KR101635037B1 - 나노섬유 필터 및 이의 제조방법 - Google Patents

나노섬유 필터 및 이의 제조방법 Download PDF

Info

Publication number
KR101635037B1
KR101635037B1 KR1020140148399A KR20140148399A KR101635037B1 KR 101635037 B1 KR101635037 B1 KR 101635037B1 KR 1020140148399 A KR1020140148399 A KR 1020140148399A KR 20140148399 A KR20140148399 A KR 20140148399A KR 101635037 B1 KR101635037 B1 KR 101635037B1
Authority
KR
South Korea
Prior art keywords
filter
nanofiber
polyvinylidene fluoride
nozzle
solution
Prior art date
Application number
KR1020140148399A
Other languages
English (en)
Other versions
KR20160050381A (ko
Inventor
박종철
Original Assignee
박종철
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종철 filed Critical 박종철
Priority to KR1020140148399A priority Critical patent/KR101635037B1/ko
Priority to PCT/KR2015/007138 priority patent/WO2016068447A1/ko
Publication of KR20160050381A publication Critical patent/KR20160050381A/ko
Application granted granted Critical
Publication of KR101635037B1 publication Critical patent/KR101635037B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 나노섬유의 제조방법에 관한 것으로서, 보다 상세하게는 종래의 전기방사 온도인 상온보다 고온인 온도에서 고농도의 폴리머를 포함하는 방사용액을 전기방사하여 나노섬유를 제조하는 방법에 관한 것이다.
또한, 나노섬유화 되지 못한 방사용액을 재사용하는 오버플로우 시스템을 구비하고 전기방사되는 방사용액의 농도를 유지하는 대신 방사용액의 점도를 유지하는 온도조절 장치를 포함함으로써, 희석제를 사용하지 않는 것을 특징으로 하는 나노섬유의 제조방법에 관한 것이다.

Description

나노섬유 필터 및 이의 제조방법 {Nano fiber filter and method of manufacturing the same}
본 발명은 평명방향으로 섬유직경이 상이한 나노섬유 필터의 제조방법에 관한 것으로서, 보다 상세하게는 CD방향으로 섬유직경이 상이한 나노섬유 필터의 제조방법 및 이에 의해 제조된 나노섬유 필터에 관한 것이다.
일반적으로, 필터는 유체 속의 이물질을 걸러내는 여과장치로서 액체필터와 에어필터로 나뉜다. 그 중 에어필터는 첨단산업의 발달과 함께 첨단제품의 불량방지를 위해 사용되며, 공기 중의 먼지, 미립자, 세균이나 곰팡이 등의 생물입자, 박테리아 등과 같은 생물학적으로 유해한 것이 완벽하게 제거된 클린룸(Clean room)의 설치는 날로 확산되고 있다. 클린룸이 적용되는 분야로는 반도체 제조, 전산기기 조립, 테이프 제조, 인쇄도장, 병원, 약품제조, 식품가공공장, 농림수산분야 등 으로 광범위하다.
이렇게 에어필터는 필터 여재의 표면에 미세다공 구조의 기공층을 형성시킴으로써 분진이 여재 내로 침투하지 못하는 기능을 수행하며 여과를 한다. 그러나, 입자크기가 큰 입자들은 필터 여재 표면에 필터 케이크(Filter Cake)로 형성되고, 미세한 입자들은 1차 표면층을 통과하여 필터 여재에 점차 쌓이게 되어 필터의 기공을 막게 만든다. 결국, 필터의 기공을 막은 입자들 및 미세 입자들을 필터의 압력손실을 높이고, 필터의 수명을 저하시킬 뿐 아니라, 기존의 필터 여재로는 1미크론 이하의 나노사이즈의 미세 오염입자를 필터링하는 것에 어려움이 있었다.
한편, 기존의 에어필터는 필터 여재를 구성하는 섬유집합체에 정전기를 부여하여 입자가 정전기력에 의해 포집되는 원리에 의해 효율이 측정되었다. 그러나, 최근 유럽의 에어필터 분류 표준인 EN779는 2012년에 정전기 효과에 의한 필터의 효율을 배제하기로 개정됨에 따라 기존의 필터의 실제 효율은 20%이상 저하되는 것이 밝혀졌다.
또한, 기존의 내열성 필터의 소재로 사용되었던 유리섬유가 환경에 미치는 악영향으로 인해 유럽과 미국에서는 환경안정성을 위해 유리섬유의 이용을 규제하고 있는 실정이다.
상기한 문제점을 해결하기 위하여 나노사이즈의 섬유를 제조하여 필터에 적용하는 다양한 방식들이 개발되었다. 나노섬유를 필터에 구현할 경우, 직경이 큰 기존의 필터 여재에 비해서 비표적이 매우 크고, 표면 작용기에 대한 유연성도 좋으며, 나노급 기공사이즈를 가지므로 유해한 미세입자나 가스 등을 효율적으로 제거할 수 있게 되었다.
나노섬유를 제조 및 생산하기 위한 전기방사장치는 방사용액이 내부에 충진되는 방사용액 주탱크, 방사용액의 정량 공급을 위한 계량 펌프, 방사용액을 토출하기 위한 노즐이 다수개 배열설치되는 노즐블록, 노즐 하단에 위치하여 방사되는 섬유들을 집적하는 컬렉터 및 전압을 발생시키는 전압 발생장치를 포함하여 구성된다.
상술한 바와 같은 구조로 이루어지는 전기방사장치는 방사용액이 충진되는 방사용액 주탱크와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐이 다수개 배열설치되는 노즐 블록과 상기 노즐의 상단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐에서 일정간격 이격되는 컬렉터 및 상기 컬렉터에 고전압을 발생시키는 전압 발생장치를 포함하는 유닛으로 구성된다.
이러한 전기방사장치를 통한 나노섬유의 제조방법은 방사용액이 충진되는 방사용액 주탱크 내의 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 다수의 노즐 내에 연속적으로 정량 공급되고, 노즐로 공급되는 방사용액은 높은 전압이 걸려있는 컬렉터상에 노즐을 통하여 방사, 집속되어 나노섬유 웹이 형성되되, 상기 전기방사장치의 유닛들로 이송되는 장척시트상에 나노섬유 웹을 형성하고, 상기 나노섬유가 적층형성되는 장척시트가 각 유닛을 통과하여 반복적으로 나노섬유가 적층된 후 라미네이팅, 엠보싱 또는 heat and pressing, 니들펀칭하여 부직포로 제조한다.
여기서, 전기방사장치는 컬렉터 상의 위치하는 방향에 따라 상향식 전기방사장치, 하향식 전기방사장치 및 수평식 전기방사장치로 나뉜다. 즉, 전기방사장치는 컬렉터가 노즐의 상단에 위치하는 구성으로 이루어지고, 균일하고 상대적으로 가는 나노섬유를 제조할 수 있는 상향식 전기방사장치, 컬렉터가 노즐의 하단에 위치하는 구성으로 이루어지고, 상대적으로 굵은 나노섬유를 제조할 수 있으며, 단위시간 당 나노섬유의 생산량을 증대시킬 수 있는 하향식 전기방사장치 및 컬렉터와 노즐이 수평방향으로 배열되는 구성으로 이루어지는 수평식 전기방사장치로 나뉜다.
상향식 전기방사장치는 상향 노즐 블록의 노즐을 통하여 방사용액이 분사되고, 분사되는 방사용액이 지지체의 하부면에 적층되면서 나노섬유를 형성하는 구성으로 이루어진다.
상술한 바와 같은 구성에 의하여 상기 상향식 전기방사장치의 어느 한 유닛 내부에서 노즐을 통하여 방사용액을 분사하여 나노섬유 웹이 적층형성되는 장척시트는 다른 한 유닛 내부로 이송되고, 다른 한 유닛 내부로 이송되는 장척시트에 노즐을 통하여 방사용액을 분사하여 또 다시 나노섬유를 적층형성하는 등 상기한 공정을 반복적으로 수행하면서 나노섬유 웹을 제조한다.
그러나, 나노섬유를 이용한 필터 구현은 생산비용이 증대되는 문제점이 발생하고, 생산을 위한 여러 가지 조건 등을 조절하기가 쉽지 않으며, 대량생산에 어려움이 있으므로 나노섬유를 이용한 필터는 상대적으로 낮은 단가로 생산보급하지 못하는 실정이다.
또한, 종래의 나노 부직포를 방사하는 기술로는 실험실 위주의 소규모 작업라인으로 한정되어 있어, 방사구획을 노즐블록을 이용하여 나노섬유를 수평방향으로 나누는 개념이 없었으며, 이에 더해 산업현장에서 사용되는 필터의 경우 평면방향으로 필터 전체 나노섬유층의 섬유굵기가 일정하거나 섬유직경이 일정하여야 표준규격을 만족하여 생산 및 판매가 가능하였는데, 실제 화력발전소의 가스터빈등에 사용되는 필터의 경우 공기가 유입되는 방향 및 공기 유입부분 위치와 배기되는 방향및 배기위치에 따라서 필터를 구성하는 섬유의 섬유직경과 굵기가 일정할 필요가 없는 경우도 있으며, 오히려 공기여과가 활발한 필터부분은 공기여과효율을 높이기 위해 나노섬유의 굵기를 작게 조절하여야 하는 반면, 공기여과가 활발하지 않은 필터부분은 공기유량이 많지 않으므로 나노섬유의 굵기를 크게 조절하여 공기여과측면보다 내구성을 높이는 설계의 요구가 필요한 실정이다.
이에 더해, 여러 산업적인 요구에 의해 필터의 평면방향으로 다른 종류의 폴리머로 구성된 나노섬유 필터 역시 필요하게 되었다.
한국 등록특허 10-1162033호 한국 등록특허 10-1382571호
이에 본발명은 상기와 같은 문제를 해결하기 위해 이루어진 것으로서, 가스터빈등의 산업현장등에 사용시 필터내에 들어오는 공기의 흐름, 공기여과가 주로 이루어지는 필터의 부분 및 공기여과가 많이 이루어지지 않는 필터의 부분을 고려하여 필터의 효율과 생산성을 높이기 위해, 필터의 평면방향 중 CD 방향으로 섬유직경이 상이한 나노섬유 필터를 제공하는 것을 목적으로 한다.
본 발명은 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법을 제공한다.
또한, 상기 나노섬유의 섬유직경은 복수의 노즐관체에 주입되는 폴리머 용액의 농도를 상이하게 조절하여 나노섬유 직경을 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법을 제공한다.
또한, 상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하거나, 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계된 나노섬유 필터의 제조방법을 제공한다.
이에 더해, 본 발명은 상기 제조방법에 의해 제조된 나노섬유 필터를 제공한다.
본 발명은 CD방향으로 나노섬유 직경이 상이한 나노섬유 필터를 제공함으로써, 필터의 효율향상, 내구성 향상 및 나노섬유 제조의 생산성을 높일 수 있는 나노섬유필터의 제조방법 및 나노섬유 필터를 제공한다.
도 1은 나노섬유 웹 제조용 전기방사장치를 개략적으로 나타내는 측면도,
도 2는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 평면도,
도 3은 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 사시도,
도 4 내지 도 5는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 각 노즐관체를 통하여 상이한 농도의 고분자 방사용액이 기재의 동일 평면 상에 전기방사되는 동작과정을 개략적으로 나타내는 평면도,
도 6 내지 도 8은 본 발명에 의해 CD방향으로 상이한 섬유직경의 나노섬유 웹의 평면도.
이하, 본 발명에 의한 바람직한 실시예와 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
먼저, 기재 상에 방사용액을 전기방사하여 필터를 제조하는 전기방사장치를 도면을 참고하여 설명한다.
도 2는 본 발명에 의한 투습방수성 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 평면도이고, 도 3은 본 발명에 의한 투습방수성 나노섬유 웹 제조용 전기방사장치의 노즐블록에 배열설치되는 노즐관체를 개략적으로 나타내는 사시도이며, 도 4 내지 도 5는 본 발명에 의한 나노섬유 웹 제조용 전기방사장치의 각 노즐관체를 통하여 상이한 농도의 고분자 방사용액이 기재의 동일 평면 상에 전기방사되는 동작과정을 개략적으로 나타내는 평면도이다.
도 1을 참조하여 설명하면, 도면에서 도시하고 있는 바와 같이, 본 발명에 의한 전기방사장치(100)는 상향식 전기방사장치로 이루어지되, 적어도 하나 이상의 유닛(110, 110')으로 이루어진다. 본 발명의 일 실시예에서는 상기 전기방사장치(100)가 상향식 전기방사장치로 이루어져 있으나, 하향식 전기방사장치로 이루어지는 것도 가능하다.
여기서, 상기 유닛(110, 110')은 고분자 방사용액이 충진되는 방사용액 주탱크(120)와 상기 방사용액 주탱크(120) 내에 충진된 고분자 방사용액을 정량으로 공급하기 위한 계량 펌프(미도시)와 상기 방사용액 주탱크(120) 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(111a)이 다수개로 구비되는 노즐관체(112)가 기재(115)의 CD방향으로 다수개 배열설치되는 노즐블록(111)과 상기 노즐(111a)에서 분사되는 고분자 방사용액을 집적하기 위하여 노즐(111a)에서 일정간격 이격되게 설치되는 컬렉터(113) 및 상기 컬렉터(113)에 고전압을 발생시키는 전압 발생장치(114)를 포함하여 구성된다.
상기한 바와 같은, 나노섬유 웹 제조용 전기방사장치(100)은 방사용액 주탱크(120) 내에 충진되는 고분자 방사용액이 계량 펌프를 통해 높은 전압이 부여되는 노즐블록(111)으로 연속적으로 정량 공급되고, 노즐블록(111)으로 공급되는 고분자 방사용액은 높은 전압이 걸려있는 컬렉터(113) 상에 노즐(111a)을 통하여 전기방사장치 내에서 이송되는 기재(115) 상에 방사 및 집속되어 나노섬유 웹이 적층형성된다.
이때, 상기 나노섬유 웹 제조용 전기방사장치(100)에 구비되는 적어도 하나 이상의 유닛(110, 110')은 일정간격 이격되어 순차적으로 구비되되, 각 유닛(110, 110')을 통하여 고분자 방사용액이 전기방사되어 나노섬유 웹 또는 나노섬유 필터 등의 필터 소재를 제조한다.
한편, 상기 전기방사장치(100)의 노즐블록(111)에 다수개로 배열설치되는 노즐관체(112)는 고분자 방사용액을 공급하는 방사용액 주탱크(120)가 적어도 2개 이상 연결구비된다.
즉, 직육면체형상으로 형성되되, 그 상부면에 다수개의 노즐(111a)이 구비되는 노즐관체(112)가 노즐블록(111)에 기재(115)의 CD방향으로 다수개 배열설치되고, 상기 노즐관체(112)에는 제1 방사용액 주탱크(120a)와 제2 방사용액 주탱크(120b) 및 제3 방사용액 주탱크(120c)로 구비되는 방사용액 주탱크(120)가 연결되는 등 상기 노즐관체(112)에는 적어도 2개 이상의 방사용액 주탱크(120)가 연결된다.
그리고, 상기 노즐블록(111)의 각 노즐관체(112) 중 특정 노즐관체(112a, 112b, 112c)들은 제1 방사용액 주탱크(120a)에 연결되고, 다른 특정 노즐관체(112d, 112e, 112f)들은 제2 방사용액 주탱크(120b)에 연결되며, 또 다른 특정 노즐관체(112g, 112h, 112i)들은 제3 방사용액 주탱크(120c)에 연결된다.
이를 위하여, 상기 제1 방사용액 주탱크(120a)는 노즐블록(111)의 특정 노즐관체(112a, 112b, 112c)들과 제1 공급관(121a)으로 연결되고, 상기 제2 방사용액 주탱크(120b)는 노즐블록(111)의 다른 노즐관체(112d, 112e, 112f)들과 제2 공급관(121b)으로 연결되며, 상기 제3 방사용액 주탱크(120c)는 노즐블록(111)의 또 다른 노즐관체(112g, 112h, 112i)들과 제3 공급관(121c)으로 연결되되, 상기 제1, 제2 및 제3 공급관(121a, 121b, 121c)은 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)의 갯수와 대응되도록 다수개로 분기형성된다.
이때, 상기 제1, 제2 및 제3 공급관(121a, 121b, 121c)에는 개, 폐가능하게 밸브(미도시)가 구비되는 것이 바람직하며, 상기 밸브의 개, 폐에 의하여 상기 제1, 제2 및 제3 방사용액 주탱크(120a, 120b, 120c) 내에 충진된 고분자 방사용액이 제1, 제2 및 제3 공급관(121a, 121b, 121c)을 통하여 각 노즐관체(112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i)로 공급되는 것이 제어되도록 이루어지는 것이 바람직하나, 이에 한정하지 아니한다.
그리고, 상기 밸브는 자동 또는 수동으로 제어가능하게 이루어지는 것이 바람직하며, 제어부(미도시)에 의해 제어가능하게 연결되는 것이 바람직하나, 이에 한정하지 아니한다.
여기서, 상기 제1 방사용액 주탱크(120a)와 제2 방사용액 주탱크(120b) 및 제3 방사용액 주탱크(120c) 내에 충진되는 고분자 방사용액은 각기 상이한 농도의 고분자 방사용액으로 이루어진다.
상기한 바와 같은 구조에 의하여, 상기 제1 방사용액 주탱크(120a)에 연결된 특정 노즐관체(112a, 112b, 112c)들과 제2 방사용액 주탱크(120b)에 연결된 다른 특정 노즐관체(112d, 112e, 112f)들 및 제3 방사용액 주탱크(120c)에 연결된 또 다른 특정노즐관체(112g, 112h, 112i)들에서 상이한 농도의 고분자 방사용액이 전기방사된다.
상기와 같은 전기방사장치에 의해 도 6 내지 8과 같은 투습방수성 나노섬유 웹이 제조된다. 도 6 내지 도 8의 a 내지 f는 상이한 섬유직경을 나타니며, 일 실시예로 a, d, e는 나노섬유의 직경이 30nm이고, b, c, f는 350nm이다.
본 발명에 사용되는 MD방향이란 Machine Direction을 의미하며, 필름이나 부직포 등의 섬유를 연속제조하는 경우에 진행방향에 해당하는 길이 방향을 의미하며 CD방향은 Cross Direction로서 MD방향의 직각 방향을 의미한다. MD는 기계방향/종방향, CD는 폭방향/횡방향으로 지칭하기도 한다.
나노섬유의 장점은 극세크기의 직경을 가지므로 기존 섬유에 비해 큰 표면적을 갖는다. 이러한 나노섬유의 직경은 고분자 농도, 점도, 노즐에서 컬렉터까지의 거리, 인가전압, 고분자용액의 공급속도, 방사환경등을 조절함으로서 달리 할 수 있다. 구체적으로 나노섬유의 고분자 농도 및 점도를 높게하거나, 노즐과 컬렉터간 거리를 가까이 하거나, 인가전압을 낮추는 경우는 나노섬유의 직경이 커진다. 반대로, 고분자 농도 및 점도를 낮게 하고, 노즐과 컬렉터 간 거리를 멀리하고, 인가전압을 높이는 경우는 나노섬유의 직경이 작아진다.
본 발명은 나노섬유를 구성하는 고분자 용액의 농도를 복수의 탱크가 각각 연결된 MD방향으로 구분되는 복수개의 노즐블록에 연결된 전기방사장치의 구성을 통해 노즐블럭에서 방사되는 고분자의 농도를 조절하여 CD방향으로 나노섬유 직경이 상이한 나노섬유 필터를 제공한다.
에어필터용 여과재의 주요한 요구 특성으로서, 포집 효율 이외에 여과재의 공기 저항을 나타내는 압력 손실이 있다. 여과재의 포집 효율을 높이기 위해서는, 가는 직경의 유리 섬유의 배합을 늘릴 필요가 있다. 그러나, 동시에 여과재의 압력 손실이 높아지는 문제가 발생한다. 높은 압력 손실은, 흡기 팬의 운전 부하가 높아지기 때문에 전력비의 러닝코스트가 들어가는 문제가 있어, 에너지 절약의 관점에서 여과재의 저압력 손실화가 요구되고 있다. 따라서 압력손실을 최소화 하기 위해 필터가 설치되는 구체적인 산업현장별로 공기여과가 주로 발생되는 부분의 나노섬유의 직경을 가늘게 설계하고 공기여과가 간헐적으로 발생되는 부분의 나노섬유 지경은 굵게 설계하여 나노섬유 필터의 효율은 높이면서 압력손실은 낮출 수 있다.
노즐블럭에 각각 연결된 탱크를 통한 고분자 용액의 농도는 용매, 희석액 온도조절 등을 통하여 조절할 수 있으나, 이에 한정하지는 않는다.
이하, 본 발명에서 사용되는 내열성 고분자에 대하여 설명한다. 본 발명의 내열성 고분자 및 그에 바람직한 것으로 폴리비닐리덴플루오라이드와 폴리아미드가 있다.
먼저, 상기 내열성 고분자는 폴리비닐리덴플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오르 프로필렌 공중합체, 혹은 이들의 복합 조성물, 폴리아마이드, 폴리이미드, 폴리아미드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 메타아라미드, 폴리에틸렌클로로트리플루오로에틸렌, 폴리클로로트리플루오로에틸렌, 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐리덴클로라이드, 폴리비닐리덴클로라이드-아크릴로니트릴 공중합체, 폴리아크릴아미드 등으로 구성되는 군에서 선택된 어느 하나 이상의 물질이다.
먼저, 본 발명에서 사용되는 폴리아미드를 살펴본다.
폴리아미드(Polyamide)는 아미드 결합(-CONH-)으로 연결된 중합체의 총칭을 의미하며, 디아민과 2가 산의 축합 중합으로 얻을 수 있다. 폴리아미드는 분자 구조 내의 아미드 결합에 의하여 특징이 달라지며, 아미드기의 비율에 따라 물성이 다르게 변한다. 예를 들면, 분자 내의 아미드기의 비율이 높아지면 비중, 융점, 흡수성, 강성 등이 올라가는 특성이 있다.
또한, 폴리아미드는 내부식성, 내마모성, 내화학성 및 절연성이 우수한 특성으로 인해 의류용, 타이어코드, 카핏, 로프, 컴퓨터 리본, 낙하산, 플라스틱, 접착제 등의 광범위한 분야에서 응용되고 있는 소재이다.
일반적으로 폴리아미드는 방향족 폴리아미드와 지방족 폴리아미드로 구분이 되는데, 대표적인 지방족 폴리아미드로는 나일론(Nylon)이 있다. 나일론은 본래 미국 듀폰 사의 상표명이지만 현재는 일반명으로 사용되고 있다.
나일론은 흡습성 고분자이며, 온도에 민감하게 반응한다. 대표적인 나일론으로는 나일론 6, 나일론 66 및 나일론 46 등이 있다.
먼저, 나일론 6은 내열성, 성형성 및 내약품성이 우수한 특성이 있으며, 이를 제조하기 위해서는 ε-카프로락탐(Caprolactam)의 개환 중합으로 제조된다. 나일론 6이라고 하는 것은 카프로락탐의 탄소수가 6개이기 때문이다.
Figure 112014104160472-pat00001
(반응식 1) 카프로락탐의 나일론 6 중합
한편, 나일론 66은 나일론 6과 전반적으로 그 특성이 비슷하지만, 나일론 6에 비하여 내열성이 매우 우수하고 자기소화성 및 내마모성이 우수한 고분자이다. 나일론 66은 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응으로 제조된다.
Figure 112014104160472-pat00002
(반응식 2) 헥사메틸렌디아민과 아디프산의 탈수축합 중합반응에 의한 나일론 66 중합
또한, 나일론 46은 내열성, 기계적 특성 및 내충격성이 우수하며, 가공온도가 높은 장점이 있다. 나일론 46은 테트라메틸렌디아민과 아디프산의 중축합으로 제조된다. 원료인 디아미노부탄(Diaminobutane, DAB)을 아크릴로니트릴과 시안화수소와의 반응으로부터 제조하고, 중합조작에서는 첫 단계로 디아미노부탄과 아디프산으로부터 염을 만든 다음, 적당한 압력 하에서 중합반응을 거쳐 프리폴리머(Prepolymer)로 전환하고, 상기 프리폴리머(Prepolymer)의 고체는 질소와 수증기의 존재 하에서 약 250℃로 처리하면 고상에서 고분자화가 되어 제조된다.
특히 나일론 46은 높은 아미드 농도와, 메틸렌기와 아미드기 사이의 규칙 정연한 배열로 우수한 특징을 나타낸다. 나일론 46의 녹는점은 약 295℃로서, 다른 종류의 나일론보다 높으며, 상기와 같은 특성으로 인해 내열성이 우수한 수지로서 주목받고 있다.
본 발명에서는 상기 폴리아미드를 이용하여 기재상에 CD방향으로 상이한 섬유직경을 지닌 나노섬유 필터 및 이의 제조방법을 제공한다.
본 발명에 사용되는 폴리비닐리덴플루오라이드에 대해 알아본다. 폴리비닐리덴플루오라이드(PVDF) 수지는 플루오로 계열의 고분자 중 하나로, 플루오로 수지는 플루오린을 함유하여 열적, 화학적 성질이 우수하다. 폴리비닐리덴플루오라이드는 적절한 유기 용매에 용해시킨 방사용액을 제조함에 있어서, 폴리비닐리덴플루오라이드는 불화비닐리덴의 호모폴리머, 또는 불화비닐리덴을 몰비로 50% 이상 함유하는 공중합폴리머를 포함하는 것으로서, 폴리비닐리덴플루오라이드 수지의 강도가 우수한 관점에서 호모폴리머인 것이 보다 바람직하며, 폴리비닐리덴플루오라이드 수지가 공중합폴리머인 경우, 불화비닐리덴모노머와 공중합되는 다른 공중합모노머로서는, 공지의 것을 적절하게 선택하여 이용할 수 있고, 특별히 한정되지 않지만, 예컨대, 불소계 모노머나 염소계 모노머 등을 적합하게 이용할 수 있다.
중량 평균 분자량(Mw)은, 특별히 한정되지 않지만, 10,000 내지 500,000인 것이 바람직하고, 50,000 내지 500,000인 것이 보다 바람직하고, 폴리비닐리덴플루오라이드 수지의 중량평균분자량이 10,000 미만인 경우에는 나노섬유를 이루는 나노섬유가 충분한 강도를 얻을 수 없고, 500,000을 초과하는 경우에는 용액취급이 용이하지 않고, 공정성이 나빠 균일한 나노섬유를 얻기 어렵게 된다.
또한, 본 발명에 적용되는 상기 내열성 고분자 중 바람직하게는 폴리아크릴로니트릴이 사용될 수 있다.
일반적으로, 폴리아크릴로니트릴(Polyacrylonitrile, PAN)은 아크릴로니트릴(CH2=CHCN)의 중합체를 의미한다.
Figure 112014104160472-pat00003
(반응식 3) 폴리아크릴로니트릴의 단위체
여기서, 폴리아크릴로니트릴 수지는 대부분을 구성하는 아크릴로니트릴과 단위체의 혼합물로부터 만들어지는 공중합체이다. 자주 사용되는 단위체는 부타디엔스티렌염화비닐리덴 또는 다른 비닐 화합물 등이 있다. 아크릴 섬유는 최소한 85%의 아크릴로니트릴을 포함하며, 모드아크릴은 35~85%의 아크릴로니트릴을 포함하고 있다. 다른 단위체가 포함되면 섬유는 염료에 대한 친화력이 증가하는 특성을 갖는다. 더 자세하게는 아크릴로니트릴계 공중합체 및 방사용액을 제조하는 데 있어서, 아크릴로니트릴계 공중합체를 사용하여 제조하는 경우에는 전기방사법으로 극세섬유를 제조하는 과정에서 노즐 오염이 적고, 전기방사성이 우수하여 용매에 대한 용해도를 증가시킴과 동시에, 보다 좋은 기계적 물성을 부여할 수 있다. 더불어 폴리아크릴로니트릴은 연화점이 300℃ 이상으로 내열성이 우수하다.
또한, 폴리아크릴로니트릴의 중합도는 1,000 내지 1,000,000이며, 바람직하게는 2,000 내지 1,000,000인 것이 좋다.
그리고, 폴리아크릴로니트릴은 아크릴로니트릴 단량체, 소수성 단량체 및 친수성 단량체의 사용량을 만족시키는 범위 내에서 사용하는 것이 바람직하다. 고분자 중합 시 아크릴로니트릴 단량체의 중량%는 친수성 단량체의 중량%와 소수성 단량체의 중량%이 3:4 비율로 하여 전체 단량체에서 뺀 값이 60보다 적을 경우 전기방사하기에 점도가 너무 낮으며, 여기에 가교제를 투입하더라도 노즐오염의 유발은 물론 전기방사시 안정적인 젯(JET) 형성이 어렵다. 또한 99 이상일 경우 방사점도가 너무 높아 방사가 어렵고 여기에 점도를 낮출 수 있는 첨가제를 투입하더라도 극세섬유의 직경이 굵어지고 전기방사의 생산성이 너무 낮아 본 발명의 목적을 달성할 수 없다.
또한, 아크릴계 고분자에서 공단량체의 양이 많이 투입될수록 가교제의 양도 많이 투입되어야만 전기방사의 안정성이 확보되고 나노섬유의 기계적 물성 저하를 방지할 수 있다.
상기 소수성 단량체는 메타아크릴레이트, 에틸아크릴레이트, 메틸메타크릴레이트, 에틸메타크릴레이트, 부틸메타크릴레이트, 비닐아세테이트, 비닐피롤리돈, 비닐리덴클로라이드, 비닐클로라이드 등의 에틸렌계 화합물 및 그의 유도체에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다.
상기 친수성 단량체는 아크릴산, 알릴알콜, 메타알릴알콜, 하이드록시에틸아크릴레이트, 하이드록시에틸메타크릴레이트, 하이드록시프로필아크릴레이트, 부탄디올모노아크릴레이트, 디메틸아미노에틸아크릴레이트, 부텐트리카르복실산, 비닐술폰산, 알릴 술폰산, 메탈릴술폰산, 파라스티렌술폰산 등의 에틸렌계 화합물 및 다가산 또는 그들의 유도체에서 선택되는 어느 하나 이상을 사용하는 것이 바람직하다.
상기 아크릴로니트릴계 고분자를 제조하기 위하여 사용하는 개시제로는 아조계 화합물 또는 설페이트 화합물을 사용할 수 있으나 일반적으로 산화환원 반응에 이용되는 라디칼 개시제를 사용하는 것이 좋다.
한편, 본 발명에 사용되는 상기 내열성 고분자 중 바람직하게는 또한 폴리에테르설폰이 사용될 수 있다.
일반적으로, 폴리에테르설폰(Polyethersulfone, PES)은 하기의 반복 단위체를 가진 호박색 투명한 비정성 수지로서, 일반적으로 디클로로디페닐설폰의 축중합반응에 의하여 제조된다.
Figure 112014104160472-pat00004
(반응식 4) 폴리에테르설폰의 단위체
폴리에테르설폰은 영국 ICI 사가 개발한 초내열성 엔지니어링 플라스틱으로 열가소성 플라스틱 중에서는 내열성이 매우 우수한 고분자이다. 폴리에테르설폰은 비정성이기 때문에 온도상승에 의한 물성저하가 적고, 굴곡 탄성률의 온도 의존성이 작기 때문에 -100 내지 200℃에서 거의 변하지 않는다. 하중 왜곡온도는 200 내지 220℃이고, 유리 전이온도는 225℃이다. 또한 180℃까지의 내크립성은 열가소성 수지 중에서 가장 우수하며, 150 내지 160℃의 열수나 스팀에서 견디는 특성을 가진다.
상기와 같은 특성으로 인해 폴리에테르설폰은 광학디스크, 자기드스크, 전기 전자 분야, 열수 분야, 자동차 분야 및 내열 도료용 등에 사용되고 있다.
상기 폴리에테르설폰과 함께 사용가능한 용매로는 아세톤, 테트라하이드로퓨란, 메틸렌클로라이드, 클로로포름, 디메틸포름아마이드(N,N-Dimethylformamide, DMF), 디메틸아세트아마이드(N,N-Dimethylacetamide, DMAc), N-메틸-2-피롤리돈(N-methyl pyrrolidone, NMP), 시클로헥산, 물 또는 이들의 혼합물 등이 있으나, 반드시 이에 한정되는 것은 아니다.
한편, 상기 고분자 용액의 농도를 조절함에 따라 나노섬유의 직경을 10 nm 내지 1000nm로 조절할 수 있으며, 구체적으로 CD방향으로 2등분 하였을 때 한 방향은 30nm, 다른 방향은 350nm의 섬유 직경을 형성할 수 있으나, 이에 한정되는 것은 아니다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예1
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 25nm이고 나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예2
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 100nm이고 나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예3
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 2부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유 부직포의 섬유직경이 250nm이고 나머지 일방향으로 1m는 폴리비닐리덴플루오라이드 나노섬유의 섬유직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예4
실시예 1에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예5
실시예 2에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예6
실시예 3에서 폴리비닐리덴플루오라이드 용액 대신에 나일론을 디메틸아세트아미드(DMAc) 용매에 용해시킨 나일론용액으로 변경하는 것 외에는 동일한 조건으로 전기방사를 실시하였다.
실시예7
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 20nm이고 나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예8
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 100nm이고 나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예9
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 3부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 중 양방향 가장자리쪽으로 50cm는 폴리비닐리덴플루오라이드 나노섬유 직경이 250nm이고 나머지 중간부분 1m는 폴리비닐리덴플루오라이드 나노섬유 직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예10
중량평균 분자량이 157,000인 폴리비닐리덴플루오라이드를 디메틸포름아마이드(DMF)에 용해시켜 폴리비닐리덴플루오라이드 용액을 제조한다. 상기 폴리비닐리덴플루오라이드 용액을 방사용액 주탱크에 투입하고 CD방향으로 노즐블록이 9부분으로 분리되게 설계된 노즐블록에 인가전압을 20kV로 부여하고, 평량 30gsm인 셀룰로오스 기재 상에 전기방사하였다. 전기방사된 셀룰로오스 기재 상에 CD방향 20cm 간격을 두고 교호적으로 폴리비닐리덴플루오라이드 나노섬유 직경이 20nm 나머지 부분의 섬유직경이 500nm인 CD 폭이 2m인 폴리비닐리덴플루오라이드 나노섬유 부직포가 형성되어 폴리비닐리덴플루오라이드 나노섬유 필터를 제조하였다. 이 때 전극과 컬렉터 간의 거리를 40cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 상향식 전기방사를 실시하였다.
실시예11 내지 14
폴리머 용액이 폴리비닐리덴플루오이드 대신 나일론인것을 제외하고는 실시예 7 내지 10 과 동일한 방식으로 나노섬유 필터를 제조하였다.
100 : 전기방사장치, 110, 110' : 유닛,
111 : 노즐블록, 111a : 노즐,
112 : 노즐관체,
112a, 112b, 112c, 112d, 112e, 112f, 112g, 112h, 112i : 노즐관체
113 : 컬렉터, 114 : 전압발생장치,
115 : 기재, 115a : 섬유직경 20nm 나노섬유 웹,
115b : 섬유직경 500nm 나노섬유 웹, 115c : 섬유직경 20nm 나노섬유 웹,
116a : 이송벨트, 116b : 이송롤러,
120 : 방사용액 주탱크, 120a : 제1 방사용액 주탱크,
120b : 제2 방사용액 주탱크, 120c : 제3 방사용액 주탱크,
121a : 제1 공급관, 121b : 제2 공급관,
121c : 제3 공급관,
a, b, c, d, e, f : 상이한 나노섬유의 직경

Claims (6)

  1. 상향식 전기방사를 이용한 나노섬유 필터의 제조방법에 있어서, 상향식 전기방사 장치유닛내에 복수의 노즐관체를 포함한 상향식 전기방사 장치로 제조되고,
    상기 복수의 노즐관체에 주입되는 폴리머 용액의 농도를 상이하게 조절하여 나노섬유 직경을 교호적으로 상이하게 조작하는 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  2. 삭제
  3. 제 1항에 있어서,
    상기 CD 방향중 일방향으로 섬유직경의 구배가 증가하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  4. 제 1항에 있어서,
    상기 CD 방향중 양방향으로 섬유직경의 구배가 증가 또는 감소하게 설계된 것을 특징으로 하는 CD 방향으로 나노섬유의 섬유직경이 상이한 나노섬유 필터의 제조방법.
  5. 삭제
  6. 제 1항의 제조방법으로 제조된 나노섬유필터.

KR1020140148399A 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법 KR101635037B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140148399A KR101635037B1 (ko) 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법
PCT/KR2015/007138 WO2016068447A1 (ko) 2014-10-29 2015-07-09 나노섬유 웹 제조용 전기방사장치, 이를 이용한 투습방수 원단 또는 나노섬유 필터의 제조방법과, 그 제조방법으로 제조된 투습방수 원단 또는 나노섬유 필터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140148399A KR101635037B1 (ko) 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20160050381A KR20160050381A (ko) 2016-05-11
KR101635037B1 true KR101635037B1 (ko) 2016-06-30

Family

ID=56025358

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140148399A KR101635037B1 (ko) 2014-10-29 2014-10-29 나노섬유 필터 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101635037B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027342A (ko) * 2018-09-04 2020-03-12 주식회사 엘지화학 나노 섬유 필터 및 그 제조 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102366948B1 (ko) * 2020-02-25 2022-02-24 이충원 필터의 효율 및 수명이 향상된 나노 필터 및 이의 제조방법
KR102312693B1 (ko) * 2020-04-27 2021-10-15 솔마스페이스 주식회사 개인 휴대용 공기청정기

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154211B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101056255B1 (ko) * 2009-09-08 2011-08-11 주식회사 효성 전기방사용 절연 노즐팩 및 이를 포함하는 전기방사장치
KR20110077915A (ko) * 2009-12-30 2011-07-07 주식회사 효성 전기방사장치의 방사조건 제어방법
JP5859217B2 (ja) 2011-03-20 2016-02-10 国立大学法人信州大学 ポリオレフィン製ナノ繊維不織布製造装置
KR101382571B1 (ko) 2013-04-17 2014-04-17 (주)에프티이앤이 나노섬유 제조용 전기방사장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154211B1 (ko) * 2011-02-15 2012-07-03 신슈 다이가쿠 전계 방사 장치 및 나노 섬유 제조 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200027342A (ko) * 2018-09-04 2020-03-12 주식회사 엘지화학 나노 섬유 필터 및 그 제조 방법
KR102563110B1 (ko) * 2018-09-04 2023-08-02 주식회사 엘지화학 나노 섬유 필터 및 그 제조 방법

Also Published As

Publication number Publication date
KR20160050381A (ko) 2016-05-11

Similar Documents

Publication Publication Date Title
KR101479762B1 (ko) 내열성이 향상된 기재 사이에 다층의 나노섬유층이 구비된 필터여재 및 이의 제조방법
US20160193555A1 (en) Multi-layered nanofiber medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
KR101479756B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
KR101635037B1 (ko) 나노섬유 필터 및 이의 제조방법
KR101650355B1 (ko) 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법
KR101479753B1 (ko) 폴리아미드 나노섬유 필터 및 이의 제조방법
KR101635039B1 (ko) 투습방수 원단 및 이의 제조방법
KR101484510B1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법
KR101635038B1 (ko) 나노섬유 필터 및 이의 제조방법
KR101635045B1 (ko) 투습방수 원단 및 이의 제조방법
KR101479758B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101721988B1 (ko) 나노 멤브레인 및 이의 제조방법
KR101635043B1 (ko) 투습방수 원단 및 이의 제조방법
KR101635036B1 (ko) 나노섬유필터 및 이의 제조방법
KR101635034B1 (ko) 나노섬유필터 및 이의 제조방법
KR101579933B1 (ko) 일렉트로블로운과 일렉트로스피닝을 이용한 다층 나노섬유 필터여재 및 이의 제조방법
KR101721986B1 (ko) 나노 멤브레인 및 이의 제조방법
KR101479752B1 (ko) 내열성이 향상된 나노섬유 필터 및 이의 제조방법
KR101479761B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101635044B1 (ko) 투습방수 원단 및 이의 제조방법
KR20180037682A (ko) 접착력이 향상된 다층 나노섬유 웹 및 이의 제조방법
KR101527499B1 (ko) 폴리비닐리덴 플루오라이드 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR20180007821A (ko) 나노섬유 웹을 포함하는 다층 미세먼지 차단용 필터 및 이의 제조방법
KR101866344B1 (ko) 나노섬유필터 및 이의 제조방법
KR101635031B1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant