WO2016065680A1 - 一种绿色有机电致发光器件及其制备方法 - Google Patents

一种绿色有机电致发光器件及其制备方法 Download PDF

Info

Publication number
WO2016065680A1
WO2016065680A1 PCT/CN2014/091784 CN2014091784W WO2016065680A1 WO 2016065680 A1 WO2016065680 A1 WO 2016065680A1 CN 2014091784 W CN2014091784 W CN 2014091784W WO 2016065680 A1 WO2016065680 A1 WO 2016065680A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron
light
bis
hole
Prior art date
Application number
PCT/CN2014/091784
Other languages
English (en)
French (fr)
Inventor
周亮
张洪杰
李雅囡
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Publication of WO2016065680A1 publication Critical patent/WO2016065680A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • the invention relates to the field of organic electroluminescence technology, in particular to a green organic electroluminescent device and a preparation method thereof.
  • An organic electroluminescent device is a self-luminous device whose principle of illumination is that when an electric charge is injected into an organic layer between a hole injecting electrode and an electron injecting electrode, electrons and holes meet, combine, and then annihilate, thereby generating Light.
  • Organic electroluminescent devices have characteristics such as low voltage, high brightness, and wide viewing angle, and thus organic electroluminescent devices have been rapidly developed in recent years. Among them, green organic electroluminescent devices have become a research hotspot because of their broad application prospects in monochrome display and white light modulation.
  • the trivalent europium complex has been regarded as an ideal organic electroluminescent material by academics and industry because of its high luminous efficiency and adjustable color of light.
  • Many research teams at home and abroad have started from material synthesis and device optimization to improve the comprehensive performance of green organic electroluminescent devices to meet the needs of industrialization.
  • Junji Kido et al. of Yamagata University, Japan used a green-emitting iridium complex Ir(ppy) 3 as a luminescent material, and a green organic electroluminescent device was obtained by doping.
  • the device exhibits an ideal green luminescence, a higher maximum luminescence efficiency is obtained.
  • the unbalanced carrier injection causes the device to decay more efficiently and has a higher operating voltage, which is disadvantageous for improving the brightness and operation of the device. life.
  • the technical problem to be solved by the present invention is to provide a green organic electroluminescent device with high comprehensive performance and a preparation method thereof.
  • a green organic electroluminescent device comprising:
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a green organic light-emitting material and an electronic type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) ruthenium and tris(acetylacetonate) linofoline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • the content of the green organic light-emitting material is 5 wt% to 10 wt% of the electronic organic host material.
  • the green organic light-emitting material is selected from the group consisting of tris(2-phenylpyridine) ruthenium, bis(2-phenylpyridine)(acetylacetonate) ruthenium, and tris[2-(p-methylphenyl)pyridine. ⁇ , bis(2-phenylpyridine)[2-(diphenyl-3-yl)pyridine] ruthenium, tris(2-(3-p-dimethylphenyl)pyridine ruthenium and tris(2-) One or more of phenyl-3-methyl-pyridine).
  • the electronic organic host material is selected from the group consisting of 2,6-bis[3-(9H-9-carbazolyl)phenyl] Pyridine, 1,4-bis(triphenylsilyl)benzene, 2,2'-bis(4-(9-carbazolyl)phenyl)biphenyl, [2,4,6-trimethyl-3 -(3-pyridyl)phenyl]borane, 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene, 1,3-bis[3,5-di(3-pyridyl) Phenyl]benzene, 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene, 9-(4-t-butylphenyl)-3,6-bis (three) One or more of phenylsilyl)-9H-carbazole and 9-(8-diphenylphosphoryl)-diazo
  • the hole-causing light-emitting layer is composed of a green organic light-emitting material and a hole-type organic host material; the green organic light-emitting material is 5.0 wt% to 10.0 wt% of the hole type organic host material;
  • the green organic light-emitting material is selected from the group consisting of tris(2-phenylpyridine) ruthenium, bis(2-phenylpyridine)(acetylacetonate) ruthenium, and tris[2-(p-methylphenyl)pyridine] ruthenium. , bis(2-phenylpyridine)[2-(diphenyl-3-yl)pyridine] ruthenium, tris(2-(3-p-dimethylphenyl)pyridine ruthenium and tris(2-phenyl-) One or more of 3-methyl-pyridine);
  • the hole-type organic host material is selected from the group consisting of 4,4'-N, N'-dicarbazole diphenyl, 1,3-dioxazole-9-ylbenzene, 9,9'-(5-(three Phenylsilyl)-1,3-phenyl)di-9H-carbazole, 1,3,5-tris(9-oxazolyl)benzene, 4,4',4"-tris(carbazole-9 One or more of triphenylamine and 1,4-bis(triphenylsilyl)biphenyl.
  • the material of the hole transporting-electron blocking layer is selected from the group consisting of 4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline], dipyrazine [2,3-f :2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile, N4,N4'-di(naphthalen-1-yl)-N4,N4'-double ( 4-vinylphenyl)biphenyl-4,4'-diamine, N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-2,7-diamine -9,9-spirobiguanide, N,N,N',N'-tetrakis(3-methylphenyl)-3-3'-dimethyl-p-diaminobiphenyl, 2,2'-di (3-(N,N-di-p-tolylamino)pheny
  • the material of the hole blocking-electron transport layer is selected from the group consisting of tris[2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane, 1,3,5-tri [ (3-pyridine)-3-phenyl]benzene, 1,3-bis[3,5-bis(3-pyridyl)phenyl]benzene and 1,3,5-tris(1-phenyl-1H- One or more of benzimidazol-2-yl)benzene.
  • the anode modification layer has a thickness of 1 to 10 nm
  • the hole transport-electron barrier layer has a thickness of 30 to 60 nm
  • the hole-dominant light-emitting layer has a thickness of 5 to 20 nm.
  • the thickness of the layer is 5 to 20 nm
  • the thickness of the hole blocking-electron transport layer is 30 to 60 nm
  • the thickness of the cathode modification layer is 0.8 to 1.2 nm
  • the thickness of the cathode layer is 90 to 300 nm.
  • the present application also provides a method for preparing a green organic electroluminescent device, comprising:
  • the anode layer on the substrate is etched, and after drying, the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking are sequentially deposited on the anode layer.
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a green organic light-emitting material and an electronic type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) ruthenium and tris(acetylacetonate) linofoline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • the evaporation rate of the anode modification layer is 0.01-0.05 nm/s
  • the host material in the hole transport-electron blocking layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer and the hole blocking-electron transport layer The evaporation rate is 0.05-0.1 nm/s
  • the evaporation rate of the organic sensitizing material in the electron-dominated light-emitting layer is 0.00005-0.0005 nm/s
  • the green light-emitting layer and the hole-priming light-emitting layer emit green light.
  • the evaporation rate of the material is 0.0025 to 0.01 nm/s
  • the evaporation rate of the cathode modification layer is 0.005 to 0.05 nm/s
  • the evaporation rate of the cathode layer is 0.5 to 2.0 nm/s.
  • the present application provides a green organic electroluminescent device comprising a substrate, an anode layer, an anode modification layer, a hole transport-electron barrier layer, a hole-dominant light-emitting layer, an electron-dominated light-emitting layer, A hole blocking-electron transport layer, a cathode modification layer, and a cathode layer.
  • the luminescent material of the present application is a green luminescent material. When electrons and holes are respectively injected into the luminescent layer, electrons and holes will meet and recombine, thereby generating an exciton, and the excitons will transfer energy to the green in the luminescent layer.
  • the molecules of the luminescent material excite an electron to an excited state, and the excited state electrons return to the ground state by a radiation transition to generate a green photon, thereby causing the organic electroluminescent device to emit green light.
  • one or two of tris(acetylacetonate) ruthenium and tris(acetylacetonate) linofol oxalate are added as an organic sensitizing material in an electron-dominated light-emitting layer to make their energy levels and triplet energy.
  • the organic sensitizing material functions as a carrier deep-binding center and an energy transfer step in the electroluminescence process, and can not only improve the material from the host material to the luminescence.
  • the energy transfer of the material can also balance the distribution of electrons and holes in the light-emitting interval, thereby improving the luminous efficiency of the organic electroluminescent device, improving the spectral stability of the device, reducing the operating voltage of the device, delaying the efficiency degradation of the device, and improving the device. Working life.
  • FIG. 1 is a schematic structural view of a green organic electroluminescent device of the present invention.
  • Example 2 is a graph showing voltage-current density-luminance characteristics of a green organic electroluminescent device prepared in Example 1 of the present invention
  • Example 3 is a graph showing current density-power efficiency-current efficiency characteristics of a green organic electroluminescent device prepared in Example 1 of the present invention
  • Example 4 is a spectrum diagram of a green organic electroluminescent device prepared in Example 1 of the present invention at a luminance of 20,000 cd/m 2 .
  • the embodiment of the invention discloses a green organic electroluminescent device, comprising:
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a green organic light-emitting material and an electronic type organic host material;
  • the organic sensitizing material is selected from one or two of tris(acetylacetonate) ruthenium and tris(acetylacetonate) linofoline ruthenium;
  • the organic sensitizing material is from 0.1% by weight to 0.5% by weight of the electronic type organic host material.
  • OLED organic electroluminescent device
  • the organic electroluminescent device is made to emit green light.
  • the green organic electroluminescent device of the present application comprises a substrate, an anode layer, an anode modification layer, a hole transport-electron blocking layer, a hole-dominant light-emitting layer, an electron-dominated light-emitting layer, a hole blocking-electron transport layer, and a cathode modification.
  • the layer and the cathode layer are sequentially connected to each other.
  • the hole-bearing light-emitting layer and the electron-dominated light-emitting layer are light-emitting layers of a green organic electron-emitting device.
  • the electronic dominant light-emitting layer of the invention is composed of an organic sensitizing material, a green organic light-emitting material and an electronic organic organic material, wherein the organic sensitizing material plays a sensitizing role in the electroluminescence process to improve the light from the host material to the light-emitting material.
  • the energy of the material transfers and balances the distribution of electrons and holes in the light-emitting interval; the molecules of the green organic light-emitting material are dispersed in the electron-dominated light-emitting layer as a light-emitting center; the electronic-type organic host material acts as a matrix to provide electron transport capability.
  • the energy level and the triplet energy of the organic sensitizing material need to match the energy level of the host material, the luminescent material, and the triplet energy to balance the distribution of electrons and holes in the light-emitting interval and accelerate
  • the energy transfer from the host material to the luminescent material enables the green organic electroluminescent device to have better overall performance. Therefore, the present application selects a rare earth complex selected from a tris(acetylacetonate) ruthenium (Tb(acac) having a structure of the formula (IX) by selecting an illuminating material. 3 ) and one or both of tris(acetylacetonate) linofene ruthenium (Tb(acac) 3 phen) having the structure of formula (X);
  • the doping concentration of the organic sensitizing material in the electron-based light-emitting layer of the present invention affects the performance of the organic electroluminescent device. If the doping concentration of the organic sensitizing material is too low, the sensitizing effect is unsatisfactory, and if the doping concentration is too high, the overall performance of the organic electroluminescent device is lowered. Therefore, the organic sensitizing material is from 0.1% by weight to 0.5% by weight, preferably from 0.2% by weight to 0.3% by weight, of the electronic type organic host material.
  • the green organic light-emitting material in the electron-based light-emitting layer is a light-emitting material well known to those skilled in the art, and the present application is not particularly limited, but in order to make the light-emitting effect better, the green organic light-emitting material is preferentially selected.
  • the doping concentration of the green organic light-emitting material also affects the overall performance of the green organic electroluminescent device. If the doping concentration of the green organic light-emitting material is too low, the device efficiency is low and the color purity is not ideal. If the doping concentration is too high, the luminescent material molecules are agglomerated to form quenching molecules, and finally the device is integrated. performance. Therefore, the electricity
  • the green organic light-emitting material in the sub-primary light-emitting layer is preferably 5 wt% to 10 wt%, more preferably 7 wt% to 9 wt% of the electron type organic host material.
  • the electronic type host material functions as a matrix in the electron-dominated light-emitting layer to provide electron transport capability, and the electronic type host material is a material well known to those skilled in the art, and as a preferred embodiment, the electronic type host material is preferentially selected.
  • the hole-preferred light-emitting layer described in the present application is composed of a green organic light-emitting material and a hole-type organic host material, wherein molecules of the green organic light-emitting material are dispersed in the hole-dominant light-emitting layer as a light-emitting center.
  • the green organic light-emitting material is preferably 5.0 wt% to 10.0 wt%, more preferably 7.0 wt% to 9.0 wt% of the hole type organic host material in the hole-cavity light-emitting layer; the green organic light-emitting If the doping concentration of the material is too low, the device efficiency is low and the color purity is not ideal.
  • the hole-type host material functions as a matrix to provide hole transporting ability.
  • the green organic light-emitting material in the hole-priming light-emitting layer described in the present application is preferably selected from tris(2-phenylpyridine) ruthenium (Ir(ppy) 3 ) having a structure of the formula (II 1 ), having the formula (II) 2 ) a structure of bis(2-phenylpyridine)(acetylacetonate) ruthenium (Ir(ppy) 2 (acac)), a tris[2-(p-methylphenyl)pyridine having the structure of formula (II 3 ) ⁇ (Ir(mppy) 3 ), bis(2-phenylpyridine)[2-(diphenyl-3-yl)pyridine] ruthenium (Ir(ppy) 2 (with structure of formula (II 4
  • the hole-type organic host material is preferably selected from the group consisting of 4,4'-N,N'-dicarbazole diphenyl (CBP) having the structure of formula (III), and 1,3-two having the structure of formula (IV) Carbazole-9-ylbenzene (mCP), 9,9'-(5-(triphenylsilyl)-1,3-phenyl)di-9H-carbazole (SimCP) having the structure of formula (V) 1,3,5-tris(9-carbazolyl)benzene (TCP) having the structure of formula (VI), 4,4',4"-tris(carbazole-9-yl) having the structure of formula (VII) And one or more of triphenylamine (TcTa) and 1,4-bis(triphenylsilyl)biphenyl (BSB) having the structure of formula (VIII);
  • CBP 4,4'-N,N'-dicarbazole diphenyl
  • mCP Carbazo
  • the substrate may be a glass substrate, a quartz substrate, a polycrystalline silicon substrate, a single crystal silicon substrate or a graphene film substrate, and there is no particular limitation in the present application.
  • the anode layer is preferably selected from indium tin oxide (ITO), and its surface resistance is preferably 5 to 25 ⁇ .
  • ITO indium tin oxide
  • the anode modification layer can lower the driving voltage and accelerate the injection of holes, and the anode modification layer is preferably molybdenum oxide (MoO 3 ).
  • the hole transport-electron blocking layer described in this application functions to transport holes and block electrons.
  • the material of the hole transport-electron blocking layer is preferably selected from 4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline] (TAPC) having the structure of the formula (I 1 ), Dipyrazine [2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) having the structure of formula (I 2 ) N4,N4'-bis(naphthalen-1-yl)-N4,N4'-bis(4-vinylphenyl)biphenyl-4,4'-diamine (VNPB) having the structure of formula (I 3 ) N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-2,7-diamine-9,9-spirobifluorene having the structure of formula (I 4
  • the hole blocking-electron transporting layer functions to block holes and transport electrons to promote electron injection.
  • the material of the hole blocking-electron transport layer is preferably selected from tris[2,4,6-trimethyl-3-(3-pyridyl)phenyl]borane (3TPYMB) having the structure of the formula (XIV), 1,3,5-tris[(3-pyridyl)-3-phenyl]benzene (TmPyMB) having the structure (XV), 1,3-bis[3,5-di ((3,5-di) having the structure of formula (XVI) 3-pyridyl)phenyl]benzene (BmPyPhB) and one of 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi) having the structure of formula (XVII) Species or more;
  • the function of the cathode modification layer described in the present application is to lower the driving voltage and accelerate the injection of electrons, and the cathode modification layer is preferably lithium fluoride.
  • the cathode layer is preferably aluminum.
  • the material of the hole transport-electron blocking layer, the green organic luminescent material, and the space The source of the material of the organic organic material, the organic sensitizing material, the electronic organic organic material, and the hole blocking-electron transporting layer is not particularly limited and can be obtained by a method well known to those skilled in the art.
  • the anode layer and the cathode layer intersect each other to form a light-emitting region of the device.
  • the thickness of each layer in the green organic electroluminescent device of the present application has a great influence on the device, if the thickness is low. This will result in faster device efficiency degradation. If the thickness is higher, the device will operate at a higher voltage and have a lower lifetime.
  • the thickness of the anode modification layer is preferably from 1 to 10 nm
  • the thickness of the hole transport-electron barrier layer is preferably from 30 to 60 nm
  • the thickness of the hole-preferred light-emitting layer is preferably from 5 to 20 nm
  • the thickness of the electron-dominated light-emitting layer is preferably 5 to 20 nm
  • the thickness of the hole blocking-electron transport layer is preferably 30 to 60 nm
  • the thickness of the cathode modified layer is preferably 0.8 to 1.2 nm
  • the thickness of the cathode layer is preferably 90 to 300 nm.
  • the application also provides a preparation method of the green organic electroluminescent device, comprising:
  • the anode layer on the substrate is etched, and after drying, the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking are sequentially deposited on the anode layer.
  • the hole-dominant light-emitting layer is formed by mixing a green organic light-emitting material and a hole-type organic host material;
  • the electron-dominated light-emitting layer is composed of an organic sensitizing material, a green organic light-emitting material and an electronic type organic host material;
  • the organic sensitizing material is selected from one or both of tris(acetylacetonate) ruthenium having a structure of the formula (IX) and tris(acetylacetonate) linofol oxalate having a structure of the formula (X);
  • the organic sensitizing material is 0.1 wt% to 0.5 wt% of the electronic type organic host material
  • the preparation method of the green organic electroluminescent device is specifically as follows:
  • the anode layer on the substrate is laser etched into strip electrodes, and then ultrasonically washed with washing liquid and deionized water for 10-20 min and placed in an oven for drying;
  • the dried substrate is placed in a pretreatment vacuum chamber, and subjected to a low pressure plasma treatment for 1 to 10 minutes under a vacuum of 8 to 15 Pa in an atmosphere of 350 to 500 V, and then transferred to an organic vapor deposition chamber;
  • the anode modification layer, the hole transport-electron barrier layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking-electron transport are sequentially deposited on the anode layer.
  • the unfinished device was transferred to a metal deposition chamber, and the cathode modified layer and the metal cathode layer were sequentially evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa.
  • the present application achieves deposition of a material by controlling the evaporation rate.
  • the evaporation rate of the anode modification layer is controlled to be 0.01 to 0.05 nm/s, and the host material in the hole transport-electron blocking layer, the hole-dominant light-emitting layer, the electron-dominated light-emitting layer, and the hole blocking-electron transport layer
  • the evaporation rate is controlled at 0.05-0.1 nm/s
  • the evaporation rate of the organic sensitizing material is controlled at 0.00005-0.0005 nm/s
  • the evaporation rate of the green organic luminescent material is controlled at 0.0025-0.01 nm/s
  • the evaporation rate of the cathode modified layer is controlled.
  • the evaporation rate of the metal cathode layer is controlled to be 0.5 to 2.0 nm/s.
  • the vapor-emitting holes dominate the light-emitting layer, wherein the green organic light-emitting material and the hole-type organic host material are simultaneously evaporated in different evaporation sources, and the doped green organic light-emitting materials and holes are controlled by controlling the evaporation rates of the two materials.
  • the weight ratio of the organic organic material is controlled between 5.0% and 10.0%; when the electron-emitting electron dominates the light-emitting layer, the organic sensitizing material, the green organic light-emitting material, and the electronic organic organic material are simultaneously evaporated in different evaporation sources.
  • the mass ratio of the doped organic sensitizing material and the electronic type organic host material is controlled to be between 0.1% and 0.5%, so that the doped green organic luminescent material and the electronic organic organic material are The mass ratio is controlled at 5.0% to 10.0% between.
  • the present application provides a green organic electroluminescent device in which a rare earth complex having a matched energy level distribution, such as Tb(acac) 3 or Tb (acac), is selected among electron-dominated light-emitting layers in the green organic electroluminescent device.
  • a rare earth complex having a matched energy level distribution such as Tb(acac) 3 or Tb (acac)
  • 3 phen as an organic sensitizing material, which plays the role of electron deep-binding center, which is beneficial to balance the distribution of carriers and broaden the light-emitting interval of the device, thereby improving the luminous efficiency of the device, reducing the operating voltage of the device, and delaying the device.
  • the organic sensitizing material has matched triplet energy, functions as an energy transfer step, accelerates energy transfer from the host material to the luminescent material, and relieves luminescent material carriers
  • the problem of luminescence of the host material caused by insufficient capture capability, thereby improving the spectral stability of the device and reducing the dependence of device performance on the doping concentration of the luminescent material.
  • FIG. 1 is a schematic structural view of a green organic electroluminescent device according to the present invention, wherein 1 is a glass substrate, 2 is an anode layer, 3 is an anode modification layer, and 4 is a hole transport-electron blocking layer, 5 The hole is the luminescent layer, 6 is the electron-dominated luminescent layer, 7 is the hole blocking-electron transport layer, 8 is the cathode modified layer, and 9 is the metal cathode layer.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick Ir(ppy) 3 doped TcTa hole-dominated luminescent layer 5 10 nm thick Tb(acac) 3 phen and Ir(ppy) 3 co-doped CzSi electron-dominated luminescent layer 6 and 40 nm thick TmPyPB hole blocking- Electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 3 (7%): TcTa/Tb(acac) 3 phen(0.2%): Ir(ppy) 3 (7%): Organic electroluminescent device of CzSi/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s, and the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s, and the hole dominates the Ir(ppy) 3 in the light-emitting layer 5 and
  • the evaporation rate of TcTa is controlled at 0.0035 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Tb(acac) 3 phen, Ir(ppy) 3 and CzSi in the electron-dominated luminescent layer 6 are controlled at 0.0001 nm/s and 0.0035 nm, respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.005 nm/s
  • Al in the metal cathode layer 9 The evaporation rate was controlled at 1.0 nm/s.
  • FIG. 2 is a voltage-current density-luminance characteristic curve of the green organic electroluminescent device prepared in the present embodiment, wherein the curve ⁇ in FIG. 2 is the current density-voltage curve of the device, and the ⁇ curve is the brightness of the device.
  • - Voltage curve according to Figure 2, the brightness of the device increases with the increase of current density and driving voltage, the device's starting voltage is 2.8 volts, the voltage is 9.6 volts, and the current density is 512.37 mA per square centimeter. At (mA/cm 2 ), the device achieved a maximum brightness of 128,905 candelas per square meter (cd/m 2 ).
  • FIG. 3 is a current density-power efficiency-current efficiency characteristic curve of the green organic electroluminescent device prepared in the embodiment.
  • the maximum current efficiency of the device is 126.60 cd/A, and the maximum power is obtained.
  • the efficiency is 141.97 lm / W.
  • FIG. 4 is a spectrum diagram of the green organic electroluminescent device provided by the present invention at a luminance of 20000 cd/m 2 .
  • the main peak of the spectrum is located at 515 nm.
  • the color coordinates of the device are (0.254, 0.651).
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 3 (7%): mCP/Tb(acac) 3 phen(0.2%): Ir(ppy) 3 (7%): Organic electroluminescent device of 26DCzPPy/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s, and the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s, and the hole dominates the Ir(ppy) 3 in the light-emitting layer 5 and
  • the evaporation rates of mCP are controlled at 0.0035 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Tb(acac) 3 phen, Ir(ppy) 3 and 26DCzPPy in electron-dominated luminescent layer 6 are controlled at 0.0001 nm/s and 0.0035 nm, respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.005 nm/s
  • Al in the metal cathode layer 9 The evaporation rate was controlled at 1.0 nm/s.
  • the performance of the green organic electroluminescent device prepared in this example was examined.
  • the experimental results show that the device emits green light at about 515 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.252, 0.654); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 2.9 volts and a maximum brightness of 126589 cd/m 2 .
  • the device has a maximum current efficiency of 125.22 cd/A and a maximum power efficiency of 135.58 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick Ir(ppy) 3 doped TcTa hole-dominated luminescent layer 5 10 nm thick Tb(acac) 3 and Ir(ppy) 3 co-doped 26DCzPPy electron-dominated luminescent layer 6 and 40 nm thick TmPyPB hole-blocking-electron Transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 3 (7%): TcTa/Tb(acac) 3 (0.3%): Ir(ppy) 3 ( 7%): Organic electroluminescent device of 26DCzPPy/TmPyPB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s, and the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.05 nm/s, and the hole dominates the Ir(ppy) 3 in the light-emitting layer 5 and
  • the evaporation rate of TcTa is controlled at 0.0035 nm/s and 0.05 nm/s, respectively.
  • the evaporation rates of Tb(acac) 3 , Ir(ppy) 3 and 26DCzPPy in the electron-dominated luminescent layer 6 are controlled at 0.0003 nm/s and 0.007 nm/ respectively.
  • the evaporation rate of TmPyPB in the hole blocking-electron transport layer 7 is controlled at 0.05 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.005 nm/s
  • the Al of the metal cathode layer 9 is The evaporation rate was controlled at 1.0 nm/s.
  • the performance of the green organic electroluminescent device prepared in the present example was examined.
  • the experimental results show that the device emits green light at about 515 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.258, 0.647); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 2.9 volts and a maximum brightness of 118966 cd/m 2 .
  • the device has a maximum current efficiency of 125.68 cd/A and a maximum power efficiency of 136.08 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber.
  • a 5 nm-thick MoO 3 anode-modified layer 3 and a 30 nm-thick TAPC hole-transport-electron-blocking layer 4 15 nm were sequentially deposited on the ITO layer.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.1 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 250 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 3 (acac) (7%): mCP/Tb(acac) 3 (0.1%): Ir (ppy 3 (acac) (7%): an organic electroluminescent device of 26DCzPPy/3TPYMB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.02 nm/s
  • the evaporation rate of TAPC in the hole transport-electron barrier layer 4 is controlled at 0.06 nm/s
  • the hole dominates the Ir(ppy) 3 in the light-emitting layer 5
  • the evaporation rates of acac) and mCP are controlled at 0.007 nm/s and 0.1 nm/s, respectively.
  • the evaporation rates of Tb(acac) 3 , Ir(ppy) 3 (acac) and 26DCzPPy in electron-dominated luminescent layer 6 are controlled at 0.0001 nm, respectively.
  • the evaporation rate of 3TPYMB in the hole blocking-electron transport layer 7 is controlled at 0.08 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.008 nm/s
  • metal The evaporation rate of Al in the cathode layer 9 was controlled at 0.9 nm/s.
  • the performance of the green organic electroluminescent device prepared in the present example was examined.
  • the experimental results show that the device emits green light at about 515 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.255, 0.649); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 2.9 volts and a maximum brightness of 109116 cd/m 2 .
  • the device has a maximum current efficiency of 121.17 cd/A and a maximum power efficiency of 131.20 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 6 nm-thick MoO 3 anode modification layer 3 and a 50 nm-thick TAPC hole-transport-electron barrier layer 4, 12 nm are sequentially deposited on the ITO layer.
  • Thick Ir(mppy) 3 doped TCP hole-dominated luminescent layer 5 16 nm thick Tb(acac) 3 phen and Ir(mppy) 3 co-doped UGH2 electron-dominated luminescent layer 6 and 45 nm thick BmPyPhB hole blocking- Electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.1 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 240 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(mppy) 3 (6%): TCP/Tb(acac) 3 phen (0.3%): Ir(mppy) 3 (6%): Organic electroluminescent device of UGH2/BmPyPhB/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.01 nm/s, and the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.08 nm/s, and the hole dominates the Ir(mppy) 3 in the light-emitting layer 5 and
  • the evaporation rate of TCP is controlled at 0.006 nm/s and 0.1 nm/s, respectively.
  • the evaporation rates of Tb(acac) 3 phen, Ir(mppy) 3 and UGH2 in the electron-dominated luminescent layer 6 are controlled at 0.0003 nm/s and 0.006 nm, respectively.
  • the evaporation rate of BmPyPhB in the hole blocking-electron transport layer 7 is controlled at 0.09 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.012 nm/s
  • Al in the metal cathode layer 9 The evaporation rate was controlled at 1.2 nm/s.
  • the performance of the green organic electroluminescent device prepared in the present example was examined.
  • the experimental results show that the device emits green light at about 515 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.255, 0.652); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 2.9 volts and a maximum brightness of 114598 cd/m 2 .
  • the device has a maximum current efficiency of 124.35 cd/A and a maximum power efficiency of 134.64 lm/W.
  • the ITO anode layer on the ITO glass was first laser etched into strip electrodes, which were then ultrasonically cleaned with cleaning solution and deionized water for 15 min and placed in an oven for drying. Next, the dried substrate was placed in a pretreatment vacuum chamber, and the ITO anode was subjected to low pressure plasma treatment for 3 minutes under a vacuum of 10 Pa in an atmosphere of 400 V, and then transferred to an organic vapor deposition chamber. In an organic vapor deposition chamber having a degree of vacuum of 1 to 2 ⁇ 10 -5 Pa, a 3 nm-thick MoO 3 anode modification layer 3 and a 40 nm-thick TAPC hole-transport-electron barrier layer 4, 10 nm are sequentially deposited on the ITO layer.
  • Thick Ir(ppy) 2 (m-bppy) doped BSB hole-dominated luminescent layer 5 10 nm thick Tb(acac) 3 phen and Ir(ppy) 2 (m-bppy) co-doped BCBP electron-dominated luminescent layer 6 and 40 nm thick TPBi hole blocking-electron transport layer 7.
  • the unfinished device was transferred to a metal deposition chamber, and a 1.0 nm thick LiF cathode modification layer 8 was evaporated in a vacuum atmosphere of 4 to 6 ⁇ 10 -5 Pa, and finally passed through a special mask on the LiF layer.
  • a 120 nm thick metal Al cathode layer 9 was deposited to prepare a structure of ITO/MoO 3 /TAPC/Ir(ppy) 2 (m-bppy) (7%): BSB/Tb(acac) 3 phen (0.3%): Ir(ppy) 2 (m-bppy) (7%): an organic electroluminescent device of BCBP/TPBi/LiF/Al.
  • the evaporation rate of MoO 3 in the anode modification layer 3 is controlled at 0.02 nm/s
  • the evaporation rate of TAPC in the hole transport-electron blocking layer 4 is controlled at 0.08 nm/s
  • the evaporation rate of TPBi in the hole blocking-electron transport layer 7 is controlled at 0.08 nm/s
  • the evaporation rate of LiF in the cathode modified layer 8 is controlled at 0.02.
  • the evaporation rate of Al in the metal cathode layer 9 was controlled at 1.5 nm/s.
  • the performance of the green organic electroluminescent device prepared in the present example was examined.
  • the experimental results show that the device emits green light at about 515 nm under the driving of a DC power source.
  • the brightness is 20000 cd/m 2
  • the color coordinates of the device are (0.256, 0.649); as the operating voltage changes, the color coordinates of the device are almost unchanged.
  • the device has a starting voltage of 2.9 volts and a maximum brightness of 109152 cd/m 2 .
  • the device has a maximum current efficiency of 120.88 cd/A and a maximum power efficiency of 138.88 lm/W.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种绿色有机电致发光器件,其由衬底(1)、阳极层(2)、阳极修饰层(3)、空穴传输-电子阻挡层(4)、空穴主导发光层(5)、电子主导发光层(6)、空穴阻挡-电子传输层(7)、阴极修饰层(8)与阴极层(9)依次设置而成;其中所述电子主导发光层(6)由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成。通过选择能级能量匹配的稀土配合物,例如Tb(acac) 3或者Tb(acac) 3phen作为有机敏化材料,将其微量掺入电子主导发光层(6)中,起到载流子深束缚中心及能量传递阶梯的作用,从而提高器件的发光效率、提高器件的光谱稳定性、降低器件的工作电压、延缓器件的效率衰减以及提高器件的工作寿命。

Description

一种绿色有机电致发光器件及其制备方法
本申请要求于2014年10月30日提交中国专利局、申请号为201410611892.9、发明名称为“一种绿色有机电致发光器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有机电致发光技术领域,尤其涉及一种绿色有机电致发光器件及其制备方法。
背景技术
有机电致发光器件是一种自发光器件,其发光原理是:当电荷被注入到空穴注入电极和电子注入电极之间的有机层时,电子和空穴相遇、结合并随后湮灭,因而产生光。有机电致发光器件具有低电压、高亮度、宽视角等特性,因此有机电致发光器件近年来得到了迅猛的发展。其中,绿色有机电致发光器件由于在单色显示、白光调制等方面具有广阔的应用前景,因此成为研究的热点。
一直以来,三价铱配合物由于具有发光效率高和发光颜色可调等优点而被学术界和产业界视为理想的有机电致发光材料。国内外的许多研究团队从材料合成和器件优化方面着手,欲提高绿色有机电致发光器件的综合性能,以满足产业化的需要。例如,2008年日本山形大学的Junji Kido等人采用具有绿色发射的铱配合物Ir(ppy)3作为发光材料,通过掺杂的方法制得了绿色有机电致发光器件。虽然该器件显示了理想的绿色发光,也获得了较高的最大发光效率,然而不平衡的载流子注入导致器件的效率衰减较快、工作电压较高,从而不利于提高器件的亮度和工作寿命。
为了解决这些问题,2011年南京大学的郑佑轩等人通过修饰铱配合物的辅助配体获得了具有良好电子传输能力的绿色发光材料Ir(tfmppy)2(tpip),并将该铱配合物掺入优选的主体材料中制得了多层结构的绿色有机电致发光器件。该器件具有良好的效率稳定性和较高的最大发光亮度,但是器件较宽的发光区间导致器件的发光效率偏低,并且单极性 发光层的设计方案不利于器件获得平衡的载流子注入,从而影响了器件的工作寿命。由此可见,绿色有机电致发光器件的发光效率、亮度、光谱稳定性和工作寿命等综合性能仍然没有得到有效改善。
发明内容
本发明解决的技术问题在于提供一种综合性能较高的绿色有机电致发光器件及其制备方法。
有鉴于此,本申请提供了一种绿色有机电致发光器件,包括:
衬底;
复合于所述衬底上的阳极层;
复合于所述阳极层上的阳极修饰层;
复合于所述阳极修饰层上的空穴传输-电子阻挡层;
复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
复合于所述空穴主导发光层上的电子主导发光层;
复合于所述电子主导发光层上的空穴阻挡-电子传输层;
复合于所述空穴阻挡-电子传输层上的阴极修饰层;
复合于所述阴极修饰层上的阴极层;
所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
优选的,所述绿色有机发光材料的含量为所述电子型有机主体材料的5wt%~10wt%。
优选的,所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种。
优选的,所述电子型有机主体材料选自2,6-二[3-(9H-9-咔唑基)苯基] 吡啶、1,4-双(三苯基硅烷基)苯、2,2’-双(4-(9-咔唑基)苯基)联苯、[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑和9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑中的一种或多种。
优选的,所述空穴主导发光层由绿色有机发光材料和空穴型有机主体材料组成;所述绿色有机发光材料为所述空穴型有机主体材料的5.0wt%~10.0wt%;
所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种;
所述空穴型有机主体材料选自4,4’-N,N’-二咔唑二苯基、1,3-二咔唑-9-基苯、9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑、1,3,5-三(9-咔唑基)苯、4,4',4″-三(咔唑-9-基)三苯胺和1,4-双(三苯基硅烷基)联苯中的一种或多种。
优选的,所述空穴传输-电子阻挡层的材料选自4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基、N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴、N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯、2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯、N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯、N,N'-二(萘-1基)-N,N'–二苯基-2,7-二氨基-9,9-螺双芴、N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'–二(3-甲基苯基)-N,N'–二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯、2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴、9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴、9,9-[4-(N-萘-1基-N-苯胺)-苯 基]-9H-芴、2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴、2,2’-双(N,N-苯氨基)-9,9-螺双芴、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺和4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基中的一种或多种。
优选的,所述空穴阻挡-电子传输层的材料选自三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯中的一种或多种。
优选的,所述阳极修饰层的厚度为1~10nm,所述空穴传输-电子阻挡层的厚度为30~60nm,所述空穴主导发光层的厚度为5~20nm,所述电子主导发光层的厚度为5~20nm,所述空穴阻挡-电子传输层的厚度为30~60nm,所述阴极修饰层的厚度为0.8~1.2nm,所述阴极层的厚度为90~300nm。
本申请还提供了一种绿色有机电致发光器件的制备方法,包括:
将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
优选的,所述阳极修饰层的蒸发速率为0.01~0.05nm/s,所述空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层与空穴阻挡-电子传输层中主体材料的蒸发速率为0.05~0.1nm/s,所述电子主导发光层中的有机敏化材料的蒸发速率为0.00005~0.0005nm/s,所述电子主导发光层与空穴主导发光层中的绿色发光材料的蒸发速率为0.0025~0.01nm/s,所述阴极修饰层的蒸发速率为0.005~0.05nm/s,所述阴极层的蒸发速率为0.5~2.0nm/s。
本申请提供了一种绿色有机电致发光器件,其包括衬底、阳极层、阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、 空穴阻挡-电子传输层、阴极修饰层与阴极层。本申请的发光材料为绿色发光材料,当电子和空穴分别注入到发光层时,电子和空穴会相遇并发生复合,进而产生一个激子,激子会把能量传递给发光层中的绿色发光材料的分子,激发一个电子到激发态,激发态的电子通过辐射跃迁的方式回到基态时会产生一个绿色的光子,从而使有机电致发光器件发绿光。
本申请通过在电子主导发光层中加入三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种作为有机敏化材料,使其能级及三重态能量与主体材料、发光材料的能级及三重态能量相匹配,使有机敏化材料在电致发光过程中起到载流子深束缚中心及能量传递阶梯的作用,不仅能够提高从主体材料到发光材料的能量传递,也可平衡电子和空穴在发光区间的分布,从而提高有机电致发光器件的发光效率、提高器件的光谱稳定性、降低器件的工作电压、延缓器件的效率衰减、提高器件的工作寿命。
附图说明
图1为本发明绿色有机电致发光器件的结构示意图;
图2为本发明实施例1制备的绿色有机电致发光器件的电压-电流密度-亮度特性曲线图;
图3为本发明实施例1制备的绿色有机电致发光器件的电流密度-功率效率-电流效率特性曲线图;
图4为本发明实施例1制备的绿色有机电致发光器件在亮度为20000cd/m2时的光谱图。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种绿色有机电致发光器件,包括:
衬底;
复合于所述衬底上的阳极层;
复合于所述阳极层上的阳极修饰层;
复合于所述阳极修饰层上的空穴传输-电子阻挡层;
复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
复合于所述空穴主导发光层上的电子主导发光层;
复合于所述电子主导发光层上的空穴阻挡-电子传输层;
复合于所述空穴阻挡-电子传输层上的阴极修饰层;
复合于所述阴极修饰层上阴极层;
所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成;
所述有机敏化材料选自三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
有机电致发光器件(OLED)的发光原理是在外界电压的驱动下,由电极注入的电子和空穴在有机物中相遇,并将能量传递给有机发光分子,使其受到激发,从基态跃迁到激发态,当受激发分子从激发态回到基态时辐射跃迁而产生发光的现象。本申请提供了一种绿色有机电致发光器件,其发绿光是由于所采用的发光材料是绿色发光材料,当电子和空穴分别注入到发光层时,电子和空穴会相遇并发生复合,进而产生一个激子,激子把能量传递给发光层中的绿色发光材料的分子,激发一个电子到激发态,激发态的电子通过跃迁的方式回到基态时会产生一个绿色的光子,从而实现有机电致发光器件发绿光。
本申请所述绿色有机电致发光器件由衬底、阳极层、阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层依次连接设置。其中空穴主导发光层与电子主导发光层是绿色有机电子发光器件的发光层。
本发明的电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成,其中有机敏化材料在电致发光过程中起到敏化的作用,以提高从主体材料到发光材料的能量传递并平衡电子和空穴在发光区间的分布;绿色有机发光材料的分子分散在电子主导发光层中作为发光中心;电子型有机主体材料起到基质的作用,提供电子传输能力。在电子主 导发光层中,所述有机敏化材料的能级及三重态能量需要与主体材料、发光材料的能级及三重态能量相匹配,才能平衡电子和空穴在发光区间的分布并加速从主体材料到发光材料的能量传递,使绿色有机电致发光器件具有较好的综合性能。因此,本申请通过对发光材料的选取,所述有机敏化材料选择了稀土配合物,所述有机敏化材料选自具有式(Ⅸ)结构的三(乙酰丙酮)合铽(Tb(acac)3)和具有式(Ⅹ)结构的三(乙酰丙酮)林菲罗啉合铽(Tb(acac)3phen)中的一种或两种;
Figure PCTCN2014091784-appb-000001
本发明中所述有机敏化材料在所述电子主导发光层中的掺杂浓度对有机电致发光器件的性能造成影响。若所述有机敏化材料的掺杂浓度过低则会导致敏化效果不理想,若掺杂浓度过高则会降低有机电致发光器件的综合性能。因此,所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%,优选为0.2wt%~0.3wt%。
按照本发明,所述电子主导发光层中所述绿色有机发光材料为本领域技术人员熟知的发光材料,本申请没有特别的限制,但是为了使发光效果更好,所述绿色有机发光材料优先选自具有式(Ⅱ1)结构的三(2-苯基吡啶)合铱(Ir(ppy)3)、具有式(Ⅱ2)结构的双(2-苯基吡啶)(乙酰丙酮)合铱(Ir(ppy)2(acac))、具有式(Ⅱ3)结构的三[2-(对-甲基苯基)吡啶]合铱(Ir(mppy)3)、具有式(Ⅱ4)结构的双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱(Ir(ppy)2(m-bppy))、具有式(Ⅱ5)结构的三(2-(3- 对二甲基苯)吡啶合铱(TEG)和具有式(Ⅱ6)结构的三(2-苯基-3-甲基-吡啶)合铱(Ir(3mppy)3)中的一种或多种;
Figure PCTCN2014091784-appb-000002
在电子主导发光层中,所述绿色有机发光材料的掺杂浓度也会影响绿色有机电致发光器件的综合性能。若所述绿色有机发光材料的掺杂浓度过低,则会导致器件效率偏低、色纯度不理想,掺杂浓度过高则会导致发光材料分子团聚,形成淬灭分子,最终降低器件的综合性能。因此,所述电 子主导发光层中所述绿色有机发光材料优选为所述电子型有机主体材料的5wt%~10wt%,更优选为7wt%~9wt%。所述电子型主体材料在电子主导发光层中起到基质的作用,提供电子传输能力,所述电子型主体材料为本领域技术人员熟知的材料,作为优选方案,所述电子型主体材料优先选自具有式(XI)结构的2,6-二[3-(9H-9-咔唑基)苯基]吡啶(26DCzPPy)、具有式(XII)结构的1,4-双(三苯基硅烷基)苯(UGH2)、具有式(XIII)结构的2,2’-双(4-(9-咔唑基)苯基)联苯(BCBP)、具有式(XIV)结构的[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷(3TPYMB)、具有式(XV)结构的1,3,5-三[(3-吡啶)-3-苯基]苯(TmPyPB)、具有式(XVI)结构的1,3-双[3,5-二(3-吡啶基)苯基]苯(BmPyPhB)、具有式(XVII)结构的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)、具有式(XVIII)结构的9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑(CzSi)和具有式(XIX)结构的9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑(DFCzPO)中的一种或多种;
Figure PCTCN2014091784-appb-000003
Figure PCTCN2014091784-appb-000004
本申请中所述空穴主导发光层由绿色有机发光材料和空穴型有机主体材料组成,其中绿色有机发光材料的分子分散在空穴主导发光层中作为发光中心。所述绿色有机发光材料在所述空穴主导发光层中优选为所述空穴型有机主体材料的5.0wt%~10.0wt%,更优选为7.0wt%~9.0wt%;所述绿色有机发光材料的掺杂浓度过低,则会导致器件效率偏低、色纯度不理想,掺杂浓度过高则会导致发光材料分子团聚,形成淬灭分子,最终降低器件的综合性能。所述空穴型主体材料起到基质的作用,提供空穴传输能力。本申请中所述空穴主导发光层中所述绿色有机发光材料优先选自具有式(Ⅱ1)结构的三(2-苯基吡啶)合铱(Ir(ppy)3)、具有式(Ⅱ2)结构的双(2-苯基吡啶)(乙酰丙酮)合铱(Ir(ppy)2(acac))、具有式(Ⅱ3)结构的三[2-(对-甲基苯基)吡啶]合铱(Ir(mppy)3)、具有式(Ⅱ4)结构的双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱(Ir(ppy)2(m-bppy))、具 有式(Ⅱ5)结构的三(2-(3-对二甲基苯)吡啶合铱(TEG)和具有式(Ⅱ6)结构的三(2-苯基-3-甲基-吡啶)合铱(Ir(3mppy)3)中的一种或多种;
所述空穴型有机主体材料优先选自具有式(III)结构的4,4’–N,N’–二咔唑二苯基(CBP)、具有式(IV)结构的1,3-二咔唑-9-基苯(mCP)、具有式(V)结构的9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑(SimCP)、具有式(VI)结构的1,3,5-三(9-咔唑基)苯(TCP)、具有式(VII)结构的4,4',4″–三(咔唑–9–基)三苯胺(TcTa)和具有式(VIII)结构的1,4-双(三苯基硅烷基)联苯(BSB)中的一种或多种;
Figure PCTCN2014091784-appb-000005
Figure PCTCN2014091784-appb-000006
Figure PCTCN2014091784-appb-000007
按照本发明,所述绿色有机电致发光器件中,所述衬底可以为玻璃衬底、石英衬底、多晶硅衬底、单晶硅衬底或石墨烯薄膜衬底,本申请没有特别的限制。所述阳极层优先选自铟锡氧化物(ITO),其面阻优选为5~25Ω。所述阳极修饰层能够降低驱动电压,加速空穴的注入,所述阳极修饰层优选采用氧化钼(MoO3)。
本申请中所述空穴传输-电子阻挡层的作用是传输空穴并阻挡电子。所述空穴传输-电子阻挡层的材料优先选自具有式(Ⅰ1)结构的4,4'-环己基二[N,N–二(4-甲基苯基)苯胺](TAPC)、具有式(Ⅰ2)结构的二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基(HAT-CN)、具有式(Ⅰ3)结构的N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺(VNPB)、具有式(Ⅰ4)结构的N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴(Spiro-TPD)、具有式(Ⅰ5)结构的N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯(HMTPD)、具有式(Ⅰ6)结构的2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯(3DTAPBP)、具有式(Ⅰ7)结构的N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯(β-NPB)、具有式(Ⅰ8)结构的N,N'-二(萘-1基)-N,N'-二苯基-2,7-二氨基-9,9-螺双芴(Spiro-NPB)、具有式(Ⅰ9)结构的N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴(DMFL-TPD)、具有式(Ⅰ10)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴(DMFL-NPB)、具有式(Ⅰ11)结构的N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴(DPFL-TPD)、具有式(Ⅰ12)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴(DPFL-NPB)、具有式(Ⅰ13)结构的N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯(α-NPD)、具有式(Ⅰ14)结构的2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴 (Spiro-TAD)、具有式(Ⅰ15)结构的9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴(NPAPF)、具有式(Ⅰ16)结构的9,9-[4-(N-萘-1基-N-苯胺)-苯基]-9H-芴(NPBAPF)、具有式(Ⅰ17)结构的2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴(2,2'-Spiro-DBP)、具有式(Ⅰ18)结构的2,2’-双(N,N-苯氨基)-9,9-螺双芴(Spiro-BPA)、具有式(Ⅰ19)结构的N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)和具有式(Ⅰ20)结构的4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基(TPD)中的一种或多种;
Figure PCTCN2014091784-appb-000008
Figure PCTCN2014091784-appb-000009
Figure PCTCN2014091784-appb-000010
按照本发明所述空穴阻挡-电子传输层的作用是阻挡空穴并传输电子,促进电子的注入。所述空穴阻挡-电子传输层的材料优先选自具有式(XIV)结构的三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷(3TPYMB)、具有式(XV)结构的1,3,5-三[(3-吡啶)-3-苯基]苯(TmPyMB)、具有式(XVI)结构的1,3-双[3,5-二(3-吡啶基)苯基]苯(BmPyPhB)和具有式(XVII)结构的1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBi)中的一种或多种;
Figure PCTCN2014091784-appb-000011
本申请中所述阴极修饰层的作用是降低驱动电压,加速电子的注入,所述阴极修饰层优选为氟化锂。所述阴极层优选为铝。
本申请对所述空穴传输-电子阻挡层的材料、绿色有机发光材料、空 穴有机主体材料、有机敏化材料、电子型有机主体材料以及空穴阻挡-电子传输层的材料的来源均没有特别的限制,按照本领域技术人员熟知的方式制备即可得到。
本申请中所述阳极层与所述阴极层相互交叉形成器件的发光区,本申请所述绿色有机电致发光器件中每层的厚度对所述器件的影响也是很大的,若厚度偏低则会导致器件效率衰减加快,若厚度偏高则会导致器件工作电压高、寿命低。因此所述阳极修饰层的厚度优选为1~10nm,空穴传输-电子阻挡层的厚度优选为30~60nm,空穴主导发光层的厚度优选为5~20nm,电子主导发光层的厚度优选为5~20nm,空穴阻挡-电子传输层的厚度优选为30~60nm,阴极修饰层的厚度优选为0.8~1.2nm,阴极层的厚度优选为90~300nm。
本申请还提供了所述绿色有机电致发光器件的制备方法,包括:
将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
所述空穴主导发光层由绿色有机发光材料与空穴型有机主体材料混合而成;
所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料;
所述有机敏化材料选自具有式(Ⅸ)结构的三(乙酰丙酮)合铽和具有式(Ⅹ)结构的三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%;
Figure PCTCN2014091784-appb-000012
Figure PCTCN2014091784-appb-000013
按照本发明,所述绿色有机电致发光器件的制备方法具体为:
先将衬底上的阳极层激光刻蚀成条状的电极,然后依次用清洗液、去离子水超声清洗10~20min并放入烘箱烘干;
将烘干后的衬底放入预处理真空室,在真空度为8~15Pa的氛围下用350~500V的电压对其进行1~10min的低压等离子处理后把它转移到有机蒸镀室;
待真空度达到1~2×10-5Pa时,依次在阳极层上蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层;未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下依次蒸镀阴极修饰层和金属阴极层。
在制备绿色有机电致发光器件的过程中,本申请通过控制蒸发速率实现材料的沉积。按照本发明,所述阳极修饰层蒸发速率控制在0.01~0.05nm/s,空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层中主体材料的蒸发速率控制在0.05~0.1nm/s,有机敏化材料的蒸发速率控制在0.00005~0.0005nm/s,绿色有机发光材料的蒸发速率控制在0.0025~0.01nm/s,阴极修饰层的蒸发速率控制在0.005~0.05nm/s,金属阴极层蒸发速率控制在0.5~2.0nm/s。其中蒸镀空穴主导发光层时,其中绿色有机发光材料、空穴型有机主体材料在不同的蒸发源中同时蒸发,通过调控两种材料的蒸发速率使得掺杂的绿色有机发光材料和空穴型有机主体材料的重量比控制在5.0%~10.0%之间;蒸镀电子主导发光层时,其中有机敏化材料、绿色有机发光材料、电子型有机主体材料在不同的蒸发源中同时蒸发,通过调控三种材料的蒸发速率使得掺杂的有机敏化材料和电子型有机主体材料的质量比控制在0.1%~0.5%之间,使得掺杂的绿色有机发光材料和电子型有机主体材料的质量比控制在5.0%~10.0% 之间。
本申请提供了一种绿色有机电致发光器件,所述绿色有机电致发光器件中的电子主导发光层中选择具有匹配的能级分布的稀土配合物,例如Tb(acac)3或者Tb(acac)3phen作为有机敏化材料,其起到电子深束缚中心的作用,有利于平衡载流子的分布、拓宽器件的发光区间,从而提高器件的发光效率、降低器件的工作电压、延缓器件的效率衰减、提高器件的工作寿命;并且,所述有机敏化材料具有匹配的三重态能量,起到能量传递阶梯的作用,能够加速从主体材料到发光材料的能量传递,缓解发光材料载流子俘获能力不足导致的主体材料发光问题,从而提高器件的光谱稳定性、降低器件性能对发光材料掺杂浓度的依赖。
为了进一步理解本发明,下面结合实施例对本发明提供的绿色有机电致发光器件及其制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
如图1所示,图1为本发明绿色有机电致发光器件的结构示意图,其中1为玻璃衬底,2为阳极层,3为阳极修饰层,4为空穴传输-电子阻挡层,5为空穴主导发光层,6为电子主导发光层,7为空穴阻挡-电子传输层,8为阴极修饰层,9为金属阴极层。
实施例1
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚Ir(ppy)3掺杂TcTa的空穴主导发光层5、10nm厚Tb(acac)3phen与Ir(ppy)3共掺杂CzSi的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为 ITO/MoO3/TAPC/Ir(ppy)3(7%):TcTa/Tb(acac)3phen(0.2%):Ir(ppy)3(7%):CzSi/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(ppy)3和TcTa的蒸发速率分别控制在0.0035nm/s和0.05nm/s,电子主导发光层6中Tb(acac)3phen、Ir(ppy)3和CzSi的蒸发速率分别控制在0.0001nm/s、0.0035nm/s和0.05nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.005nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
如图2所示,图2为本实施例制备的绿色有机电致发光器件的电压-电流密度-亮度特性曲线,图2中○曲线为器件的电流密度-电压曲线,□曲线为器件的亮度-电压曲线,根据图2可知,器件的亮度随着电流密度和驱动电压的升高而升高,器件的起亮电压为2.8伏,在电压为9.6伏、电流密度为512.37毫安每平方厘米(mA/cm2)时器件获得最大亮度128905坎德拉每平方米(cd/m2)。
如图3所示,图3为本实施例制备的绿色有机电致发光器件的电流密度-功率效率-电流效率特性曲线,根据图3可知,器件的最大电流效率为126.60cd/A,最大功率效率为141.97lm/W。
如图4所示,图4为本发明提供的绿色有机电致发光器件在亮度为20000cd/m2时的光谱图,根据图4可知,光谱主峰位于515纳米。器件色坐标为(0.254,0.651)。
实施例2
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚Ir(ppy)3掺杂mCP的空穴主导发光层5、10nm厚Tb(acac)3phen与Ir(ppy)3共掺杂 26DCzPPy的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)3(7%):mCP/Tb(acac)3phen(0.2%):Ir(ppy)3(7%):26DCzPPy/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(ppy)3和mCP的蒸发速率分别控制在0.0035nm/s和0.05nm/s,电子主导发光层6中Tb(acac)3phen、Ir(ppy)3和26DCzPPy的蒸发速率分别控制在0.0001nm/s、0.0035nm/s和0.05nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.005nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
检测本实施例制备的绿色有机电致发光器件的性能,实验结果表明,在直流电源驱动下,器件发射位于515纳米左右的绿光。当亮度为20000cd/m2时,器件的色坐标为(0.252,0.654);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为2.9伏,器件的最大亮度为126589cd/m2。器件的最大电流效率为125.22cd/A,最大功率效率为135.58lm/W。
实施例3
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚Ir(ppy)3掺杂TcTa的空穴主导发光层5、10nm厚Tb(acac)3与Ir(ppy)3共掺杂26DCzPPy的电子主导发光层6和40nm厚的TmPyPB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在 LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)3(7%):TcTa/Tb(acac)3(0.3%):Ir(ppy)3(7%):26DCzPPy/TmPyPB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.05nm/s,空穴主导发光层5中Ir(ppy)3和TcTa的蒸发速率分别控制在0.0035nm/s和0.05nm/s,电子主导发光层6中Tb(acac)3、Ir(ppy)3和26DCzPPy的蒸发速率分别控制在0.0003nm/s、0.007nm/s和0.1nm/s,空穴阻挡-电子传输层7中TmPyPB的蒸发速率控制在0.05nm/s,阴极修饰层8中LiF的蒸发速率控制在0.005nm/s,金属阴极层9中Al的蒸发速率控制在1.0nm/s。
检测本实施例制备的绿色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于515纳米左右的绿光。当亮度为20000cd/m2时,器件的色坐标为(0.258,0.647);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为2.9伏,器件的最大亮度为118966cd/m2。器件的最大电流效率为125.68cd/A,最大功率效率为136.08lm/W。
实施例4
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀5nm厚的MoO3阳极修饰层3、30nm厚的TAPC空穴传输-电子阻挡层4、15nm厚Ir(ppy)3(acac)掺杂mCP的空穴主导发光层5、15nm厚Tb(acac)3与Ir(ppy)3(acac)共掺杂26DCzPPy的电子主导发光层6和35nm厚的3TPYMB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.1nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀250nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)3(acac)(7%):mCP/Tb(acac)3(0.1%):Ir(ppy)3(acac)(7%):26DCzPPy/3TPYMB/LiF/Al的有机电致发光器件。阳 极修饰层3中MoO3的蒸发速率控制在0.02nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.06nm/s,空穴主导发光层5中Ir(ppy)3(acac)和mCP的蒸发速率分别控制在0.007nm/s和0.1nm/s,电子主导发光层6中Tb(acac)3、Ir(ppy)3(acac)和26DCzPPy的蒸发速率分别控制在0.0001nm/s、0.007nm/s和0.1nm/s,空穴阻挡-电子传输层7中3TPYMB的蒸发速率控制在0.08nm/s,阴极修饰层8中LiF的蒸发速率控制在0.008nm/s,金属阴极层9中Al的蒸发速率控制在0.9nm/s。
检测本实施例制备的绿色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于515纳米左右的绿光。当亮度为20000cd/m2时,器件的色坐标为(0.255,0.649);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为2.9伏,器件的最大亮度为109116cd/m2。器件的最大电流效率为121.17cd/A,最大功率效率为131.20lm/W。
实施例5
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀6nm厚的MoO3阳极修饰层3、50nm厚的TAPC空穴传输-电子阻挡层4、12nm厚Ir(mppy)3掺杂TCP的空穴主导发光层5、16nm厚Tb(acac)3phen与Ir(mppy)3共掺杂UGH2的电子主导发光层6和45nm厚的BmPyPhB空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.1nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀240nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(mppy)3(6%):TCP/Tb(acac)3phen(0.3%):Ir(mppy)3(6%):UGH2/BmPyPhB/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.01nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.08nm/s,空穴主导发光层5中Ir(mppy)3和TCP的蒸发速率分别控制在0.006nm/s和0.1nm/s,电子主导发光层6中Tb(acac)3phen、 Ir(mppy)3和UGH2的蒸发速率分别控制在0.0003nm/s、0.006nm/s和0.1nm/s,空穴阻挡-电子传输层7中BmPyPhB的蒸发速率控制在0.09nm/s,阴极修饰层8中LiF的蒸发速率控制在0.012nm/s,金属阴极层9中Al的蒸发速率控制在1.2nm/s。
检测本实施例制备的绿色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于515纳米左右的绿光。当亮度为20000cd/m2时,器件的色坐标为(0.255,0.652);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为2.9伏,器件的最大亮度为114598cd/m2。器件的最大电流效率为124.35cd/A,最大功率效率为134.64lm/W。
实施例6
先将ITO玻璃上的ITO阳极层激光刻蚀成条状电极,然后依次用清洗液、去离子水超声清洗15min并放入烘箱烘干。接着将烘干后的衬底放入预处理真空室,在真空度为10Pa的氛围下用400V的电压对ITO阳极进行3min的低压等离子处理后将其转移到有机蒸镀室。在真空度为1~2×10-5Pa的有机蒸镀室中,在ITO层上依次蒸镀3nm厚的MoO3阳极修饰层3、40nm厚的TAPC空穴传输-电子阻挡层4、10nm厚Ir(ppy)2(m-bppy)掺杂BSB的空穴主导发光层5、10nm厚Tb(acac)3phen与Ir(ppy)2(m-bppy)共掺杂BCBP的电子主导发光层6和40nm厚的TPBi空穴阻挡-电子传输层7。接下来,未完成的器件被转移到金属蒸镀室,在4~6×10-5Pa的真空氛围下蒸镀1.0nm厚的LiF阴极修饰层8,最后通过特制的掩模版在LiF层上蒸镀120nm厚的金属Al阴极层9,制备成结构为ITO/MoO3/TAPC/Ir(ppy)2(m-bppy)(7%):BSB/Tb(acac)3phen(0.3%):Ir(ppy)2(m-bppy)(7%):BCBP/TPBi/LiF/Al的有机电致发光器件。阳极修饰层3中MoO3的蒸发速率控制在0.02nm/s,空穴传输-电子阻挡层4中TAPC的蒸发速率控制在0.08nm/s,空穴主导发光层5中Ir(ppy)2(m-bppy)和BSB的蒸发速率分别控制在0.007nm/s和0.1nm/s,电子主导发光层6中Tb(acac)3phen、Ir(ppy)2(m-bppy)和BCBP的蒸发速率分别控制在0.0003nm/s、0.007nm/s和0.1nm/s,空穴阻挡-电子传输层7中TPBi的蒸发速率控制在0.08nm/s,阴极修饰层8中LiF的蒸发速率控制在0.02nm/s, 金属阴极层9中Al的蒸发速率控制在1.5nm/s。
检测本实施例制备的绿色有机电致发光器件的性能,实验结果表明,器件在直流电源驱动下,发射位于515纳米左右的绿光。当亮度为20000cd/m2时,器件的色坐标为(0.256,0.649);随着工作电压的变化,器件的色坐标几乎不变。器件的起亮电压为2.9伏,器件的最大亮度为109152cd/m2。器件的最大电流效率为120.88cd/A,最大功率效率为138.88lm/W。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种绿色有机电致发光器件,包括:
    衬底;
    复合于所述衬底上的阳极层;
    复合于所述阳极层上的阳极修饰层;
    复合于所述阳极修饰层上的空穴传输-电子阻挡层;
    复合于所述空穴传输-电子阻挡层上的空穴主导发光层;
    复合于所述空穴主导发光层上的电子主导发光层;
    复合于所述电子主导发光层上的空穴阻挡-电子传输层;
    复合于所述空穴阻挡-电子传输层上的阴极修饰层;
    复合于所述阴极修饰层上的阴极层;
    所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成;
    所述有机敏化材料选自三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
    所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
  2. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述绿色有机发光材料的含量为所述电子型有机主体材料的5wt%~10wt%。
  3. 根据权利要求1或2所述的绿色有机电致发光器件,其特征在于,所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种。
  4. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述电子型有机主体材料选自2,6-二[3-(9H-9-咔唑基)苯基]吡啶、1,4-双(三苯基硅烷基)苯、2,2’-双(4-(9-咔唑基)苯基)联苯、[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5- 二(3-吡啶基)苯基]苯、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、9-(4-特丁基苯基)-3,6-双(三苯基硅基)-9H-咔唑和9-(8-二苯基磷酰基)-二苯唑[b,d]呋喃-9H-咔唑中的一种或多种。
  5. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述空穴主导发光层由绿色有机发光材料和空穴型有机主体材料组成;所述绿色有机发光材料为所述空穴型有机主体材料的5.0wt%~10.0wt%;
    所述绿色有机发光材料选自三(2-苯基吡啶)合铱、双(2-苯基吡啶)(乙酰丙酮)合铱、三[2-(对-甲基苯基)吡啶]合铱、双(2-苯基吡啶)[2-(二苯基-3-基)吡啶]合铱、三(2-(3-对二甲基苯)吡啶合铱和三(2-苯基-3-甲基-吡啶)合铱中的一种或多种;
    所述空穴型有机主体材料选自4,4’-N,N’-二咔唑二苯基、1,3-二咔唑-9-基苯、9,9'-(5-(三苯基硅烷基)-1,3-苯基)二-9H-咔唑、1,3,5-三(9-咔唑基)苯、4,4',4″-三(咔唑-9-基)三苯胺和1,4-双(三苯基硅烷基)联苯中的一种或多种。
  6. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述空穴传输-电子阻挡层的材料选自4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、二吡嗪[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六腈基、N4,N4'-二(萘-1-基)-N4,N4'-双(4-乙烯基苯基)联苯-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-2,7-二胺-9,9-螺双芴、N,N,N',N'-四-(3-甲基苯基)-3-3’-二甲基对二氨基联苯、2,2'-二(3-(N,N-二-对甲苯氨基)苯基)联苯、N,N'-二(萘-2-基)-N,N'-二(苯基)二氨基联苯、N,N'-二(萘-1基)-N,N'–二苯基-2,7-二氨基-9,9-螺双芴、N,N'-二(3-甲基苯基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二甲基芴、N,N'–二(3-甲基苯基)-N,N'–二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,7-二氨基-9,9-二苯基芴、N,N'-二(萘-1-基)-N,N'-二苯基-2,2’-二甲基二氨基联苯、2,2',7,7'-四(N,N-二苯基氨基)-2,7-二氨基-9,9-螺双芴、9,9-二[4-(N,N–二萘-2-基-氨基)苯基]-9H-芴、9,9-[4-(N-萘-1基-N-苯胺)-苯基]-9H-芴、2,2’-二[N,N-二(4-苯基)氨基]-9,9-螺双芴、2,2’-双(N,N- 苯氨基)-9,9-螺双芴、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺和4,4’-二[N-(对-甲苯基)-N-苯基-氨基]二苯基中的一种或多种。
  7. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述空穴阻挡-电子传输层的材料选自三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷、1,3,5-三[(3-吡啶)-3-苯基]苯、1,3-双[3,5-二(3-吡啶基)苯基]苯和1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯中的一种或多种。
  8. 根据权利要求1所述的绿色有机电致发光器件,其特征在于,所述阳极修饰层的厚度为1~10nm,所述空穴传输-电子阻挡层的厚度为30~60nm,所述空穴主导发光层的厚度为5~20nm,所述电子主导发光层的厚度为5~20nm,所述空穴阻挡-电子传输层的厚度为30~60nm,所述阴极修饰层的厚度为0.8~1.2nm,所述阴极层的厚度为90~300nm。
  9. 一种绿色有机电致发光器件的制备方法,包括:
    将衬底上的阳极层进行刻蚀,烘干后在所述阳极层上依次蒸镀阳极修饰层、空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层、空穴阻挡-电子传输层、阴极修饰层与阴极层;
    所述电子主导发光层由有机敏化材料、绿色有机发光材料与电子型有机主体材料组成;
    所述有机敏化材料选自三(乙酰丙酮)合铽和三(乙酰丙酮)林菲罗啉合铽中的一种或两种;
    所述有机敏化材料为所述电子型有机主体材料的0.1wt%~0.5wt%。
  10. 根据权利要求9所述的制备方法,其特征在于,所述阳极修饰层的蒸发速率为0.01~0.05nm/s,所述空穴传输-电子阻挡层、空穴主导发光层、电子主导发光层与空穴阻挡-电子传输层中主体材料的蒸发速率为0.05~0.1nm/s,所述电子主导发光层中的有机敏化材料的蒸发速率为0.00005~0.0005nm/s,所述电子主导发光层与空穴主导发光层中的绿色发光材料的蒸发速率为0.0025~0.01nm/s,所述阴极修饰层的蒸发速率为0.005~0.05nm/s,所述阴极层的蒸发速率为0.5~2.0nm/s。
PCT/CN2014/091784 2014-10-30 2014-11-20 一种绿色有机电致发光器件及其制备方法 WO2016065680A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410611892.9A CN104393182B (zh) 2014-10-30 2014-10-30 一种绿色有机电致发光器件及其制备方法
CN201410611892.9 2014-10-30

Publications (1)

Publication Number Publication Date
WO2016065680A1 true WO2016065680A1 (zh) 2016-05-06

Family

ID=52611051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091784 WO2016065680A1 (zh) 2014-10-30 2014-11-20 一种绿色有机电致发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN104393182B (zh)
WO (1) WO2016065680A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104900815A (zh) * 2015-05-26 2015-09-09 京东方科技集团股份有限公司 双层掺杂磷光发光器件及其制备方法
CN114361355A (zh) * 2022-01-10 2022-04-15 中国科学院长春应用化学研究所 一种顶发射绿色有机电致发光器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037190A (en) * 1998-11-13 2000-03-14 Industrial Technology Research Institute Method for fabricating an organic electro-luminescent device
CN102437292A (zh) * 2011-11-25 2012-05-02 中国科学院长春应用化学研究所 绿色有机电致发光器件及其制备方法
CN103219471A (zh) * 2013-04-09 2013-07-24 吉林大学 基于半透明复合阴极的顶发射有机电致发光器件及其制备方法
CN103865526A (zh) * 2014-04-03 2014-06-18 吉林大学 基于菲并咪唑衍生物的主体材料及电致发光器件
CN103928627A (zh) * 2013-01-11 2014-07-16 海洋王照明科技股份有限公司 一种修饰氧化铟锡阳极及其制备方法和有机电致发光器件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105679953A (zh) * 2008-09-05 2016-06-15 株式会社半导体能源研究所 发光元件、发光器件和电子器件
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
JP5694019B2 (ja) * 2011-03-17 2015-04-01 株式会社東芝 有機電界発光素子、表示装置および照明装置
CN102983286B (zh) * 2012-12-18 2016-03-23 中国科学院长春应用化学研究所 绿色有机电致发光器件及其制备方法
KR102233619B1 (ko) * 2013-03-26 2021-03-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037190A (en) * 1998-11-13 2000-03-14 Industrial Technology Research Institute Method for fabricating an organic electro-luminescent device
CN102437292A (zh) * 2011-11-25 2012-05-02 中国科学院长春应用化学研究所 绿色有机电致发光器件及其制备方法
CN103928627A (zh) * 2013-01-11 2014-07-16 海洋王照明科技股份有限公司 一种修饰氧化铟锡阳极及其制备方法和有机电致发光器件
CN103219471A (zh) * 2013-04-09 2013-07-24 吉林大学 基于半透明复合阴极的顶发射有机电致发光器件及其制备方法
CN103865526A (zh) * 2014-04-03 2014-06-18 吉林大学 基于菲并咪唑衍生物的主体材料及电致发光器件

Also Published As

Publication number Publication date
CN104393182B (zh) 2017-04-19
CN104393182A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
WO2016065677A1 (zh) 一种红色有机电致发光器件及其制备方法
WO2016065681A1 (zh) 一种白色有机电致发光器件及其制备方法
JP5778689B2 (ja) 高効率の青色発光層を備えるoled
KR102104978B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
JP6825137B2 (ja) 青色有機エレクトロルミネッセンスデバイスおよびその製造方法
WO2016065678A1 (zh) 一种蓝色有机电致发光器件及其制备方法
CN110492007B (zh) 一种吖啶化合物及其在机电致发光器件中的应用
CN108832008B (zh) 激基复合物在有机发光二极管中的应用
CN111916569B (zh) 一种全荧光型白光有机发光二极管及其制备方法
Liu et al. Improved color quality in double-EML WOLEDs by using a tetradentate Pt (II) complex as a green/red emitter
EP3570341B1 (en) White organic electroluminescent device and preparation method therefor
KR101730554B1 (ko) 유기전계 발광소자
Li et al. High performance pure blue organic fluorescent electroluminescent devices by utilizing a traditional electron transport material as the emitter
WO2016065680A1 (zh) 一种绿色有机电致发光器件及其制备方法
CN111740020A (zh) 一种高效长寿命的蓝光器件
WO2016065679A1 (zh) 一种黄色有机电致发光器件及其制备方法
CN105633303A (zh) 一种有机磷光器件的制备方法
TWI406441B (zh) 白光有機發光二極體構造
TW201316583A (zh) 白光有機發光二極體構造
CN117750796A (zh) 一种白色有机电致发光器件及其制备方法
CN114361355A (zh) 一种顶发射绿色有机电致发光器件及其制备方法
Seo et al. Codoped spacer ratio effect on electroluminescence characteristics of hybrid white organic light-emitting diodes for reduced efficiency roll-off

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904638

Country of ref document: EP

Kind code of ref document: A1