WO2016065681A1 - 一种白色有机电致发光器件及其制备方法 - Google Patents

一种白色有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2016065681A1
WO2016065681A1 PCT/CN2014/091786 CN2014091786W WO2016065681A1 WO 2016065681 A1 WO2016065681 A1 WO 2016065681A1 CN 2014091786 W CN2014091786 W CN 2014091786W WO 2016065681 A1 WO2016065681 A1 WO 2016065681A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bis
light
electron
phenyl
Prior art date
Application number
PCT/CN2014/091786
Other languages
English (en)
French (fr)
Inventor
周亮
张洪杰
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Priority to US15/522,598 priority Critical patent/US10177324B2/en
Priority to EP14904947.0A priority patent/EP3214668B1/en
Priority to JP2017523421A priority patent/JP6501881B2/ja
Publication of WO2016065681A1 publication Critical patent/WO2016065681A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Definitions

  • the invention relates to the field of organic electroluminescence technology, in particular to a white organic electroluminescent device and a preparation method thereof.
  • An organic electroluminescent device is a self-luminous device whose principle of illumination is that when an electric charge is injected into an organic layer between a hole injecting electrode and an electron injecting electrode, electrons and holes meet, combine, and then annihilate, thereby generating Light.
  • Organic electroluminescent devices have characteristics such as low voltage, high brightness, and wide viewing angle, and thus organic electroluminescent devices have been rapidly developed in recent years. Among them, white organic electroluminescent devices have become a research hotspot because of their broad application prospects in display and illumination.
  • the trivalent europium complex has been regarded as an ideal organic electroluminescent material by academics and industry because of its high luminous efficiency and adjustable color of light.
  • Many research teams at home and abroad have started from material synthesis and device optimization to improve the comprehensive performance of white organic electroluminescent devices to meet the needs of industrialization.
  • Forrest et al. of Princeton University in the United States designed a white organic electroluminescent device having a multi-luminescent layer structure by doping blue light material, green light material and red light material into different light emitting layers, respectively.
  • the device exhibits an ideal white light emission, unbalanced carrier injection results in lower efficiency and brightness of the device and higher operating voltage.
  • complex device structures also result in higher device fabrication costs.
  • Kido et al. of Yamagata University of Japan successfully obtained a white light emitting device by combining a blue-green light and an orange-red light by designing a dual light-emitting layer device structure.
  • the device has high luminous efficiency, however, the characteristics of bimodal emission cause the spectrum of the device to be insufficiently covered in the white light region, so the color recovery coefficient is low.
  • the luminance of the light is increased, the emission spectrum of the device greatly changes. It can be seen that the luminous efficiency of the white organic electroluminescent device, The overall performance of brightness, spectral stability and working life has not been effectively improved.
  • the technical problem solved by the present invention is to provide a white organic electroluminescent device with high comprehensive performance and a preparation method thereof.
  • a white organic electroluminescent device comprising:
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a blue organic light-emitting material and an electronic organic organic material;
  • the hole-priming light-emitting layer is composed of a green organic light-emitting material, a red organic light-emitting material, and a hole-type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) phenanthroline ruthenium and tris(acetylacetonate) phenanthroline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • the content of the blue organic light-emitting material is 8.0% by weight to 25.0% by weight of the electronic organic organic host material.
  • the blue organic light-emitting material is selected from the group consisting of bis(3,5-difluoro-4-cyano)pyridine hydrazide, bis(2,4-difluorophenylpyridine)tetrakis(1-pyrazolyl) Boron bismuth, tris(1-phenyl-3-methylbenzoimidazolin-2-yl-C, C2') hydrazine, tris(1-phenyl-3-methylbenzimidazole) Oxazolin-2-yl-C, C2') ruthenium, bis(2,4-difluorophenylpyridine)(5-(pyridin-2-yl)-1H-tetrazole) ruthenium, three [(2 ,6-diisopropylphenyl)2-phenyl-1H-imidazole [e] hydrazine, tris(1-phenyl-3-methylimidazolin-2-yl-C,
  • the electronic organic host material is selected from the group consisting of 2,6-bis[3-(9H-9-carbazolyl)phenyl]pyridine, 1,4-bis(triphenylsilyl)benzene, 2, 2'-bis(4-(9-carbazolyl)phenyl)biphenyl, [2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane, 1,3,5 -Tris[(3-pyridyl)-3-phenyl]benzene, 1,3-bis[3,5-bis(3-pyridyl)phenyl]benzene, 1,3,5-tris(1-phenyl -1H-benzimidazol-2-yl)benzene, 9-(4-t-butylphenyl)-3,6-bis(triphenylsilyl)-9H-carbazole and 9-(8-diphenyl) One or more of p-phosphoryl)-diazo
  • the red organic light emitting material is 1.0 wt% to 3.0 wt% of the hole type organic host material; and the green organic light emitting material is 5.0 wt% to 10.0 wt% of the hole type organic host material. ;
  • the green organic light-emitting material is selected from the group consisting of tris(2-phenylpyridine) ruthenium, bis(2-phenylpyridine)(acetylacetonate) ruthenium, and tris[2-(p-methylphenyl)pyridine] ruthenium. , bis(2-phenylpyridine)[2-(diphenyl-3-yl)pyridine] ruthenium, tris(2-(3-p-dimethylphenyl)pyridine ruthenium and tris(2-phenyl-) One or more of 3-methyl-pyridine);
  • the red organic light-emitting material is selected from the group consisting of bis(2-phenylquinoline)-(2,2,6,6-tetramethyl-3,5-heptanedionate) ruthenium, bis(2-benzoazole [ b] 2-thienylpyridine) acetylacetonate ruthenium, tris(1-phenylisoquinoline) ruthenium, bis(1-phenylisoquinoline)(acetylacetonate) ruthenium, two [1-(9, 9-Dimethyl-9H-indol-2-yl)-isoquinoline](acetylacetone) ruthenium, bis[2-(9,9-dimethyl-9H-indol-2-yl)quinoline] (acetylacetone) ruthenium, bis(2-phenylquinoline)(2-(3-methylphenyl)pyridine) ruthenium, tris[2-phenyl-4-methylquinoline] ruthenium
  • the hole-type organic host material is selected from the group consisting of 4,4'-N, N'-dicarbazole diphenyl, 1,3-dioxazole-9-ylbenzene, 9,9'-(5-(three Phenylsilyl)-1,3-phenyl)di-9H-carbazole, 1,3,5-tris(9-oxazolyl)benzene, 4,4',4"-tris(carbazole-9 One or more of triphenylamine and 1,4-bis(triphenylsilyl)biphenyl.
  • the material of the hole transporting-electron blocking layer is selected from the group consisting of 4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline], dipyrazine [2,3-f :2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, N4,N4'-di(naphthalen-1-yl)-N4,N4'-double ( 4-vinylphenyl)biphenyl-4,4'-diamine, N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-2,7-diamine -9,9-spirobiguanide, N,N,N',N'-tetrakis(3-methylphenyl)-3-3'-dimethyl-p-diaminobiphenyl, 2,2'-di (3-(N,N-di-p-tolylamino)pheny
  • the material of the hole blocking-electron transport layer is selected from the group consisting of tris[2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane, 1,3,5-tri [ (3-pyridine)-3-phenyl]benzene, 1,3-bis[3,5-bis(3-pyridyl)phenyl]benzene and 1,3,5-tris(1-phenyl-1H- One or more of benzimidazol-2-yl)benzene.
  • the anode modification layer has a thickness of 1 to 10 nm
  • the hole transport-electron barrier layer has a thickness of 30 to 60 nm
  • the hole-dominant light-emitting layer has a thickness of 5 to 20 nm.
  • the thickness of the layer is 5 to 20 nm
  • the thickness of the hole blocking-electron transport layer is 30 to 60 nm
  • the thickness of the cathode modification layer is 0.8 to 1.2 nm
  • the thickness of the cathode layer is 90 to 300 nm.
  • the application also provides a method for preparing a white organic electroluminescent device, comprising:
  • the anode layer on the substrate is etched, and after drying, the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking are sequentially deposited on the anode layer.
  • the material of the electron-dominated light-emitting layer is composed of an organic sensitizing material, a blue organic light-emitting material and an electronic type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) phenanthroline ruthenium and tris(acetylacetonate) phenanthroline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • the evaporation rate of the anode modification layer is 0.01-0.05 nm/s, and the host material in the hole transport-electron blocking layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer and the hole blocking-electron transport layer
  • the evaporation rate of the organic sensitizing material in the electron-dominated luminescent layer is 0.00005-0.0005 nm/s, and the evaporation rate of the blue organic luminescent material in the electron-dominated luminescent layer is 0.004 ⁇ 0.025nm/s;
  • the evaporation rate of the red luminescent material in the hole-preferred luminescent layer is 0.0005-0.003 nm/s;
  • the evaporation rate of the green organic luminescent material in the hole-preferred luminescent layer is 0.0025-0.01
  • the evaporation rate of the cathode modification layer is 0.005 to 0.05 nm/s, and the evaporation rate of the ca
  • the present application provides a white organic electroluminescent device comprising a substrate, an anode layer, an anode modification layer, a hole transport-electron barrier layer, a hole-dominant light-emitting layer, an electron-dominated light-emitting layer, hole blocking-electron transport Layer, cathode modification layer and cathode layer.
  • the luminescent materials of the present application are blue luminescent materials, green luminescent materials and red luminescent materials.
  • the luminescent layer of the organic electroluminescent device contains red.
  • the green, blue and blue primary luminescent materials when the doping concentration of the three color luminescent materials is effectively matched, the photon ratio of the three colors will reach an equilibrium distribution close to the sunlight, thus generating white light emission.
  • the present application adds tris(acetylacetonate) phenanthroline and ruthenium to an electron-dominated luminescent layer.
  • One or two of tris(acetylacetonate)-phenanthroline ruthenium as an organic sensitizing material because of its energy level and triplet energy, energy level of electronic host material, blue luminescent material and triplet energy phase Matching, the organic sensitizing material acts as a carrier deep-binding center and energy transfer step in the electroluminescence process, which not only can improve the energy transfer from the host material to the luminescent material, but also balance the electrons and holes in the luminescence.
  • the distribution of the interval thereby improving the luminous efficiency of the organic electroluminescent device, improving the spectral stability of the device, reducing the operating voltage of the device, delaying the efficiency degradation of the device, and improving the working life of the device.
  • FIG. 1 is a schematic structural view of a white organic electroluminescent device of the present invention.
  • Example 2 is a graph showing voltage-current density-luminance characteristics of a white organic electroluminescent device prepared in Example 1 of the present invention
  • Example 3 is a graph showing current density-power efficiency-current efficiency characteristics of a white organic electroluminescent device prepared in Example 1 of the present invention
  • Example 4 is a spectrum diagram of a white organic electroluminescent device prepared in Example 1 of the present invention at a luminance of 20,000 cd/m 2 .
  • the embodiment of the invention discloses a white organic electroluminescent device, comprising:
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a blue organic light-emitting material and an electronic organic organic material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) phenanthroline ruthenium and tris(acetylacetonate) phenanthroline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • OLED organic electroluminescent device
  • the luminescent material molecules excite an electron to an excited state, and the excited state electrons return to the ground state by a transition to generate a photon, since the luminescent layer contains red, green, and blue primaries, when three colors
  • the photon ratio of the three colors will reach an equilibrium concentration close to the sunlight, and thus a white light emission is generated.
  • the white organic electroluminescent device of the present application comprises a substrate, an anode layer, an anode modification layer, a hole transport-electron blocking layer, a hole-dominant light-emitting layer, an electron-dominated light-emitting layer, a hole blocking-electron transport layer, and a cathode modification.
  • the layer and the cathode layer are sequentially connected to each other.
  • the hole-bearing light-emitting layer and the electron-based light-emitting layer are light-emitting layers of a white organic electron-emitting device.
  • the electronically dominant light-emitting layer of the present invention is composed of an organic sensitizing material, a blue organic light-emitting material and an electronic type organic host material, wherein the organic sensitizing material plays a sensitizing role in the electroluminescence process to balance electrons and holes.
  • the distribution in the illumination interval increases the energy transfer from the host material to the luminescent material; the molecules of the blue organic luminescent material are dispersed in the electron-dominated luminescent layer as the luminescent center; the electronic organic host material acts as a matrix to provide electron transport capability .
  • the energy level and the triplet energy of the organic sensitizing material need to match the energy level of the host material, the luminescent material, and the triplet energy to balance the distribution of electrons and holes in the light-emitting interval and accelerate
  • the energy transfer from the host material to the luminescent material gives the white organic electroluminescent device a better overall performance. Therefore, the present application selects an energy level-matched rare earth complex selected from a tris(acetylacetonate) phenanthrene having a structure of the formula (IX) by selecting an illuminating material.
  • the doping concentration of the organic sensitizing material in the electron-based light-emitting layer of the present invention affects the performance of the organic electroluminescent device. If the doping concentration of the organic sensitizing material is too low, the sensitizing effect is unsatisfactory, and if the doping concentration is too high, the overall performance of the luminescence of the organic electroluminescent device is lowered. Therefore, the organic sensitizing material is from 0.1% by weight to 0.5% by weight, preferably from 0.2% by weight to 0.3% by weight, of the electronic type organic host material.
  • the present application includes three primary color organic light-emitting materials in the electron-dominated light-emitting layer and the hole-based light-emitting layer, respectively, thereby enabling the organic electroluminescent device to emit white light.
  • the organic light-emitting material in the electron-based light-emitting layer is a blue organic light-emitting material
  • the blue organic light-emitting material is a light-emitting material well known to those skilled in the art, and the present application is not particularly limited, but in order to make the light-emitting effect better, the blue organic light emitting material is preferably selected having the formula (ii 1) bis (3,5-difluoro-4-cyano) pyridine hydrochloride laminated structure iridium (FCNIrpic), having the formula (ii 2) the structure of bis ( 2,4-difluorophenylpyridine)tetrakis(1-pyrazolyl)borane ruthenium (Fir6), face-tris(3-phen
  • the doping concentration of the blue organic light-emitting material also affects the overall performance of the white organic electroluminescent device. If the doping concentration of the blue organic light-emitting material is too low, the device efficiency is low and the spectral stability is not ideal. If the doping concentration is too high, the luminescent material molecules are agglomerated to form a quenching center, and finally the device is lowered. Comprehensive performance.
  • the doping concentration of the blue organic light-emitting material in the electron-dominated light-emitting layer is preferably 8.0 wt% to 25.0 wt%, more preferably 10.0 wt% to 20.0 wt%, and most preferably 15.0 wt% to 18.0 wt%. %.
  • the electronic type host material functions as a matrix in the electron-dominated light-emitting layer to provide electron transport capability, and the electronic type host material is a material well known to those skilled in the art.
  • the electronic type host material is preferably selected from the group consisting of 2,6-bis[3-(9H-9-carbazolyl)phenyl]pyridine (26DCzPPy) having the structure of the formula (XI), having the structure of the formula (XII) 1,4-bis(triphenylsilyl)benzene (UGH2), 2,2'-bis(4-(9-carbazolyl)phenyl)biphenyl (BCBP) having the structure of formula (XIII), [2,4,6-Trimethyl-3-(3-pyridyl)phenyl]borane (3TPYMB) having the structure of formula (XIV), 1,3,5-tri” having the structure of formula (XV) [ (3-pyridyl)-3-phenyl]benzene (TmPyPB), 1,3-bis[3,5-di(3-pyridyl)phenyl]benzene (BmPyPhB) having the structure of formula (XVI), having the group consist
  • the material of the hole-preferred light-emitting layer in the present application is a red organic light-emitting material, a green organic light-emitting material and a hole-type organic host material, wherein molecules of the green organic light-emitting material and the red organic light-emitting material are dispersed in the hole-dominant light-emitting layer.
  • a luminescent center As a luminescent center.
  • the organic light-emitting material in the present application includes a red organic light-emitting material, a green organic light-emitting material, and a blue organic light-emitting material; the organic light-emitting material in the electron-based light-emitting layer of the present application is a blue organic light-emitting material, and the holes are dominant in the light-emitting layer.
  • the luminescent material is a red organic luminescent material and a green organic luminescent material, the arrangement of the different color luminescent materials can improve the color recovery coefficient of the device and effectively ensure the spectral stability of the device;
  • the red organic luminescent material is preferably the hole 1.0% by weight to 3.0% by weight of the organic organic material
  • the green organic light emitting material is preferably 5.0% by weight to 10.0% by weight of the hole type organic host material;
  • the doping concentration of the organic light emitting material is too low, This will result in low device efficiency and unsatisfactory spectral stability. If the doping concentration is too high, the luminescent material molecules will agglomerate, forming a quenching center, and ultimately reducing the overall performance of the device.
  • the hole-type host material functions as a matrix to provide hole transporting ability.
  • the green organic light-emitting material in the hole-priming light-emitting layer described in the present application is preferably selected from tris(2-phenylpyridine)ruthenium (Ir(ppy) 3 ) having a structure of the formula (II 17 ), having the formula (II) 18 ) Structure of bis(2-phenylpyridine)(acetylacetonate) ruthenium (Ir(ppy) 2 (acac)), tris[2-(p-methylphenyl)pyridine having the structure of formula (II 19 ) ⁇ (Ir(mppy) 3 ), bis(2-phenylpyridine)[2-(diphenyl-3-yl)pyridine] ruthenium (Ir(ppy) 2 (with structure of formula (II 20 )) m-bppy)), having the formula (tris (2- (3-dimethylbenz structure ii 21)) pyridine iridium (TEG
  • the red organic light-emitting material is preferably selected from the group consisting of bis(2-phenylquinoline)-(2,2,6,6-tetramethyl-3,5-heptanedionate) having the structure of the formula (II 23 ) Bismuth (PQ 2 Ir(dpm)), bis(2-oxazo[b]2-thienylpyridine) acetylacetonate ruthenium (Ir(btp) 2 (acac)) having the formula (II 24 ), having the formula (II 25 ) Structure of tris(1-phenylisoquinoline) ruthenium (Ir(piq) 3 ), bis(1-phenylisoquinoline) (acetylacetonate) ruthenium having the structure of formula (II 26 ) (Ir(piq) 2 (acac)), bis[1-(9,9-dimethyl-9H-indol-2-yl)-isoquinoline] (acety
  • the hole-type organic host material is preferably selected from the group consisting of 4,4'-N,N'-dicarbazole diphenyl (CBP) having the structure of formula (III), and 1,3-two having the structure of formula (IV) Carbazole-9-ylbenzene (mCP), 9,9'-(5-(triphenylsilyl)-1,3-phenyl)di-9H-carbazole (SimCP) having the structure of formula (V) 1,3,5-tris(9-carbazolyl)benzene (TCP) having the structure of formula (VI), 4,4',4"-tris(carbazole-9-yl) having the structure of formula (VII) And one or more of triphenylamine (TcTa) and 1,4-bis(triphenylsilyl)biphenyl (BSB) having the structure of formula (VIII);
  • CBP 4,4'-N,N'-dicarbazole diphenyl
  • mCP Carbazo
  • the substrate may be a glass substrate, a quartz substrate, a polycrystalline silicon substrate, a single crystal silicon substrate or a graphene film substrate, which is not particularly limited in the present application.
  • the anode layer is preferably selected from indium tin oxide (ITO), and its surface resistance is preferably 5 to 25 ⁇ .
  • ITO indium tin oxide
  • the anode modification layer can lower the driving voltage and accelerate the injection of holes, and the anode modification layer is preferably molybdenum oxide (MoO 3 ).
  • the hole transport-electron blocking layer described in this application functions to transport holes and block electrons.
  • the material of the hole transport-electron blocking layer is preferably selected from 4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline] (TAPC) having the structure of the formula (I 1 ), Dipyrazine [2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) having the structure of formula (I 2 ) N4,N4'-bis(naphthalen-1-yl)-N4,N4'-bis(4-vinylphenyl)biphenyl-4,4'-diamine (VNPB) having the structure of formula (I 3 ) N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-2,7-diamine-9,9-spirobifluorene having the structure of formula (I 4
  • the hole blocking-electron transporting layer functions to transport electrons and block holes to promote electron injection.
  • the material of the hole blocking-electron transport layer is preferably selected from tris[2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane (3TPYMB) having the structure of the formula (XIV), 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (TmPyMB) having the structure (XV), 1,3-bis[3,5-di ((3,5-di) having the structure of formula (XVI) 3-pyridyl)phenyl]benzene (BmPyPhB) and one of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) having the structure of formula (XVII) Species or more;
  • the function of the cathode modification layer described in the present application is to lower the driving voltage and accelerate the injection of electrons, and the cathode modification layer is preferably lithium fluoride.
  • the cathode layer is preferably aluminum.
  • the present application relates to a material of the hole transport-electron blocking layer, a blue organic light emitting material, a red organic light emitting material, a yellow organic light emitting material, a hole type organic host material, an organic sensitizing material, an electronic type organic host material, and an empty
  • the source of the material of the hole blocking-electron transport layer is not particularly limited and can be obtained by a method well known to those skilled in the art.
  • the anode layer and the cathode layer intersect each other to form a light-emitting region of the device.
  • the thickness of each layer in the white organic electroluminescent device of the present application has a great influence on the device, if the thickness is low. This will result in faster device efficiency degradation. If the thickness is higher, the device will operate at a higher voltage and have a lower lifetime.
  • the thickness of the anode modification layer is preferably from 1 to 10 nm
  • the thickness of the hole transport-electron barrier layer is preferably from 30 to 60 nm
  • the thickness of the hole-preferred light-emitting layer is preferably from 5 to 20 nm
  • the thickness of the electron-dominated light-emitting layer is preferably 5 to 20 nm
  • the thickness of the hole blocking-electron transport layer is preferably 30 to 60 nm
  • the thickness of the cathode modified layer is preferably 0.8 to 1.2 nm
  • the thickness of the cathode layer is preferably 90 to 300 nm.
  • the present application also provides a method for preparing the white organic electroluminescent device, comprising:
  • the anode layer on the substrate is etched, and after drying, the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking are sequentially deposited on the anode layer.
  • the electron-dominated light-emitting layer is formed by mixing an organic sensitizing material, a blue organic light-emitting material and an electronic organic organic material;
  • the hole-dominant light-emitting layer is a mixture of a green organic light-emitting material, a red organic light-emitting material and a hole-type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) phenanthroline ruthenium and tris(acetylacetonate) phenanthroline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • the preparation method of the white organic electroluminescent device is specifically as follows:
  • the anode layer on the substrate is laser etched into strip electrodes, and then ultrasonically washed with washing liquid and deionized water for 10-20 min and placed in an oven for drying;
  • the dried substrate is placed in a pretreatment vacuum chamber, and subjected to a low pressure plasma treatment for 1 to 10 minutes under a vacuum of 8 to 15 Pa in an atmosphere of 350 to 500 V, and then transferred to an organic vapor deposition chamber;
  • the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking-electron transport are sequentially deposited on the anode layer.
  • the unfinished device was transferred to a metal deposition chamber, and the cathode modified layer and the metal cathode layer were sequentially evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa.
  • the present application achieves deposition of materials by controlling the evaporation rate.
  • the evaporation rate of the anode modification layer is controlled at 0.01 to 0.05 nm/s, and the evaporation rate control of the host material in the hole transport-electron blocking layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the empty electron transport layer is controlled.
  • the evaporation rate of the organic sensitizing material is controlled at 0.00005-0.0005 nm/s
  • the evaporation rate of the green organic luminescent material is controlled at 0.0025-0.01 nm/s.
  • the evaporation rate of the blue organic luminescent material is controlled at 0.004 ⁇ 0.025nm/s
  • the evaporation rate of red organic luminescent material is controlled at 0.0005 ⁇ 0.003nm/s
  • the evaporation rate of cathode modified layer is controlled at 0.005 ⁇ 0.05nm/s
  • the evaporation rate of metal cathode layer is controlled at 0.5 ⁇ 2.0nm/ s.
  • the vapor-deposited hole dominates the light-emitting layer, wherein the red organic light-emitting material, the green organic light-emitting material, and the hole-type organic host material are simultaneously evaporated in different evaporation sources, and the reddish color is adjusted by adjusting the evaporation rate of the three materials.
  • the weight ratio of the organic light-emitting material and the hole-type organic host material is controlled to be between 1.0% and 3.0%, and the weight ratio of the green organic light-emitting material and the hole-type organic host material is controlled to be between 5.0% and 10.0%;
  • the organic sensitizing material, the blue organic light-emitting material, and the electronic organic organic material are simultaneously evaporated in different evaporation sources, and the doped organic sensitizing material and the electronic type are controlled by regulating the evaporation rates of the three materials.
  • the mass ratio of the organic host material is controlled to be between 0.1% and 0.5%, so that the mass ratio of the doped blue organic light-emitting material and the electronic type organic host material is controlled to be between 8.0% and 25.0%.
  • the present application provides a white organic electroluminescent device in which a rare earth complex having a matching energy level distribution, such as Tm(acac) 3 or Dy (acac), is selected among electron-dominated light-emitting layers in the white organic electroluminescent device.
  • 3 phen as an organic sensitizing material, which plays the role of electron deep-binding center, which is beneficial to balance the distribution of carriers and broaden the light-emitting interval of the device, thereby improving the luminous efficiency of the device, reducing the operating voltage of the device, and delaying the device.
  • the organic sensitizing material has matched triplet energy, functions as an energy transfer step, accelerates energy transfer from the host material to the luminescent material, and relieves luminescent material carriers
  • the problem of luminescence of the host material caused by insufficient capture capability, thereby improving the spectral stability of the device and reducing the dependence of device performance on the doping concentration of the luminescent material.
  • the white organic electroluminescent device and the preparation method thereof provided by the present invention are described in detail below with reference to the embodiments, and the scope of the present invention is not limited by the following examples.
  • FIG. 1 is a schematic structural view of a white organic electroluminescent device according to the present invention, wherein 1 is a glass substrate, 2 is an anode layer, 3 is an anode modification layer, and 4 is a hole transport-electron blocking layer, 5 The hole is the luminescent layer, 6 is the electron-dominated luminescent layer, 7 is the hole blocking-electron transport layer, 8 is the cathode modified layer, and 9 is the metal cathode layer.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick PQ2Ir(dpm) and Ir(ppy) 3 doped TcTa hole-dominated luminescent layer 5 10 nm thick Tm(acac) 3 phen and FCNIrpic co-doped CzSi electron-dominated luminescent layer 6 and 40 nm thick TmPyPB hole blocking - Electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/PQ2Ir(dpm) (2.6%): Ir(ppy) 3 (7%) TcTa/Tm(acac) 3 phen (0.2 %): FCNIrpic (18%): an organic electroluminescent device of CzSi/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s
  • Ir The evaporation rates of (ppy) 3 and TcTa are controlled at 0.0013 nm/s, 0.0035 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Tm(acac) 3 phen, FCNIrpic and CzSi in the electron-dominated luminescent layer 6 are controlled at 0.0001, respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.01 nm/s.
  • the evaporation rate of Al in the metal cathode layer 9 was controlled at 1.0 nm/s.
  • FIG. 2 is a voltage-current density-luminance characteristic curve of the white organic electroluminescent device prepared in the present embodiment.
  • the ⁇ curve is the current density-voltage curve of the device
  • the ⁇ curve is the brightness of the device.
  • - voltage curve according to Figure 2, the brightness of the device increases with the increase of current density and driving voltage, the device's starting voltage is 3.0 volts, the voltage is 9.4 volts, and the current density is 484.56 mA per square centimeter. At (mA/cm 2 ) the device achieved a maximum brightness of 44,899 candelas per square meter (cd/m 2 ).
  • FIG. 3 is a current density-power efficiency-current efficiency characteristic curve of the white organic electroluminescent device prepared in the present embodiment.
  • the maximum current efficiency of the device is 61.32 cd/A, and the maximum power is obtained.
  • the efficiency is 64.18 lm / W.
  • FIG. 4 is a spectrum diagram of a white organic electroluminescent device provided by the present invention at a luminance of 20,000 cd/m 2 .
  • the main peaks of the spectrum are located at 462 nm, 515 nm, and 595 nm.
  • the color coordinates of the device are (0.331, 0.332).
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick PQ2Ir(dpm) and Ir(ppy) 3 doped mCP hole-dominated luminescent layer 5 10nm thick Tm(acac) 3 phen and FCNIrpic co-doped CzSi electron-dominated luminescent layer 6 and 40nm thick TmPyPB hole blocking - Electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/PQ2Ir(dpm) (2.4%) Ir(ppy) 3 (6%): mCP/Tm(acac) 3 phen (0.2 %): FCNIrpic (18%): an organic electroluminescent device of CzSi/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s
  • the evaporation rates of 3 and mCP are controlled at 0.0012 nm/s, 0.003 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Tm(acac) 3 phen, FCNIrpic and CzSi in the electron-dominated luminescent layer 6 are controlled at 0.0001, respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.01 nm/s.
  • the evaporation rate of Al in the metal cathode layer 9 was controlled at 1.0 nm/s.
  • the performance of the white organic electroluminescent device prepared in this example was tested.
  • the experimental results show that the device emits white light at 462 nm, 515 nm, and 595 nm under the driving of a DC power source.
  • the color coordinate of the device is (0.334, 0.336); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 3.0 volts and a maximum brightness of the device of 43588 cd/m 2 .
  • the device has a maximum current efficiency of 59.84 cd/A and a maximum power efficiency of 62.63 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick PQ2Ir(dpm) and Ir(ppy) 3 doped TcTa hole-dominated luminescent layer 5 10 nm thick Dy(acac) 3 and FCNIrpic co-doped 26DCzPPy electron-dominated luminescent layer 6 and 40 nm thick TmPyPB hole blocking- Electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/PQ2Ir(dpm) (2.6%): Ir(ppy) 3 (7%): TcTa/Dy(acac) 3 (0.2 %): FCNIrpic (16%): an organic electroluminescent device of 26DCzPPy/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s
  • Ir The evaporation rates of (ppy) 3 and TcTa are controlled at 0.0013 nm/s, 0.0035 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Dy(acac) 3 , FCNIrpic and 26DCzPPy in the electron-dominated luminescent layer 6 are controlled at 0.0001 nm, respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.01 nm/s
  • metal The evaporation rate of Al in the cathode layer 9 was controlled at 1.0 nm/s.
  • the performance of the white organic electroluminescent device prepared in this example was tested.
  • the experimental results show that the device emits white light at 462 nm, 515 nm, and 595 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.333, 0.339); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 3.0 volts and a maximum brightness of 44108 cd/m 2 .
  • the device has a maximum current efficiency of 60.79 cd/A and a maximum power efficiency of 63.63 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber.
  • a 5 nm-thick MoO 3 anode-modified layer 3 and a 30 nm-thick TAPC hole-transport-electron-blocking layer 4 15 nm were sequentially deposited on the ITO layer.
  • Thick Ir(ppy) 2 (acac) and Ir(btp) 2 (acac) doped mCP hole-dominated luminescent layer 5, 15 nm thick Tm(acac) 3 phen and FIr6 co-doped 26DCzPPy electron-dominated luminescent layer 6 and 35 nm thick 3TPYMB hole blocking-electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.1 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 250 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 2 (acac) (7%): Ir(btp) 2 (acac) (2%): mCP/ Tm(acac) 3 phen (0.2%): FIr6 (12%): 26DCzPPy/3TPYMB/LiF/Al organic electroluminescent device.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron barrier layer 4 is controlled at 0.05 nm/s
  • the hole dominates the Ir(ppy) 2 in the light-emitting layer 5
  • the evaporation rates of acac), Ir(btp) 2 (acac) and mCP are controlled at 0.0035 nm/s, 0.001 nm/s and 0.05 nm/s, respectively, and electrons dominate the luminescent layer 6 Tm(acac) 3 phen, FIr6 and 26DCzPPy
  • the evaporation rate is controlled at 0.0001 nm/s, 0.006 nm/s and 0.05 nm/s, respectively.
  • the evaporation rate of 3TPYMB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s, and the evaporation rate of LiF in the cathode modified layer 8 is controlled. Controlled at 0.01 nm/s, the evaporation rate of Al in the metal cathode layer 9 was controlled at 1.0 nm/s.
  • the performance of the white organic electroluminescent device prepared in this example was tested.
  • the experimental results show that the device emits white light at 462 nm, 515 nm, and 595 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.334, 0.335); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 3.1 volts and a maximum brightness of the device of 42175 cd/m 2 .
  • the device has a maximum current efficiency of 60.10 cd/A and a maximum power efficiency of 60.88 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 6 nm-thick MoO 3 anode modification layer 3 and a 50 nm-thick TAPC hole-transport-electron barrier layer 4, 12 nm are sequentially deposited on the ITO layer.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.1 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 240 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(mppy) 3 (8%): Ir(piq) 3 (2.2%): TCP/Tm(acac) 3 phen (0.3%): fac-Ir(Pmb) 3 (18%): an organic electroluminescent device of UGH2/BmPyPhB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s
  • the evaporation rates of Ir(piq) 3 and TCP are controlled at 0.004 nm/s, 0.00011 nm/s and 0.05 nm/s, respectively, and the electron-dominated light-emitting layer 6 has Tm(acac) 3 phen, fac-Ir(Pmb) 3 and UGH2.
  • the evaporation rate is controlled at 0.00015 nm/s, 0.009 nm/s and 0.05 nm/s, respectively.
  • the evaporation rate of BmPyPhB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s, and the evaporation rate of LiF in the cathode modified layer 8 is controlled.
  • the performance of the white organic electroluminescent device prepared in this example was tested.
  • the experimental results show that the device emits white light at 462 nm, 515 nm, and 595 nm under the driving of a DC power source.
  • the color coordinate of the device is (0.331, 0.332); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 3.1 volts and a maximum brightness of 39876 cd/m 2 .
  • the device has a maximum current efficiency of 58.62 cd/A and a maximum power efficiency of 59.37 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 2 (m-bppy) (9%): Ir(piq) 2 (acac) (3%): BSB/Tm(acac) 3 phen (0.3%): mer-Ir(pmb) 3 (25%): BCBP/TPBi/LiF/Al organic electroluminescent device.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s
  • the evaporation rate of TAPC in the hole transport-electron barrier layer 4 is controlled at 0.05 nm/s
  • the hole dominates the Ir(ppy) 2 in the light-emitting layer 5
  • the evaporation rates of m-bppy), Ir(piq) 2 (acac) and BSB are controlled at 0.0045 nm/s, 0.00015 nm/s and 0.05 nm/s, respectively
  • the electron-dominated light-emitting layer 6 is Tm(acac) 3 phen, mer
  • the evaporation rates of -Ir(pmb) 3 and BCBP are controlled at 0.0003 nm/s, 0.025 nm/s and 0.1 nm/s, respectively, and the evaporation rate of TPBi in the hole blocking-electron transport layer 7 is controlled at 0.08 nm
  • the performance of the white organic electroluminescent device prepared in this example was tested.
  • the experimental results show that the device emits white light at 462 nm, 515 nm, and 595 nm under the driving of a DC power source.
  • the color coordinate of the device is (0.335, 0.341); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 3.0 volts and a maximum brightness of the device of 43122 cd/m 2 .
  • the device has a maximum current efficiency of 60.55 cd/A and a maximum power efficiency of 63.38 lm/W.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种白色有机电致发光器件,其由衬底(1)、阳极层(2)、阳极修饰层(3)、空穴传输-电子阻挡层(4)、空穴主导发光层(5)、电子主导发光层(6)、空穴阻挡-电子传输层(7)、阴极修饰层(8)与阴极层(9)依次设置而成;其中电子主导发光层(6)由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成。通过选择能级匹配的稀土配合物,例如Tm(acac) 3phen或者Dy(acac) 3phen作为有机敏化材料,将其微量掺入电子主导发光层(6)中,起到载流子深束缚中心及能量传递阶梯的作用,从而提高器件的发光效率、提高器件的光谱稳定性、降低器件的工作电压、延缓器件的效率衰减以及提高器件的工作寿命。

Description

一种白色有机电致发光器件及其制备方法
本申请要求于2014年10月30日提交中国专利局、申请号为201410605604.9、发明名称为“一种白色有机电致发光器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种白色有机电致发光器件及其制备方法。
背景技术
有机电致发光器件是一种自发光器件,其发光原理是:当电荷被注入到空穴注入电极和电子注入电极之间的有机层时,电子和空穴相遇、结合并随后湮灭,因而产生光。有机电致发光器件具有低电压、高亮度、宽视角等特性,因此有机电致发光器件近年来得到了迅猛的发展。其中,白色有机电致发光器件由于在显示、照明等方面具有广阔的应用前景,因此成为研究的热点。
一直以来,三价铱配合物由于具有发光效率高和发光颜色可调等优点而被学术界和产业界视为理想的有机电致发光材料。国内外的许多研究团队从材料合成和器件优化方面着手,欲提高白色有机电致发光器件的综合性能,以满足产业化的需要。例如,2006年美国普林斯顿大学的Forrest等人采用将蓝光材料、绿光材料和红光材料分别掺杂在不同的发光层中设计出了具有多发光层结构的白色有机电致发光器件。虽然该器件显示较为理想的白光发射,然而不平衡的载流子注入导致器件的效率和亮度较低、工作电压较高。另外,复杂的器件结构还导致器件的制作成本较高。
为了解决这些问题,2008年日本山形大学的Kido等人通过设计双发光层器件结构将蓝绿色光与橙红色光进行复合成功获得白光发射器件。该器件具有较高的发光效率,然而双峰发射的特征导致器件的光谱在白光区的覆盖度不够,所以色恢复系数较低。并且,随着发光亮度的提高,器件的发射光谱有很大的变化。由此可见,白色有机电致发光器件的发光效率、 亮度、光谱稳定性和工作寿命等综合性能仍然没有得到有效改善。
发明内容
本发明解决的技术问题在于提供一种综合性能较高的白色有机电致发光器件及其制备方法。
有鉴于此,本申请提供了一种白色有机电致发光器件,包括:
衬底;
复合于所述衬底上的阳极层;
复合于所述阳极层上的阳极修饰层;
复合于所述阳极修饰层上的空穴传输-电子阻挡层;
复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
复合于所述空穴主导发光层上的电子主导发光层;
复合于所述电子主导发光层上的空穴阻挡-电子传输层;
复合于所述空穴阻挡-电子传输层上的阴极修饰层;
复合于所述阴极修饰层上的阴极层;
所述电子主导发光层由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成;
所述空穴主导发光层由绿色有机发光材料、红色有机发光材料和空穴型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
优选的,所述蓝色有机发光材料的含量为所述电子型有机主体材料的8.0wt%~25.0wt%。
优选的,所述蓝色有机发光材料选自双(3,5-二氟-4-氰基)吡啶盐酸合铱、双(2,4-二氟苯基吡啶)四(1-吡唑基)硼合铱、三(1-苯基-3-甲基苯并咪哒唑啉-2-基-C,C2’)合铱、三(1-苯基-3-甲基苯并咪哒唑啉-2-基-C,C2’)合铱、双(2,4-二氟苯基吡啶)(5-(吡啶-2-基)-1H-四唑)合铱、三[(2,6-二异丙基苯基)2-苯基-1H-咪唑[e]合铱、三(1-苯基-3- 甲基咪哒唑啉-2-基-C,C(2)’)合铱、三(1-苯基-3-甲基咪哒唑啉-2-基-C,C(2)’)合铱、双(1-苯基-3甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(5-三氟甲基-2H-吡唑-3-基)-吡啶)合铱、三(1,3-二苯基-苯并咪唑-2-基-C,C2')合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱、双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱和三(苯基吡唑)合铱中的一种或多种。
优选的,所述电子型有机主体材料选自2,6-二[3-(9H-9-咔唑基)苯基]吡啶、1,4-双(三苯基硅烷基)苯、2,2’-双(4-(9-咔唑基)苯基)联苯、[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑和9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑中的一种或多种。
优选的,所述红色有机发光材料为所述空穴型有机主体材料的1.0wt%~3.0wt%;所述绿色有机发光材料为所述空穴型有机主体材料的5.0wt%~10.0wt%;
所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种;
所述红色有机发光材料选自二(2-苯基喹啉)-(2,2,6,6-四甲基-3,5-庚二酮酸)合铱、二(2-苯唑[b]2-噻吩基吡啶)乙酰丙酮合铱、三(1-苯基异喹啉)合铱、二(1-苯基异喹啉)(乙酰丙酮)合铱、二[1-(9,9-二甲基-9H-芴-2-基)-异喹啉](乙酰丙酮)合铱、二[2-(9,9-二甲基-9H-芴-2-基)喹啉](乙酰丙酮)合铱、二(2-苯基喹啉)(2-(3-甲基苯基)吡啶)合铱、三[2-苯基-4-甲基喹啉]合铱、双(苯基异喹啉)(2,2,6,6-四甲基己烷-3,5-二酮)合 铱、二(2-甲基二苯唑[f,h]喹喔啉)(乙酰丙酮)合铱和二[2-(2-甲基苯基)-7-甲基-喹啉](乙酰丙酮)合铱中的一种或多种;
所述空穴型有机主体材料选自4,4’-N,N’-二咔唑二苯基、1,3-二咔唑-9-基苯、9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑、1,3,5-三(9-咔唑基)苯、4,4',4″-三(咔唑-9-基)三苯胺和1,4-双(三苯基硅烷基)联苯中的一种或多种。
优选的,所述空穴传输-电子阻挡层的材料选自4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基、N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴、N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯、2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯、N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯、N,N'-二(萘-1基)-N,N'–二苯基-2,7-二氨基-9,9-螺双芴、N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'–二(3-甲基苯基)-N,N'–二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯、2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴、9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴、9,9-[4-(N-萘-1基-N-苯胺)-苯基]-9H-芴、2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴、2,2’-双(N,N-苯氨基)-9,9-螺双芴、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺和4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基中的一种或多种。
优选的,所述空穴阻挡-电子传输层的材料选自三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯中的一种或多种。
优选的,所述阳极修饰层的厚度为1~10nm,所述空穴传输-电子阻挡层的厚度为30~60nm,所述空穴主导发光层的厚度为5~20nm,所述电子主导发光层的厚度为5~20nm,所述空穴阻挡-电子传输层的厚度为30~60nm,所述阴极修饰层的厚度为0.8~1.2nm,所述阴极层的厚度为 90~300nm。
本申请还提供了一种白色有机电致发光器件的制备方法,包括:
将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
所述电子主导发光层的材料由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
优选的,所述阳极修饰层的蒸发速率为0.01~0.05nm/s,所述空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层与空穴阻挡-电子传输层中主体材料的蒸发速率为0.05~0.1nm/s,所述电子主导发光层中的有机敏化材料的蒸发速率为0.00005~0.0005nm/s,所述电子主导发光层中蓝色有机发光材料的蒸发速率为0.004~0.025nm/s;所述空穴主导发光层中的红色发光材料的蒸发速率为0.0005~0.003nm/s;所述空穴主导发光层中的绿色有机发光材料的蒸发速率为0.0025~0.01nm/s;所述阴极修饰层的蒸发速率为0.005~0.05nm/s,所述阴极层的蒸发速率为0.5~2.0nm/s。
本申请提供了一种白色有机电致发光器件,其包括衬底、阳极层、阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层。本申请的发光材料为蓝色发光材料、绿色发光材料与红色发光材料,当电子和空穴分别注入到发光层时,电子和空穴会相遇并发生复合,进而产生一个激子,激子会把能量传递给发光层中的发光材料的分子,激发一个电子到激发态,激发态的电子通过辐射跃迁的方式回到基态时会产生一个光子,该有机电致发光器件的发光层中含有红、绿、蓝三基色发光材料,当三种颜色发光材料的掺杂浓度达到有效调配时,三种颜色的光子比例将会达到接近太阳光的平衡分布,于是产生了白光发射。
本申请通过在电子主导发光层中加入三(乙酰丙酮)邻菲罗啉合铥和 三(乙酰丙酮)邻菲罗啉合镝中的一种或两种作为有机敏化材料,因其能级及三重态能量与电子型主体材料、蓝色发光材料的能级及三重态能量相匹配,使有机敏化材料在电致发光过程中起到载流子深束缚中心及能量传递阶梯的作用,不仅能够提高从主体材料到发光材料的能量传递,也可平衡电子和空穴在发光区间的分布,从而提高有机电致发光器件的发光效率、提高器件的光谱稳定性、降低器件的工作电压、延缓器件的效率衰减、提高器件的工作寿命。
附图说明
图1为本发明白色有机电致发光器件的结构示意图;
图2为本发明实施例1制备的白色有机电致发光器件的电压-电流密度-亮度特性曲线图;
图3为本发明实施例1制备的白色有机电致发光器件的电流密度-功率效率-电流效率特性曲线图;
图4为本发明实施例1制备的白色有机电致发光器件在亮度为20000cd/m2时的光谱图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种白色有机电致发光器件,包括:
衬底;
复合于所述衬底上的阳极层;
复合于所述阳极层上的阳极修饰层;
复合于所述阳极修饰层上的空穴传输-电子阻挡层;
复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
复合于所述空穴主导发光层上的电子主导发光层;
复合于所述电子主导发光层上的空穴阻挡-电子传输层;
复合于所述空穴阻挡-电子传输层上的阴极修饰层;
复合于所述阴极修饰层上阴极层;
所述电子主导发光层由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和的三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
有机电致发光器件(OLED)的发光原理是在外界电压的驱动下,由电极注入的电子和空穴在有机物中相遇,并将能量传递给有机发光分子,使其受到激发,从基态跃迁到激发态,当受激发分子从激发态回到基态时辐射跃迁而产生发光的现象。本申请提供了一种白色有机电致发光器件,当电子和空穴分别注入到发光层时,电子和空穴会相遇并发生复合,进而产生一个激子,激子把能量传递给发光层中的发光材料的分子,激发一个电子到激发态,激发态的电子通过跃迁的方式回到基态时会产生一个光子,由于发光层中含有红色、绿色和蓝色三基色发光材料,当三种颜色发光材料的掺杂浓度达到有效调配时,三种颜色的光子比例将会达到接近太阳光的平衡浓度,于是就产生了白光发射。
本申请所述白色有机电致发光器件由衬底、阳极层、阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层依次连接设置。其中空穴主导发光层与电子主导发光层是白色有机电子发光器件的发光层。
本发明的电子主导发光层由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成,其中有机敏化材料在电致发光过程中起到敏化的作用,以平衡电子和空穴在发光区间的分布并提高从主体材料到发光材料的能量传递;蓝色有机发光材料的分子分散在电子主导发光层中作为发光中心;电子型有机主体材料起到基质的作用,提供电子传输能力。在电子主导发光层中,所述有机敏化材料的能级及三重态能量需要与主体材料、发光材料的能级及三重态能量相匹配,才能平衡电子和空穴在发光区间的分布并加速从主体材料到发光材料的能量传递,使白色有机电致发光器件具有较好的综合性能。因此,本申请通过对发光材料的选取,所述有机敏化 材料选择了能级能量匹配的稀土配合物,所述有机敏化材料选自具有式(Ⅸ)结构的三(乙酰丙酮)邻菲罗啉合铥(Tm(acac)3phen)和具有式(Ⅹ)结构的三(乙酰丙酮)邻菲罗啉合镝(Dy(acac)3phen)中的一种或两种;
Figure PCTCN2014091786-appb-000001
本发明中所述有机敏化材料在所述电子主导发光层中的掺杂浓度对有机电致发光器件的性能造成影响。若所述有机敏化材料的掺杂浓度过低则会导致敏化效果不理想,若掺杂浓度过高则会降低有机电致发光器件发光的综合性能。因此,所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%,优选为0.2wt%~0.3wt%。
按照本发明,本申请在电子主导发光层与空穴主导发光层中分别包括了三基色有机发光材料,从而使有机电致发光器件能够发射白光。所述电子主导发光层中的有机发光材料为蓝色有机发光材料,所述蓝色有机发光材料为本领域技术人员熟知的发光材料,本申请没有特别的限制,但是为了使发光效果更好,所述蓝色有机发光材料优先选自具有式(Ⅱ1)结构的双(3,5-二氟-4-氰基)吡啶盐酸合铱(FCNIrpic)、具有式(Ⅱ2)结构的双(2,4-二氟苯基吡啶)四(1-吡唑基)硼合铱(Fir6)、具有式(Ⅱ3)结构的面式-三(1-苯基-3-甲基苯并咪哒唑啉-2-基-C,C2’)合铱(fac-Ir(pmb)3)、具有式(Ⅱ4)结构的经式-三(1-苯基-3-甲基苯并咪哒 唑啉-2-基-C,C2’)合铱(mer-Ir(Pmb)3)、具有式(Ⅱ5)结构的双(2,4-二氟苯基吡啶)(5-(吡啶-2-基)-1H-四唑)合铱(FIrN4)、具有式(Ⅱ6)结构的面式-三[(2,6-二异丙基苯基)2-苯基-1H-咪唑[e]合铱(fac-Ir(iprpmi)3)、具有式(Ⅱ7)结构的面式-三(1-苯基-3-甲基咪哒唑啉-2-基-C,C(2)’)合铱(fac-Ir(pmi)3)、具有式(Ⅱ8)结构的三(1-苯基-3-甲基咪哒唑啉-2-基-C,C(2)’)合铱(mer-Ir(pmi)3)、具有式(Ⅱ9)结构的双(1-苯基-3甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱((pmi)2Ir(pypz))、具有式(Ⅱ10)结构的双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱((mpmi)2Ir(pypz))、具有式(Ⅱ11)结构的双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱((fpmi)2Ir(pypz))、具有式(Ⅱ12)结构的双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(5-三氟甲基-2H-吡唑-3-基)-吡啶)合铱((fpmi)2Ir(tfpypz))、具有式(Ⅱ13)结构的面式-三(1,3-二苯基-苯并咪唑-2-基-C,C2')合铱(fac-Ir(dpbic)3)、具有式(Ⅱ14)结构的双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱((fpmi)2Ir(dmpypz))、具有式(Ⅱ15)结构的双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱((mpmi)2Ir(dmpypz))和具有式(Ⅱ16)结构的三(苯基吡唑)合铱(Ir(ppz)3)中的一种或多种;
Figure PCTCN2014091786-appb-000002
Figure PCTCN2014091786-appb-000003
Figure PCTCN2014091786-appb-000004
在电子主导发光层中,所述蓝色有机发光材料的掺杂浓度也会影响白色有机电致发光器件的综合性能。若所述蓝色有机发光材料的掺杂浓度过低,则会导致器件效率偏低、光谱稳定性不理想,掺杂浓度过高则会导致发光材料分子团聚,形成淬灭中心,最终降低器件的综合性能。因此,所述电子主导发光层中所述蓝色有机发光材料的掺杂浓度优选为8.0wt%~25.0wt%,更优选为10.0wt%~20.0wt%,最优选为15.0wt%~18.0wt%。所述电子型主体材料在电子主导发光层中起到基质的作用,提供电子传输能力,所述电子型主体材料为本领域技术人员熟知的材料,作为优 选方案,所述电子型主体材料优先选自具有式(XI)结构的2,6-二[3-(9H-9-咔唑基)苯基]吡啶(26DCzPPy)、具有式(XII)结构的1,4-双(三苯基硅烷基)苯(UGH2)、具有式(XIII)结构的2,2’-双(4-(9-咔唑基)苯基)联苯(BCBP)、具有式(XIV)结构的[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷(3TPYMB)、具有式(XV)结构的1,3,5-三[(3-吡啶)-3-苯基]苯(TmPyPB)、具有式(XVI)结构的1,3-双[3,5-二(3-吡啶基)苯基]苯(BmPyPhB)、具有式(XVII)结构的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)、具有式(XVIII)结构的9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑(CzSi)和具有式(XIX)结构的9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑(DFCzPO)中的一种或多种;
Figure PCTCN2014091786-appb-000005
Figure PCTCN2014091786-appb-000006
本申请中所述空穴主导发光层的材料为红色有机发光材料、绿色有机发光材料和空穴型有机主体材料,其中绿色有机发光材料和红色有机发光材料的分子分散在空穴主导发光层中作为发光中心。本申请中的有机发光材料包括红色有机发光材料、绿色有机发光材料和蓝色有机发光材料;本申请所述电子主导发光层中的有机发光材料为蓝色有机发光材料,空穴主导发光层中的发光材料为红色有机发光材料与绿色有机发光材料,所述不同颜色发光材料的设置能够提高器件的色恢复系数并有效保证器件的光谱稳定性;所述红色有机发光材料优选为所述空穴型有机主体材料的1.0wt%~3.0wt%,所述绿色有机发光材料优选为所述空穴型有机主体材料的5.0wt%~10.0wt%;所述有机发光材料的掺杂浓度过低,则会导致器件效率偏低、光谱稳定性不理想,掺杂浓度过高则会导致发光材料分子团聚,形成淬灭中心,最终降低器件的综合性能。所述空穴型主体材料起到基质的作用,提供空穴传输能力。本申请中所述空穴主导发光层中所述绿色有机发光材料优先选自具有式(Ⅱ17)结构的三(2-苯基吡啶)合铱(Ir(ppy)3)、具有式(Ⅱ18)结构的双(2-苯基吡啶)(乙酰丙酮)合铱(Ir(ppy)2(acac))、具有式(Ⅱ19)结构的三[2-(对-甲基苯基)吡啶]合铱(Ir(mppy)3)、具有式(Ⅱ20)结构的双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱(Ir(ppy)2(m-bppy))、具有式(Ⅱ21)结构的三(2-(3-对二甲基苯)吡啶 合铱(TEG)和具有式(Ⅱ22)结构的三(2-苯基-3-甲基-吡啶)合铱(Ir(3mppy)3)中的一种或多种;
所述红色有机发光材料优先选自具有式(Ⅱ23)结构的二(2-苯基喹啉)-(2,2,6,6-四甲基-3,5-庚二酮酸)合铱(PQ2Ir(dpm))、具有式(Ⅱ24)结构的二(2-苯唑[b]2-噻吩基吡啶)乙酰丙酮合铱(Ir(btp)2(acac))、具有式(Ⅱ25)结构的三(1-苯基异喹啉)合铱(Ir(piq)3)、具有式(Ⅱ26)结构的二(1-苯基异喹啉)(乙酰丙酮)合铱(Ir(piq)2(acac))、具有式(Ⅱ27)结构的二[1-(9,9-二甲基-9H-芴-2-基)-异喹啉](乙酰丙酮)合铱(Ir(fliq)2(acac))、具有式(Ⅱ28)结构的二[2-(9,9-二甲基-9H-芴-2-基)喹啉](乙酰丙酮)合铱(Ir(flq)2(acac))、具有式(Ⅱ29)结构的二(2-苯基喹啉)(2-(3-甲基苯基)吡啶)合铱(Ir(phq)2tpy)、具有式(Ⅱ30)结构的三[2-苯基-4-甲基喹啉]合铱(Ir(Mphq)3)、具有式(Ⅱ31)结构的双(苯基异喹啉)(2,2,6,6-四甲基己烷-3,5-二酮)合铱(Ir(dpm)(piq)2)、具有式(Ⅱ32)结构的二(2-甲基二苯唑[f,h]喹喔啉)(乙酰丙酮)合铱(Ir(MDQ)2(acac))和具有式(Ⅱ33)结构的二[2-(2-甲基苯基)-7-甲基-喹啉](乙酰丙酮)合铱(Ir(dmpq)2(acac))中的一种或多种;
所述空穴型有机主体材料优先选自具有式(III)结构的4,4’–N,N’–二咔唑二苯基(CBP)、具有式(IV)结构的1,3-二咔唑-9-基苯(mCP)、具有式(V)结构的9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑(SimCP)、具有式(VI)结构的1,3,5-三(9-咔唑基)苯(TCP)、具有式(VII)结构的4,4',4″–三(咔唑–9–基)三苯胺(TcTa)和具有式(VIII)结构的1,4-双(三苯基硅烷基)联苯(BSB)中的一种或多种;
Figure PCTCN2014091786-appb-000007
Figure PCTCN2014091786-appb-000008
Figure PCTCN2014091786-appb-000009
Figure PCTCN2014091786-appb-000010
Figure PCTCN2014091786-appb-000011
按照本发明,所述白色有机电致发光器件中,所述衬底可以为玻璃衬底、石英衬底、多晶硅衬底、单晶硅衬底或石墨烯薄膜衬底,本申请没有特别的限制。所述阳极层优先选自铟锡氧化物(ITO),其面阻优选为5~25Ω。所述阳极修饰层能够降低驱动电压,加速空穴的注入,所述阳极修饰层优选采用氧化钼(MoO3)。
本申请中所述空穴传输-电子阻挡层的作用是传输空穴并阻挡电子。所述空穴传输-电子阻挡层的材料优先选自具有式(Ⅰ1)结构的4,4'-环己基二[N,N–二(4-甲基苯基)苯胺](TAPC)、具有式(Ⅰ2)结构的二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基(HAT-CN)、具有式(Ⅰ3)结构的N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺(VNPB)、具有式(Ⅰ4)结构的N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴(Spiro-TPD)、具有式(Ⅰ5)结构的N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯(HMTPD)、具有式(Ⅰ6)结构的2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯(3DTAPBP)、具有式(Ⅰ7)结构的N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯(β-NPB)、具有式(Ⅰ8)结构的N,N'-二(萘-1基)-N,N'-二苯基-2,7-二氨基-9,9-螺双芴(Spiro-NPB)、具有式(Ⅰ9)结构的N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴(DMFL-TPD)、具有式(Ⅰ10)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴(DMFL-NPB)、具有式(Ⅰ11)结构的N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴(DPFL-TPD)、具有式(Ⅰ12)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴(DPFL-NPB)、具有式(Ⅰ13)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯(α-NPD)、具有式(Ⅰ14)结构的2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴 (Spiro-TAD)、具有式(Ⅰ15)结构的9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴(NPAPF)、具有式(Ⅰ16)结构的9,9-[4-(N-萘-1基-N-苯胺)-苯基]-9H-芴(NPBAPF)、具有式(Ⅰ17)结构的2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴(2,2'-Spiro-DBP)、具有式(Ⅰ18)结构的2,2’-双(N,N-苯氨基)-9,9-螺双芴(Spiro-BPA)、具有式(Ⅰ19)结构的N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)和具有式(Ⅰ20)结构的4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基(TPD)中的一种或多种;
Figure PCTCN2014091786-appb-000012
Figure PCTCN2014091786-appb-000013
Figure PCTCN2014091786-appb-000014
按照本发明所述空穴阻挡-电子传输层的作用是传输电子并阻挡空穴,促进电子的注入。所述空穴阻挡-电子传输层的材料优先选自具有式(XIV)结构的三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷(3TPYMB)、具有式(XV)结构的1,3,5-三[(3-吡啶)-3-苯基]苯(TmPyMB)、具有式(XVI)结构的1,3-双[3,5-二(3-吡啶基)苯基]苯(BmPyPhB)和具有式(XVII)结构的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)中的一种或多种;
Figure PCTCN2014091786-appb-000015
本申请中所述阴极修饰层的作用是降低驱动电压,加速电子的注入,所述阴极修饰层优选为氟化锂。所述阴极层优选为铝。
本申请对所述空穴传输-电子阻挡层的材料、蓝色有机发光材料、红色有机发光材料、黄色有机发光材料、空穴型有机主体材料、有机敏化材料、电子型有机主体材料以及空穴阻挡-电子传输层的材料的来源均没有特别的限制,按照本领域技术人员熟知的方式制备即可得到。
本申请中所述阳极层与所述阴极层相互交叉形成器件的发光区,本申请所述白色有机电致发光器件中每层的厚度对所述器件的影响也是很大的,若厚度偏低则会导致器件效率衰减加快,若厚度偏高则会导致器件工作电压高、寿命低。因此所述阳极修饰层的厚度优选为1~10nm,空穴传输-电子阻挡层的厚度优选为30~60nm,空穴主导发光层的厚度优选为5~20nm,电子主导发光层的厚度优选为5~20nm,空穴阻挡-电子传输层的厚度优选为30~60nm,阴极修饰层的厚度优选为0.8~1.2nm,阴极层的厚度优选为90~300nm。
本申请还提供了所述白色有机电致发光器件的制备方法,包括:
将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
所述电子主导发光层由有机敏化材料、蓝色有机发光材料与电子型有机主体材料混合而成;
所述空穴主导发光层由绿色有机发光材料、红色有机发光材料和空穴型有机主体材料混合而成;
所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
按照本发明,所述白色有机电致发光器件的制备方法具体为:
先将衬底上的阳极层激光刻蚀成条状的电极,然后依次用清洗液、去离子水超声清洗10~20min并放入烘箱烘干;
将烘干后的衬底放入预处理真空室,在真空度为8~15Pa的氛围下用350~500V的电压对其进行1~10min的低压等离子处理后把它转移到有机蒸镀室;
待真空度达到1~2×10-5Pa时,依次在阳极层上蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层;未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下依次蒸镀阴极修饰层和金属阴极层。
在制备白色有机电致发光器件的过程中,本申请通过控制蒸发速率实现材料的沉积。按照本发明,所述阳极修饰层蒸发速率控制在0.01~0.05nm/s,空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空电子传输层中主体材料的蒸发速率控制在0.05~0.1nm/s,有机敏化材料的蒸发速率控制在0.00005~0.0005nm/s,绿色有机发光材料的蒸发速率控制在0.0025~0.01nm/s,蓝色有机发光材料的蒸发速率控制在0.004~0.025nm/s,红色有机发光材料的蒸发速率控制在0.0005~0.003nm/s,阴极修饰层的蒸发速率控制在0.005~0.05nm/s,金属阴极层蒸发速率控制在0.5~2.0nm/s。其中蒸镀空穴主导发光层时,其中红色有机发光材料、绿色有机发光材料在、空穴型有机主体材料在不同的蒸发源中同时蒸发,通过调控三种材料的蒸发速率使得掺杂的红色有机发光材料和空穴型有机主体材料的重量比控制在1.0%~3.0%之间,绿色有机发光材料和空穴型有机主体材料的重量比控制在5.0%~10.0%之间;蒸镀电子主导发光层时,其中有机敏化材料、蓝色有机发光材料、电子型有机主体材料在不同的蒸发源中同时蒸发,通过调控三种材料的蒸发速率使得掺杂的有机敏化材料和电子型有机主体材料的质量比控制在0.1%~0.5%之间,使得掺杂的蓝色有机发光材料和电子型有机主体材料的质量比控制在8.0%~25.0%之间。
本申请提供了一种白色有机电致发光器件,所述白色有机电致发光器件中的电子主导发光层中选择具有匹配的能级分布的稀土配合物,例如Tm(acac)3或者Dy(acac)3phen作为有机敏化材料,其起到电子深束缚中心的作用,有利于平衡载流子的分布、拓宽器件的发光区间,从而提高器件的发光效率、降低器件的工作电压、延缓器件的效率衰减、提高器件的工作寿命;并且,所述有机敏化材料具有匹配的三重态能量,起到能量传递阶梯的作用,能够加速从主体材料到发光材料的能量传递,缓解发光材料载流子俘获能力不足导致的主体材料发光问题,从而提高器件的光谱稳定 性、降低器件性能对发光材料掺杂浓度的依赖。
为了进一步理解本发明,下面结合实施例对本发明提供的白色有机电致发光器件及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
如图1所示,图1为本发明白色有机电致发光器件的结构示意图,其中1为玻璃衬底,2为阳极层,3为阳极修饰层,4为空穴传输-电子阻挡层,5为空穴主导发光层,6为电子主导发光层,7为空穴阻挡-电子传输层,8为阴极修饰层,9为金属阴极层。
实施例1
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚PQ2Ir(dpm)与Ir(ppy)3掺杂TcTa的空穴主导发光层5、10nm厚Tm(acac)3phen与FCNIrpic共掺杂CzSi的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/PQ2Ir(dpm)(2.6%):Ir(ppy)3(7%)TcTa/Tm(acac)3phen(0.2%):FCNIrpic(18%):CzSi/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中PQ2Ir(dpm)、Ir(ppy)3和TcTa的蒸发速率分别控制在0.0013nm/s、0.0035nm/s和0.05nm/s,电子主导发光层6中Tm(acac)3phen、FCNIrpic和CzSi的蒸发速率分别控制在0.0001nm/s、0.0035nm/s和0.05nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.01nm/s,金属阴极层9中Al的蒸发速 率控制在1.0nm/s。
如图2所示,图2为本实施例制备的白色有机电致发光器件的电压-电流密度-亮度特性曲线,图2中○曲线为器件的电流密度-电压曲线,□曲线为器件的亮度-电压曲线,根据图2可知,器件的亮度随着电流密度和驱动电压的升高而升高,器件的起亮电压为3.0伏,在电压为9.4伏、电流密度为484.56毫安每平方厘米(mA/cm2)时器件获得最大亮度44899坎德拉每平方米(cd/m2)。
如图3所示,图3为本实施例制备的白色有机电致发光器件的电流密度-功率效率-电流效率特性曲线,根据图3可知,器件的最大电流效率为61.32cd/A,最大功率效率为64.18lm/W。
如图4所示,图4为本发明提供的白色有机电致发光器件在亮度为20000cd/m2时的光谱图,根据图4可知,光谱主峰位于462纳米、515纳米与595纳米。器件色坐标为(0.331,0.332)。
实施例2
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚PQ2Ir(dpm)与Ir(ppy)3掺杂mCP的空穴主导发光层5、10nm厚Tm(acac)3phen与FCNIrpic共掺杂CzSi的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/PQ2Ir(dpm)(2.4%)Ir(ppy)3(6%):mCP/Tm(acac)3phen(0.2%):FCNIrpic(18%):CzSi/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光 层5中PQ2Ir(dpm)、Ir(ppy)3和mCP的蒸发速率分别控制在0.0012nm/s、0.003nm/s和0.05nm/s,电子主导发光层6中Tm(acac)3phen、FCNIrpic和CzSi的蒸发速率分别控制在0.0001nm/s、0.009nm/s和0.05nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.01nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
检测本实施例制备的白色有机电致发光器件的性能,实验结果表明,在直流电源驱动下,器件发射位于462纳米、515纳米、595纳米左右的白光。当亮度为20000cd/m2时,器件的色坐标为(0.334,0.336);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为3.0伏,器件的最大亮度为43588cd/m2。器件的最大电流效率为59.84cd/A,最大功率效率为62.63lm/W。
实施例3
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚PQ2Ir(dpm)与Ir(ppy)3掺杂TcTa的空穴主导发光层5、10nm厚Dy(acac)3与FCNIrpic共掺杂26DCzPPy的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/PQ2Ir(dpm)(2.6%):Ir(ppy)3(7%):TcTa/Dy(acac)3(0.2%):FCNIrpic(16%):26DCzPPy/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中PQ2Ir(dpm)、Ir(ppy)3和TcTa的蒸发速率分别控制在0.0013nm/s、 0.0035nm/s和0.05nm/s,电子主导发光层6中Dy(acac)3、FCNIrpic和26DCzPPy的蒸发速率分别控制在0.0001nm/s、0.008nm/s和0.05nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.01nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
检测本实施例制备的白色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于462纳米、515纳米、595纳米左右的白光。当亮度为20000cd/m2时,器件的色坐标为(0.333,0.339);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为3.0伏,器件的最大亮度为44108cd/m2。器件的最大电流效率为60.79cd/A,最大功率效率为63.63lm/W。
实施例4
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀5nm厚的MoO3阳极修饰层3、30nm厚的TAPC空穴传输-电子阻挡层4、15nm厚Ir(ppy)2(acac)与Ir(btp)2(acac)掺杂mCP的空穴主导发光层5、15nm厚Tm(acac)3phen与FIr6共掺杂26DCzPPy的电子主导发光层6和35nm厚的3TPYMB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.1nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀250nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)2(acac)(7%):Ir(btp)2(acac)(2%):mCP/Tm(acac)3phen(0.2%):FIr6(12%):26DCzPPy/3TPYMB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(ppy)2(acac)、Ir(btp)2(acac)和mCP的蒸发速率分别控制在0.0035nm/s、0.001nm/s和0.05nm/s,电子主导发光层6中 Tm(acac)3phen、FIr6和26DCzPPy的蒸发速率分别控制在0.0001nm/s、0.006nm/s和0.05nm/s,空穴阻挡-电子传输层7中3TPYMB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.01nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
检测本实施例制备的白色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于462纳米、515纳米、595纳米左右的白光。当亮度为20000cd/m2时,器件的色坐标为(0.334,0.335);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为3.1伏,器件的最大亮度为42175cd/m2。器件的最大电流效率为60.10cd/A,最大功率效率为60.88lm/W。
实施例5
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀6nm厚的MoO3阳极修饰层3、50nm厚的TAPC空穴传输-电子阻挡层4、12nm厚Ir(mppy)3、Ir(piq)3掺杂TCP的空穴主导发光层5、16nm厚Tm(acac)3phen与fac-Ir(Pmb)3共掺杂UGH2的电子主导发光层6和45nm厚的BmPyPhB空穴阻挡层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.1nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀240nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(mppy)3(8%):Ir(piq)3(2.2%):TCP/Tm(acac)3phen(0.3%):fac-Ir(Pmb)3(18%):UGH2/BmPyPhB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(mppy)3、Ir(piq)3和TCP的蒸发速率分别控制在0.004nm/s、0.00011nm/s和0.05nm/s,电子主导发光层6中Tm(acac)3phen、fac-Ir(Pmb)3和UGH2的蒸发速率分别控制在0.00015nm/s、0.009nm/s和 0.05nm/s,空穴阻挡-电子传输层7中BmPyPhB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.01nm/s,金属阴极层9中Al的蒸发速率控制在1.2nm/s。
检测本实施例制备的白色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于462纳米、515纳米、595纳米左右的白光。当亮度为20000cd/m2时,器件的色坐标为(0.331,0.332);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为3.1伏,器件的最大亮度为39876cd/m2。器件的最大电流效率为58.62cd/A,最大功率效率为59.37lm/W。
实施例6
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚Ir(ppy)2(m-bppy)与Ir(piq)2(acac)掺杂BSB的空穴主导发光层5、10nm厚Tm(acac)3phen与mer-Ir(pmb)3共掺杂BCBP的电子主导发光层6和40nm厚的TPBi空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)2(m-bppy)(9%):Ir(piq)2(acac)(3%):BSB/Tm(acac)3phen(0.3%):mer-Ir(pmb)3(25%):BCBP/TPBi/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(ppy)2(m-bppy)、Ir(piq)2(acac)和BSB的蒸发速率分别控制在0.0045nm/s、0.00015nm/s和0.05nm/s,电子主导发光层6中Tm(acac)3phen、mer-Ir(pmb)3和BCBP的蒸发速率分别控制在0.0003nm/s、0.025nm/s和0.1nm/s,空穴阻挡-电子传输层7中TPBi的蒸发速率控制 在0.08nm/s,阴极修饰层8中LiF的蒸发速率控制在0.005nm/s,金属阴极层9中Al的蒸发速率控制在0.5nm/s。
检测本实施例制备的白色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于462纳米、515纳米、595纳米左右的白光。当亮度为20000cd/m2时,器件的色坐标为(0.335,0.341);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为3.0伏,器件的最大亮度为43122cd/m2。器件的最大电流效率为60.55cd/A,最大功率效率为63.38lm/W。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种白色有机电致发光器件,包括:
    衬底;
    复合于所述衬底上的阳极层;
    复合于所述阳极层上的阳极修饰层;
    复合于所述阳极修饰层上的空穴传输-电子阻挡层;
    复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
    复合于所述空穴主导发光层上的电子主导发光层;
    复合于所述电子主导发光层上的空穴阻挡-电子传输层;
    复合于所述空穴阻挡-电子传输层上的阴极修饰层;
    复合于所述阴极修饰层上的阴极层;
    所述电子主导发光层由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成;
    所述空穴主导发光层由绿色有机发光材料、红色有机发光材料和空穴型有机主体材料组成;
    所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
    所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
  2. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述蓝色有机发光材料的含量为所述电子型有机主体材料的8.0wt%~25.0wt%。
  3. 根据权利要求1或2所述的白色有机电致发光器件,其特征在于,所述蓝色有机发光材料选自双(3,5-二氟-4-氰基)吡啶盐酸合铱、双(2,4-二氟苯基吡啶)四(1-吡唑基)硼合铱、三(1-苯基-3-甲基苯并咪哒唑啉-2-基-C,C2’)合铱、三(1-苯基-3-甲基苯并咪哒唑啉-2-基-C,C2’)合铱、双(2,4-二氟苯基吡啶)(5-(吡啶-2-基)-1H-四唑)合铱、三[(2,6-二异丙基苯基)2-苯基-1H-咪唑[e]合铱、三(1-苯基-3-甲基咪哒唑啉-2-基-C,C(2)’)合铱、三(1-苯基-3-甲基咪哒唑啉-2-基-C,C(2)’)合铱、双(1- 苯基-3甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(2H-吡唑-3-基)-吡啶)合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2')(2-(5-三氟甲基-2H-吡唑-3-基)-吡啶)合铱、三(1,3-二苯基-苯并咪唑-2-基-C,C2')合铱、双(1-(4-氟苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱、双(1-(4-甲基苯基)-3-甲基咪哒唑啉-2-基-C,C2’)(3,5-二甲基-2-(1H-吡唑-5-基)吡啶)合铱和三(苯基吡唑)合铱中的一种或多种。
  4. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述电子型有机主体材料选自2,6-二[3-(9H-9-咔唑基)苯基]吡啶、1,4-双(三苯基硅烷基)苯、2,2’-双(4-(9-咔唑基)苯基)联苯、[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑和9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑中的一种或多种。
  5. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述红色有机发光材料为所述空穴型有机主体材料的1.0wt%~3.0wt%;所述绿色有机发光材料为所述空穴型有机主体材料的5.0wt%~10.0wt%;
    所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种;
    所述红色有机发光材料选自二(2-苯基喹啉)-(2,2,6,6-四甲基-3,5-庚二酮酸)合铱、二(2-苯唑[b]2-噻吩基吡啶)乙酰丙酮合铱、三(1-苯基异喹啉)合铱、二(1-苯基异喹啉)(乙酰丙酮)合铱、二[1-(9,9-二甲基-9H-芴-2-基)-异喹啉](乙酰丙酮)合铱、二[2-(9,9-二甲基-9H-芴-2-基)喹啉](乙酰丙酮)合铱、二(2-苯基喹啉)(2-(3-甲基苯基)吡啶)合铱、三[2-苯基-4-甲基喹啉]合铱、双(苯基异喹啉)(2,2,6,6-四甲基己烷-3,5-二酮)合 铱、二(2-甲基二苯唑[f,h]喹喔啉)(乙酰丙酮)合铱和二[2-(2-甲基苯基)-7-甲基-喹啉](乙酰丙酮)合铱中的一种或多种;
    所述空穴型有机主体材料选自4,4’-N,N’-二咔唑二苯基、1,3-二咔唑-9-基苯、9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑、1,3,5-三(9-咔唑基)苯、4,4',4″-三(咔唑-9-基)三苯胺和1,4-双(三苯基硅烷基)联苯中的一种或多种。
  6. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述空穴传输-电子阻挡层的材料选自4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基、N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴、N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯、2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯、N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯、N,N'-二(萘-1基)-N,N'–二苯基-2,7-二氨基-9,9-螺双芴、N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'–二(3-甲基苯基)-N,N'–二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯、2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴、9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴、9,9-[4-(N-萘-1基-N-苯胺)-苯基]-9H-芴、2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴、2,2’-双(N,N-苯氨基)-9,9-螺双芴、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺和4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基中的一种或多种。
  7. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述空穴阻挡-电子传输层的材料选自三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯中的一种或多种。
  8. 根据权利要求1所述的白色有机电致发光器件,其特征在于,所述阳极修饰层的厚度为1~10nm,所述空穴传输-电子阻挡层的厚度为 30~60nm,所述空穴主导发光层的厚度为5~20nm,所述电子主导发光层的厚度为5~20nm,所述空穴阻挡-电子传输层的厚度为30~60nm,所述阴极修饰层的厚度为0.8~1.2nm,所述阴极层的厚度为90~300nm。
  9. 一种白色有机电致发光器件的制备方法,包括:
    将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
    所述电子主导发光层的材料由有机敏化材料、蓝色有机发光材料与电子型有机主体材料组成;
    所述有机敏化材料选自三(乙酰丙酮)邻菲罗啉合铥和三(乙酰丙酮)邻菲罗啉合镝中的一种或两种;
    所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
  10. 根据权利要求9所述的制备方法,其特征在于,所述阳极修饰层的蒸发速率为0.01~0.05nm/s,所述空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层与空穴阻挡-电子传输层中主体材料的蒸发速率为0.05~0.1nm/s,所述电子主导发光层中的有机敏化材料的蒸发速率为0.00005~0.0005nm/s,所述电子主导发光层中蓝色有机发光材料的蒸发速率为0.004~0.025nm/s;所述空穴主导发光层中的红色发光材料的蒸发速率为0.0005~0.003nm/s;所述空穴主导发光层中的绿色有机发光材料的蒸发速率为0.0025~0.01nm/s;所述阴极修饰层的蒸发速率为0.005~0.05nm/s,所述阴极层的蒸发速率为0.5~2.0nm/s。
PCT/CN2014/091786 2014-10-30 2014-11-20 一种白色有机电致发光器件及其制备方法 WO2016065681A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/522,598 US10177324B2 (en) 2014-10-30 2014-11-20 White organic electroluminescent device and preparation method thereof
EP14904947.0A EP3214668B1 (en) 2014-10-30 2014-11-20 White organic electroluminescent device and preparation method thereof
JP2017523421A JP6501881B2 (ja) 2014-10-30 2014-11-20 白色有機エレクトロルミネッセンス素子およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410605604.9 2014-10-30
CN201410605604.9A CN104270847B (zh) 2014-10-30 2014-10-30 一种白色有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2016065681A1 true WO2016065681A1 (zh) 2016-05-06

Family

ID=52162310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091786 WO2016065681A1 (zh) 2014-10-30 2014-11-20 一种白色有机电致发光器件及其制备方法

Country Status (5)

Country Link
US (1) US10177324B2 (zh)
EP (1) EP3214668B1 (zh)
JP (1) JP6501881B2 (zh)
CN (1) CN104270847B (zh)
WO (1) WO2016065681A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940684A (zh) * 2022-05-24 2022-08-26 浙江大学温州研究院 一种白光发光的卤化铜配合物及其制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700294B2 (en) 2014-10-30 2020-06-30 Changchun Institute Of Applied Chemistry, Chinese Academy Of Sciences Blue organic electroluminescent device and preparation method thereof
CN104900815A (zh) * 2015-05-26 2015-09-09 京东方科技集团股份有限公司 双层掺杂磷光发光器件及其制备方法
CN105576146B (zh) 2016-03-23 2017-09-26 京东方科技集团股份有限公司 发光器件及其制造方法和显示装置
CN106816542B (zh) * 2017-01-16 2018-10-16 中国科学院长春应用化学研究所 一种白色有机电致发光器件及其制备方法
CN109360897B (zh) * 2018-09-17 2021-01-15 云谷(固安)科技有限公司 一种显示面板及显示装置
CN110931649B (zh) * 2019-11-29 2022-11-15 昆山国显光电有限公司 一种有机电致发光器件及显示装置
CN113402564A (zh) * 2021-06-16 2021-09-17 昆明贵金属研究所 一种铱(ⅲ)配合物、制备方法及深红光oled器件
CN114171694B (zh) * 2021-12-07 2023-06-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438829A (zh) * 2003-02-13 2003-08-27 光磊科技股份有限公司 有机电激发光装置及其制作方法
CN101752509A (zh) * 2008-12-01 2010-06-23 乐金显示有限公司 白色有机发光设备及其制造方法
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
CN102694127A (zh) * 2011-03-23 2012-09-26 株式会社东芝 有机电场发光元件、显示装置和照明装置
CN103022365A (zh) * 2012-12-18 2013-04-03 中国科学院长春应用化学研究所 白色有机电致发光器件及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2421793Y (zh) * 1999-12-01 2001-02-28 中国科学院长春光学精密机械研究所 高效高色纯度镧系金属配合物有机电致发光器件
EP2272905A3 (en) * 2000-06-12 2014-10-22 Sumitomo Chemical Company Limited compositions for electroluminescent material and their devices
JP2004319456A (ja) * 2003-03-31 2004-11-11 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
KR100924145B1 (ko) 2008-06-10 2009-10-28 삼성모바일디스플레이주식회사 유기전계발광소자 및 이의 제조방법
JP5497284B2 (ja) * 2008-12-08 2014-05-21 ユー・ディー・シー アイルランド リミテッド 白色有機電界発光素子
CN101504972B (zh) * 2009-03-24 2011-01-05 北京大学 稀土铽配合物的电致发光器件
US9397310B2 (en) 2011-07-14 2016-07-19 Universal Display Corporation Organice electroluminescent materials and devices
CN103931009B (zh) 2011-11-11 2018-01-19 三菱化学株式会社 有机电致发光元件和有机电致发光器件
KR101402526B1 (ko) 2011-12-26 2014-06-09 삼성디스플레이 주식회사 수명이 향상된 유기발광소자 및 그 제조방법
CN104471733B (zh) * 2012-03-14 2017-06-09 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
CN102887915B (zh) * 2012-11-01 2014-12-31 嘉应学院 杂核双金属配合物发光材料及其制备方法和用途
CN102983288B (zh) 2012-12-18 2016-02-03 中国科学院长春应用化学研究所 一种蓝绿色有机电致发光器件及其制备方法
FR3001730B1 (fr) * 2013-02-07 2016-01-08 Commissariat Energie Atomique Nouveaux metallopolymeres et leur utilisation
CN103219471A (zh) 2013-04-09 2013-07-24 吉林大学 基于半透明复合阴极的顶发射有机电致发光器件及其制备方法
US10700294B2 (en) * 2014-10-30 2020-06-30 Changchun Institute Of Applied Chemistry, Chinese Academy Of Sciences Blue organic electroluminescent device and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438829A (zh) * 2003-02-13 2003-08-27 光磊科技股份有限公司 有机电激发光装置及其制作方法
CN101752509A (zh) * 2008-12-01 2010-06-23 乐金显示有限公司 白色有机发光设备及其制造方法
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
CN102694127A (zh) * 2011-03-23 2012-09-26 株式会社东芝 有机电场发光元件、显示装置和照明装置
CN103022365A (zh) * 2012-12-18 2013-04-03 中国科学院长春应用化学研究所 白色有机电致发光器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3214668A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114940684A (zh) * 2022-05-24 2022-08-26 浙江大学温州研究院 一种白光发光的卤化铜配合物及其制备方法和应用

Also Published As

Publication number Publication date
EP3214668A1 (en) 2017-09-06
JP6501881B2 (ja) 2019-04-17
EP3214668A4 (en) 2018-07-04
CN104270847A (zh) 2015-01-07
CN104270847B (zh) 2016-09-28
EP3214668B1 (en) 2019-08-21
JP2017533594A (ja) 2017-11-09
US10177324B2 (en) 2019-01-08
US20180248138A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
WO2016065681A1 (zh) 一种白色有机电致发光器件及其制备方法
CN109980085B (zh) 一种含有覆盖层的有机电致发光装置及用途
JP6663427B2 (ja) 有機電界発光素子
CN109860425B (zh) 一种含有覆盖层的有机电致发光装置及用途
WO2016065677A1 (zh) 一种红色有机电致发光器件及其制备方法
JPWO2018198844A1 (ja) 有機電界発光素子
US8816329B2 (en) Radiation-emitting device
KR101668044B1 (ko) 고효율 청색 발광층을 가진 oled
CN102414856A (zh) 发射辐射的装置
WO2016065678A1 (zh) 一种蓝色有机电致发光器件及其制备方法
Liu et al. Improved color quality in double-EML WOLEDs by using a tetradentate Pt (II) complex as a green/red emitter
Yu et al. Highly-efficient tandem organic light-emitting device employing bis-4, 6-(3, 5-di-3-pyridylphenyl)-2-methylpyrimi-dine doped with cesium azide in charge generation unit
Wu et al. Highly efficient green single-emitting layer phosphorescent organic light-emitting diodes with an iridium (iii) complex as a hole-type sensitizer
Liu et al. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer
Qiao et al. Pure red electroluminescence from a host material of binuclear gallium complex
KR100990451B1 (ko) 샌드위치 혼합된 이중 발광호스트를 이용한 고효율 인광유기발광다이오드 및 그의 제조 방법
Li et al. High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter
WO2016065679A1 (zh) 一种黄色有机电致发光器件及其制备方法
WO2016065680A1 (zh) 一种绿色有机电致发光器件及其制备方法
CN110165065B (zh) 一种高效率/色品质/色稳定性叠层白光有机发光二极管
Li et al. High-performance full phosphorescent warm white organic light-emitting diodes with external quantum efficiency of 34.5%
KR101101940B1 (ko) 이중 도핑을 이용한 고효율 진적색 인광 유기발광소자 및 그 제조 방법
Wu et al. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host
CN117750796A (zh) 一种白色有机电致发光器件及其制备方法
Li et al. Highly efficient co-doped blue phosphorescent organic electroluminescent devices due to improved carriers balance and broadening recombination zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904947

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15522598

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017523421

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014904947

Country of ref document: EP