WO2016071968A1 - エンジン始動装置 - Google Patents

エンジン始動装置 Download PDF

Info

Publication number
WO2016071968A1
WO2016071968A1 PCT/JP2014/079318 JP2014079318W WO2016071968A1 WO 2016071968 A1 WO2016071968 A1 WO 2016071968A1 JP 2014079318 W JP2014079318 W JP 2014079318W WO 2016071968 A1 WO2016071968 A1 WO 2016071968A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
starter
predetermined period
time
rotational speed
Prior art date
Application number
PCT/JP2014/079318
Other languages
English (en)
French (fr)
Inventor
亀井 光一郎
水野 大輔
弘明 北野
金田 直人
小田原 一浩
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480083176.6A priority Critical patent/CN107076092B/zh
Priority to JP2016557382A priority patent/JP6198971B2/ja
Priority to DE112014007137.4T priority patent/DE112014007137T5/de
Priority to PCT/JP2014/079318 priority patent/WO2016071968A1/ja
Priority to US15/513,610 priority patent/US10240572B2/en
Publication of WO2016071968A1 publication Critical patent/WO2016071968A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0851Circuits or control means specially adapted for starting of engines characterised by means for controlling the engagement or disengagement between engine and starter, e.g. meshing of pinion and engine gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • F02N15/06Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement
    • F02N15/067Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears the toothed gears being moved by axial displacement the starter comprising an electro-magnetically actuated lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/04Gearing between starting-engines and started engines; Engagement or disengagement thereof the gearing including disengaging toothed gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/021Engine crank angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/022Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2250/00Problems related to engine starting or engine's starting apparatus
    • F02N2250/04Reverse rotation of the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an engine starter used for an idling stop system that automatically stops an engine when a predetermined idling stop condition is satisfied and then restarts the engine when a restart condition is satisfied.
  • an idling stop system that automatically stops an engine when a predetermined condition is satisfied for reducing fuel consumption of an automobile is known. Furthermore, the engine crankshaft can be used to restart the engine as soon as possible when an engine restart request is generated during inertial rotation of the engine immediately after engine combustion is stopped.
  • An engine starter has been proposed in which a pinion gear connected to an output shaft of a starter motor is meshed with a ring gear even when the ring gear connected to is rotating.
  • Patent Document 1 a section below a predetermined negative rotation of the engine is set as a starter drive prohibition section, and the engine is restarted based on the output of the rotation sensor that detects the engine speed.
  • An engine starter that controls start is disclosed.
  • Patent Document 2 describes the following in the engine stop process based on the rotational speed of the engine at the specified predetermined crank position, for example, the top dead center (TDC) of the cylinder. Estimate whether or not the engine reverses before reaching the predetermined crank position, and after estimating the reverse rotation, the starter drive prohibition timing to the starter drive prohibition release are defined as the prohibition range, and this specified prohibition range If the restart condition is satisfied during the engine stop process, the engine restart is prohibited within the specified prohibited range, and the engine is restarted within the specified allowable range.
  • An engine starter adapted to start is disclosed.
  • Patent Document 3 Japanese Patent Publication No. 2014-77399 includes a first predicting means for predicting the engine rotational speed during normal rotation and the engine rotational speed during reverse rotation.
  • An engine starter is disclosed that switches between the prediction means and the second prediction means to implement.
  • the engine speed is detected based on the pulse signal output from the crank angle signal generating means.
  • the crank angle signal generating means generates a pulse signal by electromagnetically coupling with a magnetic disk connected to the crankshaft of the engine and having teeth formed on the outer periphery at predetermined intervals, and the teeth of the magnetic disk. Since it is constituted by an electromagnetic pickup and the pulse cycle becomes long in the low engine speed range (for example, 50 [rpm] or less), the engine speed cannot be detected with high accuracy.
  • crank angle signal generating means configured as described above cannot accurately detect the engine rotation speed close to “0” immediately before the engine reversely rotates in the engine stop process. For this reason, the reverse rotation of the engine is judged using a predicting means, but the behavior of the engine is complicated, and in order to accurately predict the reverse rotation of the engine, a complicated calculation is required and the engine control unit There was a problem that the burden would increase.
  • An object of the present invention is to provide an engine starter that can reliably avoid the engagement of a pinion gear and a ring gear.
  • An engine starter comprises: An idling stop system is provided that automatically stops combustion of an engine having a plurality of cylinders when a predetermined condition is satisfied, and the engine is stopped by the idling stop system.
  • a restart request of the engine is generated when the engine is rotating inertially
  • a starter is driven to engage a pinion gear provided on the starter with the ring gear of the engine rotating inertially
  • An engine starter adapted to restart the engine, Detecting the engine rotation speed and crank angle position when the inertial rotation, The detected crank angle position is intermediate between the top dead center of any one of the plurality of cylinders of the engine and the top dead center of the next cylinder after the one of the cylinders when the inertia is rotating.
  • the starter is prohibited from driving for a predetermined period when it is determined that the detected engine rotation speed is within a predetermined range. It is characterized by that.
  • the engine starting device is An idling stop system is provided that automatically stops combustion of an engine having a plurality of cylinders when a predetermined condition is satisfied, and the engine is stopped by the idling stop system.
  • a restart request of the engine is generated when the engine is rotating inertially
  • a starter is driven to engage a pinion gear provided on the starter with the ring gear of the engine rotating inertially
  • An engine starter adapted to restart the engine, Detecting the engine rotation speed and crank angle position when the inertial rotation, The detected crank angle position is intermediate between the top dead center of any one of the plurality of cylinders of the engine and the top dead center of the next cylinder after the one of the cylinders when the inertia is rotating.
  • a first predetermined period and a second predetermined period that are respectively started when the detected engine rotational speed is determined to be within a predetermined range. Prepared, The first predetermined period and the second predetermined period are respectively determined based on the engine speed at the determined time point, The second predetermined period is set longer than the first predetermined period; The starter is prohibited from being driven from the time when the first predetermined period ends until the time when the second predetermined period ends. It is characterized by that.
  • the detected crank angle position is the top dead center of any one of the plurality of cylinders of the engine when the inertia is rotating and the next cylinder after the one of the cylinders So that the starter is prohibited from driving for a predetermined period when it is determined that the detected engine speed is within a predetermined range. Therefore, it is possible to obtain an engine starter capable of avoiding the pinion from meshing with the ring gear in a region where the reverse rotational speed is large so that excessive meshing noise and gear wear are surely generated.
  • the detected crank angle position is the top dead center of any one of the plurality of cylinders of the engine when the inertia is rotating and the next to any one of the cylinders.
  • a first predetermined period that is started when the detected engine rotation speed is determined to be within a predetermined range when the engine is at an intermediate point with respect to the top dead center of the cylinder.
  • a second predetermined period wherein the first predetermined period and the second predetermined period are determined based on the engine speed at the determined time point, respectively,
  • the predetermined period of time is set longer than the first predetermined period, and the starter is driven from the time when the first predetermined period ends to the time when the second predetermined period ends.
  • FIG. 1 is a configuration diagram of an engine starter according to Embodiment 1 of the present invention.
  • FIG. It is explanatory drawing explaining the engine stop behavior and starter drive control of the engine starting apparatus by Embodiment 1 of this invention. It is explanatory drawing explaining the engine stop behavior and starter drive control of the engine starting apparatus by Embodiment 1 of this invention. It is explanatory drawing explaining the engine stop behavior and starter drive control of the engine starting apparatus by Embodiment 1 of this invention. It is explanatory drawing explaining the starter drive control in the engine stop process of the engine starting apparatus by Embodiment 1 of this invention. It is explanatory drawing explaining the starter drive control in the engine stop process of the engine starting apparatus by Embodiment 2 of this invention. It is explanatory drawing explaining the starter drive control in the engine stop process of the engine starting apparatus by Embodiment 2 of this invention.
  • FIG. 1 is a configuration diagram of an engine starter according to Embodiment 1 of the present invention.
  • an engine starter according to Embodiment 1 of the present invention is connected to an engine control unit (hereinafter referred to as ECU) 10, a starter 11, an electromagnetic switch 15, and a crankshaft 2 of the engine 1.
  • ECU engine control unit
  • a crank angle signal generator 14 for generating a crank angle signal corresponding to the rotational speed of the motor.
  • the starter 11 includes a motor 16, a speed reduction mechanism 25 that decelerates rotation of the output shaft of the motor 16, a starter output shaft 17, a lever 18, and a one-way clutch inserted between the starter output shaft 17 and the speed reduction mechanism 25. 19 and a pinion gear 20 splined to the starter output shaft 17.
  • the electromagnetic switch 15 includes a coil 15a, a plunger 15c that is attracted to the coil 15a when the coil 15a is energized and pulled into the internal space of the coil 15a, and a plunger 15c that is pulled into the internal space of the coil 15a. Is provided with a movable contact 15d pushed out in the left direction of the figure and a pair of fixed contacts 15b1, 15b2 short-circuited by the movable contact 15d pushed out by the plunger 15c.
  • the battery 3 is connected to the armature coil of the motor 16 via the fixed contact 15b1, the movable contact 15d, the fixed contact 15b2, and the brush 161 of the motor 16. Supply armature current.
  • One end of the lever 18 is engaged with the plunger 15 c of the electromagnetic switch 15, the other end is engaged with the one-way clutch 19, and a support portion 181 provided between the one end and the other end is a casing ( (Not shown) is rotatably supported.
  • the ECU 10 controls energization to the electromagnetic switch 15.
  • the plunger 15c is attracted by the electromagnetic coil 15a and drawn into the internal space of the electromagnetic coil 15a.
  • the lever 18 with one end engaged with the plunger 15c rotates counterclockwise in the figure about the support portion 181 and the other end presses the pinion gear 20 with the one-way clutch 19 in the right direction in the figure.
  • the pinion gear 20 is engaged with the ring gear 12 by being moved.
  • the one-way clutch 19 transmits the torque input from the motor 16 via the speed reduction mechanism 25 to the engine 1 via the pinion gear 20 and the ring gear 12, but the torque from the engine 1 is input via the ring gear 12 and the pinion gear 20. In such a case, the engine is idled so that the torque of the engine 1 is not transmitted to the motor 16 side.
  • the engine 1 includes a crankshaft 2 that converts a reciprocating motion of a piston into a rotational motion, an intake valve (not shown) provided in a combustion chamber, and a cam provided with a cam that opens and closes an exhaust valve (not shown).
  • the camshaft is decelerated by the transmission means at an angular velocity that is 1 ⁇ 2 of the angular velocity of the crankshaft 2 and rotates in synchronization with the crankshaft 2.
  • the crank angle signal generator 14 is a gear-shaped first rotating body 23 that rotates synchronously at the same angular velocity as the crankshaft 2, and a first opposing the outer peripheral portion of the first rotating body 23 with a gap.
  • the pickup 24 is provided.
  • the first rotating body 23 is made of a magnetic material, and has a plurality of tooth portions 23A arranged at almost equal intervals on the outer periphery thereof and two portions lacking one tooth portion. A first missing tooth portion 23B and one second missing tooth portion 23C lacking two tooth portions are provided.
  • the first pickup 24 constituted by an electromagnetic pickup or the like outputs a pulse train signal in which rectangular wave pulses are connected each time the first rotating body 23 rotates and the individual tooth portions 23A approach each other.
  • the pulse train signal input from the first pickup 24 to the ECU 10 along with the rotation of the first rotating body 23 includes a plurality of tooth portions 23A, a first missing tooth portion 23B, and a first missing tooth portion 23B of the first rotating body 23.
  • a crank angle signal corresponding to the two missing tooth portions 23C is formed.
  • the first missing tooth portion 23B and the second missing tooth portion 23C provided on the outer peripheral portion of the first rotating body 23 are provided corresponding to the reference angular position of the crankshaft 2, and Signal portions corresponding to the first missing tooth portion 23B and the second missing tooth portion 23C in the crank angle signal output from the pickup 24 correspond to information indicating the reference angular position of the crankshaft 2.
  • the outer peripheral portion of the first rotating body 23 is divided into 36 equal parts, and 32 tooth portions 23A and two first portions lacking one tooth portion are provided. Missing tooth portion 23B and one second missing tooth portion 23C lacking two tooth portions.
  • the ON signal or the OFF signal becomes a predetermined rotation angle (for example, an angle of every 10 degrees.
  • this angle is referred to as a reference step angle).
  • the time during which the ON signal or the OFF signal is output is equivalent to twice the reference step angle
  • the first first missing tooth portion 23B In the second missing tooth portion 23 ⁇ / b> C, the time during which the ON signal or the OFF signal is output is equivalent to three times the reference step angle.
  • the number of signals is known. Therefore, the ECU 10 counts the crank angle signal from the first pickup 24 when the crank angle signal changes from off to on, or changes from on to off, and at the same time interval of the crank angle signal timing. (Corresponding to the pulse train interval), the crank angle signal cycle, that is, the angular position of the crankshaft specified by the two first missing teeth 23B and the one second missing tooth 23C. The period can be calculated. It should be noted that the position, number, etc. of the aforementioned missing teeth in the crank angle signal generator 14 are merely examples, and it is obvious that the configuration differs from the above in accordance with the configuration of the engine.
  • the ECU 10 can determine the rotational speed of the engine 1 based on the crank angle signal. That is, it is possible to obtain the engine speed more accurately by calculating the engine speed between the crank angle signals based on the rate of change of the cycle of the crank angle signal.
  • the ECU 10 calculates the engine speed from the time interval corresponding to the pulse train interval of the crank angle signal, and the engine speed between the crank angle signals based on the rate of change of the crank angle signal cycle. It is also possible to switch between and calculate the case based on the angular position of the crank. In this way, it is possible to reduce the calculation error of the rotational speed near the inflection point of the engine rotational speed.
  • the timing for injecting fuel to the engine 1 is determined based on the top dead center of the piston when moving from the compression stroke to the explosion stroke.
  • each stroke is converted into an angle of the crank position in the order of intake stroke ⁇ compression stroke ⁇ explosion stroke ⁇ exhaust stroke, and is repeated in units of 180 degrees. Therefore, it is impossible to determine whether the piston of each cylinder is in the compression stroke or the exhaust stroke only by the crank angular position.
  • the ECU 10 uses the cam angle signal from the cam angle signal generator 13 for cylinder discrimination.
  • the cam angle signal generator 13 includes a gear-shaped second rotating body 21 that rotates in synchronization with the rotation of the cam shaft at the same angular velocity as the cam shaft, and an outer peripheral portion of the second rotating body 21 via a gap.
  • a second pickup 22 composed of an opposing electromagnetic pickup or the like is provided.
  • the second rotating body 21 is made of a magnetic material, and has two first tooth portions 21A each having one tooth portion and one tooth portion having two tooth portions on the outer peripheral portion thereof.
  • a second tooth portion 21B is provided.
  • the second pickup 22 rotates a rectangular wave pulse every time the second rotating body 21 rotates and the two first tooth portions 21A and the one second tooth portion 21B come close to each other. Outputs a pulse train signal.
  • the pulse train signal input from the second pickup 22 to the ECU 10 along with the rotation of the second rotating body 21 corresponds to the first tooth portion 21A and the second tooth portion 21B of the second rotating body 21.
  • An angular angle signal is formed.
  • the ECU 10 reads and analyzes the crank angle signal output from the crank angle signal generation unit 14 and the angle angle signal output from the cam angle signal generation unit 13, so that any cylinder is in the compression stroke. Is determined.
  • the engine 1 When the fuel injection to the engine 1 is stopped by the idling stop system, the engine 1 gradually decelerates while continuing inertial rotation due to inertia. Even during this deceleration period, the rotational speed of the engine 1 repeats acceleration and deceleration due to changes in the air pressure in the cylinder.
  • the first one rotation is a force that pushes back the piston by compressing the air in the cylinder, so the speed is reduced and exceeds the top dead center of the piston And accelerated by the reaction force of the compressed air.
  • the next one rotation is exhaust ⁇ intake, and the change in acceleration is small.
  • the phase shift for each cylinder is, for example, 240 degrees for three cylinders and 180 degrees for four cylinders.
  • FIG. 2 is an explanatory diagram for explaining the engine stop behavior and starter drive control of the engine start device according to Embodiment 1 of the present invention.
  • the engine rotation speed N has a minimum point X1 when any cylinder is at top dead center, and conversely, any cylinder passes through top dead center and is in the next phase cylinder. It has a maximum point X2 at an intermediate point until it reaches the top dead center.
  • FIG. 2 illustrates only the local minimum point X1, the local maximum point X2, and the local maximum point X3, but the valleys of the waveform of the rotational speed N are the minimum points of the top dead center, and the peak portions are respectively This is the maximum point of the middle point until the next phase cylinder reaches top dead center.
  • the ECU 10 determines which one of the crank angle signal output from the crank angle signal generation unit 14 and the angle angle signal output from the cam angle signal generation unit 13.
  • the engine speed N is detected at a maximum point at an intermediate point until the cylinder passes through the top dead center and the next phase cylinder reaches the top dead center.
  • the first pickup 24 that outputs the crank angle signal is configured by an electromagnetic pickup, and cannot generate an output in a low rotational speed range, for example, 50 [rpm].
  • the engine starting device according to the first embodiment of the present invention is configured to detect the engine rotation speed at the maximum point generated at the intermediate point.
  • the engine speed N must be overcome before the top dead center at which the minimum point is reached before reaching the intermediate point at which the maximum point is reached, and the first pickup 24 constituted by an electromagnetic pickup is reached. Will not be in a low rotation range that cannot output. Accordingly, the engine speed N can be accurately detected by the first pickup 24.
  • the starter drive inhibition mode PM is turned on for a predetermined period T described later.
  • Time Ts from the time point t 2 to time t 1 is the time required for the starter 11 moves the pinion gear 20 to the ring gear 12 side.
  • the upper limit Ne U of the engine rotational speed N is set to the engine rotational speed at which the next cylinder surely reaches top dead center or the vicinity thereof
  • the lower limit value Ne L of the engine rotation speed range NR is set to be equal to or less than the engine rotation speed in the reverse rotation direction in which the pinion gear 20 can engage with the ring gear 12 safely without generating excessive engagement noise or gear wear.
  • the engine rotation speed After passing through the intermediate point that is the last maximum point X2 in the forward rotation direction at the engine rotation speed N, the engine rotation speed once becomes “0”, and then at the maximum point X3 in the reverse rotation direction. It reaches the maximum value in the reverse rotation direction. However, during the period from the start of rotation in the reverse rotation direction to the maximum point X3 in the reverse rotation direction, the engine rotation at the maximum point X3 in the reverse rotation direction is caused by energy lost due to friction of the piston sliding or bearings.
  • the speed N is lower than the engine speed N at the local maximum point X2 at the last intermediate point in the forward rotation direction. Accordingly, it is possible to lower the lower limit value Ne L of the rotational speed range NR in consideration of the above-described loss energy, and thereby it is possible to set the starter drive inhibition range to be smaller.
  • FIG. 3 is an explanatory diagram for explaining the engine stop behavior and starter drive control of the engine starter according to Embodiment 1 of the present invention, where the engine rotational speed N when passing through the maximum point X2 is a predetermined rotational speed.
  • the lower limit value Ne L of the range NR is lower.
  • the starter drive inhibition mode is not turned on, and if the restart condition is satisfied, the starter is immediately driven and restarted.
  • the maximum value Ne 0 of the engine rotation speed in the reverse rotation direction is equal to or less than the maximum rotation speed Ner in the reverse rotation direction at which the pinion gear 20 can be safely engaged with the ring gear 12, and the pinion gear 20 is safely engaged with the ring gear 12. Can be matched.
  • FIG. 4 is an explanatory diagram for explaining the engine stop behavior and starter drive control of the engine starter according to Embodiment 1 of the present invention, where the engine rotational speed N at the maximum point X2 is within a predetermined rotational speed range NR. Then, before the reverse rotation, the case where the minimum point X1 at the top dead center of the next cylinder is passed is shown. In this case, at the maximum point X2, once, the starter drive prohibition mode is turned on, then, when it detects that it has passed the minimum point X1 at the top dead center t 10 Then, the starter prohibition mode is turned off again. Therefore, after the time t 10 to the starter drive inhibition mode is turned off, if satisfied restart condition is immediately drives the starter performs restarting.
  • the maximum value Ne 0 of the engine rotation speed in the reverse rotation direction is equal to or less than the maximum rotation speed Ner in the reverse rotation direction at which the pinion gear 20 can be safely engaged with the ring gear 12, and the pinion gear 20 is safely engaged with the ring gear 12. Can be matched.
  • time Ts is a time when the engine rotational speed N is slightly past the maximum point X3 in the reverse rotational direction.
  • the predetermined time period T by from time t 3 when the engine 1 has passed the last maximum point X2 in the normal rotation direction to the point t 2, the starter is driven after time t 2, the starter is driven the pinion gear 20 it is possible to safely engage the ring gear 12 from at time t 1 after the time Ts by.
  • the rotation speed once becomes “0”, and then starts rotating in the reverse rotation direction until reaching the maximum value in the reverse rotation direction.
  • the time until the rotational speed further decreases and the pinion gear 20 reaches the maximum rotational speed Ner at which the pinion gear 20 can be safely engaged with the ring gear 12 is generally based on the basic specifications such as the number of cylinders, the cylinder volume, and the friction of each part. It is determined and can be known in advance. Therefore, in the first embodiment of the present invention, a predetermined period is determined as shown in “Table 1” below with respect to the rotational speed at which the engine rotational speed N becomes the final maximum point X2 in the forward rotational direction.
  • the predetermined rotational speed range NR shown in FIG. 2 is divided into n regions below.
  • the rotational speed at which the engine rotational speed N becomes the final maximum point X2 in the forward rotational direction is Ne, and this rotational speed Ne is in any rotational speed region from the first rotational speed region to the nth rotational speed region.
  • the predetermined period T is defined as T 0 , T 1 , T 2 ,... T n ⁇ 1 , T n .
  • the predetermined periods T 0 , T 1 , T 2 ,... T n ⁇ 1 , T n corresponding to the engine rotational speed Ne are respectively the last maximum in the forward rotation direction of the engine 1 as described above. from the time t 3 when passing through the point X2, is set to be the period until time t 2 when the engine rotational speed N has exceeded maximum point X3 in the reverse rotational direction slightly.
  • FIG. 5 is an explanatory diagram for explaining starter drive control in the engine stop process of the engine starter according to Embodiment 1 of the present invention, and examples of the starter drive inhibition mode and starter drive signal when the engine is restarted. Indicates. That, in FIG. 5, in the engine rotational speed Ne X2 to the maximum point X2 at a time point t 3 when reached the last intermediate point of the positive rotation direction of the engine 1, since within a predetermined rotational speed range NR The starter drive inhibition mode is turned on.
  • the predetermined period T is T 1 , and this predetermined period T a starter drive prohibition mode until time T 1 of the ends.
  • Starter drive signal after restart request satisfies the restart condition of the engine is also emitted, waiting until time t 2 a predetermined period of time T 1 is completed during the predetermined time period T 1 of the the starter drive prohibition mode Is turned on.
  • the pinion gear 20 can be safely engaged with the ring gear 12 at the time t 1 when the maximum rotational speed Nre at which the pinion gear 20 can be safely engaged with the ring gear 12 is reached.
  • the engine depending on whether the rotation speed Ne x2 is included in any of the rotational speed region of the n from a first speed range in the "Table 1" [Ne u ⁇ Ne 1] [ Ne n ⁇ Ne L], the corresponding the speed range from at predetermined time T 0 T n is selected, and the selected predetermined period of time of the starter inhibit mode to.
  • the parameters of the starter drive prohibition mode for Table 1 can be obtained by motion simulation using an engine model or by actually measuring stop characteristics using a typical engine.
  • the predetermined period in the first embodiment is set in terms of time, the same effect as described above can be obtained by setting the crank angle position before top dead center BTDC [deg].
  • the crank angle sensor may be in a low rotational speed range where the crank pulse signal cannot be output. Since there is no rotation, the rotational speed can be accurately detected and judged. Furthermore, since the period from the determination to the reverse rotation is short, there is an advantage that it is not easily affected by changes in the engine rotation speed due to disturbance and the variation is reduced. Further, there is an advantage that control is easy without requiring many parameters for calculation.
  • the predetermined time period T in which the starter drive prohibition mode continues is configured to start from the time t 3 when reached the maximum point X2 at the last intermediate point of the positive rotation direction of the engine 1 because there, immediately after the engine is at the time t 3 when passed through the last maximum point X2 in the forward rotation direction is a starter drive signal even when the restart request is not generated, in the second embodiment, the engine is the normal rotation direction
  • the starter drive signal can be generated immediately after passing through the last local maximum point X2.
  • the engine starter drive signal immediately after the time point t 3 when passed through the last maximum point X2 in the forward rotational direction is issued, even after lapse of time Ts until abuts the ring gear pinion gear starts to move, The engine still rotates in the reverse direction, and there is a possibility that the rotational speed at which the pinion gear meshes safely with the ring gear without generating excessive meshing noise and gear wear may not be reached.
  • the first predetermined period and the second predetermined period shown in “Table 2” are used. determined, if the engine is in the normal rotation direction in the last rotational speed range rotational speed is predetermined at the time t 3 when reaching the maximum point X2 at the midpoint NR, a first predetermined time period the second predetermined The starter drive inhibition mode is turned on when the first predetermined period elapses, and the starter drive inhibition mode is turned off when the second predetermined period elapses.
  • the first predetermined period is set shorter than the second predetermined period.
  • FIG. 6A is an explanatory diagram for explaining starter drive control in the engine stop process of the engine starter according to Embodiment 2 of the present invention, in which the engine is restarted before the first predetermined period T X11 elapses. This shows a case where a start request is issued.
  • FIG. 6B is an explanatory diagram for explaining starter drive control in the engine stop process of the engine starter according to Embodiment 2 of the present invention, and is a request for restarting the engine after elapse of the first predetermined period T X11. It shows the case where is issued.
  • the engine rotation speed N in the stopping process of the engine 1 once becomes “0” through several minimum points and maximum points in the forward rotation direction, and then rotates in the reverse rotation direction. Then, after passing through the maximum point, it rotates again in the forward rotation direction.
  • the first predetermined time period T X11 second predetermined time period T X21 simultaneously Start.
  • the engine rotational speed Ne x2 at the maximum point X2 are intended to be a predetermined rotational speed range NR.
  • First predetermined time period T X11 is terminated when t 4 when the engine rotational speed N reaches from "0" to the lower limit value Ne L of a predetermined rotational speed range NR.
  • the second predetermined period T X21 ends at a time t x2 immediately after the time when the engine speed N reaches the maximum point in the reverse rotation direction. Starter drive prohibition mode at the time t 4 when the first predetermined time period T X11 is finished turned on, turned off at time t x2 for a second predetermined time period T X21 is finished.
  • the time T 4 When a predetermined period of the starter drive inhibition mode is set in the period of time T X2 (same as FIG. 6A), an engine restart request is issued during the predetermined period of the starter drive inhibition mode. Then, since the starter drive inhibition mode is on at the time when the restart request is issued, the starter drive signal is turned on after time tX2 when the second predetermined period ends, and the pinion gear 20 is The movement in the direction of the ring gear 12 is started.
  • the pinion gear 20 before the time t 1 from the time when the starter drive signal is turned on over time Ts is securely engaged with the ring gear 12, the restart of the engine is performed.
  • the time point t 1 is a time point when the engine rotation speed N becomes the maximum rotation speed Ner in the reverse rotation direction in which the pinion gear 20 can safely engage with the ring gear 12.
  • the first predetermined period and the second predetermined period are represented by the following “Table 2” with respect to the rotational speed at which the engine rotational speed N becomes the final maximum point X2 in the forward rotational direction. Determine as shown in
  • FIG. 6A between the upper Ne U and the lower limit value NeL the predetermined rotational speed range NR shown in FIG. 6B, is divided into n regions below.
  • the rotational speed at which the engine rotational speed N becomes the final maximum point X2 in the forward rotational direction is Ne, and this rotational speed Ne is in any rotational speed region from the first rotational speed region to the nth rotational speed region.
  • the first predetermined period T is set to T 01 , T 11 , T 21 ,... T (n ⁇ 1) 1 , T n1 .
  • the second predetermined period T is set to T 02 , depending on which rotation speed range Ne is included in the rotation speed range from the first rotation speed range to the n-th rotation speed range.
  • T 12 , T 22 ,... T (n ⁇ 1) 2 , T n2 are set.
  • a first predetermined period T 01 , T 11 , corresponding to the engine speed Ne, T 21 ,... T (n ⁇ 1) 1 and T n1 are respectively the period from the time point t 3 to the time point t 4 when the engine 1 passes the last local maximum point X 2 in the forward rotation direction.
  • the second predetermined periods T 02 , T 12 , T 22 ,... T (n ⁇ 1) 2 , T n2 are respectively set so that the engine 1 has a final maximum point X2 in the forward rotation direction. from the time t 3 when passed, it is set to be the period until time t X2 the engine speed N has exceeded the maximum point in the reverse rotational direction slightly.
  • the first predetermined period and the second predetermined period are set in terms of time. As shown in Table 3 below, the crank before top dead center is used. Even if the angle position BTDC [deg] is set, the same effect as described above can be obtained.
  • the crank angle sensor may be in a low rotational speed range where the crank pulse signal cannot be output. Since there is no rotation, the rotational speed can be accurately detected and judged. Furthermore, since the period from the determination to the reverse rotation is short, it is difficult to be affected by the change in the engine rotation speed due to the disturbance, and the variation is reduced. Further, the time for prohibiting the starter drive is shortened, and the feeling of stagnation accompanying restart can be suppressed. Further, there is an advantage that control is easy without requiring many parameters for calculation.
  • the engine starting device is a specific embodiment of (1), (2), and (3) among the inventions described in (1) to (4) below.
  • the engine starter according to Embodiment 2 of the present invention described above embodies (1) and (4) among the inventions described in (1) to (4) below.
  • an idling stop system that automatically stops combustion of an engine having a plurality of cylinders when a predetermined condition is satisfied, and the engine stops combustion by the idling stop system.
  • a starter is driven to engage a pinion gear provided on the starter with the ring gear of the engine that is inertially rotated.
  • an engine starter configured to restart the engine, Detecting the engine rotation speed and crank angle position when the inertial rotation, The detected crank angle position is intermediate between the top dead center of any one of the plurality of cylinders of the engine and the top dead center of the next cylinder after the one of the cylinders when the inertia is rotating.
  • the starter is prohibited from driving for a predetermined period when it is determined that the detected engine rotation speed is within a predetermined range.
  • the predetermined period is determined based on the engine speed at the determined time point, The predetermined period starts from the determined time point.
  • An idling stop system that automatically stops combustion of an engine having a plurality of cylinders when a predetermined condition is satisfied, and the engine is stopped by the idling stop system.
  • a starter is driven to engage a pinion gear provided on the starter with the ring gear of the engine that is inertially rotated.
  • an engine starter configured to restart the engine, Detecting the engine rotation speed and crank angle position when the inertial rotation, The detected crank angle position is intermediate between the top dead center of any one of the plurality of cylinders of the engine and the top dead center of the next cylinder after the one of the cylinders when the inertia is rotating.
  • a first predetermined period and a second predetermined period that are respectively started when the detected engine rotational speed is determined to be within a predetermined range. Prepared, The first predetermined period and the second predetermined period are respectively determined based on the engine speed at the determined time point, The second predetermined period is set longer than the first predetermined period; The starter is prohibited from being driven from the time when the first predetermined period ends until the time when the second predetermined period ends.
  • An engine starter characterized by that.
  • the present invention can be used in the field related to the manufacture of an engine starter mounted on a vehicle such as an automobile, and eventually a vehicle such as an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 エンジン停止過程におけるエンジンの回転速度とクランク位置を検出し、クランク位置が何れかの気筒の上死点と、次の気筒の上死点の中間にあたる中間点にあるときのエンジン回転速度が所定の範囲内であると判定した場合に、所定の期間だけ前記スタータの駆動を禁止するようにした。

Description

エンジン始動装置
 この発明は、所定のアイドリングストップ条件が成立するとエンジンを自動で停止し、その後、再始動条件が成立するとエンジンの再始動を行うようにしたアイドリングストップシステムに用いられるエンジン始動装置に関するものである。
 従来、自動車の低燃費化のために所定の条件が満たされるとエンジンを自動で停止するアイドリングストップシステムが知られている。更に、このアイドリングストップシステムにより、エンジンの燃焼が停止された直後で、エンジンの惰性回転中にエンジンの再始動要求が発生した際に、できるだけ速やかにエンジンを再始動するために、エンジンのクランク軸に連結されたリングギヤが回転中であっても、スタータモータの出力軸に連結されたピニオンギヤをリングギヤと噛み合わせるようにしたエンジン始動装置が提案されている。
 このような従来のエンジン始動装置に於いて、回転中のリングギヤにピニオンギヤを噛み合わせるために、惰性回転中のエンジンの回転数を検出し、ピニオンギヤがリングギヤと当接するときのリングギヤの回転数が所定の範囲になるようにタイミングを図り、リングギヤの回転数が所定の範囲内になったタイミングでピニオンギヤをリングギヤに噛み合わせてエンジンを再始動するようにした技術が提案されている。又、エンジンが逆回転したときのピニオンギヤとリングギヤとの噛み合いは衝撃が大きくなり、過大な噛み合い音やピニオンギヤとリングギヤとの摩耗を引き起こす原因となるため、所定の条件ではピニオンギヤをリングギヤへ噛み合わせる動作を禁止する技術が提案されている。
 即ち、国際公開WO2014/054471号公報(特許文献1)には、エンジンの所定のマイナス回転以下の区間をスタータ駆動禁止区間として、エンジンの回転数を検出する回転センサの出力に基づいてエンジンの再始動を制御するエンジン始動装置が開示されている。
 又、特許第5442042号公報(特許文献2)には、エンジン停止過程に於いて、特定した所定のクランク位置、例えば気筒の上死点(TDC)、でのエンジンの回転速度に基づき、次の所定のクランク位置に到達する前にエンジンが逆転するか否かを推定し、逆転すると推定した後は、スタータ駆動禁止タイミングからスタータ駆動禁止解除までを禁止範囲として規定すると共に、この規定した禁止範囲外を許可範囲として規定し、エンジン停止過程中に再始動条件が成立した場合に、前述の規定した禁止範囲内でのエンジンの再始動を禁止し、前述の規定した許可範囲内でエンジンを再始動するようにしたエンジン始動装置が開示されている。
 更に、特許公開2014-77399号公報(特許文献3)には、エンジンの回転降下中に於ける正回転中のエンジン回転速度を予測する第1の予測手段と、逆回転中のエンジン回転速度を予測する第2の予測手段を備え、予測するエンジン回転速度がエンジン出力軸の正回転中か逆回転中かに応じて、回転降下期間に於けるエンジン回転速度の予測を、前述の第1の予測手段及び第2の予測手段の何れを用いて実施するかを切り替えるようにしたエンジン始動装置が開示されている。
国際公開WO2014/054471号公報 特許第5442042号公報 特開2014-77399号公報
 前述の従来のエンジン始動装置に於いて、エンジン回転速度は、クランク角度信号発生手段から出力されるパルス信号に基づいて検出されている。しかしながら、クランク角度信号発生手段は、エンジンのクランク軸に連結され外周部に所定間隔で歯が形成された磁性体円板と、この磁性体円板の歯と電磁結合してパルス信号を発生する電磁ピックアップとにより構成されており、エンジンの低回転速度域(例えば50[rpm]以下)ではパルスの周期が長くなるため、エンジン回転速度を精度よく検出することができない。
 従って、前述のように構成されたクランク角度信号発生手段では、エンジン停止過程に於いてエンジンが逆回転する直前のほぼ「0」に近いエンジン回転速度を正確に検出することができない。そのため、予測手段を用いてエンジンの逆回転を判断するようにしているが、エンジンの挙動は複雑であり、エンジンの逆回転を精密に予測するためには複雑な演算が必要となりエンジン制御ユニットの負担が大きくなってしまうという課題があった。
 この発明は、このような問題を解決するためになされたもので、複雑な演算を伴うエンジンの逆回転の予測を行なうことなく、簡単な制御により、エンジンの逆回転速度が大きい領域に於けるピニオンギヤとリングギヤとの噛み合いを確実に回避することができるエンジン始動装置を提供することを目的とする。
 この発明によるエンジン始動装置は、
 所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
 前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
 前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、所定の期間だけ前記スタータの駆動を禁止するようにした、
ことを特徴とする。
 又、この発明によるエンジン始動装置は、
 所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
 前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
 前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、夫々開始される第1の所定の期間と第2の所定の期間とを備え、
 前記第1の所定の期間と前記第2の所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて夫々決定され、
 前記第2の所定の期間は、前記第1の所定の期間より長く設定され、
 前記第1の所定の期間が終了する時点から前記第2の所定の期間が終了する時点までの間、前記スタータの駆動を禁止するようにした、
ことを特徴とする。
 この発明によるエンジン始動装置によれば、検出したクランク角度位置が、惰性回転しているときのエンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、所定の期間だけスタータの駆動を禁止するようにしたので、確実に過大な噛み合い音やギヤ摩耗が発生するような逆方向の回転速度が大きい領域でピニオンがリングギヤと噛み合うことを回避できるエンジン始動装置を得ることができる。
 又、この発明によるエンジン始動装置によれば、検出したクランク角度位置が、惰性回転しているときのエンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、夫々開始される第1の所定の期間と第2の所定の期間とを備え、前記第1の所定の期間と前記第2の所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて夫々決定され、前記第2の所定の期間は、前記第1の所定の期間より長く設定され、前記第1の所定の期間が終了する時点から前記第2の所定の期間が終了する時点までの間、前記スタータの駆動を禁止するようにしたので、確実に過大な噛み合い音やギヤ摩耗が発生するような逆方向の回転速度が大きい領域でピニオンがリングギヤと噛み合うことを回避できると共に、スタータの駆動を禁止する時間が短くなり、再始動に伴うもたつき感を抑制することができる。
この発明の実施の形態1によるエンジン始動装置の構成図である。 この発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図である。 この発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図である。 この発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図である。 この発明の実施の形態1によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図である。 この発明の実施の形態2によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図である。 この発明の実施の形態2によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図である。
実施の形態1.
 図1は、この発明の実施の形態1によるエンジン始動装置の構成図である。図1に於いて、この発明の実施の形態1によるエンジン始動装置は、エンジン制御ユニット(以下、ECUと称する)10と、スタータ11と、電磁スイッチ15と、エンジン1のクランク軸2に連結されたリングギヤ12と、エンジン1の吸気弁と排気弁を開閉するカム軸の回転角度に対応するカム角度信号を発生するカム角度信号発生部13と、エンジン1のクランク軸2の回転角度及びエンジン1の回転速度に対応するクランク角度信号を発生するクランク角度信号発生部14と、を備えている。
 スタータ11は、モータ16と、モータ16の出力軸の回転を減速する減速機構25と、スタータ出力軸17と、レバー18と、スタータ出力軸17と減速機構25との間に挿入されたワンウェイクラッチ19と、スタータ出力軸17にスプライン結合されたピニオンギヤ20とを備えている。
 電磁スイッチ15は、コイル15aと、コイル15aに通電されたときコイル15aに吸引されてコイル15aの内部空間に引き込まれるプランジャ15cと、プランジャ15cがコイル15aの内部空間に引き込まれたときにプランジャ15cにより図の左方向に押し出される可動接点15dと、プランジャ15cに押し出された可動接点15dにより短絡される一対の固定接点15b1、15b2とを備えている。可動接点15dにより一対の固定接点15b1、15b2が短絡されると、バッテリー3は、固定接点15b1、可動接点15d、固定接点15b2、及びモータ16のブラシ161を介して、モータ16の電機子コイルに電機子電流を供給する。
 レバー18は、一端が電磁スイッチ15のプランジャ15cに係合され、他端がワンウェイクラッチ19に係合され、且つ一端と他端との間に設けられた支持部181がスタータ11の筐体(図示せず)に回動自在に支持されている。
 ECU10は、電磁スイッチ15への通電を制御する。ECU10の制御に基づいて電磁スイッチ15のコイル15aに通電されると、プランジャ15cが電磁コイル15aに吸引されて電磁コイル15aの内部空間に引き込まれる。このとき、プランジャ15cに一端が係合されたレバー18は、支持部181を中心として図の反時計方向に回動し、他端がワンウェイクラッチ19と共にピニオンギヤ20を図の右方向に押圧して移動させ、ピニオンギヤ20をリングギヤ12と噛み合わせる。
 又、プランジャ15cがコイル15aに吸引されると、前述したように電磁スイッチ15の一対の固定接点15b1、15b2が可動接点15dにより短絡され、バッテリー3からモータ16の電機子コイルに通電され、モータ16は回転する。モータ16のトルクは、減速機構25、及びワンウェイクラッチ19を介してスタータ出力軸17に伝達され、更に、スタータ出力軸17にスプライン結合されたピニオンギヤ20からリングギヤ12を介してエンジン1に伝達される。
 ワンウェイクラッチ19は、モータ16から減速機構25を介して入力されたトルクをピニオンギヤ20とリングギヤ12を介してエンジン1に伝達するが、エンジン1からのトルクがリングギヤ12とピニオンギヤ20を介して入力された場合には空転し、エンジン1のトルクをモータ16側に伝達しないように構成されている。
 エンジン1は、ピストンの往復運動を回転運動に変換するクランク軸2と、燃焼室に設けられた吸気弁(図示せず)、ならびに排気弁(図示せず)を開閉するカムが設けられたカム軸(図示せず)と、クランク軸2の回転をカム軸に伝達する伝達部材(図示せず)と、燃料を供給するインジェクタ(図示せず)と、点火プラグ(図示せず)等を備えている。尚、カム軸は、クランク軸2の角速度の1/2の角速度で伝達手段にて減速され、クランク軸2と同期して回転する。
 クランク角度信号発生部14は、クランク軸2と同一の角速度で同期して回転する歯車状の第1の回転体23と、第1の回転体23の外周部に間隙を介して対向する第1のピックアップ24を備えている。第1の回転体23は、磁性材料により形成されており、その外周部にほぼ全域にわたって等間隔に配置された複数個の歯部23Aと、1個の歯部が欠けている2か所の第1の欠け歯部23Bと、2個の歯部が欠けている1か所の第2の欠け歯部23Cとが設けられている。電磁ピックアップ等により構成された第1のピックアップ24は、第1の回転体23が回転して個々の歯部23Aが順次近接する毎に、矩形波状のパルスが連なるパルス列信号を出力する。第1の回転体23の回転に伴って第1のピックアップ24からECU10に入力されるパルス列信号は、第1の回転体23の複数の歯部23Aと、第1の欠け歯部23B、及び第2の欠け歯部23Cに対応したクランク角度信号を形成する。
 第1の回転体23の外周部に設けられている第1の欠け歯部23Bと、第2の欠け歯部23Cは、クランク軸2の基準角度位置に対応して設けられており、第1のピックアップ24から出力されるクランク角度信号に於ける第1の欠け歯部23Bと第2の欠け歯部23Cに対応する信号部分は、クランク軸2の基準角度位置を示す情報に相当する。この発明の実施の形態1によるエンジン始動装置では、第1の回転体23の外周部を36等分して、32個の歯部23Aと、1個の歯部が欠けた2カ所の第1の欠け歯部23Bと、2個の歯部が欠けた1か所の第2の欠け歯部23Cを設けている。
 このため、等間隔で歯部23Aが設けられた領域においては、オン信号又はオフ信号が所定の回転角毎(例えば、10度毎の角度となる。以下、この角度を基準ステップ角度と称する)に出力されるのに対して、2か所の第1の欠け歯部23Bでは、オン信号又はオフ信号が出力される時間が基準ステップ角の2倍に相当する時間となり、1か所の第2の欠け歯部23Cでは、オン信号又はオフ信号が出力される時間が基準ステップ角の3倍に相当する時間となる。
 又、第1の回転体23が回転する間に、2か所の第1の欠け歯部23Bと、1か所の第2の欠け歯部23Cと、の間で出力されるオン信号又はオフ信号の個数は、既知である。従って、ECU10は、クランク角度信号がオフからオンに変化した時点、又はオンからオフに変化した時点で、第1のピックアップ24からのクランク角度信号を計数すると共に、クランク角度信号のタイミングの時間間隔(パルス列間隔に相当)からクランク角度信号の周期、つまり、2か所の第1の欠け歯部23Bと、1か所の第2の欠け歯部23Cとにより特定されるクランク軸の角度位置の周期を演算することができる。尚、クランク角度信号発生部14に於ける前述の欠け歯の位置、数等はあくまで一例であって、エンジンの構成に対応して前述とは異なる構成となることは明らかである。
 更に、ECU10は、エンジン1の回転数についてクランク角度信号に基づいて判断することが可能となる。即ち、クランク角度信号の周期の変化率に基づいて、クランク角度信号間のエンジン回転数を演算することにより、より精度よくエンジン回転数を得ることが可能である。
 又、ECU10は、エンジン回転数を、クランク角度信号のパルス列間隔に相当する時間間隔からエンジン回転数を演算する場合と、クランク角度信号の周期の変化率に基づいてクランク角度信号間のエンジン回転数を演算する場合とを、クランクの角度位置に基づいて切り替えて求めるようにしてもよい。このようにすると、エンジン回転数の変曲点付近の回転数の演算誤差を減少させることが可能となる。
 この発明の実施の形態1によるエンジン始動装置に於いて、エンジン1へ燃料を噴射するタイミングは、圧縮行程から爆発行程に移る時のピストン上死点を基準に決定される。4サイクル方式のエンジンでは、吸気行程→圧縮行程→爆発行程→排気行程の順で、各行程がクランク位置の角度に換算して180度単位で繰り返される。従って、クランクの角度位置のみでは、各気筒のピストンが圧縮行程時であるのか排気行程時であるのかが判別できない。
 そこで、ECU10は、カム角度信号発生部13からのカム角度信号を気筒判別用として用いる。カム角度信号発生部13は、カム軸と同一の角速度でカム軸の回転と同期して回転する歯車状の第2の回転体21と、第2の回転体21の外周部に間隙を介して対向する電磁ピックアップ等により構成された第2のピックアップ22を備えている。第2の回転体21は、磁性材料により形成されており、その外周部に、夫々1個の歯部からなる2か所の第1の歯部21Aと、2個の歯部からなる1か所の第2の歯部21Bが設けられている。
 第2のピックアップ22は、第2の回転体21が回転して2か所の第1の歯部21Aと1か所の第2の歯部21Bが近接する毎に、矩形波状のパルスが連なるパルス列信号を出力する。第2の回転体21の回転に伴って第2のピックアップ22からECU10に入力されるパルス列信号は、第2の回転体21の第1の歯部21Aと、第2の歯部21Bに対応した角角度信号を形成する。
 そして、ECU10は、クランク角度信号発生部14から出力されるクランク角度信号と、カム角度信号発生部13から出力される角角度信号と、を読み込んで解析することより、何れの気筒が圧縮行程時であるのかを判別する。
 続いて、エンジン停止過程に於いて、エンジンの再始動条件が満たされ、エンジンを再始動する時の動作について説明する。
 アイドリングストップシステムによりエンジン1への燃料噴射の停止が開始されると、エンジン1は慣性による惰性回転を続けながら、徐々に減速する。そして、この減速期間中であっても、気筒内の空気圧の変化によりエンジン1の回転速度は加速と減速を繰り返す。
 具体的には、例えば4サイクルエンジンでは2回転で1サイクルであり、最初の1回転は気筒内の空気が圧縮されることでピストンを押し返す力となるため減速し、ピストンの上死点を超えると圧縮された空気の反力により加速される。次の1回転は排気→吸気となり、加速度の変化は少ないものの、多気筒のエンジンでは、気筒毎に位相がずれており、規則的に加速と減速を繰り返しながら、停止へと向かう。気筒毎の位相のずれは、例えば、3気筒では240度、4気筒では180度となる。
 図2は、この発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図である。図2に示すように、エンジン回転速度Nは、何れかの気筒が上死点のとき、極小点X1を持ち、逆に、何れかの気筒が上死点を通過し、次の位相の気筒が上死点に到達するまでの中間点に於いて、極大点X2を持つ。尚、図2には、極小点X1、極大点X2、極大点X3のみを例示しているが、回転速度Nの波形の谷の部分が夫々上死点の極小点であり、山頂部分が夫々次の位相の気筒が上死点に到達するまでの中間点の極大点である。
 この発明の実施の形態1によるエンジン始動装置では、ECU10は、クランク角度信号発生部14から出力されるクランク角度信号と、カム角度信号発生部13から出力される角角度信号とに基づいて、何れかの気筒が上死点を通過し、次の位相の気筒が上死点に到達するまでの中間点での極大点に於いて、エンジン回転速度Nを検出するように構成されている。前述のクランク角度信号を出力する第1のピックアップ24は、電磁ピックアップにより構成されており、低回転速度域、例えば50[rpm]では出力を発生させることができず、正確にエンジン1の回転速度を検出することができないが、この発明の実施の形態1によるエンジン始動装置では、中間点に於いて発生する極大点でエンジン回転速度を検出するように構成されているので、その極大点となる中間点ではその前に必ずエンジン回転速度Nが極小点となる上死点を乗り越えてから加速して極大点となる中間点に到達することになり、電磁ピックアップにより構成された第1のピックアップ24が出力できないような低回転域になることはない。従って、第1のピックアップ24によりエンジン回転速度Nを正確に検出することが可能となる。
 又、エンジン回転速度Nが極大点となる中間点近傍では、エンジン回転速度Nの変動が少ないので、エンジン回転速度Nの検出のバラツキを抑制することができる。そして、このようにして検出した極大点X2となる中間点のエンジン回転速度Nが所定の回転速度範囲NR内であれば、後述する所定の期間Tの間、スタータ駆動禁止モードPMをオンとする。時点tから時点
までの時間Tsは、スタータ11がピニオンギヤ20をリングギヤ12側に移動させるのに要する時間である。
 前述の所定の回転速度範囲NRに於いて、エンジン回転速度Nの上限Neは、次の気筒が確実に上死点若しくはその近傍に到達するエンジン回転速度に設定されるものであり、一方、エンジン回転速度範囲NRの下限値Neは、ピニオンギヤ20がリングギヤ12に過大な噛み合い音やギヤ摩耗を発生させることなく安全に噛み合うことができる逆転方向のエンジン回転速度以下に設定される。
 更に、エンジン回転速度Nに於ける正回転方向の最後の極大点X2となる中間点を通過してから、一旦、エンジン回転速度が「0」となり、その後、逆回転方向の極大点X3での逆回転方向の最大値に至る。しかし、逆回転方向へ回転を開始して逆回転方向の極大点X3に至るまでの間、ピストンの摺動や軸受け等の摩擦により損失するエネルギーによって、逆回転方向に極大点X3でのエンジン回転速度Nは、正回転方向の最後の中間点での極大点X2でのエンジン回転速度Nよりも低くなる。従って、前述の損失エネルギーを加味して、回転速度範囲NRの下限値Neを低くすることが可能となり、これによって、よりスタータの駆動禁止範囲を小さく設定することが可能となる。
 図3は、この発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図であって、極大点X2を通過したときのエンジンの回転速度Nが所定の回転速度範囲NRの下限値Neよりも低い場合の事例を示す。この場合は、スタータ駆動禁止モードはオンされずに、再始動の条件が満たされれば即座にスタータを駆動し再始動を行う。この場合、逆回転方向のエンジン回転速度の最大値Neは、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Ner以下であり、ピニオンギヤ20を安全にリングギヤ12に噛み合わせることができる。
 図4は、の発明の実施の形態1によるエンジン始動装置のエンジン停止挙動とスタータ駆動制御を説明する説明図であって、極大点X2に於けるエンジン回転速度Nが所定の回転速度範囲内NRに入っており、その後、逆回転する前に、次の気筒の上死点での極小点X1を通過した場合の事例を示す。この場合、極大点X2に於いて、一度、スタータ駆動禁止モードがオンとなり、その後、上死点での極小点X1を通過したことを検出した時点t10
で、再びスタータ禁止モードオフとなる。従って、スタータ駆動禁止モードがオフとなった時点t10以降に、再始動の条件が満たされれば即座にスタータを駆動し再始動を行う。この場合、逆回転方向のエンジン回転速度の最大値Neは、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Ner以下であり、ピニオンギヤ20を安全にリングギヤ12に噛み合わせることができる。
 前述の図2に於いて、極大点X2となる中間点のエンジン回転速度Nが所定の回転速度範囲NR内であれば、所定の期間Tの間、スタータ駆動禁止モードをオンとすることについて説明したが、ここで、スタータ駆動禁止モードをオンとする所定の期間Tについて更に説明する。スタータ駆動禁止モードがオンとなる所定の期間Tは、理論的には、エンジン1が正回転方向の最後の極大点X2を通過した時点tから、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Nerとなる時点tまでの期間である。しかしながら、スタータ駆動信号がECU10からスタータ11に入力されてから、ピニオンギヤ20が軸方向にリングギヤ12側に移動を開始し、リングギヤ12に当接するまでの時間Tsを考慮する必要があるので、実際には、所定の期間Tの終了する時点は、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Nerとなる時点tから、前述の時間Tsだけ遡った時点tとする。ここで、時点tは、エンジン回転速度Nが逆回転方向の極大点X3をわずかに過ぎた時点となる。
 このように所定の期間Tを、エンジン1が正回転方向の最後の極大点X2を通過した時点tから時点tまでとすることにより、スタータが時点t後に駆動され、スタータが駆動されてから時間Ts後の時点tでピニオンギヤ20をリングギヤ12へ安全に噛み合わせることが可能となる。
 このときの、エンジン1が正回転方向の最後の極大点X2を通過してから、一旦、回転速度が「0」となり、その後、逆転方向へ回転を開始し逆転方向の最大値に至るまで、或いは、更に回転が減少して、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる最大回転速度Nerに到達するまでの時間は、エンジン1の気筒数やシリンダ容積、各部の摩擦など基本仕様で概ね決定されるもので、予め知ることができる。そこで、この発明の実施の形態1では、エンジン回転速度Nが正回転方向の最後の極大点X2となる回転速度に対し、所定の期間を下記の「表1」に示すように定める。
Figure JPOXMLDOC01-appb-T000001
 即ち、図2に示す所定の回転速度範囲NRの上限Neと下限値NeLとの間を、下記のn個の領域に分割する。
   第1の回転速度領域[Ne~Ne
   第2の回転速度領域[Ne~Ne
   第3の回転速度領域[Ne~Ne
    ・
    ・
   第(n-1)の回転速度領域[Ne(n-1)~Ne
   第nの回転速度領域[Ne~Ne
 そして、エンジン回転速度Nが正回転方向の最後の極大点X2となる回転速度をNeとし、この回転速度Neが、第1の回転速度領域から第nの回転速度領域の何れの回転速度領域に含まれるかにより、表1に示すように所定の期間Tを、T、T、T、・・Tn-1、Tと定めるものである。
 ここで、エンジン回転速度Neに対応した所定の期間T、T、T、・・Tn-1、Tは、前述したように、夫々、エンジン1が正回転方向の最後の極大点X2を通過した時点tから、エンジン回転速度Nが逆回転方向の極大点X3をわずかに過ぎた時点tまでの期間となるように設定される。
 図5は、この発明の実施の形態1によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図であって、エンジンの再始動時のスタータ駆動禁止モードとスタータ駆動信号の事例を示す。即ち、図5に於いて、エンジン1の正回転方向の最後の中間点を迎えた時点tでの極大点X2に於けるエンジン回転速度NeX2は、所定の回転速度範囲NR内であるので、スタータ駆動禁止モードがオンとなる。ここで、エンジン回転速度Nex2が、前述の「表1」に於ける第2の回転速度領域[Ne~Ne]に含まれるとすれば、所定の期間TはTとなり、この所定の期間Tが終了するまでスタータ駆動禁止モードとなる。そのスタータ駆動禁止モードの所定の期間Tの間にエンジンの再始動の条件を満足して再始動要求が発せられても、所定の期間Tが終了する時点tまで待った後にスタータ駆動信号がオンとなる。その結果、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる最大回転速度Nreとなる時点tに於いて、ピニオンギヤ20をリングギヤ12へ安全に噛み合わせることが可能となる。
 このように、エンジン1の正回転方向の最後の中間点を迎えた時点tでの極大点X2に於けるエンジン回転速度NeX2は、所定の回転速度範囲NR内である場合に、そのエンジン回転速度Nex2が、「表1」に於ける第1の回転速度領域[Ne~Ne]から第nの回転速度領域[Ne~Ne]の何れに含まれるかにより、その対応する回転速度領域に於ける所定の期間TからTが選択され、その選択された所定に期間をスタータ禁止モードの期間とする。
 尚、表1に対するスタータ駆動禁止モードのパラメータは、エンジンモデルによる運動シミュレーション、或いは、代表的なエンジンによる実際に停止特性を測定することによって求めることができる。
 又、実施の形態1に於ける前述の所定の期間は、時間で設定していたが、上死点前クランク角度位置BTDC[deg]により設定しても前述と同様の効果が得られる。
 この発明の実施の形態1によるエンジン始動装置によれば、エンジン回転速度の予測をするための複雑な演算を実施する必要がなく、ECUの負荷を低減することができる。又、何れかの気筒の上死点と、次の気筒の上死点の中間にあたる中間点で判定することで、クランク角センサがクランクパルス信号を出力できないような低回転速度域になることがないので、正確に回転速度を検出し判定できる。更に、判定してから、逆回転に至るまでの期間が短いので、外乱によるエンジン回転速度の変化の影響を受けにくく、ばらつきが少なくなる等の利点を有する。又、演算のための多くのパラメータを必要とせず、制御が容易となる利点を有する。
実施の形態2.
 次に、この発明の実施の形態2によるエンジン始動装置について説明する。前述の実施の形態1では、スタータ駆動禁止モードが継続する所定の期間Tは、エンジン1の正回転方向の最後の中間点で極大点X2を迎えた時点tからスタートするように構成されているので、エンジンが正回転方向の最後の極大点X2を通過した時点tの直後では、再始動要求があってもスタータ駆動信号は発生されないが、実施の形態2では、エンジンが正回転方向の最後の極大点X2を通過した直後でのスタータ駆動信号の発生を可能とする。
 しかし、エンジンが正回転方向の最後の極大点X2を通過した時点tの直後にスタータ駆動信号が発令され、ピニオンギヤが移動を開始してリングギヤに当接するまでの時間Tsだけ経過した後でも、まだ、エンジンは逆転方向に回転し、過大な噛み合い音やギヤ摩耗を発生させることなくピニオンギヤがリングギヤに安全に噛み合う回転速度に至っていない可能性がある。
 そこで、この発明の実施の形態2によるエンジン始動装置では、実施の形態1に於ける「表1」に替えて、「表2」に示す第1の所定の期間と第2の所定の期間を定め、エンジンが正回転方向の最後の中間点での極大点X2に達した時点tでの回転速度が所定の回転速度範囲NR内であれば、第1の所定の期間と第2の所定の期間を同時にスタートさせ、第1の所定の期間が経過した時点でスタータ駆動禁止モードをオンとし、第2の所定の期間が経過した時点でスタータ駆動禁止モードをオフとするものである。尚、第1の所定の期間は第2の所定の期間より短く設定されている。
 図6Aは、この発明の実施の形態2によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図であって、第1の所定の期間TX11が経過する前にエンジンの再始動要求が出された場合を示している。図6Bは、この発明の実施の形態2によるエンジン始動装置のエンジン停止過程に於けるスタータ駆動制御を説明する説明図であって、第1の所定の期間TX11の経過後にエンジンの再始動要求が出された場合を示している。
 図6A、図6Bに於いて、エンジン1の停止過程に於けるエンジン回転速度Nは、正回転方向の幾つかの極小点と極大点を経て一旦「0」となり、その後、逆回転方向に回転してその極大点を経て、再度、正回転方向に回転する。エンジン回転速度Nが最後の正回転方向の極大点X2となる時点tでのエンジン回転速度Nex2に至ったとき、第1の所定の期間TX11と第2の所定の期間TX21は同時にスタートする。尚、極大点X2でのエンジン回転速度
Nex2は、所定の回転速度範囲NRにあるものとする。
 第1の所定の期間TX11は、エンジン回転速度Nが「0」から所定の回転速度範囲NRの下限値Neに至った時点tで終了する。一方、第2の所定の期間TX21は、エンジン回転速度Nが逆回転方向の極大点に到達した時点の直後の時点tx2で終了する。スタータ駆動禁止モードは、第1の所定の期間
X11が終了した時点tでオンとなり、第2の所定の期間TX21が終了した時点tx2でオフとなる。
 ここで、第6図Aに示すように、エンジン回転速度Nが正回転方向の最後の極大点X2に達した時点tと第1の所定の期間TX11が終了する時点tとの間で、エンジンの再始動要求が出されとすると、その再始動要求が出された時点ではスタータ駆動禁止モードがオンとなっていないので、再始動要求が出された時点で直ちにスタータ駆動信号はオンとなり、スタータ11のピニオンギヤ20はリングギヤ12の方向に移動を開始する。そして、スタータ駆動信号がオンとなった時点から時間Tsを経て、エンジン回転速度Nが「0」から逆回転方向となってから、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Nerとなる時点tに至るまでに、ピニオンギヤ20がリングギヤ12に安全に噛み合い、エンジンの再始動が行われる。
 尚、図6Aでは、第1の所定の期間TX11が終了する時点tから時間Tsが開始され、ピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Nerとなる時点tでピニオンギヤ20とリングギヤ12との噛み合いが行われるように表示しているが、これは再始動要求が第1の所定の期間TX11が終了する時点(より正確にはその時点の直前)で発生した場合を表示したものである。従って、エンジンの再始動要求が時点tより早い時点(例えば図6Aに示す再始動要求の発生時点)で出されれば、その時点から時間Tsが経過することになり、図6Aに示す時点tより早い時点でピニオンギヤ20とリングギヤ12との噛み合わせが安全に行われる。
 次に、第6図Bに示すように、第1の所定の期間TX11、第2の所定の期間
X21が設定されている(第6図Aと同じ)ときであって、時点Tと時点
X2の期間に、スタータ駆動禁止モードの所定の期間が設定されている(第6図Aと同じ)とき、そのスタータ駆動禁止モードの所定の期間中に、エンジンの再始動要求が出されとすると、その再始動要求が出された時点ではスタータ駆動禁止モードがオンとなっているので、スタータ駆動信号は第2の所定の期間が終了する時点tX2以降にオンとなり、ピニオンギヤ20はリングギヤ12の方向に移動を開始する。そして、スタータ駆動信号がオンとなった時点から時間Tsを経て時点tの前にピニオンギヤ20がリングギヤ12に安全に噛み合い、エンジンの再始動が行われる。ここで時点t1は、エンジン回転速度Nがピニオンギヤ20がリングギヤ12に安全に噛み合うことができる逆回転方向の最大回転速度Nerとなる時点である。
 この発明の実施の形態2では、エンジン回転速度Nが正回転方向の最後の極大点X2となる回転速度に対し、第1の所定の期間と第2の所定の期間を下記の「表2」に示すように定める。
Figure JPOXMLDOC01-appb-T000002
 即ち、図6A、図6Bに示す所定の回転速度範囲NRの上限Neと下限値NeLとの間を、下記のn個の領域に分割する。
   第1の回転速度領域[Ne~Ne
   第2の回転速度領域[Ne~Ne
   第3の回転速度領域[Ne~Ne
    ・
    ・
   第(n-1)の回転速度領域[Ne(n-1)~Ne
   第nの回転速度領域[Ne~Ne
 そして、エンジン回転速度Nが正回転方向の最後の極大点X2となる回転速度をNeとし、この回転速度Neが、第1の回転速度領域から第nの回転速度領域の何れの回転速度領域に含まれるかにより、表2に示すように、第1の所定の期間Tを、T01、T11、T21、・・T(n-1)1、Tn1に設定する。又、回転速度Neが第1の回転速度領域から第nの回転速度領域の何れの回転速度領域に含まれるかにより、表2に示すように、第2の所定の期間Tを、T02、T12、T22、・・T(n-1)2、Tn2に設定するものである。
 ここで、エンジン回転速度Neに対応した第1の所定の期間T01、T11
21、・・T(n-1)1、Tn1は、前述したように、夫々、エンジン1が正回転方向の最後の極大点X2を通過した時点tから時点tまでの期間となるように設定され、第2の所定の期間T02、T12、T22、・・T(n-1)2、Tn2は、夫々、エンジン1が正回転方向の最後の極大点X2を通過した時点tから、エンジン回転速度Nが逆回転方向の極大点をわずかに過ぎた時点tX2までの期間となるように設定される。
 尚、前述の実施の形態2に於いて、第1の所定の期間と第2の所定の期間を時間で設定していたが、下記の「表3」に示すように、上死点前クランク角度位置BTDC[deg]により設定しても前述と同様の効果が得られる。
Figure JPOXMLDOC01-appb-T000003
 この発明の実施の形態2によるエンジン始動装置によれば、エンジン回転速度の予測をするための複雑な演算を実施する必要がなく、ECUの負荷を低減することができる。又、何れかの気筒の上死点と、次の気筒の上死点の中間にあたる中間点で判定することで、クランク角センサがクランクパルス信号を出力できないような低回転速度域になることがないので、正確に回転速度を検出し判定できる。更に、判定してから、逆回転に至るまでの期間が短いので、外乱によるエンジン回転速度の変化の影響を受けにくく、ばらつきが少なくなる。更に、スタータの駆動を禁止する時間が短くなり、再始動に伴うもたつき感を抑制することができる。又、演算のための多くのパラメータを必要とせず、制御が容易となる利点を有する。
 前述のこの発明の実施の形態1によるエンジン始動装置は、下記の(1)から(4)に記載の発明のうち、(1)、(2)、及び(3)を具体化したものである。又、前述のこの発明の実施の形態2によるエンジン始動装置は、下記の(1)から(4)に記載の発明のうち、(1)、及び(4)を具体化したものである。
(1)所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
 前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
 前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、所定の期間だけ前記スタータの駆動を禁止するようにした、
ことを特徴とするエンジン始動装置。
(2)前記所定に期間が経過するまでに前記再始動要求が発生したときに、前記次の気筒が上死点を通過したときは前記スタータの駆動の禁止を解除する、
ことを特徴とする上記(1)に記載のエンジン始動装置。
(3)前記所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて決定され、
 前記判定された時点から前記所定の期間が開始される、
ことを特徴とする上記(1)又は(2)に記載のエンジン始動装置。
(4)所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
 前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
 前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、夫々開始される第1の所定の期間と第2の所定の期間とを備え、
 前記第1の所定の期間と前記第2の所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて夫々決定され、
 前記第2の所定の期間は、前記第1の所定の期間より長く設定され、
 前記第1の所定の期間が終了する時点から前記第2の所定の期間が終了する時点までの間、前記スタータの駆動を禁止するようにした、
ことを特徴とするエンジン始動装置。
 この発明は、自動車等の車両に搭載されるエンジン始動装置、ひいては自動車等の車両の製造に関する分野に利用することができる。
1 エンジン、2 クランク軸、3 バッテリー、10 エンジン制御ユニット(ECU)、11 スタータ、12 リングギヤ、13 カム角度信号発生部、14 クランク角度信号発生部、15 電磁スイッチ、15a コイル、15b1、15b2 固定接点、15c プランジャ、15d 可動接点、16 モータ、161 ブラシ、17 スタータ出力軸、18 レバー、181 支持部、19 ワンウェイクラッチ、20 ピニオンギヤ、21 第2の回転体、21A 第1の歯部、21B 第2の歯部、22 第2のピックアップ、23 第1の回転体、23A 歯部、23B 第1の欠け歯部、23C 第2の欠け歯部、24 第1のピックアップ、25 減速機構。

Claims (4)

  1.  所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
     前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
     前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、所定の期間だけ前記スタータの駆動を禁止するようにした、
    ことを特徴とするエンジン始動装置。
  2.  前記所定に期間が経過するまでに前記再始動要求が発生したときに、前記次の気筒が上死点を通過したときは前記スタータの駆動の禁止を解除する、
    ことを特徴とする請求項1に記載のエンジン始動装置。
  3.  前記所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて決定され、
     前記判定された時点から前記所定の期間が開始される、
    ことを特徴とする請求項1又は2に記載のエンジン始動装置。
  4.  所定の条件が満たされると複数の気筒を備えたエンジンの燃焼を自動的に停止して前記エンジンを停止させるようにしたアイドリングストップシステムを備え、前記アイドリングストップシステムにより前記エンジンの燃焼が停止されて前記エンジンが惰性回転しているときに前記エンジンの再始動要求が発生した際に、スタータを駆動して前記スタータに設けられたピニオンギヤを前記惰性回転している前記エンジンのリングギヤに噛み合わせ、前記エンジンの再始動を行うようにしたエンジン始動装置であって、
     前記惰性回転しているときのエンジン回転速度とクランク角度位置を検出し、
     前記検出したクランク角度位置が、前記惰性回転しているときの前記エンジンの複数の気筒のうちの何れかの気筒の上死点と前記何れかの気筒の次の気筒の上死点との中間点に存在しているときであって、前記検出したエンジン回転速度が所定の範囲内にあると判定された場合に、夫々開始される第1の所定の期間と第2の所定の期間とを備え、
     前記第1の所定の期間と前記第2の所定の期間は、前記判定された時点に於ける前記エンジン回転速度に基づいて夫々決定され、
     前記第2の所定の期間は、前記第1の所定の期間より長く設定され、
     前記第1の所定の期間が終了する時点から前記第2の所定の期間が終了する時点までの間、前記スタータの駆動を禁止するようにした、
    ことを特徴とするエンジン始動装置。
PCT/JP2014/079318 2014-11-05 2014-11-05 エンジン始動装置 WO2016071968A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480083176.6A CN107076092B (zh) 2014-11-05 2014-11-05 发动机起动装置
JP2016557382A JP6198971B2 (ja) 2014-11-05 2014-11-05 エンジン始動装置
DE112014007137.4T DE112014007137T5 (de) 2014-11-05 2014-11-05 Motoranlassvorrichtung
PCT/JP2014/079318 WO2016071968A1 (ja) 2014-11-05 2014-11-05 エンジン始動装置
US15/513,610 US10240572B2 (en) 2014-11-05 2014-11-05 Engine starting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079318 WO2016071968A1 (ja) 2014-11-05 2014-11-05 エンジン始動装置

Publications (1)

Publication Number Publication Date
WO2016071968A1 true WO2016071968A1 (ja) 2016-05-12

Family

ID=55908723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079318 WO2016071968A1 (ja) 2014-11-05 2014-11-05 エンジン始動装置

Country Status (5)

Country Link
US (1) US10240572B2 (ja)
JP (1) JP6198971B2 (ja)
CN (1) CN107076092B (ja)
DE (1) DE112014007137T5 (ja)
WO (1) WO2016071968A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6333443B1 (ja) * 2017-05-18 2018-05-30 三菱電機株式会社 エンジン始動装置
JP2020505551A (ja) * 2017-01-20 2020-02-20 ヴァレオ エキプマン エレクトリク モトゥール オルタネータスタータの手段により熱エンジンを再始動させるための方法
CN110945233A (zh) * 2017-07-31 2020-03-31 株式会社电装 发动机启动控制装置
WO2022038749A1 (ja) * 2020-08-20 2022-02-24 ヤマハ発動機株式会社 Mt型ストラドルドビークル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159270A1 (ja) * 2018-02-15 2019-08-22 日産自動車株式会社 内燃機関の制御方法及び内燃機関の制御装置
US10724491B2 (en) * 2018-05-01 2020-07-28 GM Global Technology Operations LLC Brushless starter system with pinion pre-engagement control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107527A (ja) * 2005-10-13 2007-04-26 Robert Bosch Gmbh 内燃機関の惰性回転時にスタータのスタータピニオンを内燃機関のリングギヤに噛み合わせるための方法および内燃機関のスタータ制御装置
JP2010031851A (ja) * 2008-07-04 2010-02-12 Toyota Motor Corp 内燃機関の始動装置
WO2013021812A1 (ja) * 2011-08-10 2013-02-14 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
JP5442042B2 (ja) * 2012-01-18 2014-03-12 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
JP2014139419A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp エンジン始動装置およびエンジン始動方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010061084A1 (de) * 2009-12-08 2011-07-21 DENSO CORPORATION, Aichi-pref. System zum Ankurbeln einer internen Verbrennungsmaschine durch in Eingriff bringen von einem Ritzel mit einem Zahnkranz
US8510019B2 (en) * 2010-01-20 2013-08-13 Denso Corporation Control device of automatic engine stop and start
JP5644377B2 (ja) * 2010-10-29 2014-12-24 いすゞ自動車株式会社 エンジンシステム
DE112012006182T5 (de) * 2012-04-03 2014-12-24 Mitsubishi Electric Corporation Vorrichtung zum automatischen Anhalten und Neustarten von Innenverbrennungsmotor
JP6037436B2 (ja) 2012-10-04 2016-12-07 日立オートモティブシステムズ株式会社 エンジン始動装置および始動方法
JP5978904B2 (ja) 2012-10-11 2016-08-24 株式会社デンソー エンジン制御装置
GB2507985B (en) * 2012-11-15 2018-06-13 Ford Global Tech Llc A method for controlling an engine drive belt tensioner system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107527A (ja) * 2005-10-13 2007-04-26 Robert Bosch Gmbh 内燃機関の惰性回転時にスタータのスタータピニオンを内燃機関のリングギヤに噛み合わせるための方法および内燃機関のスタータ制御装置
JP2010031851A (ja) * 2008-07-04 2010-02-12 Toyota Motor Corp 内燃機関の始動装置
WO2013021812A1 (ja) * 2011-08-10 2013-02-14 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
JP5442042B2 (ja) * 2012-01-18 2014-03-12 三菱電機株式会社 エンジン始動装置およびエンジン始動方法
JP2014139419A (ja) * 2013-01-21 2014-07-31 Mitsubishi Electric Corp エンジン始動装置およびエンジン始動方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505551A (ja) * 2017-01-20 2020-02-20 ヴァレオ エキプマン エレクトリク モトゥール オルタネータスタータの手段により熱エンジンを再始動させるための方法
JP6333443B1 (ja) * 2017-05-18 2018-05-30 三菱電機株式会社 エンジン始動装置
JP2018193937A (ja) * 2017-05-18 2018-12-06 三菱電機株式会社 エンジン始動装置
CN108953028A (zh) * 2017-05-18 2018-12-07 三菱电机株式会社 发动机启动装置
CN108953028B (zh) * 2017-05-18 2020-09-01 三菱电机株式会社 发动机启动装置
CN110945233A (zh) * 2017-07-31 2020-03-31 株式会社电装 发动机启动控制装置
CN110945233B (zh) * 2017-07-31 2021-08-24 株式会社电装 发动机启动控制装置
WO2022038749A1 (ja) * 2020-08-20 2022-02-24 ヤマハ発動機株式会社 Mt型ストラドルドビークル
WO2022039252A1 (ja) * 2020-08-20 2022-02-24 ヤマハ発動機株式会社 Mt型ストラドルドビークル
JPWO2022039252A1 (ja) * 2020-08-20 2022-02-24
JP7269445B2 (ja) 2020-08-20 2023-05-08 ヤマハ発動機株式会社 Mt型ストラドルドビークル

Also Published As

Publication number Publication date
CN107076092B (zh) 2018-10-02
CN107076092A (zh) 2017-08-18
DE112014007137T5 (de) 2017-07-27
JPWO2016071968A1 (ja) 2017-04-27
JP6198971B2 (ja) 2017-09-20
US20180230957A1 (en) 2018-08-16
US10240572B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6198971B2 (ja) エンジン始動装置
JP5188627B2 (ja) エンジン始動装置
JP5442042B2 (ja) エンジン始動装置およびエンジン始動方法
US8494758B2 (en) Engine automatic-stop/restart system
US9631596B2 (en) Engine starting device and engine starting method
US9243599B2 (en) Engine starting device
JP6101530B2 (ja) 車載制御装置およびスタータ
CN104976011B (zh) 发动机起动装置
JP5512710B2 (ja) エンジン始動装置およびエンジン始動方法
JP5831546B2 (ja) エンジン始動装置
WO2013042445A1 (ja) エンジンの再始動装置
JP5548102B2 (ja) 車両の制御装置
EP2653713A1 (en) Restart device of vehicular engine and method for controlling same
JP6132931B2 (ja) 車載制御装置
JP2014118890A (ja) エンジン始動装置及びエンジン始動方法
JP6409393B2 (ja) エンジン回転挙動予測装置及びエンジン始動装置
JP5554436B1 (ja) エンジン始動装置
JP2013060887A (ja) 内燃機関のアイドリングストップの制御方法及びアイドリングストップシステム
JP2011157947A (ja) アイドルストップ制御装置
JP2011163223A (ja) アイドルストップ制御装置
JP2015055217A (ja) アイドリングストップ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557382

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15513610

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014007137

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905325

Country of ref document: EP

Kind code of ref document: A1