WO2016060493A1 - 평판형 산소센서소자 - Google Patents
평판형 산소센서소자 Download PDFInfo
- Publication number
- WO2016060493A1 WO2016060493A1 PCT/KR2015/010892 KR2015010892W WO2016060493A1 WO 2016060493 A1 WO2016060493 A1 WO 2016060493A1 KR 2015010892 W KR2015010892 W KR 2015010892W WO 2016060493 A1 WO2016060493 A1 WO 2016060493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte layer
- disposed
- heater
- reference electrode
- layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4071—Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/4067—Means for heating or controlling the temperature of the solid electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4075—Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/025—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/20—Sensor having heating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a flat plate oxygen sensor element.
- Oxygen sensor is a sensor used in the double oxygen sensor system that measures the oxygen partial pressure and feeds back the value to the ECU (Engine Control Unit). Through this, the three-way catalyst for removing the NOx, HC, CO contained in the exhaust gas is operated to the optimum conditions.
- the binary type oxygen sensor currently applied to most vehicles uses the reference oxygen for detecting the concentration of oxygen contained in the exhaust gas as a reference by raising the atmosphere from the central part of the oxygen sensor to the sensing part through the introduction hole from the center to the atmosphere. It is supposed to be done.
- the reference oxygen used to detect the oxygen concentration in the exhaust gas is directly charged in the exhaust through the reference electrode of the oxygen sensor element and used as a reference.
- the planar type oxygen sensor among binary types uses zirconia, which is a representative oxygen ion conductor, as a medium for detecting the amount of exhaust oxygen.
- a reference electrode is disposed in the solid electrolyte layer so that the sensing electrode is disposed on the detection surface so as to be exposed to the exhaust gas and is positioned below the sensing electrode, and the solid electrolyte layer is heated on the lower side of the reference electrode.
- Heater section is arranged.
- the solid electrolyte layer is sequentially heated from the heater to the upper side, there is a problem that the overall response speed is slow.
- the heater parts are different from each other in the overall structure, they are disposed on the lower side in the overall structure, and there is a problem that cracks occur or bend due to a difference in shrinkage rate and expansion rate due to material differences during expansion due to sintering or heat generation.
- the electrical connection structure of the heater unit and the reference electrode and the terminal is formed in the heater portion is formed in the via hole vertically downward, and in the case of the reference electrode formed via hole in the vertical upper direction to form a structure connected to each terminal.
- the present invention has been made in view of the above, and an object thereof is to provide a flat plate type oxygen sensor device that is structurally stable and obtains a response speed by arranging a heater unit between a sensing electrode and a reference electrode.
- Another object of the present invention is to provide a flat plate type oxygen sensor device in which a plurality of via holes connected to a corresponding terminal may be connected in a simple structure without overlapping each other when a heater unit is disposed between a sensing electrode and a reference electrode.
- the present invention is a first electrolyte layer disposed on the upper surface of the sensing electrode exposed to the gas to be detected; A second electrolyte layer disposed on a lower side of the first electrolyte layer and having a reference electrode disposed on an upper surface thereof; And a heater unit disposed so that a heating resistor is surrounded by an insulating layer, wherein the heater unit is disposed between the sensing electrode and the reference electrode, wherein the heater unit is disposed from the upper surface of the first electrolyte layer from the heating resistor.
- a flat plate oxygen sensor element disposed at a position between 4/10 and 6/10 with respect to the total height to the bottom surface of the layer.
- the reference electrode may be disposed to contact the lower surface of the heater unit.
- a third electrolyte layer having a predetermined height may be disposed between the heater unit and the second electrolyte layer.
- the heater unit may include an opening so that oxygen ions delivered from the sensing electrode can pass therethrough.
- the heating resistor of the heater unit is disposed so as to be located in the center of the overall height connecting between the upper surface of the first electrolyte layer and the lower surface of the second electrolyte layer, the upper and lower parts are symmetrically arranged around the heater unit. Can be.
- first electrolyte layer and the second electrolyte layer is provided so as to have the same height with each other, the center portion of the total height connecting the heat generating resistor of the heater unit between the upper surface of the first electrolyte layer and the lower surface of the second electrolyte layer It may be arranged to be located at.
- first electrolyte layer and the second electrolyte layer may be made of the same material.
- the height of the sum of the second electrolyte layer and the third electrolyte layer is provided to have the same height as the height of the first electrolyte layer, so that the heat generating resistor of the heater portion of the second electrolyte layer from the upper surface of the first electrolyte layer. It may be arranged to be located in the center of the overall height connecting between the lower surface.
- first electrolyte layer, the second electrolyte layer, and the third electrolyte layer may be made of the same material.
- a buffer layer having the same height as the height of the heater unit may be disposed between the first electrolyte layer and the second electrolyte layer to surround the heater unit.
- the present invention is a sensing electrode and a first electrolyte layer is arranged on each of the terminals from one side; A second electrolyte layer in which the reference electrode and the first lower terminal are arranged on opposite surfaces, respectively; And a heater unit including a heat generating resistor having a first connection portion and a second connection portion surrounded by an insulating layer, and disposed between the first electrolyte layer and the second electrolyte layer.
- the first connection portion and the first connection portion of the heat generating resistor Any one of two connecting portions disposed directly below the sensing electrode is connected to the terminal from the first bottom through a second via hole formed to penetrate the second electrolyte layer from the heating resistor, and the remaining connecting portion is connected to the heating resistor. It provides a plate-type oxygen sensor element connected to the terminal from above through a first via hole formed to penetrate the first electrolyte layer.
- a second bottom terminal is formed on the bottom surface of the second electrolyte layer in parallel with the first bottom terminal, and the second bottom terminal is disposed vertically below the top bottom terminal, and the first bottom bottom terminal. May be disposed below the sensing electrode vertically.
- the second lower terminal may be connected to the reference electrode through a third via hole formed through the second electrolyte layer.
- the insulating layer may include a first insulating layer disposed on an upper side of the heating resistor and a second insulating layer disposed on a lower side of the heating resistor, and the first via hole may be formed of the first insulating layer from the heating resistor.
- the second via hole may be formed to pass through the layer and the first electrolyte layer at the same time, and the second via hole may be formed to pass through the second insulating layer and the second electrolyte layer at the same time.
- the reference electrode may be disposed to be in contact with a lower side of the second insulating layer, and a third insulating layer may be disposed below the reference electrode, and the second via hole and the third via hole may be formed from the heating resistor and the reference electrode. It may be formed to pass through the third insulating layer, respectively.
- the reference electrode may be surrounded by a pair of insulating layers disposed on upper and lower surfaces, and a third electrolyte layer having a predetermined height may be disposed between the reference electrode and the heater, and the second via hole may include the heating resistor.
- the third via hole may be formed to penetrate the third electrolyte layer and the second electrolyte layer at the same time, and the third via hole may be formed to simultaneously penetrate the insulating layer and the second electrolyte layer disposed on the lower side of the reference electrode from the reference electrode.
- a heater is disposed between the sensing electrode and the reference electrode to obtain a structurally stable and gain in response speed.
- a plurality of via holes respectively connected to the corresponding terminals may be connected in a simple structure without overlapping each other.
- FIG. 1 is an overall perspective view showing a flat plate oxygen sensor device according to an embodiment of the present invention.
- FIG. 2 is an exploded perspective view showing a plate-type oxygen sensor device according to a first embodiment of the present invention.
- FIG. 3 is a cross-sectional view along the A-A direction according to the first embodiment in FIG.
- FIG. 4 is a partial cutaway view showing a relationship between via holes in a flat plate oxygen sensor device according to a first embodiment of the present invention.
- FIG. 5 is an exploded perspective view showing a plate-type oxygen sensor device according to a second embodiment of the present invention.
- FIG. 6 is a cross-sectional view along the A-A direction according to the second embodiment in FIG.
- FIG. 7 is a partial cutaway view showing a relationship between via holes in a flat plate oxygen sensor device according to a second embodiment of the present invention.
- the flat plate type oxygen sensor elements 100 and 200 include a first electrolyte layer 110, a second electrolyte layer 120, and a heater 130. .
- the first electrolyte layer 110 is provided in the form of a bar or a film having a predetermined height and is provided in a flat shape having a predetermined area.
- the first electrolyte layer 110 is made of a material having oxygen ion conductivity, the material is not particularly limited.
- the first electrolyte layer 110 may be made of Yttrium Stabilized Zirconia (YSZ).
- the first electrolyte layer 110 serves as a passage through which oxygen ions transferred from the sensing electrode 140 pass and move to the reference electrodes 150 and 250. That is, the first electrolyte layer 110 is disposed on the uppermost side of the overall structure of the oxygen sensor element that is stacked, and the upper surface forms a detection surface exposed to the gas to be detected.
- a sensing electrode 140 is disposed on an upper surface of the first electrolyte layer 110 to detect an oxygen component from the gas to be detected by being exposed to the gas to be detected.
- the sensing electrode 140 is made of porous platinum (Pt) having gas permeability, and serves to flow oxygen ions obtained from the gas to be detected to the first electrolyte layer 110.
- an upper electrode surface of the first electrolyte layer 110 may be provided with a separate electrode protective layer (not shown) for protecting the sensing electrode 140 from poisoning from harmful components contained in the gas to be detected. .
- the second electrolyte layer 120 is disposed on the lower side of the first electrolyte layer 110, and the reference electrode 150, 250 on the upper surface is reduced and collected oxygen ions moved through the first electrolyte layer 110. Is placed.
- the second electrolyte layer 120 is made of a material having oxygen ion conductivity similar to the first electrolyte layer 110 so that oxygen ions can move around the reference electrodes 150 and 250.
- the second electrolyte layer 120 is preferably made of the same material as the first electrolyte layer 110 for structural stability in consideration of thermal expansion coefficient due to sintering and heat generation, and may be made of YSZ.
- the reference electrodes 150 and 250 disposed on the upper side of the second electrolyte layer 120 serve to collect oxygen ions passing through the first electrolyte layer 110, and the sensing electrode 140. Similarly, it is provided with porous platinum (Pt) which has gas permeability.
- the first electrolyte layer after oxygen in the gas to be detected receives electrons from the sensing electrode 140 to become oxygen ions.
- the electrons are emitted from the reference electrodes 150 and 250 to be reduced to oxygen, and remain in the reference electrodes 150 and 250.
- the reference electrodes 150 and 250 may be arranged in various forms in order to control the shape of the oxygen ions collected in the reference electrodes 150 and 250.
- the reference electrode 150 disposed on the upper surface of the second electrolyte layer 120 has a lower surface of the heater unit 130 as shown in FIG. 2-in more detail, the second insulating layer 134b. It may be arranged to directly contact the lower surface of the.
- a third insulating layer 152 is disposed between the lower surfaces of the reference electrodes 150 and 250 and the second electrolyte layer 120 so that the reference electrode 150 has a second insulating layer 134b and a third insulating layer. Surrounded by layers.
- the upper surface of the reference electrode 150 is entirely covered by the second insulating layer 134b, but the lower surface of the reference electrode 150 is surrounded by the third insulating layer 152 so that a portion thereof is exposed.
- the reference electrode 150 has an opening 150a having a shape corresponding to the opening 132a of the heater 130 at one end thereof. Accordingly, the oxygen ions moved from the sensing electrode 140 through the first electrolyte layer 110 pass through the opening 132a of the heater 130 and then through the opening 150a of the reference electrode 150. After moving to the lower side, only the lower surface side of the reference electrode 150 is collected in a semi-circular or semi-elliptic form.
- the reference electrode 250 may be disposed in a state spaced downward from the heater 130.
- a third third electrolyte layer 180 having a predetermined height is disposed between the second electrolyte layer 120 and the heater 130, and the third electrolyte layer 180 and the second electrolyte layer are disposed.
- the reference electrode 250 is disposed between the 120.
- the third electrolyte layer 180 is also made of a material having oxygen ion conductivity similar to the first electrolyte layer 110 so that oxygen ions can move around the reference electrode 250.
- the third electrolyte layer 180 is preferably made of the same material as the first electrolyte layer 110 for structural stability in consideration of thermal expansion coefficient due to sintering and heat generation, and may be made of YSZ.
- the reference electrode 250 is disposed such that the fourth insulating layer 154 is disposed on the upper surface and the third insulating layer 152 is disposed on the lower surface to cover the lead portion of the reference electrode 250.
- the region corresponding to the opening 132a of 130 is exposed without being covered by the insulating layer.
- the oxygen ions transferred from the sensing electrode 140 through the first electrolyte layer 110 pass through the opening 132a and the third electrolyte layer 180 of the heater 130 and then reference electrodes 150 and 250. ) Will be gathered in a circle or oval shape.
- the flat plate type oxygen sensor elements 100 and 200 have a shape of oxygen ions gathered at the reference electrodes 150 and 250 by differently disposing the intervals between the heater 130 and the reference electrodes 150 and 250. By controlling, the performance of the oxygen sensor element can be adjusted.
- the heater unit 130 is for heating up the electrolyte layer having ion conductivity.
- the heater 130 is provided such that the heat generating resistor 132 is entirely surrounded by a pair of insulating layers 134a and 134b so as to remove noise generated in the heat generating process. That is, the pair of insulating layers 134a and 134b may include the first insulating layer 134a disposed on the upper side of the heating resistor 132 and the second insulating layer 134b disposed on the lower side of the heating resistor 132. It is disposed to surround the heat generating resistor 132 as a whole.
- alumina oxide Al 2 O 3
- the heating resistor 132 may use a noble metal, tungsten, molybdenum, or the like.
- Pt, Au, Ag, Pd, Ir, Ru, Rh and the like may be used as the noble metal, and only one of these may be used, or two or more thereof may be used in combination.
- the heat generating resistor preferably comprises a precious metal as a main component in consideration of heat resistance, oxidation resistance, and more preferably, Pt as a main component. .
- the heater 130 is disposed between the sensing electrode 140 and the reference electrode (150, 250), unlike the conventional oxygen sensor in the flat plate type oxygen sensor device (100,200) according to an embodiment of the present invention. do.
- the heater 130 is positioned between the first electrolyte layer 110 on which the sensing electrode 140 is disposed on the upper surface and the second electrolyte layer 120 on which the reference electrodes 150 and 250 are disposed on the upper surface. More specifically, disposed to be positioned between 4/10 and 6/10 with respect to the total height h from the upper surface of the first electrolyte layer 110 to the lower surface of the second electrolyte layer 120. do.
- the first electrolyte layer 110 and the second electrolyte layer 110 and the second electrolyte layer 120 through which oxygen ions move around the heater 130 are disposed above and below the first electrolyte layer 110 and the second electrolyte.
- All of the electrolyte layers 120 can be directly heated by the heater unit 130. Therefore, unlike the conventional case in which the electrolyte layer is sequentially heated from the heater unit 130 to the upper side when the heater unit 130 generates heat, the electrolyte layers disposed at the top and the bottom of the heater unit 130 are directly and simultaneously. By heating, the temperature raising time of the electrolyte layer is shortened, thereby increasing the overall response speed.
- the heater 130 disposed between the first electrolyte layer 110 and the second electrolyte layer 120 is a heater 130 from the sensing electrode 140 disposed on the upper side of the heater 130. It is provided to have an opening (150a) having a predetermined area so that oxygen ions can easily pass to the reference electrode 150 side disposed on the lower side of the).
- the heater 130 is a heater 130 in order to reduce the deviation of the height of the heater 130 itself in the process of being disposed between the first electrolyte layer 110 and the second electrolyte layer 120.
- a separate buffer layer 170 having a height equal to that of may be disposed between the first electrolyte layer 110 and the second electrolyte layer 120.
- the buffer layer 170 is disposed between the first electrolyte layer 110 and the third electrolyte layer 180.
- the buffer layer 170 is made of a material having oxygen ion conductivity, and a through hole 172 having a shape corresponding to the heater part 130 is provided therein. Accordingly, when the heater 130 is inserted into the through hole 172, the heater 130 is surrounded by a buffer layer 170.
- the buffer layer 170 is preferably made of the same material as other electrolyte layers for structural stability in consideration of thermal expansion coefficient due to sintering and heat generation, and may be made of YSZ.
- the buffer layer 170 is provided on the side of the heater unit 130
- the present invention is not limited thereto, and the second electrolyte layer 120 or the third electrolyte layer 180 may be the first electrolyte layer. It may be laminated so as to directly contact the bottom of the (110).
- a heater 130 is disposed between the sensing electrode 140 and the reference electrodes 150 and 250, and the heater 130 is centered on the heater 130.
- the upper and lower sides may be symmetrically arranged.
- the heating resistor 132 of the heater unit 130 may have the first electrolyte layer 110.
- the upper and lower parts are arranged symmetrically about the heater part 130 by being disposed at a position corresponding to the central part of the total height h from the upper surface of the upper surface to the lower surface of the second electrolyte layer 120. .
- the first electrolyte layer 110 disposed on the upper side of the heater 130 has the same height h1 and h2 as the second electrolyte layer 120 disposed on the lower side of the heater 130.
- the heat generating resistor 132 of the heater 130 is positioned at the center of the total height h from the top surface of the first electrolyte layer 110 to the bottom surface of the second electrolyte layer 120. Done.
- the first electrolyte layer 110 and the second electrolyte layer 120 are made of the same material.
- the first and second electrolyte layers 110 and 120 having the same material as each other are disposed at the central portion of the overall structure of the heater 130 having a sharp material difference. It is arranged on the lower side, respectively.
- the shrinkage rate during the sintering process for manufacturing the oxygen sensor element and the expansion rate of the electrolyte layer due to the heating of the heater 130 are equal to each other, thereby preventing the middle of the length from being bent due to the difference in the shrinkage rate and the expansion rate.
- the reference electrode 250 when the reference electrode 250 is spaced apart from the heater 130 through a third electrolyte layer 180 at a predetermined interval, the reference electrode 250 is disposed below the heater 130.
- the height h1 of the sum of the height of the second electrolyte layer 120 and the height of the third electrolyte layer 180 is h1 'of the first electrolyte layer 110 disposed on the upper side of the heater 130. It is provided to have the same height as).
- the heating resistor 132 of the heater unit 130 also has a lower portion of the second electrolyte layer 120 from an upper surface of the first electrolyte layer 110. It is arranged to be located at the center of the total height h between the faces.
- the height of the second electrolyte layer 120 and the third electrolyte layer 180 may be provided to have a height of 1/2 of the height of the first electrolyte layer 110, but is not limited thereto, and the second electrolyte layer ( 120 and the height of each of the third electrolyte layer 180 may have a different height.
- the first electrolyte layer 110, the second electrolyte layer 120, and the third electrolyte layer 180 are made of the same material having oxygen ion conductivity.
- the first electrolyte layer 110 having the same material as each other is disposed at the central portion of the overall structure in which the material difference is sharply divided, and the first electrolyte layer 110 is disposed on the heater 130 and the second electrolyte layer ( 120 and the third electrolyte layer 180 are disposed on the lower side of the heater 130.
- the shrinkage rate during the sintering process for manufacturing the oxygen sensor element and the expansion rate of the electrolyte layer due to the heating of the heater 130 are equal to each other, thereby preventing the middle of the length from being bent due to the difference in the shrinkage rate and the expansion rate.
- the heater unit 130 is disposed between the sensing electrode 140 and the reference electrode 150, 250 as in the flat plate type oxygen sensor device (100,200) according to an embodiment of the present invention
- the reference electrode 150, 250 and heat generation are installed to cross each other in the up and down directions.
- an upper terminal 161 and a sensing electrode 140 are disposed on an upper surface of the first electrolyte layer 110, and two lower terminals 162 and 163 are disposed on a lower surface of the second electrolyte layer 120.
- the two bottom terminals 162 and 163 may be connected to the first bottom terminal 162 and the reference electrodes 150 and 250 through the second connecting portion 131b and the second via hole 165 of the heating resistor 132.
- the second via terminal 163 is connected to the third via hole 166.
- first bottom terminal 162 and the second bottom terminal 163 are disposed side by side on the lower surface of the second electrolyte layer, and the second bottom terminal 163 is vertically downward of the top terminal 161.
- the first and second terminals 162 may be disposed in the vertical direction below the connection part provided in the sensing electrode 140.
- the heating resistor 132 of the heater 130 includes first and second connectors 131a and 131b electrically connected to the terminal 161 and the terminal 162 through the via hole, respectively. It is provided.
- the first via hole 164 for connecting the first connecting portion 131a of the heating resistor 132 and the terminal 161 from above passes through the first electrolyte layer 110 from the first connecting portion 131a.
- first via hole 164 and the second via hole 165 penetrate the first electrolyte layer 110 and the second electrolyte layer 120 disposed on the upper and lower sides of the heater part 130, respectively.
- the first via hole 164 is formed to pass through both the first insulating layer 134a and the first electrolyte layer 110 disposed on the heater 130, and the second via hole 165. Is formed to penetrate both the second insulating layer 134b and the second electrolyte layer 120 disposed under the heater 130.
- the third via hole 166 for connecting the terminals of the reference electrodes 150 and 250 and the terminal 163 from the second bottom passes through the second electrolyte layer 120 vertically downward from the terminals of the reference electrodes 150 and 250. It is formed to.
- the second via hole 165 and the third via hole 166 formed vertically downward from the terminals of the second connection portion 131b and the reference electrodes 150 and 250 are disposed to be staggered so that they do not conduct electricity to each other.
- a third electrolyte layer 180 is provided between the heater 130 and the second electrolyte layer 120, and the third insulating layer 152 and the fourth insulation are provided.
- the second via hole 165 may include the third electrolyte layer 180.
- the second via layer 166 is formed to pass through at the same time, and the third via hole 166 is formed to pass through the third insulating layer 152 and the second electrolyte layer 120 at the same time.
- the first via hole 164 is vertically upward and the second via hole 165 and the third via hole 166 are vertically downward, respectively, so that the reference electrodes 150 and 250 and the second lower part are formed vertically.
- the electrode may be connected so that the third via hole 166 for connecting the terminal 163 does not pass through the insulating layers 134a and 134b of the heater unit 130.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
Abstract
평판형 산소센서소자가 제공된다. 본 발명의 예시적인 실시예에 따른 평판형 산소센서소자는 피검출가스에 노출되는 센싱전극이 상부면에 배치되는 제1전해질층; 상기 제1전해질층의 하부측에 배치되고 상부면에 기준전극이 배치되는 제2전해질층; 및 발열저항체가 절연층에 의해 둘러싸이도록 구비되고, 상기 센싱전극 및 기준전극 사이에 배치되는 히터부;를 포함하고, 상기 히터부는 상기 발열저항체로부터 상기 제1전해질층의 상부면으로부터 상기 제2전해질층의 하부면까지의 총 높이에 대하여 4/10~6/10 사이의 위치에 배치된다.
Description
본 발명은 평판형 산소센서소자에 관한 것이다.
산소센서는 더블 산소 센서 시스템에 사용되는 센서로 산소 분압을 측정하여 ECU(Engine Control Unit)에 그 값을 피드백시켜 주는 부품이다. 이를 통해, 배기가스에 포함된 NOx, HC, CO를 제거시켜주는 삼원 촉매가 최적의 조건으로 운전되도록 한다.
현재 대부분의 차량에 적용중인 바이너리 타입의 산소센서는 배기가스에 포함된 산소의 농도를 검출하기 위한 기준산소를 산소센서의 중앙부에서 대기로 이어진 도입공을 통해 센싱부까지 대기를 끌어올려 레퍼런스로 사용하게 되어 있다.
그리고, 대기 도입공이 없는 경우에는 배기가스 중의 산소농도를 검출하기 위해 사용되는 기준산소를 산소센서소자의 기준전극을 통해 배기 중에서 바로 차징하여 레퍼런스로 사용하게끔 되어 있다.
이때, 바이너리 타입 중 플래너 타입 산소센서는 대표적인 산소이온 전도체인 지르코니아를 배기산소량 검출을 위한 매개체로 사용한다.
이러한 플래너 타입 산소센서는 배기가스에 노출되도록 센싱전극이 검출면에 배치되고 센싱전극의 하부측에 위치하도록 기준전극이 고체전해질층 내에 배치되며, 상기 기준전극의 하부측에 고체전해질층을 가열하기 위한 히터부가 배치된다.
이로 인해, 고체전해질층은 히터부로부터 상부측으로 순차적으로 가열되어 전체적인 응답속도가 느린 문제점이 있었다.
또한, 재질적으로 차이가 나는 히터부가 전체적인 구조에서 하부측에 치우쳐져 배치되기 때문에 소결이나 발열에 의한 팽창시 재질적인 차이에 의한 수축률과 팽창률의 차이로 인해 크랙이 발생하거나 휘어지는 문제점이 있었다.
한편, 히터부 및 기준전극과 터미널의 전기적인 연결구조는 히터부의 경우 비아홀을 수직하방으로 형성하고 기준전극의 경우 비아홀을 수직상방으로 형성하여 각각의 터미널과 연결되는 구조로 형성하였다.
그러나, 히터부가 기준전극과 센싱전극의 사이에 배치되는 경우 종래와 같은 방식으로 비아홀을 형성하게 되면 기준전극과 터미널을 연결하는 비아홀이 히터부를 관통하여 설치될 수밖에 없는 구조적인 문제점이 있었다.
따라서, 이를 해결하기 위한 새로운 방법이 요구되고 있는 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 센싱전극과 기준전극 사이에 히터부를 배치하여 구조적으로 안정적이고 응답속도의 이득을 얻을 수 있는 평판형 산소센서소자를 제공하는데 그 목적이 있다.
또한, 본 발명은 센싱전극과 기준전극 사이에 히터부가 배치되는 경우 해당 터미널과 연결되는 복수 개의 비아홀이 서로 중첩되지 않고 간편한 구조로 연결될 수 있는 평판형 산소센서소자를 제공하는데 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 피검출가스에 노출되는 센싱전극이 상부면에 배치되는 제1전해질층; 상기 제1전해질층의 하부측에 배치되고 상부면에 기준전극이 배치되는 제2전해질층; 및 발열저항체가 절연층에 의해 둘러싸이도록 구비되고, 상기 센싱전극 및 기준전극 사이에 배치되는 히터부;를 포함하고, 상기 히터부는 상기 발열저항체로부터 상기 제1전해질층의 상부면으로부터 상기 제2전해질층의 하부면까지의 총 높이에 대하여 4/10~6/10 사이의 위치에 배치된 평판형 산소센서소자를 제공한다.
또한, 상기 기준전극은 상기 히터부의 하부면에 접하도록 배치될 수 있다.
또한, 상기 히터부 및 제2전해질층 사이에는 소정의 높이를 갖는 제3전해질층이 배치될 수 있다.
또한, 상기 히터부는 상기 센싱전극으로부터 전달되는 산소이온이 통과할 수 있도록 개구부를 포함할 수 있다.
또한, 상기 히터부의 발열저항체는 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치되어 상기 히터부를 중심으로 상,하부가 대칭적으로 배열될 수 있다.
또한, 상기 제1전해질층 및 제2전해질층은 서로 동일한 높이를 갖도록 구비되어 상기 히터부의 발열저항체가 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치될 수 있다.
또한, 상기 제1전해질층 및 제2전해질층은 서로 동일한 재질로 이루어질 수 있다.
또한, 상기 제2전해질층 및 제3전해질층을 합한 높이는 상기 제1전해질층의 높이와 서로 동일한 높이를 갖도록 구비되어 상기 히터부의 발열저항체가 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치될 수 있다.
또한, 상기 제1전해질층, 제2전해질층 및 제3전해질층은 서로 동일한 재질로 이루어질 수 있다.
또한, 상기 제1전해질층 및 제2전해질층 사이에는 상기 히터부의 높이와 동일한 높이를 갖는 버퍼층이 상기 히터부를 둘러싸도록 배치될 수 있다.
한편, 본 발명은 일면에 센싱전극 및 상부터미널이 각각 배열되는 제1전해질층; 기준전극과 제1하부터미널이 서로 반대면에 각각 배열되는 제2전해질층; 제1접속부와 제2접속부를 갖는 발열저항체가 절연층에 의해 둘러싸이도록 구비되고 상기 제1전해질층 및 제2전해질층 사이에 배치되는 히터부;를 포함하고, 상기 발열저항체의 제1접속부 및 제2접속부 중 상기 센싱전극의 직하부에 배치되는 어느 하나의 접속부는 상기 발열저항체로부터 상기 제2전해질층을 관통하도록 형성되는 제2비아홀을 통해 제1하부터미널과 연결되고, 나머지 접속부는 상기 발열저항체로부터 상기 제1전해질층을 관통하도록 형성되는 제1비아홀을 통해 상부터미널과 연결되는 평판형 산소센서소자를 제공한다.
또한, 상기 제2전해질층의 하부면에는 상기 제1하부터미널과 나란하게 배치되는 제2하부터미널이 형성되며, 상기 제2하부터미널은 상기 상부터미널의 수직하방에 배치되고, 상기 제1하부터미널은 상기 센싱전극의 수직하방에 배치될 수 있다.
또한, 상기 제2하부터미널은 상기 제2전해질층을 관통하여 형성되는 제3비아홀을 통해 상기 기준전극과 연결될 수 있다.
또한, 상기 절연층은 상기 발열저항체의 상부측에 배치되는 제1절연층과 상기 발열저항체의 하부측에 배치되는 제2절연층을 포함하고, 상기 제1비아홀은 상기 발열저항체로부터 상기 제1절연층 및 제1전해질층을 동시에 관통하도록 형성되고, 상기 제2비아홀은 상기 발열저항체로부터 상기 제2절연층 및 제2전해질층을 동시에 관통하도록 형성될 수 있다.
또한, 상기 기준전극은 상기 제2절연층의 하부측에 접하도록 배치되고 상기 기준전극의 하부측에는 제3절연층이 배치되며, 상기 제2비아홀 및 제3비아홀은 상기 발열저항체 및 기준전극으로부터 상기 제3절연층을 각각 관통하도록 형성될 수 있다.
또한, 상기 기준전극은 상,하부면에 배치되는 한 쌍의 절연층에 둘러싸여지고, 상기 기준전극 및 히터부의 사이에는 일정높이를 갖는 제3전해질층이 배치되며, 상기 제2비아홀은 상기 발열저항체로부터 제3전해질층 및 제2전해질층을 동시에 관통하도록 형성되고 상기 제3비아홀은 상기 기준전극으로부터 상기 기준전극의 하부측에 배치되는 절연층 및 제2전해질층을 동시에 관통하도록 형성될 수 있다.
본 발명에 의하면, 센싱전극과 기준전극 사이에 히터부를 배치하여 구조적으로 안정적이고 응답속도의 이득을 얻을 수 있다.
또한, 본 발명에 의하면 해당 터미널과 각각 연결되는 복수 개의 비아홀이 서로 중첩되지 않고 간편한 구조로 연결될 수 있다.
도 1은 본 발명의 일 실시예에 따른 평판형 산소센서소자를 나타낸 전체사시도이다.
도 2는 본 발명의 제1실시예에 따른 평판형 산소센서소자를 나타낸 분리사시도이다.
도 3은 도 1에서 제1실시예에 따른 A-A방향 단면도이다.
도 4는 본 발명의 제1실시예에 따른 평판형 산소센서소자에서 비아홀의 관계를 나타낸 부분절개도이다.
도 5는 본 발명의 제2실시예에 따른 평판형 산소센서소자를 나타낸 분리사시도이다.
도 6은 도 1에서 제2실시예에 따른 A-A방향 단면도이다.
도 7은 본 발명의 제2실시예에 따른 평판형 산소센서소자에서 비아홀의 관계를 나타낸 부분절개도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
도 1 내지 도 7을 참조하면, 본 발명의 일 실시예에 따른 평판형 산소센서소자(100,200)는 제1전해질층(110), 제2전해질층(120) 및 히터부(130)를 포함한다.
상기 제1전해질층(110)은 일정높이를 갖는 bar 또는 필름의 형태로 구비되며 일정면적을 갖는 평판형으로 구비된다.
여기서, 상기 제1전해질층(110)은 산소이온 전도성을 갖는 재질로 이루어지면 그 재질은 특별히 한정되지는 않는다. 일례로, 상기 제1전해질층(110)은 YSZ(Yttrium Stabilized Zirconia)로 이루어질 수 있다.
이러한 제1전해질층(110)은 센싱전극(140)으로부터 전달되는 산소이온이 통과하여 기준전극(150,250) 측으로 이동되는 통로 역할을 수행한다. 즉, 상기 제1전해질층(110)은 적층형으로 구성되는 산소센서소자의 전체적인 구조에서 최상부측에 배치되며 상부면은 피검출가스에 노출되는 검출면을 이루게 된다.
이때, 상기 제1전해질층(110)의 상부면에는 피검출가스에 노출되어 상기 피검출가스로부터 산소성분을 검출하기 위한 센싱전극(140)이 배치된다.
이러한 센싱전극(140)은 가스 투과성을 갖는 다공질의 백금(Pt)으로 구비되며, 피검출가스로부터 획득된 산소이온을 제1전해질층(110)으로 흘려주는 역할을 수행한다.
한편, 상기 제1전해질층(110)의 상부면에는 피검출가스에 포함된 유해성분으로부터 상기 센싱전극(140)을 피독현상으로부터 보호하기 위한 별도의 전극보호층(미도시)이 구비될 수 있다.
상기 제2전해질층(120)은 상기 제1전해질층(110)의 하부측에 배치되며, 상부면에는 상기 제1전해질층(110)을 통해 이동된 산소이온이 환원되어 모이는 기준전극(150,250)이 배치된다.
여기서, 상기 제2전해질층(120)은 상기 기준전극(150,250)의 주위로 산소이온이 이동할 수 있도록 제1전해질층(110)과 마찬가지로 산소이온 전도성을 갖는 재질로 이루어진다. 이러한 제2전해질층(120)은 소결 및 발열에 의한 열팽창 계수 등을 고려할 때 구조적인 안정성을 위하여 상기 제1전해질층(110)과 동일한 재질로 이루어지는 것이 바람직하며, YSZ로 이루어질 수 있다.
그리고, 상기 제2전해질층(120)의 상부측에 배치되는 상기 기준전극(150,250)은 상기 제1전해질층(110)을 통과한 산소이온이 모이는 역할을 수행하며, 상기 센싱전극(140)과 마찬가지로 가스 투과성을 갖는 다공질의 백금(Pt)으로 구비된다.
이에 따라, 상기 센싱전극(140)에 음극, 기준전극(150,250)에 양극의 전압을 인가하면, 피검출가스 중의 산소가 상기 센싱전극(140)으로부터 전자를 받아 산소 이온이 된 후 제1전해질층(110)을 통과하여 기준전극(150,250) 측으로 이동된 후 상기 기준전극(150,250)에서 전자를 방출해 산소로 환원된 후 기준전극(150,250)에 체류된다.
한편, 상기 기준전극(150,250)에 모이는 산소이온의 형태를 컨트롤하기 위하여 상기 기준전극(150,250)은 다양한 형태로 배치될 수도 있다.
즉, 상기 제2전해질층(120)의 상부면에 배치되는 상기 기준전극(150)은 도 2에 도시된 바와 같이 상기 히터부(130)의 하부면-더욱 자세하게는 제2절연층(134b)의 하부면에 직접 접하도록 배치될 수 있다. 이와 같은 경우 상기 기준전극(150,250)의 하부면 및 제2전해질층(120) 사이에는 제3절연층(152)이 배치되어 상기 기준전극(150)은 제2절연층(134b) 및 제3절연층에 의해 둘러싸인다.
이때, 상기 기준전극(150)의 상부면은 상기 제2절연층(134b)에 의해 모두 덮이지만 기준전극(150)의 하부면은 일부가 노출되도록 제3절연층(152)에 의해 둘러싸인다. 그리고, 상기 기준전극(150)은 일단부측에 상기 히터부(130)의 개구부(132a)와 대응되는 형태의 개구부(150a)가 구비된다. 이에 따라, 상기 센싱전극(140)으로부터 제1전해질층(110)을 통해 이동된 산소이온은 히터부(130)의 개구부(132a)를 통과한 후 기준전극(150)의 개구부(150a)를 통해 하부측으로 이동하여 기준전극(150)의 하부면 측에만 반원형 또는 반타원형의 형태로 모이게 된다.
반면, 도 5에 도시된 바와 같이 상기 기준전극(250)은 상기 히터부(130)로부터 하부로 일정간격 이격된 상태로 배치될 수도 있다. 이를 위해, 상기 제2전해질층(120) 및 히터부(130)의 사이에는 소정의 높이를 갖는 별도의 제3전해질층(180)이 배치되며 상기 제3전해질층(180) 및 제2전해질층(120) 사이에 기준전극(250)이 배치되도록 한다.
여기서, 상기 제3전해질층(180) 역시 상기 기준전극(250)의 주위로 산소이온이 이동할 수 있도록 제1전해질층(110)과 마찬가지로 산소이온 전도성을 갖는 재질로 이루어진다. 이러한 제3전해질층(180)은 소결 및 발열에 의한 열팽창 계수 등을 고려할 때 구조적인 안정성을 위하여 상기 제1전해질층(110)과 동일한 재질로 이루어지는 것이 바람직하며, YSZ로 이루어질 수 있다.
이때, 상기 기준전극(250)은 상부면에 제4절연층(154)이 배치되고 하부면에 제3절연층(152)이 각각 배치되어 기준전극(250)의 리드부를 덮도록 배치되고 히터부(130)의 개구부(132a)에 대응되는 영역은 절연층에 의해 덮이지 않고 노출되도록 한다.
이에 따라, 상기 센싱전극(140)으로부터 제1전해질층(110)을 통해 이동된 산소이온은 히터부(130)의 개구부(132a) 및 제3전해질층(180)을 통과한 후 기준전극(150,250)을 중심으로 원형 또는 타원형의 형태로 모이게 된다.
이와 같이 본 발명의 일 실시예에 따른 평판형 산소센서소자(100,200)는 히터부(130)와 기준전극(150,250)과의 배치간격을 다르게 배치하여 기준전극(150,250)에 모이는 산소이온의 형태를 컨트롤함으로써 산소센서소자의 성능을 조절할 수도 있다.
상기 히터부(130)는 이온 전도성을 갖는 전해질층을 가열하여 승온시키기 위한 것이다. 이러한 히터부(130)는 발열과정에서 발생되는 노이즈를 제거할 수 있도록 발열저항체(132)가 한 쌍의 절연층(134a,134b)에 의해 전체적으로 둘러싸이도록 구비된다. 즉, 상기 한 쌍의 절연층(134a,134b)은 발열저항체(132)의 상부측에 배치되는 제1절연층(134a)과 발열저항체(132)의 하부측에 배치되는 제2절연층(134b)으로 구비되어 상기 발열저항체(132)를 전체적으로 감싸도록 배치된다.
여기서, 상기 절연층(134a,134b)은 산화알루미나(Al2O3)가 사용될 수 있으며, 상기 발열저항체(132)는 귀금속, 텅스텐, 몰리브덴 등을 사용할 수 있다. 귀금속으로는 Pt, Au, Ag, Pd, Ir, Ru, Rh 등을 사용할 수 있고 이들 중 1종만을 사용할 수도 있고 2종 이상을 병용할 수도 있다. 더불어 상기 발열저항체는 내열성, 내산화성등을 고려해 귀금속을 주성분으로 구성하는 것이 바람직하며, Pt를 주성분으로 구성하는 것이 보다 바람직하다. .
이때, 본 발명의 일실시예에 따른 평판형 산소센서소자(100,200)에서 상기 히터부(130)는 통상적인 산소센서소자와는 달리 센싱전극(140)과 기준전극(150,250) 사이에 위치하도록 배치된다.
즉, 상기 히터부(130)는 센싱전극(140)이 상부면에 배치되는 제1전해질층(110)과 상부면에 기준전극(150,250)이 배치되는 제2전해질층(120) 사이에 위치하도록 배치되며, 더욱 자세하게는 상기 제1전해질층(110)의 상부면으로부터 상기 제2전해질층(120)의 하부면까지의 총 높이(h)에 대하여 4/10~6/10 사이에 위치하도록 배치된다.
이에 따라, 상기 히터부(130)를 중심으로 산소 이온이 이동하는 제1전해질층(110) 및 제2전해질층(120)이 상,하부에 배치됨으로써 상기 제1전해질층(110) 및 제2전해질층(120)이 모두 히터부(130)에 의해 직접적으로 가열될 수 있도록 한다. 이로 인해, 히터부(130)의 발열시 히터부(130)로부터 상부측으로 순차적으로 전해질층이 가열되던 종래와는 달리 히터부(130)를 중심으로 상,하부에 배치되는 전해질층이 동시에 직접적으로 가열됨으로써 전해질층의 승온시간이 단축되어 전체적인 응답속도를 높일 수 있게 된다.
여기서, 상기 제1전해질층(110) 및 제2전해질층(120) 사이에 배치되는 히터부(130)는 히터부(130)의 상부측에 배치되는 상기 센싱전극(140)으로부터 히터부(130)의 하부측에 배치되는 기준전극(150) 측으로 산소이온이 용이하게 통과할 수 있도록 일정면적을 갖는 개구부(150a)를 갖도록 구비된다.
한편, 상기 히터부(130)는 상기 제1전해질층(110) 및 제2전해질층(120) 사이에 배치되는 과정에서 히터부(130) 자체가 갖는 높이의 편차를 줄이기 위하여 히터부(130)의 높이만큼의 높이를 갖는 별도의 버퍼층(170)이 제1전해질층(110) 및 제2전해질층(120) 사이에 배치될 수도 있다.
상기 기준전극(250)의 상부측에 제3전해질층(180)이 구비되는 다른 실시예의 경우 상기 버퍼층(170)은 제1전해질층(110) 및 제3전해질층(180) 사이에 배치된다.
이러한 버퍼층(170)은 산소이온 전도성을 갖는 재질로 이루어지며, 내부에 상기 히터부(130)와 대응되는 형상의 통과공(172)이 마련된다. 이에 따라, 상기 히터부(130)를 상기 통과공(172)에 삽입하게 되면 상기 히터부(130)는 버퍼층(170)에 의해 테두리가 둘러싸이게 된다. 여기서, 상기 버퍼층(170)은 소결 및 발열에 의한 열팽창 계수 등을 고려할 때 구조적인 안정성을 위하여 다른 전해질층과 동일한 재질로 이루어지는 것이 바람직하며, YSZ로 이루어질 수 있다.
도면에는 상기 히터부(130)의 측부에 버퍼층(170)이 구비되는 것으로 도시하였지만, 이에 한정하는 것은 아니며, 상기 제2전해질층(120) 또는 제3전해질층(180)이 상기 제1전해질층(110)의 하부에 직접 접하도록 적층될 수도 있다.
한편, 본 발명의 일실시예에 따른 평판형 산소센서소자(100,200)는 센싱전극(140)과 기준전극(150,250) 사이에 히터부(130)가 배치되고, 상기 히터부(130)를 중심으로 상,하부 측이 대칭적으로 배열될 수 있다.
즉, 도 2에 도시된 바와 같이 상기 기준전극(150)이 상기 히터부(130)의 하부측에 직접 배치되는 경우, 히터부(130)의 발열저항체(132)는 상기 제1전해질층(110)의 상부면으로부터 제2전해질층(120)의 하부면까지의 전체높이(h)의 중앙부에 해당하는 위치에 배치됨으로써 상기 히터부(130)를 중심으로 상,하부가 대칭적으로 배열되도록 한다.
이를 위해, 상기 히터부(130)의 상부측에 배치되는 제1전해질층(110)은 히터부(130)의 하부측에 배치되는 제2전해질층(120)과 서로 동일한 높이(h1,h2)를 갖도록 구비됨으로써 상기 히터부(130)의 발열저항체(132)는 상기 제1전해질층(110)의 상부면으로부터 제2전해질층(120)의 하부면 까지의 전체높이(h)의 중앙부에 위치하게 된다.
이와 같은 경우, 상기 제1전해질층(110) 및 제2전해질층(120)은 서로 동일한 재질로 이루어진다.
이에 따라, 재료적인 차이가 극명하게 갈리는 히터부(130)가 전체적인 구조에서 중앙부에 위치하고 서로 동일한 재질을 갖는 제1전해질층(110) 및 제2전해질층(120)이 히터부(130)의 상,하부 측에 각각 배치된다.
이로 인해, 산소센서소자를 제작하기 위한 소결과정에서의 수축률, 히터부(130)의 가열에 의한 전해질층의 팽창률이 서로 동일하게 이루어짐으로써 수축률 및 팽창률의 차이에 의해 길이 중간이 휘어지는 것을 방지하여 전체적인 내구성을 높일 수 있는 장점이 있다.
또한, 도 5에 도시된 바와 같이 상기 기준전극(250)이 제3전해질층(180)을 매개로 히터부(130)로부터 일정간격 이격배치되는 경우에는 상기 히터부(130)의 하부측에 배치되는 제2전해질층(120)의 높이 및 제3전해질층(180)의 높이를 합한 높이(h2')가 히터부(130)의 상부측에 배치되는 제1전해질층(110)의 높이(h1)와 동일한 높이를 갖도록 구비된다.
이로 인해, 상기 제3전해질층(180)이 배치되는 경우 역시 상기 히터부(130)의 발열저항체(132)는 상기 제1전해질층(110)의 상부면으로부터 제2전해질층(120)의 하부면 사이의 전체높이(h)의 중앙부에 위치되도록 배열된다.
여기서, 상기 제2전해질층(120) 및 제3전해질층(180)의 높이는 제1전해질층(110) 높이의 1/2높이를 갖도록 구비될 수도 있지만 이에 한정하는 것은 아니며, 제2전해질층(120) 및 제3전해질층(180) 각각의 높이는 서로 다른 높이를 가질 수도 있음을 밝혀둔다.
이와 같은 경우, 상기 제1전해질층(110), 제2전해질층(120) 및 제3전해질층(180)은 산소이온 전도성을 갖는 동일한 재질로 이루어진다.
이에 따라, 재료적인 차이가 극명하게 갈리는 히터부(130)가 전체적인 구조에서 중앙부에 위치하고 서로 동일한 재질을 갖는 제1전해질층(110)은 히터부(130)의 상부에 배치되고 제2전해질층(120) 및 제3전해질층(180)이 히터부(130)의 하부 측에 각각 배치된다.
이로 인해, 산소센서소자를 제작하기 위한 소결과정에서의 수축률, 히터부(130)의 가열에 의한 전해질층의 팽창률이 서로 동일하게 이루어짐으로써 수축률 및 팽창률의 차이에 의해 길이 중간이 휘어지는 것을 방지하고 전체적인 내구성을 높일 수 있는 장점이 있다.
한편, 본 발명의 일실시예에 따른 평판형 산소센서소자(100,200)에서와 같이 센싱전극(140)과 기준전극(150,250) 사이에 히터부(130)가 배치되는 경우 기준전극(150,250) 및 발열저항체(132)를 각각의 터미널과 원활하게 연결하기 위하여 비아홀을 서로 상,하 방향으로 교차되도록 설치한다.
이때, 상기 제1전해질층(110)의 상부면에는 상부터미널(161) 및 센싱전극(140)이 각각 배치되며, 상기 제2전해질층(120)의 하부면에는 두 개의 하부터미널(162,163)이 각각 배치된다. 여기서, 상기 두 개의 하부터미널(162,163)은 상기 발열저항체(132)의 제2접속부(131b)와 제2비아홀(165)을 통해 연결되는 제1하부터미널(162)과 상기 기준전극(150,250)과 제3비아홀(166)을 통해 연결되는 제2하부터미널(163)로 구비된다.
더불어, 제1하부터미널(162) 및 제2하부터미널(163)은 상기 제2전해질층의 하부면에 나란하게 배치되며, 상기 제2하부터미널(163)은 상기 상부터미널(161)의 수직하방에 배치되며, 상기 제1하부터미널(162)은 상기 센싱전극(140)에 구비되는 접속부의 수직하방에 배치된다.
그리고, 상기 히터부(130)의 발열저항체(132)에는 상기 상부터미널(161) 및 하부터미널(162)과 비아홀을 통해 각각 전기적으로 연결되는 제1접속부(131a) 및 제2접속부(131b)가 구비된다.
이때, 상기 발열저항체(132)의 제1접속부(131a)와 상부터미널(161)을 연결하기 위한 제1비아홀(164)은 상기 제1접속부(131a)로부터 상기 제1전해질층(110)을 관통하도록 수직 상방으로 관통형성되며, 상기 센싱전극(140) 단자의 직하부에 배치되는 상기 발열저항체(132)의 제2접속부(131b)와 하부터미널(162)을 연결하기 위한 제2비아홀(165)은 상기 제2전해질층(120)을 관통하도록 수직 하방으로 관통형성된다.
즉, 상기 히터부(130)를 중심으로 상,하부측에 배치되는 제1전해질층(110) 및 제2전해질층(120)을 각각 관통하도록 상기 제1비아홀(164) 및 제2비아홀(165)이 상기 발열저항체(132)의 제1접속부(131a) 및 제2접속부(131b)로부터 수직상방과 수직하방으로 각각 교차되도록 형성된다.
이때, 상기 제1비아홀(164)은 히터부(130)의 상부측에 배치되는 제1절연층(134a) 및 제1전해질층(110)을 모두 관통하도록 형성되며, 상기 제2비아홀(165)은 히터부(130)의 하부측에 배치되는 제2절연층(134b) 및 제2전해질층(120)을 모두 관통하도록 형성된다.
그리고, 상기 기준전극(150,250)의 단자와 제2하부터미널(163)을 연결하기 위한 제3비아홀(166)은 상기 기준전극(150,250)의 단자로부터 수직하방으로 제2전해질층(120)을 관통하도록 형성된다.
여기서, 제2접속부(131b) 및 기준전극(150,250)의 단자로부터 수직하방으로 형성되는 제2비아홀(165) 및 제3비아홀(166)은 서로 엇갈리도록 배치됨으로써 서로 통전이 이루어지지 않도록 한다.
한편, 도 2 및 도 3에 도시된 바와 같이 기준전극(150)이 상기 히터부(130)의 제2절연층(134b)의 하부측에 직접 배치되는 경우 상기 제2비아홀(165) 및 제3비아홀(166)은 기준전극(150)의 하부측에 배치되는 제3절연층(152)도 함께 관통하도록 형성된다.
또한, 도 5 및 도 6에 도시된 바와 같이 히터부(130)와 제2전해질층(120)의 사이에 제3전해질층(180)이 구비되고, 제3절연층(152) 및 제4절연층(154)에 의해 둘러싸인 기준전극(250)이 상기 제3전해질층(180) 및 제2전해질층(120)의 사이에 배치되는 경우 상기 제2비아홀(165)은 제3전해질층(180) 및 제2전해질층(120)을 동시에 관통하도록 형성되며 제3비아홀(166)은 제3절연층(152) 및 제2전해질층(120)을 동시에 관통하도록 형성된다.
이와 같이 히터부(130)를 중심으로 제1비아홀(164)은 수직상방으로, 제2비아홀(165) 및 제3비아홀(166)은 각각 수직하방으로 형성됨으로써 기준전극(150,250)과 제2하부터미널(163)을 연결하기 위한 제3비아홀(166)이 히터부(130)의 절연층(134a,134b)을 통과하지 않도록 전극을 연결할 수 있게 된다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
Claims (16)
- 피검출가스에 노출되는 센싱전극이 구비되는 제1전해질층;기준전극이 배치되는 제2전해질층; 및발열저항체가 절연층에 의해 둘러싸이도록 구비되고, 상기 센싱전극 및 기준전극 사이에 배치되는 히터부;를 포함하고,상기 히터부는 상기 발열저항체가 상기 제1전해질층의 상부면으로부터 상기 제2전해질층의 하부면까지의 총 높이에 대하여 4/10 ~ 6/10 사이에 위치하도록 배치되는 평판형 산소센서소자.
- 제 1항에 있어서,상기 기준전극은 상기 히터부에 접하도록 배치되는 평판형 산소센서소자.
- 제 1항에 있어서,상기 히터부 및 제2전해질층 사이에는 소정의 높이를 갖는 제3전해질층이 배치되는 평판형 산소센서소자.
- 제 1항에 있어서,상기 히터부는 상기 센싱전극으로부터 전달되는 산소이온이 통과할 수 있도록 개구부를 포함하는 평판형 산소센서소자.
- 제 2항 또는 제3항에 있어서,상기 발열저항체는 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치되어 상기 히터부를 중심으로 상,하부가 대칭적으로 배열되는 평판형 산소센서소자.
- 제 5항에 있어서,상기 제1전해질층 및 제2전해질층은 서로 동일한 높이를 갖도록 구비되어 상기 히터부의 발열저항체가 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치되는 평판형 산소센서소자.
- 제 6항에 있어서,상기 제1전해질층 및 제2전해질층은 서로 동일한 재질로 이루어지는 평판형 산소센서소자.
- 제 3항에 있어서,상기 제2전해질층 및 제3전해질층을 합한 높이는 상기 제1전해질층의 높이와 서로 동일한 높이를 갖도록 구비되어 상기 히터부의 발열저항체가 상기 제1전해질층의 상부면으로부터 제2전해질층의 하부면 사이를 연결하는 전체높이의 중앙부에 위치하도록 배치되는 평판형 산소센서소자.
- 제 8항에 있어서,상기 제1전해질층, 제2전해질층 및 제3전해질층은 서로 동일한 재질로 이루어지는 평판형 산소센서소자.
- 제 1항에 있어서,상기 제1전해질층 및 제2전해질층 사이에는 상기 히터부의 높이와 동일한 높이를 갖는 버퍼층이 상기 히터부를 둘러싸도록 배치되는 평판형 산소센서소자.
- 일면에 센싱전극 및 상부터미널이 각각 배열되는 제1전해질층;기준전극과 제1하부터미널이 서로 반대면에 각각 배열되는 제2전해질층;제1접속부와 제2접속부를 갖는 발열저항체가 절연층에 의해 둘러싸이도록 구비되고 상기 제1전해질층 및 제2전해질층 사이에 배치되는 히터부;를 포함하고,상기 발열저항체의 제1접속부 및 제2접속부 중 상기 센싱전극의 직하부에 배치되는 어느 하나의 접속부는 상기 발열저항체로부터 상기 제2전해질층을 관통하도록 형성되는 제2비아홀을 통해 제1하부터미널과 연결되고, 나머지 접속부는 상기 발열저항체로부터 상기 제1전해질층을 관통하도록 형성되는 제1비아홀을 통해 상부터미널과 연결되는 평판형 산소센서소자.
- 제 11항에 있어서,상기 제2전해질층의 일면에는 상기 제1하부터미널과 나란하게 배치되는 제2하부터미널이 형성되며, 상기 제2하부터미널은 상기 상부터미널의 수직하방에 배치되고, 상기 제1하부터미널은 상기 센싱전극의 수직하방에 배치되는 평판형 산소센서소자.
- 제 12항에 있어서,상기 제2하부터미널은 상기 제2전해질층을 관통하여 형성되는 제3비아홀을 통해 상기 기준전극과 연결되는 평판형 산소센서소자.
- 제 13항에 있어서,상기 절연층은 상기 발열저항체의 상부측에 배치되는 제1절연층과 상기 발열저항체의 하부측에 배치되는 제2절연층을 포함하고,상기 제1비아홀은 상기 발열저항체로부터 상기 제1절연층 및 제1전해질층을 동시에 관통하도록 형성되고, 상기 제2비아홀은 상기 발열저항체로부터 상기 제2절연층 및 제2전해질층을 동시에 관통하도록 형성되는 평판형 산소센서소자.
- 제 14항에 있어서,상기 기준전극은 상기 제2절연층의 하부측에 접하도록 배치되고 상기 기준전극의 하부측에는 제3절연층이 배치되며, 상기 제2비아홀 및 제3비아홀은 상기 발열저항체 및 기준전극으로부터 상기 제3절연층을 각각 관통하도록 형성되는 평판형 산소센서소자.
- 제 14항에 있어서,상기 기준전극은 상,하부면에 배치되는 한 쌍의 절연층에 의해 둘러싸여지고, 상기 기준전극 및 히터부의 사이에는 일정높이를 갖는 제3전해질층이 배치되며, 상기 제2비아홀은 상기 발열저항체로부터 제3전해질층 및 제2전해질층을 동시에 관통하도록 형성되고 상기 제3비아홀은 상기 기준전극으로부터 상기 기준전극의 하부측에 배치되는 절연층 및 제2전해질층을 동시에 관통하도록 형성되는 평판형 산소센서소자.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/519,777 US10393693B2 (en) | 2014-10-17 | 2015-10-15 | Flat plate-type oxygen sensor element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140140765A KR101626969B1 (ko) | 2014-10-17 | 2014-10-17 | 평판형 산소센서소자 |
KR10-2014-0140764 | 2014-10-17 | ||
KR1020140140764A KR101626970B1 (ko) | 2014-10-17 | 2014-10-17 | 평판형 산소센서소자 |
KR10-2014-0140765 | 2014-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016060493A1 true WO2016060493A1 (ko) | 2016-04-21 |
Family
ID=55746952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010892 WO2016060493A1 (ko) | 2014-10-17 | 2015-10-15 | 평판형 산소센서소자 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10393693B2 (ko) |
WO (1) | WO2016060493A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3647777A4 (en) * | 2017-06-27 | 2021-03-17 | Kyocera Corporation | SENSOR SUBSTRATE AND SENSOR DEVICE |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0148687B1 (ko) * | 1988-04-08 | 1998-08-17 | 랄프 베렌스. 페터 뢰저 | 내연기관의 배기가스 람다값 결정용 평면 폴라로그래픽 탐침 및 그 제조방법 |
KR20020060713A (ko) * | 1999-10-20 | 2002-07-18 | 덴턴 마이클 | 가스센서로 산소를 펌핑하는 방법 및 장치 |
JP2002310988A (ja) * | 2001-03-30 | 2002-10-23 | Robert Bosch Gmbh | ガスセンサ |
JP2004117099A (ja) * | 2002-09-25 | 2004-04-15 | Kyocera Corp | 酸素センサ素子 |
JP2012146449A (ja) * | 2011-01-11 | 2012-08-02 | Denso Corp | セラミックヒータと、それを備えたガスセンサ素子、ガスセンサ、並びにこれらの製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0640094B2 (ja) * | 1986-03-17 | 1994-05-25 | 日本碍子株式会社 | 電気化学的装置 |
US6579436B2 (en) | 2000-12-18 | 2003-06-17 | Delphi Technologies, Inc. | Gas sensor and method of producing the same |
DE10252712B4 (de) | 2002-11-13 | 2004-10-28 | Robert Bosch Gmbh | Gasmessfühler |
-
2015
- 2015-10-15 WO PCT/KR2015/010892 patent/WO2016060493A1/ko active Application Filing
- 2015-10-15 US US15/519,777 patent/US10393693B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0148687B1 (ko) * | 1988-04-08 | 1998-08-17 | 랄프 베렌스. 페터 뢰저 | 내연기관의 배기가스 람다값 결정용 평면 폴라로그래픽 탐침 및 그 제조방법 |
KR20020060713A (ko) * | 1999-10-20 | 2002-07-18 | 덴턴 마이클 | 가스센서로 산소를 펌핑하는 방법 및 장치 |
JP2002310988A (ja) * | 2001-03-30 | 2002-10-23 | Robert Bosch Gmbh | ガスセンサ |
JP2004117099A (ja) * | 2002-09-25 | 2004-04-15 | Kyocera Corp | 酸素センサ素子 |
JP2012146449A (ja) * | 2011-01-11 | 2012-08-02 | Denso Corp | セラミックヒータと、それを備えたガスセンサ素子、ガスセンサ、並びにこれらの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3647777A4 (en) * | 2017-06-27 | 2021-03-17 | Kyocera Corporation | SENSOR SUBSTRATE AND SENSOR DEVICE |
US11513095B2 (en) | 2017-06-27 | 2022-11-29 | Kyocera Corporation | Sensor board and sensor device |
Also Published As
Publication number | Publication date |
---|---|
US20170241941A1 (en) | 2017-08-24 |
US10393693B2 (en) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3665333B2 (ja) | ガス混合気のガス成分及び/又はガス濃度検出用センサ装置 | |
WO2018182323A1 (ko) | Nox 센서 | |
EP0310206B1 (en) | Electrochemical device | |
WO2018182324A1 (ko) | 암모니아 센서 | |
JPS60108745A (ja) | 電気化学的装置 | |
US10900920B2 (en) | Gas sensor | |
JPS6151555A (ja) | 電気化学的装置 | |
CN113075277A (zh) | 氮氧化物传感器 | |
WO2016060493A1 (ko) | 평판형 산소센서소자 | |
WO2017171419A1 (ko) | 질소산화물 농도 측정 및 암모니아 슬립 감지 센서 | |
WO2016178505A1 (ko) | 입자상 물질 센서 | |
WO2019103328A1 (ko) | 수직 적층된 온습도 복합 센서 및 그 제조방법 | |
WO2022177335A1 (ko) | 전기전도도를 이용한 전극의 미세구조 판별 방법 | |
WO2018066752A1 (ko) | 센서 | |
JP2002195978A (ja) | ガス検知素子およびそれを用いたガス検出装置 | |
WO2022030932A1 (ko) | 가스 센서 | |
WO2016072633A1 (ko) | 질소 산화물 센서 | |
JPH09196891A (ja) | 空燃比検出素子 | |
WO2016200132A1 (ko) | 입자상 물질 센서 및 이를 포함하는 배기가스 정화 시스템 | |
US20190162693A1 (en) | Sensor element and gas sensor including the same | |
JP3486960B2 (ja) | 酸素センサ | |
JP4037220B2 (ja) | ガスセンサ素子 | |
WO2022139105A1 (ko) | 가스센서 및 이의 제조 방법 | |
WO2023162385A1 (ja) | ガスセンサ | |
WO2024010246A1 (ko) | 가스 센서 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15851361 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15519777 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15851361 Country of ref document: EP Kind code of ref document: A1 |