WO2016070721A1 - 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统 - Google Patents

用于治疗肿瘤的三维立体精确腔内放疗方法及其系统 Download PDF

Info

Publication number
WO2016070721A1
WO2016070721A1 PCT/CN2015/092608 CN2015092608W WO2016070721A1 WO 2016070721 A1 WO2016070721 A1 WO 2016070721A1 CN 2015092608 W CN2015092608 W CN 2015092608W WO 2016070721 A1 WO2016070721 A1 WO 2016070721A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
lesion
stent
image
radiation dose
Prior art date
Application number
PCT/CN2015/092608
Other languages
English (en)
French (fr)
Inventor
滕皋军
董永华
冷德嵘
郭金和
刘春俊
朱海东
Original Assignee
滕皋军
董永华
冷德嵘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 滕皋军, 董永华, 冷德嵘 filed Critical 滕皋军
Priority to US15/525,025 priority Critical patent/US10646725B2/en
Publication of WO2016070721A1 publication Critical patent/WO2016070721A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1002Intraluminal radiation therapy
    • A61N2005/1004Intraluminal radiation therapy having expandable radiation sources

Definitions

  • the invention relates to an internal radiotherapy method for treating tumors, in particular to a three-dimensional stereo precise intracavitary radiotherapy method for treating tumors, and relates to a three-dimensional stereo precise intracavitary radiotherapy system for treating tumors, and relates to The invention relates to a method for manufacturing an internal radiotherapy stent, which belongs to the field of medical technology.
  • the wall of the tube produces a constant expansion force to keep the stent stable.
  • the current application of biliary stents has some limitations. For example, existing stents can only be used as palliative treatment, and the long-term efficacy of cholangiocarcinoma has not been optimistic. Therefore, if the stent is expanded, targeted local radiotherapy can be performed, which can reduce the side effects of systemic radiotherapy and have a better effect on the treatment.
  • a Chinese patent application published as CN101695458A discloses a biliary radiotherapy stent, the specific structure of which is shown in Figures 1-5, including the outer stent. 1 and the inner bracket 2, the outer bracket 1 and the inner bracket 2 are in a separated state when not in use, and only the main body portion of the inner bracket 2 is swollen in the outer bracket 1 in the use state.
  • the main body of the inner bracket 2 is a cylindrical mesh skeleton structure 7 woven from a nickel-titanium alloy wire.
  • the main body of the outer bracket 1 is also a mesh skeleton structure 3 woven from a nickel-titanium alloy wire, and a radiation particle filling capsule 4 is mounted on the surface of the mesh skeleton structure 3, and the radiation particle filling capsule 4
  • the barbed positioning by the barb surface (relative to the insertion direction) of the surface of the mesh skeleton structure 3 can also be fixedly positioned by stitching.
  • the radiation particle filling capsule 4 may have a small pocket structure 5 with an opening as shown in Fig. 4, which is made of a vascular tube or a polymer tube. to make.
  • the upper part of the small pocket 5 has a small opening for facilitating the insertion of the radiating particles and is not easy to exit.
  • the small pockets 5 are continuously distributed in a line shape on the surface of the mesh skeleton structure 3, and are distributed in the axial direction, and each of the small pockets arranged in a line shape 5 It may be evenly distributed on the circumferential surface of the mesh skeleton structure 3, or may be unevenly distributed.
  • the radiation particle filling capsule 4 can also adopt the structure shown in FIG. 5, and the radiation particle filling capsule 4 is a tubular structure made of a plastic heat-shrinkable tube, and has a three-dimensional spatial positioning mark, and is positioned with a diameter at a position of a radiation particle. It is larger than the diameter of the pipe where the radiation particles are not installed.
  • the above-mentioned stent radiotherapy in the prior art is not precise, and the position, dose and source type of the radiation particles on the surface of the stent are roughly selected and randomly mounted on the stent according to the experience of the doctor, rather than the range of the specific lesion. , orientation, size, tumor cell activity, type, etc.
  • this type of installation does not consider how to avoid and protect the normal tissue of the treatment area from radiation doses.
  • the lesion area is often not irradiated with a suitable radiation dose, and normal tissue is subjected to unnecessary radiation damage.
  • the first technical problem to be solved by the present invention is to provide a three-dimensional stereoscopic intracavitary radiotherapy method for treating tumors.
  • Another technical problem to be solved by the present invention is to provide a three-dimensional stereoscopic intracavitary radiotherapy system for treating tumors.
  • Still another technical problem to be solved by the present invention is to provide a method for manufacturing a three-dimensional stereoscopic intracavitary radiotherapy stent for treating a tumor.
  • a three-dimensional stereoscopic intracavitary radiotherapy method for treating a tumor comprising the following steps:
  • Step (1) performing three-dimensional quantitative measurement of the lesion on the three-dimensional scanned image of the diseased lumen
  • Step (2) comprehensively analyzing the three-dimensional quantitative measurement results and lesion characteristics of the lesion, and calculating a three-dimensional distribution map of the radiation dose of the lesion;
  • Step (3) according to the three-dimensional distribution map of the radiation dose of the lesion, selecting a suitable radiation source and a radiation dose to prepare a stent, and performing three-dimensional stereo precise intracavitary radiotherapy.
  • the three-dimensional scanned image of the diseased lumen is included
  • the process of three-dimensional reconstruction is carried out.
  • the lesion area is outlined at each level, and finally the three-dimensional spatial structure of the lesion position is reconstructed layer by layer.
  • the three-dimensional scan image of the lesion lumen is reconstructed by using the following method: firstly, the lesion area on each layer image is delineated according to the density difference on each of the tomographic images. Then, the lesion areas on each layer of the image are superimposed in the longitudinal direction to simulate the three-dimensional structure and volume of the lesion area.
  • the three-dimensional scan image of the lesion lumen is reconstructed by using the following method: firstly, each layer of the image is drawn according to the difference of the tissue contrast enhancement on each of the tomographic images. The lesion area is then superimposed on the lesion area on each layer of the image to reconstruct the three-dimensional structure and volume of the lesion area.
  • the three-dimensional scanned image is one of a B-mode ultrasound, a CT image, a magnetic resonance scan image, a PET/CT image, or a PET/MR image.
  • a three-dimensional radiation dose distribution map is obtained by comprehensive analysis.
  • the method for manufacturing the stent comprises the steps of: mounting a radiation particle containing a suitable radiation dose in a radiation particle filling capsule corresponding to a lesion position.
  • the bracket prepared in the step (3) comprises an outer bracket and an inner bracket, and the outer bracket is separated from the inner bracket, and only the main body portion of the inner bracket is expanded outside when in use.
  • the main body of the outer stent is a mesh skeleton structure, and a radiation particle filling capsule for placing radiation particles is mounted on the surface of the mesh structure.
  • a three-dimensional stereoscopic intracavitary radiotherapy system for treating tumors which is used for implementing the above three-dimensional stereoscopic internal radiotherapy method, comprising:
  • An image acquisition module for collecting a three-dimensional scanned image of the diseased lumen
  • a radiation dose analysis module for determining the source of radiation and the radiation dose required for the location of the lesion
  • a stent making module for making a stent containing a radiation source corresponding to a radiation dose at different locations
  • the image acquisition module collects a three-dimensional scanned image of a luminal lesion and the three-dimensional image Scanning images are transmitted to the three-dimensional quantitative analysis module for luminal lesions for three-dimensional quantitative measurement and analysis of lesions, and then the analysis results are transmitted to a radiation dose analysis module; the radiation dose analysis module comprehensively analyzes the analysis results and lesion characteristics according to the analysis results Calculating a three-dimensional distribution map of the radiation dose of the lesion; the bracket making module prepares the bracket according to the three-dimensional distribution map of the radiation dose, and selects a radiation dose of a suitable radiation dose to dispose it on a corresponding position on the bracket .
  • the three-dimensional scanned image acquired by the image acquisition module is one of a B-mode ultrasound, a CT image, a magnetic resonance scan image, a PET/CT image, or a PET/MR image.
  • a method for manufacturing a three-dimensional stereoscopic intracavitary radiotherapy stent for treating a tumor comprises the following steps:
  • Step (1) performing three-dimensional quantitative measurement of the lesion on the three-dimensional scanned image of the diseased lumen
  • Step (2) comprehensively analyzing the three-dimensional quantitative measurement results and lesion characteristics of the lesion, and calculating a three-dimensional distribution map of the radiation dose of the lesion;
  • Step (3) selecting a suitable radiation source and a radiation dose to prepare a stent according to the three-dimensional distribution map of the radiation dose of the lesion.
  • the process of three-dimensional reconstruction of the three-dimensional scanned image of the diseased lumen is performed, and the cancerous area is delineated at each level by comparing the cancer tissue with the normal tissue. Finally, the three-dimensional spatial structure of the lesion location is reconstructed layer by layer.
  • the three-dimensional scan image of the lesion lumen is reconstructed by using the following method: firstly, the lesion area on each layer image is delineated according to the density difference on each of the tomographic images. Then, the lesion areas on each layer of the image are superimposed in the longitudinal direction to simulate the three-dimensional structure and volume of the lesion area.
  • the three-dimensional scan image of the lesion lumen is reconstructed by using the following method: firstly, each layer of the image is drawn according to the difference of the tissue contrast enhancement on each of the tomographic images. The lesion area is then superimposed on the lesion area on each layer of the image to reconstruct the three-dimensional structure and volume of the lesion area.
  • the three-dimensional scanned image is one of a B-mode ultrasound, a CT image, a magnetic resonance scan image, a PET/CT image, or a PET/MR image.
  • step (2) according to the reconstructed three-dimensional spatial junction
  • the structure combined with the patient's personal information, comprehensive analysis to obtain a three-dimensional radiation dose distribution map.
  • the method for manufacturing the stent comprises the steps of: mounting a radiation particle containing a suitable radiation dose in a radiation particle filling capsule corresponding to a lesion position.
  • the bracket prepared in the step (3) comprises an outer bracket and an inner bracket, and the outer bracket is separated from the inner bracket, and only the main body portion of the inner bracket is expanded outside when in use.
  • the main body of the outer stent is a mesh skeleton structure, and a radiation particle filling capsule for placing radiation particles is mounted on the surface of the mesh structure.
  • a three-dimensional stereoscopic intracavitary radiotherapy stent is manufactured by the above manufacturing method.
  • the present invention has the following beneficial effects:
  • the invention adopts the modern medical image three-dimensional reconstruction technology to perform three-dimensional reconstruction of the diseased tissue of the diseased lumen, and simultaneously uses the image contrast enhancement technique and the pathological tissue examination technique to comprehensively analyze the pathological type, metabolic activity and sensitivity to radiation of the diseased tissue.
  • Comprehensive evaluation an optimal three-dimensional spatial distribution map of the radiation treatment dose is proposed for each lesion lumen of the patient, so that the most rationally optimized radiation therapy particles are installed in the appropriate position of the stent during the preparation of the stent.
  • Optimized radiation dose treatment of the tumor to achieve three-dimensional stereoscopic internal radiotherapy while maximizing the protection of normal tissue.
  • Figure 1 is a schematic view showing the structure of an external stent of an intracavitary radiotherapy stent
  • Figure 2 is a schematic cross-sectional view of the outer stent of the intracavitary radiotherapy stent
  • Figure 3 is a schematic structural view of an inner stent of an intracavitary radiotherapy stent
  • Figure 4 is a schematic view showing the structure of a bag-type radiation particle filling capsule
  • Figure 5 is a schematic view showing the structure of a tubular radiation particle filling capsule
  • FIG. 6 is a flow chart of a three-dimensional stereo precise internal radiotherapy method for treating a tumor provided by the present invention.
  • Figure 7 is a schematic illustration of a multi-layered lesion slice in one embodiment of the present invention.
  • Figure 8 is a schematic diagram of a three-dimensional radiation dose distribution obtained from the lesion section shown in Figure 7;
  • FIG. 9 is a schematic diagram showing the principle of disposing different doses of radiation particles at different positions of the stent according to the three-dimensional stereoscopic radiation dose distribution diagram of FIG. 8; FIG.
  • Figure 10 is a three-dimensional stereoscopic internal radiotherapy system for treating tumors provided by the present invention. Schematic diagram of the structure.
  • the present invention first provides a three-dimensional stereoscopic intracavitary radiotherapy method for treating a tumor, see FIG. 6, comprising the following steps:
  • Step (1) performing three-dimensional quantitative measurement and analysis of the lesion on the three-dimensional scanned image of the diseased lumen;
  • Step (2) comprehensively analyzing the three-dimensional quantitative measurement results and lesion characteristics of the lesion, and calculating a three-dimensional distribution map of the radiation dose of the lesion;
  • Step (3) according to the three-dimensional distribution map of the radiation dose of the lesion, selecting a suitable radiation source and a radiation dose to prepare a stent, and performing three-dimensional stereo precise intracavitary radiotherapy.
  • the three-dimensional quantitative analysis module for luminal lesions is based on three-dimensional scanned images (including but not limited to B-ultrasound, CT, magnetic resonance scanning images, PET/CT, PET/MR).
  • three-dimensional quantitative measurement and analysis of lesions in the lesion lumen intention to use three-dimensional reconstruction of modern medical imaging techniques to reconstruct the lesion tissue of the lesion lumen.
  • the following two implementation methods are included:
  • the first type through the three-dimensional quantitative analysis system of luminal lesions, first delineates the lesion area on each layer of image according to the density difference on each layer of CT, MR and other tomographic images, see Figure 7; then the lesion on each layer of the image The regions are superimposed in the direction of the longitudinal axis to simulate the three-dimensional structure and volume of the lesion.
  • the three-dimensional quantitative analysis system for luminal lesions first delineates the lesion area on each layer of image based on the difference in tissue contrast enhancement on each layer of CT, MR and other tomographic images, see Figure 7; The lesion area is superimposed in the long axis direction to reconstruct the three-dimensional structure and volume of the lesion area.
  • the radiation dose analysis module calculates a three-dimensional distribution map of the radiation dose of the lesion according to the comprehensive analysis of the three-dimensional quantitative measurement result and the lesion feature of the lesion; the main application of image contrast enhancement technology,
  • the pathological examination technique comprehensively evaluates the pathological type, metabolic activity and sensitivity to radiation of the diseased tissue, and proposes an optimized three-dimensional spatial distribution map of the radiation treatment dose for each lesion lumen of the patient.
  • a stent containing a radiation source of a corresponding radiation dose at different positions is prepared based on the three-dimensional distribution map of the radiation dose of the lesion. That is, as shown in Fig. 9, the radiation particles containing the appropriate radiation dose are mounted in the radiation particle filling capsule corresponding to the lesion position.
  • the invention can treat the tumor with the optimized radioactive source and the radiation dose through reconstruction and radiation dose calculation, and can protect the normal tissue to the maximum extent, and realize three-dimensional stereo precise internal radiotherapy.
  • the invention also provides a three-dimensional stereoscopic intracavitary radiotherapy system for treating tumors, see FIG. 10, comprising: an image acquisition module, a three-dimensional quantitative analysis module for luminal lesions, a radiation dose analysis module and a stent making module.
  • the image acquisition module collects a three-dimensional scan image of the luminal lesion, and the acquired three-dimensional scan image includes but is not limited to one of a B-mode ultrasound, a CT image, a magnetic resonance scan image, a PET/CT image, or a PET/MR image, and the three-dimensional scan is performed.
  • the image is transmitted to the three-dimensional quantitative analysis module of the luminal lesion for quantitative three-dimensional measurement of the lesion, and then the measurement result is transmitted to the radiation dose analysis module; the radiation dose analysis module comprehensively analyzes the analysis result and the lesion feature to calculate the radiation dose three-dimensional of the lesion
  • the distribution map; the stent making module prepares the stent according to the three-dimensional distribution map of the radiation dose, and selects a radiation dose of a suitable radiation dose to arrange it at a corresponding position on the stent.
  • the three-dimensional quantitative analysis module of the luminal lesion first delineates the lesion area on each layer of the image according to the density difference on each of the CT and MR tomographic images, and then the lesion area on each layer of the image is in the longitudinal direction. Superimposition is performed to simulate the three-dimensional structure and volume of the lesion area.
  • the three-dimensional quantitative analysis system for luminal lesions first maps the lesion area on each layer of the image based on the difference in tissue contrast enhancement on each of the CT and MR tomographic images, and then the lesion area on each layer of the image is on the long axis. The directions are superimposed to reconstruct the three-dimensional structure and volume of the lesion.
  • the radiation dose analysis module systematically and comprehensively analyzes and optimizes the lesion size, cell activity level, cell metabolism level, cell malignant degree, sensitivity to radiation, etc. according to the lesions and directions, and proposes the optimal three-dimensional distribution of radiation dose.
  • the radiation particle filling module mounts the radiation particles on the outer surface of the matching bracket on the outer bracket according to the optimized three-dimensional spatial distribution map of the radiation dose.
  • the above-mentioned stent with the radiation particles installed is mounted in the release device and the stent is implanted through the release device.
  • Mounting bracket The routine interventional procedure is performed to release the stent into the lesion lumen. During the release process, the orientation of the stent can be adjusted according to the three-dimensional space-imparting marker mounted on the stent, so that the three-dimensional orientation of the stent and the lesion are The three-dimensional orientation is consistent.
  • the invention adopts a bracket structure composed of two independent bracket bodies (an inner bracket and an outer bracket), and the inner bracket and the outer bracket are inserted step by step, so that the bracket body can be loaded into a smaller implanter, so that the implant can be carried.
  • the biliary stent of radiotherapy particles is possible, and the risk is low, and the patient suffers little pain.
  • the bracket has a simple structure and is convenient to manufacture, and is positioned reliably in the lumen. Under the action of the expansion of the inner bracket, the outer bracket with the radiation particles can be fixed to the surface of the inner bracket without sliding.
  • the specific structure of the stent can be found in the description in the background art.
  • the method of implanting the stent is as follows: the external stent filled with the radiation particles is introduced into the body, and the external stent is released under the guidance of the guide wire or the endoscope, and then introduced and released again under the guidance of the guide wire or the endoscope guidance.
  • the inner bracket after the stent is placed, the inner stent expands to open the outer bracket, and at the same time, the narrow portion of the lumen is opened, and the outer bracket is fixed to avoid displacement.
  • a three-dimensional stereoscopic intracavitary radiotherapy system and method for treating a tumor will be described in detail below using various embodiments.
  • the first step is to use the three-dimensional quantitative analysis module for luminal lesions provided by the present invention to perform three-dimensional CT/MR images of the patient.
  • the analysis module can apply the difference in density, morphology, contrast enhancement, etc. of the cancer tissue and the normal surrounding tissue to delineate the lesion area at each level, and then reconstruct the three-dimensional spatial structure of the tumor layer by layer.
  • the three-dimensional spatial structure of the reconstructed tumor lesion, and related information are input into the radiation dose analysis module provided by the present invention, and the system will Comprehensive analysis of various information, design of three-dimensional radiation dose distribution map, and the appropriate types of radioactive sources.
  • the radiation particles are mounted on the surface of the outer stent 1 according to the position of the matched three-dimensional space.
  • the radiation particles 6 are loaded into the radiation particle filling capsule 4, and the radiation particles 6 can be selected from commonly used medical radioactive materials such as 103 Pd, 60 Co, 199 Au, 192 Ir, 125 I, and then the radiation particles 6 are mounted.
  • the outer bracket 1 is reinserted into the inserter, the outer stent 1 is released under the guidance of the guide wire or the endoscope, and then the inner stent 2 is released under the guidance of the guide wire or the endoscope, and the inner stent 2 is located outside. Inside the stent 1, the outer stent 1 is opened and the narrow portion of the esophagus is also opened, and the outer stent 1 is fixed to avoid displacement.
  • the radiation particle filling capsule 4 may be filled with strips, columns, and spherical radionuclides as needed; the inner bracket 2 is a grid-like cylinder woven from a nickel-titanium alloy wire.
  • the stent of the invention can kill the tumor cells and inhibit the proliferation by the local radiotherapy by carrying the radiation generated by the radioactive source, and can maintain the smoothness of the esophagus through the radial support of the stent, so that the internal radiotherapy and the stenosis treatment are combined. Inhibition or inactivation of the tumor also reduces the incidence of esophageal restenosis after stent implantation.
  • the diameter of the conveyor required for this type of stent is effectively reduced by two implantations, which solves the problem that the diameter of the conveyor which cannot be solved when the radiotherapy particles and the stent are implanted together is too large. This makes it possible to implant an esophageal stent carrying radiotherapy particles.
  • the first step is to use the three-dimensional quantitative analysis module for luminal lesions provided by the present invention to perform three-dimensional stereoscopic CT/MR images of the patient.
  • Reconstruction using the difference in density, morphology, contrast enhancement, etc. of cancerous tissue and normal surrounding tissue, the lesion area is delineated at each level, and then the three-dimensional spatial structure of the tumor is reconstructed layer by layer.
  • the three-dimensional spatial structure of the reconstructed tumor lesion, and related information are input to the radiation dose analysis module provided by the present invention.
  • the radiation dose analysis module will comprehensively analyze various information, design a three-dimensional radiation dose distribution map, and appropriate radiation source types, and install radiation particles on the surface of the outer stent 1 according to the position of the matched three-dimensional space.
  • the radiation particles 6 are loaded into the radiation particle filling capsule 4, and the radiation particles 6 can be selected from commonly used medical radioactive materials such as 103 Pd, 60 Co, 199 Au, 192 Ir, 125 I, and then the radiation particles 6 are mounted.
  • the outer bracket 1 is reinserted into the inserter, the outer stent 1 is released under the guidance of the guide wire or the endoscope, and then the inner stent 2 is released under the guidance of the guide wire or the endoscope, and the inner stent 2 is located outside. Inside the stent 1, the outer stent 1 is opened and the narrowed portion of the bile duct is also opened, and the outer stent 1 is fixed to avoid displacement.
  • the radiation particle filling capsule 4 may be filled with strips, columns, and spherical radionuclides as needed; the inner holder 2 is a grid-like cylinder woven from a nickel-titanium alloy wire.
  • the present invention also provides a method for manufacturing a three-dimensional stereoscopic intracavitary radiotherapy stent for treating tumors. Referring specifically to FIG. 6, the method includes the following steps:
  • Step (1) performing three-dimensional quantitative measurement and analysis of the lesion on the three-dimensional scanned image of the diseased lumen;
  • Step (2) comprehensively analyzing the three-dimensional quantitative measurement results and lesion characteristics of the lesion, and calculating a three-dimensional distribution map of the radiation dose of the lesion;
  • Step (3) selecting a suitable radiation source and a radiation dose to prepare a stent according to the three-dimensional distribution map of the radiation dose of the lesion.
  • the three-dimensional quantitative analysis module for luminal lesions is based on three-dimensional scanned images (including but not limited to B-ultrasound, CT, magnetic resonance scanning images, PET/CT, PET/MR).
  • the first type through the three-dimensional quantitative analysis system of luminal lesions, first delineates the lesion area on each layer of image according to the density difference on each layer of CT, MR and other tomographic images, as shown in Figure 7;
  • the lesion area is superimposed in the longitudinal direction to simulate the three-dimensional structure and volume of the lesion area.
  • the three-dimensional quantitative analysis system for luminal lesions first delineates the lesion area on each layer of image according to the difference of tissue contrast enhancement on each layer of CT, MR and other tomographic images, as shown in Figure 7;
  • the lesion area on the image is superimposed in the long axis direction to reconstruct the three-dimensional structure and volume of the lesion area.
  • the radiation dose analysis module calculates a three-dimensional distribution map of the radiation dose of the lesion according to the comprehensive analysis of the three-dimensional quantitative measurement result and the lesion feature of the lesion; the main application of image contrast enhancement technology,
  • the pathological examination technique comprehensively evaluates the pathological type, metabolic activity and sensitivity to radiation of the diseased tissue, and proposes an optimized three-dimensional spatial distribution map of the radiation treatment dose for each lesion lumen of the patient.
  • a stent having a radiation source corresponding to the radiation dose at different positions is prepared.
  • the prepared inner stent can be configured by radioactive sources by mounting the radiation particles containing the appropriate radiation dose in the radiation particle filling capsule corresponding to the lesion position.
  • Other manufacturing methods not mentioned in detail herein include the use of other technical means such as 3D printing to fabricate an outer stent containing radiation particles.
  • the stent provided by the invention can generate radiation by carrying a radioactive source, can kill tumor cells and inhibit proliferation by local radiotherapy, and can maintain the smoothness of the bile duct through the radial support of the stent, so that the internal radiotherapy and the stenosis treatment are combined. Inhibition or inactivation of the tumor also reduces the incidence of bile duct restenosis after stent implantation.
  • the diameter of the conveyor required for the stent is effectively reduced by two implantations, and the implantation of the radiotherapy particles and the stent cannot be solved.
  • the solution to the problem that the diameter of the conveyor is too large to pass the duodenal clamp makes it possible to implant an internal radiotherapy stent carrying radiotherapy particles.
  • the present invention uses a three-dimensional reconstruction technique of modern medical imaging to reconstruct a three-dimensional reconstruction of a diseased tissue of a diseased lumen, and at the same time, using a contrast enhancement technique and a pathological tissue examination technique for the pathological type, metabolic activity, and radiation of the diseased tissue.
  • a comprehensive comprehensive evaluation of sensitivity, etc. to propose an optimized three-dimensional spatial distribution map of the radiation treatment dose for each lesion lumen of the patient, so that the most rationally optimized radiation therapy particles are mounted on the stent during the preparation of the stent.
  • three-dimensional stereoscopic internal radiotherapy is realized, and the radiation particles are loaded during the operation, and the speed is fast, which can reduce the radiation received by the doctor during the operation.
  • This three-dimensional, precise intracavitary radiotherapy method for treating tumors can treat tumors with optimal radiation doses while maximally protecting normal tissues.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供了一种用于治疗肿瘤的三维立体精确腔内放疗方法,包括以下步骤:(1):对病变管腔的三维扫描图像进行病变三维立体定量测量和分析;(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;(3):根据病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架,并进行三维立体精确腔内放疗。同时,本发明还提供了实现上述内放疗方法的系统。本发明采用现代医学影像三维重建技术对病变管腔的病变组织进行三维立体重建,将最合理的放射治疗粒子安装在支架的合适位置上,实现三维立体精确内放疗,以最优化的放射剂量治疗肿瘤,同时以最大程度地保护正常组织。

Description

用于治疗肿瘤的三维立体精确腔内放疗方法及其系统 技术领域
本发明涉及一种用于治疗肿瘤的内放疗方法,尤其涉及一种用于治疗肿瘤的三维立体精确腔内放疗方法,同时涉及一种用于治疗肿瘤的三维立体精确腔内放疗系统,还涉及一种内放疗支架制作方法,属于医疗技术领域。
背景技术
随着内镜和介入放射学的发展,利用微创的ERCP或PTCD方法治疗胆管癌,变外引流为内引流,操作简单,其生存质量优于外科旁路手术。1985年,Carrasco制成了第一个可扩张的金属胆道支架,取得了更好的治疗效果,我国也在上世纪九十年代逐渐开展了类似的治疗活动。金属支架胆管引流术创伤小,用较细的导管可植入较大直径的支架,早期并发症少,手术死亡率低,金属内支架置入狭窄胆道后能够自扩张到原有直径,对狭窄管壁产生持续的扩张力,保持支架的稳定。目前的胆道支架的应用存在一些局限性,例如现有支架只能作为姑息治疗,对胆管癌的远期疗效一直不容乐观。因此如果在支架扩张的同时可以进行针对性的局部放疗,既能减低全身放疗的毒副作用,又能对治疗有更好的作用。
为了可以在对胆管进行扩张的同时可以进行针对性地局部化疗,在公布号为CN101695458A的中国专利申请中,公开了一种胆道放疗支架,其具体结构如图1~5所示,包括外支架1和内支架2,外支架1和内支架2在未使用时处于分开状态,只有在使用状态下内支架2的主体部分才会撑胀在外支架1中。如图3所示,内支架2主体是由镍钛合金丝编织而成的圆柱形网格骨架结构7。如图1、2所示,外支架1的主体也是由镍钛合金丝编织而成的网状骨架结构3,在网状骨架结构3的表面安装有放射粒子装填囊4,放射粒子装填囊4可通过网状骨架结构3表面的倒刺(相对于置入方向而言)刺卡定位也可通过缝合的方式固定定位。放射粒子装填囊4可采用图4所示的带有开口的小口袋结构5,该小口袋结构5由人造血管膜管或高分子管材制造而 成。小口袋5的上部有小开口便于放射粒子的放入并不易退出,小口袋5呈线状连续分布在网状骨架结构3的表面,且沿轴向分布,各条线状排列的小口袋5可均匀分布在网状骨架结构3圆周表面,也可不均匀分布。放射粒子装填囊4还可采用图5所示的结构,放射粒子装填囊4为由塑料热缩管制造而成的管状结构,同时具有三维空间定位标记,且定位有放射粒子位置处的管径大于未安装有放射粒子处的管径。
但是现有技术中的上述支架内放疗并不精确,支架表面的放射粒子的位置、剂量和放射源种类是根据医生的经验粗略地选择并随意安装在支架上的,而不是由具体病灶的范围、方位、大小、肿瘤细胞活性、类型等决定的。而且,这种安装方式也没有考虑如何避开和保护治疗区的正常组织不受放射剂量的照射。结果常常造成病灶区没有得到合适的放射剂量的照射,正常组织又受到了不必要的放射损害。临床上亟需更精确、高效的支架内放疗方法和器械,以克服现有技术中的缺陷。
发明内容
针对现有技术的不足,本发明所要解决的首要技术问题在于提供一种用于治疗肿瘤的三维立体精确腔内放疗方法。
本发明所要解决的另一个技术问题在于提供一种用于治疗肿瘤的三维立体精确腔内放疗系统。
本发明所要解决的又一个技术问题在于提供一种用于治疗肿瘤的三维立体精确腔内放疗支架制造方法。
为实现上述发明目的,本发明采用下述的技术方案:
一种用于治疗肿瘤的三维立体精确腔内放疗方法,包括以下步骤:
步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量;
步骤(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;
步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架,并进行三维立体精确腔内放疗。
其中较优地,所述步骤(1)中,包括对病变管腔的三维扫描图像 进行三维立体重建的过程,通过将癌肿组织与正常组织进行对比,在每一层面勾画出病变的区域,最后逐层叠加重建出病变位置的三维立体空间结构。
其中较优地,所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的密度差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
其中较优地,所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
其中较优地,所述步骤(1)中,所述三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
其中较优地,所述步骤(2)中,根据重建的所述三维立体空间结构,再结合病人的个人信息,综合分析得到三维立体放射剂量分布图。
其中较优地,所述步骤(3)中,制作所述支架的方法包括如下步骤:将含有合适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内。
其中较优地,在所述步骤(3)中制作的支架包括外支架和内支架,所述外支架与所述内支架分体,且只有在使用状态下内支架的主体部分才胀撑在外支架中;所述外支架的主体为网状骨架结构,在网状结构的表面安装有用于放置放射粒子的放射粒子装填囊。
一种用于治疗肿瘤的三维立体精确腔内放疗系统,用于实现上述的三维立体精确内放疗方法,包括:
图像采集模块,用于采集病变管腔的三维扫描图像;
管腔病变三维立体定量分析模块,用于确定病变位置;
放射剂量分析模块,用于确定病变位置所需要的放射源和放射剂量;
支架制作模块,用于制作在不同位置含有对应放射剂量的放射源的支架;
所述图像采集模块采集管腔病变的三维扫描图像,并将所述三维 扫描图像传送到所述管腔病变三维立体定量分析模块进行病变三维立体定量测量和分析,然后将分析结果传送到放射剂量分析模块;所述放射剂量分析模块根据所述分析结果和病变特征综合分析,计算出病变的放射剂量三维立体分布图;所述支架制作模块根据所述放射剂量三维立体分布图制作所述支架,并选择合适放射剂量的放射粒子将其配置在所述支架上的对应位置。
其中较优地,所述图像采集模块采集的三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
一种用于治疗肿瘤的三维立体精确腔内放疗支架制造方法,包括以下步骤:
步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量;
步骤(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;
步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架。
其中较优地,所述步骤(1)中,包括对病变管腔的三维扫描图像进行三维立体重建的过程,通过将癌肿组织与正常组织进行对比,在每一层面勾画出病变的区域,最后逐层叠加重建出病变位置的三维立体空间结构。
其中较优地,所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的密度差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
其中较优地,所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
其中较优地,所述步骤(1)中,所述三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
其中较优地,所述步骤(2)中,根据重建的所述三维立体空间结 构,再结合病人的个人信息,综合分析得到三维立体放射剂量分布图。
其中较优地,所述步骤(3)中,制作所述支架的方法包括如下步骤:将含有合适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内。
其中较优地,在所述步骤(3)中制作的支架包括外支架和内支架,所述外支架与所述内支架分体,且只有在使用状态下内支架的主体部分才胀撑在外支架中;所述外支架的主体为网状骨架结构,在网状结构的表面安装有用于放置放射粒子的放射粒子装填囊。
一种三维立体精确腔内放疗支架,由上述制造方法制作而成。
与现有技术相比较,本发明具有以下有益效果:
本发明采用现代医学影像三维重建技术对病变管腔的病变组织进行三维立体重建,同时应用影像造影增强技术、病理组织检查技术对病变组织的病理类型、代谢活性以及对放射线的敏感性等进行全面综合评价,为病人的每一个病变管腔提出一个最优化的放射治疗剂量三维立体空间分布图,从而在制作支架的过程中,将最合理优化的放射治疗粒子安装在支架的合适位置上,最优化的放射剂量治疗肿瘤,实现三维立体精确内放疗,同时以最大程度地保护正常组织。
附图说明
图1是腔内放疗支架的外支架的结构示意图;
图2是腔内放疗支架的外支架的截面示意图;
图3是腔内放疗支架的内支架的结构示意图;
图4是袋式放射粒子装填囊的结构示意图;
图5是管式放射粒子装填囊的结构示意图;
图6是本发明所提供的用于治疗肿瘤的三维立体精确内放疗方法的流程图;
图7是本发明提供的一个实施例中,多层病灶切片的示意图;
图8是根据图7所示病灶切片获得的三维立体放射剂量分布示意图;
图9是根据图8所示三维立体放射剂量分布示意图,在支架的不同位置配置不同剂量放射粒子的原理示意图;
图10是本发明所提供的用于治疗肿瘤的三维立体精确内放疗系 统的结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容作进一步的详细说明。
本发明首先提供了一种用于治疗肿瘤的三维立体精确腔内放疗方法,参见图6,包括以下步骤:
步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量和分析;
步骤(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;
步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架,并进行三维立体精确腔内放疗。
首先,在步骤(1)中,如图7所示,管腔病变三维立体定量分析模块根据三维扫描图像(包括但不限于B超、CT、磁共振扫描图像、PET/CT、PET/MR),对病变管腔进行病变三维立体定量测量和分析;意在采用现代医学影像三维重建技术对病变管腔的病变组织进行三维立体重建。具体包括以下两种实现方式:
第一种,通过管腔病变三维立体定量分析系统先根据每层CT、MR等断层扫描图像上的密度差异勾画出每层图像上的病变区域,参见图7;然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
第二种,管腔病变三维立体定量分析系统先根据每层CT、MR等断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,参见图7;然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
然后,在步骤(2)中,如图8所示,放射剂量分析模块根据病变三维立体定量测量结果和病变特征综合分析,计算出病变的放射剂量三维立体分布图;主要应用影像造影增强技术、病理组织检查技术对病变组织的病理类型、代谢活性以及对放射线的敏感性等进行全面综合评价,为病人的每一个病变管腔提出一个最优化的放射治疗剂量三维立体空间分布图。
最后,在步骤(3)中,根据病变的放射剂量三维立体分布图,制作在不同位置含有对应放射剂量的放射源的支架。也就是说,如图9所示,将含有合适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内。
本发明通过重建以及放射剂量计算,以最优化的放射源和放射剂量治疗肿瘤,可以以最大程度地保护正常组织,实现三维立体精确内放疗。
本发明还提供了一种用于治疗肿瘤的三维立体精确腔内放疗系统,参见图10,包括:图像采集模块、管腔病变三维立体定量分析模块、放射剂量分析模块和支架制作模块。
图像采集模块采集管腔病变的三维扫描图像,采集的三维扫描图像包括但不限于B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种,并将三维扫描图像传送到管腔病变三维立体定量分析模块进行病变三维立体定量测量,然后将测量结果传送到放射剂量分析模块;放射剂量分析模块根据分析结果和病变特征综合分析,计算出病变的放射剂量三维立体分布图;支架制作模块根据放射剂量三维立体分布图制作支架,并选择合适放射剂量的放射粒子将其配置在支架上的对应位置。
具体来说,管腔病变三维立体定量分析模块先根据每层CT、MR等断层扫描图像上的密度差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。或者,管腔病变三维立体定量分析系统先根据每层CT、MR等断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
放射剂量分析模块根据病变各部位和方向的病灶的大小,细胞活性程度,细胞代谢水平、细胞恶变程度、对放射线的敏感程度等进行系统和综合分析和优化,提出最优化的放射剂量三维立体分布图。放射粒子装填模块根据最优化的放射剂量三维立体空间分布图,在外支架上安装相匹配的支架外表面上安装放射粒子。最后把上述安装了放射粒子的支架安装到释放器内通过释放器进行支架植入。安装支架释 放的常规介入手术方法,将支架释放到病变管腔内,释放过程中,可以根据安装在支架上的不透X射线的三维空间标记调整支架的方位,使放射支架的三维空间方位与病灶的三维空间方位保持一致。
本发明采用由两个独立的支架体(内支架和外支架)组成的支架结构,内支架和外支架分步置入,从而可以使支架体装入更小的置入器,使得植入携带放疗粒子的胆道支架成为可能,且风险低,病人痛苦小。并且这种支架的结构简单、制造方便,在管腔内定位可靠,在内支架的胀撑作用下,带有放射粒子的外支架能固定在内支架的表面不会滑动。支架的具体结构可参见背景技术中的描述。
植入支架的方法如下:装填好放射粒子的外支架导入体内,在导丝导引或者内窥镜辅导下释放所述外支架,然后再次在导丝导引或者内窥镜辅导下导入并释放内支架;支架在置入后,内支架膨胀撑开外支架,同时撑开管腔的狭窄部位,并使外支架固定避免发生移位。
下面利用不同实施例对用于治疗肿瘤的三维立体精确腔内放疗系统和方法进行详细描述。
实施例一,在病人被确诊为食道癌,并且需要采用精确三维立体管腔内放疗后,第一步是采用本发明提供的管腔病变三维立体定量分析模块对病人的CT/MR图片进行三维立体重建。该分析模块可以应用癌肿组织与正常周围组织在密度、形态、造影剂增强等方面的差异在每一层面勾画出病变的区域,然后逐层叠加重建出肿瘤的三维立体空间结构。
然后,把重建得到的肿瘤病变的三维立体空间结构,以及相关的信息,如肿瘤病理类型、血管是否丰富、病人年龄、机体状况等,输入到本发明所提供的放射剂量分析模块,该系统将综合分析各种信息,设计出三维立体放射剂量分布图,以及合适的放射源种类。
根据放射剂量分析模块设计的三维立体放射剂量分布图,按照相匹配的三维立体空间的位置在外支架1的表面安装放射粒子。
使用时,首先在放射粒子装填囊4内装入放射粒子6,放射粒子6可以选择103Pd、60Co、199Au、192Ir、125I等常用医用放射性材料,然后再将装好放射粒子6的外支架1重新装入置入器中,在导丝导引或内窥镜辅助下释放外支架1,然后再在导丝导引或内窥镜辅助下释放内 支架2,内支架2位于外支架1的内部,撑开外支架1同时也撑开食管狭窄部位,固定外支架1避免其发生移位。在实际制作过程中,可以根据需要向放射粒子装填囊4中装填条状、柱状、球状的放射性核素;内支架2是由镍钛合金丝编织而成网格状圆柱体。本发明的支架可通过携带放射源所产生放射线,既能够通过局部放疗作用杀死肿瘤细胞和抑制增生,又能通过支架的径向支撑保持食管的通畅,使内放疗与狭窄扩张治疗结合在一起,在抑制或灭活肿瘤的同时还降低了支架植入后食管再狭窄的发生率。由于采用了分体的结构设计,通过2次植入,有效缩小了该类型支架所需配套的输送器的直径,解决了将放疗粒子和支架一并植入时不能解决的输送器直径太大,使得植入携带放疗粒子的食道支架成为可能。
实施例二,在病人被确诊为胆管癌,需要采用精确三维立体管腔内放疗后,第一步是采用本发明提供的管腔病变三维立体定量分析模块对病人的CT/MR图片进行三维立体重建,利用癌肿组织与正常周围组织在密度、形态、造影剂增强等方面的差异在每一层面勾画出病变的区域,然后逐层叠加重建出肿瘤的三维立体空间结构。
然后,把所述重建得到的肿瘤病变的三维立体空间结构,以及相关的信息,如肿瘤病理类型、血管是否丰富、病人年龄、机体状况等,输入到本发明所提供的放射剂量分析模块,该放射剂量分析模块将综合分析各种信息,设计出三维立体放射剂量分布图,以及合适的放射源种类,按照相匹配的三维立体空间的位置在外支架1的表面安装放射粒子。
使用时,首先在放射粒子装填囊4内装入放射粒子6,放射粒子6可以选择103Pd、60Co、199Au、192Ir、125I等常用医用放射性材料,然后再将装好放射粒子6的外支架1重新装入置入器中,在导丝导引或内窥镜辅助下释放外支架1,然后再在导丝导引或内窥镜辅助下释放内支架2,内支架2位于外支架1的内部,撑开外支架1同时也撑开胆管狭窄部位,固定外支架1避免其发生移位。可以根据需要向放射粒子装填囊4中装填条状、柱状、球状的放射性核素;内支架2是由镍钛合金丝编织而成网格状圆柱体。
此外,需要说明的是,上文中提供的一种用于治疗肿瘤的三维立 体精确腔内放疗方法,其过程实质上是如何制作精确的内放疗支架,并使用该在病变位置安装对应放射粒子的支架进行内放疗。因此,本发明同时也提供了一种用于治疗肿瘤的三维立体精确腔内放疗支架的制作方法,具体参见图6,包括以下步骤:
步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量和分析;
步骤(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;
步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架。
首先,在步骤(1)中,如图7所示,管腔病变三维立体定量分析模块根据三维扫描图像(包括但不限于B超、CT、磁共振扫描图像、PET/CT、PET/MR),对病变管腔进行病变三维立体定量测量和分析;采用现代医学影像三维重建技术对病变管腔的病变组织进行三维立体重建。具体包括以下两种实现方式:
第一种,通过管腔病变三维立体定量分析系统先根据每层CT、MR等断层扫描图像上的密度差异勾画出每层图像上的病变区域,如图7所示;然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
第二种,管腔病变三维立体定量分析系统先根据每层CT、MR等断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,如图7所示;然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
然后,在步骤(2)中,如图8所示,放射剂量分析模块根据病变三维立体定量测量结果和病变特征综合分析,计算出病变的放射剂量三维立体分布图;主要应用影像造影增强技术、病理组织检查技术对病变组织的病理类型、代谢活性以及对放射线的敏感性等进行全面综合评价,为病人的每一个病变管腔提出一个最优化的放射治疗剂量三维立体空间分布图。
最后,在步骤(3)中,根据病变的放射剂量三维立体分布图,如图9所示,制作在不同位置含有对应放射剂量的放射源的支架。简单 来说,可以通过将含有合适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内对已制作完成的内支架进行放射源配置。而在本文未详细提及的其他制作方法中,还包括利用3D打印等其余技术手段制作含有放射粒子的外支架。
本发明提供的支架可通过携带放射源产生放射线,既能够通过局部放疗作用杀死肿瘤细胞和抑制增生,又能通过支架的径向支撑保持胆管的通畅,使内放疗与狭窄扩张治疗结合在一起,在抑制或灭活肿瘤的同时还降低了支架植入后胆管再狭窄的发生率。并且,由于采用了内支架和外支架的分体结构设计,通过2次植入,有效缩小了该类型支架所需配套的输送器的直径,解决了将放疗粒子和支架一并植入时不能解决的输送器直径太大,不能通过十二指肠镜钳道的问题,使得植入携带放疗粒子的内放疗支架成为可能。
综上所述,本发明采用现代医学影像三维重建技术对病变管腔的病变组织进行三维立体重建,同时应用影像造影增强技术、病理组织检查技术对病变组织的病理类型、代谢活性以及对放射线的敏感性等进行全面综合评价,为病人的每一个病变管腔提出一个最优化的放射治疗剂量三维立体空间分布图,从而在制作支架的过程中,将最合理优化的放射治疗粒子安装在支架的合适位置上,实现三维立体精确内放疗,并且,在操作过程中装填放射粒子,速度快,可减轻医生在手术过程中所受的辐射。这种用于治疗肿瘤的三维立体精确腔内放疗方法,可以以最优化的放射剂量治疗肿瘤,同时以最大程度地保护正常组织。
以上对本发明所提供的用于治疗肿瘤的三维立体精确腔内放疗系统及其方法进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将构成对本发明专利权的侵犯,将承担相应的法律责任。

Claims (19)

  1. 一种用于治疗肿瘤的三维立体精确腔内放疗方法,其特征在于包括以下步骤:
    步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量;
    步骤(2):根据病变三维立体定量测量结果和病变特征进行综合分析,计算出病变放射剂量三维立体分布图;
    步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架,并进行三维立体精确腔内放疗。
  2. 如权利要求1所述的三维立体精确内放疗方法,其特征在于,
    所述步骤(1)中,包括对病变管腔的三维扫描图像进行三维立体重建的过程,通过将癌肿组织与正常组织进行对比,在每一层面勾画出病变的区域,最后逐层叠加重建出病变位置的三维立体空间结构。
  3. 如权利要求2所述的三维立体精确内放疗方法,其特征在于:
    所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的密度差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
  4. 如权利要求2所述的三维立体精确内放疗方法,其特征在于,
    所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
  5. 如权利要求1所述的三维立体精确内放疗方法,其特征在于,
    所述步骤(1)中,所述三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
  6. 如权利要求1所述的三维立体精确内放疗方法,其特征在于,
    所述步骤(2)中,根据重建的所述三维立体空间结构,再结合病人的个人信息,综合分析得到三维立体放射剂量分布图。
  7. 如权利要求1所述的三维立体精确内放疗方法,其特征在于,
    所述步骤(3)中,制作所述支架的方法包括如下步骤:将含有合适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内。
  8. 如权利要求7的三维立体精确腔内放疗方法,其特征在于,
    在所述步骤(3)中制作的支架包括外支架和内支架,所述外支架与所述内支架分体,且只有在使用状态下内支架的主体部分才胀撑在外支架中;所述外支架的主体为网状骨架结构,在网状结构的表面安装有用于放置放射粒子的放射粒子装填囊。
  9. 一种用于治疗肿瘤的三维立体精确腔内放疗系统,用于实现权利要求1~8中任意一项所述的三维立体精确内放疗方法,其特征在于包括:
    图像采集模块,用于采集病变管腔的三维扫描图像;
    管腔病变三维立体定量分析模块,用于确定病变位置;
    放射剂量分析模块,用于确定病变位置所需要的放射源和放射剂量;
    支架制作模块,用于制作在不同位置含有对应放射剂量的放射源的支架;
    所述图像采集模块采集管腔病变的三维扫描图像,并将所述三维扫描图像传送到所述管腔病变三维立体定量分析模块进行病变三维立体定量测量和分析,然后将分析结果传送到放射剂量分析模块;所述放射剂量分析模块根据所述分析结果和病变特征综合分析,计算出病变的放射剂量三维立体分布图;所述支架制作模块根据所述放射剂量三维立体分布图制作所述支架,并选择合适放射剂量的放射粒子且将其配置在所述支架上的对应位置。
  10. 如权利要求9的三维立体精确腔内放疗系统,其特征在于,
    所述图像采集模块采集的三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
  11. 一种用于治疗肿瘤的三维立体精确腔内放疗支架制造方法,其特征在于包括以下步骤:
    步骤(1):对病变管腔的三维扫描图像进行病变三维立体定量测量;
    步骤(2):根据病变三维立体定量测量结果和病变特征进行综合 分析,计算出病变放射剂量三维立体分布图;
    步骤(3):根据所述病变放射剂量三维立体分布图,选择合适的放射源及放射剂量制作支架。
  12. 如权利要求11所述的三维立体精确腔内放疗支架制造方法,其特征在于,
    所述步骤(1)中,包括对病变管腔的三维扫描图像进行三维立体重建的过程,通过将癌肿组织与正常组织进行对比,在每一层面勾画出病变的区域,最后逐层叠加重建出病变位置的三维立体空间结构。
  13. 如权利要求12所述的三维立体精确腔内放疗支架制造方法,其特征在于:
    所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的密度差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在纵轴方向进行叠加,模拟出病变区域的三维立体架构和体积。
  14. 如权利要求12所述的三维立体精确腔内放疗支架制造方法,其特征在于,
    所述步骤(1)中,使用下述方式对病变管腔的三维扫描图像进行三维立体重建:先根据每层断层扫描图像上的组织造影增强的差异勾画出每层图像上的病变区域,然后将每层图像上的病变区域在长轴方向进行叠加,重建出病变区域的三维立体架构和体积。
  15. 如权利要求11所述的三维立体精确腔内放疗支架制造方法,其特征在于,
    所述步骤(1)中,所述三维扫描图像为B超、CT图像、磁共振扫描图像、PET/CT图像或者PET/MR图像中的一种。
  16. 如权利要求11所述的三维立体精确腔内放疗支架制造方法,其特征在于,
    所述步骤(2)中,根据重建的所述三维立体空间结构,再结合病人的个人信息,综合分析得到三维立体放射剂量分布图。
  17. 如权利要求11所述的三维立体精确腔内放疗支架制造方法,其特征在于,
    所述步骤(3)中,制作所述支架的方法包括如下步骤:将含有合 适放射剂量的放射粒子安装在与病变位置相应的放射粒子装填囊内。
  18. 如权利要求17的三维立体精确腔内放疗支架制造方法,其特征在于,
    在所述步骤(3)中制作的支架包括外支架和内支架,所述外支架与所述内支架分体,且只有在使用状态下内支架的主体部分才胀撑在外支架中;所述外支架的主体为网状骨架结构,在网状结构的表面安装有用于放置放射粒子的放射粒子装填囊。
  19. 一种三维立体精确腔内放疗支架,其特征在于由权利要求11~18中任意一项所述方法制成。
PCT/CN2015/092608 2014-11-07 2015-10-23 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统 WO2016070721A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/525,025 US10646725B2 (en) 2014-11-07 2015-10-23 Three-dimensional precise intracavitary radiotherapy method and system for treating tumours

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410626491.0 2014-11-07
CN201410626491.0A CN104353189B (zh) 2014-11-07 2014-11-07 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统

Publications (1)

Publication Number Publication Date
WO2016070721A1 true WO2016070721A1 (zh) 2016-05-12

Family

ID=52520553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092608 WO2016070721A1 (zh) 2014-11-07 2015-10-23 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统

Country Status (3)

Country Link
US (1) US10646725B2 (zh)
CN (1) CN104353189B (zh)
WO (1) WO2016070721A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109173086A (zh) * 2018-09-20 2019-01-11 成都真实维度科技有限公司 采用肿瘤影像获取最佳放射性粒子分布位置和数量的系统
CN111991707A (zh) * 2020-07-28 2020-11-27 南京融晟医疗科技有限公司 一种腔内放疗装置及其使用方法
CN117653930A (zh) * 2023-12-01 2024-03-08 中国科学院近代物理研究所 一种用于粒子束治疗的快速三维剂量重建方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104353189B (zh) * 2014-11-07 2018-02-23 滕皋军 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统
CN110335281A (zh) * 2018-03-28 2019-10-15 北京连心医疗科技有限公司 一种肿瘤边界确定方法、设备和存储介质
CN112587808B (zh) * 2020-12-08 2022-03-01 北京航空航天大学 粒子支架剂量分布计算方法
CN114399503B (zh) * 2022-03-24 2022-07-01 武汉大学 医学图像处理方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161297A (zh) * 2007-11-21 2008-04-16 李楠 医用覆膜适形放射NiTi合金血管内支架
CN101455877A (zh) * 2007-12-12 2009-06-17 路筝 一种可承载微型放射性粒子源管道支架的设计方法
CN101695458A (zh) * 2009-10-30 2010-04-21 南京微创医学科技有限公司 胆道放疗支架
WO2014031950A1 (en) * 2012-08-24 2014-02-27 Herskovic Arnold M Device and method for improving brachytherapy
CN104353189A (zh) * 2014-11-07 2015-02-18 滕皋军 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2617400Y (zh) * 2003-05-20 2004-05-26 南京微创医学科技有限公司 内放疗用支架
CN1669599A (zh) * 2004-03-16 2005-09-21 上海英迈吉东影图像设备有限公司 三维适形放射治疗剂量计划方法
CN2707215Y (zh) * 2004-07-15 2005-07-06 王德盛 一种局部放疗用胆道支架
JP5220613B2 (ja) * 2005-12-02 2013-06-26 ピーエヌエヌ メディカル エイ/エス ステント
CN2899742Y (zh) * 2006-05-08 2007-05-16 北京莱纳科技有限公司 一种新型放射胆道支架
JP2009544101A (ja) * 2006-07-17 2009-12-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医用画像セグメンテーション用の多角形メッシュを用いた効率的ユーザインタラクション
US20080071132A1 (en) * 2006-07-21 2008-03-20 Lamoureux Gary A Brachytherapy apparatus and method for treating tissue forming an internal body cavity
CN200960355Y (zh) * 2006-09-21 2007-10-17 中国人民解放军第二军医大学 一种可承载微型放射性粒子源的管道支架
US20140163664A1 (en) * 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
CN101028192A (zh) * 2006-12-29 2007-09-05 成都川大奇林科技有限责任公司 一种光子束放射治疗适形照射的方法
CA2799188A1 (en) * 2010-05-11 2011-11-17 Cook Medical Technologies Llc Biliary access sheath
CN201798827U (zh) * 2010-09-28 2011-04-20 上海交通大学医学院附属瑞金医院卢湾分院 胆道内照射支架
CN102125717B (zh) * 2011-04-07 2013-07-24 大连大学 携带放射性粒子胆道内引流管
CN103341239A (zh) * 2013-06-14 2013-10-09 黑龙江省科学院技术物理研究所 一种测量125i粒子源置入支架或导管对剂量分布影响的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101161297A (zh) * 2007-11-21 2008-04-16 李楠 医用覆膜适形放射NiTi合金血管内支架
CN101455877A (zh) * 2007-12-12 2009-06-17 路筝 一种可承载微型放射性粒子源管道支架的设计方法
CN101695458A (zh) * 2009-10-30 2010-04-21 南京微创医学科技有限公司 胆道放疗支架
WO2014031950A1 (en) * 2012-08-24 2014-02-27 Herskovic Arnold M Device and method for improving brachytherapy
CN104353189A (zh) * 2014-11-07 2015-02-18 滕皋军 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109173086A (zh) * 2018-09-20 2019-01-11 成都真实维度科技有限公司 采用肿瘤影像获取最佳放射性粒子分布位置和数量的系统
CN111991707A (zh) * 2020-07-28 2020-11-27 南京融晟医疗科技有限公司 一种腔内放疗装置及其使用方法
CN117653930A (zh) * 2023-12-01 2024-03-08 中国科学院近代物理研究所 一种用于粒子束治疗的快速三维剂量重建方法及系统

Also Published As

Publication number Publication date
US10646725B2 (en) 2020-05-12
US20190091486A1 (en) 2019-03-28
CN104353189B (zh) 2018-02-23
CN104353189A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
WO2016070721A1 (zh) 用于治疗肿瘤的三维立体精确腔内放疗方法及其系统
Stock et al. A modified technique allowing interactive ultrasound-guided three-dimensional transperineal prostate implantation
CN102119046B (zh) 利用植入物瞄准外部波束放射的系统
RU2444061C2 (ru) Способ идентификации элемента на двух и более изображениях
CN101102814B (zh) 用于治疗切除空腔壁的定位装置
JP6412608B2 (ja) 介入性撮像
US20120123536A1 (en) Methods and systems for breast reconstruction
Lei et al. Six-dimensional correction of intra-fractional prostate motion with CyberKnife stereotactic body radiation therapy
JP6717745B2 (ja) 近接照射療法に対するポータルイメージング
JP2014523295A5 (zh)
KR102292701B1 (ko) 방사선 요법 치료를 위한 의료 장치
WO2017192953A2 (en) High-resolution x-ray imaging device, system, and method for imaging internal tissues
Pinnaduwage et al. A dosimetric evaluation of using a single treatment plan for multiple treatment fractions within a given applicator insertion in gynecologic brachytherapy
JP2017217037A (ja) 子宮癌腔内照射用アプリケータ、子宮癌の放射線治療計画方法、及び子宮癌の放射線治療計画装置
CN105477793B (zh) 一种核放射治疗源容器结构
Poulsen et al. Accuracy of image-guided radiotherapy of prostate cancer based on the BeamCath® urethral catheter technique
İbi̇ş et al. 3D Brachytherapy Treatment in Locally Advanced Cervical Cancer: A Case Presentation.
Kamuran et al. 3D Brachytherapy Treatment in Locally Advanced Cervical Cancer: A Case Presentation
Wang et al. Feasibility of helical I-125 seed implant in the portal vein
Zhang et al. Dose distribution detected by SPECT/CT in a patient with prostate cancer treated with 125I seeds: A case report
Lee et al. Preliminary study of integrated C-arm CT/SPECT imaging system for online adaptive 3D brachytherapy using Monte Carlo simulation
Prisciandaro et al. MR-guided Gynecological High Dose Rate (HDR) Brachytherapy
You et al. Images registration and superimposition for dual resolution cone beam CT: a preliminary study
Ende Reducing uncertainties in image-guided radiotherapy of rectal cancer
Strnad Image Guided Brachytherapy–Interventional Radiation Therapy: Demands from Physician Point of View

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856547

Country of ref document: EP

Kind code of ref document: A1