WO2016063866A1 - 電源制御装置および情報処理装置 - Google Patents

電源制御装置および情報処理装置 Download PDF

Info

Publication number
WO2016063866A1
WO2016063866A1 PCT/JP2015/079549 JP2015079549W WO2016063866A1 WO 2016063866 A1 WO2016063866 A1 WO 2016063866A1 JP 2015079549 W JP2015079549 W JP 2015079549W WO 2016063866 A1 WO2016063866 A1 WO 2016063866A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
battery
voltage value
unit
capacitor
Prior art date
Application number
PCT/JP2015/079549
Other languages
English (en)
French (fr)
Inventor
覚 諏訪部
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to KR1020177001693A priority Critical patent/KR20170020498A/ko
Priority to CN201580044151.XA priority patent/CN106663962A/zh
Priority to SG11201702878RA priority patent/SG11201702878RA/en
Publication of WO2016063866A1 publication Critical patent/WO2016063866A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • Embodiments described herein relate generally to a power supply control device and an information processing device.
  • Information processing devices used in the industrial system field such as communication equipment, broadcasting equipment, and factory equipment are required to have high reliability. For this reason, by providing an auxiliary power supply device inside or outside the information processing device, even if a power failure or power supply trouble occurs during system operation, by backing up the power supply to the information processing device for a certain period of time, The system is continuously operated to prevent failures such as program and data destruction.
  • Rechargeable secondary batteries are generally used for batteries used in auxiliary power supplies. Secondary batteries include lead storage batteries, nickel cadmium batteries, nickel metal hydride batteries, lithium ion batteries, and the like, and these secondary batteries have a problem that their lifetimes become shorter as the number of charge / discharge cycles increases.
  • the problem to be solved by the present invention is to provide a power supply control device and an information processing device that can extend the battery life.
  • a power supply control apparatus is a power supply control apparatus that receives power supply from an external power supply and supplies power to a system control unit of the information processing apparatus, and the power supply from the external power supply A capacitor that receives and stores electricity, a battery that is charged by receiving power from the external power supply, and an external power supply monitor that determines whether or not the voltage value of the external power supply is equal to or lower than a predetermined first reference voltage value And the external power supply monitoring unit determine that the power supply to the system control unit is changed from the power supply by the external power supply to the capacitor when the voltage value of the external power supply is determined to be equal to or lower than a predetermined first reference voltage value.
  • the capacitor monitoring unit determines that the charge amount of the capacitor is equal to or less than a predetermined reference charge amount
  • the power supply to the system control unit is changed from the power supply by the capacitor to the power supply by the battery.
  • a power supply unit that supplies output power from the second switching unit to the system control unit.
  • the information processing apparatus is an information processing apparatus including a system control unit and a power control device that receives power from an external power source and supplies power to the system control unit.
  • a capacitor that is charged by receiving power from the external power source, a battery that is charged by receiving power from the external power source, and whether the voltage value of the external power source is equal to or lower than a predetermined first reference voltage value
  • An external power supply monitoring unit for determining whether or not the external power supply monitoring unit determines that the voltage value of the external power supply is equal to or lower than a predetermined first reference voltage value.
  • a first switching unit that switches from power supply by an external power supply to power supply by a capacitor, and a condenser that determines whether or not the charge amount of the capacitor is equal to or less than a predetermined reference charge amount
  • the power supply to the system control unit is A second switching unit that switches from power supply to power supply by a battery; and a power supply unit that supplies output power from the second switching unit to the system control unit.
  • FIG. 1 is a configuration diagram of an information processing apparatus including a power supply control apparatus according to the first embodiment.
  • FIG. 2 is a flowchart of power backup by the power control apparatus according to the first embodiment.
  • FIG. 3 is a configuration diagram of an information processing apparatus including the power supply control apparatus according to the second embodiment.
  • FIG. 4 is a flowchart of power backup by the power control apparatus according to the second embodiment.
  • FIG. 5 is a configuration diagram of an information processing apparatus including a power supply control device according to the third embodiment.
  • FIG. 1 is a configuration diagram of an information processing apparatus including a power supply control device according to a first embodiment.
  • the information processing apparatus 1 includes a power supply control device 19 and a system control unit 20.
  • the power supply control device 19 is a power supply control device that converts an external AC power supply (commercial power supply, AC) into a DC power supply and supplies the DC power to the system control unit 20.
  • the power supply control device 19 includes a power supply unit 2, an EDLC (Electric Double Layer Capacitor) 7, an EDLC switching circuit 11 (first switching unit), an EDLC monitoring circuit 13, and a battery (secondary battery) 8.
  • the battery switching circuit 12 (second switching unit) is provided.
  • the system control unit 20 is a processing unit that performs system control by a CPU or LSI.
  • the system control unit 20 includes a CPU board 3, a hard disk drive 4, an optical drive 5, and a cooling fan 6.
  • the power supply unit 2 includes an AC / DC conversion circuit 9 and an AC power supply monitoring circuit 10.
  • the AC / DC conversion circuit 9 is a circuit that rectifies AC power, which is commercial power input from the outside, and converts it into DC power.
  • the output of the AC / DC conversion circuit 9 is connected to an EDLC switching circuit 11 described later.
  • the AC power supply monitoring circuit 10 (external power supply monitoring unit) determines whether or not the AC power supply voltage of the AC power supply has dropped below a preset AC power supply determination reference voltage value (first reference voltage value). This is a circuit for monitoring whether or not the AC power supply has a voltage drop. When a voltage drop of the AC power supply is detected, the AC power supply monitoring circuit 10 outputs an AC power supply voltage drop detection signal as a detection signal to the EDLC switching circuit 11 described later.
  • the EDLC switching circuit 11 is a circuit for switching whether the DC power supplied to the system control unit 20 is the DC power from the AC / DC conversion circuit 9 or the DC power by the EDLC 7, and the EDLC 7 and a battery switching circuit described later. 12.
  • the AC power supply monitoring circuit 10 When the voltage drop of the AC power supply has not occurred, the AC power supply monitoring circuit 10 does not detect the voltage drop of the AC power supply, so the EDLC switching circuit 11 does not receive the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10.
  • the EDLC switching circuit 11 supplies DC power to the system control unit 20 via the battery switching circuit 12 by DC power from the AC / DC conversion circuit 9 and also stores power in the EDLC 7. Thereby, EDLC7 has a function as an electrical storage circuit.
  • the AC power supply monitoring circuit 10 detects the voltage drop of the AC power supply, so the EDLC switching circuit 11 receives the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10. At this time, the EDLC switching circuit 11 switches the DC power supply to the system control unit 20 via the battery switching circuit 12 to the DC power supply from the EDLC 7 instead of the DC power supply from the AC / DC conversion circuit 9.
  • the EDLC monitoring circuit 13 (capacitor monitoring unit) is a circuit that monitors the remaining amount of charge stored in the EDLC 7.
  • the EDLC monitoring circuit 13 supplies DC power from the EDLC 7 to the system control unit 20, when the remaining charge of the EDLC 7 falls below a predetermined reference charge amount (predetermined reference charge amount), An EDLC charge amount decrease detection signal indicating a decrease in the charge amount of the EDLC 7 is output to the battery switching circuit 12.
  • the battery switching circuit 12 supplies DC power to the system control unit 20 as DC power from the AC / DC conversion circuit 9, DC power from the EDLC 7, or DC power supply from the battery 8. And is connected to the battery 8 and various circuits of the system control unit 20.
  • the battery switching circuit 12 When the battery switching circuit 12 receives DC power from the AC / DC conversion circuit 9, the battery switching circuit 12 supplies DC power to the system control unit 20 and charges the battery 8.
  • the battery switching circuit 12 when the voltage drop of the AC power supply occurs, the DC power supply is supplied from the EDLC 7 and the EDLC charge amount drop detection signal is received from the EDLC monitoring circuit 13, the battery switching circuit 12 causes the DC power supply to the system control unit 20.
  • the supply is switched from the EDLC 7 to the battery 8 and switched to power backup by the battery 8. That is, the battery switching circuit 12 also functions as a power supply unit that supplies output power (DC power) to the system control unit 20.
  • the CPU board 3 of the system control unit 20 includes an internal control circuit 15, an expansion card 16, a DC power supply step-down circuit 17, a real time clock circuit (hereinafter referred to as RTC) / memory 18 (RTC and memory, RTC. Memory), and the like. . These circuits are supplied with DC power from the battery switching circuit 12.
  • the internal control circuit 15 is a circuit that controls the system by a CPU or LSI.
  • the expansion card 16 is a card with a built-in printed circuit board for expanding the function of the system control unit 20.
  • the DC power supply step-down circuit 17 is a circuit for supplying DC power to an RTC / memory 18 to be described later, and drops the voltage to the operating voltage of the RTC / memory 18.
  • the RTC / memory 18 is driven by a DC power source (not shown) such as a primary battery while DC power is not supplied to the system control unit 20 and the system of the information processing apparatus is stopped. A memory element holding data.
  • the RTC / memory 18 is supplied with a DC power source whose power source is stepped down by the DC power source step-down circuit 17.
  • a hard disk drive 4 an optical drive 5, and a cooling fan 6 are connected to the CPU board 3, and DC power is supplied from the battery switching circuit 12.
  • the EDLC detachable connector 21a is a connector to which the EDLC 7 is attached, and the EDLC 7 can be detached from the power supply control device 19 (EDLC switching circuit 11 (first switching unit)).
  • the battery detachable connector 21b is a connector for attaching the battery 8, and allows the battery 8 to be detached from the power supply control device 19 (battery switching circuit 12 (second switching unit)).
  • the system control unit 20 since the system control unit 20 is supplied with DC power from the battery switching circuit 12, the system control unit 20 becomes a load part for the power supply control device 19.
  • the EDLC 7 and the battery 8 can adjust the capacity of the DC power output from the EDLC 7 and the battery 8 according to the configuration (load) of the system control unit 20.
  • the capacity of the DC power output from the EDLC 7 and the battery 8 can be increased by increasing or replacing the EDLC 7 and the battery 8 with one having a large capacity. It can be changed.
  • a unit in which the EDLC 7 and the battery 8 are integrated may be configured so that the EDLC switching circuit 11 and the battery switching circuit 12 can be attached to and detached from the unit.
  • FIG. 2 is a flowchart of power backup of the power control apparatus according to the first embodiment. The operation of this embodiment will be described with reference to a flowchart.
  • the power supply control device converts AC power supplied from the outside into DC power.
  • the power supply unit 2 starts supplying the DC power converted by the AC / DC conversion circuit 9 to the system control unit 20 via the EDLC switching circuit 11 and the battery switching circuit 12 (step S1).
  • the system control unit 20 that has been supplied with the DC power supply starts an operating system (hereinafter referred to as OS) (step S2).
  • OS operating system
  • the AC power supply voltage is normal, and the DC power converted by the AC / DC conversion circuit 9 is supplied to the system control unit 20 and to the EDLC 7 via the EDLC switching circuit 11,
  • the battery 8 is charged and supplied to the battery 8 via the battery switching circuit 12 to charge the battery 8 (step S3).
  • the AC power supply monitoring circuit 10 monitors the state of the AC power supply, and determines whether or not the AC power supply voltage of the AC power supply has dropped below a preset AC power supply determination reference voltage value (first reference voltage value) (AC power supply). It is determined whether or not the voltage has dropped (step S4).
  • first reference voltage value AC power supply determination reference voltage value
  • the AC power supply Does not output the voltage drop detection signal. As a result, the supply of DC power from the AC / DC conversion circuit 9 to the EDLC 7, the battery 8, and the system control unit 20 is continued.
  • the AC power supply monitoring circuit 10 determines that the AC power supply voltage has dropped below the AC power supply determination reference voltage value (AC power supply voltage drop) (YES in step S4), the AC power supply voltage drop is applied to the EDLC switching circuit 11. A detection signal is output.
  • the EDLC switching circuit 11 When receiving the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10, the EDLC switching circuit 11 replaces the supply of DC power from the AC / DC conversion circuit 9 with the DC power supply of the EDLC 7 of the storage circuit from the system control unit 20. Power supply backup by the EDLC 7 is performed (step S5).
  • the EDLC monitoring circuit 13 monitors the charge capacity (remaining amount) of the EDLC 7 of the power storage circuit during power backup, and determines whether or not the capacity has fallen to a predetermined reference reference charge capacity or less (step S6). ).
  • the AC power supply monitoring circuit 10 determines that the capacity of the EDLC 7 exceeds the determination reference charge capacity (NO in step S6), and the AC power supply monitoring circuit 10 continues to determine that the AC power supply voltage has decreased. If yes (YES in step S7), the power backup from the EDLC 7 is continued. On the other hand, when the AC power supply monitoring circuit 10 detects a return of the AC power supply voltage, that is, the AC power supply monitoring circuit 10 has a value that the AC power supply voltage exceeds the AC power supply determination reference voltage value (first reference voltage value). When it is determined that the power has returned (NO in step S7), the AC power supply monitoring circuit 10 stops outputting the AC power supply voltage drop detection signal to the EDLC switching circuit 11.
  • the EDLC switching circuit 11 supplies the DC power to the system control unit 20 from the EDLC 7 of the power storage circuit to the AC / DC of the power supply unit 2.
  • the conversion circuit 9 is switched to return.
  • step S6 when the EDLC monitoring circuit 13 determines that the capacity of the EDLC 7 has fallen below the determination reference charge capacity (EDLC capacity reduction) (YES in step S6), the EDLC monitoring circuit 13 detects the battery switching circuit 12. An EDLC charge amount decrease detection signal is output as a signal.
  • the battery switching circuit 12 that has received the EDLC charge amount detection signal switches to supply DC power from the battery 8 instead of the EDLC 7, that is, switches to backup by the battery 8 (step S8).
  • DC power is supplied to the controller 20 (step S9). That is, steps S3 to S9 are a flow showing normal operation of the system.
  • the voltage drop of the AC power supply includes a power failure of less than 1 second (hereinafter referred to as an instantaneous power failure) and a power failure of 1 second or more in addition to the voltage drop.
  • an instantaneous power failure a power failure of less than 1 second
  • a power failure of 1 second or more in addition to the voltage drop.
  • the system controller 20 when the system controller 20 can be backed up only by power supply from the EDLC 7 such as a momentary power failure, the power can be backed up without supplying power from the battery 8.
  • instantaneous interruptions occur more frequently than power outages of 1 second or more, so that there are many opportunities for power supply using only the EDLC 7. From this, compared with the power supply of only the battery 8, the number of times of charging / discharging of the battery is reduced, so that the battery 8 has an effect of extending the life.
  • FIG. 3 shows the configuration of the second embodiment.
  • a battery monitoring circuit 14 battery monitoring unit
  • the battery monitoring circuit 14 monitors the voltage of the battery 8 when supplying DC power from the battery 8, and the voltage of the battery 8 is equal to or lower than a preset battery determination reference voltage value (second reference voltage value).
  • a battery voltage drop detection signal indicating a voltage drop of the battery 8 is output to the internal control circuit 15 of the CPU board 3. That is, the battery monitoring circuit 14 also functions as a notification unit.
  • the internal control circuit 15 is supplied with DC power from the battery 8 via the battery switching circuit 12 and controls the hard disk drive 4 and the optical drive 5.
  • the internal control circuit 15 receives the AC power supply voltage drop detection signal from the AC power supply monitor circuit 10 in the power supply unit 2 and receives the battery voltage drop detection signal from the battery monitor circuit 14, the internal control circuit 15 shuts down the OS, After the shutdown is completed, a DC power supply output control signal is output to the AC / DC conversion circuit 9 and the battery switching circuit 12 in the power supply unit 2 so as to stop the output of the DC power supply.
  • at least the OS shutdown process is included in the OS control process.
  • the RTC / memory 18 receives DC power from the battery switching circuit 12 and receives DC power that is stepped down by the DC power step-down circuit 17.
  • the EDLC 7 and the battery 8 can be detached from the power supply control device of the present embodiment, and the EDLC 7 and the battery 8 can be removed depending on the configuration (load) of the system control unit 20.
  • the capacity of the DC power output from the battery 8 may be adjusted.
  • the EDLC 7 and the battery 8 can be independently detached, and the capacity of the DC power output from the EDLC 7 and the battery 8 can be adjusted.
  • a unit in which the EDLC 7 and the battery 8 are integrated may be configured so as to be detachable in units.
  • FIG. 4 is a flowchart of power backup of the power control device of the second embodiment. The operation of this embodiment will be described with reference to a flowchart.
  • the flowchart of this embodiment is the same as that of the first embodiment from step S1 to step S9 until the power is supplied to the system control unit 20 by backup switching from the battery 8 of the first embodiment. Is omitted.
  • step S9 When the battery switching circuit 12 switches to backup by the battery 8 (step S8) and the DC power of the battery 8 is supplied to the system control unit 20 (step S9), the battery monitoring circuit 14 is in power backup. The voltage of the DC power supply of the battery 8 is monitored, and it is determined whether or not the voltage of the DC power supply of the battery 8 has dropped below the battery determination reference voltage value (second reference voltage value) (step S10).
  • the battery monitoring circuit 14 determines that the voltage of the battery 8 is higher than the battery determination reference voltage value (second reference voltage value) (NO in step S10), and the AC power supply monitoring circuit 10 determines that the AC power supply voltage is a voltage. When it is continuously determined that the voltage has decreased, that is, the AC power supply monitoring circuit 10 continues to determine that the AC power supply voltage is equal to or lower than the AC power supply determination reference voltage value (first reference voltage value). If yes (YES in step S11), the power backup for supplying DC power from the battery 8 is continued.
  • the AC power supply monitoring circuit 10 detects a return of the AC power supply voltage, that is, the AC power supply monitoring circuit 10 is a value at which the AC power supply voltage exceeds the AC power supply determination reference voltage value (first reference voltage value).
  • the AC power supply monitoring circuit 10 stops outputting the AC power supply voltage drop detection signal to the EDLC switching circuit 11 and the battery switching circuit 12.
  • the battery switching circuit 12 changes the DC power supply to the system control unit 20 from the DC power supply from the battery 8 to the power supply unit 2. Switching is made so that the DC power supply from the AC / DC conversion circuit 9 is restored.
  • step S10 when the battery monitoring circuit 14 determines that the voltage of the battery 8 is lower than the battery determination reference voltage value (second reference voltage value) (battery capacity reduction) (YES in step S10).
  • the battery monitoring circuit 14 outputs a battery voltage drop detection signal to the internal control circuit 15 in the CPU board 3.
  • the internal control circuit 15 that has received the battery voltage drop detection signal forcibly starts the OS shutdown process (step S12) and completes the OS shutdown process (step S13).
  • step S13 After completing the OS shutdown process (step S13), the AC power supply monitoring circuit 10 in the power supply unit 2 determines whether or not the voltage drop of the AC power supply continues (step S14).
  • the AC power supply monitoring circuit 10 determines that the AC power supply voltage is the AC power supply determination reference voltage value (first reference voltage value). This is a case where it is determined that the following is true (YES in step S14). In this case, the AC power supply monitoring circuit 10 outputs an AC power supply voltage drop detection signal to the internal control circuit 15.
  • the internal control circuit 15 that has received the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10 sets 1 to the address of the circuit connected to the CPU board 3, and then the DC power supply to the battery switching circuit 12 is stopped. Output control signal is output. Thereby, the supply of DC power to the system controller 20 by the battery 8 is stopped (step S16).
  • the AC power supply monitoring circuit 10 determines that the AC power supply has returned, that is, the AC power supply monitoring circuit 10 returns to a value where the AC power supply voltage exceeds the AC power supply determination reference voltage value (first reference voltage value). If it is determined that the AC power supply voltage is restored (NO in step S14), the AC power supply monitoring circuit 10 stops outputting the AC power supply voltage drop detection signal to the internal control circuit 15. When the output of the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10 is stopped, the internal control circuit 15 inputs 0 to the address of the circuit connected to the CPU board 3 and resets it (step S15).
  • step S1 the power supply unit 2 starts supplying the DC power to the system control unit 20 via the EDLC switching circuit 11 and the battery switching circuit 12 (step S1).
  • the internal control circuit 15 restarts the supply of DC power from the power supply unit 2 and restarts the OS (step S2). That is, steps S12 to S16 are a flow showing the system stop process.
  • the internal control circuit 15 determines that the voltage below the first reference voltage value and the voltage below the second reference voltage value are in the system.
  • a DC power supply output control signal for stopping power supply is output to the AC / DC conversion circuit 9 and the battery switching circuit 12 so as not to be applied to the control unit 20, and the supply of DC power to the system control unit 20 is temporarily stopped. May be.
  • the internal control circuit 15 stops outputting the DC power supply output control signal, restarts the supply of DC power from the power supply unit 2 (step S1), and can restart the OS (step S2).
  • the OS shutdown process is started (step S12).
  • a power saving state such as a mode or a hibernation state may be entered, the AC power supply may be waited for recovery, and if it does not recover, a shutdown process may be performed.
  • These OS control processes include at least an OS shutdown process.
  • the present embodiment has an effect of monitoring the voltage of the external power supply after the OS shutdown and automatically restarting the DC power output from the power supply unit 2 when it is determined that the power is restored. is there.
  • the present embodiment has an effect of avoiding a situation in which the power failure continues for a long time, a voltage drop due to insufficient power supply capacity of the battery 8 occurs, and the OS is not normally terminated. In addition, it is possible to avoid a reduction in the service life due to the battery 8 being completely discharged.
  • the system control unit 20 when the system control unit 20 can be backed up only by power supply from the EDLC 7 such as an instantaneous power failure, the power supply from the battery 8 is not supplied. You can make a backup. Therefore, the number of times of charging / discharging of the battery is reduced as compared with the power supply of only the battery 8, so that there is an effect of extending the life of the battery.
  • FIG. 5 shows the configuration of the third embodiment.
  • the present embodiment further includes a DC power supply switching circuit 22 (DC power supply switching unit) that directly supplies power to the RTC / memory 18 from the battery 8.
  • the DC power supply switching circuit 22 is for supplying DC power directly from the battery 8 to the RTC / memory 18 when a voltage drop below the first reference voltage value is detected in the AC power supply. Therefore, the same components as those of the second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the DC power supplied to the RTC / memory 18 is supplied via the battery switching circuit 12.
  • the AC power supply monitoring circuit 10 determines that the voltage drop of the AC power supply is lower than the AC power supply determination reference voltage value (first reference voltage value)
  • the AC power supply voltage drop detection signal is output from the AC power supply monitoring circuit 10. Is output to the DC power supply switching circuit 22.
  • the DC power supply switching circuit 22 receives the AC power supply voltage drop detection signal from the AC power supply monitoring circuit 10
  • the DC power supply switching circuit 22 directly connects the DC power supply of the battery 8 to the DC power supply step-down circuit without passing through the battery switching circuit 12. Switch to supply to 17.
  • the DC power source switching circuit 22 sends the DC power source to the RTC / memory 18 via the battery switching circuit 12. Switch to receive the supply.
  • the DC power source When the voltage of the AC power source continues to drop, the voltage of the battery 8 falls below the battery determination reference voltage value (second reference voltage value), and the internal control circuit 15 completes the OS shutdown process, the DC power source The switching circuit 22 performs switching so as to supply the DC power of the battery 8 directly to the DC power supply step-down circuit 17 from the battery 8. Since the RTC / memory 18 consumes less power than the internal control circuit 15 and the expansion card 16, the voltage of the battery 8 is set to the battery determination reference voltage value (second reference voltage value) while the information processing apparatus 1 is stopped. Even if the voltage is lower than the above, the data can be sufficiently retained even with the voltage due to the remaining capacity of the battery 8.
  • the power supply to the RTC / memory 18 is the power supply from the AC power supply, and the power supply from the battery switching circuit 12 is switched again.
  • the EDLC 7 and the battery 8 can be detached from the power supply control device of the present embodiment, depending on the configuration (load) of the system control unit 20.
  • the capacity of the DC power output from the EDLC 7 or the battery 8 may be adjusted.
  • the EDLC 7 and the battery 8 can be independently detached, and the capacity of the DC power output from the EDLC 7 and the battery 8 can be adjusted.
  • a unit in which the EDLC 7 and the battery 8 are integrated may be configured so as to be detachable in units.
  • the power supply control device exists in the same housing as the system control unit 20, but as a separate housing as an uninterruptible power supply connected from the outside. Also good.
  • the EDLC has been described.
  • the capacitor is not limited to the EDLC as long as it is a capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Sources (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 実施形態の電源制御装置は、外部電源の電圧値が所定の第1の基準電圧値以下になったか否かを判定する外部電源監視部と、外部電源監視部により外部電源の電圧値が所定の第1の基準電圧値以下と判定されたときに、システム制御部に対する電源供給を、外部電源による電源供給からコンデンサによる電源供給に切り替える第1の切替部と、コンデンサの電荷量が所定の基準電荷量以下になったか否かを判定するコンデンサ監視部と、コンデンサからの電源供給時において、コンデンサ監視部がコンデンサの電荷量が所定の基準電荷量以下になったと判定したときに、システム制御部に対する電源供給を、コンデンサによる電源供給からバッテリによる電源供給に切り替える第2の切替部とを具備している。

Description

電源制御装置および情報処理装置
 本発明の実施形態は、電源制御装置および情報処理装置に関する。
 通信機器や放送機器、工場設備などの産業システム分野で使用される情報処理装置は、高信頼性が求められている。このため、情報処理装置の内部または外部に補助電源装置を設けて、システム稼働中に停電や電源トラブルが発生した場合であっても、一定時間、情報処理装置に電源のバックアップをすることで、システムを継続動作させ、プログラムやデータの破壊などの障害発生を防止するようになっている。
 補助電源装置に使用されるバッテリには充電可能な2次電池が一般に使用されている。2次電池には鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウムイオン電池などがあり、これらの2次電池は、充放電回数が増えるほど寿命が短くなるという課題がある。
特開2010-16996号公報
 本発明が解決しようとする課題は、バッテリの長寿命化を可能とする電源制御装置および情報処理装置を提供することである。
 上記課題を解決するため、実施形態の電源制御装置は、外部電源から電源供給を受けて、情報処理装置のシステム制御部へ電源を供給する電源制御装置であって、上記外部電源から電源供給を受けて蓄電されるコンデンサと、上記外部電源から電源供給を受けて充電されるバッテリと、上記外部電源の電圧値が所定の第1の基準電圧値以下になったか否かを判定する外部電源監視部と、上記外部電源監視部により上記外部電源の電圧値が所定の第1の基準電圧値以下と判定されたときに、上記システム制御部に対する電源供給を、上記外部電源による電源供給から上記コンデンサによる電源供給に切り替える第1の切替部と、上記コンデンサからの電源供給時において、上記コンデンサの電荷量が所定の基準電荷量以下になったか否かを判定するコンデンサ監視部と、上記コンデンサ監視部がコンデンサの電荷量が所定の基準電荷量以下になったと判定したときに、上記システム制御部に対する電源供給を、上記コンデンサによる電源供給から上記バッテリによる電源供給に切り替える第2の切替部と、上記第2の切替部による出力電源を上記システム制御部に供給する電源供給部と、を具備している。
 また、実施形態の情報処理装置は、システム制御部と、外部電源から電源供給を受けて上記システム制御部へ電源を供給する電源制御装置とを備える情報処理装置であって、上記電源制御装置は、上記外部電源から電源供給を受けて蓄電されるコンデンサと、上記外部電源から電源供給を受けて充電されるバッテリと、上記外部電源の電圧値が所定の第1の基準電圧値以下になったか否かを判定する外部電源監視部と、上記外部電源監視部により上記外部電源の電圧値が所定の第1の基準電圧値以下と判定されたときに、上記システム制御部に対する電源供給を、上記外部電源による電源供給からコンデンサによる電源供給に切り替える第1の切替部と、上記コンデンサの電荷量が所定の基準電荷量以下になったか否かを判定するコンデンサ監視部と、上記コンデンサからの電源供給時において、上記コンデンサ監視部がコンデンサの電荷量が所定の基準電荷量以下になったと判定したときに、上記システム制御部に対する電源供給を、上記コンデンサによる電源供給からバッテリによる電源供給に切り替える第2の切替部と、上記第2の切替部による出力電源を上記システム制御部に供給する電源供給部とを具備している。
図1は、第1の実施形態である電源制御装置を備えた情報処理装置の構成図である。 図2は、第1の実施形態の電源制御装置による電源バックアップのフローチャート図である。 図3は、第2の実施形態である電源制御装置を備えた情報処理装置の構成図である。 図4は、第2の実施形態の電源制御装置による電源バックアップのフローチャート図である。 図5は、第3の実施形態である電源制御装置を備えた情報処理装置の構成図である。
 以下、実施形態の電源制御装置を備えた情報処理装置を図面を参照して説明する。
第1の実施形態
 図1は第1の実施形態である電源制御装置を備えた情報処理装置の構成図である。
 図1において情報処理装置1は、電源制御装置19とシステム制御部20とから構成されている。電源制御装置19は外部のAC電源(商用電源、AC)をDC電源に変換して、システム制御部20へDC電源の供給をする電源制御装置である。電源制御装置19は電源ユニット2、EDLC(電気二重層コンデンサ(Electric Double Layer Capacitor)、コンデンサ)7、EDLC切替回路11(第1の切替部)、EDLC監視回路13、バッテリ(2次電池)8、バッテリ切替回路12(第2の切替部)を備える。システム制御部20はCPUやLSIによりシステム制御を行う処理部である。システム制御部20はCPU基板3、ハードディスクドライブ4、光学ドライブ5、冷却ファン6を備える。
 電源ユニット2はAC/DC変換回路9とAC電源監視回路10を備える。AC/DC変換回路9は、外部より入力される商用電力であるAC電源を整流してDC電源に変換する回路である。AC/DC変換回路9の出力は後述のEDLC切替回路11に接続されている。AC電源監視回路10(外部電源監視部)は、AC電源のAC電源電圧が予め設定したAC電源判定基準電圧値(第1の基準電圧値)以下に低下したか否かを判定することで、AC電源が電圧低下をしているか否かを監視する回路である。AC電源の電圧低下が検出された場合、AC電源監視回路10は後述のEDLC切替回路11に、検出信号としてAC電源電圧低下検出信号を出力する。
 EDLC切替回路11はシステム制御部20へ供給するDC電源を、AC/DC変換回路9からのDC電源とするか、EDLC7によるDC電源とするかに切り替える回路であり、EDLC7と後述のバッテリ切替回路12とに接続されている。
 AC電源の電圧低下が発生していないとき、AC電源監視回路10がAC電源の電圧低下を検出しないため、EDLC切替回路11はAC電源監視回路10よりAC電源電圧低下検出信号を受信しない。そして、EDLC切替回路11は、AC/DC変換回路9からのDC電源によってバッテリ切替回路12を介してシステム制御部20にDC電源を供給すると共に、EDLC7に蓄電をする。これにより、EDLC7は蓄電回路としての機能を有する。一方、AC電源の電圧低下が発生した場合、AC電源監視回路10がAC電源の電圧低下を検出するため、EDLC切替回路11はAC電源監視回路10よりAC電源電圧低下検出信号を受信する。このとき、EDLC切替回路11は、バッテリ切替回路12を介したシステム制御部20へのDC電源供給を、AC/DC変換回路9からのDC電源に替えてEDLC7からのDC電源に切り替える。
 EDLC監視回路13(コンデンサ監視部)はEDLC7に蓄えられている電荷の残量を監視する回路である。EDLC監視回路13はEDLC7よりシステム制御部20へDC電源の供給をしているとき、EDLC7の電荷の残量が予め設定した判定基準電荷量以下(所定の基準電荷量以下)に低下した場合、バッテリ切替回路12にEDLC7の電荷量低下を示す、EDLC電荷量低下検出信号を出力する。
 バッテリ切替回路12はシステム制御部20へのDC電源の供給を、AC/DC変換回路9からのDC電源、若しくはEDLC7からのDC電源とするか、又は、バッテリ8によるDC電源の供給とするかを切り替える回路であり、バッテリ8とシステム制御部20の各種回路とに接続されている。
 バッテリ切替回路12はAC/DC変換回路9からDC電源を受けているとき、システム制御部20にDC電源を供給すると共に、バッテリ8に充電をする。一方、AC電源の電圧低下が発生し、EDLC7からDC電源が供給され、且つ、EDLC監視回路13からEDLC電荷量低下検出信号を受信した場合、バッテリ切替回路12はシステム制御部20へのDC電源供給を、EDLC7からバッテリ8に切り替え、バッテリ8による電源バックアップに切り替える。つまり、バッテリ切替回路12は、出力電源(DC電源)をシステム制御部20に供給する電源供給部としても機能する。
 システム制御部20のCPU基板3は、内部制御回路15、拡張カード16、DC電源降圧回路17、リアルタイムクロック回路(以下、RTCと称する)/メモリ18(RTCおよびメモリ、RTC.メモリ)などを備える。これらの回路は、バッテリ切替回路12からDC電源を供給されている。内部制御回路15はCPUやLSIによりシステムを制御する回路である。拡張カード16はシステム制御部20の機能を拡張するための、プリント基板を内蔵したカードである。DC電源降圧回路17は後述のRTC/メモリ18にDC電源を供給するための回路であり、RTC/メモリ18の動作電圧まで電圧を降下させる。RTC/メモリ18はシステム制御部20にDC電源が供給されておらず、情報処理装置のシステムが停止している間、1次電池などのDC電源(図示せず)にて駆動し、時間やデータを保持している記憶素子である。RTC/メモリ18はDC電源降圧回路17にて電源降圧したDC電源の供給を受けている。
 また、上記の回路のほかに、ハードディスクドライブ4、光学ドライブ5、冷却ファン6がCPU基板3に接続されており、バッテリ切替回路12からDC電源を供給されている。
 EDLC脱着用コネクタ21aはEDLC7を取り付けるコネクタであり、電源制御装置19(EDLC切替回路11(第1の切替部))からEDLC7の脱着を可能としている。また、バッテリ脱着用コネクタ21bはバッテリ8を取り付けるコネクタであり、電源制御装置19(バッテリ切替回路12(第2の切替部))からバッテリ8の脱着を可能としている。ここで、システム制御部20はバッテリ切替回路12からDC電源の供給を受けているため、電源制御装置19にとって、負荷の部分となる。EDLC7およびバッテリ8は、システム制御部20の構成(負荷)に応じてEDLC7やバッテリ8が出力するDC電源の容量を調整することが可能である。例えば、ハードディスクドライブ4や拡張カード16との接続数の増加に合わせて、EDLC7およびバッテリ8は増設や大容量のものとの交換を行うことで、EDLC7やバッテリ8が出力するDC電源の容量の変更が可能である。
 また、EDLC7およびバッテリ8は脱着の際、それぞれ独立して脱着可能であるとして、EDLC7やバッテリ8が出力するDC電源の容量調整を行うこともできる。また、EDLC7およびバッテリ8を一体としたユニットを構成して、ユニット単位でEDLC切替回路11及びバッテリ切替回路12に対して脱着を可能としてもよい。
 図2は第1の実施形態の電源制御装置の電源バックアップのフローチャート図である。本実施形態の作用についてフローチャート図を参照して説明する。
 本実施形態の電源制御装置は、電源ユニット2内のAC/DC変換回路9において外部から供給される電源のAC電源をDC電源に変換する。電源ユニット2はAC/DC変換回路9にて変換されたDC電源について、EDLC切替回路11及びバッテリ切替回路12を経てシステム制御部20に供給を開始する(ステップS1)。そして、DC電源の供給を受けたシステム制御部20はオペレーティングシステム(以下、OSと称する)を起動する(ステップS2)。この場合、AC電源電圧が正常であり、AC/DC変換回路9にて変換されたDC電源は、システム制御部20に供給されると共に、EDLC切替回路11を介してEDLC7に供給され、EDLC7に蓄電し、更にバッテリ切替回路12を介してバッテリ8へ供給され、バッテリ8を充電する(ステップS3)。
 また、AC電源監視回路10はAC電源の状態を監視し、AC電源のAC電源電圧が予め設定したAC電源判定基準電圧値(第1の基準電圧値)以下に低下したか否か(AC電源電圧が電圧低下したか否か)を判定している(ステップS4)。AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)以下に低下したと判定しない場合は、即ちAC電源電圧に電圧低下が認められないときは(ステップS4のNO)、AC電源電圧低下検出信号を出力しない。これにより、AC/DC変換回路9から、EDLC7、バッテリ8、システム制御部20へのDC電源の供給を継続させる。一方、AC電源監視回路10は、AC電源電圧がAC電源判定基準電圧値以下に低下した(AC電源電圧低下)と判定した場合は(ステップS4のYES)、EDLC切替回路11にAC電源電圧低下検出信号を出力する。
 EDLC切替回路11は、AC電源監視回路10からAC電源電圧低下検出信号を受信すると、AC/DC変換回路9からのDC電源の供給に替えて、蓄電回路のEDLC7のDC電源をシステム制御部20に供給することで、EDLC7による電源バックアップを行う(ステップS5)。
 続いて、EDLC監視回路13は、電源バックアップ中の蓄電回路のEDLC7の電荷の容量(残量)を監視し、予め設定した判定基準電荷容量以下の容量に低下したかどうかを判定する(ステップS6)。
 EDLC監視回路13において、EDLC7の容量が判定基準電荷容量よりも上回っていたと判定され(ステップS6のNO)、且つ、AC電源監視回路10においてAC電源電圧が電圧低下しているとの判定が継続している場合(ステップS7のYES)は、EDLC7からの電源バックアップを継続させる。一方、AC電源監視回路10においてAC電源電圧の復電を検出した場合、即ち、AC電源監視回路10が、AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)を上回る値に戻ったと判定した場合(ステップS7のNO)、AC電源監視回路10は、EDLC切替回路11へのAC電源電圧低下検出信号の出力を停止する。EDLC切替回路11はAC電源監視回路10からのAC電源電圧低下検出信号の出力が停止されると、システム制御部20へのDC電源供給を、蓄電回路のEDLC7から、電源ユニット2のAC/DC変換回路9に復帰をするよう切り替えをする。
 また、ステップS6において、EDLC監視回路13がEDLC7の容量が判定基準電荷容量以下に下回った(EDLC容量低下)と判定した場合(ステップS6のYES)、EDLC監視回路13はバッテリ切替回路12に検出信号としてEDLC電荷量低下検出信号を出力する。EDLC電荷量低下検出信号を受信したバッテリ切替回路12は、EDLC7に替えてバッテリ8からDC電源を供給するよう切り替えをし、即ち、バッテリ8によるバックアップに切り替えて(ステップS8)、バッテリ8からシステム制御部20にDC電源を供給する(ステップS9)。すなわち、ステップS3~ステップS9がシステムの正常動作を示すフローとなる。
 本実施形態について、AC電源の電圧低下とは電圧の低下のほかに、1秒未満の停電(以下、瞬停と称する)や1秒以上の停電も含めるものとする。また、他の実施形態においても同様とする。
 これにより本実施形態は瞬停などEDLC7からの電源供給のみでシステム制御部20のバックアップが可能な場合は、バッテリ8からの電源供給をすることなく、電源のバックアップをすることができる。また、一般に瞬停は1秒以上の停電より発生頻度が多いことから、EDLC7のみによる電源供給の機会が多くなる。このことから、バッテリ8のみの電源供給と比較して、バッテリの充放電回数が減少することから、バッテリ8の長寿命化を可能にする効果を有する。
第2の実施形態
 図3は第2の実施形態の構成を示したものである。本実施形態は第1の実施形態の電源制御装置にバッテリ監視回路14(バッテリ監視部)を付加した構成である。したがって、第1の実施形態と同様の構成には同様の符号を付し、その説明は省略する。バッテリ監視回路14は、バッテリ8からのDC電源を供給しているとき、バッテリ8の電圧を監視し、バッテリ8の電圧が予め設定したバッテリ判定基準電圧値(第2の基準電圧値)以下に低下した場合、CPU基板3の内部制御回路15にバッテリ8の電圧低下を示すバッテリ電圧低下検出信号を出力する。すなわち、バッテリ監視回路14は、通知部としても機能する。
 内部制御回路15は、バッテリ切替回路12を介してバッテリ8からDC電源を供給され、ハードディスクドライブ4、光学ドライブ5を制御している。内部制御回路15は、電源ユニット2内のAC電源監視回路10よりAC電源電圧低下検出信号を受信し、且つ、バッテリ監視回路14よりバッテリ電圧低下検出信号を受信した場合、OSをシャットダウンし、OSのシャットダウンが完了してから、DC電源の出力を停止するようDC電源出力制御信号を、電源ユニット2内のAC/DC変換回路9およびバッテリ切替回路12に出力する。ここで、少なくともOSのシャットダウンの処理はOSの制御処理に含まれるものとする。
 また、本実施形態においては、第1の実施形態と同様、RTC/メモリ18はバッテリ切替回路12からDC電源を受け、DC電源降圧回路17にて電源降圧させたDC電源の供給を受ける。
 さらに、本実施形態においては、第1の実施形態と同様、EDLC7およびバッテリ8は本実施形態の電源制御装置からの脱着を可能として、システム制御部20の構成(負荷)に応じて、EDLC7やバッテリ8が出力するDC電源の容量を調整することを可能としてもよい。脱着の際、EDLC7およびバッテリ8はそれぞれ独立して脱着可能として、EDLC7やバッテリ8が出力するDC電源の容量調整を行うこともできる。また、EDLC7およびバッテリ8を一体としたユニットを構成して、ユニット単位での脱着を可能としてもよい。
  図4は第2の実施形態の電源制御装置の電源バックアップのフローチャート図である。本実施形態の作用についてフローチャート図を参照して説明する。
 本実施形態のフローチャートは、第1の実施形態のバッテリ8からのバックアップ切り替えによるシステム制御部20への電源供給までのステップS1からステップS9までは、第1の実施形態と同じ処理であるので説明を省略する。
 バッテリ8によるバックアップをするようバッテリ切替回路12が切り替えをし(ステップS8)、システム制御部20にバッテリ8のDC電源を供給しているとき(ステップS9)、バッテリ監視回路14が、電源バックアップ中のバッテリ8のDC電源の電圧を監視し、バッテリ8のDC電源の電圧がバッテリ判定基準電圧値(第2の基準電圧値)以下に低下したかどうかを判定する(ステップS10)。
 バッテリ監視回路14において、バッテリ8の電圧がバッテリ判定基準電圧値(第2の基準電圧値)よりも上回っていたと判断され(ステップS10のNO)且つ、AC電源監視回路10においてAC電源電圧が電圧低下していると継続して判断されている場合、即ち、AC電源監視回路10が、AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)以下であるという判定を継続している場合(ステップS11のYES)はバッテリ8からDC電源を供給する電源バックアップを継続させる。
 一方、AC電源監視回路10が、AC電源電圧の復電を検出した場合、即ち、AC電源監視回路10が、AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)を上回る値に戻ったと判定した場合(ステップS11のNO)、AC電源監視回路10はEDLC切替回路11およびバッテリ切替回路12へのAC電源電圧低下検出信号の出力を停止する。バッテリ切替回路12はAC電源監視回路10からのAC電源電圧低下検出信号の出力が停止されると、システム制御部20へのDC電源供給を、バッテリ8からのDC電源供給から、電源ユニット2のAC/DC変換回路9からのDC電源供給に復帰をするよう切り替えをする。
 また、ステップS10において、バッテリ監視回路14が、バッテリ8の電圧がバッテリ判定基準電圧値(第2の基準電圧値)以下に下回っていた(バッテリ容量低下)と判断した場合(ステップS10のYES)は、バッテリ監視回路14はCPU基板3内の内部制御回路15にバッテリ電圧低下検出信号を出力する。バッテリ電圧低下検出信号を受信した内部制御回路15は、強制的にOSのシャットダウン処理を開始して(ステップS12)、OSのシャットダウン処理を完了させる(ステップS13)。OSのシャットダウン処理を完了させた後に(ステップS13)、電源ユニット2内のAC電源監視回路10は、AC電源の電圧低下 が継続しているか否かを判定する(ステップS14)。
 この判定において、AC電源電圧が電圧低下していると継続して判定されている場合とは、AC電源監視回路10は、AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)以下である、という判定を継続している場合である(ステップS14のYES)。この場合は、AC電源監視回路10はAC電源電圧低下検出信号を内部制御回路15に出力する。AC電源監視回路10よりAC電源電圧低下検出信号を受信した、内部制御回路15はCPU基板3に接続されている回路のアドレスに1をセットした後、バッテリ切替回路12に電源供給停止のDC電源出力制御信号を出力する。これにより、バッテリ8によるシステム制御部20へのDC電源の供給が停止される(ステップS16)。一方、AC電源監視回路10においてAC電源が復帰したと判定した場合、即ち、AC電源監視回路10が、AC電源電圧がAC電源判定基準電圧値(第1の基準電圧値)を上回る値に戻った(AC電源電圧が復電)と判定した場合(ステップS14のNO)、AC電源監視回路10は内部制御回路15へのAC電源電圧低下検出信号の出力を停止する。内部制御回路15はAC電源監視回路10からのAC電源電圧低下検出信号の出力が停止されると、CPU基板3に接続されている回路のアドレスに0を入力しリセットする(ステップS15)。その後、AC電源の復帰により、電源ユニット2はDC電源について、EDLC切替回路11及びバッテリ切替回路12を経てシステム制御部20に供給を開始する(ステップS1)。内部制御回路15は、電源ユニット2からDC電源の供給が再開され、OSを再起動する(ステップS2)。すなわち、ステップS12~ステップS16がシステムの停止処理を作を示すフローとなる。
 なお、OSシャットダウン処理が完了した後にAC電源が復帰した場合(ステップS14のNO)において、内部制御回路15は、第1の基準電圧値以下の電圧および第2の基準電圧値以下の電圧がシステム制御部20に印加されないように、AC/DC変換回路9およびバッテリ切替回路12に電源供給停止のDC電源出力制御信号を出力し、システム制御部20へのDC電源の供給を一時的に停止しても良い。その後、内部制御回路15はDC電源出力制御信号の出力を停止し、電源ユニット2からDC電源の供給が再開させ(ステップS1)、OSを再起動することができる(ステップS2)。
 また、本実施形態においては、内部制御回路15がバッテリ監視回路14よりバッテリ電圧低下検出信号を受信した場合、OSのシャットダウン処理を開始するとしたが(ステップS12)、シャットダウン処理をする前に、スリープモードや休止状態などの省電力状態にし、AC電源の回復を待ち、回復しなかった場合、シャットダウン処理をしても良い。これらのOSの制御処理には少なくともOSのシャットダウン処理が含まれるものとする。
 以上より、本実施形態は、OSシャットダウン後に、外部電源の電圧を監視し、復電していると判断した場合は自動的に電源ユニット2からのDC電源出力を再開することができるという効果がある。
 また、本実施形態は、停電が長時間継続し、バッテリ8の電源容量不足による電圧低下が生じ、OSが正常に終了されない事態を回避する効果を有する。また、バッテリ8が完全に放電されることにより寿命低下することも避けられる。
 更に、本実施形態は第1の実施形態と同様に、瞬停などEDLC7からの電源供給のみでシステム制御部20のバックアップが可能な場合は、バッテリ8からの電源供給をすることなく、電源のバックアップをすることができる。このことからバッテリ8のみの電源供給と比較して、バッテリの充放電回数が減少することから、バッテリの長寿命化を可能にする効果を有する。
第3の実施形態
 図5は第3の実施形態の構成を示したものである。本実施形態は第2の実施形態にさらに、RTC/メモリ18への電源供給をバッテリ8から直接供給する、DC電源切替回路22(DC電源切替部)を備えている。DC電源切替回路22は、AC電源に第1の基準電圧値を下回る、電圧低下が検出された場合に、バッテリ8からRTC/メモリ18へ直接DC電源を供給するためのものである。したがって、第2の実施形態と同様の構成には同様の符号を付し、その説明は省略する。
 外部のAC電源からDC電源供給が行われている場合、RTC/メモリ18へ供給されるDC電源はバッテリ切替回路12を介して供給されている。ここで、AC電源の電圧低下がAC電源判定基準電圧値(第1の基準電圧値)を下回るとAC電源監視回路10にて判定された場合、AC電源監視回路10からAC電源電圧低下検出信号がDC電源切替回路22に出力される。DC電源切替回路22は、AC電源監視回路10からのAC電源電圧低下検出信号を受けたときに、バッテリ切替回路12を経由せず、バッテリ8から直接、バッテリ8のDC電源をDC電源降圧回路17に供給するよう切り替えを行う。その後、AC電源の電圧がAC電源判定基準電圧値(第1の基準電圧値)よりも上回った場合は、DC電源切替回路22は、バッテリ切替回路12を介して、RTC/メモリ18へDC電源の供給をうけるよう切り替えを行う。
 また、AC電源の電圧低下が続き、バッテリ8の電圧がバッテリ判定基準電圧値(第2の基準電圧値)よりも下回わり、内部制御回路15がOSのシャットダウン処理を完了した場合、DC電源切替回路22は、バッテリ8から直接、バッテリ8のDC電源をDC電源降圧回路17に供給するよう切り替えを行う。RTC/メモリ18は内部制御回路15や拡張カード16と比べて消費電力が小さいため、情報処理装置1が停止している間、バッテリ8の電圧がバッテリ判定基準電圧値(第2の基準電圧値)よりも下回っていても、バッテリ8の残った容量による電圧でも充分にデータの保持が可能である。
 また、OSシャットダウン処理後、AC電源が復帰していた場合は、RTC/メモリ18への電源供給はAC電源からの電源供給とし、バッテリ切替回路12からの電源供給へと再び切り替えることとなる。
 これにより本実施形態は、情報処理装置の電源供給が停止した後でもバッテリ8からRTC/メモリ18への電源供給が可能となる。このため、一般に使用されている1次電池等を省くことが可能となる。
 本実施形態は、第1の実施形態および第2の実施形態と同様、EDLC7およびバッテリ8は本実施形態の電源制御装置からの脱着を可能として、システム制御部20の構成(負荷)に応じて、EDLC7やバッテリ8が出力するDC電源の容量を調整することを可能としてもよい。脱着の際、EDLC7およびバッテリ8はそれぞれ独立して脱着可能として、EDLC7やバッテリ8が出力するDC電源の容量調整を行うこともできる。また、EDLC7およびバッテリ8を一体としたユニットを構成して、ユニット単位での脱着を可能としてもよい。
 なお、第1の実施形態乃至第3の実施形態について、電源制御装置は、システム制御部20と同一筐体内に存在しているが、外部からの接続する無停電電源装置として独立した筐体としてもよい。
 また、第1の実施形態乃至第3の実施形態について、EDLCを挙げ説明したが、コンデンサであれば、EDLCに限定する必要はない。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、そのほかの様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (10)

  1.  外部電源から電源供給を受けて、情報処理装置のシステム制御部へ電源を供給する電源制御装置であって、
     前記外部電源から電源供給を受けて蓄電されるコンデンサと、
     前記外部電源から電源供給を受けて充電されるバッテリと、
     前記外部電源の電圧値が所定の第1の基準電圧値以下になったか否かを判定する外部電源監視部と、
     前記外部電源監視部により前記外部電源の電圧値が所定の第1の基準電圧値以下と判定されたときに、前記システム制御部に対する電源供給を、前記外部電源による電源供給から前記コンデンサによる電源供給に切り替える第1の切替部と、
     前記コンデンサからの電源供給時において、前記コンデンサの電荷量が所定の基準電荷量以下になったか否かを判定するコンデンサ監視部と、
     前記コンデンサ監視部が前記コンデンサの電荷量が前記所定の基準電荷量以下になったと判定したときに、前記システム制御部に対する電源供給を、前記コンデンサによる電源供給から前記バッテリによる電源供給に切り替える第2の切替部と、
     前記第2の切替部による出力電源を前記システム制御部に供給する電源供給部と、を備えた電源制御装置。
  2.  前記コンデンサは、前記第1の切替部と脱着可能である請求項1に記載の電源制御装置。
  3.  前記バッテリは、前記第2の切替部と脱着可能である請求項1又は請求項2に記載の電源制御装置。
  4.  前記第1の切替部に接続される前記コンデンサと、前記第2の切替部に接続される前記バッテリとが一体となったユニットを構成し、前記ユニットが前記第1の切替部および第2の切替部と脱着可能である、請求項1に記載の電源制御装置。
  5.  前記バッテリからの電源供給時において、前記バッテリの電圧値が所定の第2の基準電圧値以下になったか否かを判定するバッテリ監視部と前記バッテリ監視部が前記バッテリの電圧値が所定の第2の基準電圧値以下になったと判定したとき、判定結果をシステム制御部に出力する通知部と、をさらに備えた、請求項1乃至請求項4のいずれか1項に記載の電源制御装置。
  6.  システム制御部と、外部電源から電源供給を受けて前記システム制御部へ電源を供給する電源制御装置とを備える情報処理装置であって、
     前記電源制御装置は、前記外部電源から電源供給を受けて蓄電されるコンデンサと、前記外部電源から電源供給を受けて充電されるバッテリと、
     前記外部電源の電圧値が所定の第1の基準電圧値以下になったか否かを判定する外部電源監視部と、
     前記外部電源監視部により前記外部電源の電圧値が所定の第1の基準電圧値以下と判定されたときに、前記システム制御部に対する電源供給を、前記外部電源による電源供給からコンデンサによる電源供給に切り替える第1の切替部と、
     前記コンデンサからの電源供給時において、前記コンデンサの電荷量が所定の基準電荷量以下になったか否かを判定するコンデンサ監視部と、
     前記コンデンサ監視部がコンデンサの電荷量が所定の基準電荷量以下になったと判定したときに、前記システム制御部に対する電源供給を、前記コンデンサによる電源供給からバッテリによる電源供給に切り替える第2の切替部と、前記第2の切替部による出力電源を前記システム制御部に供給する電源供給部と、を備えている情報処理装置。
  7.  前記電源制御装置は、前記バッテリからの電源供給時において、前記バッテリの電圧値が所定の第2の基準電圧値以下になったか否かを判定するバッテリ監視部と、
     前記バッテリ監視部が前記バッテリの電圧値が所定の第2の基準電圧値以下になったと判定したとき、判定結果をシステム制御部に出力する通知部と、
     をさらに備えた、請求項6に記載の情報処理装置。
  8.  前記システム制御部は、
     前記電源制御装置から、前記バッテリの電圧値が所定の第2の基準電圧値以下になったと通知されたときに、オペレーティングシステムの制御処理をするシステム制御部を備えた請求項7に記載の情報処理装置。
  9.  前記システム制御部は、前記オペレーティングシステムの制御処理を完了した後、前記外部電源監視部により前記外部電源の電圧値が所定の第1の基準電圧値を上回ったと判定されたときに、前記オペレーティングシステムの起動を行う請求項8に記載の情報処理装置。
  10.  請求項7乃至請求項9のいずれか1項に記載の情報処理装置において、
     前記システム制御部は、前記外部電源の電圧値が所定の第1の基準電圧値以下になったときの当該情報処理装置のデータを保持する記憶素子を備え、
     前記電源制御装置は、前記外部電源監視部により前記外部電源の電圧値が前記第1の基準電圧値以下になったと判定されたとき、前記バッテリによる電源供給を前記記憶素子に直接供給するDC電源切替部を更に備える情報処理装置。
PCT/JP2015/079549 2014-10-21 2015-10-20 電源制御装置および情報処理装置 WO2016063866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177001693A KR20170020498A (ko) 2014-10-21 2015-10-20 전원 제어 장치 및 정보 처리 장치
CN201580044151.XA CN106663962A (zh) 2014-10-21 2015-10-20 电源控制装置以及信息处理装置
SG11201702878RA SG11201702878RA (en) 2014-10-21 2015-10-20 Power supply controller and information processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014214921A JP6392073B2 (ja) 2014-10-21 2014-10-21 電源制御装置および情報処理装置
JP2014-214921 2014-10-21

Publications (1)

Publication Number Publication Date
WO2016063866A1 true WO2016063866A1 (ja) 2016-04-28

Family

ID=55760899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079549 WO2016063866A1 (ja) 2014-10-21 2015-10-20 電源制御装置および情報処理装置

Country Status (6)

Country Link
JP (1) JP6392073B2 (ja)
KR (1) KR20170020498A (ja)
CN (1) CN106663962A (ja)
SG (1) SG11201702878RA (ja)
TW (1) TWI591931B (ja)
WO (1) WO2016063866A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672023A1 (en) * 2018-12-17 2020-06-24 ABB Schweiz AG An ups device for electric power distribution installations

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3525317B1 (en) 2016-10-07 2023-11-29 Sony Interactive Entertainment Inc. Electrical device
JP7184021B2 (ja) * 2019-11-15 2022-12-06 横河電機株式会社 電力制御回路
JP7018095B2 (ja) * 2020-07-07 2022-02-09 華邦電子股▲ふん▼有限公司 電源制御回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109624A (ja) * 1989-09-22 1991-05-09 Yokogawa Electric Corp 電源制御装置
JP2001333545A (ja) * 2000-05-19 2001-11-30 Nec Corp 電源装置、電子機器及びその停止復旧方法並びに記録媒体
JP2005129036A (ja) * 2003-09-29 2005-05-19 Hitachi Ltd 直流バックアップ電源装置及びディスクアレイ装置
JP2007068338A (ja) * 2005-08-31 2007-03-15 Hitachi Computer Peripherals Co Ltd スイッチング電源装置及びディスクアレイシステム
JP2010016996A (ja) * 2008-07-03 2010-01-21 Sanken Electric Co Ltd 無停電電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5050718B2 (ja) * 2007-08-06 2012-10-17 富士電機株式会社 電力変換装置及び電力変換制御方法
CN101702535A (zh) * 2009-11-25 2010-05-05 成都市华为赛门铁克科技有限公司 供电装置及供电方法
CN103678178B (zh) * 2013-10-10 2017-06-09 华为技术有限公司 一种存储系统的掉电处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03109624A (ja) * 1989-09-22 1991-05-09 Yokogawa Electric Corp 電源制御装置
JP2001333545A (ja) * 2000-05-19 2001-11-30 Nec Corp 電源装置、電子機器及びその停止復旧方法並びに記録媒体
JP2005129036A (ja) * 2003-09-29 2005-05-19 Hitachi Ltd 直流バックアップ電源装置及びディスクアレイ装置
JP2007068338A (ja) * 2005-08-31 2007-03-15 Hitachi Computer Peripherals Co Ltd スイッチング電源装置及びディスクアレイシステム
JP2010016996A (ja) * 2008-07-03 2010-01-21 Sanken Electric Co Ltd 無停電電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3672023A1 (en) * 2018-12-17 2020-06-24 ABB Schweiz AG An ups device for electric power distribution installations
US11652358B2 (en) 2018-12-17 2023-05-16 Abb Schweiz Ag UPS device for electric power distribution installations

Also Published As

Publication number Publication date
CN106663962A (zh) 2017-05-10
JP2016082824A (ja) 2016-05-16
TW201633657A (zh) 2016-09-16
TWI591931B (zh) 2017-07-11
KR20170020498A (ko) 2017-02-22
SG11201702878RA (en) 2017-05-30
JP6392073B2 (ja) 2018-09-19

Similar Documents

Publication Publication Date Title
JP5289616B2 (ja) 電子モジュール形態の無停電電源装置のための回路および方法
WO2016063866A1 (ja) 電源制御装置および情報処理装置
US20150363132A1 (en) Information processing apparatus, method and computer-readable storage medium for shutting down information processing apparatus
JP2008092768A (ja) 放電器、放電制御方法、放電制御プログラム並びにプログラム記録媒体
JP6305358B2 (ja) セル監視装置、方法及びプログラム
US10727544B2 (en) Uninterruptible power supply and battery activation operation method thereof
US20160041230A1 (en) Backup battery
US20150076915A1 (en) Hot-Pluggable Uninterruptible Power Supply Module
JP2008022641A (ja) バックアップ電源装置
JP2007312544A (ja) バックアップ電源装置
JP4435000B2 (ja) 電池制御回路、該電池制御回路を備えた電子機器、充電制御プログラム、充電制御方法
JP2015170332A (ja) Nandフラッシュモジュール制御方法
TW201011513A (en) Multi-output voltage battery module and electronic device using the same
JP2009095107A (ja) 無瞬断バックアップ電源
JP4304624B2 (ja) 情報処理装置、無停電電源装置、給電方法、記録媒体、および、プログラム
JP2011176980A (ja) 電源装置
JP4252979B2 (ja) 携帯機器の電源回路
TWI524627B (zh) To avoid excessive discharge of the battery module power supply
JP2016095771A (ja) 機器駆動バッテリーのバックアップ回路
JP2021100299A (ja) 情報処理装置
JP6175815B2 (ja) 多重電源装置、多重電源装置の制御方法、及びプログラム
JP5445205B2 (ja) 携帯機器の電源制御回路及び携帯機器の電源制御方法
JP5063259B2 (ja) コンピュータシステムとこのコンピュータシステムに使用されるバッテリモジュール
JP2013061569A (ja) 制御装置、画像形成装置及び起動制御方法
JP6739872B2 (ja) 電源供給装置及び情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001693

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201702878R

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853436

Country of ref document: EP

Kind code of ref document: A1