TWI738788B - 使用奇點光束之暗場晶圓奈米缺陷檢驗系統 - Google Patents

使用奇點光束之暗場晶圓奈米缺陷檢驗系統 Download PDF

Info

Publication number
TWI738788B
TWI738788B TW106118010A TW106118010A TWI738788B TW I738788 B TWI738788 B TW I738788B TW 106118010 A TW106118010 A TW 106118010A TW 106118010 A TW106118010 A TW 106118010A TW I738788 B TWI738788 B TW I738788B
Authority
TW
Taiwan
Prior art keywords
substrate
laser beam
inspecting
patent application
nano
Prior art date
Application number
TW106118010A
Other languages
English (en)
Other versions
TW201807400A (zh
Inventor
新康 田
慶麟 孟
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201807400A publication Critical patent/TW201807400A/zh
Application granted granted Critical
Publication of TWI738788B publication Critical patent/TWI738788B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4735Solid samples, e.g. paper, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8822Dark field detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Abstract

提供檢驗基板之方法、系統、及設備。該方法包含:以一奇點雷射光束(singular laser beam)照射該基板,該奇點雷射光束在該基板上形成一照明點並在該基板之表面上形成一亮條紋,該亮條紋在該照明點的至少一部分上延伸;及藉由一光學偵測系統而偵測來自存在於該基板上且在該照明點內之複數奈米缺陷的散射光。

Description

使用奇點光束之暗場晶圓奈米缺陷檢驗系統
本申請案主張於2016年6月2日提申的美國臨時專利申請案第62/344,575號(發明名稱為「DARK FIELD WAFER NANO-DEFECT INSPECTION SYSTEM WITH SINGULAR BEAMS」)之優先權,其全部內容係藉由參照而納入本文中。
本揭露內容係關於光學晶圓缺陷檢驗系統及相關方法。光學晶圓檢驗方法可大致分為兩類,即明場法及暗場法。本文中描述的為暗場法。
晶圓上之奈米缺陷的光學偵測為非常具有挑戰性的課題。研究人員一直在嘗試許多不同的方法來提高缺陷的信號對雜訊比(SNR,signal to noise ratio)並提高輸出量,以在製造設定中使尺寸小於20nm的缺陷於偵測工具上得以偵測。這些方法包含使用短波長的光照明、不同的偏光狀態、更強的光源、不同的入射角(AOI,angle of incidence)、使用高品質的成像子系統、光圈塑形、使用低雜訊感測器等。
以上「先前技術」的敘述係為了概略呈現本揭露內容的背景。在本「先前技術」段落中所描述的範圍內之發明人的成果、以及在申請時可能未以其他方式認定為先前技術的描述之態樣,並未明示或暗示地被承認為是相對於本發明的先前技術。
本發明之態樣包含一種檢驗基板的方法,該方法包含:以一奇點雷射光束(singular laser beam)照射該基板,該奇點雷射光束在該基板上形成一照明點並在該基板之表面上形成一亮條紋,該亮條紋在該照明點的至少一部分上延伸;及藉由一光學偵測系統而偵測來自存在於該基板上且在該照明點內之複數奈米缺陷的散射光。
本發明之另一態樣包含一種檢驗基板的系統。該系統包含:一基板載台,該基板載台係用以接收該基板;一雷射光源;照明光學元件,該照明光學元件係用以將來自該雷射光源的光引導至該基板之表面,其中該照明光學元件係用以形成一奇點雷射光束用於照射該基板;及一光學偵測系統,該光學偵測系統係用以藉由偵測來自該基板上之照射到的複數奈米缺陷的散射光而偵測照射到的該等奈米缺陷。
本發明之再另一態樣包含一種檢驗基板的設備。該設備包含:一照明系統,該照明系統係用以從一雷射光源形成一奇點雷射光束,並將該奇點雷射光束引導至該基板;及一光學偵測系統,該光學偵測系統係用以藉由偵測來自該基板上之照射到的複數奈米缺陷的散射光而偵測照射到的該等奈米缺陷。
已藉由概略介紹的方式提供以上段落,且以上段落並非意圖限制以下申請專利範圍之範疇。參照以下配合隨附圖式所做出之詳細描述,將可最好地理解所描述之實施例與進一步的優點。
現在參照圖式,其中類似的元件符號指明了遍及若干視圖的相同或對應的部件,以下敘述係關於用於基板(換言之,晶圓)檢驗的檢驗系統、感測器、及相關方法。該檢驗系統為一暗場系統,其中不收集來自基板的鏡反射光(specular reflection light),且僅來自缺陷的散射光透過成像路徑而被偵測器捕獲。整篇說明書中提及「一個實施例」或「一實施例」係指,關於該實施例而敘述的特定特徵、結構、材料、或特性係包含於至少一實施例中,但並不表示該特定特徵、結構、材料、或特性存在於每個實施例中。因此,遍及本說明書各處許多地方中的用語「在一個實施例中」之出現未必指涉相同的實施例。再者,在一或更多實施例中,可以任何合適的方式結合特定特徵、結構、材料、或特性。吾人須注意,由於本文中使用相似編號之元件符號來指示敘述及附圖中的類似物件,因此敘述中所使用之編號的元件符號可意指於一或更多先前及/或後續附圖中所出現之相似編號的元件符號。
根據一範例,圖1為檢驗系統100之側視示意圖。檢驗系統100包含照明系統102、及成像系統104。檢驗系統100包含了用以接收基板108(例如,半導體晶圓、積體電路)的載台106。透過載台106及/或整個光學系統(換言之,照明系統102及成像系統104)之移動,基板奈米缺陷檢驗係藉由使成像系統104的視場(FOV)掃描跨越整個基板而完成。載台106可包含用以固定基板108的卡盤(例如,靜電卡盤、真空卡盤)。載台106可為一精密載台,該精密載台可由控制器110加以控制以使一入射光束掃描跨越整個基板108。在一實行例中,受檢驗之基板108係由裝設在空氣軸承載台上的真空銷式卡盤所固持。該空氣軸承載台容許基板108之移動,以將一照明點定位於基板108上。控制器110可為一通用電腦。
照明系統102係配置成以可變的入射角(AOI)將至少一奇點雷射光束(singular laser beam)引導至基板108。奇點光束係從習知雷射來源而基於特殊機構所產生(如本文中稍後所述)。奇點光束係意指高斯-拉格爾光束(Gauss-Laguerre beam)的修正形式、或高斯-拉格爾光束之組合。以奇點光束進行之照明增強了從基板108之表面上的奈米缺陷、或從嵌入於形成在基板108上的層中之奈米缺陷散射的光信號(如以下進一步描述)。此外,相較於相同功率的高斯光束,奇點光束在基板表面的至少一部分上提供了更高的照明強度。
照明系統102可包含光源112。光源112可為一或更多雷射光源,該一或更多雷射光源可具有在光譜的一或更多部分(例如,極紫外(EUV)、深紫外(DUV)、紫外(UV)及可見光)中的不同波長。奇點雷射光束的波長係可選擇性切換的。在EUV、DUV、UV、及可見光波長範圍之間切換/選擇照明波長的能力提供了一方式來避免檢驗期間過量的高能量光子所導致之暴露於DUV或UV光引起的基板層損傷。在一實行例中,雷射來源可為具有266nm波長(換言之,四次諧波輸出)的釹釔鋁石榴子石(Nd:YAG)雷射、或具有355nm波長(換言之,三次諧波輸出)的Nd:YAG雷射。
奇點雷射光束具有線性偏振狀態,其可旋轉以在基板108的表面構成s-或p-照明。在一實行例中,奇點雷射光束可具有圓偏振。可使用可切換的四分之一波片來使線性偏振轉換至圓偏振。照明光束的入射角係基於應用方式需要而加以配置。AOI可從接近垂直的入射角改變成掠射的入射角。換言之,AOI及偏振狀態係加以修改,以根據所檢驗的基板108之類型而將信號雜訊比(SNR)最大化。奇點雷射光束的AOI可為從約1°至約90 °。在一實施例中,奇點雷射光束的AOI係在約5°至約85°的範圍內。照明系統102包含照明光學元件126。照明光學元件126可包含一或更多鏡片,該一或更多鏡片係用以將奇點光束聚焦至基板108上。來自照明光學元件126的照明點尺寸可在從2μm至10μm之範圍內 。該一或更多鏡片可具有50mm的有效焦距(EFL)。照明光學元件126可包含具有3.7倍〜27.4倍之倍率的擴束器。為了為照明光束提供可調整的角度,可將照明系統102設置於機械式載台上。此外,照明系統102可包含用以調諧入射角的電光調變器。
在一實施例中,照明系統102係用以產生分別來自基板108之中心的左側及右側的二照明路徑。在兩個路徑中的光束可為相同的。
藉由使用成像系統104而建立垂直於基板表面的一精密成像路徑。成像系統104可包含物鏡116、可構形成像光圈(configurable imaging aperture) 118、中繼光學元件120、及偵測器陣列122。物鏡116可為不具有色差的反射類型、或在多個波長具有色差校正的透射類型。在一實行例中,將物鏡116最佳化以使在光的至少二不同波長之色差最小化。物鏡116係用以偵測來自偵測區域114的光。可構形成像光圈118可採取不同的形狀以使缺陷信號最大化並阻擋不想要的光到達偵測器陣列122。中繼光學元件120可包含鏡片、補償器(compensator)、及帶通濾波器(例如,帶通濾波器128)之群組。中繼光學元件120係用以修改倍率及矯正殘餘的像差以在偵測器陣列122產生高品質的影像。帶通濾波器128的光波長通帶係加以選擇,以阻擋來自基板108之干擾的光放射。帶通濾波器有助於防止螢光到達偵測器陣列122。成像系統104可包含高速自動對焦系統,用以在偵測來自基板108上之奈米缺陷的散射光時保持聚焦。換言之,自動對焦系統於基板掃描期間使得成像系統104之FOV中的區域保持聚焦。成像系統104可具有大的數值光圈(NA,numerical aperture)。例如,成像系統104可具有0.6的NA。成像系統之範例性實施例係顯示於圖10及圖11中。
在檢驗系統100中使用具有超低雜訊、及對弱光信號具高靈敏度的偵測器陣列122以增加整體系統輸出量。例如,可使用光電倍增管(PMT)陣列。在一實行例中,偵測器陣列122可為時延積分(TDI)電荷耦合元件(CCD)陣列。光信號於偵測器陣列122被轉換成光電信號並接著放大。在一實施例中,可使用單一偵測器陣列122。
接下來,將偵測到的信號發送至影像電腦124,以進行信號處理並判定在成像系統104的視場內是否發生缺陷。影像電腦124可對從照明點之散射光獲取的光信號進行處理。影像電腦124可為一通用電腦。
在一實行例中,檢驗系統100可包含一淨化室,該淨化室(purge chamber)係用以為基板108提供受控的氛圍。例如,當使用在DUV範圍中之波長時,可以氮氣淨化該淨化室以保護基板108。
檢驗系統100中的奈米粒子(或其他奈米缺陷)的偵測靈敏度係直接與粒子(或缺陷)的散射光之強度相關。由於粒子(或缺陷)係遠小於光波長,所以可根據瑞利散射理論而計算散射光的強度。散射光的強度可表示為:
Figure 02_image001
Figure 02_image003
(1) 其中I 為在缺陷上的照明光之強度,λ為光的波長。
當準直的雷射光束以傾斜入射角照射基板108的表面時,基板108之表面上方產生駐波(由於直接照明的波前與來自基板108的反射重疊)。若照明係使用準直的高斯光束,則產生的駐波具有如圖2A中所示之輪廓,其中建設性干涉(亮條紋)及破壞性干涉(暗條紋)發生於基板108與物鏡116之間的三角形區域中。由於在基板108表面的相位偏移,駐波具有鎖定在基板108之表面的暗條紋。
條紋區域代表了與基板108之表面鎖相的駐波圖案。對於s偏振而言 ,在反射上存在著180°的相位偏移,因此基板108的表面一般位於第一暗區中。條紋間距可使用以下公式來計算:
Figure 02_image005
(2) 其中h 為條紋間距,θ為入射角,λ為照明光束的波長。表面駐波的振幅可表示為:
Figure 02_image007
(3) 其中x 為與基板表面的距離,且I t = 4I i
圖2B繪示了在基板表面上方的駐波,該駐波係由具有平坦波前的355nm準直高斯光束所產生。圖3繪示了在基板108附近的駐波之放大視圖。基板表面的光強度非常弱(換言之,接近於零)。若奈米粒子302(或缺陷)係位於基板表面上,則照射在奈米粒子302上的光非常弱且因此來自奈米粒子302的散射光為低的。圖2A及圖3中的x軸及y軸之單位為μm。
若缺陷係位於該三角形區域內且該缺陷為大(換言之,高)到足以與亮條紋互動,則缺陷所導致的散射光更可能透過成像路徑而被偵測器陣列122捕獲。換言之,當駐波區域內存在一缺陷且該缺陷至少一部分係暴露於亮條紋時,來自該缺陷的散射光係較處於暗條紋中的缺陷更強。當較強的散射光被成像系統104及低雜訊偵測器陣列122所收集時 ,可產生具有較高SNR的缺陷信號。改變AOI及偏振狀態可重塑駐波的間距及/或對比,使得檢驗系統100中收集到最大化的缺陷信號,並達成更好的整體缺陷靈敏度。偵測器陣列122產生稱為缺陷信號的光電流。若缺陷信號較背景雜訊(例如,系統的電氣雜訊)更強,則缺陷信號係視為可偵測的。
然而,大多數奈米缺陷的尺寸為小的。該等奈米缺陷僅在基板108之表面上方幾奈米,且一般位於奈米粒子302之照明強度接近於零的暗條紋內(如圖3所示)。另外,奈米缺陷的散射橫剖面一般非常小。將這兩個因素加在一起,所產生的缺陷信號通常極為微弱且不能勝過背景雜訊。這就是為什麼奈米缺陷的偵測係非常困難的。
為了改善基板108的表面上之奈米缺陷的偵測靈敏度,本文中所述之檢驗系統100使用奇點雷射光束照明。奇點雷射光束具有由相位差分開的至少二光束部分。該相位差可為π弧度。圖4顯示了奇點光束的一範例,其中沿著該光束橫剖面之中心線而發生一π相位跳躍。該等奇點雷射光束部分的相位差係藉由使用相位遮罩或相位延遲器而形成。圖7中顯示了奇點雷射光束產生之範例性實施例。當奇點照明光束擊中基板108的表面時,該照明光束在基板108與物鏡116之間產生獨特的駐波(如圖5A中所示)。在該等圖式中,奇點照明光束係由具有朝向基板之箭頭的二平行實線表示。在二平行實線之間的中心虛線表示了奇點照明光束的中心。
駐波的一部分具有亮條紋500,該亮條紋500係鎖定在基板108之表面上。亮條紋500於來自奇點照明光束之照明點的至少一部分上延伸。如下面進一步描述,當奈米缺陷與亮條紋500(換言之,較強的照明)互動時,來自奈米缺陷的散射光信號可較處於暗條紋中的那些(例如,使用高斯照明)高幾倍。 該機制有助於奈米缺陷偵測的整體信號對雜訊比之改良。對於一入射奇點光束而言,存在著兩個具有相反相位的相鄰光束。駐波圖形被翻轉,其中在入射光束的中心發生建設性干涉,且條紋間隔可表示為
Figure 02_image009
。因此,對於355nm之準直的奇點入射光束而言,形成了如圖5B中所示的亮條紋區502。圖5B中的x軸表示了以微米為單位的水平距離。y軸表示了以微米為單位的距基板距離。 所產生的駐波可表示為:
Figure 02_image011
(4)
圖6繪示了準直的奇點光束所導致之在基板108附近的駐波之放大視圖。若奈米粒子302係位於如圖6所示之亮條紋上,照射至奈米粒子302上的光強度可為高斯光束的強度的3-4倍(如下面進一步顯示)。由於在奈米粒子302上之強化的照明,可藉由使用成像系統104(例如,藉由運用方程式(4))而偵測到更強的散射信號。x軸表示以微米為單位的水平距離。y軸表示以微米為單位的距基板距離。
在入射角θ的情況下,奇點光束與高斯光束之間的照明強度比可表示為:
Figure 02_image013
(5) 其中 x 為在基板表面上方的距離。因此,
Figure 02_image015
Figure 02_image017
Figure 02_image019
如一範例,對於處於基板表面上並由準直的355nm雷射光束照射的17nm奈米粒子而言,奇點光束在粒子表面產生了為高斯光束(換言之,在沒有修改之情況下之準直的355nm雷射光束)光強度的三倍之光強度(換言之,使用方程式(5))。
藉由將入射角、偏振狀態、及成像光圈之形狀最佳化,本文中所述之方法可偵測到在許多不同基板層上的奈米缺陷、或嵌入在先前的層中之奈米缺陷。具體而言,檢驗系統100及相關方法可偵測到介於20nm至5nm的波節(node)。
有許多不同的方式來產生奇點雷射光束。為了在照明區域內獲得均勻的強度分佈,使用光束塑形處理來首先產生平頂雷射光束,並接著將其發送通過一相位遮罩,該相位遮罩在中心線具有一π相位跳躍 。
可藉由將特別設計的相位遮罩插入至一般高斯雷射光束中而產生具有一或更多相位跳躍的奇點雷射光束。圖7顯示了通過相位板704的高斯光束。該相位板704具有
Figure 02_image021
之階梯高度,其中λ為照明光之波長且n為折射率。示意圖700顯示了在通過相位板704之前的光束輪廓。示意圖702顯示了在通過相位板704之後的光束輪廓(換言之,奇點光束的光束輪廓)。圖8顯示了奇點光束之相位。奇點光束具有約180°的相位偏移。圖8中的x軸係以微米為單位。該x軸表示了與入射光束之方向垂直的方向。圖8中的y軸係以弧度為單位。
圖4顯示了具有一p之相位跳躍的奇點照明光束。在一實行例中, 可產生一奇點照明光束,其在光束之橫剖面上具有多個相位跳躍(如圖9所示)。可藉由將特別設計的相位遮罩插入至一般的高斯雷射光束中而產生具有多個相位跳躍的奇點照明光束。在使用具有多個相位跳躍的奇點照明光束之情況下,產生了於基板108之表面上具有多個區段的亮條紋之駐波。若透過這樣的駐波掃描位於基板表面上的奈米粒子(或缺陷),並於一段時間內在偵測器122將散射信號整合,則能可進一步改良粒子偵測靈敏度(相較於一相位跳躍的情況)。
根據一實施例,圖10為顯示了成像系統104之示意圖。在一實施例中,物鏡116可使用折射光學元件。物鏡116具有收集來自偵測區域114之反射光(本文中稱為所收集光束)的任務,因此可將所收集光束傳輸至偵測器陣列122(如前面所述)。物鏡116可包含第一鏡片1002、第二鏡片1004、及第三鏡片1006。第一鏡片1002及第二鏡片1004係用以擴展所收集光束。鏡片1002、1004、及1006可為用以減少球面像差的非球面鏡片。接著,所收集光束可通過用以反射具有一波長之光的二向色濾光片/鏡(dichroic filter/mirror) 1008,該波長係對應於光源112之波長(例如,266nm或355nm)。接著,耦合鏡片1010係用以將光聚焦至針孔1012中。二個耦合鏡片1014及1016係用以將所收集光束聚焦至偵測器陣列122中。在一實施例中,鏡片1010、1014、及1016可為平凸鏡片。
在一實行例中,物鏡116可為如圖11中所示的反射式物鏡1102(例如,二片鏡片)。所收集光束可接著通過用以限制所收集光束之直徑的光圈1104。反射式物鏡1102可具有距離基板之距離介於1mm至100mm的肩部(shoulder ) 1106。舉例而言,該距離可為76.8mm。接著,所收集光束通過二向色濾光片1108。所收集光束接著通過分束器1110、及管透鏡1112。管透鏡1112係用以將所收集光束聚焦至偵測器122中。如白色發光二極體(LED) 1114這樣的附加光源可用於基板對準。LED光通過第二光圈1118且通過鏡片1116。
為了在光譜的UV部分(換言之,355nm及更小)獲得更好的性能,UV等級材料(例如,石英、熔融矽石,CaF2 )係用於所有光學元件。
根據範例性實施例,接下來參照圖1描述影像電腦124之硬體描述。影像電腦124亦可執行控制器110的功能及處理。影像電腦124包含實行本文中所述之平行數據處理的多核CPU,且處理數據及指令可儲存於記憶體中。這些處理及指令亦可儲存於儲存媒體磁碟(例如,硬碟(HDD)、或固態硬碟)、或可攜式儲存媒體上,或可遠端儲存。此外,所請發明不受電腦可讀媒體之形式所限制,其中本發明製程之指令係儲存於該電腦可讀媒體上。例如,指令可儲存於CDs、DVDs、快閃記憶體、RAM、ROM、PROM、EPROM、EEPROM、硬碟、或任何與控制器通訊的其他資訊處理裝置(例如,伺服器或電腦)上。
此外,所請發明可以實用應用程式、背景常駐程式、或操作系統的元件、或其組合的方式提供,其係與CPU及操作系統(例如Microsoft Windows、UNIX、Solaris、LINUX、Apple MAC-OS及熟習本領域技術者已知的其他系統)一起執行。
為了完成影像電腦124,可藉由熟習本領域技術者已知的各種電路元件來實現硬體元件。舉例而言,CPU可為來自美國Intel的Xenon或Core處理器、或來自美國AMD的Opteron處理器,或可為熟習本領域技術者所知的其他類型處理器。替代性地,如熟習本領域技術者所知,CPU 可設置於FPGA、ASIC、PLD上,或藉由使用離散邏輯電路而設置。此外,CPU 可設置成合作平行運作以執行上述創新製程的指令之多個處理器。
顯然地,鑒於上述教示,許多修改及變化為可能的。因此吾人應理解,在所附申請專利範圍之範疇內,除了本說明書中所具體描述之方法外,亦可利用其他方式實施本發明。
因此,上述討論僅揭露及說明本發明之例示性實施例。如可為熟習本領域技術者所理解,本發明可在不背離其精神或必要性質的情況下,以其他具體形式體現。因此,應將本發明之揭露內容視為說明性的,而非限制本發明以及其他請求項之範疇。本揭露內容(包含本文中之教示的任何可輕易識別之變化)在某種程度上定義了前面所述之申請專利範圍術語的範疇,俾使沒有發明標的係貢獻給公眾。
100‧‧‧檢驗系統102‧‧‧照明系統104‧‧‧成像系統106‧‧‧載台108‧‧‧基板110‧‧‧控制器112‧‧‧光源114‧‧‧偵測區域116‧‧‧物鏡116‧‧‧物鏡118‧‧‧可構形成像光圈120‧‧‧中繼光學元件122‧‧‧偵測器陣列124‧‧‧影像電腦126‧‧‧照明光學元件128‧‧‧帶通濾波器302‧‧‧奈米粒子500‧‧‧亮條紋502‧‧‧亮條紋區700‧‧‧示意圖702‧‧‧示意圖704‧‧‧相位板1002‧‧‧第一鏡片1004‧‧‧第二鏡片1006‧‧‧第三鏡片1008‧‧‧二向色濾光片1010‧‧‧耦合鏡片1012‧‧‧針孔1014‧‧‧耦合鏡片1016‧‧‧耦合鏡片1102‧‧‧反射式物鏡1104‧‧‧光圈1106‧‧‧肩部1108‧‧‧二向色濾光片1110‧‧‧分束器1112‧‧‧管透鏡1114‧‧‧白色發光二極體(LED)1116‧‧‧鏡片1118‧‧‧第二光圈
藉由參照以下「實施方式」並連同隨附圖式一併考量,將可更加容易地透徹理解本揭露內容及伴隨其中之許多優點,其中:
根據一範例,圖1為檢驗系統之側視示意圖;
根據一範例,圖2A為顯示了由準直高斯光束所產生的駐波之示意圖;
根據一範例,圖2B為顯示根了由355nm之準直高斯光束所產生的駐波之示意圖;
根據一範例,圖3為顯示了位於暗條紋中的奈米粒子之示意圖;
根據一範例,圖4為顯示了奇點光束中的相位跳躍之示意圖;
根據一範例,圖5A為顯示了由準直奇點光束所產生的駐波之示意圖;
根據一範例,圖5B為顯示了由355nm之準直奇點光束所產生的駐波之示意圖;
根據一範例,圖6為顯示了位於亮條紋中的奈米粒子之示意圖;
根據一範例,圖7為顯示了如何從準直高斯光束產生準直奇點雷射光束的示意圖;
根據一範例,圖8為顯示了準直奇點雷射光束的相位之示意圖;
根據一範例,圖9為顯示了具有多個相位跳躍的奇點光束之示意圖;
根據一範例,圖10為顯示了檢驗系統的成像系統之示意圖; 及
根據另一範例,圖11為顯示了檢驗系統的成像系統之示意圖。
302‧‧‧奈米粒子

Claims (19)

  1. 一種檢驗基板的方法,包含:以一奇點雷射光束(singular laser beam)照射該基板,該奇點雷射光束在該奇點雷射光束之中心的其中一側上具有由一相位差分開的至少二光束部分,該奇點雷射光束在垂直於該基板的一方向中於該基板的一表面處產生一條紋圖案,該奇點雷射光束在該基板上形成一照明點並在該基板之該表面上形成一亮條紋,該亮條紋在該照明點的至少一部分上延伸;及藉由一光學偵測系統而偵測來自存在於該基板上且在該照明點內之複數奈米缺陷的散射光。
  2. 如申請專利範圍第1項之檢驗基板的方法,其中該相位差為π弧度。
  3. 如申請專利範圍第1項之檢驗基板的方法,其中該奇點雷射光束的該相位差係使用一相位遮罩或一相位延遲器而形成。
  4. 如申請專利範圍第1項之檢驗基板的方法,其中該奇點雷射光束在該基板表面具有s偏振方位,或在該基板表面具有p偏振方位。
  5. 如申請專利範圍第1項之檢驗基板的方法,其中在該基板表面的該奇點雷射光束之入射角為從約1°至約90°。
  6. 如申請專利範圍第1項之檢驗基板的方法,其中該奇點雷射光束包含在光譜之極紫外(EUV)、深紫外(DUV)、紫外(UV)、或可見光部分中之光波長,或包含其二或更多者之組合。
  7. 如申請專利範圍第1項之檢驗基板的方法,其中該光學偵測系統係用於以實質上垂直於該基板的一方向偵測來自該等奈米缺陷的散射光。
  8. 如申請專利範圍第1項之檢驗基板的方法,其中該光學偵測系統包含: 一物鏡;一可構形成像光圈(configurable imaging aperture);一中繼光學元件;一帶通濾波器;及一偵測器陣列。
  9. 如申請專利範圍第8項之檢驗基板的方法,其中該偵測器陣列包含一光電倍增管(PMT)陣列、或一時延積分電荷耦合元件(TDI CCD)陣列。
  10. 如申請專利範圍第8項之檢驗基板的方法,其中該物鏡係最佳化以使色差最小化。
  11. 如申請專利範圍第8項之檢驗基板的方法,其中該光學偵測系統更包含:一自動對焦系統,用以於偵測來自該基板上之奈米缺陷的散射光時保持聚焦。
  12. 如申請專利範圍第8項之檢驗基板的方法,其中該光學偵測系統更包含:一影像電腦,用以對一光學信號進行信號處理,及用以判定該光學偵測系統之視場內是否發生一奈米缺陷,該光學信號係從來自照射到之奈米缺陷的散射光獲得。
  13. 如申請專利範圍第1項之檢驗基板的方法,其中該等奈米缺陷包含位於該基板上、及形成於該基板上之所有層上的缺陷。
  14. 一種檢驗基板的系統,包含:一基板載台,用以接收該基板;一雷射光源; 照明光學元件,用以將來自該雷射光源的光引導至該基板之表面,其中該照明光學元件係用以形成一奇點雷射光束用於照射該基板,該奇點雷射光束在該奇點雷射光束之中心的其中一側上具有由一相位差分開的至少二光束部分,該奇點雷射光束在垂直於該基板的一方向中於該基板的該表面處產生一條紋圖案;及一光學偵測系統,用以藉由偵測來自該基板上之照射到的複數奈米缺陷的散射光而偵測照射到的該等奈米缺陷。
  15. 如申請專利範圍第14項之檢驗基板的系統,更包含:一淨化室,其中該基板載台係置於該淨化室中。
  16. 如申請專利範圍第14項之檢驗基板的系統,其中該光學偵測系統包含:一物鏡;一可構形成像光圈;中繼光學元件;一帶通濾波器;及一偵測器陣列。
  17. 如申請專利範圍第16項之檢驗基板的系統,其中該偵測器陣列包含一光電倍增管(PMT)陣列、或一延時積分電荷耦合元件(TDI CCD)陣列。
  18. 如申請專利範圍第16項之檢驗基板的系統,其中該光學偵測系統更包含:一自動對焦系統,用以於偵測來自該基板上之奈米缺陷的散射光時保持聚焦。
  19. 一種檢驗基板的設備,包含: 一照明系統,用以從一雷射光源形成一奇點雷射光束,並將該奇點雷射光束引導至該基板,該奇點雷射光束在該奇點雷射光束之中心的其中一側上具有由一相位差分開的至少二光束部分,該奇點雷射光束在垂直於該基板的一方向中於該基板的一表面處產生一條紋圖案;及一光學偵測系統,用以藉由偵測來自該基板上之照射到的複數奈米缺陷的散射光而偵測照射到的該等奈米缺陷。
TW106118010A 2016-06-02 2017-06-01 使用奇點光束之暗場晶圓奈米缺陷檢驗系統 TWI738788B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662344575P 2016-06-02 2016-06-02
US62/344,575 2016-06-02

Publications (2)

Publication Number Publication Date
TW201807400A TW201807400A (zh) 2018-03-01
TWI738788B true TWI738788B (zh) 2021-09-11

Family

ID=60478934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118010A TWI738788B (zh) 2016-06-02 2017-06-01 使用奇點光束之暗場晶圓奈米缺陷檢驗系統

Country Status (7)

Country Link
US (1) US10345246B2 (zh)
JP (1) JP7134096B2 (zh)
KR (1) KR102357638B1 (zh)
CN (1) CN109196336B (zh)
SG (1) SG11201810682PA (zh)
TW (1) TWI738788B (zh)
WO (1) WO2017210281A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200008630A (ko) 2017-05-24 2020-01-28 더 트러스티스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 분산 설계된 유전성 메타표면에 의한 광대역 수색성의 평평한 광학 부품
WO2019046827A1 (en) 2017-08-31 2019-03-07 Metalenz, Inc. INTEGRATION OF TRANSMISSIVE METASURFACE LENS
US11781965B2 (en) 2017-10-26 2023-10-10 Particle Measuring Systems, Inc. System and method for particles measurement
CN113692529A (zh) 2019-04-25 2021-11-23 粒子监测系统有限公司 用于轴上粒子检测和/或差分检测的粒子检测系统和方法
US11927769B2 (en) 2022-03-31 2024-03-12 Metalenz, Inc. Polarization sorting metasurface microlens array device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106848A1 (en) * 2000-09-20 2002-08-08 Dan Wack Methods and systems for determining a property of a specimen prior to, during, or subsequent to lithography
US20060215175A1 (en) * 2004-07-28 2006-09-28 Ler Technologies, Inc. Surface and subsurface detection sensor
US20090081512A1 (en) * 2007-09-25 2009-03-26 William Cortez Blanchard Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893932A (en) 1986-05-02 1990-01-16 Particle Measuring Systems, Inc. Surface analysis system and method
US5781294A (en) * 1991-12-24 1998-07-14 Hitachi, Ltd. Method and apparatus for detecting photoacoustic signal to detect surface and subsurface information of the specimen
US5774222A (en) * 1994-10-07 1998-06-30 Hitachi, Ltd. Manufacturing method of semiconductor substrative and method and apparatus for inspecting defects of patterns on an object to be inspected
US6288780B1 (en) 1995-06-06 2001-09-11 Kla-Tencor Technologies Corp. High throughput brightfield/darkfield wafer inspection system using advanced optical techniques
WO1996039619A1 (en) * 1995-06-06 1996-12-12 Kla Instruments Corporation Optical inspection of a specimen using multi-channel responses from the specimen
US5864436A (en) * 1997-09-04 1999-01-26 Raytheon Company Constant deviation objective lens
WO2002040976A2 (en) * 2000-11-20 2002-05-23 Koninklijke Philips Electronics N.V. Inspection of surfaces
US6504618B2 (en) * 2001-03-21 2003-01-07 Rudolph Technologies, Inc. Method and apparatus for decreasing thermal loading and roughness sensitivity in a photoacoustic film thickness measurement system
US7006221B2 (en) * 2001-07-13 2006-02-28 Rudolph Technologies, Inc. Metrology system with spectroscopic ellipsometer and photoacoustic measurements
JP2003042967A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd パターン欠陥検査装置
US20040207836A1 (en) * 2002-09-27 2004-10-21 Rajeshwar Chhibber High dynamic range optical inspection system and method
IL156856A (en) 2003-07-09 2011-11-30 Joseph Shamir Method for particle size and concentration measurement
JP2005083800A (ja) * 2003-09-05 2005-03-31 Hitachi Ltd 欠陥検査方法及び欠陥検査装置
CA2448346C (en) * 2003-11-06 2012-05-15 Michael Failes Fiber optic scanning interferometer using a polarization splitting coupler
WO2005100961A2 (en) * 2004-04-19 2005-10-27 Phoseon Technology, Inc. Imaging semiconductor strucutures using solid state illumination
WO2006009932A1 (en) * 2004-06-23 2006-01-26 Best Willie H Infrared emitting apparatus
JP4977700B2 (ja) * 2005-07-21 2012-07-18 ハード テクノロジーズ プロプライエタリー リミテッド 金属物の複合表面処理
US7705331B1 (en) * 2006-06-29 2010-04-27 Kla-Tencor Technologies Corp. Methods and systems for providing illumination of a specimen for a process performed on the specimen
JP5841710B2 (ja) * 2010-03-17 2016-01-13 株式会社ニューフレアテクノロジー 荷電粒子ビーム描画装置及び荷電粒子ビーム描画方法
KR101196708B1 (ko) * 2011-03-31 2012-11-07 나노전광 주식회사 백색광이 조명된 결함에서 발생한 산란광의 간섭무늬를 이용한 반도체 기판 표면의 결함 검출 장치 및 검출 방법
US20130003152A1 (en) * 2011-06-29 2013-01-03 United Technologies Corporation Interferometry-based stress analysis
US9366625B2 (en) 2012-02-09 2016-06-14 Hitachi High-Technologies Corporation Surface measurement device
WO2013152031A1 (en) * 2012-04-04 2013-10-10 Kla-Tencor Corporation Protective fluorine-doped silicon oxide film for optical components
JP5773939B2 (ja) * 2012-04-27 2015-09-02 株式会社日立ハイテクノロジーズ 欠陥検査装置および欠陥検査方法
US8912495B2 (en) * 2012-11-21 2014-12-16 Kla-Tencor Corp. Multi-spectral defect inspection for 3D wafers
US9389349B2 (en) 2013-03-15 2016-07-12 Kla-Tencor Corporation System and method to determine depth for optical wafer inspection
US9194811B1 (en) * 2013-04-01 2015-11-24 Kla-Tencor Corporation Apparatus and methods for improving defect detection sensitivity
US9772297B2 (en) * 2014-02-12 2017-09-26 Kla-Tencor Corporation Apparatus and methods for combined brightfield, darkfield, and photothermal inspection
JP2016008941A (ja) * 2014-06-26 2016-01-18 株式会社日立ハイテクノロジーズ 欠陥観察方法及びその装置並びに欠陥検出装置
NL2014994A (en) * 2014-07-09 2016-04-12 Asml Netherlands Bv Inspection apparatus and methods, methods of manufacturing devices.
CN104121996A (zh) * 2014-07-21 2014-10-29 河南科技大学 一种测量涡旋光束高阶拓扑荷的测量装置
US10067072B2 (en) 2015-07-10 2018-09-04 Kla-Tencor Corporation Methods and apparatus for speckle suppression in laser dark-field systems
US20170281102A1 (en) * 2016-03-31 2017-10-05 Weng-Dah Ken Non-contact angle measuring apparatus, mission critical inspection apparatus, non-invasive diagnosis/treatment apparatus, method for filtering matter wave from a composite particle beam, non-invasive measuring apparatus, apparatus for generating a virtual space-time lattice, and fine atomic clock

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020106848A1 (en) * 2000-09-20 2002-08-08 Dan Wack Methods and systems for determining a property of a specimen prior to, during, or subsequent to lithography
US20060215175A1 (en) * 2004-07-28 2006-09-28 Ler Technologies, Inc. Surface and subsurface detection sensor
US20090081512A1 (en) * 2007-09-25 2009-03-26 William Cortez Blanchard Micromachined electrolyte sheet, fuel cell devices utilizing such, and micromachining method for making fuel cell devices

Also Published As

Publication number Publication date
KR102357638B1 (ko) 2022-01-28
JP7134096B2 (ja) 2022-09-09
JP2019523865A (ja) 2019-08-29
KR20190015322A (ko) 2019-02-13
CN109196336A (zh) 2019-01-11
US20170350826A1 (en) 2017-12-07
US10345246B2 (en) 2019-07-09
CN109196336B (zh) 2021-10-15
WO2017210281A1 (en) 2017-12-07
TW201807400A (zh) 2018-03-01
SG11201810682PA (en) 2018-12-28

Similar Documents

Publication Publication Date Title
TWI738788B (zh) 使用奇點光束之暗場晶圓奈米缺陷檢驗系統
KR102002192B1 (ko) 다중-스폿 표면 스캐닝 검사 시스템을 위한 큰 미립자 검출
JP4797005B2 (ja) 表面検査方法及び表面検査装置
KR102518212B1 (ko) 입자 검출을 위한 방사형 편광자
US10319088B2 (en) Inspection apparatus of EUV mask and its focus adjustment method
US9494531B2 (en) Multi-spot illumination for improved detection sensitivity
TW201932828A (zh) 用於晶圓檢測之系統
US7773212B1 (en) Contemporaneous surface and edge inspection
JP5526370B2 (ja) 照明光学系、照明方法、及び検査装置
US9746430B2 (en) Optical inspecting apparatus
US9568437B2 (en) Inspection device
JP7183156B2 (ja) 透明基板上の欠陥部の検査方法および装置並びに入射光の出射方法
JP2019523865A5 (ja) 基板検査方法、装置及びシステム
JP5945126B2 (ja) 欠陥検査方法および欠陥検査装置
JP4444984B2 (ja) レチクル欠陥検査装置およびこれを用いた検査方法
WO2021199340A1 (ja) 欠陥検査装置及び欠陥検査方法
JPH08304296A (ja) 異物等の欠陥検出方法およびそれを実行する装置
JP2008064759A (ja) 基板の表面エラーを光学的に検出する装置および方法
JP2008267817A (ja) 表面検査方法及び表面検査装置