WO2016063852A1 - 水処理方法及び水処理装置 - Google Patents

水処理方法及び水処理装置 Download PDF

Info

Publication number
WO2016063852A1
WO2016063852A1 PCT/JP2015/079521 JP2015079521W WO2016063852A1 WO 2016063852 A1 WO2016063852 A1 WO 2016063852A1 JP 2015079521 W JP2015079521 W JP 2015079521W WO 2016063852 A1 WO2016063852 A1 WO 2016063852A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
tank
treated water
sludge blanket
blanket type
Prior art date
Application number
PCT/JP2015/079521
Other languages
English (en)
French (fr)
Inventor
哲 清水
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2016063852A1 publication Critical patent/WO2016063852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/148Combined use of inorganic and organic substances, being added in the same treatment step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/08Settling tanks with single outlets for the separated liquid provided with flocculating compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes

Definitions

  • the present invention relates to a water treatment method and a water treatment apparatus in which raw water is passed through a sludge blanket type sedimentation tank and solid-liquid separation is performed. Specifically, the present invention prevents the decay of the blanket sludge in the sludge blanket type sedimentation tank or the floating of the blanket flocs when the raw water flow to the sludge blanket type sedimentation tank is stopped.
  • the present invention relates to a water treatment method and a water treatment apparatus for obtaining treated water with good water quality at an early stage.
  • sedimentation separation using a sedimentation tank is generally employed as a means for separating the sludge mixed solution into treated water and sludge.
  • a sludge zone sludge blanket layer
  • a sludge blanket type sedimentation tank is employed in which turbidity and fine SS in the sludge mixed solution are filtered and separated by allowing the sludge to flow into the lower part of the sludge zone and passing through the sludge zone.
  • the present applicant as a sludge blanket type precipitation tank capable of performing stable operation over a long period of time and obtaining treated water of good quality, and its operation method, are first installed in a tank body and a lower part of the tank body.
  • the stirring strength proposes a sludge blanket type settling tank and an operating method for performing agitation so is 5 ⁇ 200 s -1 (Patent Document 1).
  • the present applicant also added a specific cationic polymer flocculant to the raw water and then added an anionic polymer flocculant as a water treatment technique using a sludge blanket type sedimentation tank.
  • a specific cationic polymer flocculant to the raw water and then added an anionic polymer flocculant as a water treatment technique using a sludge blanket type sedimentation tank.
  • Patent Document 2 has proposed a method of solid-liquid separation in a sludge blanket type precipitation tank (Patent Document 2).
  • the inorganic flocculant is preferably added together with the cationic polymer flocculant or before the addition of the cationic polymer flocculant.
  • the sludge blanket type sedimentation tank can efficiently capture fine SS with the sludge floc of the blanket, a better treated water quality can be obtained even at a high speed treatment compared to a conventional general sedimentation tank. For this reason, the sludge blanket type sedimentation tank can be a compact device. On the other hand, the sludge blanket type sedimentation tank has the following problems when the flow of raw water is stopped during periodic repairs of the device or on holidays.
  • sludge blanket type sedimentation tanks that are applied to coagulation sedimentation treatment such as wastewater containing perishable SS, such as sludge blanket type sedimentation tanks that are installed after the biological treatment tank, . Blanket sludge rots, rot odor occurs and the supernatant water turbidity increases. If the sludge in the tank decays and changes quality, or the turbidity of the supernatant water in the tank increases, the turbidity of the treated water flowing out of the sludge blanket type sedimentation tank will increase when the operation is restarted. It takes a certain amount of time before water can be obtained.
  • Patent Document 3 describes a method in which aerated sludge or treated water is constantly circulated during operation in order to prevent the sludge from decaying due to anaerobic conditions in the settling tank. Patent Document 3 describes that such a circulation prevents sludge decay and scum rise and performs normal operation without causing decay. As is clear from this description, the method of Patent Document 3 prevents the sludge from being spoiled during the steady water flow operation. In Patent Document 3, there is no description that circulation is performed even when the flow of raw water is stopped, and it is not intended to prevent the decay of sludge when the flow of raw water is stopped.
  • the present invention prevents spoilage of blanket sludge when the flow of raw water to the sludge blanket type sedimentation tank is stopped, suppresses the settling of blanket flocs, and promptly treats treated water of good water quality when resuming the flow of raw water. It is an object of the present invention to provide a water treatment method and a water treatment apparatus that can be obtained.
  • the present inventor supplies oxygen to the blanket in the tank by circulating the treated water containing dissolved oxygen (DO) by aeration through the sludge blanket type settling tank when the water flow of the sludge blanket type settling tank is stopped. It is possible to prevent the sludge from being spoiled and deteriorated, and to maintain the fluidity of the blanket floc to suppress sedimentation, and immediately obtain treated water with good water quality when raw water flow is resumed. I found out that I can do it.
  • DO dissolved oxygen
  • the gist of the present invention is as follows.
  • a raw water tank or an aerobic biological treatment tank having an aeration means is provided in front of the sludge blanket type sedimentation tank, and the treated water is supplied to the raw water tank during the treated water circulation operation.
  • the water treatment method is characterized by returning to the aerobic biological treatment tank or the upstream side thereof, aeration in the raw water tank or the aerobic biological treatment tank, and then passing the water through the sludge blanket type precipitation tank.
  • a treated water tank having an aeration means is provided at a subsequent stage of the sludge blanket type precipitation tank, and after the treated water is aerated in the treated water tank during the treated water circulation operation, A water treatment method comprising returning to the raw water inflow side of the sludge blanket type sedimentation tank.
  • the circulating water flow rate of the treated water during the treated water circulating water flow operation is a flow rate of raw water during a steady water flowing operation of the sludge blanket type sedimentation tank.
  • a water treatment apparatus for supplying raw water to a sludge blanket type sedimentation tank and separating it into solid and liquid, raw water introduction means to the sludge blanket type precipitation tank, treated water extraction means for the sludge blanket type precipitation tank, A water treatment apparatus comprising treated water return means for returning treated water from the treated water extraction means to raw water introduction means, and treated water aeration means for aeration of treated water returned by the treated water return means, After the steady water supply operation for passing raw water to the sludge blanket type sedimentation tank and the flow of raw water to the sludge blanket type sedimentation tank are stopped, the treated water in the sludge blanket type sedimentation tank is returned by the treated water returning means. After switching back and aeration by the treated water aeration means, there is provided an operation switching means for switching between the treated water circulation flow operation for passing water through the sludge blanket type sedimentation tank. Water treatment device according to claim.
  • a raw water tank or an aerobic biological treatment tank is provided upstream of the sludge blanket type sedimentation tank, and the treated water return means supplies the treated water to the raw water tank or the aerobic biological treatment tank or An apparatus for returning to the upstream side, wherein the treated water aeration means is an aeration means provided in the raw water tank or aerobic biological treatment tank.
  • the sludge blanket type sedimentation tank has a treated water tank in the subsequent stage, and the treated water returning means is means for returning the treated water to the raw water introducing means through the treated water tank,
  • the treated water aeration means is an aeration means provided in the treated water tank.
  • the circulating water flow rate of the treated water during the treated water circulating water flow operation is a flow rate of raw water during a steady water flowing operation of the sludge blanket type sedimentation tank.
  • a water treatment apparatus characterized by being 30 to 80% of the flow rate.
  • a turbidity measuring means for measuring the turbidity of the treated water
  • a flocculant addition for adding a flocculant to water flowing through the sludge blanket type sedimentation tank
  • control means for controlling the operation of the flocculant addition means based on the measured value of the turbidity measuring means, and the control means includes the turbidity measuring means during the treated water circulation operation.
  • a water treatment apparatus characterized in that when the measured value exceeds a set value, the flocculant is added by the flocculant addition means.
  • the aerated treated water is circulated through the sludge blanket type sedimentation tank to supply DO to the blanket in the tank, and the sludge It is possible to prevent spoilage and alteration of the water and to prevent an increase in the turbidity of the supernatant water in the tank.
  • Fe 2+ eluted from the blanket can be oxidized to Fe 3+ by DO and captured as iron hydroxide SS in the blanket, so that The water quality can be maintained well.
  • the fluidity of the blanket flock is maintained even when the flow of raw water is stopped, and sedimentation of the blanket flock is also suppressed.
  • FIG. 2 is a graph showing changes with time in supernatant turbidity in Example 1.
  • FIG. 6 is a graph showing changes with time in supernatant turbidity in Example 2.
  • 6 is a graph showing changes with time in supernatant turbidity in Comparative Example 1.
  • 6 is a graph showing changes with time in supernatant turbidity in Comparative Example 2.
  • Example 1 it is a graph which shows the change of the supernatant water SS density
  • the treated water (the solid liquid of the sludge blanket type sedimentation tank is stopped) when the flow of the raw water to the sludge blanket type precipitation tank is stopped.
  • the separated water which corresponds to the supernatant water in the tank) is returned to the raw water inflow side of the sludge blanket type sedimentation tank and this treated water is aerated, and the aerated treated water is passed through the sludge blanket type sedimentation tank. Perform treated water circulation operation.
  • the treated water in the sludge blanket type sedimentation tank is circulated and the separated sludge in the sludge blanket type sedimentation tank is not circulated. This is because when sludge is circulated, the sludge blanket layer in the sludge blanket type sedimentation tank cannot be maintained, and the quality of the treated water deteriorates due to the raising of the blanket flock when resuming the flow of raw water.
  • DO is supplied into the sludge blanket type sedimentation tank by circulating the treated water aerated at the time of stopping the raw water flow, thus preventing anaerobic blanket flocs when the raw water flow is stopped
  • an increase in the turbidity of the supernatant water in the tank can be suppressed.
  • the blanket floc can be kept fluidized by circulating the treated water, there is no need to re-stabilize the blanket when the raw water is resumed.
  • the sludge blanket type sedimentation tank used in the present invention includes, for example, a tank body described in Patent Document 1 described above, a distributor for introducing raw water installed in a lower part of the tank body, a bottom surface of the tank body, A stirring body provided between the distributor, a sludge outlet provided above the distributor on the side of the tank body, a sludge receiving chamber connected to the sludge outlet, and the sludge receiving chamber.
  • a sludge blanket type sedimentation tank having a sludge discharge part formed is preferable. It is preferable that this stirring body is installed so that rotation is possible directly above the bottom face of the tank body.
  • the tank body is cylindrical, and the swirl diameter of the stirring body is preferably 0.6 to 0.95 times the inner diameter (diameter) of the cylindrical tank body.
  • the height of the bottom surface of the distributor relative to the bottom surface of the tank body is preferably 1 to 30% of the height from the bottom surface of the tank body to the sludge outlet.
  • stirring is preferably performed so that the stirring strength (G value) of the stirring body in the space between the bottom surface of the tank body and the bottom surface of the distributor is 5 to 200 s ⁇ 1 .
  • the distributor has a horizontal tubular portion, and a liquid outflow opening is extended in the longitudinal direction on the bottom surface of the horizontal tubular portion.
  • the specific gravity d 1 of the liquid supplied to the distributor and the specific gravity d 2 of the liquid in the tank body. Is preferably 0.0001 to 0.1, and d 2 > d 1 is preferable.
  • an inorganic flocculant, a cationic polymer flocculant, and an anionic polymer flocculant are added to the raw water and then subjected to flocculation treatment, followed by solid-liquid separation in a sludge blanket type precipitation tank. May be.
  • inorganic flocculants added to raw water form hydroxides such as PAC (polyaluminum chloride), polyiron (polyferric sulfate), salt iron (ferric chloride) or sulfate bands. Is preferred.
  • PAC polyaluminum chloride
  • polyiron polyferric sulfate
  • salt iron ferric chloride
  • sulfate bands sulfate bands.
  • calcium compounds such as slaked lime can also be used as the inorganic flocculant.
  • the amount of the inorganic flocculant added to the raw water is preferably 10 to 1000 mg / L, more preferably about 20 to 500 mg / L.
  • the cationic polymer flocculant an acrylamide type is preferable, and the ratio of the cationic group is preferably 10 to 50 mol%, particularly 15 to 40 mol%, and more preferably 20 to 30 mol%.
  • the weight average molecular weight of the cationic polymer flocculant is preferably 12 million to 25 million, particularly about 15 million to 22 million.
  • the addition amount of the cationic polymer flocculant is preferably 0.2 to 5 mg / L, particularly 1 to 3 mg / L.
  • a copolymer of a cationic monomer and acrylamide can be suitably used.
  • the cationic monomer include dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate acid salt or quaternary ammonium salt thereof, dimethylaminopropyl acryamide and dimethylaminopropyl methacrylate acid acid salt or quaternary ammonium salt thereof. It is done.
  • the cationic polymer flocculant is not limited to this.
  • the product form of the cationic polymer flocculant is not particularly limited, and is a powder product, a W / O type emulsion, or a disperser in which cationic polymer flocculant particles are dispersed in an aqueous medium having a high salt concentration. What is generally distributed for waste water agglomeration treatment, such as John, can be applied.
  • the anionic polymer flocculant an acrylamide type is preferable, and the anion group ratio is preferably 5 to 30 mol%, particularly 5 to 20 mol%.
  • the weight average molecular weight of the anionic polymer flocculant is preferably 9 million to 20 million, particularly about 12 million to 18 million.
  • the addition amount of the anionic polymer flocculant to the raw water is preferably 0.2 to 8 mg / L, particularly 2 to 6 mg / L.
  • anionic polymer flocculant a copolymer of an anionic monomer and acrylamide or a hydrolyzate of polyacrylamide can be used.
  • Specific examples of the anionic monomer include acrylic acid or a salt thereof.
  • Polymers copolymerized with acrylamide using 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof together with acrylic acid or a salt thereof as an anionic monomer are particularly useful in that they can be used stably over a wide pH range. It can be used suitably.
  • the product form of the anionic polymer flocculant is not particularly limited, and is a powder product, a W / O type emulsion, or a disperser in which anionic polymer flocculant particles are dispersed in an aqueous medium having a high salt concentration. What is generally distributed for waste water agglomeration treatment, such as John, can be applied.
  • the cationic group ratio of the cationic polymer flocculant is the molar ratio of the cationic monomer in the total molar amount of the nonionic monomer and the cationic monomer to be copolymerized.
  • the anionic group ratio of the anionic polymer flocculant is the molar ratio of the anionic monomer to the total molar amount of the nonionic monomer and the anionic monomer to be copolymerized (in the case of polyacrylamide hydrolyzate, nonionic repeats) Molar ratio of units to anionic repeating units).
  • the flow of raw water to the sludge blanket type sedimentation tank is stopped, and the agitator in the sludge blanket type sedimentation tank when circulating aerated treated water to the sludge blanket type sedimentation tank (the figure described later)
  • the stirring intensity (G value) of the stirring blade 6) of the stirrer 5 may be the same as or slightly weaker than that when the raw water is passed, and usually 0.5 to 50 s ⁇ 1 range.
  • the aeration of the treated water circulating through the sludge blanket type precipitation tank may be performed at any location, and examples thereof include the following modes (1) to (3).
  • a treated water tank is provided after the sludge blanket type sedimentation tank, aeration means is provided in the treated water tank, and after the treated water is aerated in the treated water tank, the sludge blanket type precipitation tank is placed on the raw water inflow side. Return to the sludge blanket type sedimentation tank.
  • the degree of aeration of treated water varies depending on the treated water circulating in the sludge blanket type sedimentation tank, the flow stop time of raw water, the specifications of the sludge blanket type sedimentation tank, other equipment configuration and operating conditions, etc. It is not possible.
  • the degree of aeration of the treated water is preferably carried out so that the DO concentration of the water circulated through the sludge blanket type sedimentation tank (aerated treated water) is about 0.5 to 8.0 mg / L.
  • the DO concentration of the treated water in the sludge blanket type sedimentation tank that is not aerated is less than 0.5 mg / L. With such treated water, even when circulating water is simply passed, Anaerobic generation in the sludge blanket type sedimentation tank cannot be prevented.
  • the circulating water flow rate of the treated water to the sludge blanket type settling tank during the circulating water run of the treated water is 10 to 80% of the flow rate of the raw water during the steady water flowing operation of the sludge blanket type settling tank, especially 30 It is preferably about 80%, particularly about 30-60%.
  • the ratio (percentage) of the circulating water flow rate of the treated water to the sludge blanket type sedimentation tank during the treated water circulating water flow operation to the raw water flow rate during the steady water running operation of the sludge blanket type sedimentation tank is expressed as “( Treated water / raw water) flow rate ratio ”.
  • the quality of the water in the sludge blanket type sedimentation tank deteriorates, and for example, the turbidity of the supernatant water may increase.
  • the water quality deteriorates by adding a flocculant to the aerated treated water in the same way as during the operation of the raw water and aggregating it, and then circulating it through a sludge blanket type sedimentation tank. Can be prevented.
  • the type and addition conditions of the flocculant are the same as those in the raw water flow operation, and it is preferable because no new flocculant addition means or chemical injection control means is required.
  • an aerobic biological treatment tank may be provided upstream of the sludge blanket type precipitation tank, or a treatment water tank may be provided downstream of the sludge blanket type precipitation tank. Good.
  • a coagulation treatment tank for example, a rapid stirring tank and a slow stirring tank having stirring means may be provided.
  • the raw water introduced into the raw water tank 1 from the pipe 11 is passed through the pipe 12 to the line mixing device 2 by the pump P.
  • the raw water is agglomerated by sequentially adding an inorganic flocculant, a cationic polymer flocculant and an anionic polymer flocculant in the line mixer 2.
  • the agglomerated water is introduced into the sludge blanket type sedimentation tank 3 through the pipe 13.
  • a sludge blanket layer S is formed in the sludge blanket type sedimentation tank 3.
  • the aggregated flocs are captured by the sludge blanket layer and separated into solid and liquid, and clear water (for example, SS concentration 20 mg / L or less, particularly 10 mg / L or less) is taken out from the pipe 14 as treated water through the trough 4.
  • the sludge blanket layer S in the tank is given a shearing force by the stirring blades 6 of the stirrer 5, and the mechanical dehydration of floc is promoted and granulated to form a stable sludge blanket layer S.
  • the sludge of the sludge blanket layer S is appropriately extracted from the pipe 15.
  • valves V 1 and V 2 of the pipes 11 and 14 are opened, and a valve V 3 of the pipe 16 described later is closed. Since the raw water tank 1 is aerated by the aeration means (aeration tube) 1A, the sludge is prevented from being spoiled due to anaerobic formation in the sludge blanket type precipitation tank 3.
  • the valves V 1 and V 2 are closed and the valve V 3 is opened, and the treated water in the sludge blanket type sedimentation tank 3 is supplied through the pipe 16.
  • the treated water that has passed through the sludge blanket tank S of the sludge blanket type sedimentation tank 3 is taken out through the pipe 16, and is preferably circulated so as to have the above-mentioned (treated water / raw water) water flow rate ratio.
  • Inorganic flocculants, cationic polymer flocculants and anionic polymer flocculants may or may not be added.
  • the treated water in the sludge blanket type precipitation tank 3 is aerated and circulated, thereby preventing anaerobization in the tank and preventing sludge decay due to the above-described effects.
  • the blanket floc can be fluidized to prevent deterioration of the treated water quality when resuming the flow of raw water.
  • switching between a steady water flow operation for passing raw water and a treated water circulation water flow operation for stopping aeration of raw water and performing aeration and circulation water flow of the raw water is performed by, for example, a valve. It can be performed by a control means for controlling the opening and closing of V 1 to V 3 and the operation of the aeration means 1A of the raw water tank.
  • a sludge blanket type A turbidimeter for measuring the turbidity of the supernatant water in the sedimentation tank 3 is provided, and based on the measurement result of the turbidimeter, a chemical injection valve (not shown) provided in the chemical injection pipe for each coagulant is provided. This can be done by a control means for outputting an open / close signal.
  • the raw water to be subjected to the solid-liquid separation treatment in the sludge blanket type sedimentation tank there is no particular limitation on the raw water to be subjected to the solid-liquid separation treatment in the sludge blanket type sedimentation tank.
  • the present invention is low DO It is suitable for water treatment in which raw raw water is perishable raw water that is susceptible to spoilage and alteration due to the action of microorganisms and the like under the environment, for example, biologically treated water, papermaking wastewater, and fatty acid-containing wastewater.
  • Example 1 ⁇ Regular water operation (raw water operation)> With the water treatment apparatus shown in FIG. 1, the following raw water coagulation and solid-liquid separation treatment were performed.
  • the raw water tank 1 was aerated so that water with a DO concentration of 2 to 8 mg / L flowed into the sludge blanket type precipitation tank 3.
  • the turbidity of the supernatant slightly increased after about 2 hours after the flow of the raw water was stopped, whereas the treated water turbidity during the flow of the raw water was 1 degree. It can be seen that the supernatant turbidity is stable at about 3 degrees.
  • Example 2 In Example 1, when the flow of raw water was stopped, the turbidity of the supernatant in the sludge blanket type sedimentation tank 3 was monitored, and when the turbidity of the supernatant reached 4 degrees or more, the conditions were the same as those during steady water flow operation. Inorganic flocculants, cationic polymer flocculants and anionic polymer flocculants were injected. Other than that was carried out similarly to the Example, and the circulating water operation of the aerated process water was performed. The time-dependent change of the supernatant turbidity in the sludge blanket type sedimentation tank 3 at this time was examined, and the result is shown in FIG.
  • the turbidity of the supernatant can be stabilized at about 2 degrees by the chemical injection of the flocculant, and the increase in the supernatant turbidity is more reliably suppressed as compared with the case where no chemical injection is performed.
  • Example 1 In Example 1, when the raw water flow was stopped after the steady water flow operation, the treated water was not circulated, the stirring in the tank was continued, and the operation was stopped as it was. The time-dependent change of the supernatant turbidity in the sludge blanket type sedimentation tank 3 at this time is shown in FIG.
  • Example 2 In Example 1, the operation was performed in the same manner except that the aeration was not performed in the raw water tank 1 and the non-aerated treated water was circulated and passed during the circulation of the treated water after the stoppage of the raw water.
  • the time-dependent change of the supernatant turbidity in the sludge blanket type sedimentation tank 3 at this time is shown in FIG.
  • the DO concentration of the treated water that has not been aerated is 1 mg / L or less.
  • Example 1 In Example 1 in which circulating aerated treated water was circulated, the supernatant turbidity was stabilized at about 3 degrees, and the turbidity of the supernatant could be kept low even after 72 hours had passed since the stop of the passage of raw water.
  • Comparative Example 1 in which circulation of treated water was not performed, the supernatant turbidity increased rapidly after the lapse of 24 hours, and the quality of treated water deteriorated. Also in Comparative Example 2 in which the treated water was circulated without performing aeration, the supernatant turbidity gradually increased. This is thought to be due to the progress of anaerobic circulation of circulating water in the system.
  • Example 1 [Effect of (treatment water / raw water) flow rate ratio]
  • Example 1 the supernatant water in the sludge blanket type sedimentation tank 3 after 24 hours from the stop of the raw water flow when the treated water circulation flow operation was performed with various changes in the flow rate ratio of (treated water / raw water).
  • the SS concentration was examined, and the results are shown in FIG.
  • the target value of the SS concentration of the supernatant water in the tank for obtaining treated water with good water quality at an early stage when the raw water was restarted was evaluated as 15 mg / L or less.
  • the flow rate ratio of (treated water / raw water) is 100%, the floc rolls up, and the SS concentration of the supernatant water is 20 mg / L, which exceeds the target value of 15 mg / L. Value.
  • the flow rate ratio of (treated water / raw water) was set to 30% to 80%, the supernatant water SS concentration was 11 mg / L or less and a good value was obtained. From this, it can be seen that the (treatment water / raw water) flow rate ratio is preferably 30 to 80%, particularly preferably 30 to 60%.
  • Example 1 [Difference in treated water SS concentration]
  • Example 1 and Comparative Example 1 after the flow of raw water was stopped for 48 hours, the change over time in the SS concentration of the treated water when the raw water flow was restarted under the same conditions as in the steady water flow operation was examined. The results are shown in FIG.
  • Example 1 in which the circulating water operation of the treated water aerated during the raw water flow suspension period was performed, there was almost no deterioration of the treated water, and there was immediately good treated water SS (6 mg / L or less). Obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)

Abstract

 スラッジブランケット型沈殿槽への原水の通水停止時におけるブランケット汚泥の腐敗を防止すると共に、ブランケットフロックの沈降を抑制し、原水の通水再開時に、良好な水質の処理水を早期に得る。スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理方法において、スラッジブランケット型沈殿槽への原水の通水停止時に、スラッジブランケット型沈殿槽の処理水を原水流入側に返送すると共に曝気し、曝気した処理水をスラッジブランケット型沈殿槽に循環通水する。

Description

水処理方法及び水処理装置
 本発明は、スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理方法及び水処理装置に関する。詳しくは、本発明は、スラッジブランケット型沈殿槽への原水の通水停止時におけるスラッジブランケット型沈殿槽内のブランケット汚泥の腐敗やブランケットフロックの浮上等を防止し、原水の通水運転再開時において、良好な水質の処理水を早期に得る水処理方法及び水処理装置に関する。
 従来、活性汚泥処理設備や凝集沈殿処理設備等では、汚泥混合液を処理水と汚泥とに分離する手段として沈殿槽を用いた沈降分離が一般的に採用されている。この沈降分離では、汚泥混合液中の濁質や微細なSSを効率的に除去して良好な処理水を得るために、沈殿槽内に汚泥ゾーン(スラッジブランケット層)を形成し、汚泥混合液をこの汚泥ゾーンの下部に流入させて汚泥ゾーンを通過させることにより、汚泥混合液中の濁質や微細なSSを濾過分離するスラッジブランケット型沈殿槽が採用されている。
 本出願人は、長期にわたって安定運転を行えると共に、良好な水質の処理水を得ることができるスラッジブランケット型沈殿槽及びその運転方法として、先に、槽体と、該槽体内の下部に設置された原水導入用のディストリビュータと、該槽体の底面と該ディストリビュータとの間に設けられた撹拌体と、該槽体の側部の該ディストリビュータよりも上位に設けられた汚泥流出口と、該汚泥流出口に連なる汚泥受入室と、該汚泥受入室に設けられた汚泥排出部とを有するものを用い、該槽体の底面とディストリビュータの底面との間のスペースにおける撹拌体の撹拌強度(G値)が5~200s-1となるように撹拌を行うスラッジブランケット型沈殿槽及びその運転方法を提案している(特許文献1)。
 本出願人はまた、スラッジブランケット型沈殿槽を利用した水処理技術として、原水に特定のカチオン系高分子凝集剤を添加した後アニオン系高分子凝集剤を添加して凝集処理し、凝集処理水をスラッジブランケット型沈殿槽で固液分離する方法を提案している(特許文献2)。この方法では、好ましくは、カチオン系高分子凝集剤と共に、或いはカチオン系高分子凝集剤の添加前に無機凝集剤を添加する。
 スラッジブランケット型沈殿槽は、微細なSSをブランケットの汚泥フロックで効率的に捕捉することができることから、従来の一般的な沈殿槽と比較して高速処理でも良好な処理水質が得られる。このため、スラッジブランケット型沈殿槽は、コンパクトな装置とすることができる。一方で、スラッジブランケット型沈殿槽では、装置の定期修理時や休日などに原水の通水を停止した場合に、次のような問題があった。
(1) 原水の通水を停止し、槽内に水が流入しなくなり、槽内の水が停滞すると、ブランケットフロックは沈降し、槽底部に堆積する。このため、その後の原水の通水再開時に、流入水によりブランケットフロックが浮上し、安定したスラッジブランケット層が形成されるまでには1~2時間程度の時間を要し、その間は、処理水質が悪化する。
(2) 生物処理槽の後段に設けられるスラッジブランケット型沈殿槽のように、腐敗性SSを含んだ排水等の凝集沈殿処理に適用されているスラッジブランケット型沈殿槽では、原水の通水停止時に、ブランケット汚泥が腐敗し、腐敗臭の発生や槽内上澄み水濁度の増加が起こる。槽内汚泥が腐敗して変質したり、槽内上澄み水の濁度が増加したりすると、運転再開時にスラッジブランケット型沈殿槽から流出する処理水の濁度も高いものとなり、採水可能な処理水を得ることができるようになるためには、ある程度の時間を要する。特に、鉄系凝集剤を使用した凝集処理水を処理する場合には、槽内が嫌気性になることで水酸化鉄が還元されてFe2+としてブランケットから溶出し、溶出したFe2+が溶存酸素を含む水面付近や後段設備においてFe3+の水酸化物に変化しSSの発生につながる。
 特許文献3には、沈殿槽内が嫌気状態となって汚泥が腐敗するのを防止するために、曝気した汚泥或いは処理水を運転時に常時循環させる方法が記載されている。特許文献3に、このような循環を行うことで、汚泥の腐敗及びスカムの浮上を防止し、正常な運転を、腐敗を生じることなく行うと記載される。この記載から明らかなように、特許文献3の方法は、定常通水運転時の汚泥の腐敗を防止するものである。特許文献3には、原水の通水停止時にも循環を行うとの記載はなく、原水の通水停止時の汚泥の腐敗防止を課題とするものでもない。
特開2014-100664号公報 WO2014/038537 特開昭60-68011号公報
 上記の通り、スラッジブランケット型沈殿槽では、原水の通水停止時に、ブランケット汚泥の腐敗やブランケットフロックの沈降のために、原水の通水再開時の処理水質が悪化し、採水可能な処理水を得るために、時間を要するという問題があった。
 本発明は、スラッジブランケット型沈殿槽への原水の通水停止時におけるブランケット汚泥の腐敗を防止すると共に、ブランケットフロックの沈降を抑制し、原水の通水再開時に、良好な水質の処理水を早期に得ることができる水処理方法及び水処理装置を提供することを目的とする。
 本発明者は、スラッジブランケット型沈殿槽の通水停止時に、曝気による溶存酸素(DO)を含む処理水をスラッジブランケット型沈殿槽に循環通水することにより、槽内のブランケットに酸素を供給して汚泥の腐敗、変質を防止することができ、また、ブランケットフロックの流動性を維持して沈降を抑制することができ、原水の通水再開時に、即座に良好な水質の処理水を得ることができるようになることを見出した。
 本発明は、以下を要旨とする。
[1] スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理方法において、該スラッジブランケット型沈殿槽への原水の通水停止時に、該スラッジブランケット型沈殿槽の処理水を該スラッジブランケット型沈殿槽の原水流入側に返送して該スラッジブランケット型沈殿槽に通水する処理水循環通水運転を行う方法であって、該処理水を曝気した後、該スラッジブランケット型沈殿槽に通水することを特徴とする水処理方法。
[2] [1]において、前記スラッジブランケット型沈殿槽の前段に曝気手段を有する原水槽又は好気性生物処理槽が設けられており、前記処理水循環通水運転時に、前記処理水を該原水槽又は好気性生物処理槽或いはその上流側に返送し、該原水槽又は好気性生物処理槽内で曝気した後前記スラッジブランケット型沈殿槽に通水することを特徴とする水処理方法。
[3] [1]において、前記スラッジブランケット型沈殿槽の後段に曝気手段を有する処理水槽が設けられており、前記処理水循環通水運転時に、前記処理水を該処理水槽内で曝気した後、前記スラッジブランケット型沈殿槽の原水流入側に返送することを特徴とする水処理方法。
[4] [1]ないし[3]のいずれかにおいて、前記処理水循環通水運転時における前記処理水の循環通水流量が、該スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量の30~80%であることを特徴とする水処理方法。
[5] [1]ないし[4]のいずれかにおいて、前記処理水循環通水運転時に前記処理水の濁度を測定し、該濁度の測定値が設定値を上回る場合には、前記スラッジブランケット型沈殿槽に通水する水に凝集剤を添加することを特徴とする水処理方法。
[6] スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理装置において、該スラッジブランケット型沈殿槽への原水導入手段と、該スラッジブランケット型沈殿槽の処理水取出手段と、該処理水取出手段から処理水を原水導入手段に返送する処理水返送手段と、該処理水返送手段で返送される処理水を曝気する処理水曝気手段とを備える水処理装置であって、該スラッジブランケット型沈殿槽に原水を通水する定常通水運転と、該スラッジブランケット型沈殿槽への原水の通水を停止した後、該スラッジブランケット型沈殿槽の処理水を前記処理水返送手段により返送すると共に前記処理水曝気手段で曝気した後、該スラッジブランケット型沈殿槽に通水する処理水循環通水運転とを切り換える運転切換手段を有することを特徴とする水処理装置。
[7] [6]において、前記スラッジブランケット型沈殿槽の前段に原水槽又は好気性生物処理槽を有し、前記処理水返送手段は、前記処理水を該原水槽又は好気性生物処理槽或いはその上流側に返送する手段であり、前記処理水曝気手段は該原水槽又は好気性生物処理槽に設けられた曝気手段であることを特徴とする水処理装置。
[8] [6]において、前記スラッジブランケット型沈殿槽の後段に処理水槽を有し、前記処理水返送手段は、前記処理水を該処理水槽を経て前記原水導入手段に返送する手段であり、前記処理水曝気手段は該処理水槽に設けられた曝気手段であることを特徴とする水処理装置。
[9] [6]ないし[8]のいずれかにおいて、前記処理水循環通水運転時における前記処理水の循環通水流量が、該スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量の30~80%であることを特徴とする水処理装置。
[10] [6]ないし[9]のいずれかにおいて、前記処理水の濁度を測定する濁度測定手段と、前記スラッジブランケット型沈殿槽に通水する水に凝集剤を添加する凝集剤添加手段と、該濁度測定手段の測定値に基づいて該凝集剤添加手段の作動を制御する制御手段とを有し、該制御手段は、前記処理水循環通水運転時において、該濁度測定手段の測定値が設定値を上回るときに、該凝集剤添加手段による凝集剤の添加を行うように制御する手段であることを特徴とする水処理装置。
 本発明によれば、スラッジブランケット型沈殿槽への原水の通水停止時に、曝気した処理水をスラッジブランケット型沈殿槽に循環通水することにより、槽内のブランケットにDOを供給して、汚泥の腐敗、変質を防止し、槽内の上澄み水の濁度の増加を防止することができる。
 本発明によれば、鉄系凝集剤を使用している場合においても、ブランケットから溶出するFe2+をDOによりFe3+に酸化し、水酸化鉄SSとしてブランケット内に捕捉することができるため、上澄み水の水質を良好に維持することができる。
 本発明によれば、処理水循環運転を行うことにより、原水の通水停止時にもブランケットフロックの流動性が維持されるようになり、ブランケットフロックの沈降も抑制される。
 このようなことから、原水の通水再開時には、即座に良好な水質の処理水を得ることができるようになり、処理効率は格段に改善される。
本発明の実施に好適な水処理装置の一例を示す系統図である。 実施例1における上澄み濁度の経時変化を示すグラフである。 実施例2における上澄み濁度の経時変化を示すグラフである。 比較例1における上澄み濁度の経時変化を示すグラフである。 比較例2における上澄み濁度の経時変化を示すグラフである。 実施例1において、(処理水/原水)通水流量比を変化させた場合の上澄み水SS濃度の変化を示すグラフである。 実施例1と比較例1における原水通水再開時の処理水SS濃度の経時変化を示すグラフである。
 以下に本発明の実施の形態を詳細に説明する。
 本発明においては、スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理において、スラッジブランケット型沈殿槽への原水の通水停止時に、処理水(スラッジブランケット型沈殿槽の固液分離水であって、槽内上澄み水に該当する。)をスラッジブランケット型沈殿槽の原水流入側に返送すると共にこの処理水を曝気し、曝気した処理水をスラッジブランケット型沈殿槽に通水する処理水循環通水運転を行う。
 本発明では、スラッジブランケット型沈殿槽の処理水のみ循環通水し、スラッジブランケット型沈殿槽の分離汚泥は循環通水しない。これは、汚泥を循環通水すると、スラッジブランケット型沈殿槽内のスラッジブランケット層を維持することができず、原水の通水再開時にブランケットフロックの巻き上げで処理水質が悪化するためである。
 このように、原水の通水停止時に曝気した処理水を循環通水することにより、スラッジブランケット型沈殿槽内にDOが供給されるため、原水通水停止時におけるブランケットフロックの嫌気化を防ぐことができ、これにより、槽内上澄み水の濁度の増加を抑えることができる。
 また、鉄系凝集剤を用いた凝集処理水を固液分離するスラッジブランケット型沈殿槽にあっては、ブランケットフロックから生物汚泥の嫌気化に伴って一部溶出するFe2+が、DOによりFe3+に酸化され、水酸化鉄SSとしてブランケット内に捕捉されるので、良好な上澄み水質を維持することができる。
 更に、処理水の循環通水を行うことにより、ブランケットフロックを流動化させた状態に保つことができるため、原水の通水再開時におけるブランケットの再安定化の必要がない。
 これにより、原水の通水再開時における処理水SSの一時的な悪化を抑制することができる。
 スラッジブランケット型沈殿槽への原水の通水時の運転条件には特に制限はなく、従来のスラッジブランケット型沈殿槽による固液分離処理における運転条件と同様の条件を採用することができる。
 スラッジブランケット型沈殿槽の構成等にも特に制限はない。
 本発明で用いるスラッジブランケット型沈殿槽は、例えば、前述の特許文献1に記載される、槽体と、該槽体内の下部に設置された原水導入用のディストリビュータと、該槽体の底面と該ディストリビュータとの間に設けられた撹拌体と、該槽体の側部の該ディストリビュータよりも上位に設けられた汚泥流出口と、該汚泥流出口に連なる汚泥受入室と、該汚泥受入室に設けられた汚泥排出部とを有するスラッジブランケット型沈殿槽が好ましい。この撹拌体は、槽体の底面の直上に旋回可能に設置されていることが好ましい。
 槽体は円筒形であり、撹拌体の旋回直径は円筒形槽体の内径(直径)の0.6~0.95倍であることが好ましい。
 槽体の底面に対するディストリビュータの底面の高さは、槽体底面から汚泥流出口までの高さの1~30%であることが好ましい。
 このようなスラッジブランケット型沈殿槽において、槽体の底面とディストリビュータの底面との間のスペースにおける撹拌体の撹拌強度(G値)が5~200s-1となるように撹拌を行うことが好ましい。
 ディストリビュータは水平管状部を有しており、この水平管状部の底面に長手方向に液流出用開口が延設されており、ディストリビュータに供給する液の比重dと槽体内の液の比重dとの差が0.0001~0.1であり、かつd>dであることが好ましい。
 前述の特許文献2に記載されるように、原水には、無機凝集剤、カチオン系高分子凝集剤及びアニオン系高分子凝集剤を添加して凝集処理した後スラッジブランケット型沈殿槽で固液分離してもよい。
 この場合、原水に添加する無機凝集剤としては、PAC(ポリ塩化アルミニウム)、ポリ鉄(ポリ硫酸第二鉄)、塩鉄(塩化第二鉄)あるいは硫酸バンドなどの水酸化物を形成するものが好ましい。原水がフッ素含有水の場合には、消石灰などのカルシウム化合物も無機凝集剤として使用することができる。原水への無機凝集剤の添加量は10~1000mg/L、特に20~500mg/L程度が好ましい。
 カチオン系高分子凝集剤としてはアクリルアミド系のものが好適であり、そのカチオン基比率は10~50モル%、特に15~40モル%、更に20~30モル%が好適である。カチオン系高分子凝集剤の重量平均分子量は1200万~2500万、特に1500万~2200万程度が好適である。カチオン系高分子凝集剤の添加量は0.2~5mg/L、特に1~3mg/Lが好適である。
 カチオン系高分子凝集剤としては、カチオン性モノマーとアクリルアミドとの共重合物を好適に用いることができる。カチオン性モノマーの具体例としては、ジメチルアミノエチルアクリレートやジメチルアミノエチルメタクリレートの酸塩もしくはその4級アンモニウム塩、ジメチルアミノプロピルアクリアミドやジメチルアミノプロピルメタクリアミドの酸塩もしくはその4級アンモニウム塩が挙げられる。カチオン系高分子凝集剤は、これに限定されるものではない。
 カチオン性高分子凝集剤の製品形態は特に限定されるものではなく、粉末品、W/O型エマルション、或いは、高塩類濃度の水系媒体中にカチオン性高分子凝集剤粒子が分散しているディスパージョンなど、排水の凝集処理用に一般に流通しているものを適用できる。
 アニオン系高分子凝集剤としては、アクリルアミド系のものが好適であり、そのアニオン基比率は5~30モル%特に5~20モル%が好適である。アニオン系高分子凝集剤の重量平均分子量は900万~2000万、特に1200万~1800万程度が好適である。原水へのアニオン系高分子凝集剤の添加量は0.2~8mg/L、特に2~6mg/Lが好適である。
 アニオン系高分子凝集剤としては、アニオン性モノマーとアクリルアミドとの共重合物、又は、ポリアクリルアミドの加水分解物を用いることができる。アニオン性モノマーの具体例としては、アクリル酸若しくはその塩が挙げられる。アニオン性モノマーとして、アクリル酸若しくはその塩とともに、2-アクリルアミド-2-メチルプロパンスルホン酸若しくはその塩を用いて、アクリルアミドと共重合した重合物は、広いpH範囲で安定して使用できる点で特に好適に用いることができる。
 アニオン性高分子凝集剤の製品形態は特に限定されるものではなく、粉末品、W/O型エマルション、或いは、高塩類濃度の水系媒体中にアニオン性高分子凝集剤粒子が分散しているディスパージョンなど、排水の凝集処理用に一般に流通しているものを適用できる。
 カチオン系高分子凝集剤のカチオン基比率とは、共重合するノニオン性モノマーとカチオン性モノマーとの合計モル量に占めるカチオン性モノマーのモル比である。
 アニオン系高分子凝集剤のアニオン基比率とは、共重合するノニオン性モノマーとアニオン性モノマーとの合計モル量に占めるアニオン性モノマーのモル比(ポリアクリルアミドの加水分解物の場合は、ノニオン性繰り返し単位とアニオン性繰り返し単位のモル比)である。
 本発明において、スラッジブランケット型沈殿槽への原水の通水を停止して、スラッジブランケット型沈殿槽に、曝気した処理水を循環通水するときのスラッジブランケット型沈殿槽における撹拌体(後述の図1に示す水処理装置では、撹拌機5の撹拌羽根6)の撹拌強度(G値)は、原水通水時と同等か、或いはそれよりも若干弱い程度でよく、通常0.5~50s-1の範囲とされる。
 スラッジブランケット型沈殿槽に循環通水する処理水の曝気は、どのような箇所で行ってもよいが、例えば、以下の(1)~(3)の態様が挙げられる。
(1) スラッジブランケット型沈殿槽の前段に原水槽が設けられている場合、この原水槽に曝気手段を設け、処理水をこの原水槽又はその上流側に返送し、原水槽内で曝気した後スラッジブランケット型沈殿槽に通水する。
(2) スラッジブランケット型沈殿槽の前段に好気性生物処理槽が設けられている場合、この好気性生物処理槽又はその上流側に処理水を返送し、この好気性生物処理槽内の曝気手段で曝気した後スラッジブランケット型沈殿槽に通水する。
(3) スラッジブランケット型沈殿槽の後段に処理水槽が設けられている場合、この処理水槽に曝気手段を設け、処理水をこの処理水槽内で曝気した後スラッジブランケット型沈殿槽の原水流入側に返送してスラッジブランケット型沈殿槽に通水する。
 処理水の曝気の程度は、スラッジブランケット型沈殿槽に循環する処理水や、原水の通水停止時間、スラッジブランケット型沈殿槽の仕様、その他の装置構成や運転条件等により異なり、一概に規定することはできない。処理水の曝気の程度は、スラッジブランケット型沈殿槽に循環通水される水(曝気された処理水)のDO濃度が0.5~8.0mg/L程度となるように行うことが好ましい。通常、曝気を行っていないスラッジブランケット型沈殿槽の処理水のDO濃度は0.5mg/L未満であり、このような処理水では、単に循環通水を行っても原水の通水停止時のスラッジブランケット型沈殿槽内の嫌気化を防止し得ない。
 処理水の循環通水流量は、過度に少ないと、曝気した処理水を循環通水することによる本発明の効果を十分に得ることができない。処理水の循環通水流量は、過度に多いと、スラッジブランケット型沈殿槽内のブランケットフロックが巻き上がり、かえって水質を悪化させる傾向がある。処理水の循環通水運転時のスラッジブランケット型沈殿槽への処理水の循環通水流量は、スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量の10~80%、特に30~80%、とりわけ30~60%程度とすることが好ましい。
 以下において、スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量に対する処理水循環通水運転時のスラッジブランケット型沈殿槽への処理水の循環通水流量の割合(百分率)を「(処理水/原水)通水流量比」と称す場合がある。
 原水の通水停止時に曝気した処理水の循環通水を行っていても、スラッジブランケット型沈殿槽内の水質が悪化し、例えば、上澄み水の濁度が増加する場合がある。このような場合には、原水の通水運転時と同様に曝気した処理水に凝集剤を添加して凝集処理した後スラッジブランケット型沈殿槽に循環通水することにより、このような水質の悪化を防止することができる。この場合の凝集剤の種類や添加条件は、原水の通水運転時と同様とするのが、新たな凝集剤添加手段や薬注制御手段を設ける必要がなく、好ましい。
 以下に、図1を参照して本発明の水処理方法及び水処理装置の実施の形態をより具体的に説明する。本発明は何ら図1に示すものに限定されるものではない。前述のように、スラッジブランケット型沈殿槽の前段に好気性生物処理槽が設けられているものであってもよく、スラッジブランケット型沈殿槽の後段に処理水槽が設けられているものであってもよい。図1のライン混合装置の代りに撹拌手段を有する凝集処理槽(例えば、急速撹拌槽と緩速撹拌槽)を設けたものであってもよい。
 図1において、配管11より原水槽1に導入された原水は、ポンプPにより、配管12を経てライン混合装置2に通水される。原水は、ライン混合装置2で無機凝集剤、カチオン系高分子凝集剤及びアニオン系高分子凝集剤が順次添加されて凝集処理される。凝集処理水は配管13よりスラッジブランケット型沈殿槽3に導入される。
 スラッジブランケット型沈殿槽3内には、スラッジブランケット層Sが形成されている。スラッジブランケット型沈殿槽3の底部に流入した水はスラッジブランケット層Sを上向流で通過する際、凝集フロックがスラッジブランケット層で捕捉されて固液分離され、清澄な水(例えばSS濃度20mg/L以下、特に10mg/L以下)がトラフ4を経て配管14より処理水として取り出される。槽内のスラッジブランケット層Sは、撹拌機5の撹拌羽根6によって剪断力を与えられており、フロックの機械的脱水が促進されて造粒され、安定なスラッジブランケット層Sが形成される。スラッジブランケット層Sの汚泥は配管15より適宜引き抜かれる。
 このような原水の通水運転時において、配管11,14のバルブV,Vは開とされ、後述の配管16のバルブVは閉とされる。原水槽1は曝気手段(散気管)1Aによって曝気されるため、スラッジブランケット型沈殿槽3内の嫌気化による汚泥の腐敗は防止される。
 装置の定期修理時や休日等に原水の通水を停止する際には、バルブV,Vを閉、バルブVを開とし、スラッジブランケット型沈殿槽3の処理水を配管16より原水槽1に返送し、曝気手段1Aにより原水槽1内で曝気処理した後、配管12、ライン混合装置2及び配管13を経てスラッジブランケット型沈殿槽3に導入する。スラッジブランケット型沈殿槽3のスラッジブランケット槽Sを通過した処理水を配管16を経て取り出し、好ましくは前述の(処理水/原水)通水流量比となるように循環通水する。無機凝集剤、カチオン系高分子凝集剤及びアニオン系高分子凝集剤は添加してもよく、添加しなくてもよい。
 このように、原水の通水停止時にスラッジブランケット型沈殿槽3の処理水を曝気して循環通水することにより、前述の作用効果で槽内の嫌気化を防止して汚泥の腐敗を防止すると共にブランケットフロックを流動化させて、原水の通水再開時の処理水質の悪化を防止することができる。
 このような水処理装置において、原水を通水する定常通水運転と、原水の通水を停止して処理水の曝気及び循環通水を行う処理水循環通水運転との切り換えは、例えば、バルブV~Vの開閉と原水槽の曝気手段1Aの作動を制御する制御手段により行うことができる。
 処理水循環通水運転時にスラッジブランケット型沈殿槽3内の水質が悪化する場合に、スラッジブランケット型沈殿槽3に導入される水に凝集剤を自動的に薬注するには、例えば、スラッジブランケット型沈殿槽3内の上澄水の濁度を測定する濁度計を設け、この濁度計の測定結果に基づいて、各凝集剤の薬注配管に設けられた薬注バルブ(図示せず)の開閉信号を出力する制御手段により行うことができる。
 スラッジブランケット型沈殿槽で固液分離処理する原水としては特に制限はない。原水の通水停止時に曝気した処理水を循環通水することでスラッジブランケット型沈殿槽内のブランケット汚泥の腐敗を防止する本発明の効果が有効に発揮される点において、本発明は、低DO環境下において微生物等の作用で汚泥の腐敗、変質を招き易い腐敗性原水、例えば、生物処理水、製紙排水、脂肪酸含有廃水を原水とする水処理に好適である。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。
[実施例1]
<定常通水運転(原水の通水運転)>
 図1に示す水処理装置により、下記水質の原水の凝集、固液分離処理を行った。
<原水水質>
 SS:30mg/L
 BOD:10mg/L
 原水には、ライン混合装置2で、無機凝集剤としてポリ鉄200mg/Lを添加した後、カチオン系高分子凝集剤として栗田工業(株)製「クリファームPC728」(アクリルアミドとジメチルアミノエチルアクリレート塩化メチル4級塩とを重合して得たカチオン系高分子凝集剤)を1mg/L添加し、次いで、アニオン系高分子凝集剤として、栗田工業(株)製「クリファームPA465」(アクリルアミドとアクリル酸ナトリウムとを重合して得たアニオン系高分子凝集剤)を2mg/L添加して凝集処理した後、撹拌強度(G値)2s-1で撹拌されているスラッジブランケット型沈殿槽3に通水流量LV=7m/hrで通水して固液分離し、処理水を得た。得られた処理水の濁度は1度で、SS濃度は3~6mg/Lであった。
 このとき原水槽1は曝気して、DO濃度2~8mg/Lの水がスラッジブランケット型沈殿槽3に流入するようにした。
<処理水循環通水運転(原水の通水停止)>
 上記の定常通水運転後、原水の通水を停止すると共に、スラッジブランケット型沈殿槽3の処理水を原水槽1に返送して循環通水した。このとき、(処理水/原水)通水流量比は80%とした。原水槽1は引き続き曝気して、DO濃度2~8mg/Lの水がスラッジブランケット型沈殿槽3に流入するようにした。処理水への凝集剤の薬注は行わなかった。スラッジブランケット型沈殿槽3における撹拌強度(G値)は定常通水運転時と同等とした。
 このときのスラッジブランケット型沈殿槽3内の上澄み水の濁度(以下「上澄み濁度」と称す。)の経時変化を調べ、結果を図2に示した。
 図2より明らかなように、原水の通水停止後、約2時間後から若干の上澄み濁度の増加が見られるが、原水通水時の処理水濁度が1度であったのに対し、上澄み濁度は3度程度で安定していることが分かる。
[実施例2]
 実施例1において、原水の通水停止時に、スラッジブランケット型沈殿槽3内の上澄み濁度を監視し、上澄み濁度が4度以上となったときに、定常通水運転時と同様の条件で無機凝集剤とカチオン系高分子凝集剤及びアニオン系高分子凝集剤の薬注を行った。それ以外は、実施例と同様にして、曝気した処理水の循環通水運転を行った。このときのスラッジブランケット型沈殿槽3内の上澄み濁度の経時変化を調べ、結果を図3に示した。
 図3より明らかなように、凝集剤の薬注で上澄み濁度を約2度に安定させることができ、薬注を行わない場合に比較して、上澄み濁度の増加をより確実に抑制することができることが分かる。
[比較例1]
 実施例1において、定常通水運転後の原水通水停止時に、処理水の循環を行わず、槽内の撹拌は継続し、そのまま運転停止状態とした。このときのスラッジブランケット型沈殿槽3内の上澄み濁度の経時変化を図4に示す。
 図4より明らかなように、原水の通水停止後約14時間後から上澄み濁度の増加が認められ、50時間後には上澄み濁度は13度にまで増加した。
[比較例2]
 実施例1において、原水の通水停止後の処理水循環通水運転時に、原水槽1で曝気を行わず、曝気していない処理水を循環通水したこと以外は同様に運転を行った。このときのスラッジブランケット型沈殿槽3内の上澄み濁度の経時変化を図5に示す。曝気していない処理水のDO濃度は1mg/L以下である。
 図5より明らかなように、処理水の循環通水を行っても、曝気を行わない場合は、処理水の循環通水を行わない比較例1に比べて、上澄み濁度は緩やかに増加するものの、上澄み濁度は徐々に増加し、原水の通水停止から72時間後には11度にまで増加した。これは、比較例2では、処理水を循環していても、曝気を行っていないために、曝気を行った実施例1に比べて系内のDO濃度が低下し、スラッジブランケット型沈殿槽3内のブランケットフロックの嫌気化が起きたためと考えられる。
[考察]
 以上の実施例1,2及び比較例1,2の結果から次のことが分かる。
 曝気した処理水の循環通水を行った実施例1では上澄み濁度は約3度で安定し、原水の通水停止から72時間以上経過後も上澄み濁度を低く抑えることができている。
 一方、処理水の循環通水を行わなかった比較例1では、24時間経過後から上澄み濁度が急激に増加しており、処理水質が悪化する。
 曝気を実施しない処理水の循環通水を行った比較例2でも、上澄み濁度は徐々に増加している。これは系内の循環水の嫌気化が進んでいることによると考えられる。
 これらのことから、曝気をしながら処理水の循環通水を行うことにより、上澄み濁度を低く維持することができることが分かる。
 また、上澄み濁度増加時には薬注を行うことにより、より良好な水質を維持できることが分かる。
[(処理水/原水)通水流量比の影響]
 実施例1において、(処理水/原水)通水流量比を種々変化させて処理水循環通水運転を行ったときの、原水通水停止から24時間後のスラッジブランケット型沈殿槽3内の上澄み水のSS濃度を調べ、結果を図6に示した。このとき、原水の通水再開時に早期に良好な水質の処理水を得るための槽内上澄み水のSS濃度の目標値を15mg/L以下として評価した。
 図6より明らかなように、(処理水/原水)通水流量比を100%とした時は、フロックが巻き上がり、上澄み水のSS濃度は20mg/Lと、目標値の15mg/Lを超える値となった。しかし、(処理水/原水)通水流量比を30%~80%とすることにより、上澄み水SS濃度は11mg/L以下と良好な値が得られた。このことから、(処理水/原水)通水流量比は30~80%、特に30~60%の範囲とすることが好ましいことが分かる。
[処理水SS濃度の差異]
 実施例1及び比較例1において、原水の通水を48時間停止した後、前記定常通水運転と同様の条件で原水の通水を再開したときの処理水のSS濃度の経時変化を調べ、結果を図7に示した。
 図7より明らかなように、原水の通水停止期間中に処理水の循環通水を行わなかった比較例1では、原水の通水再開後、処理水SSは一時的に31mg/Lまで増加し、その後定常通水運転時の処理水SS(3~6mg/L)に復帰するのに約1.5時間を要した。
 これに対し、原水の通水停止期間中に曝気した処理水の循環通水運転を行った実施例1では、処理水の悪化はほとんど無く、直ちに良好な処理水SS(6mg/L以下)が得られた。
 このことから、原水の通水停止時に曝気した処理水の循環通水運転を実施することにより、原水の通水再開時の処理水質の悪化を防止して、早期に良好な処理水を得ることができることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年10月24日付で出願された日本特許出願2014-217403に基づいており、その全体が引用により援用される。
 1 原水槽
 2 ライン混合装置
 3 スラッジブランケット型沈殿槽

Claims (10)

  1.  スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理方法において、該スラッジブランケット型沈殿槽への原水の通水停止時に、該スラッジブランケット型沈殿槽の処理水を該スラッジブランケット型沈殿槽の原水流入側に返送して該スラッジブランケット型沈殿槽に通水する処理水循環通水運転を行う方法であって、
     該処理水を曝気した後、該スラッジブランケット型沈殿槽に通水することを特徴とする水処理方法。
  2.  請求項1において、前記スラッジブランケット型沈殿槽の前段に曝気手段を有する原水槽又は好気性生物処理槽が設けられており、前記処理水循環通水運転時に、前記処理水を該原水槽又は好気性生物処理槽或いはその上流側に返送し、該原水槽又は好気性生物処理槽内で曝気した後前記スラッジブランケット型沈殿槽に通水することを特徴とする水処理方法。
  3.  請求項1において、前記スラッジブランケット型沈殿槽の後段に曝気手段を有する処理水槽が設けられており、前記処理水循環通水運転時に、前記処理水を該処理水槽内で曝気した後、前記スラッジブランケット型沈殿槽の原水流入側に返送することを特徴とする水処理方法。
  4.  請求項1ないし3のいずれか1項において、前記処理水循環通水運転時における前記処理水の循環通水流量が、該スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量の30~80%であることを特徴とする水処理方法。
  5.  請求項1ないし4のいずれか1項において、前記処理水循環通水運転時に前記処理水の濁度を測定し、該濁度の測定値が設定値を上回る場合には、前記スラッジブランケット型沈殿槽に通水する水に凝集剤を添加することを特徴とする水処理方法。
  6.  スラッジブランケット型沈殿槽に原水を通水して固液分離する水処理装置において、該スラッジブランケット型沈殿槽への原水導入手段と、該スラッジブランケット型沈殿槽の処理水取出手段と、該処理水取出手段から処理水を原水導入手段に返送する処理水返送手段と、該処理水返送手段で返送される処理水を曝気する処理水曝気手段とを備える水処理装置であって、
     該スラッジブランケット型沈殿槽に原水を通水する定常通水運転と、
     該スラッジブランケット型沈殿槽への原水の通水を停止した後、該スラッジブランケット型沈殿槽の処理水を前記処理水返送手段により返送すると共に前記処理水曝気手段で曝気した後、該スラッジブランケット型沈殿槽に通水する処理水循環通水運転と
    を切り換える運転切換手段を有することを特徴とする水処理装置。
  7.  請求項6において、前記スラッジブランケット型沈殿槽の前段に原水槽又は好気性生物処理槽を有し、前記処理水返送手段は、前記処理水を該原水槽又は好気性生物処理槽或いはその上流側に返送する手段であり、前記処理水曝気手段は該原水槽又は好気性生物処理槽に設けられた曝気手段であることを特徴とする水処理装置。
  8.  請求項6において、前記スラッジブランケット型沈殿槽の後段に処理水槽を有し、前記処理水返送手段は、前記処理水を該処理水槽を経て前記原水導入手段に返送する手段であり、前記処理水曝気手段は該処理水槽に設けられた曝気手段であることを特徴とする水処理装置。
  9.  請求項6ないし8のいずれか1項において、前記処理水循環通水運転時における前記処理水の循環通水流量が、該スラッジブランケット型沈殿槽の定常通水運転時の原水の通水流量の30~80%であることを特徴とする水処理装置。
  10.  請求項6ないし9のいずれか1項において、前記処理水の濁度を測定する濁度測定手段と、前記スラッジブランケット型沈殿槽に通水する水に凝集剤を添加する凝集剤添加手段と、該濁度測定手段の測定値に基づいて該凝集剤添加手段の作動を制御する制御手段とを有し、該制御手段は、前記処理水循環通水運転時において、該濁度測定手段の測定値が設定値を上回るときに、該凝集剤添加手段による凝集剤の添加を行うように制御する手段であることを特徴とする水処理装置。
PCT/JP2015/079521 2014-10-24 2015-10-20 水処理方法及び水処理装置 WO2016063852A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-217403 2014-10-24
JP2014217403A JP5900576B1 (ja) 2014-10-24 2014-10-24 水処理方法及び水処理装置

Publications (1)

Publication Number Publication Date
WO2016063852A1 true WO2016063852A1 (ja) 2016-04-28

Family

ID=55648286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079521 WO2016063852A1 (ja) 2014-10-24 2015-10-20 水処理方法及び水処理装置

Country Status (2)

Country Link
JP (1) JP5900576B1 (ja)
WO (1) WO2016063852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143914A (ja) * 2017-03-01 2018-09-20 オルガノ株式会社 凝集沈殿装置とその駆動方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6875166B2 (ja) * 2017-03-27 2021-05-19 住友重機械エンバイロメント株式会社 凝集沈殿処理装置
JP6825999B2 (ja) * 2017-06-12 2021-02-03 オルガノ株式会社 凝集沈殿装置の運転方法および凝集沈殿装置
JP7163758B2 (ja) * 2018-12-21 2022-11-01 栗田工業株式会社 ピッチ含有水の処理方法及び処理装置
JP2021121417A (ja) * 2020-01-31 2021-08-26 花王株式会社 水処理剤
JP7408424B2 (ja) * 2020-01-31 2024-01-05 花王株式会社 生活排水の再利用方法
EP4098342A4 (en) * 2020-01-31 2023-10-11 Kao Corporation WATER TREATMENT AGENT
JP7236475B2 (ja) * 2021-01-04 2023-03-09 住友重機械エンバイロメント株式会社 凝集沈殿処理装置、及び凝集沈殿処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068011A (ja) * 1983-09-21 1985-04-18 Kawasaki Heavy Ind Ltd 沈殿濃縮槽の腐敗防止方法
JPH0549812A (ja) * 1991-08-23 1993-03-02 Nippon Enjiniyaa Service Kk 排水処理装置
JPH06154783A (ja) * 1992-11-20 1994-06-03 Nec Kansai Ltd 排水処理装置
JP2000334486A (ja) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd 生物処理水の高度処理方法
JP2002035503A (ja) * 2000-07-27 2002-02-05 Sano:Kk 濁水処理装置
JP2002282606A (ja) * 2001-03-29 2002-10-02 Sumitomo Heavy Ind Ltd スラッジブランケット層安定化方法及び凝集沈殿設備
US20110272346A1 (en) * 2008-12-24 2011-11-10 Degremont Quick static decanter for prethickening water treatment sludge, and plant including such a decanter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403705B2 (en) * 2012-09-10 2016-08-02 Kurita Water Industries Ltd. Water treatment method and apparatus therefor
JP5799940B2 (ja) * 2012-11-20 2015-10-28 栗田工業株式会社 沈殿槽及びその運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068011A (ja) * 1983-09-21 1985-04-18 Kawasaki Heavy Ind Ltd 沈殿濃縮槽の腐敗防止方法
JPH0549812A (ja) * 1991-08-23 1993-03-02 Nippon Enjiniyaa Service Kk 排水処理装置
JPH06154783A (ja) * 1992-11-20 1994-06-03 Nec Kansai Ltd 排水処理装置
JP2000334486A (ja) * 1999-05-26 2000-12-05 Kurita Water Ind Ltd 生物処理水の高度処理方法
JP2002035503A (ja) * 2000-07-27 2002-02-05 Sano:Kk 濁水処理装置
JP2002282606A (ja) * 2001-03-29 2002-10-02 Sumitomo Heavy Ind Ltd スラッジブランケット層安定化方法及び凝集沈殿設備
US20110272346A1 (en) * 2008-12-24 2011-11-10 Degremont Quick static decanter for prethickening water treatment sludge, and plant including such a decanter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYOSHI KITAGAWA ET AL.: "Sludge Blanket Zone o Riyo shita Renzoku Ryunyu Kanketsu Bakki no Shori Seino", HOKKAIDO UNIVERSITY EISEI KOGAKU SYMPOSIUM RONBUNSHU, 1, 1 November 1993 (1993-11-01), pages 231 - 235 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018143914A (ja) * 2017-03-01 2018-09-20 オルガノ株式会社 凝集沈殿装置とその駆動方法

Also Published As

Publication number Publication date
JP5900576B1 (ja) 2016-04-06
JP2016083611A (ja) 2016-05-19

Similar Documents

Publication Publication Date Title
JP5900576B1 (ja) 水処理方法及び水処理装置
KR101973789B1 (ko) 이산화탄소 가스를 이용한 알칼리성 폐수 중화 처리조 및 이를 이용한 알칼리성 폐수의 중화 처리 방법
JP3434438B2 (ja) 排水処理方法および排水処理装置
JP2014237122A (ja) 凝集沈殿装置及び凝集沈殿方法
TW201726561A (zh) 顆粒之形成方法及排水處理方法
JP5256261B2 (ja) 有機性汚泥の脱水方法及び装置
JP5423256B2 (ja) 汚泥脱水方法及び汚泥脱水装置
JP4523731B2 (ja) 水処理装置
JP6270608B2 (ja) 凝集沈殿装置及び凝集沈殿方法
JP2019072675A (ja) 凝集沈殿装置及び凝集沈殿処理方法
JP4244769B2 (ja) 凝集装置及び凝集方法
JP6389066B2 (ja) 鉄鋼系廃水の処理方法
JP7074406B2 (ja) 薬剤添加量制御装置及び薬剤添加量制御方法
JP2018153729A (ja) 水処理剤、水処理方法及び水処理装置
JP2013202500A (ja) 高油分スラッジの発生を抑制する廃水の処理方法
JP5218082B2 (ja) 低有機物濃度排水の凝集沈殿処理方法及び装置
FR2775682A1 (fr) Traitement d'effluents aqueux par injection d'anhydride carbonique
JP5338432B2 (ja) 無機イオン含有排水の処理方法
JP2008279412A (ja) 薬注制御方法
JPH04371300A (ja) 汚泥処理装置
JP2002066209A (ja) 水処理における凝集剤の注入制御方法
JP2012228673A (ja) 高速凝集沈澱池の立ち上げ方法
JPH11300389A (ja) 水処理方法および装置
JP6846760B2 (ja) 汚泥処理方法及び汚泥処理装置
JP3412641B2 (ja) 発電所の低濁度排水の凝集処理法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15853110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15853110

Country of ref document: EP

Kind code of ref document: A1