WO2016070768A1 - 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法 - Google Patents

基于荧光共焦显微技术的光滑大曲率样品测量装置与方法 Download PDF

Info

Publication number
WO2016070768A1
WO2016070768A1 PCT/CN2015/093580 CN2015093580W WO2016070768A1 WO 2016070768 A1 WO2016070768 A1 WO 2016070768A1 CN 2015093580 W CN2015093580 W CN 2015093580W WO 2016070768 A1 WO2016070768 A1 WO 2016070768A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
objective lens
confocal microscopy
coated
fluorescence
Prior art date
Application number
PCT/CN2015/093580
Other languages
English (en)
French (fr)
Inventor
刘俭
谭久彬
刘辰光
张贺
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Publication of WO2016070768A1 publication Critical patent/WO2016070768A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the invention relates to the field of optical precision measurement technology and the method and the method for measuring the surface topography of a sample with smooth large curvature by using confocal microscopy technology.
  • the present invention discloses a smooth large curvature sample measuring device and method based on fluorescence confocal microscopy technology, which can improve measurement accuracy and improve measurement efficiency, compared with the prior art. It also reduces the cost of measurement.
  • a smooth and large curvature sample measuring device based on fluorescent confocal microscopy technology comprising:
  • Lighting module, detection module and coating sample
  • the illumination device is sequentially arranged according to the direction of illumination light: a laser, a conductive fiber, a collimating mirror, a pupil, a dichroic mirror, an objective lens, and a three-dimensional micro-displacement stage;
  • the detecting module according to the signal light propagation direction is: an objective lens, a dichroic mirror, a filter, a collecting lens, a pinhole and a photodetector;
  • the illumination module and the detection module share an objective lens and a dichroic mirror;
  • the coated sample is a sample to be tested on which a phosphor film is surface-plated;
  • the laser emits laser light, forms parallel light after passing through the conductive fiber and the collimating mirror, and then passes through the dichroic mirror reflection and the objective lens to transmit, and forms a focused spot on the coated sample, and the focused spot excites the sample.
  • the fluorescent film on the surface emits fluorescence
  • the fluorescence excited on the surface of the coated sample passes through the objective lens, the dichroic mirror, the filter, the collecting lens and the pinhole, and is collected by the photodetector.
  • the above-mentioned smooth large curvature sample measuring device based on the fluorescence confocal microscopy technology, wherein the surface of the coated sample is coated with an organic fluorescent substance by a vapor deposition method to form a fluorescent film, and the fluorescent film has a thickness of between 0.02 ⁇ m and 2 ⁇ m.
  • the film has a solubility in water or an organic solvent such as alcohol or acetone of more than 10 g/100 g.
  • the above-mentioned smooth large curvature sample measuring device based on fluorescence confocal microscopy technology has a laser emission wavelength range of 200 nm to 1200 nm, and the illumination light has an optical power of less than 1 W after passing through the objective lens.
  • the above-described smooth large curvature sample measuring device based on fluorescent confocal microscopy technology is located on the back focal plane of the collecting lens.
  • a method for measuring a smooth large curvature sample based on a fluorescence confocal microscopy technique implemented on the above-described smooth large curvature sample measuring device based on fluorescent confocal microscopy comprising the following steps:
  • Step a forming an organic fluorescent film having a thickness between 0.02 ⁇ m and 2 ⁇ m on the surface of the sample to be tested by evaporation, so that the sample to be tested becomes a coated sample;
  • Step b The laser emits excitation light, and forms parallel light after passing through the conducting fiber and the collimating objective lens.
  • the parallel beam is reflected by the dichroic mirror and transmitted by the objective lens to form a focused spot on the coated sample, and the focused spot emits fluorescence on the surface of the sample.
  • the film emits fluorescence;
  • Step c the fluorescence excited by the fluorescent film is collected by the photodetector, and the surface position of the coated sample is determined by the position of the apex of the axial response curve;
  • Step d the three-dimensional micro-displacement stage drives the three-dimensional movement of the coating sample to form a three-dimensional scanning image
  • Step e Dissolve the coated sample in water or an organic solvent such as alcohol or acetone, clean the film, and restore the state of the sample to be tested before coating.
  • the present invention can measure the surface morphology of a smooth large-area mirror object and a mirror-like object in a full-scale manner. Compared with the existing method, since mechanical scanning and multi-angle detector technology are not required, mechanical scanning and multi-angle detection can be avoided. The uncertainty brought by the technology improves the measurement accuracy; since the steps of data fusion are saved, the measurement efficiency can be improved; and the mechanical scanning device or the multi-detector is omitted, thereby reducing the cost.
  • FIG. 1 is a schematic view showing the structure of a smooth large curvature sample measuring device based on the fluorescence confocal microscopy technique of the present invention.
  • FIG. 2 is a flow chart of a method for measuring a sample of smooth large curvature based on the fluorescence confocal microscopy technique of the present invention.
  • 1 laser 1 laser, 2 conducting fiber, 3 collimating mirror, 4 diaphragm, 5 dichroic mirror, 6 objective lens, 7 coated sample, 8 three-dimensional micro-displacement stage, 9 filter, 10 collecting lens, 11 Pinhole, 12 photodetector.
  • a smooth large curvature sample measuring device based on fluorescence confocal microscopy is provided for surface topography of a sample having a smooth large curvature.
  • FIG. 1 is a schematic diagram of an embodiment of a smooth large curvature sample measuring device based on a fluorescent confocal microscopy technique of the present invention.
  • a smooth large curvature sample measuring device based on fluorescent confocal microscopy technology includes: a lighting module, a detecting module, and a coated sample.
  • the illumination device follows the direction of illumination light propagation: laser 1, conductive fiber 2, collimator lens 3, aperture 4, dichroic mirror 5, objective lens 6 and three-dimensional micro-displacement stage 8; detection module according to signal light propagation direction In order: the objective lens 6, the dichroic mirror 5, the filter 9, the collecting lens 10, the pinhole 11, and the photodetector 12.
  • the illumination module and the detection module share the objective lens 6 and the dichroic mirror 5.
  • the coated sample 7 is a sample to be tested whose surface is plated with a fluorescent substance film.
  • the laser 1 emits laser light, and after forming the parallel light through the conductive fiber 2 and the collimating mirror 3, and after being reflected by the dichroic mirror 5 and transmitted by the objective lens 6, a focused spot is formed on the coated sample 7, and the focused spot excites the surface of the sample.
  • the fluorescent film emits fluorescence; the fluorescence excited on the surface of the coated sample 7 passes through the objective lens 6, the dichroic mirror 5, the filter 9, the collecting lens 10, and the pinhole 11, and is collected by the photodetector 12.
  • the surface of the coated sample 7 is coated with a layer of organic fluorescent substance to form a fluorescent film by evaporation.
  • the thickness of the fluorescent film is between 0.02 ⁇ m and 2 ⁇ m, and the solubility of the film in water or an organic solvent such as alcohol or acetone is more than 10 g. /100g.
  • the laser emits in the wavelength range of 200 nm to 1200 nm, and the optical power of the illumination light after passing through the objective lens is less than 1 W.
  • the pinhole 11 is located on the back focal plane of the collecting lens 10.
  • a method for measuring a smooth large curvature sample based on a fluorescence confocal technique for surface topography of a sample having a smooth large curvature is provided.
  • Step a forming an organic fluorescent film having a thickness of between 0.02 ⁇ m and 2 ⁇ m on the surface of the sample to be tested by evaporation, so that the sample to be tested becomes the coated sample 7;
  • Step b the laser 1 emits excitation light, and forms parallel light after passing through the conductive fiber 2 and the collimating objective lens 3.
  • the parallel beam is reflected by the dichroic mirror 5 and transmitted by the objective lens 6 to form a focused spot on the coated sample 7, the focusing
  • the light spot excites the fluorescent film on the surface of the sample to emit fluorescence;
  • Step c the fluorescence excited by the fluorescent film is collected by the photodetector 12, and the surface position of the coated sample is determined by the position of the apex of the axial response curve;
  • Step d the three-dimensional micro-displacement stage 8 drives the coating sample 7 to move three-dimensionally to form a three-dimensional scanning image;
  • Step e Dissolve the coating sample 7 in water or an organic solvent such as alcohol or acetone, wash the film, and restore the state before the sample to be tested is coated.

Abstract

一种基于荧光共焦显微技术的光滑大曲率样品测量装置,包括照明模块、探测模块和镀膜样品(7),照明模块中激光器(1)发出激光,经过传导光纤(2)和准直镜(3)之后形成平行光,再经过二向色镜(5)反射和物镜(6)透射后,在镀膜样品(7)上形成聚焦光斑,聚焦光斑激发样品表面的荧光膜发出荧光;镀膜样品(7)表面激发的荧光依次经过物镜(6)、二向色镜(5)、滤光片(9)、收集透镜(10)和针孔(11)后,被光电探测器(12)收集。还公开了一种基于荧光共焦显微技术的光滑大曲率样品测量方法。该装置和方法可提高测量精度和测量效率,并降低测量成本。

Description

基于荧光共焦显微技术的光滑大曲率样品测量装置与方法 技术领域
基于荧光共焦显微技术的光滑大曲率样品测量装置与方法光学精密测量技术领域,具体涉及一种利用共焦显微技术测量光滑大曲率样品表面形貌的装置和方法。
背景技术
随着精密加工制造行业对测量精度要求的提高,光滑大区率镜面物体和类镜面物体的测量受到越来越多的重视。对此类样品采用光学三维传感方法进行测量时,根据反射定理,只能在于入射光线成特殊夹角方向才能接收到较强光信号,而由于收集物镜口径的限制,造成测量分辨率下降,在不增加自由度的情况下无法完成对此类样品全貌的测量。将传统共焦显微技术、干涉测量技术、条纹投影技术配合机械扫描或多角度探测技术,可以实现对此类样品全貌的测量,然而,机械扫描与多角度探测器引入数据融合带来的不确定度,使得测量无法准确高效完成。
发明内容
为了解决上述问题,本发明公开了一种基于荧光共焦显微技术的光滑大曲率样品测量装置与方法,该装置与方法同现有技术相比,不仅可以提高测量精度,而且可以提高测量效率,同时还可以降低测量成本。
本发明的目的是这样实现的:
基于荧光共焦显微技术的光滑大曲率样品测量装置,包括:
照明模块、探测模块和镀膜样品:
所述的照明装置按照照明光传播方向依次为:激光器、传导光纤、准直镜、光阑、二相色镜、物镜和三维微位移载物台;
所述的探测模块按照信号光传播方向依次为:物镜、二向色镜、滤光片、收集透镜、针孔和光电探测器;
所述的照明模块、探测模块共用物镜与二向色镜;
所述的镀膜样品为表面镀了荧光物质薄膜的待测样品;
所述的照明模块中激光器发出激光,经过传导光纤和准直镜之后形成平行光,再经过二向色镜反射和物镜透射后,在镀膜样品上形成聚焦光斑,所述的聚焦光斑激发样品 表面的荧光膜发出荧光;
所述镀膜样品表面激发出的荧光依次经过物镜、二向色镜、滤光片、收集透镜和针孔后,被光电探测器收集。
上述基于荧光共焦显微技术的光滑大曲率样品测量装置,所述的镀膜样品表面通过蒸镀的方法镀上一层有机荧光物质形成荧光膜,所述的荧光膜厚度在0.02μm-2μm之间,膜在水或酒精、丙酮等有机溶剂中的溶解度大于10g/100g。
上述基于荧光共焦显微技术的光滑大曲率样品测量装置,激光器发射波长范围200nm-1200nm,照明光经过物镜后光功率小于1W。
上述基于荧光共焦显微技术的光滑大曲率样品测量装置,所述的针孔位于收集透镜的后焦面上。
在上述基于荧光共焦显微技术的光滑大曲率样品测量装置上实现的基于荧光共焦显微技术的光滑大曲率样品测量方法,包括以下步骤:
步骤a、通过蒸镀的方法在待测样品表面形成一层厚度在0.02μm-2μm之间的有机荧光膜,使待测样品成为镀膜样品;
步骤b、激光器发出激发光,经过传导光纤和准直物镜之后形成平行光,平行光束经过二向色镜反射和物镜透射后在镀膜样品上形成聚焦光斑,所述的聚焦光斑激发样品表面的荧光膜发出荧光;
步骤c、荧光膜激发出的荧光经过光电探测器收集后,通过轴向响应曲线顶点位置来确定镀膜样品表面位置;
步骤d、三维微位移载物台带动镀膜样品三维移动,形成三维扫描成像;
步骤e、将镀膜样品溶于水或酒精、丙酮等有机溶剂,清洗膜,恢复待测样品镀膜前的状态。
有益效果:本发明能够全貌测量光滑大区率镜面物体和类镜面物体表面形貌,同现有方法相比,由于无需结合机械扫描与多角度探测器技术,因此可以避免机械扫描与多角度探测器技术带来的不确定度,提高测量精度;由于节省了数据融合的步骤,因此可以提高测量效率;由于省略了机械扫描装置或多探测器,因此又降低了成本。
附图说明
图1是本发明基于荧光共焦显微技术的光滑大曲率样品测量装置结构示意图。
图2是本发明基于荧光共焦显微技术的光滑大曲率样品测量方法流程图。
图中:1激光器、2传导光纤、3准直镜、4光阑、5二相色镜、6物镜、7镀膜样品、8三维微位移载物台、9滤光片、10收集透镜、11针孔、12光电探测器。
具体实施方式
根据本发明的一具体实施例,提供一种基于荧光共焦显微技术的光滑大曲率样品测量装置,用于光滑大曲率样品的表面形貌。
请参照图1,图1为本发明的基于荧光共焦显微技术的光滑大曲率样品测量装置的实施例示意图。如图1所示,基于荧光共焦显微技术的光滑大曲率样品测量装置,包括:照明模块、探测模块和镀膜样品。照明装置按照照明光传播方向依次为:激光器1、传导光纤2、准直镜3、光阑4、二相色镜5、物镜6和三维微位移载物台8;探测模块按照信号光传播方向依次为:物镜6、二向色镜5、滤光片9、收集透镜10、针孔11和光电探测器12。照明模块、探测模块共用物镜6与二向色镜5。镀膜样品7为表面镀了荧光物质薄膜的待测样品。
照明模块中激光器1发出激光,经过传导光纤2和准直镜3之后形成平行光,再经过二向色镜5反射和物镜6透射后,在镀膜样品7上形成聚焦光斑,聚焦光斑激发样品表面的荧光膜发出荧光;镀膜样品7表面激发出的荧光依次经过物镜6、二向色镜5、滤光片9、收集透镜10和针孔11后,被光电探测器12收集。
其中镀膜样品7表面通过蒸镀的方法镀上一层有机荧光物质形成荧光膜,所述的荧光膜厚度在0.02μm-2μm之间,膜在水或酒精、丙酮等有机溶剂中的溶解度大于10g/100g。激光器发射波长范围200nm-1200nm,照明光经过物镜后光功率小于1W。针孔11位于收集透镜10的后焦面上。
根据本发明的一具体实施例,提供一种基于荧光共焦技术的光滑大曲率样品测量方法,用于光滑大曲率样品的表面形貌。
该实施例包括以下步骤:
步骤a、通过蒸镀的方法在待测样品表面形成一层厚度在0.02μm-2μm之间的有机荧光膜,使待测样品成为镀膜样品7;
步骤b、激光器1发出激发光,经过传导光纤2和准直物镜3之后形成平行光,平行光束经过二向色镜5反射和物镜6透射后在镀膜样品7上形成聚焦光斑,所述的聚焦光斑激发样品表面的荧光膜发出荧光;
步骤c、荧光膜激发出的荧光经过光电探测器12收集后,通过轴向响应曲线顶点位置来确定镀膜样品表面位置;
步骤d、三维微位移载物台8带动镀膜样品7三维移动,形成三维扫描成像;
步骤e、将镀膜样品7溶于水或酒精、丙酮等有机溶剂,清洗膜,恢复待测样品镀膜前的状态。
本发明不局限于上述最佳实施方式,任何人应该得知在本发明的启示下作出的结构变化或方法改进,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (5)

  1. 基于荧光共焦显微技术的光滑大曲率样品测量装置,其特征在于,包括:
    照明模块、探测模块和镀膜样品:
    所述的照明装置按照照明光传播方向依次为:激光器(1)、传导光纤(2)、准直镜(3)、光阑(4)、二相色镜(5)、物镜(6)和三维微位移载物台(8);
    所述的探测模块按照信号光传播方向依次为:物镜(6)、二向色镜(5)、滤光片(9)、收集透镜(10)、针孔(11)和光电探测器(12);
    所述的照明模块、探测模块共用物镜(6)与二向色镜(5);
    所述的镀膜样品(7)为表面镀了荧光物质薄膜的待测样品;
    所述的照明模块中激光器(1)发出激光,经过传导光纤(2)和准直镜(3)之后形成平行光,再经过二向色镜(5)反射和物镜(6)透射后,在镀膜样品(7)上形成聚焦光斑,所述的聚焦光斑激发样品表面的荧光膜发出荧光;
    所述镀膜样品(7)表面激发出的荧光依次经过物镜(6)、二向色镜(5)、滤光片(9)、收集透镜(10)和针孔(11)后,被光电探测器(12)收集。
  2. 根据权利要求1所述的基于荧光共焦显微技术的光滑大曲率样品测量装置,其特征在于,所述的镀膜样品(7)表面通过蒸镀的方法镀上一层有机荧光物质形成荧光膜,所述的荧光膜厚度在0.02μm-2μm之间,膜在水或酒精、丙酮等有机溶剂中的溶解度大于10g/100g。
  3. 根据权利要求1所述的基于荧光共焦显微技术的光滑大曲率样品测量装置,其特征在于,激光器发射波长范围200nm-1200nm,照明光经过物镜后光功率小于1W。
  4. 根据权利要求书1所述的基于荧光共焦显微技术的光滑大曲率样品测量装置,其特征在于,所述的针孔(11)位于收集透镜(10)的后焦面上。
  5. 在权利要求1所述的基于荧光共焦显微技术的光滑大曲率样品测量装置上实现的基于荧光共焦显微技术的光滑大曲率样品测量方法,其特征在于,包括以下步骤:
    步骤a、通过蒸镀的方法在待测样品表面形成一层厚度在0.02μm-2μm之间的有机荧光膜,使待测样品成为镀膜样品(7);
    步骤b、激光器(1)发出激发光,经过传导光纤(2)和准直物镜(3)之后形成 平行光,平行光束经过二向色镜(5)反射和物镜(6)透射后在镀膜样品(7)上形成聚焦光斑,所述的聚焦光斑激发样品表面的荧光膜发出荧光;
    步骤c、荧光膜激发出的荧光经过光电探测器(12)收集后,通过轴向响应曲线顶点位置来确定镀膜样品表面位置;
    步骤d、三维微位移载物台(8)带动镀膜样品(7)三维移动,形成三维扫描成像;
    步骤e、将镀膜样品(7)溶于水或酒精、丙酮等有机溶剂,清洗膜,恢复待测样品镀膜前的状态。
PCT/CN2015/093580 2014-11-05 2015-11-02 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法 WO2016070768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410617221.3A CN104296687A (zh) 2014-11-05 2014-11-05 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN201410617221.3 2014-11-05

Publications (1)

Publication Number Publication Date
WO2016070768A1 true WO2016070768A1 (zh) 2016-05-12

Family

ID=52316523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093580 WO2016070768A1 (zh) 2014-11-05 2015-11-02 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法

Country Status (2)

Country Link
CN (1) CN104296687A (zh)
WO (1) WO2016070768A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN105486667A (zh) * 2015-07-01 2016-04-13 上海睿钰生物科技有限公司 集成式荧光激发光源装置
CN106403843A (zh) * 2016-12-09 2017-02-15 哈尔滨工业大学 基于共焦显微技术的大口径高曲率光学元件的轮廓扫描测量装置及方法
CN106705881A (zh) * 2016-12-12 2017-05-24 哈尔滨工业大学 基于共聚焦显微原理的大口径光学元件母线轮廓测量方法
CN106767510A (zh) * 2016-12-27 2017-05-31 哈尔滨工业大学 一种大口径自由曲面样品表面轮廓的测量装置与方法
CN106908017B (zh) * 2017-02-24 2019-03-29 哈尔滨工业大学 基于金属银增强荧光的自由曲面测量装置及其测量方法
CN107036559A (zh) * 2017-05-31 2017-08-11 天津大学 一种曲面斜率的测量方法
CN109458950A (zh) * 2018-12-07 2019-03-12 哈尔滨工业大学 一种基于中介层散射的针孔随动共焦显微装置和方法
CN109443241A (zh) * 2018-12-07 2019-03-08 哈尔滨工业大学 一种基于音叉驱动的高速轴向扫描共焦显微测量装置和方法
CN109443240A (zh) * 2018-12-07 2019-03-08 哈尔滨工业大学 一种基于中介层散射的激光三角光测量装置和方法
CN109884020B (zh) * 2018-12-19 2021-07-09 长春理工大学 利用共聚焦激光扫描显微系统对微纳米级介质波导或台阶型结构侧壁角的无损测量方法
CN110044821A (zh) * 2019-05-22 2019-07-23 四川朴澜医疗科技有限公司 一种用于微弱荧光信号检测的光路结构、光学分析装置
CN113189105A (zh) * 2021-05-19 2021-07-30 哈尔滨工业大学 基于梯度折射率透镜的微型化工业样品检测装置和方法
CN113189076A (zh) * 2021-05-19 2021-07-30 哈尔滨工业大学 基于梯度折射率透镜的微型化荧光样品检测装置和方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093903A (ja) * 1983-10-28 1985-05-25 Hitachi Ltd ホトレジスト膜の形状確認・寸法測定装置
US6529271B1 (en) * 1998-12-18 2003-03-04 Leica Microsystems Heidelberg Gmbh Method of finding, recording and evaluating object structures
CN102768015A (zh) * 2012-07-05 2012-11-07 哈尔滨工业大学 荧光响应随动针孔显微共焦测量装置
CN103090787A (zh) * 2013-01-29 2013-05-08 哈尔滨工业大学 基于被测表面荧光激发的共焦显微测量装置
CN103115583A (zh) * 2013-01-29 2013-05-22 哈尔滨工业大学 基于受激辐射的Mirau荧光干涉显微测量装置
CN104279984A (zh) * 2014-11-05 2015-01-14 哈尔滨工业大学 基于双光子方法测量光滑自由曲面样品装置和方法
CN104296686A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438855B2 (ja) * 1997-01-23 2003-08-18 横河電機株式会社 共焦点装置
EP1548481A4 (en) * 2002-09-30 2006-11-22 Japan Science & Tech Agency CONFOCAL MICROSCOPE, FLUORESCENCE MEASUREMENT METHOD, AND POLARIZED LIGHT MEASURING METHOD USING A CONFOCAL MICROSCOPE
JP4677728B2 (ja) * 2004-03-22 2011-04-27 株式会社ニコン 共焦点顕微鏡及び共焦点顕微鏡システム
CN102735670B (zh) * 2012-06-29 2014-10-29 浙江大学 一种基于双针孔的超分辨显微方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093903A (ja) * 1983-10-28 1985-05-25 Hitachi Ltd ホトレジスト膜の形状確認・寸法測定装置
US6529271B1 (en) * 1998-12-18 2003-03-04 Leica Microsystems Heidelberg Gmbh Method of finding, recording and evaluating object structures
CN102768015A (zh) * 2012-07-05 2012-11-07 哈尔滨工业大学 荧光响应随动针孔显微共焦测量装置
CN103090787A (zh) * 2013-01-29 2013-05-08 哈尔滨工业大学 基于被测表面荧光激发的共焦显微测量装置
CN103115583A (zh) * 2013-01-29 2013-05-22 哈尔滨工业大学 基于受激辐射的Mirau荧光干涉显微测量装置
CN104279984A (zh) * 2014-11-05 2015-01-14 哈尔滨工业大学 基于双光子方法测量光滑自由曲面样品装置和方法
CN104296686A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法

Also Published As

Publication number Publication date
CN104296687A (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2016070768A1 (zh) 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN109477955A (zh) 干涉散射显微镜
CN104296686A (zh) 基于荧光差动共焦技术的光滑大曲率样品测量装置与方法
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
CN107407791B (zh) 用于光学仪器的连续异步自动聚焦的系统和方法
US8587786B2 (en) Method for high-resolution detection of nanoparticles on two-dimensional detector surfaces
TWI738788B (zh) 使用奇點光束之暗場晶圓奈米缺陷檢驗系統
CN106403843A (zh) 基于共焦显微技术的大口径高曲率光学元件的轮廓扫描测量装置及方法
WO2013091584A1 (zh) 一种检测基质内缺陷的方法及装置
JP2012164801A (ja) 検査装置及び検査方法
CN105675615B (zh) 一种高速大范围高分辨率成像系统
JP5592108B2 (ja) 干渉共焦点顕微鏡および光源撮像方法
US20140218794A1 (en) Confocal Fluorescence Microscope
CN202351017U (zh) 一种基于显微成像的聚合物平面波导光学参数测量仪
JP2010237183A (ja) 低コヒーレンス干渉計及び光学顕微鏡
WO2021143525A1 (zh) 一种横向差动暗场共焦显微测量装置及其方法
CN103411555A (zh) 基于线阵角谱照明的并行共焦环形微结构测量装置与方法
TW201237357A (en) One-dimensional laser-scanning profilometer and method
CN205352958U (zh) 一种高速大范围高分辨率成像系统
CN102121819B (zh) 一种纳米分辨全反射差分微位移测量的方法和装置
JP6142996B2 (ja) ビア形状測定装置及びビア検査装置
CN109443240A (zh) 一种基于中介层散射的激光三角光测量装置和方法
CN103411558A (zh) 一种角谱扫描照明阵列式共焦微结构测量装置与方法
CN111239155B (zh) 一种轴向差动暗场共焦显微测量装置及其方法
TWI495841B (zh) High - resolution Reflective Three - dimensional Photoelectric Microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856546

Country of ref document: EP

Kind code of ref document: A1