WO2016067414A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2016067414A1
WO2016067414A1 PCT/JP2014/078926 JP2014078926W WO2016067414A1 WO 2016067414 A1 WO2016067414 A1 WO 2016067414A1 JP 2014078926 W JP2014078926 W JP 2014078926W WO 2016067414 A1 WO2016067414 A1 WO 2016067414A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
semiconductor device
electrode
external electrode
semiconductor element
Prior art date
Application number
PCT/JP2014/078926
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 中田
三紀夫 石原
達也 川瀬
井本 裕児
晋助 浅田
藤野 純司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/078926 priority Critical patent/WO2016067414A1/en
Priority to JP2016556123A priority patent/JP6479036B2/en
Priority to CN201490001567.4U priority patent/CN207038515U/en
Publication of WO2016067414A1 publication Critical patent/WO2016067414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

The purpose of the present invention is to provide a semiconductor device having a solder bonding structure wherein both improved conductivity with respect to an external electrode and high reliability of the device are achieved. In the present invention, a semiconductor element upper solder (21) is formed to extend from a solder bonding region (R11h) of a surface electrode (11) to a solder bonding region (R31h) of an external electrode (31). The external electrode (31) has a downwardly extending portion (31a) that protrudes further toward the surface side of the surface electrode (11) than other regions. The semiconductor element upper solder (21) has an end surface shape including: a fillet (F1) that is bent upward in the direction toward a solder center point from the surface of the surface electrode (11); and a fillet (F2) that is bent downward in the direction toward the solder center point from the surface of the external electrode (31).

Description

半導体装置及びその製造方法Semiconductor device and manufacturing method thereof
 本発明は、IGBT(Insulated Gate Bipolor Transistor)、MOSFET、あるいはダイオードなどの半導体素子を用いた半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device using a semiconductor element such as an IGBT (insulated gate bipolar transistor), a MOSFET, or a diode, and a manufacturing method thereof.
 従来の電力用の半導体素子を用いた半導体装置において、半導体素子に設けられる素子側電極と外部電極との電気的接続を半田接合材を介挿して行った半導体装置がある。このような半田接合を行う半導体装置では、半田接合材によって素子側電極の一部に応力が集中することにより、素子側電極と外部電極との電気的接続が良好に行えないという技術課題が存在する。 2. Description of the Related Art A conventional semiconductor device using a power semiconductor element includes a semiconductor device in which an electrical connection between an element-side electrode provided on the semiconductor element and an external electrode is made through a solder bonding material. In such a semiconductor device that performs solder bonding, there is a technical problem that electrical connection between the element side electrode and the external electrode cannot be performed well due to stress concentration on a part of the element side electrode due to the solder bonding material. To do.
 上述した技術課題を解決するための技術的工夫を図った半導体装置として、例えば、特許文献1で開示された半導体装置がある。 For example, there is a semiconductor device disclosed in Patent Document 1 as a semiconductor device in which a technical idea for solving the technical problem described above is devised.
 この半導体装置は、素子側電極である表面電極上にメッキ電極を形成し、メッキ電極と外部電極との間に半田接合材を設けて、表面電極,外部電極間の電気的接続を図る際、メッキ電極の外縁部に応力が集中してメッキ電極が剥離することを抑制すべく、メッキ電極の平面形状を外部電極より広くし、外部電極の側面からメッキ電極端の側面にかけて、半田接合材の端面の断面形状に傾きを持たせた端面傾き形状を設けている。 In this semiconductor device, when a plating electrode is formed on a surface electrode that is an element side electrode, and a solder bonding material is provided between the plating electrode and the external electrode, an electrical connection between the surface electrode and the external electrode is achieved. In order to suppress the stress from concentrating on the outer edge of the plating electrode and peeling off the plating electrode, the planar shape of the plating electrode is made wider than the external electrode, and the solder bonding material is formed from the side of the external electrode to the side of the end of the plating electrode. An end face inclination shape is provided by giving an inclination to the cross-sectional shape of the end face.
特開2008-244045号公報(図2)Japanese Patent Laying-Open No. 2008-244045 (FIG. 2)
 しかしながら、特許文献1で開示された半導体装置は、上記端面傾き形状を設けるために、外部電極よりも広い面積でメッキ電極を形成する必要性から、外部電極の接合面積が、メッキ電極、すなわち、半導体素子の表面電極における半田接合面積より必ず小さくなってしまう結果、外部電極,表面電極間の電流密度向上に限界が生じてしまう問題点があった。 However, since the semiconductor device disclosed in Patent Document 1 needs to form a plating electrode in a larger area than the external electrode in order to provide the end face inclination shape, the bonding area of the external electrode is a plating electrode, that is, As a result of the fact that the surface area of the semiconductor element is necessarily smaller than the solder joint area, there has been a problem that the current density between the external electrode and the surface electrode is limited.
 また、半導体素子としてSiC半導体素子等、高温対応半導体素子は大面積化が難しいという、別の課題を有しているため、この別の課題が、上記問題点の解消をより困難にしてしまうことになる。 In addition, since the semiconductor element has another problem that it is difficult to increase the area of the high-temperature compatible semiconductor element such as an SiC semiconductor element, this another problem makes it more difficult to solve the above problem. become.
 一般に電力用のパワー半導体モジュールと呼ばれる半導体装置では、半導体素子から発熱があり、パワー半導体モジュールの内部に温度サイクルが発生し、電流が流れる部分に大きな熱ストレスが加わる。特に、上述した高温対応半導体素子では、電流密度や使用温度範囲が高くなるため、より大きなストレスが加わることとなる。 In a semiconductor device generally called a power semiconductor module for electric power, heat is generated from a semiconductor element, a temperature cycle is generated inside the power semiconductor module, and a large thermal stress is applied to a portion where current flows. In particular, in the above-described high-temperature compatible semiconductor element, since the current density and the operating temperature range are high, a greater stress is applied.
 さらに、半導体素子の大面積化も難しい。このため、特許文献1に開示された半導体装置のように、外部電極側の接合面積を必然的に半導体素子の表面電極より小さく設計することが要求される半導体装置では、外部電極側で接合面積が小さくなり電流密度が高くなるため半田クラック等に対する許容度も少なくなる。 Furthermore, it is difficult to increase the area of the semiconductor element. For this reason, in a semiconductor device in which the junction area on the external electrode side is necessarily designed to be smaller than the surface electrode of the semiconductor element, as in the semiconductor device disclosed in Patent Document 1, the junction area on the external electrode side is required. And the current density increases, so the tolerance for solder cracks and the like is reduced.
 加えて、特許文献1で開示された半導体装置は、外部電極側における半田に発生する応力を緩和する構造が採用されていないため半田クラックを誘導しやすいという問題点があるため、良好な通電性を確保するための高電流密度と装置の高信頼性とを両立できていないという問題点があった。 In addition, since the semiconductor device disclosed in Patent Document 1 does not employ a structure that relieves stress generated in the solder on the external electrode side, there is a problem that solder cracks are easily induced. There is a problem that it is impossible to achieve both high current density and high reliability of the device for ensuring the reliability.
 本発明では、上記のような問題点を解決し、外部電極との通電性の向上と装置の高信頼性とを共に実現した半田接合構造の半導体装置を提供することを目的とする。 An object of the present invention is to provide a semiconductor device having a solder joint structure that solves the above-described problems and realizes both improvement in electrical conductivity with external electrodes and high reliability of the device.
 この発明に係る請求項1記載の本願発明の半導体装置は、一方主面及び他方主面を有し、一方表面上に平坦な表面を有する一方電極が設けられる半導体素子と、前記一方電極の上方に設けられた外部電極とを備え、前記外部電極の表面と前記一方電極の表面とが対向し、前記一方電極の表面,前記外部電極の表面間に形成され、前記一方電極,前記外部電極間を電気的に接続する半田形成部をさらに備え、前記一方電極及び前記外部電極が平面視重複する領域の少なくとも一部が、前記一方電極及び前記外部電極それぞれの表面における第1及び第2の半田接合領域として規定され、前記外部電極は、他の領域より前記一方電極の表面側に突出した垂下部を有し、前記垂下部は、前記第2の半田接合領域を含む領域に設けられ、前記第1及び第2の半田接合領域の中心位置である半田中心点に向かって、前記外部電極の表面と前記一方電極の表面との垂直距離が短くなる傾斜部を有し、前記半田形成部は、前記一方電極の前記第1の半田接合領域から前記外部電極の前記第2の接合領域にかけて形成され、前記一方電極の表面から上方にかけて前記半田中心点の方向に湾曲した第1の湾曲形状と、前記外部電極の表面から下方にかけて前記半田中心点の方向に湾曲した第2の湾曲形状とを含む端面形状を有する。 According to a first aspect of the present invention, there is provided a semiconductor device having one main surface and the other main surface, the semiconductor element provided with one electrode having a flat surface on the one surface, and the upper side of the one electrode An external electrode provided on the surface, the surface of the external electrode and the surface of the one electrode are opposed to each other, formed between the surface of the one electrode and the surface of the external electrode, and between the one electrode and the external electrode A solder forming portion that electrically connects the first electrode and the external electrode, and at least a part of a region where the one electrode and the external electrode overlap in plan view is the first and second solders on the surfaces of the one electrode and the external electrode, respectively. The external electrode has a drooping portion projecting from the other region to the surface side of the one electrode, and the drooping portion is provided in a region including the second solder bonding region; First A sloping portion in which a vertical distance between the surface of the external electrode and the surface of the one electrode becomes shorter toward a solder center point that is a center position of the second solder joint region; A first curved shape formed from the first solder joint region of the electrode to the second joint region of the external electrode and curved in the direction of the solder center point from the surface of the one electrode upward; It has an end surface shape including a second curved shape curved in the direction of the solder center point from the surface of the electrode downward.
 請求項1記載の本願発明の半導体装置における半田形成部は、一方電極の表面からの第1の湾曲形状と外部電極の表面からの第2の湾曲形状とを含む端面形状を有するため、一方電極及び他方電極の第1及び第2の半田接合領域それぞれに発生する応力の低減を図ることにより、半田形成部の信頼性の向上を図ることができる。 The solder forming portion in the semiconductor device according to claim 1 has an end face shape including a first curved shape from the surface of the one electrode and a second curved shape from the surface of the external electrode. By reducing the stress generated in each of the first and second solder joint regions of the other electrode, it is possible to improve the reliability of the solder forming portion.
 また、請求項1記載の本願発明は、半田形成部が第1及び第2の湾曲形状を含む端面形状を有する態様で、一方電極及び外部電極が平面視重複する領域を全て第1及び第2の半田接合領域に設定することができるため、第1及び第2の半田接合領域の面積の拡大を図ることにより、一方電極及び外部電極間の通電能力の向上を図ることができる。 According to a first aspect of the present invention, the solder forming portion has an end face shape including the first and second curved shapes, and the first and second regions where all the electrodes and the external electrodes overlap in plan view are all present. Therefore, it is possible to improve the current-carrying capacity between the one electrode and the external electrode by increasing the areas of the first and second solder joint regions.
 この発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
この発明の実施の形態1である半導体装置の構造を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which is Embodiment 1 of this invention. 図1の半導体装置における着目領域を拡大した要部の断面図である。FIG. 2 is a cross-sectional view of a main part in which a region of interest in the semiconductor device of FIG. 1 is enlarged. 実施の形態1の上面構造を模式的に示した説明図である。FIG. 3 is an explanatory diagram schematically showing a top structure of the first embodiment. 実施の形態2の半導体装置の構造を示す断面図である。FIG. 6 is a cross-sectional view showing a structure of a semiconductor device according to a second embodiment. 実施の形態3の半導体装置の特徴部の構造を示す説明図である。FIG. 10 is an explanatory diagram illustrating a structure of a characteristic part of a semiconductor device according to a third embodiment; 実施の形態4における第1の態様の半導体装置の特徴部の構造を示す説明図である。FIG. 10 is an explanatory diagram showing a structure of a characteristic portion of a semiconductor device according to a first aspect in a fourth embodiment. 実施の形態4における第2の態様の半導体装置の特徴部の構造を示す説明図である。It is explanatory drawing which shows the structure of the characteristic part of the semiconductor device of the 2nd aspect in Embodiment 4. FIG.
 <実施の形態1>
 (構成)
 図1は、この発明の実施の形態1である半導体装置の構造を示す断面図である。図2は、図1で示した半導体装置における着目領域C11を拡大した要部の断面図である。図3は実施の形態1の上面構造を模式的に示した説明図である。なお、図3のA-A断面が図1で示す構造に対応している。また、図1~図3にはXYZ直交座標系を示している。
<Embodiment 1>
(Constitution)
1 is a cross-sectional view showing the structure of a semiconductor device according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a main part in which the region of interest C11 in the semiconductor device shown in FIG. 1 is enlarged. FIG. 3 is an explanatory view schematically showing the top structure of the first embodiment. Note that the AA cross section of FIG. 3 corresponds to the structure shown in FIG. 1 to 3 show the XYZ orthogonal coordinate system.
 これらの図に示すように、縦型のIGBT等の半導体素子1は表面及び裏面(一方主面及び他方主面)を有し、表面上に平坦な表面を有する表面電極11(一方電極)が設けられる。 As shown in these figures, a semiconductor element 1 such as a vertical IGBT has a front surface and a back surface (one main surface and the other main surface), and a surface electrode 11 (one electrode) having a flat surface on the surface. Provided.
 そして、表面電極11の上方に、互いの表面が対向する態様で設けられた外部電極31が設けられる。なお、本明細書では、説明の都合上、表面電極11,外部電極31間で互いに対向する面を表面とする。すなわち、表面電極11において+Z方向側の面を表面、外部電極31において-Z方向側の面を表面として説明する。 Then, the external electrode 31 provided in such a manner that the surfaces thereof face each other is provided above the surface electrode 11. In the present specification, for convenience of explanation, the surfaces facing each other between the surface electrode 11 and the external electrode 31 are defined as surfaces. That is, the surface electrode 11 will be described with the surface on the + Z direction side as the surface, and the external electrode 31 with the surface on the −Z direction side as the surface.
 そして、半導体素子上半田21(半田形成部)が、表面電極11の表面,外部電極31の表面間に形成されることにより、表面電極11,外部電極31間を電気的に接続する。 Then, the solder 21 on the semiconductor element (solder forming portion) is formed between the surface of the surface electrode 11 and the surface of the external electrode 31 to electrically connect the surface electrode 11 and the external electrode 31.
 表面電極11と外部電極31とが平面視重複する全部及び大部分の領域が、表面電極11及び外部電極31の表面における半田接合領域R11h及びR31h(第1及び第2の半田接合領域)として規定される。実施の形態1では、図1及び図3に示すように、半田接合領域R11h及び半田接合領域R31hが平面視して完全一致している態様を示している。 All and most regions where the surface electrode 11 and the external electrode 31 overlap in plan view are defined as solder joint regions R11h and R31h (first and second solder joint regions) on the surface of the surface electrode 11 and the external electrode 31. Is done. In the first embodiment, as shown in FIGS. 1 and 3, a mode is shown in which the solder joint region R11h and the solder joint region R31h are completely coincident in plan view.
 外部電極31は他の領域より表面電極11の表面側(-Z側)に突出した垂下部31aを有している。垂下部31aの平面形状を半田接合領域R31hと一致させても良い。 The external electrode 31 has a hanging portion 31a that protrudes from the other region to the surface side (-Z side) of the surface electrode 11. The planar shape of the drooping portion 31a may coincide with the solder joint region R31h.
 この垂下部31aは、半田接合領域R31hを含む領域に設けられ、半田接合領域R11h及びR31hの中心位置である半田中心点HC(図3参照)の方向に向かって、外部電極31の表面と表面電極11の表面との垂直距離DAが短くなる傾斜部31sを有している。例えば、図2に示すように、半田中心点HCの方向である+X方向側に位置する垂直距離DA1は、相対的に-X方向側に位置する垂直距離DA2より短くなる。なお、半田中心点HCを含む垂下部31aの底面部31mは垂直距離DAが一定の平坦構造を呈している。 The drooping portion 31a is provided in a region including the solder joint region R31h, and faces the surface and the surface of the external electrode 31 toward the solder center point HC (see FIG. 3) which is the center position of the solder joint regions R11h and R31h. There is an inclined portion 31 s in which the vertical distance DA to the surface of the electrode 11 is shortened. For example, as shown in FIG. 2, the vertical distance DA1 located on the + X direction side which is the direction of the solder center point HC is relatively shorter than the vertical distance DA2 located on the −X direction side. The bottom surface portion 31m of the hanging portion 31a including the solder center point HC has a flat structure with a constant vertical distance DA.
 半導体素子上半田21は、表面電極11の半田接合領域R11hから外部電極31の半田接合領域R31hにかけて形成される。正確には、表面電極11上の半田接合領域R11hに半田接合用金属膜13が形成され、この半田接合用金属膜13上に形成された半導体素子上半田21を介して、表面電極11,外部電極31との電気的接続が行われている。 The solder 21 on the semiconductor element is formed from the solder joint region R11h of the surface electrode 11 to the solder joint region R31h of the external electrode 31. Precisely, the solder bonding metal film 13 is formed in the solder bonding region R11h on the surface electrode 11, and the surface electrode 11 is externally connected via the semiconductor element upper solder 21 formed on the solder bonding metal film 13. Electrical connection with the electrode 31 is made.
 半導体素子上半田21は、図2に示すように、表面電極11の表面から上方(+Z方向)にかけて半田中心点HCの方向(図2では+X方向)に湾曲したフィレットF1(第1の湾曲形状)と、外部電極31の表面から下方(-Z方向)にかけて半田中心点HCの方向に湾曲したフィレットF2(第2の湾曲形状)とを含む端面形状を有している。以下、図2で示したフィレットF1及びF2を有する垂下部31aの端面形状を「上下フィレット構造」と呼ぶ場合がある。 As shown in FIG. 2, the solder 21 on the semiconductor element has a fillet F1 (first curved shape) curved in the direction of the solder center point HC (+ X direction in FIG. 2) from the surface of the surface electrode 11 upward (+ Z direction). And a fillet F2 (second curved shape) curved in the direction of the solder center point HC from the surface of the external electrode 31 downward (−Z direction). Hereinafter, the end face shape of the drooping portion 31a having the fillets F1 and F2 shown in FIG. 2 may be referred to as an “upper and lower fillet structure”.
 このように、半導体素子1は、半田接合領域R11h及びR31hにおいて、半導体素子上半田21を介して表面電極11,外部電極31間が半田接合されることにより、表面電極11,外部電極31間の電気的接続が行われる。 As described above, the semiconductor element 1 is soldered between the surface electrode 11 and the external electrode 31 via the solder 21 on the semiconductor element in the solder bonding regions R11h and R31h, and thereby between the surface electrode 11 and the external electrode 31. Electrical connection is made.
 互いに同一の半田接合領域R11h及びR31hの平面形状として、少なくとも1つ以上の平面視矩形状が考えられる。例えば、図3に示すように、角部が曲率半径r2で丸められた平面視矩形状の2つの半田接合領域R11h及びR31hが設けられる構造を採用しても良い。また、図3で示す構造では、垂下部31aの底面部31mも平面視矩形状で形成され、底面部31mの外周と半田接合領域R11h(R31h)の外周との平面距離r1が設定されている。図3で示す構造では、垂下部31aも2つの半田接合領域R31hに対応して2つ設けられ、半導体素子上半田21も半田接合領域R11h及びR31hに対応して2つ設けられることになる。 As the planar shape of the same solder joint regions R11h and R31h, at least one rectangular shape in plan view is conceivable. For example, as shown in FIG. 3, a structure in which two solder joint regions R11h and R31h having a rectangular shape in plan view with corners rounded with a radius of curvature r2 may be employed. Further, in the structure shown in FIG. 3, the bottom surface portion 31m of the hanging portion 31a is also formed in a rectangular shape in plan view, and a planar distance r1 between the outer periphery of the bottom surface portion 31m and the outer periphery of the solder joint region R11h (R31h) is set. . In the structure shown in FIG. 3, two hanging portions 31a are also provided corresponding to the two solder bonding regions R31h, and two solders 21 on the semiconductor element are also provided corresponding to the solder bonding regions R11h and R31h.
 このように、複数の半田接合領域R11h及びR31hに対応した複数の半導体素子上半田21を設けることによって表面電極11及び外部電極31間の電気的に接続を図ることにより、例えば、ゲート配線形成領域等の半田形成を望まない表面電極11上の領域を避けることができ、表面電極11及び外部電極31間のフレキシブルな電気的接続が可能となる効果を奏する。 In this way, by providing a plurality of solders 21 on the semiconductor element corresponding to the plurality of solder bonding regions R11h and R31h, an electrical connection between the surface electrode 11 and the external electrode 31 can be achieved. Thus, it is possible to avoid a region on the surface electrode 11 where solder formation is not desired, and to achieve a flexible electrical connection between the surface electrode 11 and the external electrode 31.
 図3に示すように、半田接合領域R11h及びR31hを平面視矩形状に形成するのは、半導体素子1が一般的にウエハを矩形状(長方形)に切りだして得られるのが一般的であり、半田接合領域R11hの形状も半導体素子1と同様に矩形状に形成することで、半導体素子1の終端部から一定の距離を確保しつつ、かつ、最大の接合面積を得ることができるためである。 As shown in FIG. 3, the solder joint regions R11h and R31h are generally formed in a rectangular shape in plan view, and the semiconductor element 1 is generally obtained by cutting a wafer into a rectangular shape (rectangle). Since the solder bonding region R11h is also formed in a rectangular shape like the semiconductor element 1, the maximum bonding area can be obtained while ensuring a certain distance from the terminal portion of the semiconductor element 1. is there.
 また、図3に示すように、半田接合領域R11hの角部は曲率半径r2で面取りされていることが望ましい。これは、半導体素子上半田21が角部へ濡れ広がるときに直角であると半田の表面張力により角度の急な形状には濡れ広がり難いため、曲状に面取りし角部の角度を緩やかにすることで、半田接合領域R11h及びR31hの全域へ確実に半田を濡れ広げることができるためである。 Further, as shown in FIG. 3, it is desirable that the corner portion of the solder joint region R11h is chamfered with a curvature radius r2. This is because, when the solder 21 on the semiconductor element is at a right angle when the solder 21 spreads to the corner, it is difficult to wet and spread in a sharp shape due to the surface tension of the solder. This is because the solder can be reliably spread over the entire solder joint regions R11h and R31h.
 前述したように、半田接合領域R11h及び半田接合領域R31hは互いに平面視同一形状で形成されているため、半田接合領域R31h及び半田接合領域R11hそれぞれにおいて、半導体素子上半田21と接合する半田濡れ角(半田なす角)が等しくなり、双方に共通した半田フィレット形状(フィレットF2及びF1)を形成することができる。 As described above, since the solder joint region R11h and the solder joint region R31h are formed in the same shape in plan view, the solder wetting angle for joining the solder 21 on the semiconductor element in each of the solder joint region R31h and the solder joint region R11h. (An angle formed by the solder) becomes equal, and a solder fillet shape (fillets F2 and F1) common to both can be formed.
 前述したように、外部電極31の垂下部31aは、平坦な底面部31mを有する。半導体装置101を上面視したとき、底面部31mの各辺は、半田接合領域R31hの外周における対応する辺から、一定の平面距離r1をもって内側に位置する。前述した通り、半田接合領域R31hと半田接合領域R11hとの平面形状は等しく、矩形状の角部は曲率半径r2で曲状に面取りされているため、半田接合領域R31hも外周が同一の曲率半径r2で面取りされている。 As described above, the drooping portion 31a of the external electrode 31 has a flat bottom surface portion 31m. When the semiconductor device 101 is viewed from the top, each side of the bottom surface portion 31m is located inside from the corresponding side in the outer periphery of the solder joint region R31h with a certain plane distance r1. As described above, the planar shape of the solder joint region R31h and the solder joint region R11h is equal, and the rectangular corner is chamfered with a curvature radius r2, so that the solder joint region R31h also has the same outer radius of curvature. It is chamfered at r2.
 この際、曲率半径r2=平面距離r1とすることにより、垂下部31aの半田接合領域R31hは編曲点となる角部においてもなだらかな稜線を形成することができ、かつ、稜線を矩形状の角部以外に形成できる結果、半導体素子上半田21から発生する応力の集中を回避できる。なお、稜線とは垂下部31aの半田接合領域R31hと底面部31mとの間の稜線を意味する。 At this time, by setting the curvature radius r2 = planar distance r1, the solder joint region R31h of the drooping portion 31a can form a gentle ridgeline even at the corner portion serving as the bending point, and the ridgeline can be formed into a rectangular corner. As a result of being able to form other than the portion, concentration of stress generated from the solder 21 on the semiconductor element can be avoided. The ridge line means a ridge line between the solder joint region R31h of the hanging part 31a and the bottom surface part 31m.
 例えば、半田接合領域R11hの平面座標に対する変数を前述の垂直距離DAとし、半田接合領域R11hの面積と垂直距離DAとを乗算して得られる体積を仮想体積V2としたとき、半導体素子上半田21の実際の半田体積V1は、「仮想体積V2>半田体積V1」を満足する。これは、「V2>V1」とすることにより、半導体素子上半田21は上述した上下フィレット構造を有する端面形状を形成することができるためである。 For example, when the variable with respect to the plane coordinate of the solder joint region R11h is the vertical distance DA and the volume obtained by multiplying the area of the solder joint region R11h by the vertical distance DA is the virtual volume V2, the solder 21 on the semiconductor element 21 The actual solder volume V1 satisfies “virtual volume V2> solder volume V1”. This is because by setting “V2> V1,” the solder 21 on the semiconductor element can form the end face shape having the above-described upper and lower fillet structures.
 また、図1及び図3に示すように、外部電極31の垂下部31aの底面部31mには、半田中心点HCを中心として外部電極31をZ方向に沿って貫通する貫通穴31tを設けることが望ましい。 As shown in FIGS. 1 and 3, a through hole 31 t that penetrates the external electrode 31 along the Z direction around the solder center point HC is provided in the bottom surface portion 31 m of the hanging portion 31 a of the external electrode 31. Is desirable.
 半導体装置101の外部電極31に貫通穴31tを設けることにより、半導体素子上半田21の形成時に余剰な半田が貫通穴31tへ流れ込むことで余剰半田を吸収し、半導体素子上半田21が多めに振れたときも、半導体素子上半田21の側面に上下フィレット構造を確実に形成することができる。 By providing the through-hole 31t in the external electrode 31 of the semiconductor device 101, excess solder flows into the through-hole 31t during the formation of the solder 21 on the semiconductor element, so that the excess solder is absorbed, and the solder 21 on the semiconductor element shakes excessively. In this case, the upper and lower fillet structures can be reliably formed on the side surfaces of the solder 21 on the semiconductor element.
 このように、半導体素子上半田21の端面形状として上下フィレット構造を設けることにより、半導体素子上半田21と外部電極31の傾斜部31sとの端部における半田形成の際の断面角度及び半導体素子上半田21と半田接合用金属膜13との端部における半田形成の際の断面角度である2つの半田なす角(半田濡れ角)を共に90度以下に抑えることができる。 Thus, by providing an upper and lower fillet structure as the end face shape of the solder 21 on the semiconductor element, the cross-sectional angle at the time of solder formation at the end of the solder 21 on the semiconductor element and the inclined portion 31s of the external electrode 31 and on the semiconductor element The angle between the two solders (solder wetting angle), which is the cross-sectional angle at the time of solder formation at the end portions of the solder 21 and the solder bonding metal film 13, can be suppressed to 90 degrees or less.
 すなわち、図2に示すように、外部電極31側の半田なす角θH1及び表面電極11側の半田なす角θH2を共に90度以下に抑えることができる。なお、半田なす角は、小さい方が半田応力を低くすることができるため望ましく、例えば、60度以下では半田応力が半減する実例がある。 That is, as shown in FIG. 2, the angle θH1 formed by the solder on the external electrode 31 side and the angle θH2 formed by the solder on the front electrode 11 side can both be suppressed to 90 degrees or less. A smaller angle formed by the solder is preferable because the solder stress can be lowered. For example, when the angle is 60 degrees or less, there is an example in which the solder stress is halved.
 IGBT等の半導体素子1は、例えば、表面及び裏面(一方主面及び他方主面)上に、表面電極11及び裏面電極12を有している。裏面電極12は半導体素子下半田22を介して基板電極38と電気的に接続されつつ接合される。 The semiconductor element 1 such as IGBT has, for example, a front electrode 11 and a back electrode 12 on the front surface and the back surface (one main surface and the other main surface). The back electrode 12 is joined while being electrically connected to the substrate electrode 38 via the semiconductor element lower solder 22.
 表面電極11は、例えば、Al(アルミニウム)を95%以上含む材料からなる金属膜であることが望ましい。Alを95%以上含む材料を半導体素子1の表面電極11として採用する理由は、Si基板やSiC(炭化珪素)基板など、各種基板を用いた半導体素子1の電極として、よく知られた既存の方法で容易に形成・加工でき、また表面電極11と共通の製造プロセスにて制御端子用の電極(後述する部分表面電極11g)を形成すること一般的であるが、この制御端子用の電極に対して金属ワイヤーを接合(ワイヤーボンド)する際にも、接続信頼性の優れた接合を確保できるためである。 The surface electrode 11 is desirably a metal film made of a material containing 95% or more of Al (aluminum), for example. The reason why a material containing 95% or more of Al is used as the surface electrode 11 of the semiconductor element 1 is that the well-known existing electrode as the electrode of the semiconductor element 1 using various substrates such as a Si substrate or a SiC (silicon carbide) substrate. In general, a control terminal electrode (partial surface electrode 11g to be described later) is formed by a common manufacturing process with the surface electrode 11, and the control terminal electrode can be formed and processed easily. This is because, even when metal wires are bonded (wire bond), bonding with excellent connection reliability can be secured.
 Alを95%以上含む材料である表面電極11の表面上に、例えば、SnAgCu系のPbフリー半田を接合することが困難なため、表面電極11の上に半田接合用金属膜13を形成することにより半田との接合性・半田濡れ性を確保している。なお、「半田濡れ性」とは、半田の接合対象との半田づけ難易度を示すなじみやすさ等の半田の特性を意味する。 For example, since it is difficult to bond SnAgCu-based Pb-free solder on the surface of the surface electrode 11 which is a material containing 95% or more of Al, a metal film 13 for solder bonding is formed on the surface electrode 11. This ensures solderability and solder wettability. Note that “solder wettability” means solder characteristics such as familiarity indicating the degree of difficulty in soldering with a solder joining target.
 半田接合用金属膜13として、例えば、主としてNi(ニッケル)からなる金属膜(半田接合用ニッケル膜)を含み、さらにその上に酸化防止のためのAu(金)からなる金属膜が形成された、積層金属膜で構成することが考えられる。半田接合用金属膜13用の主たる金属膜としてNiを採用する理由は、半田と容易に金属間化合物を形成し、良好で安定な半田接合を得ることができるためである。 As the solder bonding metal film 13, for example, a metal film mainly made of Ni (nickel) (nickel film for solder bonding) is included, and a metal film made of Au (gold) for preventing oxidation is further formed thereon. It is conceivable to use a laminated metal film. The reason why Ni is adopted as the main metal film for the solder bonding metal film 13 is that an intermetallic compound can be easily formed with the solder and a good and stable solder bonding can be obtained.
 このように、半導体素子上半田21との接合性の優れた構成材料であるNiを用いた半田接合用ニッケル膜を含む半田接合用金属膜13を表面電極11の半田接合領域R11h上に形成することにより、半田接合領域R11hにおける半田濡れ性の向上を図ることができる。 In this manner, the solder bonding metal film 13 including the nickel film for solder bonding using Ni which is a constituent material excellent in bonding property with the solder 21 on the semiconductor element is formed on the solder bonding region R11h of the surface electrode 11. As a result, it is possible to improve solder wettability in the solder joint region R11h.
 なお、半田接合用金属膜13を構成するNi及びAuは、例えば、スパッタなどに代表される気相堆積法や、P(燐)を含有する無電解メッキ法を含む湿式メッキ法にて、形成することができる。気相体積法にて半田接合用金属膜13を形成する方法として、例えば、メタルマスク越しに金属膜をスパッタするマスクスパッタ法や、半田接合領域R11h以外をフォトレジストで覆ったあと金属膜をスパッタ処理し、高圧で有機溶剤を吹き付けることでフォトレジストごと半田接合領域R11h以外の金属膜を除去するJETリフトオフ法が、挙げられる。湿式メッキにて半田接合用金属膜13を形成する方法として、例えば、半田接合領域R11hの表面電極11を露出し、それ以外の部分を被服膜で覆い、ジンケート法を用いた湿式メッキ法にて半田接合用金属膜13を成長させることで、半田接合領域R11hに選択的に半田接合用金属膜13を形成する方法が挙げられる。特に、半導体素子1及び周辺材料が高温に晒される半導体装置では、半田接合用金属膜13が半導体素子上半田21中へ拡散しその厚みが徐々に減少し接合信頼性が劣化するため、半田接合用金属膜13は厚い方が望ましいが、湿式メッキ法で半田接合用金属膜13を形成する場合は、メッキ液への浸漬時間を延長することで、容易に厚い金属膜を形成することができる。 The Ni and Au constituting the solder bonding metal film 13 are formed by, for example, a vapor deposition method represented by sputtering or a wet plating method including an electroless plating method containing P (phosphorus). can do. As a method of forming the solder bonding metal film 13 by the vapor phase volume method, for example, a mask sputtering method in which a metal film is sputtered through a metal mask, or a metal film is sputtered after covering a portion other than the solder bonding region R11h with a photoresist. There is a JET lift-off method in which the metal film other than the solder bonding region R11h is removed together with the photoresist by processing and spraying an organic solvent at a high pressure. As a method of forming the solder bonding metal film 13 by wet plating, for example, the surface electrode 11 in the solder bonding region R11h is exposed, the other part is covered with a coating film, and wet plating using a zincate method is used. There is a method of selectively forming the solder bonding metal film 13 in the solder bonding region R11h by growing the solder bonding metal film 13. In particular, in a semiconductor device in which the semiconductor element 1 and peripheral materials are exposed to a high temperature, the solder bonding metal film 13 diffuses into the solder 21 on the semiconductor element, and its thickness is gradually reduced to deteriorate the bonding reliability. The metal film for coating 13 is preferably thick, but when the metal film for solder bonding 13 is formed by a wet plating method, it is possible to easily form a thick metal film by extending the immersion time in the plating solution. .
 外部電極31は、例えば、Cu(銅)からなる金属板で形成される。外部電極31にCuを用いる理由は、打ち抜き等の加工で任意の形状に容易に加工でき、また、半田と容易に接合することができ、かつ、高い通電能力を実現することができるため、外部電極31として適しているからである。垂下部31aは、例えば、打ち抜き加工後の板状の外部電極構造に垂下部に対応した押し金型を用いることで形成することができる。他に、例えば、垂下部31aに対応した金属板を平坦な外部電極主要部に半田付けやろう付けなどで接合することで、外部電極31を形成することができる。 The external electrode 31 is formed of, for example, a metal plate made of Cu (copper). The reason for using Cu for the external electrode 31 is that it can be easily processed into an arbitrary shape by processing such as punching, can be easily joined to solder, and can realize a high energization capability. This is because it is suitable as the electrode 31. The hanging part 31a can be formed, for example, by using a stamping die corresponding to the hanging part in the plate-like external electrode structure after punching. In addition, for example, the external electrode 31 can be formed by joining a metal plate corresponding to the hanging part 31a to a flat main part of the external electrode by soldering or brazing.
 外部電極31をCuの単体構造で形成した場合、半導体素子上半田21と比較的容易に接合でき、通電能力の高い外部電極31を比較的容易な加工処理によって得ることができる。 When the external electrode 31 is formed with a single Cu structure, it can be joined to the semiconductor element solder 21 relatively easily, and the external electrode 31 having a high current-carrying ability can be obtained by relatively easy processing.
 図1に示すように、基板電極38上には外部電極31とは別の外部電極35が設けられ、半田接合領域R11h以外の部分表面電極11gは半田接合用金属膜13及び制御配線37を介して制御電極36に電気的に接続される。なお、部分表面電極11gはIGBTのゲート電極等として機能し、通常は、半田接合領域R11hに形成される表面電極11と電気的に独立して形成される。 As shown in FIG. 1, an external electrode 35 different from the external electrode 31 is provided on the substrate electrode 38, and the partial surface electrode 11 g other than the solder bonding region R <b> 11 h is interposed via the solder bonding metal film 13 and the control wiring 37. Are electrically connected to the control electrode 36. The partial surface electrode 11g functions as an IGBT gate electrode or the like, and is usually formed electrically independently from the surface electrode 11 formed in the solder joint region R11h.
 このように、半導体装置101は、複数の外部電極31及び外部電極35並びに制御電極36が取り付けられたモジュールの形で製品が完成する。 Thus, the semiconductor device 101 is completed in the form of a module to which the plurality of external electrodes 31, the external electrode 35, and the control electrode 36 are attached.
 そして、図1に示すように、例えば、半導体素子1(表面電極11(11g)、裏面電極12、及び半田接合用金属膜13を含む)と半導体素子上半田21と半導体素子下半田22と外部電極31、外部電極35及び制御電極36の少なくとも一部とは、樹脂41によって封止される。樹脂41によって封止することで、半導体素子1及び周辺の接合構造が、外部からの異物や湿気により破損、汚染、ショートされることを防止することができるため、信頼性が向上するだけでなく、半導体装置101の取り扱いが容易になり歩留まりも向上する。加えて、半導体装置101を通電したとき、外部電極31が発熱により膨脹することを抑制することもでき、外部電極31の半田接合領域R31hの信頼性を向上することができる。 1, for example, the semiconductor element 1 (including the front electrode 11 (11g), the back electrode 12, and the solder bonding metal film 13), the semiconductor element upper solder 21, the semiconductor element lower solder 22, and the outside At least a part of the electrode 31, the external electrode 35, and the control electrode 36 is sealed with a resin 41. By sealing with the resin 41, it is possible to prevent the semiconductor element 1 and the peripheral joint structure from being damaged, contaminated, or short-circuited by foreign matter or moisture from the outside. The semiconductor device 101 can be easily handled and the yield can be improved. In addition, when the semiconductor device 101 is energized, expansion of the external electrode 31 due to heat generation can be suppressed, and the reliability of the solder joint region R31h of the external electrode 31 can be improved.
 このように、樹脂41によって半導体素子1と半導体素子上半田21と外部電極31の少なくとも一部とを封止することにより、樹脂形成後の半導体装置101の取り扱いが容易になり歩留まりが向上するとともに、半導体素子1への吸着や異物付着を抑制することにより信頼性の向上を図ることができる。 Thus, sealing the semiconductor element 1, the semiconductor element upper solder 21, and at least a part of the external electrode 31 with the resin 41 facilitates handling of the semiconductor device 101 after the resin formation and improves the yield. The reliability can be improved by suppressing the adsorption to the semiconductor element 1 and the adhesion of foreign matter.
 また、樹脂41、半導体素子1、外部電極31の線膨脹係数を、それぞれα4、α1、α3としたとき、その関係をα1(第1の線膨張係数)<α4(第2の線膨張係数)<α3(第3の線膨張係数)とすることで、外部電極31と樹脂41とが剥離することを抑制しながら、半導体素子1に樹脂応力が発生することも抑制することができるため、信頼性を向上することができる。 Further, when the linear expansion coefficients of the resin 41, the semiconductor element 1, and the external electrode 31 are α4, α1, and α3, respectively, the relationship is α1 (first linear expansion coefficient) <α4 (second linear expansion coefficient). By setting <α3 (third linear expansion coefficient), it is possible to suppress the occurrence of resin stress in the semiconductor element 1 while suppressing the external electrode 31 and the resin 41 from being peeled off. Can be improved.
 樹脂41を形成する方法として、金型を用い高圧で樹脂41を封入するトランスファモールド法や、より安価な、樹脂41を樹脂盛りで形成するポッティング法が、挙げられる。実施の形態1の半導体装置101では、隙間が狭くなりやすい外部電極31と半導体素子1間の半導体素子上半田21に上下フィレット構造が形成されるため、細部にも樹脂が封入されやすく、安価なポッティング法を用いることに適している。 Examples of the method for forming the resin 41 include a transfer molding method in which the resin 41 is sealed at a high pressure using a mold, and a potting method in which the resin 41 is formed in a resin pile, which is less expensive. In the semiconductor device 101 according to the first embodiment, since the upper and lower fillet structures are formed in the solder 21 on the semiconductor element between the external electrode 31 and the semiconductor element 1 where the gap is likely to be narrowed, resin is easily enclosed in the details and is inexpensive. Suitable for using potting method.
 具体的には、仮固定された半導体素子1、半導体素子上半田21及び外部電極31等の樹脂形成対象領域に液状樹脂を吐出して加熱硬化させるポッティング法を用いて樹脂形成処理を実行することにより、半導体素子1と半導体素子上半田21と外部電極35の少なくとも一部とを覆うように樹脂41を形成する。 Specifically, the resin forming process is performed by using a potting method in which a liquid resin is discharged to a resin forming target region such as the temporarily fixed semiconductor element 1, the semiconductor element upper solder 21, and the external electrode 31. Thus, the resin 41 is formed so as to cover the semiconductor element 1, the solder 21 on the semiconductor element, and at least a part of the external electrode 35.
 このように、樹脂41を形成する工程として比較的安価に行えるポッティング法を用いた樹脂形成処理を実行して半導体装置101を製造することにより、半導体素子1と外部電極31との間に未充填箇所を生じさせることなく、樹脂41により半導体素子1、半導体素子上半田21及び外部電極35等を封止することができる。 As described above, by performing the resin forming process using the potting method which can be performed at a relatively low cost as the process of forming the resin 41, the semiconductor device 101 is manufactured, so that the gap between the semiconductor element 1 and the external electrode 31 is not filled. The semiconductor element 1, the semiconductor element upper solder 21, the external electrode 35, and the like can be sealed with the resin 41 without generating a portion.
 半導体素子1に形成されるガードリング等の耐圧保持領域上には、表面電極11ではなく保護膜14が形成されている。保護膜14により、冷熱サイクルなどで発生する樹脂41からの応力を緩和することができ、ガードリングなどの耐圧保持領域が、応力により破壊されることを防止することができる。 On the breakdown voltage holding region such as a guard ring formed in the semiconductor element 1, a protective film 14 is formed instead of the surface electrode 11. The protective film 14 can relieve stress from the resin 41 generated in a cooling / heating cycle or the like, and can prevent a breakdown voltage holding region such as a guard ring from being destroyed by the stress.
 保護膜14は、例えば、ポリイミドからなる絶縁膜(ポリイミド膜)で、厚みが2~20μm程度である。ポリイミド膜は、感光性のポリイミドを用いて、リソグラフィー法で形成する場合や、非感光性のポリイミドを用いて、さらに感光性レジストを併用しこれをリソグラフィー法で所望の形状に加工し、加工後のレジストを用いてポリイミドを加工するという比較的簡単な製造プロセスで、耐圧保持領域を覆う形状の保護膜14を形成することができる。さらに、ポリイミド膜である保護膜14によって、半導体素子上半田21及び樹脂41を形成する処理を含む半導体素子1を実装時における熱処理に耐えることができる。 The protective film 14 is, for example, an insulating film (polyimide film) made of polyimide and has a thickness of about 2 to 20 μm. When the polyimide film is formed by lithography using photosensitive polyimide, or by using a non-photosensitive polyimide together with a photosensitive resist, it is processed into a desired shape by lithography and processed. The protective film 14 having a shape covering the withstand voltage holding region can be formed by a relatively simple manufacturing process of processing polyimide using this resist. Furthermore, the protective film 14 which is a polyimide film can withstand heat treatment during mounting of the semiconductor element 1 including the process of forming the solder 21 on the semiconductor element and the resin 41.
 例えば、前述の湿式メッキ法で半田接合用金属膜13を形成するときの被服膜として、前述の保護膜14を用いることができる。 For example, the protective film 14 described above can be used as a coating film when the metal film 13 for solder bonding is formed by the wet plating method described above.
 すなわち、実施の形態1の半導体装置101の製造方法において、保護膜14及び半田接合用金属膜13を形成する以下のステップ(a) ,(b) を実行することができる。 That is, in the method for manufacturing the semiconductor device 101 of the first embodiment, the following steps (a) and (b) す る for forming the protective film 14 and the solder bonding metal film 13 can be performed.
 ステップ(a):半導体素子1表面上において表面電極11が形成されていない耐圧保持領域を含む領域から、表面電極11の表面における半田接合領域R11hの外縁部にかけて保護膜14を形成する(図1参照)。その結果、保護膜14は耐圧保持領域だけでなく、半田接合領域R11h以外の表面電極11を覆うべく、耐圧保持領域から必要なだけ延展した形状を有する。 Step (a): A protective film 14 is formed on the surface of the semiconductor element 1 from the region including the breakdown voltage holding region where the surface electrode 11 is not formed to the outer edge portion of the solder bonding region R11h on the surface of the surface electrode 11 (FIG. 1). reference). As a result, the protective film 14 has a shape extending as necessary from the withstand voltage holding region so as to cover not only the withstand voltage holding region but also the surface electrode 11 other than the solder bonding region R11h.
 ステップ(b):保護膜14をマスクとして湿式メッキ法を用いて、表面電極11の表面における半田接合領域R11h上に半田接合用金属膜13を形成する。 Step (b): A metal film 13 for solder bonding is formed on the solder bonding region R11h on the surface of the surface electrode 11 by using a wet plating method with the protective film 14 as a mask.
 上述したステップ(a) ,(b) を含む半導体装置101の製造方法を実行することにより、保護膜14を半田接合用金属膜13形成用のマスクとして使用することで、湿式メッキ法を用いた場合にも、追加工程なくマスクとなる保護膜14を形成することができ、半導体装置101の製造コストを削減することができる。 By performing the manufacturing method of the semiconductor device 101 including steps (a) and (b) 上述 described above, the wet plating method was used by using the protective film 14 as a mask for forming the solder bonding metal film 13. Even in this case, the protective film 14 serving as a mask can be formed without an additional process, and the manufacturing cost of the semiconductor device 101 can be reduced.
 このように、半導体素子1の表面上において表面電極11が形成されていない領域を含んで選択的に保護膜14を設けることにより、樹脂41の形成工程以前の半導体素子1の扱いが容易になり歩留まりが向上すると同時に、樹脂41からの応力を受け半導体素子1におけるガードリング等の耐圧保持領域が破壊されることを抑制し信頼性が向上する。 As described above, by selectively providing the protective film 14 including the region where the surface electrode 11 is not formed on the surface of the semiconductor element 1, the semiconductor element 1 can be easily handled before the resin 41 is formed. The yield is improved, and at the same time, the breakdown from the breakdown voltage holding region such as the guard ring in the semiconductor element 1 due to the stress from the resin 41 is suppressed and the reliability is improved.
 半導体素子1と外部電極31とを、半導体素子上半田21を用いて半田接合する方法として、例えば、溶融した半田を前述の貫通穴31tから流し込むことで半田接合する溶融半田滴下法や、固相やペースト状の半田を半田接合領域R11h上に設置しリフローすることで半田接合するリフロー法が挙げられる。 As a method of soldering the semiconductor element 1 and the external electrode 31 using the solder 21 on the semiconductor element, for example, a molten solder dropping method in which molten solder is poured by pouring from the above-described through hole 31t, Alternatively, a reflow method of soldering by placing and reflowing paste solder on the solder joint region R11h can be used.
 リフロー法は、還元雰囲気中において、表面電極11の表面と外部電極31の表面との間に配置された固相あるいはペースト状の半田材を溶融することにより、半導体素子上半田21を得る方法である。 The reflow method is a method of obtaining a solder 21 on a semiconductor element by melting a solid phase or paste-like solder material disposed between the surface of the surface electrode 11 and the surface of the external electrode 31 in a reducing atmosphere. is there.
 実施の形態1の半導体装置101において、半導体素子上半田21の体積を安定させる必要があるため、固相やペースト状の半田を用いて半田量が制御しやすい上述したリフロー法が適している。 In the semiconductor device 101 of the first embodiment, since the volume of the solder 21 on the semiconductor element needs to be stabilized, the above-described reflow method in which the amount of solder is easily controlled using solid phase or paste solder is suitable.
 外部電極31や半導体素子上半田21の表面が酸化し酸化膜が形成されている場合、半田濡れ性が低下し、半田濡れ不良が発生する。したがって、実施の形態1の半導体装置101において、外部電極31の垂下部31aへ半導体素子上半田21が濡れ広がることが重要であるため、上述したリフロー法により、還元雰囲気で前述の酸化膜を除去して半田濡れ性が良い状況で垂下部31aの半田接合領域R31hに半田を進展させることにより上下フィレット構造を有する半導体素子上半田21を精度良く得ることができる。 When the surface of the external electrode 31 or the solder 21 on the semiconductor element is oxidized and an oxide film is formed, the solder wettability is lowered and a solder wettability occurs. Therefore, in the semiconductor device 101 of the first embodiment, it is important that the solder 21 on the semiconductor element is wet and spread to the hanging portion 31a of the external electrode 31, so that the above-described oxide film is removed in a reducing atmosphere by the above-described reflow method. Then, the solder 21 on the semiconductor element having the upper and lower fillet structure can be obtained with high accuracy by causing the solder to advance to the solder joint region R31h of the hanging portion 31a in a situation where the solder wettability is good.
 また、半導体素子上半田21用の半田材を溶融して外部電極31と半導体素子1とを接合する最中に、溶融した半田内部に気泡が発生したときも、垂下部31aの存在により、気泡が半田の外側へ排出されやすいため、実装後の半田ボイドを低減することができる。 Further, when bubbles are generated in the melted solder while the solder material for the solder 21 on the semiconductor element is melted and the external electrode 31 and the semiconductor element 1 are joined, the bubble 31 Since solder is easily discharged to the outside of the solder, solder voids after mounting can be reduced.
 (動作・作用・効果)
 実施の形態1における半導体装置101によれば、装置の動作時などに発生する冷熱サイクルにおいて、半導体素子上半田21の組織が疲労変形を起こし、特に半導体素子上半田21の端部により発生する応力を、半導体素子上半田21に設けた上下フィレット構造によって低減することができる。
(Operation / Action / Effect)
According to the semiconductor device 101 in the first embodiment, the structure of the solder 21 on the semiconductor element undergoes fatigue deformation in the cooling / heating cycle generated during the operation of the device, and in particular, the stress generated by the end of the solder 21 on the semiconductor element. Can be reduced by the upper and lower fillet structure provided in the solder 21 on the semiconductor element.
 上下フィレット構造は、半導体素子1側のフィレットF1だけでなく、外部電極31側にもフィレットF2を形成した構造であるため、半導体素子1側及び外部電極31側双方の半田応力を同時に軽減し、信頼性の高い接合構造を得ると同時に、外部電極31側の半田接合領域R31hの面積を半導体素子1の半田接合領域R11hと、同等程度まで拡大することができるため、通電性能も維持することができる。使用温度範囲がより高温で、チップの大面積化が難しい、例えば、SiCなどの化合物半導体を用いた半導体装置においては、実施の形態1の半導体装置101によって得られる効果は特に有効となる。 Since the upper and lower fillet structure is a structure in which the fillet F2 is formed not only on the fillet F1 on the semiconductor element 1 side but also on the external electrode 31 side, the solder stress on both the semiconductor element 1 side and the external electrode 31 side is simultaneously reduced, At the same time as obtaining a highly reliable joint structure, the area of the solder joint region R31h on the external electrode 31 side can be expanded to the same extent as the solder joint region R11h of the semiconductor element 1, so that the current-carrying performance can be maintained. it can. The effect obtained by the semiconductor device 101 according to the first embodiment is particularly effective in a semiconductor device using a compound semiconductor such as SiC, in which the operating temperature range is higher and it is difficult to increase the chip area.
 すなわち、SiC(炭化珪素)を構成材料とした半導体素子1は高温に対応しており、より厳しい温度条件で使用される可能性があるが、半導体素子上半田21の信頼性の向上を図っているため、半導体素子1が高温となり、表面電極11及び外部電極31が高温状態になっても装置は安定して動作することができる。 That is, the semiconductor element 1 made of SiC (silicon carbide) as a constituent material can cope with high temperatures and may be used under more severe temperature conditions. However, the reliability of the solder 21 on the semiconductor element is improved. Therefore, even if the semiconductor element 1 becomes high temperature and the surface electrode 11 and the external electrode 31 become high temperature, the apparatus can operate stably.
 外部電極31に形成された垂下部31a表面に、半導体素子上半田21が塗れ上がることにより、半導体素子上半田21の端部形状は半田中心点HCが形成される内側に凹んだ形状である上下フィレット構造を呈するため、半導体素子1側、外部電極31側、双方にフィレットF1及びF2を形成することができる。垂下部31aは、半導体素子1の半田中心点HCから外側にかけて、徐々に半導体素子1の半田接合用金属膜13との垂直距離DAが開く構造になっているので、半導体素子1の終端部と外部電極31の絶縁距離を確保しつつ、実効的な半導体素子上半田21の厚みを抑えることができるので、半田から発生する応力を低減することができる。 The solder 21 on the semiconductor element is applied to the surface of the hanging part 31a formed on the external electrode 31, so that the end part shape of the solder 21 on the semiconductor element is an indented shape on the inner side where the solder center point HC is formed. Because of the fillet structure, fillets F1 and F2 can be formed on both the semiconductor element 1 side and the external electrode 31 side. The drooping portion 31a has a structure in which the vertical distance DA from the solder bonding metal film 13 of the semiconductor element 1 gradually increases from the solder center point HC of the semiconductor element 1 to the outside. Since the effective thickness of the solder 21 on the semiconductor element can be suppressed while securing the insulation distance of the external electrode 31, the stress generated from the solder can be reduced.
 このように、実施の形態1の半導体装置101における半導体素子上半田21(半田形成部)は、表面電極11(一方電極)の表面からのフィレットF1(第1の湾曲形状)と外部電極31の表面からのフィレットF2(第2の湾曲形状)とを含む端面形状を有する。その結果、表面電極11及び外部電極31の半田接合領域R11h及びR31hそれぞれに発生する応力の低減を図ることができるため、半導体素子上半田21の信頼性の向上を図ることができる。 As described above, the solder 21 on the semiconductor element (solder forming portion) in the semiconductor device 101 of the first embodiment is formed between the fillet F1 (first curved shape) and the external electrode 31 from the surface of the surface electrode 11 (one electrode). It has an end face shape including a fillet F2 (second curved shape) from the surface. As a result, since it is possible to reduce the stress generated in the solder joint regions R11h and R31h of the surface electrode 11 and the external electrode 31, it is possible to improve the reliability of the solder 21 on the semiconductor element.
 また、半導体装置101の半導体素子上半田21がフィレットF1及びフィレットF2を有する上下フィレット構造を有する態様で、表面電極11及び外部電極31が平面視重複する領域を全て半田接合領域R11h及びR31hに設定することができるため、半田接合領域R11h及びR31hの面積の拡大を図ることにより、表面電極11,外部電極31間の通電能力の向上を図ることができる。 Further, in the embodiment in which the solder 21 on the semiconductor element of the semiconductor device 101 has an upper and lower fillet structure including the fillet F1 and the fillet F2, the regions where the surface electrode 11 and the external electrode 31 overlap in plan view are all set as the solder joint regions R11h and R31h. Therefore, by enlarging the areas of the solder joint regions R11h and R31h, it is possible to improve the current-carrying capacity between the surface electrode 11 and the external electrode 31.
 その結果、長期使用が可能になるとともに、歩留まりの向上を図った半導体装置101を得ることができる。 As a result, it is possible to obtain the semiconductor device 101 that can be used for a long period of time and improved in yield.
 加えて、半田接合領域R11h及びR31hは、平面形状が矩形状となる傾向が高い半導体素子1と相似関係になり得る平面形状である矩形状を呈することにより、設計段階で効率的に半田接合領域R11h及びR31hの形成面積の拡大を図ることができる。 In addition, the solder joint regions R11h and R31h exhibit a rectangular shape that is a planar shape that can be similar to the semiconductor element 1 whose planar shape tends to be rectangular. The formation area of R11h and R31h can be increased.
 さらに、半田接合領域R11h及びR31hは角部が面取りされた面取り矩形状となる平面形状を呈することにより、半導体素子上半田21における半田接合領域R11h及びR31hの応力集中を緩和するとともに、角部への半田濡れ広がりを容易にすることができ、半田接合領域R11h及びR31hの信頼性のさらなる向上と生産性の向上を図ることができる。 Furthermore, the solder joint regions R11h and R31h have a planar shape that is a chamfered rectangle with chamfered corners, thereby reducing stress concentration in the solder joint regions R11h and R31h in the solder 21 on the semiconductor element and moving to the corners. Thus, it is possible to facilitate the spreading of the solder and further improve the reliability and productivity of the solder joint regions R11h and R31h.
 また、半田接合領域R11hと半田接合領域R31hとを平面視完全重複する同一形状に設定することにより、半導体素子上半田21にフィレットF1及びF2をより確実に形成することができる。 Further, by setting the solder joint region R11h and the solder joint region R31h to the same shape that completely overlaps in plan view, the fillets F1 and F2 can be more reliably formed on the semiconductor element solder 21.
 <実施の形態2>
 (構成)
 図4は実施の形態2の半導体装置102の構造を示す断面図である。以下、図1~図3で示した実施の形態1の半導体装置101と同様な構造部分は同一符号を付し説明を適宜省略し、実施の形態1との相違点を中心に説明する。なお、図4にはXYZ直交座標系を示している。
<Embodiment 2>
(Constitution)
FIG. 4 is a cross-sectional view showing the structure of the semiconductor device 102 of the second embodiment. In the following, the same structural parts as those of the semiconductor device 101 of the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted as appropriate. The differences from the first embodiment will be mainly described. FIG. 4 shows an XYZ orthogonal coordinate system.
 実施の形態2の半導体装置102では、外部電極31に替えて外部電極50を用いた点が実施の形態1と異なる。外部電極50は、例えば、Cuより線膨脹係数が低い金属材料で構成される金属板51を母材とし、母材の表面及び裏面にCu金属シート52を形成した複合金属板構造を呈している。なお、図4で示す垂下部50a、底面部50m及び着目領域C12は、図1~図3で示した半導体装置101の垂下部31a、底面部31m及び着目領域C11に対応する。 The semiconductor device 102 according to the second embodiment is different from the first embodiment in that an external electrode 50 is used instead of the external electrode 31. The external electrode 50 has a composite metal plate structure in which, for example, a metal plate 51 made of a metal material having a lower linear expansion coefficient than Cu is used as a base material, and a Cu metal sheet 52 is formed on the front and back surfaces of the base material. . The drooping portion 50a, the bottom surface portion 50m, and the region of interest C12 illustrated in FIG. 4 correspond to the drooping portion 31a, the bottom surface portion 31m, and the region of interest C11 of the semiconductor device 101 illustrated in FIGS.
 例えば、Cuより線膨脹係数が低い金属板51の表面及び裏面に、Cu金属シート52(銅形成層)を貼り合わせることにより、表面及び裏面がCu層となる外部電極50を得ることができる。他に、例えば、Cuより線膨脹係数が低い金属板51に、メッキ加工することでCu膜であるCu金属シート52を形成することができる。メッキ加工は、例えば、無電解メッキ法を用いることもできるが、金属板51を電極として用いることにより、厚い膜厚のCu金属シート52を比較的容易に形成することができるため、電界メッキ法を用いる方が望ましい。Cuより線膨脹係数が低い金属板51として、例えば、Fe(鉄)を含むNi合金を用いることができる。 For example, by bonding the Cu metal sheet 52 (copper forming layer) to the front and back surfaces of the metal plate 51 having a lower linear expansion coefficient than Cu, the external electrode 50 whose front and back surfaces are Cu layers can be obtained. In addition, for example, a Cu metal sheet 52 that is a Cu film can be formed by plating the metal plate 51 having a lower linear expansion coefficient than Cu. For example, an electroless plating method can be used for the plating process, but by using the metal plate 51 as an electrode, a thick Cu metal sheet 52 can be formed relatively easily. It is preferable to use As the metal plate 51 having a lower linear expansion coefficient than Cu, for example, a Ni alloy containing Fe (iron) can be used.
 (動作・効果・作用)
 外部電極50として、Cuより線膨脹係数が低い金属板51を母材とすることにより、線膨脹係数を半導体素子1に近づけることができるため、半導体装置102の動作時などに発生する冷熱サイクルにおいて発生する外部電極50の変形を抑えることができる。
(Operation / Effect / Action)
Since the metal plate 51 having a lower linear expansion coefficient than Cu is used as the base material as the external electrode 50, the linear expansion coefficient can be made closer to the semiconductor element 1. Therefore, in the cooling cycle generated during the operation of the semiconductor device 102, etc. The generated deformation of the external electrode 50 can be suppressed.
 さらに外部電極50の表面及び裏面にCu金属シート52層を形成することにより、外部電極50の表面及び裏面における電気抵抗を低減すると同時に、外部電極50の半田接合性、及び半導体素子上半田21との接合界面の信頼性も確保することができるため、より信頼性の高い半導体装置102を実現することができる。 Further, by forming the Cu metal sheet 52 layer on the front and back surfaces of the external electrode 50, the electrical resistance on the front and back surfaces of the external electrode 50 is reduced, and at the same time, the solderability of the external electrode 50 and the solder 21 on the semiconductor element Since the reliability of the bonding interface can be ensured, the semiconductor device 102 with higher reliability can be realized.
 このように、実施の形態2の半導体装置102では、外部電極50の表面及び裏面に形成される銅形成層であるCu金属シート52によって通電性能と半導体素子上半田21との半田濡れ性を確保しながら、外部電極50の母材となる金属板51によって線膨脹係数を半導体素子1に近づけることができるため、実施の形態1の効果に加え、通電性及び半田濡れ性と装置の信頼性との両立を図ることができる効果を奏する。 As described above, in the semiconductor device 102 according to the second embodiment, the energization performance and the solder wettability between the solder 21 on the semiconductor element are ensured by the Cu metal sheet 52 which is the copper forming layer formed on the front surface and the back surface of the external electrode 50. However, since the linear expansion coefficient can be made close to that of the semiconductor element 1 by the metal plate 51 which is the base material of the external electrode 50, in addition to the effects of the first embodiment, the conductivity and solder wettability and the reliability of the device The effect which can aim at coexistence is produced.
 <実施の形態3>
 (構成)
 図5は実施の形態3の半導体装置103の特徴部分の構造を示す説明図である。図5は図1及び図4で示した実施の形態1あるいは実施の形態2の半導体装置101あるいは102における着目領域C11あるいはC12に対応する箇所の構造を示している。
<Embodiment 3>
(Constitution)
FIG. 5 is an explanatory diagram showing the structure of the characteristic part of the semiconductor device 103 according to the third embodiment. FIG. 5 shows the structure of the portion corresponding to the region of interest C11 or C12 in the semiconductor device 101 or 102 of the first or second embodiment shown in FIGS.
 以下、同一構造部分には同一符号を付して説明を省略しつつ、図5を参照して、実施の形態1及び実施の形態2との相違点を中心に実施の形態3の半導体装置103について説明する。 Hereinafter, the same reference numerals are given to the same structural portions, and the description thereof is omitted. With reference to FIG. 5, the semiconductor device 103 according to the third embodiment, focusing on the differences from the first and second embodiments. Will be described.
 外部電極31(50)において、半田接合領域R31hを含む垂下部31a(50a)の表面上に、外部電極31より半田濡れ性がよい、被服膜32が形成されている点が実施の形態1及び実施の形態2と異なる。 In the external electrode 31 (50), the coating film 32 having better solder wettability than the external electrode 31 is formed on the surface of the hanging part 31a (50a) including the solder joint region R31h. Different from the second embodiment.
 被服膜32は、例えば、Niからなる金属膜であるニッケル被覆膜である。被服膜32は、例えば、外部電極31のうち垂下部31a(50a)の表面のみに形成され、それ以外の領域は被服膜32が形成されることなく外部電極31の表面が露出している。被服膜32として、Niを形成する方法としては、例えば、Niを無電解メッキ法で形成する方法が挙げられる。垂下部31aは外部電極31の他の領域から半導体素子1側に突出しているので、垂下部31aのみをメッキ液に浸漬することができ、容易に部分メッキすることができる。例えば、外部電極31に通電することで電界メッキを用いることもできる。 The coating film 32 is, for example, a nickel coating film that is a metal film made of Ni. For example, the clothing film 32 is formed only on the surface of the hanging portion 31a (50a) of the external electrode 31, and the surface of the external electrode 31 is exposed in other regions without the clothing film 32 being formed. Examples of a method of forming Ni as the coating film 32 include a method of forming Ni by an electroless plating method. Since the drooping portion 31a protrudes from the other region of the external electrode 31 toward the semiconductor element 1, only the drooping portion 31a can be immersed in the plating solution and can be easily partially plated. For example, electroplating can be used by energizing the external electrode 31.
 (動作・効果・作用)
 実施の形態3の半導体装置103は、外部電極31あるいは外部電極50を有する実施の形態1あるいは実施の形態2の効果に加え、以下の効果を奏する。
(Operation / Effect / Action)
The semiconductor device 103 according to the third embodiment has the following effects in addition to the effects of the first or second embodiment having the external electrode 31 or the external electrode 50.
 半導体装置103は、外部電極31における半田接合領域R31hを含む垂下部31aの表面に、外部電極31より半田濡れ性がよい被服膜32を形成することにより、垂下部31aに対する半導体素子上半田21の濡れ広がりを促がし、外部電極31側のフィレットF2を、より確実に形成することができる。 The semiconductor device 103 forms a coating film 32 having better solder wettability than the external electrode 31 on the surface of the drooping portion 31a including the solder bonding region R31h in the external electrode 31, whereby the solder 21 on the semiconductor element with respect to the drooping portion 31a. The spread of wetting is promoted, and the fillet F2 on the external electrode 31 side can be more reliably formed.
 加えて、半導体装置103は、外部電極31の表面における垂下部31aのみに選択的に被服膜32を形成することにより、半導体素子上半田21の濡れ広がりを、より確実に垂下部31aのみに留めておくことができるため、半導体素子上半田21の形状制御性を向上させる効果を奏する。 In addition, the semiconductor device 103 selectively forms the coating film 32 only on the drooping portion 31a on the surface of the external electrode 31, so that the wetting and spreading of the solder 21 on the semiconductor element is more reliably retained only on the drooping portion 31a. Therefore, the shape controllability of the solder 21 on the semiconductor element is improved.
 また、被服膜32としてNiを構成材料としたニッケル被腹膜を用いることにより、比較的容易な方法でCuより半田濡れ性のよい被服膜32を形成することができ、半田接合領域R31hの接合信頼性を高めることができる。 Further, by using a nickel peritoneum made of Ni as the coating film 32, the coating film 32 having better solder wettability than Cu can be formed by a relatively easy method, and the bonding reliability of the solder bonding region R31h can be formed. Can increase the sex.
 (変形例)
 実施の形態3の変形例として、被服膜32として、例えば、Au(金)を構成材料とした金被覆膜を用いても良い。Auからなる金被腹膜は、Niからなるニッケル被腹膜と同様、メッキ法にて形成することができる。
(Modification)
As a modification of the third embodiment, for example, a gold coating film made of Au (gold) may be used as the coating film 32. The gold peritoneum made of Au can be formed by a plating method in the same manner as the nickel peritoneum made of Ni.
 被服膜32として金被腹膜を用いることにより、半田の主成分であるSn(錫)と反応したときに、Sn-Au系金属間化合物が形成されるが、Sn-Au系金属間化合物の2元素系の融点上昇は低いため、金被腹膜である被服膜32と反応した半田が融点上昇により凝固することを抑えることができる。また、Auは表面が酸化され難く、高い半田濡れ性を実現することができるので、外部電極31側のフィレットF2を、より確実に形成することができる。 By using a gold peritoneum as the coating film 32, a Sn—Au based intermetallic compound is formed when it reacts with Sn (tin) which is the main component of the solder. Since the melting point of the element system is low, it is possible to suppress the solidification of the solder that has reacted with the coating film 32 that is the gold peritoneum due to the melting point increase. Further, since the surface of Au is hard to be oxidized and high solder wettability can be realized, the fillet F2 on the external electrode 31 side can be more reliably formed.
 <実施の形態4>
 (第1の態様:構成)
 図6はこの発明の実施の形態4における第1の態様の半導体装置104Aの特徴部の構造を示す説明図である。図6は図1あるいは図4で示した実施の形態1あるいは実施の形態2の半導体装置101あるいは102における着目領域C11あるいはC12に対応する箇所の構造を示している。
<Embodiment 4>
(First aspect: configuration)
FIG. 6 is an explanatory view showing the structure of the characteristic portion of the semiconductor device 104A according to the first aspect in the fourth embodiment of the present invention. FIG. 6 shows the structure of the portion corresponding to the region of interest C11 or C12 in the semiconductor device 101 or 102 of the first or second embodiment shown in FIG. 1 or FIG.
 以下、同一構造部分には同一符号を付して説明を省略しつつ、図6を参照して、実施の形態1及び実施の形態2との相違点を中心に実施の形態4の第1の態様である半導体装置104について説明する。 Hereinafter, the same reference numerals are given to the same structural parts, and the description thereof is omitted. With reference to FIG. 6, the first embodiment of the fourth embodiment will be described with a focus on differences from the first embodiment and the second embodiment. The semiconductor device 104 which is an aspect will be described.
 図6に示すように、半導体装置104Aは、外部電極31(50)の表面側において、半田接合領域R31hより外周側に位置する垂下部外周部31b上に被服膜33(半田形成防止膜)を形成したことを特徴としている。なお、図6では、外部電極31における垂下部31a(50a)より外周側の領域を垂下部外周部31bとしている。 As shown in FIG. 6, in the semiconductor device 104A, on the surface side of the external electrode 31 (50), the coating film 33 (solder formation preventing film) is formed on the drooping outer peripheral portion 31b located on the outer peripheral side from the solder joint region R31h. It is characterized by the formation. In FIG. 6, a region on the outer peripheral side of the hanging part 31 a (50 a) in the external electrode 31 is a hanging part outer peripheral part 31 b.
 被服膜33は、半田の進展を阻害する構造である半田形成防止構造として寄与する。被服膜33は、例えば、外部電極31より半田濡れ性が低い構成材料を用いて形成されている。被服膜33として、例えば、ソルダーレジストを構成材料とした被服膜が考えられる。この場合、外部電極31にソルダーレジストを印刷し、加熱乾燥し、マスク露光し、現像し、加熱硬化することで、垂下部31aの半田接合領域R31hを露出させつつ、ソルダーレジストを構成材料とした被服膜33を垂下部外周部31bのみに選択的に形成することができる。 The coating film 33 contributes as a solder formation prevention structure that is a structure that inhibits the progress of solder. The clothing film 33 is formed using, for example, a constituent material having lower solder wettability than the external electrode 31. As the coating film 33, for example, a coating film using a solder resist as a constituent material can be considered. In this case, a solder resist is printed on the external electrode 31, is heated and dried, is exposed to a mask, is developed, and is cured by heating, so that the solder resist region R31h of the hanging portion 31a is exposed and the solder resist is used as a constituent material. The clothing film 33 can be selectively formed only on the outer periphery 31b of the hanging portion.
 (動作・作用)
 外部電極31において半田接合領域R31hより外側の垂下部外周部31bに、半田形成防止構造である被服膜33を形成することにより、半導体素子上半田21の濡れ広がりを、より確実に半田接合領域R31hのみに留めておくことができるため、半導体素子上半田21の形状制御性がより一層向上する。この際、半田形成阻害構造として、外部電極31より半田濡れ性が低い被服膜33を採用することにより、垂下部31aより外側へ半田が濡れ広がることをより確実に防止することができる。
(Operation / Action)
By forming a coating film 33 that is a solder formation preventing structure on the outer periphery 31b of the outer portion of the external electrode 31 outside the solder joint region R31h, wetting and spreading of the solder 21 on the semiconductor element can be more reliably performed. Therefore, the shape controllability of the solder 21 on the semiconductor element is further improved. At this time, by adopting a coating film 33 having a solder wettability lower than that of the external electrode 31 as the solder formation inhibiting structure, it is possible to more reliably prevent the solder from spreading outward from the drooping portion 31a.
 被服膜33の構成材料としてソルダーレジストを用いることで、半田が濡れ広がることを確実に防止することができると同時に、樹脂41との密着性の向上を図ることができる。 By using a solder resist as a constituent material of the coating film 33, it is possible to reliably prevent the solder from spreading and to improve the adhesion to the resin 41.
 (第2の態様:構成)
 図7はこの発明の実施の形態4における第2の態様の半導体装置104Bの特徴部の構造を示す説明図である。図7は図1あるいは図4で示した実施の形態1あるいは実施の形態2の半導体装置101あるいは102における着目領域C11あるいはC12に対応する箇所の構造を示している。
(Second aspect: configuration)
FIG. 7 is an explanatory view showing the structure of the characteristic portion of the semiconductor device 104B of the second mode in the fourth embodiment of the present invention. FIG. 7 shows the structure of the portion corresponding to the region of interest C11 or C12 in the semiconductor device 101 or 102 of the first or second embodiment shown in FIG. 1 or FIG.
 以下、同一構造部分には同一符号を付して説明を省略しつつ、図7を参照して、実施の形態1及び実施の形態2との相違点を中心に実施の形態4の第2の態様である半導体装置104Bについて説明する。 Hereinafter, the same reference numerals are given to the same structural portions, and the description thereof will be omitted, and referring to FIG. 7, the second embodiment 4 will be described focusing on the differences from the first embodiment and the second embodiment. The semiconductor device 104B which is an aspect will be described.
 同図に示すように、外部電極31の表面側において、半田接合領域R31h及び垂下部31aより外側の領域である垂下部外周部31bに、半田形成防止構造として凹凸加工部34(凹凸構造)が形成されている。凹凸加工部34は、例えば、外部電極31に凹凸加工部34形状に対応した金型を押しつけることにより製造される。他に、例えば、外部電極31の垂下部外周部31bの表面に、凹凸加工部34の凹部に対応した部分のみ露出した形状のレジストを形成し、レジスト越しにエッチングし、このレジストを除去することにより、凹凸加工部34を形成しても良い。 As shown in the figure, on the surface side of the external electrode 31, a concavo-convex portion 34 (concavo-convex structure) is provided as a solder formation preventing structure on the outer peripheral portion 31 b of the solder joint region R 31 h and the outer portion of the suspending portion 31 a. Is formed. The concavo-convex portion 34 is manufactured, for example, by pressing a die corresponding to the shape of the concavo-convex portion 34 against the external electrode 31. In addition, for example, a resist having a shape in which only a portion corresponding to the concave portion of the concavo-convex processed portion 34 is exposed is formed on the surface of the hanging outer peripheral portion 31b of the external electrode 31, and the resist is removed by etching through the resist. Thus, the concavo-convex portion 34 may be formed.
 このように、実施の形態4の第2の態様である半導体装置104Bは、外部電極31の垂下部外周部31bに凹凸加工部34を形成することにより、垂下部31aより外側へ半田が濡れ広がることをより確実に防止することができると同時に、樹脂41との密着性を向上することができる。 As described above, in the semiconductor device 104B according to the second aspect of the fourth embodiment, by forming the concave and convex portion 34 on the hanging portion outer peripheral portion 31b of the external electrode 31, the solder spreads outside the hanging portion 31a. This can be prevented more reliably, and at the same time, the adhesion with the resin 41 can be improved.
 (効果)
 実施の形態4の半導体装置104(104A及び104B)は、外部電極31あるいは外部電極50を有する実施の形態1あるいは実施の形態2の効果に加え、以下の効果を奏する。
(effect)
The semiconductor device 104 (104A and 104B) of the fourth embodiment has the following effects in addition to the effects of the first or second embodiment having the external electrode 31 or the external electrode 50.
 このように、実施の形態4の半導体装置104は、外部電極31の半田接合領域R31hの領域である垂下部外周部31bに、被服膜33あるいは凹凸加工部34である半田形成防止構造を設けることにより、垂下部外周部31bへの半田形成を防止することにより、半導体素子上半田21におけるフィレットF2を安定性良く形成することができる。 As described above, in the semiconductor device 104 according to the fourth embodiment, the solder formation prevention structure that is the clothing film 33 or the unevenness processing portion 34 is provided on the drooping outer peripheral portion 31 b that is the region of the solder bonding region R 31 h of the external electrode 31. Therefore, the fillet F2 in the solder 21 on the semiconductor element can be formed with good stability by preventing the solder formation on the hanging portion outer peripheral portion 31b.
 第1の態様である半導体装置104Aは、半田形成防止膜である被服膜33によって垂下部外周部31bへの半田形成を確実に防止して、半田形状制御性を高めることにより、装置の歩留まり及び信頼性の向上を図ることができる。 In the semiconductor device 104A according to the first aspect, the formation of solder on the hanging portion outer peripheral portion 31b is reliably prevented by the coating film 33 which is a solder formation preventing film, and the solder shape controllability is improved, thereby improving the yield of the device and Reliability can be improved.
 第2の態様である半導体装置104Bは、凹凸加工部34(凹凸構造)によって垂下部外周部31bへの半田形成を確実に防止して、半田形状制御性を高めることにより、装置の歩留まり及び信頼性の向上を図ることができる。さらに、樹脂41を設ける際、凹凸加工部34の凹部に樹脂41が入り込むことにより樹脂41との密着性を高め、半導体装置104Bの信頼性のさらなる向上を図ることができる。 In the semiconductor device 104B according to the second embodiment, the yield and reliability of the device are improved by reliably preventing solder formation on the hanging outer peripheral portion 31b by the uneven processing portion 34 (uneven structure) and improving the solder shape controllability. It is possible to improve the performance. Further, when the resin 41 is provided, the resin 41 enters the concave portion of the unevenness processing portion 34, thereby improving the adhesion with the resin 41 and further improving the reliability of the semiconductor device 104B.
 <その他>
 実施の形態1~実施の形態4の半導体装置101~104(104A,104B)では。半導体素子1としてIGBTを例に挙げたが、他にパワーMOSFET、整流ダイオードなどの他のデバイスを半導体素子1として構成しても良い。いずれの場合も外部電極31(50)に垂下部31a(50a)が形成され、垂下部31aと半導体素子1とを半田接合し、半田フィレット(フィレットF1及びF2)を形成することができれば、実施の形態1~実施の形態4の効果である装置の通電能力及び信頼性の向上を図るという効果を達成すことができる。
<Others>
In the semiconductor devices 101 to 104 (104A, 104B) of the first to fourth embodiments. The IGBT is exemplified as the semiconductor element 1, but other devices such as a power MOSFET and a rectifier diode may be configured as the semiconductor element 1. In any case, if the drooping portion 31a (50a) is formed on the external electrode 31 (50) and the drooping portion 31a and the semiconductor element 1 are soldered to form solder fillets (fillets F1 and F2) It is possible to achieve the effect of improving the energization capability and reliability of the device, which is the effect of the first to fourth embodiments.
 さらに、本発明は半導体素子1として特にパワーデバイスに限定すべき理由もなく半導体デバイス一般に応用できる。その他、本発明の特徴を失わない範囲でさまざまな形態をなし得る。 Furthermore, the present invention can be applied to semiconductor devices in general without any reason to limit the semiconductor element 1 to a power device. In addition, various forms can be made without departing from the characteristics of the present invention.
 この発明は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is illustrative in all aspects, and the present invention is not limited thereto. It is understood that countless variations that are not illustrated can be envisaged without departing from the scope of the present invention.
 すなわち、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 That is, in the present invention, it is possible to freely combine the respective embodiments within the scope of the invention, and to appropriately modify and omit the respective embodiments.
 1 半導体素子、11 表面電極、12 裏面電極、13 半田接合用金属膜、14 保護膜、21 半導体素子上半田、22 半導体素子下半田、31,35,50 外部電極、31a,50a 垂下部、32,33 被服膜、34 凹凸加工部、36 制御電極、41 樹脂、51 金属板、52 Cu金属シート、101~103,104A,104B 半導体装置。 DESCRIPTION OF SYMBOLS 1 Semiconductor element, 11 Front surface electrode, 12 Back surface electrode, 13 Solder bonding metal film, 14 Protective film, 21 Semiconductor element upper solder, 22 Semiconductor element lower solder, 31, 35, 50 External electrode, 31a, 50a Hanging part, 32 33, clothing film, 34 uneven processing portion, 36 control electrode, 41 resin, 51 metal plate, 52 Cu metal sheet, 101-103, 104A, 104B semiconductor device.

Claims (28)

  1.  一方主面及び他方主面を有し、一方表面上に平坦な表面を有する一方電極(11)が設けられる半導体素子(1)と、
     前記一方電極の上方に設けられた外部電極(31,50)とを備え、前記外部電極の表面と前記一方電極の表面とが対向し、
     前記一方電極の表面,前記外部電極の表面間に形成され、前記一方電極,前記外部電極間を電気的に接続する半田形成部(21)をさらに備え、
     前記一方電極及び前記外部電極が平面視重複する領域の少なくとも一部が、前記一方電極及び前記外部電極それぞれの表面における第1及び第2の半田接合領域(R11h及びR31h)として規定され、
     前記外部電極は、他の領域より前記一方電極の表面側に突出した垂下部(31a)を有し、前記垂下部は、前記第2の半田接合領域を含む領域に設けられ、前記第1及び第2の半田接合領域の中心位置である半田中心点(HC)に向かって、前記外部電極の表面と前記一方電極の表面との垂直距離が短くなる傾斜部(31s)を有し、
     前記半田形成部は、前記一方電極の前記第1の半田接合領域から前記外部電極の前記第2の接合領域にかけて形成され、前記一方電極の表面から上方にかけて前記半田中心点の方向に湾曲した第1の湾曲形状(F1)と、前記外部電極の表面から下方にかけて前記半田中心点の方向に湾曲した第2の湾曲形状(F2)とを含む端面形状を有することを特徴とする、
    半導体装置。
    A semiconductor element (1) having one main surface and the other main surface, and one electrode (11) having a flat surface on one surface;
    An external electrode (31, 50) provided above the one electrode, and the surface of the external electrode and the surface of the one electrode are opposed to each other,
    A solder forming portion (21) formed between the surface of the one electrode and the surface of the external electrode, and electrically connecting the one electrode and the external electrode;
    At least a part of a region where the one electrode and the external electrode overlap in plan view is defined as first and second solder joint regions (R11h and R31h) on the surfaces of the one electrode and the external electrode, respectively.
    The external electrode has a drooping portion (31a) projecting from the other region to the surface side of the one electrode, and the drooping portion is provided in a region including the second solder joint region, An inclined portion (31s) in which the vertical distance between the surface of the external electrode and the surface of the one electrode is shortened toward the solder center point (HC) that is the center position of the second solder joint region;
    The solder forming portion is formed from the first solder joint region of the one electrode to the second joint region of the external electrode, and is curved in the direction of the solder center point from the surface of the one electrode upward. 1 having a curved shape (F1) and a second curved shape (F2) curved downward from the surface of the external electrode toward the solder center point.
    Semiconductor device.
  2.  請求項1記載の半導体装置であって、
     第1及び第2の半田接合領域の平面形状は矩形状を呈する、
    半導体装置。
    The semiconductor device according to claim 1,
    The planar shape of the first and second solder joint regions is rectangular,
    Semiconductor device.
  3.  請求項2記載の半導体装置であって、
     前記第1及び第2の半田接合領域の平面形状である矩形状は、角部が面取りされた面取り矩形状を呈する、
    半導体装置。
    The semiconductor device according to claim 2,
    The rectangular shape that is the planar shape of the first and second solder joint regions exhibits a chamfered rectangular shape with chamfered corners.
    Semiconductor device.
  4.  請求項3記載の半導体装置であって、
     前記第1及び第2の半田接合領域は平面視完全重複する同一形状を呈する、
    半導体装置。
    The semiconductor device according to claim 3,
    The first and second solder joint regions have the same shape that overlaps in plan view.
    Semiconductor device.
  5.  請求項3記載の半導体装置であって、
     前記垂下部は前記半田中心点を含んで前記一方電極の表面からの距離が一定となる平坦な底面部(31m)を有し、
     前記第2の半田接合領域の外周からの前記底面の外周への平面距離(r1)と、前記面取り矩形状における角部の曲率半径(r2)とを等しくしたことを特徴とする、
    半導体装置。
    The semiconductor device according to claim 3,
    The hanging portion includes a flat bottom surface portion (31 m) including the solder center point and having a constant distance from the surface of the one electrode,
    The planar distance (r1) from the outer periphery of the second solder joint region to the outer periphery of the bottom surface is made equal to the radius of curvature (r2) of the corner in the chamfered rectangular shape,
    Semiconductor device.
  6.  請求項4または請求項5記載の半導体装置であって、
     前記外部電極は前記底面部を含む前記垂下部において、表面から裏面を貫通する貫通穴(31t)を有する、
    半導体装置。
    A semiconductor device according to claim 4 or claim 5, wherein
    The external electrode has a through hole (31t) penetrating from the front surface to the back surface in the hanging portion including the bottom surface portion.
    Semiconductor device.
  7.  請求項1から請求項6のうち、いずれか1項に記載の半導体装置であって、
     前記外部電極(31)は銅を構成材料とした単体構造である、
    半導体装置。
    A semiconductor device according to any one of claims 1 to 6,
    The external electrode (31) has a single structure with copper as a constituent material.
    Semiconductor device.
  8.  請求項1から請求項6のうち、いずれか1項に記載の半導体装置であって、
     前記外部電極(50)は、
     銅より線膨張係数が低い金属材料により構成した金属板(51)と、
     前記金属板の表面上に少なくとも形成され、銅を構成材料とした銅形成層(52)とを含む、
    半導体装置。
    A semiconductor device according to any one of claims 1 to 6,
    The external electrode (50)
    A metal plate (51) composed of a metal material having a lower linear expansion coefficient than copper,
    A copper forming layer (52) formed at least on the surface of the metal plate and made of copper as a constituent material;
    Semiconductor device.
  9.  請求項1から請求項8のうち、いずれか1項に記載の半導体装置であって、
     前記外部電極の表面における前記第2の半田接合領域上に少なくとも設けられ、前記外部電極に比べ半田濡れ性が優る構成材料で形成された被腹膜(32)をさらに備える、
    半導体装置。
    It is a semiconductor device given in any 1 paragraph among Claims 1-8,
    A peritoneum (32) formed at least on the second solder joint region on the surface of the external electrode and made of a constituent material having superior solder wettability compared to the external electrode;
    Semiconductor device.
  10.  請求項9記載の半導体装置であって、
     前記被腹膜は前記外部電極の表面における前記垂下部上にのみに形成される、
    半導体装置。
    The semiconductor device according to claim 9,
    The peritoneum is formed only on the hanging portion on the surface of the external electrode,
    Semiconductor device.
  11.  請求項9または請求項10記載の半導体装置であって、
     前記被腹膜はニッケルを構成材料としたニッケル被覆膜である、
    半導体装置。
    A semiconductor device according to claim 9 or claim 10, wherein
    The peritoneum is a nickel-coated film having nickel as a constituent material,
    Semiconductor device.
  12.  請求項9または請求項10記載の半導体装置であって、
     前記被腹膜は金を構成材料とした金被覆膜である、
    半導体装置。
    A semiconductor device according to claim 9 or claim 10, wherein
    The peritoneum is a gold coating film made of gold as a constituent material;
    Semiconductor device.
  13.  請求項1から請求項12のうち、いずれか1項に記載の半導体装置であって、
     前記外部電極は前記第2の半田接合領域より外周側に位置する垂下部外周部(31b)を有し、
     前記垂下部外周部は前記半田形成部の形成時に半田の形成を防止する半田形成防止構造(33,34)を有することを特徴とする、
    半導体装置。
    A semiconductor device according to any one of claims 1 to 12,
    The external electrode has a drooping outer peripheral portion (31b) located on the outer peripheral side from the second solder joint region,
    The drooping outer peripheral portion has a solder formation preventing structure (33, 34) for preventing the formation of solder when the solder forming portion is formed.
    Semiconductor device.
  14.  請求項13記載の半導体装置であって、
     前記外部電極の表面側における前記垂下部外周部上に形成された半田形成防止膜(33)をさらに備え、
     前記半田形成防止膜は前記外部電極の表面を形成する材料に比べ、半田濡れ性が低い材料で構成され、前記半田形成防止構造は前記半田形成防止膜を含む、
    半導体装置。
    A semiconductor device according to claim 13,
    A solder formation prevention film (33) formed on the outer periphery of the drooping portion on the surface side of the external electrode;
    The solder formation prevention film is made of a material having low solder wettability compared to the material forming the surface of the external electrode, and the solder formation prevention structure includes the solder formation prevention film.
    Semiconductor device.
  15.  請求項14記載の半導体装置であって、
     前記半田形成防止膜はソルダーレジストを構成材料とする、
    半導体装置。
    15. The semiconductor device according to claim 14, wherein
    The solder formation prevention film is composed of a solder resist,
    Semiconductor device.
  16.  請求項14記載の半導体装置であって、
     前記外部電極の表面側における前記垂下部外周部に形成された凹凸構造(34)をさらに備え、
     前記半田形成防止構造は前記凹凸構造を含む、
    半導体装置。
    15. The semiconductor device according to claim 14, wherein
    It further comprises a concavo-convex structure (34) formed on the outer periphery of the hanging portion on the surface side of the external electrode,
    The solder formation prevention structure includes the uneven structure,
    Semiconductor device.
  17.  請求項1から請求項16のうち、いずれか1項に記載の半導体装置であって、
     前記第1及び第2の半田接合領域は複数の第1及び第2の半田接合領域を含み、
     前記垂下部は前記複数の第2の半田接合領域に対応した複数の垂下部を含み、
     前記半田形成部は前記複数の第1及び第2の半田接合領域に対応した複数の半田形成部を含む、
    半導体装置。
    The semiconductor device according to any one of claims 1 to 16, wherein
    The first and second solder joint regions include a plurality of first and second solder joint regions;
    The hanging portion includes a plurality of hanging portions corresponding to the plurality of second solder joint regions,
    The solder forming portion includes a plurality of solder forming portions corresponding to the plurality of first and second solder joint regions,
    Semiconductor device.
  18.  請求項1から請求項17のうち、いずれか1項に記載の半導体装置であって、
     前記半導体素子と前記半田形成部と前記外部電極の少なくとも一部とを覆って封止する樹脂(41)をさらに備える、
    半導体装置。
    The semiconductor device according to any one of claims 1 to 17,
    A resin (41) for covering and sealing the semiconductor element, the solder forming portion, and at least a part of the external electrode;
    Semiconductor device.
  19.  請求項18記載の半導体装置であって、
     前記半導体素子は第1の線膨張係数を有し、
     前記樹脂は前記第1の線膨張係数より高い第2の線膨張係数を有し、
     前記外部電極は前記第2の線膨張係数より高い第3の線膨張係数を有する、
    半導体装置。
    The semiconductor device according to claim 18, wherein
    The semiconductor element has a first coefficient of linear expansion;
    The resin has a second linear expansion coefficient higher than the first linear expansion coefficient;
    The external electrode has a third linear expansion coefficient higher than the second linear expansion coefficient;
    Semiconductor device.
  20.  請求項18または請求項19に記載の半導体装置であって、
     前記一方電極の表面において、少なくとも前記第1の半田接合領域上に形成される半田接合用金属膜(13)をさらに備え、
     前記半田形成部は前記半田接合用金属膜を介して前記一方電極の表面上に形成される、
    半導体装置。
    The semiconductor device according to claim 18 or 19, wherein
    A solder bonding metal film (13) formed on at least the first solder bonding region on the surface of the one electrode;
    The solder forming portion is formed on the surface of the one electrode via the solder bonding metal film.
    Semiconductor device.
  21.  請求項20記載の半導体装置であって、
     前記半田接合用金属膜は、ニッケルを構成材料とした半田接合用ニッケル膜を含む、
    半導体装置。
    The semiconductor device according to claim 20, wherein
    The solder bonding metal film includes a nickel film for solder bonding using nickel as a constituent material.
    Semiconductor device.
  22.  請求項20または請求項21記載の半導体装置であって、
     前記半導体素子は一方主面上において、前記一方電極が形成されていない領域に少なくとも形成される保護膜(14)をさらに有する、
    半導体装置。
    A semiconductor device according to claim 20 or claim 21, wherein
    The semiconductor element further has a protective film (14) formed at least in a region where the one electrode is not formed on one main surface.
    Semiconductor device.
  23.  請求項22記載の半導体装置であって、
     前記保護膜は厚みが2~20μmのポリイミド膜である、
    半導体装置。
    23. The semiconductor device according to claim 22, wherein
    The protective film is a polyimide film having a thickness of 2 to 20 μm.
    Semiconductor device.
  24.  請求項1から請求項23のうち、いずれか1項に記載の半導体装置であって、
     前記半導体素子は炭化珪素を構成材料とした半導体素子である、
    半導体装置。
    The semiconductor device according to any one of claims 1 to 23, wherein:
    The semiconductor element is a semiconductor element composed of silicon carbide,
    Semiconductor device.
  25.  請求項1から請求項24のうち、いずれか1項の記載の半導体装置であって、
     前記一方電極はアルミを95%以上含む材料から構成される、
    半導体装置。
    A semiconductor device according to any one of claims 1 to 24,
    The one electrode is made of a material containing 95% or more of aluminum,
    Semiconductor device.
  26.  請求項18から請求項23のうちいずれか1項に記載の半導体装置の製造方法であって、
     前記樹脂を形成する工程として、
     仮固定された前記半導体素子、前記半田形成部及び前記外部電極に対し、液状樹脂を吐出して加熱硬化させることにより、前記半導体素子と前記半田形成部と前記外部電極の少なくとも一部とを覆って前記樹脂を形成するステップを有する、
    半導体装置の製造方法。
    24. A method of manufacturing a semiconductor device according to claim 18, wherein:
    As a step of forming the resin,
    The semiconductor element, the solder formation portion, and the external electrode are covered with at least a part of the semiconductor element, the solder formation portion, and the external electrode by discharging a liquid resin to the temporarily fixed semiconductor element, the solder formation portion, and the external electrode. And forming the resin
    A method for manufacturing a semiconductor device.
  27.  請求項22または請求項23記載の半導体装置の製造方法であって、
     前記保護膜及び前記半田接合用金属膜を形成する工程として、
     (a) 前記半導体素子の一方主面上において前記一方電極が形成されていない領域から、前記一方電極の表面における前記第1の半田接合領域の外縁領域にかけて前記保護膜を形成するステップと、
     (b) 前記保護膜をマスクとして湿式メッキ法を用いて、前記一方電極の表面における前記第1の半田接合領域上に前記半田接合用金属膜を形成するステップとを含む、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 22 or claim 23,
    As a step of forming the protective film and the solder bonding metal film,
    (a) forming the protective film from a region where the one electrode is not formed on one main surface of the semiconductor element to an outer edge region of the first solder joint region on the surface of the one electrode;
    (b) using the wet plating method with the protective film as a mask, and forming the solder bonding metal film on the first solder bonding region on the surface of the one electrode,
    A method for manufacturing a semiconductor device.
  28.  請求項1から請求項25のうち、いずれか1項に記載の半導体装置の製造方法であって、
     前記半田形成部を形成する工程として、
     還元雰囲気中において、前記一方電極の表面と前記外部電極の表面との間に配置された、固相あるいはペースト状の半田材を溶融することにより、前記半田形成部を得るステップを含む、
    半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 1 to 25,
    As a step of forming the solder forming portion,
    In a reducing atmosphere, including the step of obtaining the solder forming portion by melting a solid phase or paste-like solder material disposed between the surface of the one electrode and the surface of the external electrode,
    A method for manufacturing a semiconductor device.
PCT/JP2014/078926 2014-10-30 2014-10-30 Semiconductor device and method for manufacturing same WO2016067414A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/078926 WO2016067414A1 (en) 2014-10-30 2014-10-30 Semiconductor device and method for manufacturing same
JP2016556123A JP6479036B2 (en) 2014-10-30 2014-10-30 Semiconductor device and method of manufacturing the same
CN201490001567.4U CN207038515U (en) 2014-10-30 2014-10-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078926 WO2016067414A1 (en) 2014-10-30 2014-10-30 Semiconductor device and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2016067414A1 true WO2016067414A1 (en) 2016-05-06

Family

ID=55856798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078926 WO2016067414A1 (en) 2014-10-30 2014-10-30 Semiconductor device and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP6479036B2 (en)
CN (1) CN207038515U (en)
WO (1) WO2016067414A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204570A (en) * 2016-05-11 2017-11-16 株式会社デンソー Semiconductor device
WO2018181727A1 (en) * 2017-03-30 2018-10-04 三菱電機株式会社 Semiconductor device and manufacturing method therefor, and power conversion device
JP6437700B1 (en) * 2018-05-29 2018-12-12 新電元工業株式会社 Semiconductor module
JP6457144B1 (en) * 2018-09-19 2019-01-23 株式会社加藤電器製作所 Semiconductor module
WO2019167254A1 (en) * 2018-03-02 2019-09-06 新電元工業株式会社 Semiconductor device and method for producing semiconductor device
WO2019167102A1 (en) * 2018-02-27 2019-09-06 新電元工業株式会社 Semiconductor device and method for producing semiconductor device
WO2020208677A1 (en) * 2019-04-08 2020-10-15 新電元工業株式会社 Semiconductor device
WO2020241240A1 (en) * 2019-05-28 2020-12-03 株式会社オートネットワーク技術研究所 Terminal-equipped flexible printed circuit board, vehicle wiring module, and power storage module
WO2022019023A1 (en) * 2020-07-20 2022-01-27 ローム株式会社 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067059A1 (en) * 2018-09-26 2020-04-02 三菱電機株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126659A (en) * 1988-09-09 1990-05-15 Motorola Inc Semiconductor device having curved bonding-lead and forming method thereof
JPH05315490A (en) * 1992-05-07 1993-11-26 Fuji Electric Co Ltd Semiconductor element
JP2004228461A (en) * 2003-01-27 2004-08-12 Mitsubishi Electric Corp Semiconductor apparatus
JP2006173250A (en) * 2004-12-14 2006-06-29 Mitsubishi Electric Corp Semiconductor device and its manufacturing process
JP2007019412A (en) * 2005-07-11 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
JP2010050395A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Semiconductor device, and method of manufacturing the same
JP2012156450A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438524Y2 (en) * 1986-12-19 1992-09-09
JP4968195B2 (en) * 2008-06-24 2012-07-04 株式会社デンソー Manufacturing method of electronic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126659A (en) * 1988-09-09 1990-05-15 Motorola Inc Semiconductor device having curved bonding-lead and forming method thereof
JPH05315490A (en) * 1992-05-07 1993-11-26 Fuji Electric Co Ltd Semiconductor element
JP2004228461A (en) * 2003-01-27 2004-08-12 Mitsubishi Electric Corp Semiconductor apparatus
JP2006173250A (en) * 2004-12-14 2006-06-29 Mitsubishi Electric Corp Semiconductor device and its manufacturing process
JP2007019412A (en) * 2005-07-11 2007-01-25 Denso Corp Semiconductor device and its manufacturing method
JP2010050395A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Semiconductor device, and method of manufacturing the same
JP2012156450A (en) * 2011-01-28 2012-08-16 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204570A (en) * 2016-05-11 2017-11-16 株式会社デンソー Semiconductor device
WO2018181727A1 (en) * 2017-03-30 2018-10-04 三菱電機株式会社 Semiconductor device and manufacturing method therefor, and power conversion device
WO2019167102A1 (en) * 2018-02-27 2019-09-06 新電元工業株式会社 Semiconductor device and method for producing semiconductor device
JPWO2019167102A1 (en) * 2018-02-27 2020-04-09 新電元工業株式会社 Semiconductor device and method of manufacturing semiconductor device
JP6619120B1 (en) * 2018-03-02 2019-12-11 新電元工業株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2019167254A1 (en) * 2018-03-02 2019-09-06 新電元工業株式会社 Semiconductor device and method for producing semiconductor device
US10784186B2 (en) 2018-05-29 2020-09-22 Katoh Electric Co., Ltd. Semiconductor module
CN110945649B (en) * 2018-05-29 2023-06-16 新电元工业株式会社 Semiconductor module
WO2019229829A1 (en) * 2018-05-29 2019-12-05 新電元工業株式会社 Semiconductor module
US10600725B2 (en) 2018-05-29 2020-03-24 Shindengen Electric Manufacturing Co., Ltd. Semiconductor module having a grooved clip frame
CN110945649A (en) * 2018-05-29 2020-03-31 新电元工业株式会社 Semiconductor module
JP6437700B1 (en) * 2018-05-29 2018-12-12 新電元工業株式会社 Semiconductor module
JP6457144B1 (en) * 2018-09-19 2019-01-23 株式会社加藤電器製作所 Semiconductor module
JP2019207999A (en) * 2018-09-19 2019-12-05 株式会社加藤電器製作所 Semiconductor module
WO2020208677A1 (en) * 2019-04-08 2020-10-15 新電元工業株式会社 Semiconductor device
US11557564B2 (en) 2019-04-08 2023-01-17 Shindengen Electric Manufacturing Co., Ltd. Semiconductor device
WO2020241240A1 (en) * 2019-05-28 2020-12-03 株式会社オートネットワーク技術研究所 Terminal-equipped flexible printed circuit board, vehicle wiring module, and power storage module
WO2022019023A1 (en) * 2020-07-20 2022-01-27 ローム株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPWO2016067414A1 (en) 2017-04-27
CN207038515U (en) 2018-02-23
JP6479036B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2016067414A1 (en) Semiconductor device and method for manufacturing same
JP4438489B2 (en) Semiconductor device
US9731370B2 (en) Directly cooled substrates for semiconductor modules and corresponding manufacturing methods
WO2012157583A1 (en) Semiconductor device and manufacturing method thereof
JP6156381B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP6094533B2 (en) Semiconductor device
JP6008750B2 (en) Semiconductor device
JP2019087575A (en) Method for manufacturing semiconductor device
JP5418654B2 (en) Semiconductor device
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP2019212808A (en) Manufacturing method of semiconductor device
JP7221401B2 (en) Electric circuit board and power module
JP6392583B2 (en) Circuit board and electronic device
JP2018056152A (en) Semiconductor device
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP2017050441A (en) Semiconductor device
JP2007027308A (en) Semiconductor device
JP6264150B2 (en) Power module substrate and power module substrate with heat sink
JP4047572B2 (en) Power semiconductor device
JP2016219707A (en) Semiconductor device and manufacturing method of the same
JP2014146644A (en) Semiconductor device and manufacturing method of the same
JP6274986B2 (en) Power semiconductor module and manufacturing method thereof
JP2019110280A (en) Method of manufacturing semiconductor device
JP6119553B2 (en) Power semiconductor device and manufacturing method thereof
JP5151837B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904831

Country of ref document: EP

Kind code of ref document: A1