WO2016068447A1 - 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터 - Google Patents

나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터 Download PDF

Info

Publication number
WO2016068447A1
WO2016068447A1 PCT/KR2015/007138 KR2015007138W WO2016068447A1 WO 2016068447 A1 WO2016068447 A1 WO 2016068447A1 KR 2015007138 W KR2015007138 W KR 2015007138W WO 2016068447 A1 WO2016068447 A1 WO 2016068447A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
nanofiber
spinning solution
nanofibers
electrospinning
Prior art date
Application number
PCT/KR2015/007138
Other languages
English (en)
French (fr)
Inventor
박종철
Original Assignee
박종철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140148400A external-priority patent/KR101635036B1/ko
Priority claimed from KR1020140148391A external-priority patent/KR101635055B1/ko
Priority claimed from KR1020140148396A external-priority patent/KR101635043B1/ko
Priority claimed from KR1020140148390A external-priority patent/KR101635056B1/ko
Priority claimed from KR1020140148398A external-priority patent/KR101635038B1/ko
Priority claimed from KR1020140148393A external-priority patent/KR101635047B1/ko
Priority claimed from KR1020140148399A external-priority patent/KR101635037B1/ko
Priority claimed from KR1020140148401A external-priority patent/KR101635034B1/ko
Priority claimed from KR1020140148389A external-priority patent/KR101635058B1/ko
Priority claimed from KR1020140148388A external-priority patent/KR101635059B1/ko
Priority claimed from KR1020140148394A external-priority patent/KR101635045B1/ko
Priority claimed from KR1020140148397A external-priority patent/KR101635039B1/ko
Priority claimed from KR1020140148395A external-priority patent/KR101635044B1/ko
Priority claimed from KR1020140148392A external-priority patent/KR101635053B1/ko
Application filed by 박종철 filed Critical 박종철
Publication of WO2016068447A1 publication Critical patent/WO2016068447A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to an electrospinning apparatus for manufacturing a nanofiber web, a method for producing a moisture-permeable waterproof fabric or a nanofiber filter using the same, and a moisture-permeable waterproof fabric or a nanofiber filter manufactured by the method, and more specifically, in the CD direction or MD
  • the present invention relates to a method for producing a moisture-permeable waterproof fabric or nanofiber filter having different basis weights, types of polymers or fiber diameters in a direction, and a moisture-permeable waterproof fabric or nanofibers produced thereby.
  • moisture-permeable fabric means that water in the form of water vapor passes through
  • Water refers to a fabric having a property that does not permeate.
  • Such breathable waterproof fabric is mainly used for outdoor clothing such as mountaineering clothes and ski clothes. Clothing using the moisture-permeable waterproof fabric plays a role of discharging the sweat in the form of water vapor generated by physical activity to the outside and preventing water in the form of droplets such as rainwater from penetrating into the garment.
  • Liquid water contains a greater amount of gas than gas.
  • the moisture-permeable waterproof layer is bonded to the fabric by an adhesive or the like, and is made of a moisture-permeable waterproof fabric.
  • the moisture-permeable waterproof layer is made of nanofibers, and its bonding strength is weak.
  • nano web membrane film constituting the conventional moisture-permeable waterproof layer is laminated after manufacturing
  • the microporous layer was made using biting, manpower or tension to impart moisture permeability. Therefore, there was a limit that the whole of the moisture-permeable waterproof fabric could be made only of the fabric containing the moisture-permeable waterproof layer, and the above-mentioned problems could not be solved. In addition, in the garment industry, there was a limit to work with a single fabric due to the characteristic that it is difficult to maintain the moisture-permeable waterproof function due to water seeping into the seam when sewing garments having the properties of Gore-tex using the moisture-permeable waterproof fabric.
  • the filter is a filtration device for filtering foreign matter in the fluid is divided into a liquid filter and an air filter.
  • the air filter is used to prevent the defect of high-tech products with the development of high-tech industry, and the clean room that completely removes biologically harmful things such as dust, fine particles, bioparticles such as bacteria or mold, bacteria, etc.
  • the installation of rooms is spreading day by day. Clean room is widely applied in semiconductor manufacturing, computer equipment assembly, tape manufacturing, printing coating, hospital, pharmaceutical manufacturing, food processing plant, agriculture, forestry and fisheries.
  • the air filter forms a porous layer having a microporous structure on the surface of the filter medium.
  • the particles having large particle size are formed as a filter cake on the surface of the filter medium, and the fine particles pass through the primary surface layer and gradually accumulate in the filter medium to block the pores of the filter.
  • the particles and fine particles that block the pores of the filter not only increase the pressure loss of the filter, reduce the life of the filter, but also it is difficult to filter the nano-sized fine contaminant particles of less than 1 micron with conventional filter media. There was this.
  • the existing air filter imparts static electricity to the fiber assembly constituting the filter medium
  • the efficiency was measured by the principle that particles are collected by electrostatic force.
  • EN779 was revised to exclude the efficiency of the filter due to the electrostatic effect in 2012, and it has been found that the actual efficiency of the existing filter is reduced by more than 20%.
  • nano-sized fibers are manufactured and applied to a filter.
  • the specific target is very large, the flexibility of the surface functional group is good, and the nano-scale pore size enables the effective removal of harmful microparticles and gases.
  • Electrospinning process for manufacturing and producing nanofibers is filled with spinning solution inside
  • Electrospinning device having the structure as described above is filled with the spinning solution
  • a unit including a collector and a voltage generator for generating a high voltage to the collector.
  • the method for producing nanofibers using the electrospinning method is a method in which spinning solution is filled.
  • the spinning solution supplied to the nozzle is spun and concentrated through a nozzle on a collector under high voltage to form a nanofiber web, which is transferred to units of the electrospinning device on a long sheet.
  • the nanofiber web is formed by the nanofiber
  • a long sheet in which the fibers are laminated is passed through each unit, and the nanofibers are repeatedly laminated, and then laminated, embossed, heat and pressed, and needle punched to produce a nonwoven fabric.
  • the electrospinning device is a bottom-up electrospinning according to the direction in which it is located on the collector
  • the electrospinning device is made of a configuration in which the collector is located at the top of the nozzle, a bottom-up electrospinning apparatus capable of producing uniform and relatively thin nanofibers, and the collector is configured in the bottom of the nozzle, It is possible to produce a thick nanofiber, it is divided into a top-down electrospinning device that can increase the production of nanofibers per unit time and a horizontal electrospinning device consisting of a collector and a nozzle arranged in a horizontal direction.
  • Upward electrospinning device is composed of a configuration in which the spinning solution is injected through the nozzle of the upward nozzle block, the spinning solution is sprayed is laminated on the lower surface of the support to form nanofibers.
  • the long sheet, in which the nanofiber web is laminated by spraying the spinning solution through the nozzle, is transferred into another unit, and the long sheet is transported into the other unit.
  • the nanofiber web is manufactured by repeatedly performing the above-described process, such as spraying the spinning solution through the bla and stacking nanofibers again.
  • the conventional technology for spinning the nano nonwoven fabric is limited to a small lab-oriented work line, there was no concept of dividing the nanofiber in the horizontal direction by using a nozzle block in the spinneret, in addition to that used in industrial sites
  • the fiber thickness of the entire nanofiber layer in the plane direction or the basis weight was constant so that the production and sale were possible by satisfying the standard.
  • the filter used for the gas turbine of a thermal power plant the direction in which air is introduced and the air
  • the basis weight and thickness of the fibers constituting the filter do not need to be constant, depending on the location of the inlet, the direction of the exhaust, and the location of the exhaust.
  • the air flow rate is lower in the filter part where air filtration is not active. Since there are not many, it is necessary to design a design to increase the durability of the nanofibers to increase the durability than the air filtration side. In addition, in consideration of the efficiency of the filter, the basis weight of the nanofibers, there is a demand for a filter having a different basis weight on the same filter depending on the position of the air inlet and outlet.
  • nanofiber filters composed of different types of polymers in the plane of the filter.
  • the present invention has been made to solve the above problems, and a plurality of nozzle tubes are arranged in the longitudinal direction or the width direction of the substrate supplied in the unit of the electrospinning apparatus, and the polymer spinning solution supplied to each nozzle tube is provided. Nanos that can stack nanofiber webs with different basis weights, types of polymers or fiber diameters on the same plane of the substrate by electrospinning the polymer spinning solution in the longitudinal direction or the width direction of the substrate with different concentrations, spinning amounts, and types of polymers An object of the present invention is to provide an electrospinning device for the production of fiber webs.
  • each nozzle tube is formed by the spinning polymer spinning solution forming the same and constant radiation area and the spinning part in the longitudinal direction or the width direction on the same plane of the substrate, or by controlling and controlling the operation of each nozzle pipe to which the polymer spinning solution is supplied. It is an object of the present invention to provide an electrospinning device for manufacturing nanofiber webs which can form a spinning region and a spinning portion which are variable in the longitudinal direction or the width direction on the same plane of the substrate.
  • the present invention is suitable for both a bottom-up electrospinning apparatus and a top-down electrospinning apparatus.
  • nanofiber webs By forming nanofiber webs with different basis weights, fiber diameters, and types of polymers in different areas and specific parts, different loading rates can be formed for each part of the filter when the filter is manufactured with nanofiber webs. It is an object of the present invention to provide a type of nanofiber web and a nanofiber filter, and to provide an electrospinning device for manufacturing a nanofiber web capable of mass production.
  • an object of the present invention is to provide a method for producing a moisture-permeable waterproof fabric having different basis weights, types of polymers or fiber diameters in the CD direction or MD direction, and a moisture-permeable waterproof fabric produced thereby.
  • the nozzle body in the electrospinning apparatus for manufacturing a nanofiber web, is provided in the unit, the nozzle body is provided with a plurality of nozzles in the form of fins Nozzle blocks arranged in plurality in a direction; Filled with a different type of polymer spinning solution, connected to the nozzle block is provided with a plurality of at least one spinning solution main tank for supplying a polymer spinning solution; A collector spaced at a predetermined distance from the nozzle to accumulate heterogeneous polymer spinning solution sprayed from the nozzles of the nozzle bodies; A voltage generator for generating a voltage at the collector; And an auxiliary transport device for transporting the substrate.
  • It is configured to include, and the electrospinning of the heterogeneous polymer spinning solution on the substrate at the same time to provide an electrospinning for manufacturing nanofiber web, characterized in that to form a laminated laminate of heterogeneous nanofiber web on the same plane in the width direction of the substrate do.
  • the nozzle body in the electrospinning apparatus for manufacturing a nanofiber web, is provided in the unit, the nozzle body is provided with a plurality of nozzles in the form of a pin is arranged in a plurality of length direction of the substrate Nozzle block; Filled with a different type of polymer spinning solution, connected to the nozzle block is provided with a plurality of at least one spinning solution main tank for supplying a polymer spinning solution; A collector spaced at a predetermined distance from the nozzle to accumulate heterogeneous polymer spinning solution sprayed from the nozzles of the nozzle bodies; A voltage generator for generating a voltage at the collector; And an auxiliary transport device for transporting the substrate.
  • It comprises a, and provides an electrospinning for manufacturing a nanofiber web, characterized in that the electrospinning of the heterogeneous polymer spinning solution on the substrate at the same time to form a laminated laminate of heterogeneous nanofiber web on the same plane of the substrate.
  • the spinning solution main tank is composed of a first spinning solution main tank, a second spinning solution main tank and a third spinning solution main tank
  • the first spinning solution main tank is a nozzle block provided on one side in the width direction of the substrate It is connected to the nozzle tube of the
  • the second spinning solution main tank is connected to the nozzle pipes of the nozzle block provided on the widthwise center side of the base material
  • the third spinning solution main tank is provided on the other side in the width direction of the base material
  • the first spinning solution main tank is provided on one side in the width direction of the substrate, and supplies heterogeneous polymer spinning solutions to the nozzle pipes connected to the first supply pipe.
  • the spinning solution main tank is provided at the center side in the width direction of the base material, and supplies heterogeneous polymer spinning solution to the nozzle pipes connected to the second supply pipe, and the third spinning solution main tank is provided at the other side in the width direction of the base material.
  • the heterogeneous polymer spinning solution is supplied to the nozzle tubes connected to the third supply pipe, and the nanofiber web is divided and formed by electrospinning the heteropolymer spinning solution in the width direction of the substrate through the respective nozzles, and the width of the substrate is formed.
  • the nozzle body in the electrospinning apparatus for manufacturing a nanofiber web, is provided in the unit, the nozzle body is provided with a plurality of nozzles in the form of fins arranged in a plurality in the width direction of the substrate Nozzle block;
  • a spinning solution main tank filled with a polymer spinning solution and connected to a nozzle tube of the nozzle block to supply a polymer spinning solution;
  • a collector spaced apart from the nozzle at a predetermined interval to accumulate the polymer spinning solution sprayed from the nozzle of each nozzle pipe;
  • a voltage generator for generating a voltage at the collector;
  • an auxiliary transport device for transporting the substrate.
  • each nozzle tube is connected to the spinning solution main tank by a solution supply pipe, and the supply amount adjusting means is provided in the solution supply pipe to control the supply amount of the polymer spinning solution supplied from the spinning solution main tank to the nozzle pipe.
  • Each nozzle is connected to the solution supply pipe of the nozzle pipe by a nozzle supply pipe, and the nozzle supply pipe is provided with a radiation amount adjusting means, and the amount of radiation of the polymer spinning solution radiated after being supplied to the nozzle from the nozzle pipe is controlled and controlled.
  • the present invention provides an electrospinning device for manufacturing a nanofiber web, wherein the polymer spinning solution is laminated on a nanofiber web having different basis weights on the same plane in the width direction of the substrate.
  • the nozzle body in the electrospinning apparatus for manufacturing a nanofiber web, is provided in the unit, the nozzle body is provided with a plurality of nozzles in the form of a pin is arranged in a plurality of length direction of the substrate Nozzle block;
  • a spinning solution main tank filled with a polymer spinning solution and connected to a nozzle tube of the nozzle block to supply a polymer spinning solution;
  • a collector spaced apart from the nozzle at a predetermined interval to accumulate the polymer spinning solution sprayed from the nozzle of each nozzle pipe;
  • a voltage generator for generating a voltage at the collector;
  • an auxiliary transport device for transporting the substrate.
  • each nozzle tube is connected to the spinning solution main tank by a solution supply pipe, and the supply amount adjusting means is provided in the solution supply pipe to control the supply amount of the polymer spinning solution supplied from the spinning solution main tank to the nozzle pipe.
  • Each nozzle is connected to the solution supply pipe of the nozzle pipe by a nozzle supply pipe, and the nozzle supply pipe is provided with a radiation amount adjusting means, and the amount of radiation of the polymer spinning solution radiated after being supplied to the nozzle from the nozzle pipe is controlled and controlled.
  • the present invention provides an electrospinning device for manufacturing a nanofiber web, wherein the polymer spinning solution is laminated on a nanofiber web having different basis weights on the same plane in the longitudinal direction.
  • the supply amount adjusting means provided in the solution supply pipe consists of a supply valve which is controlled to open and close, the specific nozzle of each nozzle pipe connected to the solution supply pipe to the spinning solution main tank by the opening and closing of the supply valve It is made to selectively supply the polymer spinning solution only to the tube, and the radiation amount adjusting means provided in the nozzle supply pipe is composed of a nozzle valve that is controlled to open and close, the nozzle supply pipe to the solution supply pipe by opening and closing the nozzle valve A polymer spinning solution is selectively supplied to only a specific nozzle of each nozzle connected to the electrospinning, and the supply amount adjusting means of the solution supply pipe is composed of a supply valve which is open and closeable, the opening of the supply valve, Only one of the nozzle pipes connected to the spinning solution main tank by the waste is connected to the solution supply pipe.
  • the self-spinning solution is selectively supplied, and the radiation amount adjusting means of the nozzle supply pipe is composed of a nozzle valve which is controlled to open and close, and among the nozzles connected to the nozzle supply pipe to the solution supply pipe by opening and closing the nozzle valve. It is made to electrospin by selectively supplying the polymer spinning solution only in a specific nozzle, it provides an electrospinning for manufacturing nanofiber web, characterized in that to control the opening and closing of the supply valve and the nozzle valve individually or simultaneously.
  • the nozzle body is provided in the unit, a plurality of nozzle bodies provided with a plurality of pin-shaped nozzles are arranged in the length direction of the substrate Nozzle block;
  • a spinning solution main tank filled with a polymer spinning solution and connected to a nozzle tube of the nozzle block to supply a polymer spinning solution;
  • a collector spaced apart from the nozzle at a predetermined interval to accumulate the polymer spinning solution sprayed from the nozzle of each nozzle pipe;
  • a voltage generator for generating a voltage at the collector;
  • an auxiliary transport device for transporting the substrate.
  • each nozzle pipe is connected to the solution solution pipe to the spinning solution main tank, each nozzle is connected to the nozzle supply pipe to the solution supply pipe of the nozzle pipe, the nozzle supply pipe is provided with a radiation amount adjusting means to the nozzle
  • the amount of radiation of the electrospun polymer spinning solution is controlled and controlled so that the nanofiber webs having different basis weights are interposed in the longitudinal direction spaced apart at regular intervals in the longitudinal direction on the same plane when the polymer spinning solution is electrospun on the substrate. It provides an electrospinning device for manufacturing nanofiber web, characterized in that the laminate is formed.
  • the radiation dose adjusting means provided in the nozzle supply pipe is made of a nozzle valve which is controlled to open and close, the polymer valve only at a specific nozzle of each nozzle connected to the nozzle supply pipe to the solution supply pipe by opening and closing the nozzle valve.
  • the present invention provides an electrospinning device for manufacturing nanofibers, characterized in that it is adapted to variably control the radiation region and the radiating portion of different basis weight nanofiber webs continuously interposed in a width direction spaced at regular intervals on the same plane in the longitudinal direction.
  • the nozzle body in the electrospinning apparatus for manufacturing a nanofiber web, is provided in the unit, the nozzle body is provided with a plurality of nozzles in the form of a pin is arranged in a plurality of length direction of the substrate Nozzle block; Filled with a different type of polymer spinning solution, connected to the nozzle block is provided with a plurality of at least one spinning solution main tank for supplying a polymer spinning solution; A collector spaced at a predetermined distance from the nozzle to accumulate heterogeneous polymer spinning solution sprayed from the nozzles of the nozzle bodies; A voltage generator for generating a voltage at the collector; And an auxiliary transport device for transporting the substrate.
  • It is configured to include, and is spaced apart in the longitudinal direction of the substrate by electrospinning the heterogeneous polymer spinning solution in a specific region and a specific portion at the same time to form a laminate so that the heterogeneous nanofiber web interposed continuously on the same plane of the substrate It provides an electrospinning device for producing nanofiber web, characterized in that.
  • the spinning solution main tank is composed of a first spinning solution main tank and a second spinning solution main tank, the first spinning solution main tank is connected to a specific nozzle tube arranged in the longitudinal direction of the substrate,
  • the second spinning solution main tank is arranged in the longitudinal direction of the base material, is connected to the nozzle pipes located between the specific nozzle pipes connected to the first spinning solution main tank, it is arranged in the longitudinal direction of the base material, Spinning region and spinning of heterogeneous nanofiber webs which are laminated on the same plane by electrospinning from the nozzles of each nozzle tube by controlling the operation of each nozzle tube to which the polymer spinning solution is supplied.
  • the present invention provides an electrospinning device for manufacturing a nanofiber web, which is configured to variably control a part.
  • the nanofibers in the CD direction manufactured by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit. It provides a method for producing a moisture-permeable waterproof nanofiber web of different kinds of polymers.
  • the polymer of the nanofibers is differently manipulated the type of nanofiber polymer by differently adjusting the type of polymer solution injected into the plurality of nozzle tube, the polymer in one direction of the CD direction is polyurethane and the polymer in the other one direction Is polyvinylidene fluoride, when the moisture-permeable waterproof nanofiber web is divided into three parts in the CD direction, the middle part is polyurethane, and the remaining part is polyvinylidene fluoride, and the types of polymers are alternately different in the CD direction. It provides a method for producing a water-permeable waterproof nanofiber web different in the type of polymer of nanofiber in the CD direction, characterized in that it is designed to.
  • the nano-direction in the CD direction is produced by a bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit.
  • a method for producing a moisture-permeable waterproof nanofiber web having different fiber diameters of fibers is provided.
  • the polymer of the nanofibers is designed to differently control the nanofiber diameter by differently adjusting the concentration of the polymer solution injected into the plurality of nozzle tubes, and to increase the gradient of the fiber diameter in one direction of the CD direction, It is designed to increase or decrease the gradient of the fiber diameter in both directions of the CD direction, and the fiber diameter of the nanofibers in the CD direction, characterized in that the fiber diameters are alternately designed in the CD direction of the water-permeable waterproof nanofiber web It provides a manufacturing method.
  • the nanofibers in the CD direction manufactured by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit. It provides a method for producing a moisture-permeable waterproof nanofiber web having a different basis weight.
  • the basis weight of the nanofibers is designed to operate a plurality of nozzle tube in the on-off system
  • the on-off system is designed to increase the gradient of basis weight in one direction of the CD direction in which the nanofibers are integrated
  • the on-off The system is designed to increase or decrease the basis weight in both directions of the CD direction in which the nanofibers are integrated
  • the on-off system is designed to alternately basis weight in the CD direction in which the nanofibers are integrated.
  • a method for producing a moisture-permeable waterproof nanofiber web in which the basis weight of the nanofibers is different in the CD direction, which is different in the CD direction in the range of 10 to 100 gsm.
  • the nanofibers in the MD direction are produced by a bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit. It provides a method for producing a moisture-permeable waterproof nanofiber web having a different basis weight.
  • the basis weight of the nanofibers is a plurality of nozzle bodies to operate in an on-off system
  • the on-off system is designed to alternately different basis weights in the MD direction in which the nanofibers are integrated
  • the on-off system The alternating sections are designed alternately in the MD direction in which the silver nanofibers are integrated, and the alternating sections designed with different basis weights have a 30 to 80 cm section having a nano fiber basis weight of 5 to 50 gsm and a 5 to 50 nanogram basis weight of 50 to 100 gsm. It provides a method for producing a moisture-permeable water-resistant nanofiber web different in the basis weight of the nanofibers in the MD direction, characterized in that consisting of 30cm section.
  • a moisture-permeable waterproof fabric which is prepared by lining the moisture-permeable waterproof nanofiber web and the nanofiber web manufactured by the above-described fabric.
  • the nanofiber of the nanofibers in the CD direction produced by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit Provided are methods for producing nanofiber filters having different polymer types.
  • the fiber diameter of the nanofibers is differently controlled by controlling the types of polymer solution injected into the plurality of nozzle tubes to differently control the types of nanofiber polymers, and the polymer in one direction of the CD direction is polyvinylidene fluoride.
  • the remaining polymer in one direction is nylon, and when the nanofiber filter is divided into three in the CD direction, the middle part is polyvinylidene fluoride, the remaining part is nylon, and the type of polymer is alternately designed in the CD direction.
  • the present invention provides a method for producing a nanofiber filter having different kinds of polymers of nanofibers in a CD direction.
  • the fibers of the nanofibers in the CD direction are produced by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit.
  • the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit.
  • the fiber diameter of the nanofibers is designed to manipulate the nanofiber diameter by differently adjusting the concentration of the polymer solution injected into the plurality of nozzle tubes, and to increase the gradient of the fiber diameter in one direction of the CD direction. It is designed to increase or decrease the gradient of the fiber diameter in both directions of the direction, and the method for producing a nanofiber filter having a different fiber diameter of the nanofiber in the CD direction, characterized in that the fiber diameter is designed alternately in the CD direction. to provide.
  • the nanofibers in the CD direction produced by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit.
  • the basis weight of the nanofibers is designed to operate a plurality of nozzle tube in the on-off system
  • the on-off system is designed to increase the gradient of basis weight in one direction of the CD direction in which the nanofibers are integrated
  • the on-off The system is designed such that the gradient of basis weight increases or decreases in both directions of the CD direction in which the nanofibers are integrated
  • the on-off system is designed to alternately basis weight in the CD direction in which the nanofibers are integrated. It provides a method for producing a nanofiber filter different in basis weight of the nanofiber in the direction.
  • a method for producing a nanofiber filter having a basis weight of nanofibers different in the CD direction characterized in that the basis weight varies from 0.01 to 10 gsm.
  • the basis weight of the nanofibers in the MD direction produced by the bottom-up electrospinning apparatus including a plurality of nozzle tubes in the bottom-up electrospinning unit are provided.
  • the basis weight of the nanofibers is a plurality of nozzle bodies to operate in an on-off system
  • the on-off system is designed to alternately different basis weights in the MD direction in which the nanofibers are integrated
  • the on-off system is designed to have different basis weights alternately in the MD direction in which the nanofibers are integrated, and the alternating sections designed with different basis weights have a 30 to 80cm section and a nanofiber basis weight of 0.01 to 10 gsm. It provides a method for producing a nanofiber filter different in the basis weight of the nanofiber in the MD direction, characterized in that composed of 5 to 30cm section of 20 to 40gsm and the nanofiber filter produced thereby.
  • a nanofiber filter cartridge comprising a nanofiber filter.
  • the present invention having the configuration as described above is provided with a plurality of nozzle tubes arranged in the longitudinal direction or the width direction of the nozzle block, the concentration of the polymer spinning solution supplied to each nozzle tube, the amount of radiation, the type of the polymer
  • concentration of the polymer spinning solution supplied to each nozzle tube the concentration of the polymer spinning solution supplied to each nozzle tube, the amount of radiation, the type of the polymer
  • the electrospinning of the polymer spinning solution in the longitudinal direction or the width direction of the substrate can be prepared a nanofiber web that can be laminated nanofiber web with different basis weight, type of polymer or fiber diameter on the same plane of the substrate and
  • the load ratio for each part can be formed differently, which makes it possible to manufacture water-repellent waterproof fabric and nanofiber filter of various materials and types required in the field. The effect is that mass production is possible.
  • 1 is a side view schematically showing an electrospinning device for manufacturing a nanofiber web
  • FIG. 2 to 5 is a plan view schematically showing a nozzle body arranged in the nozzle block of the electrospinning apparatus for producing a nanofiber web according to the present invention
  • 6 to 7 is a side view schematically showing a nozzle body arranged in the nozzle block of the electrospinning apparatus for producing a nanofiber web according to the present invention
  • Figure 8 is a perspective view schematically showing a nozzle tube arranged in the nozzle block of the electrospinning apparatus for producing a nanofiber web according to the present invention
  • 9 to 14 is a polymer spinning solution is electrospun on the same plane of the substrate through the nozzle of each nozzle tube of the electrospinning apparatus for producing a nanofiber web according to the present invention
  • FIGS. 10 and 11 A plan view schematically illustrating an operation process (nozzles indicated by broken lines in FIGS. 10 and 11 are closed, and nozzles indicated by broken lines in FIGS. 12 to 14 indicate that they are located below the substrate);
  • 15 to 17 are plan views of nanofiber webs different in basis weight, type of polymer or fiber diameter in the CD direction according to the present invention.
  • 18 to 19 are plan views of nanofiber webs having different basis weights in the MD direction according to the present invention.
  • Electrospinning apparatus for manufacturing and producing nanofibers, spinneret main tank filled with spinning solution, metering pump for quantitative supply of spinning solution, nozzle block for installing a plurality of nozzles for discharging spinning solution, It is configured to include a voltage generator for generating a voltage and a collector to accumulate fibers to be located at the bottom of the nozzle.
  • the electrospinning device having the structure as described above comprises a metering pump for quantitative supply of the spinning solution main tank filled with the spinning solution and the polymer spinning solution filled in the spinning solution main tank and the polymer spinning solution in the spinning solution main tank.
  • Discharge, but collectors are spaced apart from the nozzle and a high voltage to the collector in order to accumulate a nozzle block in which a plurality of nozzles in the form of pins are arranged and the polymer spinning solution to be injected is located on the top of the nozzle It consists of a unit containing the device.
  • the spinning solution in the spinning solution filled with the spinning solution is quantitatively supplied to a plurality of nozzles to which a high voltage is applied through a metering pump, and the spinning solution is supplied to the nozzle.
  • the nanofiber is spun and focused through a nozzle on a collector where high voltage is applied to form a nanofiber web, and a nanofiber web is formed on a long sheet conveyed to the units of the electrospinning apparatus, and the nanofibers are laminated.
  • the elongated sheet is passed through each unit, and the nanofibers are repeatedly stacked and then laminated, embossed, heat and pressed, and needle punched to produce a nonwoven fabric.
  • the electrospinning device is divided into a bottom-up electrospinning device, a top-down electrospinning device, and a horizontal electrospinning device according to the direction of the position on the collector. That is, the electrospinning device is made of a configuration in which the collector is located at the top of the nozzle, a bottom-up electrospinning apparatus capable of producing uniform and relatively thin nanofibers, and the collector is configured in the bottom of the nozzle, It is possible to produce thick nanofibers, and is divided into a top-down electrospinning apparatus capable of increasing the production of nanofibers per unit time and a horizontal electrospinning apparatus consisting of a collector and a nozzle arranged in a horizontal direction.
  • Upward electrospinning device is composed of a configuration in which the spinning solution is injected through the nozzle of the upward nozzle block, the spinning solution is sprayed is laminated on the lower surface of the support to form nanofibers.
  • the elongated sheet in which the nanofiber web is laminated by spraying the spinning solution through a nozzle in one unit of the bottom-up electrospinning apparatus is transferred into another unit, and transferred into another unit.
  • the nanofiber web is manufactured by repeatedly performing the above-described process, such as spraying the spinning solution through a nozzle on a long sheet, and stacking nanofibers again.
  • Nanofibers generally mean fibers having an average diameter of 50 to 1000 nm or less, and can be manufactured using electrospinning devices.
  • Electrospinning devices include power supplies, spinning nozzles and collectors.
  • the power supply creates a high voltage electric field between the nozzle and the collector.
  • the spinning nozzle supplies the spinning solution toward the spinning space.
  • the collector focuses the electrospun nanofibers.
  • the filaments formed in the spinning space of the electrospinning apparatus may have various average diameters according to the spinning conditions, and may be nanofibers having an average diameter of 50 to 1000 nm.
  • moisture-permeable waterproof layer refers to a layer having moisture-permeable waterproof properties.
  • the moisture-permeable waterproof layer may be made of nanofibers, but may be made of various materials including pores suitable for having water-permeable waterproof properties.
  • fabric refers to a knitted fabric, a woven fabric, or a nonwoven fabric forming a moisture-permeable waterproof fabric in combination with the moisture-permeable waterproof layer.
  • the laminating method of the present invention is applicable to all cases in which two or more sheets having a thin thickness are pressed and bonded, and an appropriate technical effect can be exerted according to the use thereof.
  • Moisture-proof waterproof layer should be made of a layer containing pores suitable to have a water-repellent waterproofing properties may be made of nanofibers. Since the nanofibers are fibers having an average diameter of 50 to 1000 nm, the size of the pores can be controlled by adjusting their thickness.
  • the nanofiber layer may be made of a polymer resin such as polyurethane, polyvinylidene fluoride, or nylon.
  • the nanofiber layer is made of two or more polymers different in melting temperature, it is also possible to control the size of the pores by melting the nanofibers made of one or more polymers.
  • the adhesive material is dissolved in a solvent to prepare an adhesive spinning solution, and the adhesive spinning solution is transferred.
  • the waterproof fabric is prepared by laminating the fabric having the adhesive layer formed thereon with a waterproof film.
  • FIG. 2 to 5 is a plan view schematically showing a nozzle tube arranged on the nozzle block of the electrospinning apparatus for producing a nanofiber web according to the present invention
  • Figures 6 to 7 is an electrospinning apparatus for manufacturing a nanofiber web according to the present invention
  • FIG. 8 is a side view schematically showing a nozzle tube arranged in a nozzle block of FIG. 8, and
  • FIG. 8 is a perspective view schematically illustrating a nozzle tube arranged in a nozzle block of an electrospinning apparatus for manufacturing nanofiber web according to the present invention.
  • FIG. 14 is an operation process in which the polymer spinning solution is electrospun on the same plane of the substrate through the nozzles of the nozzle body of the electrospinning apparatus for manufacturing a nanofiber web according to the present invention (the nozzles indicated by broken lines in FIGS. 10 and 11 are closed). Nozzles, indicated by dashed lines in FIGS. 12 to 14 indicate that they are located below the substrate). It is a plan view.
  • the electrospinning apparatus 100 consists of a bottom-up electrospinning device, consisting of at least one unit (110, 110 ').
  • the electrospinning apparatus 100 is composed of a bottom-up electrospinning apparatus, it may be made of a top-down electrospinning apparatus.
  • the unit (110, 110 ') is a metering pump for supplying the quantitative supply of the polymer spinning solution filled in the spinning solution main tank 120 and the spinning solution main tank 120 filled with the polymer spinning solution (not shown) )
  • the nozzle body 112 is provided with a plurality of nozzles (111a) in the form of a pin arranged in the MD or CD direction of the base material 115
  • a pressure generator 114 In order to accumulate the nozzle block 111 to be installed and the polymer spinning solution sprayed from the nozzle 111a to generate a high voltage to the collector 113 and the collector 113 which are installed at a predetermined interval apart from the nozzle 111a It is configured to include a pressure generator 114.
  • the electrospinning apparatus 100 for manufacturing a nanofiber web is continuously metered into the nozzle block 111 in which the polymer spinning solution filled in the spinning solution main tank 120 is given a high voltage through a metering pump.
  • the polymer spinning solution supplied to the nozzle block 111 is radiated and focused on the substrate 115 transferred in the electrospinning apparatus through the nozzle 111a on the collector 113 on which the high voltage is applied, and thus the nanofiber web This is laminated.
  • the nozzle pipe 112 is arranged in plurality in the nozzle block 111 of the electrospinning apparatus 100 is provided with at least two or more connection to the spinning solution main tank 120 for supplying a polymer spinning solution.
  • the nozzle body 112 having a plurality of nozzles (111a) on the upper surface is arranged in the nozzle block 111 in a plurality of arrangement in the MD or CD direction of the substrate 115,
  • the nozzle solution 112 is connected to the spinning solution main tank 120 including the first spinning solution main tank 120a, the second spinning solution main tank 120b, and the third spinning solution main tank 120c. At least two or more spinning solution main tanks 120 are connected to the nozzle body 112.
  • specific nozzle tubes 112a, 112b, and 112c of the nozzle tubes 112 of the nozzle block 111 are connected to the first spinning solution main tank 120a, and other specific nozzle tubes 112d, 112e, and 112f. ) Are connected to the second spinning solution main tank 120b, and other specific nozzle bodies 112g, 112h, 112i are connected to the third spinning solution main tank 120c.
  • the first spinning solution main tank 120a is connected to specific nozzle bodies 112a, 112b and 112c of the nozzle block 111 by the first supply pipe 121a, and the second spinning solution main tank ( 120b is connected to the other nozzle pipes 112d, 112e, and 112f of the nozzle block 111 and the second supply pipe 121b, and the third spinning solution main tank 120c is connected to another nozzle block 111.
  • Nozzle pipes 112g, 112h, 112i are connected to the third supply pipe 121c, and the first, second and third supply pipes 121a, 121b, 121c are connected to the nozzle pipes 112a, 112b, 112c, 112d, A plurality of branches are formed so as to correspond to the number of 112e, 112f, 112g, 112h, and 112i.
  • the first, second and third supply pipe (121a, 121b, 121c) is preferably provided with a valve (not shown) to be opened, closed, the first, second by the opening and closing of the valve
  • the polymer spinning solution filled in the second and third spinning solution main tanks 120a, 120b, and 120c is formed through the nozzle bodies 112a, 112b, 112c, through the first, second, and third supply pipes 121a, 121b, and 121c.
  • 112d, 112e, 112f, 112g, 112h, 112i) is preferably made to be controlled by the on-off system, but is not limited thereto.
  • valve is preferably made to be automatically or manually controllable, it is preferred that the controllable connection by a control unit (not shown), but is not limited thereto.
  • the polymer spinning solution filled in the first spinning solution main tank (120a), the second spinning solution main tank (120b) and the third spinning solution main tank (120c) is the same, the same but different concentrations, Or different polymer spinning solutions.
  • the specific nozzle pipe 112a, 112b, 112c connected to the first spinning solution main tank 120a and the other specific nozzle pipe 112d connected to the second spinning solution main tank 120b,
  • the polymer spinning solution is electrospun in the specific nozzle tubes 112g, 112h, 112i connected to the 112e, 112f and third spinning solution main tanks 120c.
  • the moisture-permeable waterproof nanofiber web or nanofiber filter as shown in FIGS. 15 to 19 is manufactured by the electrospinning apparatus as described above.
  • 15 to 19 a to f of the basis weight or the diameter of the fiber may be different, or may be different kinds of polymers disclosed below, in one embodiment a, d, e is polyurethane, b, c, f May be nylon, a, d, and e may have a diameter of 30 nm, and b, c, and f may be 350 nm.
  • the MD direction used in the present invention means Machine Direction, which means the longitudinal direction corresponding to the advancing direction in the case of continuous production of fibers such as film or nonwoven fabric, and the CD direction means the cross direction perpendicular to the MD direction.
  • MD may also be referred to as machine direction / longitudinal direction, and CD as width direction / lateral direction.
  • Basis Weight or Grammage is defined as mass per unit area, ie grams per square meter (often referred to as gsm rather than g / m 2) as preferred units.
  • the basis weight of the polymer solution deposited on the substrate may be differently controlled by the on-off system based on the independent nozzle block.
  • the basis weight of the moisture-permeable waterproof layer can be appropriately selected depending on the application, but the basis weight is in the range of 5 to 50 gsm, preferably 12 to 40 gsm, even more preferably 15 to 30 gsm.
  • the thickness is preferably 5 gsm or more from the viewpoint of securing the mechanical strength of the moisture-permeable waterproof layer and obtaining water resistance, and less than 50 gsm from the viewpoint of ensuring sufficient breathability.
  • a portion where water vapor transmission is substantially required is adjusted to lower the basis weight of the nanofiber layer, and a portion where water vapor transmission is not substantially required is adjusted to the basis weight of the nanofiber layer.
  • the armpit portion of the human body can adjust the basis weight of the nanofiber layer to 5 to 50 gsm, and the abdominal and hip portions where the wear and tear are not substantially required without moisture permeability can be adjusted to 50 gsm or more.
  • the present invention is different from the basis weight in the MD direction by varying the type of polymer radiated from the nozzle block through the configuration of an electrospinning device connected to a plurality of nozzle blocks are connected to a plurality of tanks each of the polymer constituting the nanofiber, or CD To provide a moisture-permeable waterproof fabric or nanofiber filter having different basis weights, types of polymers, or fibers in diameter.
  • polymers of the invention and polyvinylidene fluorides, polyurethanes and nylons thereof are preferred.
  • the polymer may be polyvinylidene fluoride, polyvinylidene fluoride-hexafluoro propylene copolymer, or a composite composition thereof, polyurethane, polyamide, polyimide, polyamideimide, poly (meth-phenylene isophthal Amide), metaaramid, polyethylenechlorotrifluoroethylene, polychlorotrifluoroethylene, polymethylmethacrylate, polyacrylonitrile, polyvinylidene chloride, polyvinylidene chloride-acrylonitrile copolymer, polyacrylamide At least one substance selected from the group consisting of amides and the like.
  • Polyamide refers to a generic term for polymers linked by amide bonds (-CONH-), and can be obtained by condensation polymerization of diamines and divalent acids. Polyamides are characterized by amide bonds in their molecular structure and vary in physical properties depending on the proportion of amide groups. For example, when the ratio of amide groups in a molecule increases, specific gravity, melting point, water absorbency, rigidity, etc., are increased.
  • polyamide is a material that is applied in a wide range of fields such as clothing, tire cords, carpets, ropes, computer ribbons, parachutes, plastics, adhesives, etc. due to its excellent corrosion resistance, abrasion resistance, chemical resistance and insulation.
  • polyamides are classified into aromatic polyamides and aliphatic polyamides.
  • Representative aliphatic polyamides include nylon.
  • Nylon is originally a trademark of DuPont, USA, but is currently used as a generic name.
  • Nylon is a hygroscopic polymer and reacts sensitively to temperature. Representative nylons include nylon 6, nylon 66 and nylon 46.
  • nylon 6 has excellent heat resistance, moldability, and chemical resistance properties, and is manufactured by ring-opening polymerization of ⁇ -caprolactam to prepare it.
  • Nylon 6 is because caprolactam has 6 carbon atoms.
  • Nylon 66 is similar to nylon 6 in general, but has excellent heat resistance and superior self-extinguishing and abrasion resistance compared to nylon 6.
  • Nylon 66 is prepared by dehydration condensation polymerization of hexamethylenediamine with adipic acid.
  • nylon 46 is excellent in heat resistance, mechanical properties and impact resistance, and has the advantage of high processing temperature.
  • Nylon 46 is made by polycondensation of tetramethylenediamine with adipic acid.
  • Diaminobutane (DAB) a raw material, is prepared from the reaction between acrylonitrile and hydrogen cyanide.In the polymerization operation, a salt is prepared from diaminobutane and adipic acid in the first step, and then subjected to polymerization under an appropriate pressure. After conversion to a prepolymer, the solid of the prepolymer is prepared by polymerizing in a solid phase by treatment at about 250 ° C. in the presence of nitrogen and water vapor.
  • Nylon 46 in particular exhibits excellent characteristics with high amide concentrations and regular ordered arrangement between methylene and amide groups.
  • the melting point of nylon 46 is about 295 ° C., higher than other types of nylon, and has attracted attention as a resin having excellent heat resistance due to the above characteristics.
  • the present invention provides a moisture-permeable waterproof fabric or a nanofiber filter having different basis weights in the MD direction or different basis weights, types of polymers, or diameters of fibers in the CD direction.
  • Polyvinylidene fluoride (PVDF) resin is one of fluoro-based polymers, and the fluoro resin contains fluorine and has excellent thermal and chemical properties.
  • PVDF Polyvinylidene fluoride
  • Polyvinylidene fluoride comprises a homopolymer of vinylidene fluoride or a copolymer polymer containing 50% or more of vinylidene fluoride in a molar ratio in preparing a spinning solution dissolved in a suitable organic solvent. From the viewpoint of excellent strength of the polyvinylidene fluoride resin, the homopolymer is more preferable.
  • the polyvinylidene fluoride resin is a copolymerized polymer
  • the other copolymerized monomer copolymerized with the vinylidene fluoride monomer a known one is appropriately used. Although it can select and use, it does not specifically limit, For example, a fluorine monomer, a chlorine monomer, etc. can be used suitably.
  • weight average molecular weight is not specifically limited, It is preferable that it is 10,000-500,000, It is more preferable that it is 50,000-500,000, Polyvinylidene fluoride fluoride fluoride fluoride fluoride fluoride fluoride fluoride fluoride
  • the weight average molecular weight of the uride resin is less than 10,000, the nanofibers constituting the nanofibers cannot obtain sufficient strength, and if it exceeds 500,000, the solution handling is not easy and the processability is poor, making it difficult to obtain uniform nanofibers. .
  • polyacrylonitrile may be preferably used among the polymers applied to the present invention.
  • the polyacrylonitrile resin is a copolymer made from a mixture of acrylonitrile and units constituting most of them. Frequently used monomers include butadiene styrene vinylidene chloride or other vinyl compounds.
  • Acrylic fibers contain at least 85% acrylonitrile and modacryl contains 35-85% acrylonitrile. When other monomers are included, the fiber has the property of increasing affinity for the dye. More specifically, in the production of acrylonitrile-based copolymers and spinning solutions, in the case of using acrylonitrile-based copolymers, nozzle contamination is less during the manufacturing of microfibers by the electrospinning method, and the electrospinning properties are excellent. By increasing the solubility in the solvent, it is possible to give better mechanical properties. In addition, polyacrylonitrile has a softening point of 300 ° C. or higher and excellent heat resistance.
  • the degree of polymerization of the polyacrylonitrile is 1,000 to 1,000,000, preferably 2,000 to 1,000,000.
  • polyacrylonitrile may be selected from acrylonitrile monomers, hydrophobic monomers and
  • the weight percentage of acrylonitrile monomer during the self polymerization is less than 60, and the viscosity is too low for the electrospinning when the weight percentage of the hydrophilic monomer and the hydrophobic monomer are subtracted from the total monomer by a ratio of 3: 4. Even if the crosslinking agent is added to the nozzle, it is difficult not only to cause nozzle contamination but also to form a stable jet during electrospinning. In addition, in the case of 99 or more, the spinning viscosity is too high, and spinning is difficult, and even if an additive is added to reduce the viscosity, the diameter of the ultrafine fibers becomes thick and the productivity of the electrospinning is too low to achieve the object of the present invention.
  • the amount of comonomer is increased in the acrylic polymer, the amount of the crosslinking agent is transferred.
  • the hydrophobic monomer is methacrylate, ethyl acrylate, methyl methacrylate
  • Ethylene-based compounds such as vinylidene chloride and vinyl chloride and derivatives thereof
  • the hydrophilic monomers are acrylic acid, allyl alcohol, metaallyl alcohol, hydroxyethyla
  • Ethylene-based compounds such as acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, butanediol monoacrylate, dimethylaminoethyl acrylate, butene tricarboxylic acid, vinyl sulfonic acid, allyl sulfonic acid, metalyl sulfonic acid and parastyrene sulfonic acid It is preferable to use any one or more selected from compounds and polyacids or derivatives thereof.
  • a system compound or a sulfate compound can be used, it is generally preferable to use a radical initiator used for a redox reaction.
  • polyethersulfone preferably also polyethersulfone can be used.
  • polyethersulfone is a repeating unit
  • Amber transparent amorphous resin having a is generally prepared by the polycondensation reaction of dichlorodiphenylsulfone.
  • Polyethersulfone is a super heat-resistant engineering plastic developed by ICI UK
  • thermoplastics it is a polymer having excellent heat resistance.
  • Load distortion temperature is 200-220 degreeC
  • glass transition temperature is 225 degreeC.
  • the creep resistance up to 180 ° C is the most excellent among thermoplastic resins, and has the characteristics of withstanding hot water or steam of 150 to 160 ° C.
  • polyether sulfone is used for optical discs, magnetic disks, electric and electronic fields, hydrothermal fields, automotive fields, and heat-resistant coatings.
  • Solvents usable with the polyethersulfone include acetone, tetrahydrofue
  • DMF dimethylacetamide
  • DMAc dimethylacetamide
  • N-methyl-2-pyrrolidone N-methyl pyrrolidone, NMP
  • cyclohexane water or mixtures thereof, but are not limited thereto. It is not.
  • the physical property value in an Example was measured by the following method.
  • test pieces of 200 mm (MD) x 50 mm (CD) were taken from the nanofiber layer.
  • the collection place was made into arbitrary three places in each part in which a basis weight differs by an on-off control system.
  • the mass (g) of each sample collected was measured using the upper plate electronic balance.
  • the average value of the mass of each test piece was calculated
  • a polyurethane having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyurethane solution and a polyvinylidene fluoride solution.
  • DMF dimethylformamide
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyurethane having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyurethane solution and a polyvinylidene fluoride solution.
  • the polyurethane solution and the polyvinylidene fluoride solution were introduced into each of the spinning solution main tanks, and an applied voltage of 20 kV was applied to a nozzle block designed to be separated into three parts in the CD direction and connected to an independent main tank. It was electrospun on a substrate having a basis weight of 30 gsm.
  • Polyurethane-polyvinylidene fluoride with an electrospun cellulose substrate in the middle of the CD direction being a polyurethane nanofiber nonwoven fabric, and the rest of the polyvinylidene fluoride nanofiber nonwoven fabric having an average diameter of 200 nm and a CD width of 2 m.
  • a nanofiber nonwoven fabric was formed to prepare a polyurethane-polyvinylidene fluoride moisture-permeable nanofiber web.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyurethane having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyurethane solution and a polyvinylidene fluoride solution.
  • DMF dimethylformamide
  • Polyurethane and polyvinylidene fluoride nanofiber nonwoven fabric having a CD width of 2 m with an average diameter of 200 nm is formed on the electrospun cellulose substrate in the CD direction alternately.
  • Examples 1 to 3 were carried out in the same manner except that polyether sulfone was used instead of polyurethane.
  • the polyurethane adhesive layer is formed on one surface of the polyvinylidene fluoride fabric by using an electrospinning device, and the fabric is continuously supplied to the laminating apparatus.
  • the laminating apparatus the moisture-permeable water-proof nano made in Examples 1 to 6 and the fabric having the adhesive layer formed thereon
  • the island uweb was laminated to prepare a moisture-permeable waterproof fabric.
  • a polyurethane having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a solution of 12% and 25% of the polyurethane solution.
  • the polyurethane solution was introduced into each of the spinning solution main tanks, and an applied voltage of 20 kV was applied to a nozzle block designed to be separated into two parts in the CD direction and connected to an independent main tank, respectively.
  • Spinning On the electrospun cellulose substrate, 1m in the CD direction was 1% in polyurethane nanofiber nonwoven fabric of 12% concentration, and 1m in the other direction was 25% nanofiber nonwoven fabric in average diameter of 30nm and 350nm, respectively, with CD width of 2m.
  • Polyurethane nanofiber nonwoven fabric was formed to prepare a polyurethane moisture-permeable waterproof nanofiber web.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • Polyurethanes having a weight average molecular weight of 157,000 are dissolved in dimethylformamide (DMF) to prepare solutions of 12% and 25% polyurethane solutions.
  • the polyurethane solution was introduced into each of the spinning solution main tanks, and the nozzle block was divided into three parts in the CD direction and the applied voltage was applied to the nozzle block designed to be connected to the independent main tank, respectively, and the applied voltage was 20 kV.
  • Spinning The middle part of the CD direction on the electrospun cellulose substrate is a polyurethane nanofibre nonwoven fabric having a fiber diameter of 30 nm, and the polyurethane nanofiber nonwoven fabric having a CD width of 2 m at a remaining portion of 350 nm is formed.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyurethane having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a solution of 12% and 25% polyurethane solution.
  • the polyurethane solution was introduced into each of the spinning solution main tanks, and the nozzle block was divided into nine parts in the CD direction and the applied voltage was applied to the nozzle block designed to be connected to an independent main tank, respectively, and an applied voltage of 20 kV was applied to the substrate having a basis weight of 30 gsm.
  • Spinning Polyurethane nanofiber nonwoven fabric having a fiber diameter of 30 or 350 nm alternately in the CD direction on the electrospun cellulose substrate was formed with a CD width of 2 m to prepare a moisture-permeable waterproof nanofiber web.
  • the distance between the electrode and the collector was 40 cm, the flow rate of the spinning solution 0.1mL / h, the temperature of 22 °C, the humidity of 20% conditions were carried out upward electrospinning.
  • a polyurethane adhesive layer is formed on one surface of the nylon fabric using an electrospinning device.
  • the high fabric is continuously fed to the laminating device, in which the adhesive layer
  • the formed fabric and the moisture-permeable waterproof nanofiber web prepared in Examples 13 to 18 were laminated to prepare a water-repellent waterproof fabric.
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Inject the polyurethane solution into each of the spinning solution main tanks and apply an applied voltage of 20 kV to the nozzle block including an on-off system designed to separate the nozzle block into two parts in the CD direction and to be connected to an independent main tank, respectively. Electrospun on a substrate of 30 gsm.
  • DMF dimethylformamide
  • 1 m in one direction of the CD direction is 20 gsm of polyurethane nanofiber nonwoven fabric, and 1 m in the other direction is 2 m of polyurethane nanofiber nonwoven fabric having a CD width of 2 m, which is 50 gsm of nonwoven fabric of nanofiber.
  • a polyurethane moisture-permeable nanofiber web was prepared.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Injecting the polyurethane solution into each of the spinning solution main tanks and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block into three parts in one direction of the CD direction, and the basis weight is 30 gsm. Electrospun onto the phase.
  • DMF dimethylformamide
  • Nanofiber nonwoven fabric having a basis weight of 50 gsm polyurethane nanofiber nonwoven fabric in the middle part of the CD direction on the electrospun cellulose substrate, and 50 cm basis weight of 20 gsm at the other edge, forming a polyurethane nanofiber nonwoven fabric having a CD width of 2 m.
  • Nanofiber webs were prepared. At this time, the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyurethane solution is prepared by dissolving a polyurethane having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyurethane solution to the spinning solution main tank and applying an applied voltage of 20 kV to the nozzle block including the on-off system designed to separate the nozzle block into 9 parts in one direction of the CD direction, the basis weight of 30gsm Was electrospun on.
  • Polyurethane moisture-permeable nanofiber web with a polyurethane nanofiber nonwoven fabric having a CD width of 2 m having a basis weight of 20 gsm and a basis weight of 50 gsm alternately in the CD direction formed on the electrospun cellulose substrate was prepared.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • Polyurethane adhesive layer is formed on one side of the nylon fabric by using an electrospinning device, and the fabric is continuously supplied to the laminating apparatus, and in the laminating apparatus, the adhesive layer
  • the formed fabric and the moisture-permeable waterproof nanofiber webs prepared in Examples 25 to 33 were laminated to prepare a water-permeable waterproof fabric.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and the applied voltage was applied to the nozzle block including the on-off system designed to include the nozzle block in the MD direction, and the applied voltage was 20 kV, and the electrospinning was performed on the cellulose substrate having a basis weight of 30 gsm. It was.
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm with respect to the MD direction, alternatively 30 cm is the basis weight of the polyvinylidene fluoride nanofiber nonwoven fabric, and 20 cm is the polyvinylidene fluoride nanofiber.
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a structure in which the basis weight of the nonwoven fabric was repeated at 50 gsm was formed to prepare a polyvinylidene fluoride moisture-permeable nanofiber web having a different basis weight of the nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Injecting the polyvinylidene fluoride solution into the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to include a nozzle block in the MD direction, electrospinning on a cellulose substrate having a basis weight of 30 gsm It was.
  • DMF dimethylformamide
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm with respect to the MD direction, and alternately 30 cm is the basis weight of the polyvinylidene fluoride nanofiber nonwoven fabric, and 5 cm is the polyvinylidene fluoride nanofiber.
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a structure in which the basis weight of the nonwoven fabric was repeated at 30 gsm was formed to prepare a polyvinylidene fluoride moisture-permeable nanofiber web having a different basis weight of the nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under the conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Injecting the polyvinylidene fluoride solution into the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to include a nozzle block in the MD direction, electrospinning on a cellulose substrate having a basis weight of 30 gsm It was.
  • DMF dimethylformamide
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm with respect to the MD direction, alternately 30 cm is the basis weight of the polyvinylidene fluoride nanofiber nonwoven fabric, and 25 cm is the polyvinylidene fluoride nanofiber.
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a structure in which the basis weight of the nonwoven fabric was repeated at 60 gsm was formed to prepare a polyvinylidene fluoride moisture-permeable nanofiber web having a different basis weight of the nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under the conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • the polyvinylidene fluoride nanofiber nonwoven fabric electrospun on the cellulose substrate has the same width as in Example 45 except that the upper 90cm has a basis weight of 10 gsm and the lower 90cm has a basis weight of 30 gsm at 180 cm vertical to the MD direction.
  • Polyvinylidene fluoride moisture-permeable waterproof nanofiber web was prepared under the conditions.
  • Example 1 electrospinning was carried out under the same conditions except that the polyurethane was changed to a polyurethane solution dissolved in a dimethylacetamide (DMAc) solvent instead of the polyvinylidene fluoride solution.
  • DMAc dimethylacetamide
  • Example 2 electrospinning was carried out under the same conditions except that the polyurethane was changed to a polyurethane solution dissolved in a dimethylacetamide (DMAc) solvent instead of the polyvinylidene fluoride solution.
  • DMAc dimethylacetamide
  • Example 3 electrospinning was carried out under the same conditions except that the polyurethane was replaced with a polyurethane solution dissolved in a dimethylacetamide (DMAc) solvent instead of the polyvinylidene fluoride solution.
  • DMAc dimethylacetamide
  • Example 4 electrospinning was carried out under the same conditions except that the polyurethane was replaced with a polyurethane solution dissolved in a dimethylacetamide (DMAc) solvent instead of the polyvinylidene fluoride solution.
  • DMAc dimethylacetamide
  • Filter cartridges were prepared by bending the moisture-permeable waterproof nanofiber webs prepared in Examples 45 to 52.
  • a polyvinylidene fluoride having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyvinylidene fluoride solution and a nylon solution.
  • the polyvinylidene fluoride solution and the nylon solution were introduced into each of the spinning solution main tanks, and an applied voltage was applied to a nozzle block designed to be separated into two parts in the CD direction and connected to an independent main tank, respectively, and a basis weight was applied. Electrospun on a cellulose substrate of 30 gsm.
  • a polyvinylidene fluoride having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyvinylidene fluoride solution and a nylon solution.
  • the polyvinylidene fluoride solution and the nylon solution were introduced into each of the spinning solution main tanks, and an applied voltage was applied to the nozzle block designed to be separated into three parts in the CD direction and connected to the independent main tanks, respectively, and a basis weight was applied. Electrospun on a cellulose substrate of 30 gsm.
  • a nonwoven fabric was formed to make a polyvinylidene fluoride-nylon nanofiber filter.
  • the bottom-up electrospinning was performed under conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride having a weight average molecular weight of 157,000 was dissolved in dimethylformamide (DMF) to prepare a polyvinylidene fluoride solution and a nylon solution.
  • the polyvinylidene fluoride solution and the nylon solution are introduced into each of the spinning solution main tanks, and the applied block is applied to the nozzle block designed to be separated into nine parts in the CD direction and connected to an independent main tank, respectively, and an applied voltage is 20 kV.
  • a polyvinylidene fluoride-nylon nanofiber nonwoven fabric having a CD width of 2 m with an average diameter of 200 nm was alternately formed on the electrospun cellulose substrate in the CD direction.
  • Examples 1 to 3 were carried out in the same manner except that metaaramid was used instead of polyvinylidene fluoride.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into two parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • 1m in one direction of the CD direction on the electrospun cellulose substrate is 25nm fiber diameter of the polyvinylidene fluoride nanofibre nonwoven fabric and 1m in the other direction CD width of 500m of the polyvinylidene fluoride nanofiber is 500nm Phosphorus polyvinylidene fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into two parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • 1m in one direction of the CD direction on the electrospun cellulose substrate has a fiber diameter of 100nm of polyvinylidene fluoride nanofiber nonwoven fabric and 1m in the other direction has a CD width of 2m with a fiber diameter of 500nm of polyvinylidene fluoride nanofiber.
  • Phosphorus polyvinylidene fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into two parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • 1m in one direction of the CD direction on the electrospun cellulose substrate has a fiber diameter of 250nm of polyvinylidene fluoride nanofiber nonwoven fabric and 1m in the other direction has a CD width of 2m with a fiber diameter of 500nm of polyvinylidene fluoride nanofiber.
  • Phosphorus polyvinylidene fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter. At this time, the bottom-up electrospinning was performed under conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • Example 1 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Example 2 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Nylon was replaced with dimethylacetate instead of the polyvinylidene fluoride solution in Example 3.
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into three parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • the polyvinylidene fluoride nanofiber diameter is 50 nm toward the bidirectional edge of the CD direction, and the remaining 1m of the polyvinylidene fluoride nanofiber diameter is 500 nm, and the polyvinylidene is 2 m wide.
  • a fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under the conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning liquid flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into three parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • the polyvinylidene fluoride nanofiber diameter is 50 nm toward the bi-directional edge in the CD direction, and the remaining 1m of the polyvinylidene fluoride nanofiber diameter is 500 nm, and the polyvinylidene is 2 m wide.
  • a fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under the conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning liquid flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into three parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • the bottom-up electrospinning was performed under the conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning liquid flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF).
  • the polyvinylidene fluoride solution was introduced into the spinning solution main tank and applied to the nozzle block designed to separate the nozzle block into nine parts in the CD direction, an applied voltage of 20 kV, and electrospinning onto a cellulose substrate having a basis weight of 30 gsm.
  • polyvinylidene fluoride nanofiber nonwoven fabric having a CD width of 2m having a width of 20 nm of polyvinylidene fluoride nanofibers having a diameter of 20 nm and a width of 500 nm was formed alternately at a distance of 20 cm in the CD direction.
  • Polyvinylidene fluoride nanofiber filters were prepared.
  • the bottom-up electrospinning was carried out under the conditions of 40 cm distance between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • Nanofiber filters were prepared in the same manner as in Examples 7 to 10 except that the polymer solution was nylon instead of polyvinylidene fluoride.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Injecting the polyvinylidene fluoride solution into the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle into two parts in one direction of the CD direction, the basis weight is 30 gsm Electrospun on the cellulose substrate.
  • DMF dimethylformamide
  • 1m in one direction of the CD direction on the electrospun cellulose substrate has a basis weight of 20gsm of polyvinylidene fluoride nanofiber nonwoven fabric and 1m in the other direction has a CD width of 2m with a basis weight of 50gsm of polyvinylidene fluoride nanofiber nonwoven fabric
  • Polyvinylidene fluoride nanofiber nonwoven fabric was formed to produce a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under conditions of 40 cm between the electrode and the collector, 0.1 mL / h of the spinning solution flow rate, 22 ° C., and 20% humidity.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Inject the polyvinylidene fluoride solution into the spinning solution main tank and apply an applied voltage of 20 kV to the nozzle block including the on-off system designed to separate the nozzle block into three parts in one direction of the CD direction, the basis weight 30gsm It was electrospun on the phosphorus cellulose substrate.
  • DMF dimethylformamide
  • 20cmm of polyvinylidene fluoride nanofiber nonwoven fabric has 50cm of basis weight of 50cmm on both sides of CD direction on the electrospun cellulose substrate and 2m of CD width of 50gsm Phosphorus polyvinylidene fluoride nanofiber nonwoven fabric was formed to prepare a polyvinylidene fluoride nanofiber filter.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Inject the polyvinylidene fluoride solution into the spinning solution main tank and apply an applied voltage of 20 kV to the nozzle block including the on-off system designed to separate the nozzle block into nine parts in one direction of the CD direction, 30 gsm It was electrospun on the phosphorus cellulose substrate.
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a width of 2 m CD having a basis weight of 20 gsm and a basis weight of 50 gsm alternately with a 20 cm gap in the CD direction on the electrospun cellulose substrate.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • Example 1 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Example 2 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Nylon was replaced with dimethylacetate instead of the polyvinylidene fluoride solution in Example 3.
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyvinylidene fluoride solution to the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block in the MD direction, electrospinning on a cellulose substrate having a basis weight of 30 gsm It was.
  • DMF dimethylformamide
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm in the MD direction, alternately 20 cm is the basis weight of the polyvinylidene fluoride nanofiber nonwoven fabric is 0.1 gsm, and 5 cm is the polyvinylidene fluoride nano
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a structure in which the basis weight of the fiber nonwoven fabric was repeated at 20 gsm was formed to prepare a polyvinylidene fluoride nanofiber filter having a different basis weight of the nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyvinylidene fluoride solution to the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block in the MD direction, electrospinning on a cellulose substrate having a basis weight of 30 gsm It was.
  • DMF dimethylformamide
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm with respect to the MD direction, and alternatively 20 cm has a basis weight of polyvinylidene fluoride nanofiber nonwoven fabric of 0.01 gsm, and 5 cm of polyvinylidene fluoride nano
  • a polyvinylidene fluoride nanofiber nonwoven fabric having a structure in which the basis weight of the fiber nonwoven fabric was repeated at 10 gsm was formed to prepare a polyvinylidene fluoride nanofiber filter having a different basis weight of the nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • a polyvinylidene fluoride solution was prepared by dissolving polyvinylidene fluoride having a weight average molecular weight of 157,000 in dimethylformamide (DMF). Applying the polyvinylidene fluoride solution to the spinning solution main tank and applying an applied voltage of 20 kV to a nozzle block including an on-off system designed to separate the nozzle block in the MD direction, electrospinning on a cellulose substrate having a basis weight of 30 gsm It was.
  • DMF dimethylformamide
  • the nanofiber nonwoven fabric electrospun on the cellulose substrate has a vertical width of 180 cm with respect to the MD direction, alternately 20 cm is the basis weight of the polyvinylidene fluoride nanofiber nonwoven fabric is 3 gsm, and 5 cm is the polyvinylidene fluoride nanofiber.
  • a polyvinylidene fluoride nanofiber nonwoven fabric including a structure in which the basis weight of the nonwoven fabric was repeated at 30 gsm was formed to prepare a polyvinylidene fluoride nanofiber filter having a different basis weight of nanofibers in the MD direction.
  • the bottom-up electrospinning was performed under conditions of a distance of 40 cm, a spinning solution flow rate of 0.1 mL / h, a temperature of 22 ° C., and a humidity of 20% between the electrode and the collector.
  • the polyvinylidene fluoride nanofiber filter was manufactured under the same conditions as in Example 1 except that the fabric was 180 cm in the vertical width with respect to the MD direction, and the upper 90 cm had a basis weight of 0.1 gsm and the lower 90 cm had a basis weight of 10 gsm. .
  • Example 1 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Example 2 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Nylon was replaced with dimethylacetate instead of the polyvinylidene fluoride solution in Example 3.
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • Example 4 nylon was used instead of polyvinylidene fluoride solution
  • Electrospinning was carried out under the same conditions except that the solution was changed to a nylon solution dissolved in an amide (DMAc) solvent.
  • the filter cartridge was prepared by bending the nanofiber filters prepared according to Examples 1 to 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터에 관한 것으로서, 보다 상세하게는 CD방향 또는 MD방향으로 평량, 고분자의 종류 또는 섬유직경이 상이한 투습방수원단 또는 나노섬유 필터의 제조방법 및 이에 의해 제조된 투습방수 원단 또는 나노섬유에 관한 것이다.

Description

[규칙 제26조에 의한 보정 24.07.2015] 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터
본 발명은 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터에 관한 것으로서, 보다 상세하게는 CD방향 또는 MD방향으로 평량, 고분자의 종류 또는 섬유직경이 상이한 투습방수원단 또는 나노섬유 필터의 제조방법 및 이에 의해 제조된 투습방수 원단 또는 나노섬유에 관한 것이다.
일반적으로 투습방수 원단이란, 수증기 형태의 물은 통과시키고 액체 상태의
물은 투과시키지 않는 성질을 가진 원단을 말한다. 이러한 투습방수 원단은 주로등산복이나 스키복과 같은 아웃도어 의류에 사용된다. 투습방수원단을 사용한 의류는 신체활동으로 발생된 수증기 형태의 땀은 외부로 배출시키고 빗물과 같은 물방울 형태의 물은 의류 내부로 침투하지 못하도록 하는 역할을 한다.
투습방수 원단의 이러한 특성은 다음의 원리로 설명될 수 있다. 물은 기체
상태에서 분자 간 수소결합을 통하여 수증기를 형성하고, 수증기의 직경은 일반적
으로 수십에서 수백 나노미터이다. 반면 액체상태의 물은 기체상태보다 많은 양의
분자가 수소결합으로 결합되어 있으므로 직경이 수백 미크론에 이르는 물방울 형태
로 존재한다. 따라서 원단의 표면에 형성된 층이, 수증기는 통과시키고 물방울을
통과시키지 못할 정도의 기공을 가지고 있으면 투습방수 성질을 가지는 것이다. 기존에는 이러한 투습방수 성질을 가지는 층으로 나노웹 멤브레인 필름 또는 기능성필름이 있었고, 이를 원단에 접착제 등을 이용하여 라미네이팅하여 투습방수 원단 을 제조하였다.
투습방수층은 접착제 등에 의해 원단과 결합력이 생겨 투습방수성 원단의 제
조가 가능한데, 투습방수층은 나노섬유로 이루어져 그 결합력이 약한 바, 원단과의
접착력이 좋지 않으므로 많은 양의 접착제를 사용하여 왔다. 그런데 이러한 접착제를 많이 사용하는 경우 수증기형태의 물 분자가 통과하지 못해 원단의 투습방수성이 떨어지게 되는 문제점이 있다. 또한, 투습방수층은 나노섬유의 특성상 내마모성 이 좋지 않았으며, 전기방사를 이용하는 경우 가격경쟁력도 좋지 않았다.
한편, 의류를 제조하는 경우 투습방수기능은 산업계에서 의류전체에 적용될
필요가 없고, 의류의 용도 및 사람의 활동특성상 땀이 많이 나는 특정부위에 투습방수기능이 집중될 필요가 있었다.
또한, 기존의 투습방수층을 이루는 나노웹 멤브레인 필름은 제조 후 라미네
이팅과 인력 또는 장력을 이용하여 미세다공층을 만들어 투습방수기능을 부여하였다. 따라서, 투습방수 원단의 전체를 투습방수층이 포함된 원단으로만 만들 수 있는 한계가 있었고 상기에서 지적한 문제들을 해결 할 수가 없었다. 이에 더해, 의류업계에서 투습방수 원단등을 이용하여 고어텍스의 성질을 가지는 의류를 봉제 시에 봉제선에 물이 스며들어 투습방수기능의 유지가 어려운 특성상 하나의 원단으로 작업을 해야 하는 한계가 있었다.
한편, 필터는 유체 속의 이물질을 걸러내는 여과장치로서 액체필터와 에어필터로 나뉜다. 그 중 에어필터는 첨단산업의 발달과 함께 첨단제품의 불량방지를 위해 사용되며, 공기 중의 먼지, 미립자, 세균이나 곰팡이 등의 생물입자, 박테리아 등과 같은 생물학적으로 유해한 것이 완벽하게 제거된 클린룸(Clean room)의 설치는 날로 확산되고 있다. 클린룸이 적용되는 분야로는 반도체 제조, 전산기기 조립, 테이프 제조, 인쇄도장, 병원, 약품제조, 식품가공공장, 농림수산분야 등 으로 광범위하다.
이렇게 에어필터는 필터 여재의 표면에 미세다공 구조의 기공층을 형성시킴
으로써 분진이 여재 내로 침투하지 못하는 기능을 수행하며 여과를 한다. 그러나, 입자크기가 큰 입자들은 필터 여재 표면에 필터 케이크(Filter Cake)로 형성되고, 미세한 입자들은 1차 표면층을 통과하여 필터 여재에 점차 쌓이게 되어 필터의 기공을 막게 만든다. 결국, 필터의 기공을 막은 입자들 및 미세 입자들은 필터의 압력손실을 높이고, 필터의 수명을 저하시킬 뿐 아니라, 기존의 필터 여재로는 1미크론 이하의 나노사이즈의 미세 오염입자를 필터링하는 것에 어려움이 있었다.
한편, 기존의 에어필터는 필터 여재를 구성하는 섬유집합체에 정전기를 부여
하여 입자가 정전기력에 의해 포집되는 원리에 의해 효율이 측정되었다. 그러나, 최근 유럽의 에어필터 분류 표준인 EN779는 2012년에 정전기 효과에 의한 필터의효율을 배제하기로 개정됨에 따라 기존의 필터의 실제 효율은 20%이상 저하되는 것이 밝혀졌다.
또한, 기존의 내열성 필터의 소재로 사용되었던 유리섬유가 환경에 미치는 악영향으로 인해 유럽과 미국에서는 환경안정성을 위해 유리섬유의 이용을 규제하고 있는 실정이다.
상기한 문제점을 해결하기 위하여 나노사이즈의 섬유를 제조하여 필터에 적
용하는 다양한 방식들이 개발되었다. 나노섬유를 필터에 구현할 경우, 직경이 큰
기존의 필터 여재에 비해서 비표적이 매우 크고, 표면 작용기에 대한 유연성도 좋으며, 나노급 기공사이즈를 가지므로 유해한 미세입자나 가스 등을 효율적으로 제 거할 수 있게 되었다.
나노섬유를 제조 및 생산하기 위한 전기방사장치는 방사용액이 내부에 충진
되는 방사용액 주탱크, 방사용액의 정량 공급을 위한 계량 펌프, 방사용액을 토출하기 위한 노즐이 다수개 배열설치되는 노즐블록, 노즐 하단에 위치하여 방사되는 섬유들을 집적하는 컬렉터 및 전압을 발생시키는 전압 발생장치를 포함하여 구성된 다.
상술한 바와 같은 구조로 이루어지는 전기방사장치는 방사용액이 충진되는
방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수개 배열설치되는 노즐 블록과 상기 노즐의 상단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐에서 일정간격 이격
되는 컬렉터 및 상기 컬렉터에 고전압을 발생시키는 전압 발생장치를 포함하는 유닛으로 구성된다.
이러한 전기방사장치를 통한 나노섬유의 제조방법은 방사용액이 충진되는 방
사용액 주탱크 내의 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 다수의 노
즐 내에 연속적으로 정량 공급되고, 노즐로 공급되는 방사용액은 높은 전압이 걸려있는 컬렉터상에 노즐을 통하여 방사, 집속되어 나노섬유 웹이 형성되되, 상기 전기방사장치의 유닛들로 이송되는 장척시트상에 나노섬유 웹을 형성하고, 상기 나노
섬유가 적층형성되는 장척시트가 각 유닛을 통과하여 반복적으로 나노섬유가 적층된 후 라미네이팅, 엠보싱 또는 heat and pressing, 니들펀칭하여 부직포로 제조한다.
여기서, 전기방사장치는 컬렉터 상의 위치하는 방향에 따라 상향식 전기방사
장치, 하향식 전기방사장치 및 수평식 전기방사장치로 나뉜다. 즉, 전기방사장치는 컬렉터가 노즐의 상단에 위치하는 구성으로 이루어지고, 균일하고 상대적으로 가는나노섬유를 제조할 수 있는 상향식 전기방사장치, 컬렉터가 노즐의 하단에 위치하는 구성으로 이루어지고, 상대적으로 굵은 나노섬유를 제조할 수 있으며, 단위시간당 나노섬유의 생산량을 증대시킬 수 있는 하향식 전기방사장치 및 컬렉터와 노즐이 수평방향으로 배열되는 구성으로 이루어지는 수평식 전기방사장치로 나뉜다.
상향식 전기방사장치는 상향 노즐 블록의 노즐을 통하여 방사용액이 분사되고, 분사되는 방사용액이 지지체의 하부면에 적층되면서 나노섬유를 형성하는 구성 으로 이루어진다.
상술한 바와 같은 구성에 의하여 상기 상향식 전기방사장치의 어느 한 유닛
내부에서 노즐을 통하여 방사용액을 분사하여 나노섬유 웹이 적층형성되는 장척시트는 다른 한 유닛 내부로 이송되고, 다른 한 유닛 내부로 이송되는 장척시트에 노
즐을 통하여 방사용액을 분사하여 또 다시 나노섬유를 적층형성하는 등 상기한 공 정을 반복적으로 수행하면서 나노섬유 웹을 제조한다.
그러나, 나노섬유를 이용한 필터 구현은 생산비용이 증대되는 문제점이 발생
하고, 생산을 위한 여러 가지 조건 등을 조절하기가 쉽지 않으며, 대량생산에 어려
움이 있으므로 나노섬유를 이용한 필터는 상대적으로 낮은 단가로 생산보급하지 못 하는 실정이다.
또한, 종래의 나노 부직포를 방사하는 기술로는 실험실 위주의 소규모 작업라인으로 한정되어 있어, 방사구획을 노즐블록을 이용하여 나노섬유를 수평방향으로 나누는 개념이 없었으며, 이에 더해 산업현장에서 사용되는 필터의 경우 평면방향으로 필터 전체 나노섬유층의 섬유굵기가 일정하거나 평량이 일정하여야 표준규격을 만족하여 생산 및 판매가 가능하였는데, 실제 화력발전소의 가스터빈등에 사용되는 필터의 경우 공기가 유입되는 방향 및 공기 유입부분 위치와 배기되는 방향및 배기위치에 따라서 필터를 구성하는 섬유의 평량과 굵기가 일정할 필요가 없는경우도 있으며, 오히려 공기여과가 활발한 필터부분은 공기여과효율을 높이기 위해나노섬유의 굵기를 작게 조절하여야 하는 반면, 공기여과가 활발하지 않은 필터부분은 공기유량이 많지 않으므로 나노섬유의 굵기를 크게 조절하여 공기여과측면보다 내구성을 높이는 설계의 요구가 필요한 실정이다. 또한, 나노섬유의 평량역시 필터의 효율을 고려하여 공기유입부와 배출구의 위치에 따라 동일 필터상에서도 평 량이 상이한 필터가 요구되고 있는 실정이다.
이에 더해, 여러 산업적인 요구에 의해 필터의 평면방향으로 다른 종류의 폴 리머로 구성된 나노섬유 필터 역시 필요하게 되었다.
이에 본발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 전기방사장치의 유닛 내에 공급되는 기재의 길이방향 또는 폭방향으로 다수개의 노즐관체를 배열설치하고, 각 노즐관체에 공급되는 고분자 방사용액의 농도, 방사량, 고분자의 종류를 달리하여 기재의 길이방향 또는 폭방향으로 고분자 방사용액을 전기방사함으로써 기재의 동일 평면 상에 평량, 고분자의 종류 또는 섬유직경이 상이한 나노섬유 웹을 적층시킬 수 있는 나노섬유 웹 제조용 전기방사장치를 제공하는것을 목적으로 한다.
또한, 본 발명은, 고분자 방사용액이 공급되는 각 노즐관체의 노즐에서 전기
방사되는 고분자 방사용액이 기재의 동일 평면 상의 길이방향 또는 폭방향에 동일 및 일정한 방사영역 및 방사부분을 형성하거나, 고분자 방사용액이 공급되는 각 노즐관체의 동작을 조절 및 제어하여 각 노즐관체의 노즐에서 전기방사되는 고분자방사용액이 기재의 동일 평면 상의 길이방향 또는 폭방향에 가변적인 방사영역 및 방사부분을 형성할 수 있는 나노섬유 웹 제조용 전기방사장치를 제공하는 것을 목적으로 한다.
그리고, 본 발명은, 상향식 전기방사장치 및 하향식 전기방사장치 모두에 적
용가능하고, 이종의 고분자 방사용액이 기재의 동일 평면 상에 전기방사되어 특정
영역 및 특정부분별로 평량, 섬유직경, 고분자의 종류가 상이한 나노섬유 웹이 형성됨으로써 나노섬유 웹으로 필터 제조 시 필터의 부위별 부하율을 각기 다르게 형성할 수 있으며, 이로 인해 현장에서 요구되는 다양한 재질 및 종류의 나노섬유 웹 및 나노섬유 필터의 제조할수 있고, 대량 생산이 가능한 나노섬유 웹 제조용 전기방사장치를 제공하는 것을목적으로 한다.
또한, 가스터빈 등의 산업현장 등에 사용 시 필터 내에 들어오는 공기의 흐름, 공기여과가 주로 이루어지는 필터의 부분 및 공기여과가 많이 이루어지지 않는 필터의 부분을 고려하여 필터의 효율과 생산성을 높이기 위해, 필터의 평면방향 중 CD방향 또는 MD방향으로 평량, 고분자의 종류 또는 섬유직경이 상이한 나노섬유 필터의 제조방법과 이에 의해 제조된 나노섬유 필터를 제공하는 것을 목적으로 한다.
이에 더해, CD방향 또는 MD방향으로 평량, 고분자의 종류 또는 섬유직경이 상이한 투습방수원단의 제조방법 및 이에 의해 제조된 투습방수 원단을 제공하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 적절한 실시 형태에 따르면 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의폭방향에 다수개로 배열설치되는 노즐블록; 이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 기재 상에 이종의 고분자 방사용액을 동시에 전기방사하여 기재의 폭방향 동일 평면 상에 이종의 나노섬유 웹을 분할 적층형성시키는것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록; 이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 기재 상에 이종의 고분자 방사용액을 동시에 전기방사하여 기재의 동일 평면 상에 이종의 나노섬유 웹을 분할 적층형성시키는 것을 특 징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
여기서, 상기 방사용액 주탱크는 제1 방사용액 주탱크와 제2 방사용액 주탱크 및 제3 방사용액 주탱크로 이루어지고, 상기 제1 방사용액 주탱크는 기재의 폭방향 일측에 구비되는 노즐블록의 노즐관체들에 연결되고, 상기 제2 방사용액 주탱크는 기재의폭방향 중심측에 구비되는 노즐블록의 노즐관체들에 연결되며, 상기 제3 방사용액주탱크는 기재의 폭방향 타측에 구비되는 노즐블록의 노즐관체들에 연결되며, 상기 제1 방사용액 주탱크는 기재의 폭방향 일측에 구비되되, 제1 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하고, 상기 제2 방사용액 주탱크는 기재의 폭방향 중심측에 구비되되, 제2 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하며, 상기 제3 방사용액 주탱크는 기재의 폭방향 타측에 구비되되, 제3 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하되, 각 노즐을 통하여 기재의 폭방향으로 이종의 고분자 방사용액을 전기방사하여 나노섬유 웹이 분할 적층형성되고, 상기 기재의 폭방향에 배열설치되되, 이종의 고분자 방사용액이 공급되는 각 노즐관체의 동작을 제어하여 각 노즐관체의 노즐에서 전기방사되어 기재의 폭방향 동일 평면 상에 적층형성되는 이종의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의폭방향에 다수개로 배열설치되는 노즐블록; 고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되되, 상기 용액공급관에 공급량 조절수단이 구비되어 방사용액 주탱크에서 노즐관체로 공급되는 고분자 방사용액의 공급량이 조절 및 제어되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량 조절수단이 구비되어 노즐관체에서 노즐로 공급된 후 방사되는 고분자 방사용액의방사량이 조절 및 제어되어 기재 상에 고분자 방사용액을 전기방사 시 기재의 폭방향 동일 평면상에 평량이 상이한 나노섬유 웹을 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록; 고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되되, 상기 용액공급관에 공급량 조절수단이 구비되어 방사용액 주탱크에서 노즐관체로 공급되는 고분자 방사용액의 공급량이 조절 및 제어되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량 조절수단이 구비되어 노즐관체에서 노즐로 공급된 후 방사되는 고분자 방사용액의방사량이 조절 및 제어되어 기재 상에 고분자 방사용액을 전기방사 시 기재의 길이방향 동일 평면상에 평량이 상이한 나노섬유 웹을 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
여기서, 상기 용액공급관에 구비되는 공급량 조절수단은 개, 폐가능하게 제어되는 공급밸브로 이루어지되, 상기 공급밸브의 개, 폐에 의해 방사용액 주탱크에 용액공급관으로 연결되는 각 노즐관체 중 특정 노즐관체에만 고분자 방사용액을 선택적으로 공급하도록 이루어지며, 상기 노즐공급관에 구비되는 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는 각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여전기방사하도록 이루어지고, 상기 용액공급관의 공급량 조절수단은 개, 폐가능하게 제어되는 공급밸브로 이루어지되, 상기 공급밸브의 개, 폐에 의해 방사용액 주탱크에 용액공급관으로 연결되는 각 노즐관체 중 특정 노즐관체에만 고분자 방사용액을 선택적으로 공급하고, 상기 노즐공급관의 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여 전기방사하도록 이루어지며, 상기 공급밸브 및 노즐밸브의 개, 폐를 개별 또는 동시에 제어하도 록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향으로 다수개 배열설치되는 노즐블록; 고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량 조절수단이 구비되어 노즐로 공급된 후 전기방사되는 고분자 방사용액의 방사량이 조절 및 제어되어 기재 상에 고분자 방사용액의 전기방사 시 기재의 동일 평면상의 길이방향으로 일정간격 이격되는 길이방향에 평량이 상이한 나노섬유 웹이 개재되게 적층형성되는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
여기서, 상기 노즐공급관에 구비되는 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는 각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여전기방사하도록 이루어지고, 상기 기재의 길이방향으로 배열설치되되, 고분자 방사용액이 공급되는 노즐관체 중 특정 노즐관체의 특정 노즐의 동작을 제어하여 특정 노즐에서 전기방사되어 기재의 길이방향 동일 평면상에 일정간격 이격되는 폭방향에 연속적으로 개재되는 상이한 평량의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 제조용 전기방사장치를 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서, 유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록; 이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크; 상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터; 상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및 상기 기재를 이송시키기 위한 보조 이송장치; 를 포함하여 구성되고, 상기 기재의 길이방향으로 일정간격 이격되어 특정영역 및 특정부분에 이종의 고분자 방사용액을 동시에 전기방사하여 기재의 동일 평면상에 이종의 나노섬유 웹이 연속적으로 개재되도록 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
여기서, 상기 방사용액 주탱크는 제1 방사용액 주탱크 및 제2 방사용액 주탱크로 이루어지고, 상기 제1 방사용액 주탱크는 기재의 길이방향으로 배열설치되는 특정 노즐관체들에 연결되고, 상기 제2 방사용액 주탱크는 기재의 길이방향으로 배열설치되되, 제1 방사용액 주탱크에 연결되는 특정 노즐관체 사이에 위치하는 노즐관체들 에 연결되고, 상기 기재의 길이방향으로 배열설치되되, 이종의 고분자 방사용액이 공급되는 각 노즐관체의 동작을 제어하여 각 노즐관체의 노즐에서 전기방사되어 기재의 길이방향으로 일정간격 이격되는 동일 평면 상에 적층형성되는 이종의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치를 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제조방법을 제공한다.
여기서, 상기 나노섬유의 고분자는 복수의 노즐관체에 주입되는 고분자 용액의 종류를 상이하게 조절하여 나노섬유 고분자의 종류를 상이하게 조작하고, 상기 CD 방향중 일방향의 고분자가 폴리우레탄이고 나머지 일방향의 고분자가 폴리비닐리덴플루오라이드이며, 상기 CD 방향으로 투습방수성 나노섬유웹을 3등분하였을 때 중간부분이 폴리우레탄이고 나머지 부분이 폴리비닐리덴플루오라이드이고, 상기 CD 방향으로 교호적으로 고분자의 종류가 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제조방법을 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법을 제공한다.
여기서, 상기 나노섬유의 고분자는 복수의 노즐관체에 주입되는 고분자 용액의 농도를 상이하게 조절하여 나노섬유 직경을 상이하게 조작하고, 상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하게 설계되며, 상기 CD 방향중 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계되고, 상기 CD 방향으로 교호적으로 섬유직경이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법을 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법을 제공한다.
여기서, 상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하고, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 일방향으로 평량의 구배가 증가하게 설계되며, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 양방향으로 평량의 구배가 증가 또는 감소하게 설계되고, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향으로 교호적으로 평량이 상이하게 설계되며, 상기 평량은 10 내지 100gsm의 범위에서 CD방향으로 상이한 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법을 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 MD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법을 제공한다.
여기서, 상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하고, 상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 평량이 상이하게 설계된 교호구간은 나노섬유 평량이 5 내지 50gsm 인 30 내지 80cm구간과 나노섬유 평량이 50 내지 100gsm인 5 내지 30cm구간으로 구성되는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 투습방 수성 나노섬유웹의 제조방법을 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상기의 제조방법으로 제조된 투습방수성 나노섬유웹 및 나노 섬유 웹을 원단에 라이네이팅하여 제조된 것을 특징으로 하는 투습방수 원단을 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법을 제공한다.
여기서, 상기 나노섬유의 섬유직경은 복수의 노즐관체에 주입되는 고분자 용액의 종류를 상이하게 조절하여 나노섬유 고분자의 종류를 상이하게 조작하고, 상기CD 방향중 일방향의 고분자가 폴리비닐리덴플루오라이드이고 나머지 일방향의 고분자가 나일론이며, 상기 CD 방향으로 나노섬유 필터를 3등분하였을 때 중간부분이 폴리비닐리덴플루오라이드이고 나머지 부분이 나일론이고, 상기 CD 방향으로 교호적으로 고분자의 종류가 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법을 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법을 제공한다.
여기서, 상기 나노섬유의 섬유직경은 복수의 노즐관체에 주입되는 폴리머 용액의 농도를 상이하게 조절하여 나노섬유 직경을 조작하고, 상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하게 설계되며, 상기 CD 방향중 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계되고, 상기 CD 방향으로 교호적으로 섬유직경이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법을 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법을 제공한다.
여기서, 상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하고, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 일방향으로 평량의 구배가 증가하게 설계되며, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 양방향으로 평량의 구배가 증가 또는 감소하게 설계되고, 상기 on-off 시스템은 나노섬유가 집적되는 CD 방향으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법을 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 평량은 0.01 내지 10gsm으로 상이한 것을 특징으로 하는 CD 방향으로나노섬유의 평량이 상이한 나노섬유 필터의 제조방법을 제공한다.
본 발명의 다른 적절한 실시형태에 따르면, 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 MD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법을 제공한다.
여기서, 상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하고, 상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 제 58항에 있어서, 상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 평량이 상이하게 설계된 교호구간은 나노섬유 평량이 0.01 내지 10gsm 인 30 내지 80cm구간과 나노섬유 평량이 20 내지 40gsm인 5 내지 30cm구간으로 구성되는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 나노 섬유 필터의 제조방법 및 이에 의해 제조된 나노섬유 필터를 제공한다.
본 발명의 또 다른 적절한 실시형태에 따르면, 나노섬유 필터를 포함하는 나노섬유 필터 카트리지를 제공한다.
이상에서 설명한 바와 같이 상기와 같은 구성을 갖는 본 발명은, 노즐블록의 길이방향 또는 폭방향에 다수개의 노즐관체를 배열설치하되, 각 노즐관체에 공급되는 고분자 방사용액의 농도, 방사량, 고분자의 종류를 달리하여 기재의 길이방향 또는 폭방향으로 고분자 방사용액을 전기방사함으로써 기재의 동일 평면 상에 평량, 고분자의 종류 또는 섬유직경이 상이한 나노섬유 웹을 적층시킬 수 있는 나노섬유 웹을 제조할 수 있으며, 나노섬유 웹으로 투습방수원단 및 나노섬유 필터의 제조 시 부위별 부하율을 각기다르게 형성할 수 있으며, 이로 인해 현장에서 요구되는 다양한 재질 및 종류의 투습방수 원단 및 나노섬유 필터의 제조가 가능하고, 대량 생산이 가능하다는 등의 효과를 거둘 수 있다.
도 1은 나노섬유 웹 제조용 전기방사장치를 개략적으로 나타내는 측면도,
도 2 내지 도 5는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열 설치되는 노즐관체를 개략적으로 나타내는 평면도,
도 6 내지 도 7은 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열 설치되는 노즐관체를 개략적으로 나타내는 측면도,
도 8은 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열 설치되는 노즐관체를 개략적으로 나타내는 사시도,
도 9 내지 도 14는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 각 노즐관체의 노즐을 통하여 고분자 방사용액이 기재의 동일 평면 상에 전기방사되는
동작과정(도 10 및 도 11에서 파선으로 표시된 노즐이 폐쇄된 노즐을 나타내고, 도 12 내지 14에서 파선으로 표시된 노즐은 기재 하부에 위치하는 것을 나타냄)을 개략적으로 나타내는 평면도,
도 15 내지 도 17는 본 발명에 의해 CD방향으로 평량, 고분자의 종류 또는 섬유직경이 상이한 나노섬유 웹의 평면도,
도 18 내지 도 19는 본 발명에 의해 MD방향으로 평량이 상이한 나노섬유 웹의 평면도.
이하, 본 발명에 의한 바람직한 실시예와 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
나노섬유를 제조 및 생산하기 위한 전기방사장치는 방사용액이 내부에 충진되는 방사용액 주탱크, 방사용액의 정량 공급을 위한 계량 펌프, 방사용액을 토출하기 위한 노즐이 다수개 배열설치되는 노즐블록, 노즐 하단에 위치하여 방사되는 섬유들을 집적하는 컬렉터 및 전압을 발생시키는 전압 발생장치를 포함하여 구성된다.
상술한 바와 같은 구조로 이루어지는 전기방사장치는 방사용액이 충진되는 방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수개 배열설치되는 노즐 블록과 상기 노즐의 상단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐에서 일정간격 이격되는 컬렉터 및 상기 컬렉터에 고전압을 발생시키는 전압 발생장치를 포함하는 유닛으로 구성된다.
이러한 전기방사장치를 통한 나노섬유의 제조방법은 방사용액이 충진되는 방사용액 주탱크 내의 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 다수의 노즐 내에 연속적으로 정량 공급되고, 노즐로 공급되는 방사용액은 높은 전압이 걸려있는 컬렉터상에 노즐을 통하여 방사, 집속되어 나노섬유 웹이 형성되되, 상기 전기방사장치의 유닛들로 이송되는 장척시트상에 나노섬유 웹을 형성하고, 상기 나노섬유가 적층형성되는 장척시트가 각 유닛을 통과하여 반복적으로 나노섬유가 적층된 후 라미네이팅, 엠보싱 또는 heat and pressing, 니들펀칭하여 부직포로 제조한다.
여기서, 전기방사장치는 컬렉터 상의 위치하는 방향에 따라 상향식 전기방사장치, 하향식 전기방사장치 및 수평식 전기방사장치로 나뉜다. 즉, 전기방사장치는 컬렉터가 노즐의 상단에 위치하는 구성으로 이루어지고, 균일하고 상대적으로 가는 나노섬유를 제조할 수 있는 상향식 전기방사장치, 컬렉터가 노즐의 하단에 위치하는 구성으로 이루어지고, 상대적으로 굵은 나노섬유를 제조할 수 있으며, 단위시간 당 나노섬유의 생산량을 증대시킬 수 있는 하향식 전기방사장치 및 컬렉터와 노즐이 수평방향으로 배열되는 구성으로 이루어지는 수평식 전기방사장치로 나뉜다.
상향식 전기방사장치는 상향 노즐 블록의 노즐을 통하여 방사용액이 분사되고, 분사되는 방사용액이 지지체의 하부면에 적층되면서 나노섬유를 형성하는 구성 으로 이루어진다.
상술한 바와 같은 구성에 의하여 상기 상향식 전기방사장치의 어느 한 유닛 내부에서 노즐을 통하여 방사용액을 분사하여 나노섬유 웹이 적층형성되는 장척시트는 다른 한 유닛 내부로 이송되고, 다른 한 유닛 내부로 이송되는 장척시트에 노즐을 통하여 방사용액을 분사하여 또 다시 나노섬유를 적층형성하는 등 상기한 공 정을 반복적으로 수행하면서 나노섬유 웹을 제조한다.
이하, 본 발명에 의한 바람직한 실시예와 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
나노섬유란 일반적으로 평균직경이 50 내지 1000㎚ 이하인 섬유를 의미하며, 전기방사장치를 이용하여 제조가 가능하다.
전기방사장치는 전원공급장치, 방사노즐 및 컬렉터 등을 포함한다. 전원공급장치는 노즐과 컬렉터 사이에 고전압의 전계를 형성시킨다. 방사노즐은 방사공간쪽으로 방사용액을 공급한다. 컬렉터는 전기방사된 나노섬유를 집속한다. 전기방사장치의 방사공간에서 형성된 필라멘트는 방사조건에 따라 다양한 평균직경을 가질수 있으며, 50 내지 1000㎚의 평균직경을 가지는 나노섬유일 수 있다.
본 명세서에서 투습방수층(투습방수성 나노섬유 웹)이란 용어는 투습방수 성질을 가지는 층을 의미한다. 이러한 투습방수층은 나노섬유로 이루어질 수 있으나, 투습방수 성질을 가지기에 적절한 기공을 포함하는 다양한 소재로 이루어질 수도 있다. 원단이라는 용어는 이러한 투습방수층과 결합하여 투습방수 원단을 이루는 편물, 직물 또는 부직포 등을 의미한다.
본 발명의 라미네이팅 방법은 일반적으로 얇은 두께를 가지는 2개 이상의 시트(sheet)를 압착하여 결합시키는 모든 경우에 적용이 가능하며, 그 용도에 따라 적절한 기술적 효과가 발휘될 수 있다.
원단의 아랫면에 접착층이 형성되어 있고 접착층 아래에 투습방수층이 형성되어 있다. 투습방수층은 투습방수성질을 가지기에 적절한 기공을 포함하는 층으로 이루어져야 하는데 나노섬유로 이루어질 수 있다. 나노섬유는 50 내지 1000㎚의 평균직경을 가지는 섬유이므로 그 두께를 조절하면 기공의 크기를 제어할 수 있다.
나노섬유층은 폴리우레탄(polyurethane), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride) 또는 나일론 등의 고분자 수지로 이루어질 수 있다. 또한 나노섬유층은 녹는 온도를 달리하는 2 가지 이상의 고분자로 이루어지고, 그중 하나 이상의 고분자로 이루어진 나노섬유를 용융시켜 기공의 크기를 조절하는 것도 가능하다.
본 발명에 따른 라미네이팅 방법을 이용하여 투습방수 원단을 제조하는 과정은 먼저 접착재료를 용매에 용해시켜 접착방사용액을 제조하고, 접착방사용액을 전
기방사하여 원단의 일면에 접착층을 형성한다. 접착층이 형성된 원단을 투습방수 성질을 가지는 필름과 라미네이팅하여 투습방수 원단을 제조한다.
이때, 접착층이 형성된 원단을 따로 권취하였다가 투습방수 성질을 가지는 필름과 라미네이팅하는 방법이나, 전기방사장치로 원단에 접착층을 형성한 후 연속 적으로 라미네이팅하는 방법을 사용하는 것이 모두 가능하다.
도 2 내지 도 5은 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 평면도이고, 도 6내지 도 7는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열 설치되는 노즐관체를 개략적으로 나타내는 측면도이며, 도 8은 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열 설치되는 노즐관체를 개략적으로 나타내는 사시도 이고, 도 9 내지 도 14는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 각 노즐관체의 노즐을 통하여 고분자 방사용액이 기재의 동일 평면 상에 전기방사되는 동작과정(도 10 및 도 11에서 파선으로 표시된 노즐이 폐쇄된 노즐을 나타내고, 도 12 내지 14에서 파선으로 표시된 노즐은 기재 하부에 위치하는 것을 나타냄)을 개략적으로 나타내는 평면도이다.
도 1을 참조하여 설명하면, 도면에서 도시하고 있는 바와 같이, 본 발명에 의한 전기방사장치(100)는 상향식 전기방사장치로 이루어지되, 적어도 하나 이상의유닛(110, 110')으로 이루어진다. 본 발명의 일 실시예에서는 상기 전기방사장치(100)가 상향식 전기방사장치로 이루어져 있으나, 하향식 전기방사장치로 이루어지는 것도 가능하다.
여기서, 상기 유닛(110, 110')은 고분자 방사용액이 충진되는 방사용액 주탱크(120)와 상기 방사용액 주탱크(120) 내에 충진된 고분자 방사용액을 정량으로 공급하기 위한 계량 펌프(미도시)와 상기 방사용액 주탱크(120) 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(111a)이 다수개로 구비되는 노즐관체(112)가 기재(115)의 MD 또는 CD방향으로 다수개 배열설치되는 노즐블록(111)과 상기 노즐(111a)에서 분사되는 고분자 방사용액을 집적하기 위하여 노즐(111a)에서 일정간격 이격되게 설치되는 컬렉터(113) 및 상기 컬렉터(113)에 고전압을 발생시키는 전 압 발생장치(114)를 포함하여 구성된다.
상기한 바와 같은, 나노섬유 웹 제조용 전기방사장치(100)은 방사용액 주탱크(120) 내에 충진되는 고분자 방사용액이 계량 펌프를 통해 높은 전압이 부여되는노즐블록(111)으로 연속적으로 정량 공급되고, 노즐블록(111)으로 공급되는 고분자방사용액은 높은 전압이 걸려있는 컬렉터(113) 상에 노즐(111a)을 통하여 전기방사장치 내에서 이송되는 기재(115) 상에 방사 및 집속되어 나노섬유 웹이 적층형성된다.
이때, 상기 나노섬유 웹 제조용 전기방사장치(100)에 구비되는 적어도 하나 이상의 유닛(110, 110')은 일정간격 이격되어 순차적으로 구비되되, 각 유닛(110, 110')을 통하여 고분자 방사용액이 전기방사되어 나노섬유 웹 또는 나노섬유 필터 등의 필터 소재를 제조한다.
한편, 상기 전기방사장치(100)의 노즐블록(111)에 다수개로 배열설치되는 노즐관체(112)는 고분자 방사용액을 공급하는 방사용액 주탱크(120)가 적어도 2개 이 상 연결구비된다.
즉, 직육면체형상으로 형성되되, 그 상부면에 다수개의 노즐(111a)이 구비되는 노즐관체(112)가 노즐블록(111)에 기재(115)의 MD 또는 CD방향으로 다수개 배열설치되고, 상기 노즐관체(112)에는 제1 방사용액 주탱크(120a)와 제2 방사용액 주탱크(120b) 및 제3 방사용액 주탱크(120c)로 구비되는 방사용액 주탱크(120)가 연결되는 등 상기 노즐관체(112)에는 적어도 2개 이상의 방사용액 주탱크(120)가 연결 된다.
그리고, 상기 노즐블록(111)의 각 노즐관체(112) 중 특정 노즐관체(112a, 112b, 112c)들은 제1 방사용액 주탱크(120a)에 연결되고, 다른 특정 노즐관체(112d, 112e, 112f)들은 제2 방사용액 주탱크(120b)에 연결되며, 또 다른 특정 노즐관체(112g, 112h, 112i)들은 제3 방사용액 주탱크(120c)에 연결된다.
이를 위하여, 상기 제1 방사용액 주탱크(120a)는 노즐블록(111)의 특정 노즐관체(112a, 112b, 112c)들과 제1 공급관(121a)으로 연결되고, 상기 제2 방사용액 주탱크(120b)는 노즐블록(111)의 다른 노즐관체(112d, 112e, 112f)들과 제2 공급관(121b)으로 연결되며, 상기 제3 방사용액 주탱크(120c)는 노즐블록(111)의 또 다른 노즐관체(112g, 112h, 112i)들과 제3 공급관(121c)으로 연결되되, 상기 제1, 제2 및 제3 공급관(121a, 121b, 121c)은 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 갯수와 대응되도록 다수개로 분기형성된다.
이때, 상기 제1, 제2 및 제3 공급관(121a, 121b, 121c)에는 개, 폐가능하게 밸브(미도시)가 구비되는 것이 바람직하며, 상기 밸브의 개, 폐에 의하여 상기 제1, 제2 및 제3 방사용액 주탱크(120a, 120b, 120c) 내에 충진된 고분자 방사용액이 제1, 제2 및 제3 공급관(121a, 121b, 121c)을 통하여 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 것이 on-off 시스템에 의해 제어되도록 이루어지는 것이 바람직하나, 이에 한정하지 아니한다.
그리고, 상기 밸브는 자동 또는 수동으로 제어가능하게 이루어지는 것이 바람직하며, 제어부(미도시)에 의해 제어가능하게 연결되는 것이 바람직하나, 이에 한정하지 아니한다.
여기서, 상기 제1 방사용액 주탱크(120a)와 제2 방사용액 주탱크(120b) 및 제3 방사용액 주탱크(120c) 내에 충진되는 고분자 방사용액은 동일하거나, 동일하지만 농도가 서로 상이하거나, 또는 각기 상이한 고분자 방사용액으로 이루어질 수 있다.
상기한 바와 같은 구조에 의하여, 상기 제1 방사용액 주탱크(120a)에 연결된 특정 노즐관체(112a, 112b, 112c)들과 제2 방사용액 주탱크(120b)에 연결된 다른 특정 노즐관체(112d, 112e, 112f)들 및 제3 방사용액 주탱크(120c)에 연결된 또 다른 특정노즐관체(112g, 112h, 112i)들에서 고분자 방사용액이 전기방사된다.
상기와 같은 전기방사장치에 의해 도 15 내지 19와 같은 투습방수성 나노섬유 웹 또는 나노섬유 필터가 제조된다. 도 15 내지 도 19의 a 내지 f는 평량 또는 섬유의 직경이 상이하거나, 하기에서 개시된 상이한 종류의 고분자 들이 될 수 있으며, 일 실시예로 a, d, e는 폴리 우레탄이고, b, c, f는 나일론이 될 수 있고, a, d, e는 나노섬유의 직경이 30nm이고, b, c, f는 350nm이 될 수 있다.
본 발명에 사용되는 MD방향이란 Machine Direction을 의미하며, 필름이나 부직포 등의 섬유를 연속제조하는 경우에 진행방향에 해당하는 길이 방향을 의미하며 CD방향은 Cross Direction로서 MD방향의 직각 방향을 의미한다. MD는 기계방향/종방향, CD는 폭방향/횡방향으로 지칭하기도 한다.
평량(Basis Weight or Grammage)은 단위 면적당 질량, 즉 바람직한 단위로서제곱미터당 그램(종종 g/㎡보다는 gsm으로 불림)으로 정의된다.
독립된 노즐블럭을 기반으로 on-off 시스템으로 기재상에 적층되는 고분자 용액의 평량을 상이하게 조절할 수 있다. 통상적으로 투습방수층의 평량은 용도에 따라 적절히 선택할 수 있지만, 평량이 5 내지 50gsm, 바람직하게는 12 내지40gsm, 보다 더 바람직하게는 15 내지 30gsm의 범위에 있다. 투습방수층의 기계적강도를 확보하여, 내수도를 얻는다는 관점에서는 두께가 5gsm 이상이 바람직하고, 한편 충분한 통기성을 확보한다는 관점에서는 50gsm 미만이 바람직하다. 본 발명의 경우 단일 투습방수 원단에서 투습방수가 실질적으로 많이 요구되는 부분은 나노섬유층의 평량을 낮게 조절하고, 투습방수가 실질적으로 많이 요구되지 않는 부분은 나노섬유층의 평량을 높게 조절한다. 일예로 원단으로 제조시 인체의 겨드랑이 부분은 나노섬유층의 평량을 5 내지 50 gsm 으로 조절하고, 투습방수가 실질적으로요구되지 않고 마모가 잘 일어나는 배와 엉덩이 부분은 평량을 50gsm 이상으로 조절할 수 있다.
본 발명은 나노섬유를 구성하는 고분자를 복수의 탱크가 각각 연결된 복수개의 노즐블록에 연결된 전기방사장치의 구성을 통해 노즐블럭에서 방사되는 고분자의 종류를 달리하여 MD방향으로 평량이 다르거나, 또는 CD방향으로 평량, 고분자의 종류 또는 섬유의 직경이 상이한 투습방수 원단 또는 나노섬유 필터를 제공한다.
고분자의 특성에 따라 투습방수성 나노섬유 웹 또는 나노섬유 필터 제조 시 그 사용빈도가 다르게 되는데, 대표적으로 폴리비닐리덴플루오라이드와 폴리우레탄은 탄력성과 이외의물리적 특성에 의해 투습방수성 나노섬유 웹에 주로 사용된다. 이러한 예는 산업현장의 요구에 따른 대표적인 예이며 당업자의 입장에서 여러 변형예가 사용가능하다.
이하, 본 발명에서 사용되는 고분자에 대하여 설명한다. 본 발명의 고분자 및 그에 바람직한 것으로 폴리비닐리덴플루오라이드, 폴리우레탄 및 나일론이 있 다.
먼저, 상기 고분자는 폴리비닐리덴플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오르 프로필렌 공중합체, 혹은 이들의 복합 조성물, 폴리우레탄, 폴리아마이드, 폴리이미드, 폴리아미드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 메타아라미드, 폴리에틸렌클로로트리플루오로에틸렌, 폴리클로로트리플루오로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐리덴클로라이드, 폴리비닐리덴클로라이드-아크릴로니트릴 공중합체, 폴리아크릴아미드 등으로 구성되는 군에서 선택된 어느 하나 이상의 물질이다.
먼저, 본 발명에서 사용되는 폴리아미드를 살펴본다.
폴리아미드(Polyamide)는 아미드 결합(-CONH-)으로 연결된 중합체의 총칭을의미하며, 디아민과 2가 산의 축합 중합으로 얻을 수 있다. 폴리아미드는 분자 구조 내의 아미드 결합에 의하여 특징이 달라지며, 아미드기의 비율에 따라 물성이다르게 변한다. 예를 들면, 분자 내의 아미드기의 비율이 높아지면 비중, 융점, 흡 수성, 강성 등이 올라가는 특성이 있다.
또한, 폴리아미드는 내부식성, 내마모성, 내화학성 및 절연성이 우수한 특성으로 인해 의류용, 타이어코드, 카핏, 로프, 컴퓨터 리본, 낙하산, 플라스틱, 접착제 등의 광범위한 분야에서 응용되고 있는 소재이다.
일반적으로 폴리아미드는 방향족 폴리아미드와 지방족 폴리아미드로 구분이 되는데, 대표적인 지방족 폴리아미드로는 나일론(Nylon)이 있다. 나일론은 본래 미 국 듀폰 사의 상표명이지만 현재는 일반명으로 사용되고 있다.
나일론은 흡습성 고분자이며, 온도에 민감하게 반응한다. 대표적인 나일론으로는 나일론 6, 나일론 66 및 나일론 46 등이 있다.
먼저, 나일론 6은 내열성, 성형성 및 내약품성이 우수한 특성이 있으며, 이를 제조하기 위해서는 ε-카프로락탐(Caprolactam)의 개환 중합으로 제조된다. 나 일론 6이라고 하는 것은 카프로락탐의 탄소수가 6개이기 때문이다.
Figure PCTKR2015007138-appb-I000001
(반응식 1) 카프로락탐의 나일론 6 중합
한편, 나일론 66은 나일론 6과 전반적으로 그 특성이 비슷하지만, 나일론 6에 비하여 내열성이 매우 우수하고 자기소화성 및 내마모성이 우수한 고분자이다. 나일론 66은 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응으로 제조된다.
Figure PCTKR2015007138-appb-I000002
(반응식 2) 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응에 의한 나일론 66 중합
또한, 나일론 46은 내열성, 기계적 특성 및 내충격성이 우수하며, 가공온도가 높은 장점이 있다. 나일론 46은 테트라메틸렌디아민과 아디프산의 중축합으로 제조된다. 원료인 디아미노부탄(Diaminobutane, DAB)을 아크릴로니트릴과 시안화수소와의 반응으로부터 제조하고, 중합조작에서는 첫 단계로 디아미노부탄과 아디프산으로부터 염을 만든 다음, 적당한 압력 하에서 중합반응을 거쳐 프리폴리머(Prepolymer)로 전환하고, 상기 프리폴리머(Prepolymer)의 고체는 질소와 수증기의 존재 하에서 약 250℃로 처리하면 고상에서 고분자화가 되어 제조된다.
특히 나일론 46은 높은 아미드 농도와, 메틸렌기와 아미드기 사이의 규칙 정연한 배열로 우수한 특징을 나타낸다. 나일론 46의 녹는점은 약 295℃로서, 다른 종류의 나일론보다 높으며, 상기와 같은 특성으로 인해 내열성이 우수한 수지로서 주목받고 있다.
본 발명에서는 상기 폴리아미드를 이용하여 MD방향으로 평량이 다르거나, 또는 CD방향으로 평량, 고분자의 종류 또는 섬유의 직경이 상이한 투습방수 원단 또는 나노섬유 필터를 제공한다.
본 발명에 사용되는 폴리비닐리덴플루오라이드에 대해 알아본다. 폴리비닐리덴플루오라이드(PVDF) 수지는 플루오로 계열의 고분자 중 하나로, 플루오로 수지는 플루오린을 함유하여 열적, 화학적 성질이 우수하다. 폴리비닐리덴플루오라이드는적절한 유기 용매에 용해시킨 방사용액을 제조함에 있어서, 폴리비닐리덴플루오라이드는 불화비닐리덴의 호모폴리머, 또는 불화비닐리덴을 몰비로 50% 이상 함유하는 공중합폴리머를 포함하는 것으로서, 폴리비닐리덴플루오라이드 수지의 강도가우수한 관점에서 호모폴리머인 것이 보다 바람직하며, 폴리비닐리덴플루오라이드수지가 공중합폴리머인 경우, 불화비닐리덴모노머와 공중합되는 다른 공중합모노머로서는, 공지의 것을 적절하게 선택하여 이용할 수 있고, 특별히 한정되지 않지만, 예컨대, 불소계 모노머나 염소계 모노머 등을 적합하게 이용할 수 있다.
중량 평균 분자량(Mw)은, 특별히 한정되지 않지만, 10,000 내지 500,000인 것이 바람직하고, 50,000 내지 500,000인 것이 보다 바람직하고, 폴리비닐리덴플루
오라이드 수지의 중량평균분자량이 10,000 미만인 경우에는 나노섬유를 이루는 나노섬유가 충분한 강도를 얻을 수 없고, 500,000을 초과하는 경우에는 용액취급이 용이하지 않고, 공정성이 나빠 균일한 나노섬유를 얻기 어렵게 된다.
또한, 본 발명에 적용되는 상기 고분자 중 바람직하게는 폴리아크릴로니트릴이 사용될 수 있다.
일반적으로, 폴리아크릴로니트릴(Polyacrylonitrile, PAN)은 아크릴로니트릴(CH2=CHCN)의 중합체를 의미한다.
Figure PCTKR2015007138-appb-I000003
(반응식 3) 폴리아크릴로니트릴의 단위체
여기서, 폴리아크릴로니트릴 수지는 대부분을 구성하는 아크릴로니트릴과 단위체의 혼합물로부터 만들어지는 공중합체이다. 자주 사용되는 단위체는 부타디엔스티렌염화비닐리덴 또는 다른 비닐 화합물 등이 있다. 아크릴 섬유는 최소한 85% 의 아크릴로니트릴을 포함하며, 모드아크릴은 35~85%의 아크릴로니트릴을 포함하고있다. 다른 단위체가 포함되면 섬유는 염료에 대한 친화력이 증가하는 특성을 갖는다. 더 자세하게는 아크릴로니트릴계 공중합체 및 방사용액을 제조하는 데 있어서, 아크릴로니트릴계 공중합체를 사용하여 제조하는 경우에는 전기방사법으로 극세섬유를 제조하는 과정에서 노즐 오염이 적고, 전기방사성이 우수하여 용매에 대한 용해도를 증가시킴과 동시에, 보다 좋은 기계적 물성을 부여할 수 있다. 더불어 폴리 아크릴로니트릴은 연화점이 300℃ 이상으로 내열성이 우수하다.
또한, 폴리아크릴로니트릴의 중합도는 1,000 내지 1,000,000이며, 바람직하 게는 2,000 내지 1,000,000인 것이 좋다.
그리고, 폴리아크릴로니트릴은 아크릴로니트릴 단량체, 소수성 단량체 및 친
수성 단량체의 사용량을 만족시키는 범위 내에서 사용하는 것이 바람직하다. 고분
자 중합 시 아크릴로니트릴 단량체의 중량%는 친수성 단량체의 중량%와 소수성 단량체의 중량%이 3:4 비율로 하여 전체 단량체에서 뺀 값이 60보다 적을 경우 전기방사하기에 점도가 너무 낮으며, 여기에 가교제를 투입하더라도 노즐오염의 유발은 물론 전기방사시 안정적인 젯(JET) 형성이 어렵다. 또한 99 이상일 경우 방사점도가 너무 높아 방사가 어렵고 여기에 점도를 낮출 수 있는 첨가제를 투입하더라도극세섬유의 직경이 굵어지고 전기방사의 생산성이 너무 낮아 본 발명의 목적을 달성할 수 없다.
또한, 아크릴계 고분자에서 공단량체의 양이 많이 투입될수록 가교제의 양도
많이 투입되어야만 전기방사의 안정성이 확보되고 나노섬유의 기계적 물성 저하를방지할 수 있다.
상기 소수성 단량체는 메타아크릴레이트, 에틸아크릴레이트, 메틸메타크릴레
이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 비닐아세테이트, 비닐피롤리돈,
비닐리덴클로라이드, 비닐클로라이드 등의 에틸렌계 화합물 및 그의 유도체에서 선
택되는 어느 하나 이상을 사용하는 것이 바람직하다.
상기 친수성 단량체는 아크릴산, 알릴알콜, 메타알릴알콜, 하이드록시에틸아
크릴레이트, 하이드록시에틸메타크릴레이트, 하이드록시프로필아크릴레이트, 부탄디올모노아크릴레이트, 디메틸아미노에틸아크릴레이트, 부텐트리카르복실산, 비닐술폰산, 알릴 술폰산, 메탈릴술폰산, 파라스티렌술폰산 등의 에틸렌계 화합물 및 다가산 또는 그들의 유도체에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다.
상기 아크릴로니트릴계 고분자를 제조하기 위하여 사용하는 개시제로는 아조
계 화합물 또는 설페이트 화합물을 사용할 수 있으나 일반적으로 산화환원 반응에이용되는 라디칼 개시제를 사용하는 것이 좋다.
한편, 본 발명에 사용되는 상기 고분자 중 바람직하게는 또한 폴리에테르설폰이 사용될 수 있다.
일반적으로, 폴리에테르설폰(Polyethersulfone, PES)은 하기의 반복 단위체
를 가진 호박색 투명한 비정성 수지로서, 일반적으로 디클로로디페닐설폰의 축중합 반응에 의하여 제조된다.
Figure PCTKR2015007138-appb-I000004
(반응식 4) 폴리에테르설폰의 단위체
폴리에테르설폰은 영국 ICI 사가 개발한 초내열성 엔지니어링 플라스틱으로
열가소성 플라스틱 중에서는 내열성이 매우 우수한 고분자이다. 폴리에테르설폰은
비정성이기 때문에 온도상승에 의한 물성저하가 적고, 굴곡 탄성률의 온도 의존성
이 작기 때문에 -100 내지 200℃에서 거의 변하지 않는다. 하중 왜곡온도는 200 내지 220℃이고, 유리 전이온도는 225℃이다. 또한 180℃까지의 내크립성은 열가소성 수지 중에서 가장 우수하며, 150 내지 160℃의 열수나 스팀에서 견디는 특성을 가진다.
상기와 같은 특성으로 인해 폴리에테르설폰은 광학디스크, 자기드스크, 전기전자 분야, 열수 분야, 자동차 분야 및 내열 도료용 등에 사용되고 있다.
상기 폴리에테르설폰과 함께 사용가능한 용매로는 아세톤, 테트라하이드로퓨
란, 메틸렌클로라이드, 클로로포름, 디메틸포름아마이드(N,N-Dimethylformamide,
DMF), 디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), N-메틸-2-피롤리돈(N- methyl pyrrolidone, NMP), 시클로헥산, 물 또는 이들의 혼합물 등이 있으나, 반드시 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하
기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있
으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어
져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본
발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예에서의 물성값은 이하의 방법에 의해 측정했다.
평량 [gsm]
나노섬유 층으로부터 200mm(MD)×50mm(CD)의 시험편을 6점 채취했다. 한편, 채취 장소는 on-off 조절시스템에 의해 평량이 상이한 부분 각각에서 임의의 3군데로 했다. 이어서, 채취한 각 시험편을 윗접시 전자저울을 사용하여, 각각 질량(g) 을 측정했다. 각 시험편의 질량의 평균값을 구했다. 구한 평균값으로부터 1sm 당질량(g)으로 환산하고, 소수점 제1자리를 반올림하여 부분별 나노섬유층 샘플의 평 량[gsm]으로 했다.
실시예1
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액과 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리우레탄 용액과 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크 각각에 투입하고CD방향으로 노즐블럭이 2부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리우레탄 나노섬유 부직포가, 나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 부직포가평균직경 200nm로 CD 폭이 2m인 폴리우레탄-폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리우레탄-폴리비닐리덴플루오라이드 투습방수성 나노섬유 웹을제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예2
중량평균 분자량이 157,000인 폴리우레탄를 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액과 폴리비닐리덴플루오라이드용액을 제조한다. 상기 폴리우레탄 용액과 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크 각각에 투입하고 CD 방향으로 노즐블럭이 3부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 중간부분은 폴리우레탄 나노섬유 부직포가, 나머지부분은 폴리비닐리덴플루오라이드 나노섬유의 부직포가 평균직경200nm로 CD 폭이 2m인 폴리우레탄-폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리우레탄-폴리비닐리덴플루오라이드 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예3
중량평균 분자량이 157,000인 폴리우레탄를 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액과 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리우레탄 용액과 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크 각각에 투입하고CD방향으로 노즐블록이 9부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향으로 교호적으로 폴리우레탄 및 폴리비닐리덴플루오라이드 나노섬유 부직포가 평균직경 200nm로 CD 폭이 2m인 폴리우레탄- 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리우레탄-폴리비닐리덴플루오라이드 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예4 내지 6
폴리우레탄 대신에 폴리에테르설폰을 사용한 것을 제외하고 실시예 1내지 3 가 동일하게 실시하였다.
실시예7 내지 12
폴리비닐리덴플루오라이드 원단의 일면에 전기방사장치를 이용하여 폴리우레탄 접착층을 형성하고 원단은 연속적으로 라미네이팅 장치에 공급되어, 라미네이팅 장치에서는 접착층이 형성된 원단과 실시예 1내지 6에서 제조된 투습방수성 나노섬 유웹을 라미네이팅시켜 투습방수성 원단을 제조하였다.
실시예13
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해 시켜 폴리우레탄 용액 12% 와 25%의 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 12% 농도의 폴리우레탄 나노섬유 부직포가, 나머지 일방향으로 1m는 25% 나노섬유의 부직포가 평균직경이 각각 30nm 와 350nm로 CD 폭이 2m인 폴리우레탄 나노섬유 부직포가 형성되어 폴리우레탄 투습방수성 나노섬유 웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예14
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해시켜 폴리우레탄 용액 12% 및 25%의 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 중간부분은 섬유직경이 30nm의 폴리우레탄 나노섬유 부직포가, 나머지부분은 350nm 로 CD 폭이 2m인 폴리우레탄 나노섬유 부직포가 형성되어 폴리우레탄 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예15
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해 시켜 폴리우레탄 용액 12% 및 25%의 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블록이 9부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향으로교호적으로 섬유직경이 30 또는 350nm인 폴리우레탄 나노섬유 부직포가 CD 폭이 2m 로 형성되어 폴리우레탄 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상 향식 전기방사를 실시하였다.
실시예16 내지 18
폴리우레탄 대신에 폴리비닐리덴플루오라이드를 사용한 것을 제외하고 실시 예 13내지 15와 동일하게 실시하였다.
실시예19 내지 24
나일론 원단의 일면에 전기방사장치를 이용하여 폴리우레탄 접착층을 형성하
고 원단은 연속적으로 라미네이팅 장치에 공급되어, 라미네이팅 장치에서는 접착층
이 형성된 원단과 실시예 13내지 18에서 제조된 투습방수성 나노섬유웹을 라미네이팅 시켜 투습방수성 원단을 제조하였다.
실시예25
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해 시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블럭이 2부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향중 일방향으로 1m는 폴리우레탄 나노섬유 부직포의 평량이 20gsm이고 나머지 일방향으로 1m는 나노섬유의 부직포의 평량이 50gsm인 CD 폭이 2m인 폴리우레탄 나노섬유 부직포가 형성되어 폴리우레탄 투습방수성 나노섬유 웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예26
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해 시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크 각각에 투입하고 CD방향 중 한 방향으로 노즐블럭이 3부분으로 분리되어 있게 설계된on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 중간부분 1m 는 평량이 50gsm의 폴리우레탄 나노섬유 부직포가, 나머지 가장자리 50cm은 평량이 20gsm으로 CD 폭이 2m인 폴리우레탄 나노섬유 부직포가 형성되어 폴리우레탄 투습 방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예27
중량평균 분자량이 157,000인 폴리우레탄을 디메틸포름아마이드(DMF)에 용해 시켜 폴리우레탄 용액을 제조한다. 상기 폴리우레탄 용액을 방사용액 주탱크에 투입하고 CD방향 중 한 방향으로 노즐블럭이 9부분으로 분리되어 있게 설계된 on-off 시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향으로 교호적으로 폴리우레탄 나노섬유 부직포의 평량이 20gsm이고 나머지 부분의 평량이 50gsm인 CD 폭이2m인 폴리우레탄 나노섬유 부직포가 형성되어 폴리우레탄 투습방수성 나노섬유웹을제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예28 내지 30
폴리우레탄의 평량을 20gsm 대신 9gsm으로 조절한 것을 제외하고는 실시예 25 내지 27과 동일하게 실시하였다.
실시예31 내지 33
폴리우레탄 대신에 폴리비닐리덴플루오라이드를 사용한 것을 제외하고 실시 예 25내지 27과 동일하게 실시하였다.
실시예 34 내지 42
나일론 원단의 일면에 전기방사장치를 이용하여 폴리우레탄 접착층을 형성하고 원단은 연속적으로 라미네이팅 장치에 공급되어, 라미네이팅 장치에서는 접착층
이 형성된 원단과 실시예 25내지 33에서 제조된 투습방수성 나노섬유웹을 라미네이팅 시켜 투습방수성 원단을 제조하였다.
실시예 45
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향의 노즐블록을 포함하여설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 30cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 20gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 50gsm으로 반복되는 구조를 포함하는 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 46
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향의 노즐블록을 포함하여설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 30cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 10gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 30gsm으로 반복되는 구조를 포함하는 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의조건으로 상향식 전기방사를 실시하였다.
실시예 47
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향의 노즐블록을 포함하여설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 30cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 25gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 60gsm으로 반복되는 구조를 포함하는 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 투습방수성 나노섬유웹을 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의조건으로 상향식 전기방사를 실시하였다.
실시예 48
셀룰로오스 기재 상에 전기방사된 폴리비닐리덴 플루오라이드 나노섬유 부직포는 MD 방향에 대한 수직폭 180cm에 있어서, 상부 90cm는 평량이 10gsm이고, 하부 90cm는 평량이 30gsm인 것을 제외하고는 실시예 45와 동일한 조건으로 폴리비닐리덴 플루오라이드 투습방수성 나노섬유웹을 제조하였다.
실시예 49
실시예 1에서 폴리비닐리덴플루오라이드 용액 대신에 폴리우레탄을 디메틸아세트아미드(DMAc) 용매에 용해시킨 폴리우레탄용액으로 변경하는 것 외에는 동일한조건으로 전기방사를 실시하였다.
실시예 50
실시예 2에서 폴리비닐리덴플루오라이드 용액 대신에 폴리우레탄을 디메틸아세트아미드(DMAc) 용매에 용해시킨 폴리우레탄 용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 51
실시예 3에서 폴리비닐리덴플루오라이드 용액 대신에 폴리우레탄을 디메틸아세트아미드(DMAc) 용매에 용해시킨 폴리우레탄 용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 52
실시예 4에서 폴리비닐리덴플루오라이드 용액 대신에 폴리우레탄을 디메틸아세트아미드(DMAc) 용매에 용해시킨 폴리우레탄용액으로 변경하는 것 외에는 동일한조건으로 전기방사를 실시하였다.
실시예 53 내지 60
실시예 45 내지 52에 의해 제조된 투습방수성 나노섬유웹을 절곡하여 필터 카트리지를 제조하였다.
실시예 61
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액과 나일론용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액과 나일론 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블럭이 2부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포가, 나머지 일방향으로 1m는 나일론 나노섬유의 부직포가 평균직경 200nm로 CD 폭이 2m인 폴리비닐리덴플루오라이드-나일론 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드-나일론 나노섬유 필터를제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 62
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액과 나일론용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액과 나일론 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블럭이 3부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 중간부분은 폴리비닐리덴플루오라이드 나노섬유 부직포가, 나머지부분은 나일론 나노섬유의 부직포가 평균직경 200nm로 CD 폭이 2m인 폴리비닐리덴플루오라이드-나일론 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드-나일론 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 63
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액과 나일론용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액과 나일론 용액을 방사용액 주탱크 각각에 투입하고 CD방향으로 노즐블럭이 9부분으로 분리되고 각각 독립된 주탱크에 연결되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향으로 교호적으로 폴리비닐리덴플루오라이드 및 나일론 나노섬유 부직포가 평균직경 200nm로 CD 폭이 2m인 폴리비닐리덴플루오라이드-나일론 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드-나일론 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 64 내지 66
폴리비닐리덴플루오라이드 대신에 메타아라미드를 사용한 것을 제외하고 실 시예 1내지 3가 동일하게 실시하였다.
실시예 67 내지 69
폴리비닐리덴플루오라이드 대신에 메타아라미드를, 나일론 대신에 폴리비닐
리덴플루오라이드를 사용한 것을 제외하고 실시예 1내지 3가 동일하게 실시하였다.
실시예 70
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 25nm이고나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를실시하였다.
실시예 71
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 100nm이고나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를실시하였다.
실시예 72
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 250nm이고나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 73
실시예 1에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 74
실시예 2에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 75
실시예 3에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 76
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 20nm이고나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용 액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 77
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 100nm이고나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용 액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 78
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 250nm이고나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용 액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 79
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 9부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 20cm 간격을 두고 교호적으로 폴리비닐리덴플루오라이드 나노섬유 직경이 20nm 나머지 부분의 섬유직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건 으로 상향식 전기방사를 실시하였다.
실시예 80 내지 83
폴리머 용액이 폴리비닐리덴플루오이드 대신 나일론인것을 제외하고는 실시 예 7 내지 10 과 동일한 방식으로 나노섬유 필터를 제조하였다.
실시예 84
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향 중 한 방향으로 노즐이 2부분으로 분리되어 있게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 20gsm이고 나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 50gsm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노 섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 85
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향 중 한 방향으로 노즐블럭이 3부분으로 분리되어 있게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 20gsm이고 나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 50gsm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 86
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향 중 한 방향으로 노즐블럭이 9부분으로 분리되어 있게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 20cm 간격을 두고 교호적으로 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 20gsm이고 나머지 부분의 평량이 50gsm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 87
실시예 1에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 88
실시예 2에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 89
실시예 3에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 90
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향으로 노즐블록이 분리되게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 20cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 0.1gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 20gsm으로 반복되는 구조를 포함하는폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 91
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향으로 노즐블록이 분리되게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 20cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 0.01gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 10gsm으로 반복되는 구조를 포함하는폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 92
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 MD방향으로 노즐블록이 분리되게 설계된 on-off시스템을 포함한 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 상기 셀룰로오스 기재 상에 전기방사된 나노섬유 부직포는 MD방향에 대한 수직폭 180cm에 있어서, 교호적으로 20cm는 폴리비닐리덴플루오라이드 나노섬유 부직포의 평량이 3gsm이고, 5cm는 폴리비닐리덴플루오라이드 나노섬유부직포의 평량이 30gsm으로 반복되는 구조를 포함하는 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 MD방향으로 나노섬유의 평량이 상이한 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예 93
셀룰로오스 기재 상에 전기방사된 폴리비닐리덴 플루오라이드 나노섬유 부직
포는 MD 방향에 대한 수직폭 180cm에 있어서, 상부 90cm는 평량이 0.1gsm이고, 하부 90cm는 평량이 10gsm인 것을 제외하고는 실시예 1 과 동일한 조건으로 폴리비닐 리덴 플루오라이드 나노섬유 필터를 제조하였다.
실시예 94
실시예 1에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 95
실시예 2에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 96
실시예 3에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 97
실시예 4에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트
아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예 98 내지 105
실시예 1 내지 8에 의해 제조된 나노섬유필터를 절곡하여 필터 카트리지를
제조하였다.

Claims (62)

  1. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의폭방향에 다수개로 배열설치되는 노즐블록;
    이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 기재 상에 이종의 고분자 방사용액을 동시에 전기방
    사하여 기재의 폭방향 동일 평면 상에 이종의 나노섬유 웹을 분할 적층형성시키는것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  2. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록;
    이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 기재 상에 이종의 고분자 방사용액을 동시에 전기방사하여 기재의 동일 평면 상에 이종의 나노섬유 웹을 분할 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 방사용액 주탱크는 제1 방사용액 주탱크와 제2 방사용액 주탱크 및 제3 방사용액 주탱크로 이루어지고, 상기 제1 방사용액 주탱크는 기재의 폭방향 일측에 구비되는 노즐블록의 노즐관체들에 연결되고, 상기 제2 방사용액 주탱크는 기재의폭방향 중심측에 구비되는 노즐블록의 노즐관체들에 연결되며, 상기 제3 방사용액주탱크는 기재의 폭방향 타측에 구비되는 노즐블록의 노즐관체들에 연결되는 것을특징으로 하는 나노섬유 제조용 전기방사장치.
  4. 청구항 3에 있어서,
    상기 제1 방사용액 주탱크는 기재의 폭방향 일측에 구비되되, 제1 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하고, 상기 제2 방사용액 주탱크는 기재의 폭방향 중심측에 구비되되, 제2 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하며, 상기 제3 방사용액 주탱크는 기재의 폭방향 타측에 구비되되, 제3 공급관으로 연결되는 노즐관체들에 이종의 고분자 방사용액을 공급하되, 각 노즐을 통하여 기재의 폭방향으로 이종의 고분자 방사용액을 전기방사하여 나노섬유 웹이 분할 적층형성되는 것을 특징으로 하는 나노섬유 제조용 전기방사장치.
  5. 청구항 4에 있어서,
    상기 기재의 폭방향에 배열설치되되, 이종의 고분자 방사용액이 공급되는 각 노즐관체의 동작을 제어하여 각 노즐관체의 노즐에서 전기방사되어 기재의 폭방향 동일 평면 상에 적층형성되는 이종의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 제조용 전기방사장치.
  6. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의폭방향에 다수개로 배열설치되는 노즐블록;
    고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되되, 상기 용액공급관에 공급량 조절수단이 구비되어 방사용액 주탱크에서
    노즐관체로 공급되는 고분자 방사용액의 공급량이 조절 및 제어되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량
    조절수단이 구비되어 노즐관체에서 노즐로 공급된 후 방사되는 고분자 방사용액의방사량이 조절 및 제어되어 기재 상에 고분자 방사용액을 전기방사 시 기재의 폭방향 동일 평면상에 평량이 상이한 나노섬유 웹을 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  7. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록;
    고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되되, 상기 용액공급관에 공급량 조절수단이 구비되어 방사용액 주탱크에서 노즐관체로 공급되는 고분자 방사용액의 공급량이 조절 및 제어되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량 조절수단이 구비되어 노즐관체에서 노즐로 공급된 후 방사되는 고분자 방사용액의방사량이 조절 및 제어되어 기재 상에 고분자 방사용액을 전기방사 시 기재의 길이 방향 동일 평면상에 평량이 상이한 나노섬유 웹을 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  8. 청구항 6 또는 청구항 7에 있어서,
    상기 용액공급관에 구비되는 공급량 조절수단은 개, 폐가능하게 제어되는 공급밸브로 이루어지되, 상기 공급밸브의 개, 폐에 의해 방사용액 주탱크에 용액공급관으로 연결되는 각 노즐관체 중 특정 노즐관체에만 고분자 방사용액을 선택적으로 공급하도록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  9. 청구항 6 또는 청구항 7에 있어서,
    상기 노즐공급관에 구비되는 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는 각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여전기방사하도록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  10. 청구항 6 또는 청구항 7에 있어서,
    상기 용액공급관의 공급량 조절수단은 개, 폐가능하게 제어되는 공급밸브로 이루어지되, 상기 공급밸브의 개, 폐에 의해 방사용액 주탱크에 용액공급관으로 연결되는 각 노즐관체 중 특정 노즐관체에만 고분자 방사용액을 선택적으로 공급하고, 상기 노즐공급관의 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여 전기방사하도록 이루어지며, 상기 공급밸브 및 노즐밸브의 개, 폐를 개별 또는 동시에 제어하도 록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  11. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향으로 다수개 배열설치되는 노즐블록;
    고분자 방사용액이 충진되되, 상기 노즐블록의 노즐관체에 연결되어 고분자방사용액을 공급하는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 고분자 방사용액을 집적하기 위하여상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 상기 각 노즐관체는 방사용액 주탱크에 용액공급관으로 연결되고, 상기 각 노즐은 노즐관체의 용액공급관에 노즐공급관으로 연결되되, 상기 노즐공급관에 방사량 조절수단이 구비되어 노즐로 공급된 후 전기방사되는 고분자 방사용액의 방사량이 조절 및 제어되어 기재 상에 고분자 방사용액의 전기방사 시 기재의 동일 평면상의 길이방향으로 일정간격 이격되는 길이방향에 평량이 상이한 나노섬유 웹이 개재되게 적층형성되는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  12. 청구항 11에 있어서,
    상기 노즐공급관에 구비되는 방사량 조절수단은 개, 폐가능하게 제어되는 노즐밸브로 이루어지되, 상기 노즐밸브의 개, 폐에 의해 용액공급관에 노즐공급관으로 연결되는 각 노즐 중 특정 노즐에서만 고분자 방사용액을 선택적으로 공급하여전기방사하도록 이루어지는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  13. 청구항 12에 있어서,
    상기 기재의 길이방향으로 배열설치되되, 고분자 방사용액이 공급되는 노즐관체 중 특정 노즐관체의 특정 노즐의 동작을 제어하여 특정 노즐에서 전기방사되어 기재의 길이방향 동일 평면상에 일정간격 이격되는 폭방향에 연속적으로 개재되는 상이한 평량의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 제조용 전기방사장치.
  14. 청구항 11 내지 청구항 13 중 어느 한 항에 의한 나노섬유 웹 제조용 전기방사장치에 의한 나노섬유 웹으로 제조된 나노섬유 필터.
  15. 나노섬유 웹을 제조하기 위한 전기방사장치에 있어서,
    유닛 내에 설치되되, 핀 형태의 노즐이 다수개 구비되는 노즐관체가 기재의길이방향에 다수개로 배열설치되는 노즐블록;
    이종의 고분자 방사용액이 충진되되, 상기 노즐블록에 연결되어 이종의 고분자 방사용액을 공급하기 위하여 적어도 하나 이상의 다수개로 구비되는 방사용액 주탱크;
    상기 각 노즐관체의 노즐에서 분사되는 이종의 고분자 방사용액을 집적하기위하여 상기 노즐에서 일정간격 이격되는 컬렉터;
    상기 컬렉터에 전압을 발생시키는 전압 발생장치; 및
    상기 기재를 이송시키기 위한 보조 이송장치;
    를 포함하여 구성되고, 상기 기재의 길이방향으로 일정간격 이격되어 특정영역 및 특정부분에 이종의 고분자 방사용액을 동시에 전기방사하여 기재의 동일 평면상에 이종의 나노섬유 웹이 연속적으로 개재되도록 적층형성시키는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  16. 청구항 15에 있어서,
    상기 방사용액 주탱크는 제1 방사용액 주탱크 및 제2 방사용액 주탱크로 이루어지고, 상기 제1 방사용액 주탱크는 기재의 길이방향으로 배열설치되는 특정 노즐관체들에 연결되고, 상기 제2 방사용액 주탱크는 기재의 길이방향으로 배열설치되되, 제1 방사용액 주탱크에 연결되는 특정 노즐관체 사이에 위치하는 노즐관체들 에 연결되는 것을 특징으로 하는 나노섬유 웹 제조용 전기방사장치.
  17. 청구항 16에 있어서,
    상기 기재의 길이방향으로 배열설치되되, 이종의 고분자 방사용액이 공급되는 각 노즐관체의 동작을 제어하여 각 노즐관체의 노즐에서 전기방사되어 기재의 길이방향으로 일정간격 이격되는 동일 평면 상에 적층형성되는 이종의 나노섬유 웹의 방사영역 및 방사부분을 가변적으로 조절하도록 이루어지는 것을 특징으로 하는 나노섬유 제조용 전기방사장치.
  18. 청구항 15 내지 청구항 17 중 어느 한 항에 의한 나노섬유 웹 제조용 전기방사장치에 의한 나노섬유 웹으로 제조된 나노섬유 필터.
  19. 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제조방법.
  20. 제 19항에 있어서,
    상기 나노섬유의 고분자는 복수의 노즐관체에 주입되는 고분자 용액의 종류를 상이하게 조절하여 나노섬유 고분자의 종류를 상이하게 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제 조방법.
  21. 제 19항에 있어서,
    상기 CD 방향중 일방향의 고분자가 폴리우레탄이고 나머지 일방향의 고분자가 폴리비닐리덴플루오라이드인 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의종류가 상이한 투습방수성 나노섬유웹의 제조방법.
  22. 제 20항에 있어서,
    상기 CD 방향으로 투습방수성 나노섬유웹을 3등분하였을 때 중간부분이 폴리우레탄이고 나머지 부분이 폴리비닐리덴플루오라이드인 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제조방법.
  23. 제 20항에 있어서,
    상기 CD 방향으로 교호적으로 고분자의 종류가 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 투습방수성 나노섬유웹의 제조방법.
  24. 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법.
  25. 제 24항에 있어서,
    상기 나노섬유의 고분자는 복수의 노즐관체에 주입되는 고분자 용액의 농도를 상이하게 조절하여 나노섬유 직경을 상이하게 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법.
  26. 제 25항에 있어서,
    상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법.
  27. 제 25항에 있어서,
    상기 CD 방향중 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬 유 웹의 제조방법.
  28. 제 25항에 있어서,
    상기 CD 방향으로 교호적으로 섬유직경이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 투습방수성 나노섬유 웹의 제조방법.
  29. 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  30. 제 29항에 있어서,
    상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  31. 제 30항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 일방향으로 평량의 구배가 증가하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한투습방수성 나노섬유웹의 제조방법.
  32. 제 30항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 양방향으로 평량의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량 이 상이한 투습방수성 나노섬유웹의 제조방법.
  33. 제 30항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  34. 제 30항에 있어서,
    상기 평량은 10 내지 100gsm의 범위에서 CD방향으로 상이한 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  35. 상향식 전기방사를 이용한 투습방수성 나노섬유웹의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 MD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  36. 제 35항에 있어서,
    상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  37. 제 36항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 투습방수성 나노섬유웹의 제조방법.
  38. 제 36항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 평량이 상이하게 설계된 교호구간은 나노섬유 평량이 5 내지 50gsm 인 30 내지 80cm구간과 나노섬유 평량이 50 내지 100gsm인 5 내지 30cm구간으로 구성되는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 투습방 수성 나노섬유웹의 제조방법.
  39. 제 19항 내지 제 38항 중 어느 한 항의 제조방법으로 제조된 투습방수성 나노섬유웹.
  40. 제 19항 내지 제 38항 중 어느 한 항의 제조방법으로 제조된 투습방수성 나노 섬유 웹을 원단에 라미네이팅하여 제조된 것을 특징으로 하는 투습방수 원단.
  41. 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛 내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법.
  42. 제 41항에 있어서,
    상기 나노섬유의 섬유직경은 복수의 노즐관체에 주입되는 고분자 용액의 종류를 상이하게 조절하여 나노섬유 고분자의 종류를 상이하게 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법.
  43. 제 41항에 있어서,
    상기CD 방향중 일방향의 고분자가 폴리비닐리덴플루오라이드이고 나머지 일방향의 고분자가 나일론인 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법.
  44. 제 42항에 있어서,
    상기 CD 방향으로 나노섬유 필터를 3등분하였을 때 중간부분이 폴리비닐리덴플루오라이드이고 나머지 부분이 나일론인 것을 특징으로 하는 CD 방향으로 나노섬 유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법.
  45. 제 42항에 있어서,
    상기 CD 방향으로 교호적으로 고분자의 종류가 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 고분자의 종류가 상이한 나노섬유 필터의 제조방법.
  46. 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  47. 제 46항에 있어서,
    상기 나노섬유의 섬유직경은 복수의 노즐관체에 주입되는 폴리머 용액의 농도를 상이하게 조절하여 나노섬유 직경을 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  48. 제 47항에 있어서,
    상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하게 설계된 것을 특징으 로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  49. 제 47항에 있어서,
    상기 CD 방향중 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  50. 제 47항에 있어서,
    상기 CD 방향으로 교호적으로 섬유직경이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  51. 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  52. 제 51항에 있어서,
    상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  53. 제 52항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 일방향으로 평량의 구배가 증가하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한나노섬유 필터의 제조방법.
  54. 제 52항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향중 양방향으로 평량의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량 이 상이한 나노섬유 필터의 제조방법.
  55. 제 52항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 CD 방향으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  56. 제 51항 내지 55항 중 어느 한항에 있어서,
    상기 평량은 0.01 내지 10gsm으로 상이한 것을 특징으로 하는 CD 방향으로나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  57. 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 MD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  58. 제 57항에 있어서,
    상기 나노섬유의 평량은 복수의 노즐관체를 on-off 시스템으로 조작하는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  59. 제 58항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계된 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 나노섬유 필터의 제조방법.
  60. 제 58항에 있어서,
    상기 on-off 시스템은 나노섬유가 집적되는 MD 방향으로 교호적으로 평량이 상이하게 설계되며, 평량이 상이하게 설계된 교호구간은 나노섬유 평량이 0.01 내지 10gsm 인 30 내지 80cm구간과 나노섬유 평량이 20 내지 40gsm인 5 내지 30cm구간으로 구성되는 것을 특징으로 하는 MD 방향으로 나노섬유의 평량이 상이한 나노 섬유 필터의 제조방법.
  61. 제 41항 내지 제 60항 중 어느 한 항의 제조방법으로 제조된 나노섬유필터.
  62. 제 61항의 나노섬유 필터를 포함하는 나노섬유 필터 카트리지.
PCT/KR2015/007138 2014-10-29 2015-07-09 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터 WO2016068447A1 (ko)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
KR1020140148396A KR101635043B1 (ko) 2014-10-29 2014-10-29 투습방수 원단 및 이의 제조방법
KR10-2014-0148391 2014-10-29
KR10-2014-0148400 2014-10-29
KR10-2014-0148394 2014-10-29
KR1020140148390A KR101635056B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR10-2014-0148389 2014-10-29
KR1020140148389A KR101635058B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR10-2014-0148390 2014-10-29
KR1020140148393A KR101635047B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR1020140148401A KR101635034B1 (ko) 2014-10-29 2014-10-29 나노섬유필터 및 이의 제조방법
KR10-2014-0148396 2014-10-29
KR10-2014-0148398 2014-10-29
KR1020140148394A KR101635045B1 (ko) 2014-10-29 2014-10-29 투습방수 원단 및 이의 제조방법
KR10-2014-0148388 2014-10-29
KR10-2014-0148397 2014-10-29
KR10-2014-0148392 2014-10-29
KR1020140148400A KR101635036B1 (ko) 2014-10-29 2014-10-29 나노섬유필터 및 이의 제조방법
KR1020140148388A KR101635059B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR1020140148391A KR101635055B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR10-2014-0148401 2014-10-29
KR1020140148397A KR101635039B1 (ko) 2014-10-29 2014-10-29 투습방수 원단 및 이의 제조방법
KR10-2014-0148395 2014-10-29
KR1020140148395A KR101635044B1 (ko) 2014-10-29 2014-10-29 투습방수 원단 및 이의 제조방법
KR1020140148392A KR101635053B1 (ko) 2014-10-29 2014-10-29 나노섬유 웹 제조용 전기방사장치
KR10-2014-0148393 2014-10-29
KR1020140148399A KR101635037B1 (ko) 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법
KR1020140148398A KR101635038B1 (ko) 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법
KR10-2014-0148399 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016068447A1 true WO2016068447A1 (ko) 2016-05-06

Family

ID=55857755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007138 WO2016068447A1 (ko) 2014-10-29 2015-07-09 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터

Country Status (1)

Country Link
WO (1) WO2016068447A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041971A (ko) * 2017-10-12 2019-04-23 가부시끼가이샤 구레하 중합체의 연속 제조 장치 및 연속 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857523B1 (ko) * 2007-07-03 2008-09-08 파인텍스테크놀로지글로벌리미티드 전기방사장치의 방사 조건의 조절 방법
KR20110077915A (ko) * 2009-12-30 2011-07-07 주식회사 효성 전기방사장치의 방사조건 제어방법
KR101162045B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치
KR101154211B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치
KR20140124567A (ko) * 2013-04-17 2014-10-27 (주)에프티이앤이 제어 시스템이 구비된 전기방사장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857523B1 (ko) * 2007-07-03 2008-09-08 파인텍스테크놀로지글로벌리미티드 전기방사장치의 방사 조건의 조절 방법
KR20110077915A (ko) * 2009-12-30 2011-07-07 주식회사 효성 전기방사장치의 방사조건 제어방법
KR101162045B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치
KR101154211B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치
KR20140124567A (ko) * 2013-04-17 2014-10-27 (주)에프티이앤이 제어 시스템이 구비된 전기방사장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041971A (ko) * 2017-10-12 2019-04-23 가부시끼가이샤 구레하 중합체의 연속 제조 장치 및 연속 제조 방법
KR102164736B1 (ko) 2017-10-12 2020-10-14 가부시끼가이샤 구레하 중합체의 연속 제조 장치 및 연속 제조 방법
US10807062B2 (en) 2017-10-12 2020-10-20 Kureha Corporation Continuous production apparatus and continuous production method for polymer

Similar Documents

Publication Publication Date Title
WO2015016449A1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
WO2015053444A1 (ko) 기재 사이에 나노섬유를 포함하는 필터 및 이의 제조방법
WO2012077872A1 (ko) 나노섬유 제조장치
WO2015053443A1 (ko) 기재 양면에 나노섬유를 포함하는 필터 및 이의 제조방법
WO2016171327A1 (ko) 나노섬유를 포함하는 나노 멤브레인
WO2015016450A1 (ko) 일렉트로블로운 또는 멜트블로운과, 전기방사를 이용한 다층 나노섬유 필터여재 및 이의 제조방법
WO2018110986A1 (ko) 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
WO2015053442A1 (ko) 나노섬유를 포함하는 필터 및 이의 제조방법
WO2019050128A1 (ko) 방수성 통기 시트 및 이의 제조 방법
WO2016089153A1 (ko) 고분자 전해질막
WO2016175608A1 (ko) 이온성 기능기를 갖는 고분자 나노 부직웹 및 이를 구비하는 호흡 마스크
WO2018230786A1 (ko) 제습용 중공사막과 이를 이용한 제습용 모듈 및 제습용 중공사막의 제조방법과 중공사막을 사용하는 습도 조절이 가능한 공기 청정기
WO2017209520A1 (ko) 필터집합체, 이의 제조방법 및 이를 포함하는 필터모듈
WO2014142450A1 (ko) 이차전지용 다공성 분리막의 제조방법 및 이에 따라 제조된 이차전지용 다공성 분리막
WO2016068447A1 (ko) 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터
WO2016190596A2 (ko) 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법
WO2020022848A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2014142449A1 (ko) 내열성이 향상된 이차전지용 다층 분리막의 제조방법 및 그에 따라 제조된 다층 분리막
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2018199458A1 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2016171331A1 (ko) 나노섬유를 포함하는 마스크팩
WO2016195155A1 (ko) 필터백용 스프링 밴드를 구비한 집진기용 주름필터백
WO2016089155A1 (ko) 고분자 전해질막
WO2014137095A1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법
WO2014021635A1 (ko) 코팅층을 포함하는 분리막 및 이를 이용한 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855551

Country of ref document: EP

Kind code of ref document: A1