で、目標VCT位相(中間位相)と実VCT位相との偏差の絶対値が所定値以下で且つ実VCT位相の振れ幅が所定値以下になったと判定された時点で、ステップ609に進み、燃料噴射を許可した後、ステップ610に進み、燃料噴射始動時制御を実行して、燃料噴射量及び燃料噴射時期を通常始動時の燃料噴射量及び燃料噴射時期に制御する。尚、燃料噴射時期を通常始動時の燃料噴射時期よりも進角するようにしても良い。
 この後、ステップ611に進み、点火始動時制御を実行して、点火時期を通常始動時の点火時期に制御する。尚、点火時期を通常始動時の点火時期よりも進角するようにしても良い。
 この後、ステップ612に進み、エンジン11の始動が完了したか否かを判定し、エンジン11の始動が完了していないと判定されれば、上記ステップ607に戻る。
 その後、上記ステップ612で、エンジン11の始動が完了したと判定された時点で、ステップ613に進み、最遅角始動禁止に維持したまま、本ルーチンを終了する。
 以上説明した本実施例1では、VCT位相を中間ロック位相でロックしていない非ロック状態でエンジン11が停止した場合には、次回の始動時にVCT位相を最遅角位相付近に制御してエンジン11を始動させる最遅角始動処理を実施するようにしている。これにより、非ロック状態での始動時に、VCT位相を最遅角位相に変位させるか又は最遅角位相近傍に近付けた状態でエンジン11を始動させることができ、VCT位相をロックすることなくエンジン11を速やかに始動させることができる。この場合、非ロック状態での始動時にVCT位相をロックする必要がなく、次の(1) ~(5) のような効果を得ることができる。
 (1) 非ロック状態(ピン未嵌合状態)での始動時に、可変バルブタイミング装置18の進角室42や遅角室43のオイル状態に拘らず(高粘度のオイルが充填されている状態でも)、遅角モードを選択することで、進角室42のオイルを排出しながら遅角室43にオイルを充填して、早期にVCT位相を安定した状態に移行させることができ、確実にエンジン11を始動させることができる。
 (2) ロックピン58の固着状態や進角室42や遅角室43のオイル状態に拘らず(高粘度のオイルが充填されている状態でも)、非ロック状態(ピン未嵌合状態)での始動を成功させることができる。
 (3) もし、ロックピン58が突出した状態で固着していても、遅角モードを選択することで、ロックピン58を引き込んで固着状態の継続を回避することができ、ロックピン58の固着を早期に解消することができる。
 (4) ラチェット機構のように高価且つ複雑な構造の可変バルブタイミング装置を必要としない(ラチェット機構を省略することができる)ため、コストを低減することができると共に安全率や信頼性を向上させることができる。
 (5) 非ロック状態(ピン未嵌合状態)での始動時にオイル充填済みか否かを判定してロックモード以外を選択してからエンジン始動を行う従来方法に比べて、クランキング時間を短縮することができる。従来方法では、「ロックモード→ロック(ピン嵌合)できないのでオイル充填済み又はピン固着と判定→別アクションにてエンジン始動」の順に実施することになり、かなりの時間を要してしまう。
 また、本実施例1では、エンジン11を所定回転速度以上の高回転領域(例えば通常の温度状態において最遅角始動処理でエンジン11を始動可能な回転速度以上の高回転領域)でクランキングできるようにしている。これにより、最遅角始動処理の際にVCT位相が最遅角位相付近でもエンジン11を所定回転速度以上の高回転領域でクランキングして始動させることができる。
 更に、本実施例1では、非ロック状態での始動時に、温度情報(水温、油温、吸気温、外気温等のうちの少なくとも一つ)やバッテリ電圧に基づいて最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定し、最遅角始動処理でエンジン11を始動可能な状態であると判定された場合に、最遅角始動処理を実施するようにしている。これにより、最遅角始動処理でエンジン11を始動可能な状態であると判定された場合にのみ最遅角始動処理を実施するようにでき、最遅角始動処理でエンジン11を始動可能な状態ではないにも拘らず最遅角始動処理を実施してしまうことを未然に回避することができる。
 一方、最遅角始動処理でエンジン11を始動可能な状態ではないと判定された場合には、VCT位相を最進角位相付近に制御してエンジン11を始動させる最進角始動処理を実施するようにしている。或は、VCT位相を最遅角位相付近に制御した後にVCT位相を最遅角位相付近から所定量だけ進角側の中間位相に制御してエンジン11を始動させる中間始動処理を実施するようにしている。これにより、非ロック状態での始動時に最遅角始動処理ではエンジン11を始動できない場合でも、VCT位相をロックすることなく最進角始動処理又は中間始動処理でエンジン11を始動させることができる。
 また、本実施例1では、最遅角始動処理の際にエンジン11を確実に始動可能な回転速度までクランキング回転速度を上昇させるようにしているため、最遅角始動処理でエンジンを確実に始動させることができる。
 次に、図16を用いて本開示の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。
 本実施例2では、エンジン制御回路21により後述する図16の最遅角始動処理ルーチンを実行することで、最遅角始動処理を実施してもエンジン11を始動できない状態が所定期間以上継続した場合に、VCT位相を最遅角位相付近から所定量だけ進角側の中間位相に制御してエンジン11を始動させる中間始動処理を実施するようにしている。
 本実施例2で実行する図16のルーチンは、前記実施例1で説明した図13のルーチンのステップ407の処理の後にステップ407aの処理を追加すると共にステップ410の処理の後にステップ410a~410cの処理を追加したものであり、それ以外の各ステップの処理は図13と同じである。
 図16の最遅角始動処理ルーチンでは、ステップ401で、燃料噴射を禁止した後、ステップ402に進み、クランク角信号とカム角信号に基づいて実VCT位相を演算する。この後、ステップ403に進み、油圧制御弁25の制御モードを遅角モードに切り換えて、VCT位相を遅角させる。
 この後、ステップ404に進み、空気量始動時制御を実行して、スロットル開度を通常始動時のスロットル開度に制御する。尚、スロットル開度を通常始動時のスロットル開度よりも大きくするようにしても良い。
 この後、ステップ405に進み、スタータ始動時制御を実行して、スタータ30でエンジン11を所定回転速度以上の高回転領域でクランキングする。尚、クランキング回転速度を更に高くできるシステムの場合には、必要に応じてクランキング回転速度を通常始動時のクランキング回転速度よりも高くするようにしても良い。
 この後、ステップ406に進み、実VCT位相が最遅角位相付近で且つ実VCT位相の振れ幅が所定値以下になったか否かを判定し、このステップ406で、「No」と判定されれば、上記ステップ402に戻る。
 その後、上記ステップ406で、実VCT位相が最遅角位相付近で且つ実VCT位相の振れ幅が所定値以下になったと判定された時点で、ステップ407に進み、燃料噴射を許可する。その後、ステップ407aに進み、燃料噴射を許可してからの経過時間をカウントする噴射許可時間タイマをカウントアップする。
 この後、ステップ408に進み、燃料噴射始動時制御を実行して、燃料噴射量及び燃料噴射時期を通常始動時の燃料噴射量及び燃料噴射時期に制御する。尚、燃料噴射時期を通常始動時の燃料噴射時期よりも進角するようにしても良い。
 この後、ステップ409に進み、点火始動時制御を実行して、点火時期を通常始動時の点火時期に制御する。尚、点火時期を通常始動時の点火時期よりも進角するようにしても良い。
 この後、ステップ410に進み、エンジン11の始動が完了したか否かを判定する。
 このステップ410で、エンジン11の始動が完了していないと判定された場合には、ステップ410aに進み、噴射許可時間タイマのカウント値が所定値以上になったか否かによって、最遅角始動処理を実施してもエンジン11を始動できない状態が所定時間以上継続したか否かを判定する。
 このステップ410aで、噴射許可時間タイマのカウント値が所定値に達していないと判定された場合には、上記ステップ402に戻る。
 その後、上記ステップ410で、エンジン11の始動が完了したと判定された場合には、ステップ411に進み、最遅角始動禁止に戻して、本ルーチンを終了する。
 一方、上記ステップ410aで、噴射許可時間タイマのカウント値が所定値以上になったと判定された場合には、最遅角始動処理を実施してもエンジン11を始動できない状態が所定時間以上継続したと判断して、ステップ410bに進む。ステップ410bでは、目標VCT位相を最遅角位相よりも所定量だけ進角側の中間位相に設定して、位相F/B制御により実VCT位相を目標VCT位相(中間位相)に制御する。
 この後、ステップ410cに進み、エンジン11の始動が完了したか否かを判定し、エンジン11の始動が完了していないと判定されれば、上記ステップ410aに戻る。
 その後、上記ステップ410cで、エンジン11の始動が完了したと判定された時点で、ステップ411に進み、最遅角始動禁止に戻して、本ルーチンを終了する。
 以上説明した本実施例2では、最遅角始動処理を実施してもエンジン11を始動できない状態が所定期間以上継続した場合に、VCT位相を最遅角位相付近から所定量だけ進角側の中間位相に制御してエンジン11を始動させる中間始動処理を実施するようにしている。このようにしても、非ロック状態での始動時に最遅角始動処理ではエンジン11を始動できない場合に、VCT位相をロックすることなく中間始動処理でエンジン11を始動させることができる。
 尚、上記各実施例では、非ロック状態での始動時に、最遅角始動処理でエンジン11を始動可能な状態であるか否かを判定するようにしている。しかし、これに限定されず、クランキング回転速度を更に高くできるシステムの場合(例えばスタータ30としてハイブリッド車用モータ又はアシスト用モータを用いる場合)には、図10のルーチンのステップ108、109、111の処理を省略して、非ロック状態での始動時に、常に最遅角始動処理を実施するようにしても良い。この場合、最遅角始動処理の際に温度情報に応じて目標クランキング回転速度を変更して(例えば水温が低いほど目標クランキング回転速度を高くして)、極低温時でもエンジン11を確実に始動可能な回転速度までクランキング回転速度を上昇させるようにすると良い。更に、最遅角始動処理を実施してもエンジン11を始動できない状態が所定期間以上継続した場合に、中間始動処理を実施するようにしても良い。
 また、上記各実施例では、本開示を吸気バルブの可変バルブタイミング装置に適用したが、これに限定されず、排気バルブの可変バルブタイミング装置に本開示を適用しても良い。
 その他、本開示は、可変バルブタイミング装置の構成や中間ロック機構の構成や油圧制御弁の構成等を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (12)

  1.  内燃機関(11)のクランク軸(12)に対するカム軸(16)の回転位相(以下「VCT位相」という)を変化させてバルブタイミングを変化させる油圧駆動式の可変バルブタイミング装置(18)と、前記VCT位相をその調整可能範囲内に位置する中間ロック位相でロックする中間ロック機構(50)と、前記内燃機関(11)の停止前に前記VCT位相を前記中間ロック位相でロックして、次回の始動時に前記VCT位相を前記中間ロック位相でロックした状態で前記内燃機関(11)を始動させる制御部(21)とを備えた内燃機関の制御装置において、
     前記制御部(21)は、前記VCT位相を前記中間ロック位相でロックしていない非ロック状態で前記内燃機関(11)が停止した場合には、次回の始動時に前記VCT位相を最遅角位相又は該最遅角位相から所定範囲内(以下これらを「最遅角位相付近」と総称する)に制御して前記内燃機関(11)を始動させる最遅角始動処理を実施する内燃機関の制御装置。
  2.  前記内燃機関(11)を所定回転速度以上の高回転領域でクランキング可能に構成されている請求項1に記載の内燃機関の制御装置。
  3.  車両の動力源として前記内燃機関(11)とモータ(30)とを備え、
     前記モータ(30)で前記内燃機関(11)をクランキングすることで前記内燃機関(11)を前記高回転領域でクランキングできるように構成されている請求項2に記載の内燃機関の制御装置。
  4.  前記内燃機関(11)をアシストするモータ(30)を備え、
     前記モータ(30)で前記内燃機関(11)をクランキングすることで前記内燃機関(11)を前記高回転領域でクランキングできるように構成されている請求項2に記載の内燃機関の制御装置。
  5.  前記内燃機関(11)を前記高回転領域でクランキング可能な高出力スタータ(30)を備えている請求項2に記載の内燃機関の制御装置。
  6.  前記内燃機関(11)の低フリクション化により前記内燃機関(11)を前記高回転領域でクランキングできるように構成されている請求項2に記載の内燃機関の制御装置。
  7.  前記制御部(21)は、前記非ロック状態で前記内燃機関(11)が停止した場合の次回の始動時に、前記最遅角始動処理で前記内燃機関(11)を始動可能な状態であるか否かを判定する判定部(21)を有し、該判定部(21)により前記最遅角始動処理で前記内燃機関(11)を始動可能な状態であると判定された場合に、前記最遅角始動処理を実施する請求項1乃至6のいずれかに記載の内燃機関の制御装置。
  8.  前記判定部(21)は、前記最遅角始動処理で前記内燃機関(11)を始動可能な状態であるか否かを、水温、油温、吸気温、外気温、バッテリ電圧のうちの少なくとも一つに基づいて判定する請求項7に記載の内燃機関の制御装置。
  9.  前記制御部(21)は、前記判定部(21)により前記最遅角始動処理で前記内燃機関(11)を始動可能な状態ではないと判定された場合に、前記VCT位相を最進角位相又は該最進角位相から所定範囲内に制御して前記内燃機関(11)を始動させる最進角始動処理を実施する請求項7又は8に記載の内燃機関の制御装置。
  10.  前記制御部(21)は、前記判定部(21)により前記最遅角始動処理で前記内燃機関(11)を始動可能な状態ではないと判定された場合に、前記VCT位相を前記最遅角位相付近に制御した後に前記VCT位相を前記最遅角位相付近から所定量だけ進角側の中間位相に制御して前記内燃機関(11)を始動させる中間始動処理を実施する請求項7又は8に記載の内燃機関の制御装置。
  11.  前記制御部(21)は、前記最遅角始動処理を実施しても前記内燃機関(11)を始動できない状態が所定期間以上継続した場合に、前記VCT位相を前記最遅角位相付近から所定量だけ進角側の中間位相に制御して前記内燃機関(11)を始動させる中間始動処理を実施する請求項1乃至10のいずれかに記載の内燃機関の制御装置。
  12.  前記制御部(21)は、前記最遅角始動処理の際に前記内燃機関(11)を確実に始動可能な回転速度まで前記内燃機関(11)のクランキング回転速度を上昇させる請求項1乃至11のいずれかに記載の内燃機関の制御装置。

     
PCT/JP2015/005422 2014-11-04 2015-10-28 内燃機関の制御装置 WO2016072066A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/523,427 US20170314495A1 (en) 2014-11-04 2015-10-28 Control device for internal combustion engine
KR1020177010358A KR20170056667A (ko) 2014-11-04 2015-10-28 내연 기관의 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224764 2014-11-04
JP2014224764A JP2016089707A (ja) 2014-11-04 2014-11-04 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2016072066A1 true WO2016072066A1 (ja) 2016-05-12

Family

ID=55908810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005422 WO2016072066A1 (ja) 2014-11-04 2015-10-28 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US20170314495A1 (ja)
JP (1) JP2016089707A (ja)
KR (1) KR20170056667A (ja)
WO (1) WO2016072066A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019019721A (ja) * 2017-07-14 2019-02-07 アイシン精機株式会社 内燃機関の制御装置
JP7415925B2 (ja) * 2018-07-27 2024-01-17 株式会社アイシン 内燃機関
WO2021075227A1 (ja) * 2019-10-15 2021-04-22 三菱自動車工業株式会社 エンジン始動制御装置
SE546327C2 (en) * 2022-06-16 2024-10-08 Scania Cv Ab Method and Control Arrangement for Controlling Four-Stroke Internal Combustion Engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308632A (ja) * 2003-04-10 2004-11-04 Toyota Motor Corp 内燃機関の始動制御装置
JP2004324421A (ja) * 2003-04-21 2004-11-18 Toyota Motor Corp 内燃機関の始動制御装置
JP2009203818A (ja) * 2008-02-26 2009-09-10 Mazda Motor Corp 内燃機関の制御方法および内燃機関システム
JP2010132015A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp ハイブリッド車両の制御装置
JP2014066208A (ja) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd 内燃機関の制御装置
JP2015124618A (ja) * 2013-12-25 2015-07-06 アイシン精機株式会社 排気弁用の弁開閉時期制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4390078B2 (ja) * 2005-09-05 2009-12-24 株式会社デンソー バルブタイミング調整装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004308632A (ja) * 2003-04-10 2004-11-04 Toyota Motor Corp 内燃機関の始動制御装置
JP2004324421A (ja) * 2003-04-21 2004-11-18 Toyota Motor Corp 内燃機関の始動制御装置
JP2009203818A (ja) * 2008-02-26 2009-09-10 Mazda Motor Corp 内燃機関の制御方法および内燃機関システム
JP2010132015A (ja) * 2008-12-02 2010-06-17 Toyota Motor Corp ハイブリッド車両の制御装置
JP2014066208A (ja) * 2012-09-26 2014-04-17 Daihatsu Motor Co Ltd 内燃機関の制御装置
JP2015124618A (ja) * 2013-12-25 2015-07-06 アイシン精機株式会社 排気弁用の弁開閉時期制御装置

Also Published As

Publication number Publication date
KR20170056667A (ko) 2017-05-23
US20170314495A1 (en) 2017-11-02
JP2016089707A (ja) 2016-05-23

Similar Documents

Publication Publication Date Title
JP5240674B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP4877615B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5126157B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5257628B2 (ja) 可変バルブタイミング制御装置
JP5152681B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5257629B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP2010138698A (ja) 内燃機関の可変バルブタイミング制御装置
US9175583B2 (en) Control device for internal combustion engine
JP5030028B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP4947499B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP2004116411A (ja) 弁開閉時期制御装置の制御機構
JP5929300B2 (ja) エンジンのバルブタイミング制御装置
JP5321911B2 (ja) 弁開閉時期制御装置
WO2016072066A1 (ja) 内燃機関の制御装置
JP2006170085A (ja) 弁開閉時期制御装置及び最低トルクの設定方法
JP2007085253A (ja) エンジンの始動方法及びエンジンの始動装置
JP2006170026A (ja) 内燃機関の弁開閉時期制御装置
JP5408514B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5966781B2 (ja) 弁開閉時期制御システム
JP2003247434A (ja) バルブタイミング制御装置
JP2006170025A (ja) 内燃機関の弁開閉時期制御装置
JP4228170B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP3855856B2 (ja) 車両用内燃機関のバルブタイミング制御装置
JP2013068086A (ja) 内燃機関の制御装置
JP2015001199A (ja) 可変バルブタイミング装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856268

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177010358

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15523427

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856268

Country of ref document: EP

Kind code of ref document: A1