WO2016060174A1 - 化合物および組成物 - Google Patents

化合物および組成物 Download PDF

Info

Publication number
WO2016060174A1
WO2016060174A1 PCT/JP2015/079073 JP2015079073W WO2016060174A1 WO 2016060174 A1 WO2016060174 A1 WO 2016060174A1 JP 2015079073 W JP2015079073 W JP 2015079073W WO 2016060174 A1 WO2016060174 A1 WO 2016060174A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
liquid crystal
polarizing film
Prior art date
Application number
PCT/JP2015/079073
Other languages
English (en)
French (fr)
Inventor
憲之 飛田
大川 春樹
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237020118A priority Critical patent/KR20230093526A/ko
Priority to KR1020177011452A priority patent/KR102594216B1/ko
Priority to CN201580055985.0A priority patent/CN107074746B/zh
Priority to US15/519,373 priority patent/US10961456B2/en
Priority to JP2016554109A priority patent/JP6737180B2/ja
Publication of WO2016060174A1 publication Critical patent/WO2016060174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C245/00Compounds containing chains of at least two nitrogen atoms with at least one nitrogen-to-nitrogen multiple bond
    • C07C245/02Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides
    • C07C245/06Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings
    • C07C245/08Azo compounds, i.e. compounds having the free valencies of —N=N— groups attached to different atoms, e.g. diazohydroxides with nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings with the two nitrogen atoms of azo groups bound to carbon atoms of six-membered aromatic rings, e.g. azobenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/04Disazo dyes from a coupling component "C" containing a directive amino group
    • C09B31/043Amino-benzenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B31/00Disazo and polyazo dyes of the type A->B->C, A->B->C->D, or the like, prepared by diazotising and coupling
    • C09B31/02Disazo dyes
    • C09B31/06Disazo dyes from a coupling component "C" containing a directive hydroxyl group
    • C09B31/062Phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B56/00Azo dyes containing other chromophoric systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a compound and a composition.
  • Patent Document 1 describes a polarizing film containing a compound (dichroic dye) that absorbs dichroic light dispersed in an aligned polymerizable liquid crystal compound.
  • Patent Document 2 describes a bisazo dye having a 1,4-naphthyl structure as a dichroic dye having a maximum absorption at a wavelength of 350 to 550 nm. However, the dichroic ratio of the polarizing film containing the dichroic dye was low.
  • the present invention includes the following inventions.
  • Formula (1) [Wherein R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an acyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, Represents an acyloxy group having 1 to 20 or —N (R 10 ) (R 11 ), wherein R 10 represents an acyl group having 1 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms.
  • R 11 represents a sulfonyl group
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • R 10 and R 11 are bonded to each other, and together with the nitrogen atom to which they are bonded, —N—CO— or —
  • a ring containing N—SO 2 — may be formed.
  • One or more hydrogen atoms constituting the alkyl group, the alkoxy group, the acyl group, the alkoxycarbonyl group, the acyloxy group, the alkylsulfonyl group and the arylsulfonyl group are a halogen atom, a hydroxy group, an amino group or It may be replaced with an amino group having a substituent.
  • R 20 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 7 and R 8 are substituents other than a hydrogen atom, and each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, or a cyano group, At least one hydrogen atom constituting the alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms may be substituted with a halogen atom or a hydroxy group, and p and q are each independently 0 It is an integer of ⁇ 2.
  • R 2 represents an acyl group having 1 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, or an arylsulfonyl group having 6 to 20 carbon atoms
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • R 2 and R 3 may be bonded to each other to form a ring containing —N—CO— or —N—SO 2 — together with the nitrogen atom to which they are bonded.
  • One or more hydrogen atoms constituting the alkyl group, the acyl group, the alkylsulfonyl group, and the arylsulfonyl group may be replaced with a halogen atom, a hydroxy group, an amino group, or an amino group having a substituent.
  • —O— or —NR 30 — may be inserted between carbon atoms constituting the alkyl group, and R 30 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Y represents the formula (Y1): (In the formula, * represents a bonding site with N.
  • R 9 is a substituent other than a hydrogen atom, and each independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms. Represents a halogen atom or a cyano group, and at least one hydrogen atom constituting the alkyl group having 1 to 4 carbon atoms and the alkoxy group having 1 to 4 carbon atoms may be substituted with a halogen atom or a hydroxy group R is an integer from 0 to 2.) Or a group represented by formula (Y2): (In the formula, * represents a bonding site with N, P 1 and P 2 each independently represent —S—, —O— or —N (R 12 ) —, and R 12 represents a hydrogen atom.
  • an alkyl group having 1 to 4 carbon atoms, and Q 1 and Q 2 each independently represent ⁇ N— or ⁇ CH—.
  • Represents a group represented by ] A compound represented by [2] The compound according to [1], wherein p, q and r are 0.
  • a composition comprising a polymerizable liquid crystal compound and the compound according to [1] or [2].
  • a polarizing film comprising the compound according to [1] or [2].
  • [7] A polarizing film formed from the composition according to any one of [3] to [5].
  • [8] The polarizing film according to [6] or [7], wherein the maximum absorption wavelength ( ⁇ max1 ) of the polarizing film is longer than the maximum absorption wavelength ( ⁇ max2 ) of the compound represented by formula (1).
  • the polarizing film according to any one of [6] to [9] which exhibits a Bragg peak in X-ray diffraction measurement.
  • a liquid crystal display device comprising the polarizing film according to any one of [6] to [10].
  • a liquid crystal cell comprising the polarizing film according to any one of [6] to [10], a liquid crystal layer, and a substrate.
  • a color filter is further disposed between the substrate and the liquid crystal layer.
  • a circularly polarizing plate comprising the polarizing film according to any one of [6] to [10] and a quarter-wave plate.
  • An organic EL display device comprising the polarizing film according to any one of [6] to [10] and an organic EL element.
  • An organic EL display device comprising the circularly polarizing plate according to [15] and an organic EL element.
  • the compound of the present invention is a novel compound that functions as a dichroic dye having a maximum absorption in the wavelength range of 350 nm to 550 nm, and forms a polarizing film having a high dichroic ratio from the composition containing the compound. Can do.
  • the azo group of the compound represented by the formula (1) of the present invention (hereinafter sometimes referred to as compound (1)) is preferably a trans azo group.
  • R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an acyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, or 1 carbon atom. Represents an acyloxy group of ⁇ 20 or —N (R 10 ) (R 11 ).
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc., unsubstituted (not having a substituent) linear or branched carbon number of 1 to There are 20 alkyl groups.
  • One or more hydrogen atoms constituting the alkyl group having 1 to 20 carbon atoms may be substituted with a halogen atom (for example, a fluorine atom), a hydroxy group, an amino group, or an amino group having a substituent.
  • a halogen atom for example, a fluorine atom
  • the amino group having a substituent include one or two carbon atoms having 1 to 20 carbon atoms such as an N-methylamino group, an N-ethylamino group, an N, N-dimethylamino group, and an N, N-diethylamino group.
  • Examples thereof include an amino group substituted with an alkyl group.
  • Examples of the alkyl group in which one or more hydrogen atoms are replaced with a halogen atom or the like include a haloalkyl group having 1 to 20 carbon atoms such as a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a nonafluorobutyl group, and a hydroxymethyl group 1 having a non-substituted or substituted amino group such as a hydroxyalkyl group having 1 to 20 carbon atoms such as 2-hydroxyethyl group, aminomethyl group, 2- (N, N-dimethylamino) ethyl group, etc.
  • a haloalkyl group having 1 to 20 carbon atoms such as a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a nonafluorobutyl group
  • R 20 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Examples of the 20 alkyl groups include the same groups as described above.
  • Examples of the alkyl group having —O— or —NR 20 — inserted between carbon atoms include a methoxymethyl group, 2-ethoxyethyl group, 2- (2-ethoxyethoxy) ethyl group, 2- [2- (ethyl Amino) ethyl) amino] ethyl group and the like.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, Non-substituted linear or branched carbon atoms such as neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. There are 20 alkoxy groups.
  • One or more hydrogen atoms constituting the alkoxy group having 1 to 20 carbon atoms may be substituted with a halogen atom (for example, a fluorine atom), a hydroxy group, an amino group, or an amino group having a substituent.
  • a halogen atom for example, a fluorine atom
  • the amino group having a substituent include one or two carbon atoms having 1 to 20 carbon atoms such as an N-methylamino group, an N-ethylamino group, an N, N-dimethylamino group, and an N, N-diethylamino group.
  • Examples thereof include an amino group substituted with an alkyl group.
  • Examples of the alkoxy group in which one or more hydrogen atoms are replaced by a halogen atom or the like include haloalkoxy groups having 1 to 20 carbon atoms such as fluoromethoxy group, trifluoromethoxy group, pentafluoroethoxy group, and nonafluorobutoxy group, hydroxymethoxy Carbon number having an unsubstituted or substituted amino group such as a hydroxyalkoxy group having 1 to 20 carbon atoms such as 2-hydroxyethoxy group, aminomethoxy group, 2- (N, N-dimethylamino) ethoxy group, etc. Examples include 1 to 20 alkoxy groups.
  • Examples include methoxymethoxy group, 2-ethoxyethoxy group, 2- (2-ethoxyethoxy) ethoxy group, 2- [2- (ethylamino) ethyl) amino] ethoxy group, and the like.
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, ethylcarbonyl group, n-propylcarbonyl group, isopropylcarbonyl group, n-butylcarbonyl group, isobutylcarbonyl group, tert-butylcarbonyl group, and n-pentyl.
  • Unsubstituted carbon number such as carbonyl group, isopentylcarbonyl group, neopentylcarbonyl group, n-hexylcarbonyl group, n-heptylcarbonyl group, n-octylcarbonyl group, n-nonylcarbonyl group, n-decylcarbonyl group, etc. ⁇ 20 acyl groups.
  • One or more hydrogen atoms constituting the acyl group are a halogen atom (for example, a fluorine atom), a hydroxy group, an amino group or an amino group having a substituent (for example, an N-methylamino group, an N-ethylamino group, And an amino group substituted with one or two alkyl groups having 1 to 20 carbon atoms such as N, N-dimethylamino group, N, N-diethylamino group and the like.
  • a halogen atom for example, a fluorine atom
  • a hydroxy group for example, an amino group or an amino group having a substituent (for example, an N-methylamino group, an N-ethylamino group,
  • an amino group substituted with one or two alkyl groups having 1 to 20 carbon atoms such as N, N-dimethylamino group, N, N-diethylamino group and the like.
  • acyl group in which one or more hydrogen atoms are replaced by a halogen atom examples include haloacyl groups having 1 to 20 carbon atoms such as a trifluoroacetyl group, a pentafluoroethylcarbonyl group, and a nonafluorobutylcarbonyl group.
  • alkoxycarbonyl group having 2 to 20 carbon atoms examples include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, tert-butoxycarbonyl group, n- Pentyloxycarbonyl group, isopentyloxycarbonyl group, neopentyloxycarbonyl group, n-hexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxycarbonyl group, n-nonyloxycarbonyl group, n-decyloxycarbonyl And an unsubstituted alkoxycarbonyl group having 2 to 20 carbon atoms such as a group.
  • One or more hydrogen atoms constituting the alkoxycarbonyl group may be substituted with a halogen atom (for example, a fluorine atom), a hydroxy group, an amino group, or an amino group having a substituent.
  • a halogen atom for example, a fluorine atom
  • the amino group having a substituent include one or two carbon atoms having 1 to 20 carbon atoms such as an N-methylamino group, an N-ethylamino group, an N, N-dimethylamino group, and an N, N-diethylamino group.
  • Examples thereof include an amino group substituted with an alkyl group.
  • alkoxycarbonyl group in which one or more hydrogen atoms are replaced by a halogen atom or the like examples include halo of 2 to 20 carbon atoms such as a fluoromethoxycarbonyl group, a trifluoromethoxycarbonyl group, a pentafluoroethoxycarbonyl group, and a nonafluorobutoxycarbonyl group.
  • halo of 2 to 20 carbon atoms such as a fluoromethoxycarbonyl group, a trifluoromethoxycarbonyl group, a pentafluoroethoxycarbonyl group, and a nonafluorobutoxycarbonyl group.
  • An alkoxycarbonyl group is mentioned.
  • acyloxy group having 1 to 20 carbon atoms examples include acetyloxy group, ethylcarbonyloxy group, n-propylcarbonyloxy group, isopropylcarbonyloxy group, n-butylcarbonyloxy group, isobutylcarbonyloxy group, tert-butylcarbonyloxy group N-pentylcarbonyloxy group, isopentylcarbonyloxy group, neopentylcarbonyloxy group, n-hexylcarbonyloxy group, n-heptylcarbonyloxy group, n-octylcarbonyloxy group, n-nonylcarbonyloxy group, n- Examples thereof include an unsubstituted acyloxy group having 1 to 20 carbon atoms such as a decylcarbonyloxy group.
  • One or more hydrogen atoms constituting the acyloxy group may be substituted with a halogen atom (for example, a fluorine atom), a hydroxy group, an amino group, or an amino group having a substituent.
  • a halogen atom for example, a fluorine atom
  • the amino group having a substituent include one or two carbon atoms having 1 to 20 carbon atoms such as an N-methylamino group, an N-ethylamino group, an N, N-dimethylamino group, and an N, N-diethylamino group.
  • Examples thereof include an amino group substituted with an alkyl group.
  • acyloxy group in which one or more hydrogen atoms are replaced with a halogen atom or the like examples include those having 1 to 20 carbon atoms such as a fluoroacetyloxy group, a trifluoroacetyloxy group, a pentafluoroethylcarbonyloxy group, and a nonafluorobutylcarbonyloxy group.
  • a haloacyloxy group is mentioned.
  • R 10 in -N (R 10) (R 11 ) represents an acyl group, an alkylsulfonyl group or an arylsulfonyl group having 6 to 20 carbon atoms having 1 to 20 carbon atoms having 1 to 20 carbon atoms
  • R 11 is Represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, wherein R 10 and R 11 are bonded to each other, and together with the nitrogen atom to which they are bonded, a ring containing —N—CO— or —N—SO 2 — It may be formed.
  • One or more hydrogen atoms constituting the acyl group, alkylsulfonyl group and arylsulfonyl group in R 10 are substituted with a halogen atom (for example, fluorine atom), a hydroxy group, an amino group or an amino group having a substituent. Also good.
  • a halogen atom for example, fluorine atom
  • the amino group having a substituent include one or two carbon atoms having 1 to 20 carbon atoms such as an N-methylamino group, an N-ethylamino group, an N, N-dimethylamino group, and an N, N-diethylamino group. Examples thereof include an amino group substituted with an alkyl group.
  • acyl group having 1 to 20 carbon atoms in R 10 include those similar to the acyl group having 1 to 20 carbon atoms in R 1 described above, and one or more hydrogen atoms constituting the acyl group are halogenated.
  • Examples of the acyl group replaced with an atom and the like include the same groups as those described above for R 1 .
  • alkylsulfonyl group having 1 to 20 carbon atoms examples include unsubstituted alkylsulfonyl groups having 1 to 20 carbon atoms such as a methylsulfonyl group, an ethylsulfonyl group, and an n-propylsulfonyl group, and constitute such an alkylsulfonyl group.
  • Examples of the group in which one or more hydrogen atoms are replaced with a halogen atom or the like include a haloalkylsulfonyl group having 1 to 20 carbon atoms such as a trifluoromethylsulfonyl group, a pentafluoroethylsulfonyl group, and a heptafluoro-n-propylsulfonyl group. Can be mentioned.
  • Examples of the arylsulfonyl group having 6 to 20 carbon atoms include a benzenesulfonyl group and a p-toluenesulfonyl group.
  • Examples of the alkyl group having 1 to 20 carbon atoms in R 11 include those similar to the alkyl group having 1 to 20 carbon atoms in R 1 , and one or more hydrogen atoms constituting the alkyl group are halogenated
  • Examples of the alkyl group replaced with an atom and the like include the same groups as those described above for R 1 .
  • —N (R 10 ) (R 11 ) include acylamino group, ethylcarbonylamino group, n-propylcarbonylamino group, isopropylcarbonylamino group, n-butylcarbonylamino group, isobutylcarbonylamino group, tert- Butylcarbonylamino group, n-pentylcarbonylamino group, isopentylcarbonylamino group, neopentylcarbonylamino group, n-hexylcarbonylamino group, n-heptylcarbonylamino group, n-octylcarbonylamino group, n-nonylcarbonylamino Group, n-decylcarbonylamino group, trifluoroacylamino group.
  • the ring containing —N—CO— or —N—SO 2 — formed by combining R 10 and R 11 together with the nitrogen atom to which they are bonded is preferably a 4- to 10-membered ring. More preferred is a 7-membered ring. Specific examples include a 2-pyrrolidone-1-yl group.
  • R 1 is preferably an alkyl group having 1 to 10 carbon atoms which may have a halogen atom (preferably a fluorine atom), and 1 to 20 carbon atoms in which —O— is inserted between the constituting carbon atoms.
  • a halogen atom preferably a fluorine atom
  • an acyl group having 1 to 20 carbon atoms, and R 11 is preferably a hydrogen atom.
  • R 1 is more preferably a linear alkyl group having 1 to 10 carbon atoms which may have a fluorine atom or —N (R 10 ) (R 11 ), and R 10 is more preferably , An acyl group having 1 to 10 carbon atoms which may have a fluorine atom, and R 11 is preferably a hydrogen atom.
  • R 1 is particularly preferably a linear alkyl group having 1 to 10 carbon atoms which may have a fluorine atom.
  • At least one hydrogen atom constituting each of the two phenylene groups may be substituted with a substituent R 7 or R 8 other than hydrogen.
  • R 7 and R 8 each independently represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a halogen atom, or a cyano group.
  • R 7 and R 8 may each be substituted with a hydrogen atom at any position of the phenylene group.
  • alkyl group having 1 to 4 carbon atoms examples include a straight chain having no substituent such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. Or a branched alkyl group is mentioned. At least one hydrogen atom constituting the alkyl group having 1 to 4 carbon atoms may be substituted with a halogen atom such as a fluorine atom or a hydroxy group.
  • haloalkyl groups having 1 to 4 carbon atoms such as a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a nonafluorobutyl group; 1 to carbon atoms such as a hydroxymethyl group and a 2-hydroxyethyl group. 4 hydroxyalkyl groups;
  • alkoxy group having 1 to 4 carbon atoms examples include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, etc. And a branched alkoxy group. At least one hydrogen atom constituting the alkoxy group having 1 to 4 carbon atoms may be substituted with a halogen atom such as a fluorine atom or a hydroxy group.
  • haloalkoxy groups having 1 to 4 carbon atoms such as a fluoromethoxy group, a trifluoromethoxy group, a pentafluoroethoxy group, and a nonafluorobutoxy group; 1 carbon atoms such as a hydroxymethoxy group and a 2-hydroxyethoxy group. ⁇ 4 hydroxyalkoxy groups.
  • R 2 represents an acyl group having 1 to 20 carbon atoms, an alkylsulfonyl group having 1 to 20 carbon atoms, or an arylsulfonyl group having 6 to 20 carbon atoms
  • R 3 represents a hydrogen atom or 1 carbon atom.
  • One or more hydrogen atoms constituting the alkyl group, the acyl group, the alkylsulfonyl group, and the arylsulfonyl group may be replaced with a halogen atom, a hydroxy group, an amino group, or an amino group having a substituent.
  • —O— or —NR 30 — may be inserted between carbon atoms constituting the alkyl group, and R 30 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • Examples of the acyl group having 1 to 20 carbon atoms in R 2 include those similar to the acyl group having 1 to 20 carbon atoms in R 1 described above.
  • the alkylsulfonyl group having 1 to 20 carbon atoms and the arylsulfonyl group having 6 to 20 carbon atoms in R 2 respectively, the alkylsulfonyl group having 1 to 20 carbon atoms and the arylsulfonyl group having 6 to 20 carbon atoms in the above R 10 The same thing as a group is mentioned.
  • the ring containing —N—CO— or —N—SO 2 — formed by combining R 2 and R 3 together with the nitrogen atom to which they are bonded is preferably a 4- to 10-membered ring. More preferred is a 7-membered ring. Specific examples include a 2-pyrrolidone-1-yl group. Examples of the alkyl group having 1 to 20 carbon atoms for R 30 include the same groups as described above.
  • R 2 is preferably an acyl group having 1 to 20 carbon atoms which may have a halogen atom (preferably a fluorine atom) or a carbon atom which has 1 to 20 carbon atoms which may have a halogen atom (preferably a fluorine atom).
  • R 3 is preferably a hydrogen atom.
  • Y represents formula (Y1): (In the formula, * represents a bonding site with N.
  • R 9 is a substituent other than a hydrogen atom, and each independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • an alkyl group having 1 to 4 carbon atoms, and Q 1 and Q 2 each independently represent ⁇ N— or ⁇ CH—.
  • R 9 examples include the same as those exemplified for R 7 and R 8 above.
  • P 1 is preferably —S—.
  • P 2 is preferably —S—.
  • the alkyl group having 1 to 4 carbon atoms for R 12 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group.
  • Q 1 is preferably ⁇ CH—.
  • Q 2 is preferably ⁇ N—.
  • p, q and r are each independently an integer of 0 to 2, preferably 0.
  • Specific examples of the compound (1) include compounds represented by the following formulas (1-1) to (1-20).
  • Compound (1) has the formula (2): [Wherein R 1 , R 7 , p and Y represent the same meaning as described above. ] And a compound represented by formula (3): [Wherein R 1 , R 7 , R 8 , p, q and Y represent the same meaning as described above. ] (Hereinafter sometimes referred to as compound (4)), from compound (4) to formula (5): [Wherein R 1 , R 7 , R 8 , p, q and Y represent the same meaning as described above. ] Can be produced by acylating the amino group of the compound (5), etc. (hereinafter sometimes referred to as the compound (5)). Such a method can be performed according to the method described in ChemBioChem, 2011, 12, 1712, and the like. The compound (1) can be taken out by a usual taking-out means such as recrystallization, reprecipitation, extraction or various chromatography after completion of the reaction.
  • Compound (1) is a compound that functions as a dichroic dye, and particularly exhibits higher dichroism when aligned with a polymerizable liquid crystal compound. Therefore, the polarizing film in which the compound (1) is aligned with the polymerizable liquid crystal compound exhibits higher dichroism.
  • the compound (1) has a maximum absorption in the wavelength range of 350 nm to 510 nm, preferably in the wavelength range of 400 nm to 500 nm, more preferably in the wavelength range of 410 nm to 490 nm, and still more preferably in the wavelength range of 420 nm to 480 nm. Moreover, since compound (1) has light resistance, the polarizing film containing the compound of this invention is excellent in light resistance.
  • the light resistance of the polarizing film can be determined, for example, by the following method.
  • a protective film is arrange
  • the light resistance is determined from the ratio of the absorbance of the polarizing film having the maximum absorption wavelength of 501 nm after the light resistance test to the absorbance of the polarizing film having the maximum absorption wavelength of 501 nm of the polarizing film before the test.
  • a polarizing film is formed using a dichroic dye represented by the formula (1-10) described in JP2013-101328A and a light resistance test is performed, the polarizing film has a maximum absorption wavelength of 548 nm.
  • the absorbance of the polarizing film after the light resistance test is 47% before the test.
  • Equipment used Suntest XLS + manufactured by ATLAS
  • Exposure conditions 250 mW / m 2
  • Test time 120 hours
  • Exposure amount 108000 KJ / m 2
  • Temperature 60 ° C
  • composition of this invention containing a polymeric liquid crystal compound and a compound (1) is demonstrated.
  • the composition of the present invention may contain two or more compounds (1).
  • the polymerizable liquid crystal compound is a compound having a polymerizable group in the molecule and capable of exhibiting a liquid crystal phase by alignment, and preferably a compound capable of exhibiting a liquid crystal phase by aligning alone. .
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the polymerizable group means a group that can participate in a polymerization reaction by an active radical, an acid, or the like generated from a polymerization initiator described later.
  • Examples of the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group.
  • the polymerizable liquid crystal compound may be a thermotropic liquid crystal type or a lyotropic liquid crystal type.
  • the polymerizable liquid crystal compound may exhibit a nematic liquid crystal phase, may exhibit a smectic liquid crystal phase, or may exhibit both a nematic liquid crystal phase and a smectic liquid crystal phase. Preferably, it shows a smectic liquid crystal phase, and more preferably shows a higher order smectic liquid crystal phase.
  • the composition of the present invention containing a polymerizable liquid crystal compound exhibiting a smectic liquid crystal phase can provide a polarizing film having more excellent polarization performance.
  • the composition of the present invention may contain two or more polymerizable liquid crystal compounds.
  • the compound (1) can exhibit high dichroism even when dispersed between dense molecular chains formed from a polymerizable liquid crystal compound exhibiting a smectic liquid crystal phase, and includes the compound (1).
  • the composition can provide a polarizing film having a high dichroic ratio.
  • Examples of the high-order smectic liquid crystal phase include a smectic B phase, a smectic D phase, a smectic E phase, a smectic F phase, a smectic G phase, a smectic H phase, a smectic I phase, a smectic J phase, a smectic K phase, and a smectic L phase.
  • a smectic B phase, a smectic F phase, and a smectic I phase are preferable.
  • a polarizing film having a higher degree of alignment order can be obtained.
  • a polarizing film obtained from a composition containing a polymerizable liquid crystal compound exhibiting a high-order smectic liquid crystal phase having a high degree of orientational order exhibits a Bragg peak derived from a higher-order structure such as a hexatic phase or a crystal phase in X-ray diffraction measurement.
  • the Bragg peak is a peak derived from the surface periodic structure of molecular orientation.
  • the period interval of the polarizing film obtained from the composition of the present invention is preferably 3.0 to 5.0 mm (0.30 nm to 0.50 nm).
  • the kind of liquid crystal phase exhibited by the polymerizable liquid crystal compound can be confirmed, for example, as follows. Prepare an appropriate base material, apply a solution containing a polymerizable liquid crystal compound and a solvent to the base material to form a coating film, and then remove the solvent contained in the coating film by heat treatment or reduced pressure treatment. To do. Subsequently, the coating film formed on the substrate is heated to the isotropic phase temperature, and the liquid crystal phase that is expressed by gradually cooling is inspected by texture observation, X-ray diffraction measurement or differential scanning calorimetry using a polarizing microscope. To do. In this inspection, for example, it can be confirmed that a nematic liquid crystal phase is exhibited by cooling to the first temperature, and a smectic liquid crystal phase is exhibited by gradually cooling to the second temperature.
  • the polymerizable liquid crystal composition is preferably a compound represented by formula (4) (hereinafter sometimes referred to as compound (4)).
  • X 1 , X 2 and X 3 each independently represent a 1,4-phenylene group which may have a substituent or a cyclohexane-1,4-diyl group which may have a substituent.
  • at least one of X 1 , X 2 and X 3 is a 1,4-phenylene group which may have a substituent.
  • —CH 2 — constituting the cyclohexane-1,4-diyl group may be replaced by —O—, —S— or —NR—.
  • R represents an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R a and R b each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • U 1 represents a hydrogen atom or a polymerizable group.
  • U 2 represents a polymerizable group.
  • W 1 and W 2 each independently represent a single bond, —O—, —S—, —COO— or —OCOO—.
  • V 1 and V 2 each independently represents an optionally substituted alkanediyl group having 1 to 20 carbon atoms, and —CH 2 — constituting the alkanediyl group is —O—, — S— or —NH— may be substituted.
  • At least one of X 1 , X 2 and X 3 is preferably a 1,4-phenylene group which may have a substituent.
  • the 1,4-phenylene group which may have a substituent is preferably a 1,4-phenylene group having no substituent.
  • the cyclohexane-1,4-diyl group which may have a substituent is preferably a trans-cyclohexane-1,4-diyl group which may have a substituent.
  • the trans-cyclohexane-1,4-diyl group which may have a substituent is preferably a trans-cyclohexane-1,4-diyl group which has no substituent.
  • Examples of the substituent that the optionally substituted 1,4-phenylene group or the optionally substituted cyclohexane-1,4-diyl group includes a methyl group, an ethyl group, Examples thereof include an alkyl group having 1 to 4 carbon atoms such as an n-butyl group, a cyano group and a halogen atom.
  • Y 1 is preferably —CH 2 CH 2 —, —COO— or a single bond
  • Y 2 is preferably —CH 2 CH 2 — or —CH 2 O—.
  • U 2 is a polymerizable group.
  • U 1 is a hydrogen atom or a polymerizable group, preferably a polymerizable group.
  • U 1 and U 2 are preferably both polymerizable groups, and more preferably both are photopolymerizable groups.
  • the polymerizable liquid crystal compound having a photopolymerizable group is advantageous in that it can be polymerized under a lower temperature condition.
  • the polymerizable groups represented by U 1 and U 2 may be different from each other, but are preferably the same.
  • the polymerizable group include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group and oxetanyl group.
  • acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • alkanediyl group represented by V 1 and V 2 examples include methylene group, ethylene group, propane-1,3-diyl group, butane-1,3-diyl group, butane-1,4-diyl group, pentane- 1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, decane-1,10-diyl group, tetradecane-1,14-diyl Groups and icosane-1,20-diyl groups.
  • V 1 and V 2 are preferably alkanediyl groups having 2 to 12 carbon atoms, and more preferably alkanediyl groups having 6 to 12 carbon atoms.
  • substituents that the alkanediyl group having 1 to 20 carbon atoms which may have a substituent optionally have include a cyano group and a halogen atom.
  • the alkanediyl group is preferably an alkanediyl group having no substituent, and more preferably an alkanediyl group having no substituent and a linear alkanediyl group.
  • W 1 and W 2 are preferably each independently a single bond or —O—.
  • the compound (4) include compounds represented by the following formulas (4-1) to (4-43).
  • the cyclohexane-1,4-diyl group is preferably a trans type.
  • the composition of the present invention may contain two or more compounds (4).
  • the liquid crystal phase may be temporarily retained even at a temperature lower than the liquid crystal-crystal phase transition temperature.
  • the mixing ratio when combining two kinds of polymerizable liquid crystal compounds is usually 1:99 to 50:50, preferably 5:95 to 50:50, and more preferably 10:90 to 50:50. is there.
  • Compound (4) is, for example, Lub et al. Recl. Trav. Chim. It can be produced by a method described in known literature such as Pays-Bas, 115, 321-328 (1996), Japanese Patent No. 4719156.
  • the content of the polymerizable liquid crystal compound in the composition of the present invention is preferably 70 to 99.100 based on 100 parts by mass of the solid content of the composition of the present invention from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is 5 parts by mass, more preferably 80 to 99 parts by mass, still more preferably 80 to 94 parts by mass, and particularly preferably 80 to 90 parts by mass.
  • solid content means the total amount of components other than the solvent in the composition of this invention.
  • composition of the present invention preferably contains a polymerization initiator and a solvent, and may contain a photosensitizer, a polymerization inhibitor and a leveling agent.
  • the content of the compound (1) in the composition of the present invention is usually 50 parts by mass or less, preferably 0.1 parts by mass or more and 10 parts by mass or less, based on 100 parts by mass of the polymerizable liquid crystal compound. Preferably they are 0.1 mass part or more and 5 mass parts or less.
  • the content of the compound (1) with respect to 100 parts by mass of the polymerizable liquid crystal compound is 50 parts by mass or less, there is a tendency that a polarizing film in which the alignment disorder of the polymerizable liquid crystal compound and the compound (1) is small can be obtained.
  • the solvent is preferably one that can completely dissolve the polymerizable liquid crystal compound and the compound (1). Moreover, it is preferable that it is a solvent inactive to the polymerization reaction of a polymerizable liquid crystal compound.
  • Solvents include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, propylene glycol monomethyl ether; ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone Ester solvents such as propylene glycol methyl ether acetate and ethyl lactate; ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, 2-heptanone and methyl isobutyl ketone; aliphatic hydrocarbon solvents such as pentane, hexane and heptane; toluene , Aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile; tetrahydrofuran, dimeth
  • the content of the solvent is preferably 50 to 98% by mass with respect to the total amount of the composition of the present invention.
  • the solid content in the composition of the present invention is preferably 2 to 50% by mass.
  • the viscosity of the composition of the present invention is low, the thickness of the polarizing film obtained from the composition of the present invention is substantially uniform, and unevenness is less likely to occur in the polarizing film. Tend.
  • Such solid content can be determined in consideration of the thickness of the polarizing film to be manufactured.
  • the polymerization initiator is a compound that can initiate a polymerization reaction of the polymerizable liquid crystal compound.
  • a photopolymerization initiator that generates an active radical by the action of light is preferable.
  • polymerization initiator examples include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
  • benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) benzophenone And 2,4,6-trimethylbenzophenone.
  • alkylphenone compound examples include diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butane.
  • -1-one 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1- [ 4- (2-hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propan-1-one
  • An oligomer is mentioned.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • triazine compounds examples include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxynaphthyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2 -(5-methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (furan-2-yl) ethenyl] -1,3 , 5-triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine and 2,
  • the salt represented by a following formula is mentioned, for example.
  • polymerization initiator Only one type of polymerization initiator may be used, or two or more types may be used in combination. A commercially available thing can be used as a polymerization initiator.
  • Commercially available polymerization initiators include Irgacure (registered trademark) 907, 184, 651, 819, 250 and 369 (manufactured by Ciba Specialty Chemicals Co., Ltd.); Sequol (registered trademark) BZ, Z and BEE (Seiko) Kayacure (registered trademark) BP100 and UVI-6992 (manufactured by Dow Chemical Co., Ltd.); Adekaoptomer SP-152 and SP-170 (manufactured by ADEKA Corporation); TAZ-A and TAZ -PP (manufactured by Nippon Shibel Hegner); and TAZ-104 (manufactured by Sanwa Chemical Co., Ltd.).
  • the content of the polymerization initiator in the composition of the present invention is based on 100 parts by mass of the polymerizable liquid crystal compound from the viewpoint of hardly disturbing the alignment of the polymerizable liquid crystal compound.
  • the amount is usually 0.1 to 30 parts by mass, preferably 0.5 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass.
  • the composition of the present invention contains a photopolymerization initiator
  • the composition of the present invention preferably contains a photosensitizer.
  • the composition of the present invention contains a photopolymerization initiator and a photosensitizer, the polymerization reaction of the polymerizable liquid crystal compound tends to be further promoted.
  • the photosensitizer examples include xanthone compounds such as xanthone and thioxanthone (for example, 2,4-diethylthioxanthone and 2-isopropylthioxanthone); anthracene compounds such as anthracene and alkoxy group-containing anthracene (for example, dibutoxyanthracene); phenothiazine And rubrene.
  • xanthone compounds such as xanthone and thioxanthone (for example, 2,4-diethylthioxanthone and 2-isopropylthioxanthone)
  • anthracene compounds such as anthracene and alkoxy group-containing anthracene (for example, dibutoxyanthracene)
  • phenothiazine And rubrene examples of the photosensitizer
  • the content of the photosensitizer in the composition of the present invention is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound. More preferably, it is 0.5 to 10 parts by mass, and still more preferably 0.5 to 8 parts by mass.
  • polymerization inhibitor examples include radical scavengers such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (eg, butyl catechol), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxy radical; Examples include thiophenols; ⁇ -naphthylamines and ⁇ -naphthols.
  • radical scavengers such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (eg, butyl catechol), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxy radical
  • examples include thiophenols; ⁇ -naphthylamines and ⁇ -naphthols.
  • the composition of the present invention contains a polymerization inhibitor
  • the progress of the polymerization reaction of the polymerizable liquid crystal compound can be controlled.
  • the content of the polymerization inhibitor in the composition of the present invention is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal compound, More preferably, it is 0.5 to 10 parts by mass, and still more preferably 0.5 to 8 parts by mass.
  • the leveling agent has a function of adjusting the fluidity of the composition of the present invention and flattening a coating film obtained by applying the composition of the present invention.
  • a leveling agent is mentioned. Can do.
  • a preferred leveling agent is a leveling agent having a polyacrylate compound as a main component and a leveling agent having a fluorine atom-containing compound as a main component.
  • Leveling agents mainly composed of polyacrylate compounds include BYK-350, BYK-352, BYK-353, BYK-354, BYK-355, BYK-358N, BYK-361N, BYK-380, BYK-381, and BYK. -392 (manufactured by BYK-Chemie GmbH).
  • Examples of the leveling agent mainly composed of a fluorine atom-containing compound include Megafac (registered trademark) R-08, R-30, R-90, F-410, F-411, F-443, F-445, F- 470, F-471, F-477, F-479, F-482, F-482 (manufactured by DIC Corporation); Surflon (registered trademark) S-381, S-382, S-383, S-393, SC -101, SC-105, KH-40 and SA-100 (manufactured by AGC Seimi Chemical Co., Ltd.); E1830 and E5844 (manufactured by Daikin Fine Chemical Laboratories Co., Ltd.); Electronics Chemical Co., Ltd.).
  • Megafac registered trademark
  • the content of the leveling agent is preferably 0.3 parts by mass or more and 5 parts by mass or less, more preferably 0 with respect to 100 parts by mass of the polymerizable liquid crystal compound. .5 parts by mass or more and 3 parts by mass or less.
  • the content of the leveling agent is within the above range, it is easy to horizontally align the polymerizable liquid crystal compound, and the obtained polarizing film tends to be smoother. If the content of the leveling agent with respect to the polymerizable liquid crystal compound exceeds the above range, unevenness tends to occur in the obtained polarizing film.
  • the composition of the present invention may contain two or more leveling agents.
  • the polarizing film containing the compound (1) can be obtained, for example, by applying the composition of the present invention. Preferably, it can be produced by a production method including the following steps (A) to (C).
  • the substrate may be a glass substrate or a resin substrate, but is preferably a resin substrate.
  • a film substrate made of resin By using a film substrate made of resin, a thin polarizing plate can be obtained.
  • the resin base material is preferably a transparent resin base material.
  • the transparent resin base material means a base material having translucency capable of transmitting light, particularly visible light, and the translucency is a visibility corrected transmittance with respect to a light beam having a wavelength of 380 nm to 780 nm. % Or more.
  • the base material is preferably a retardation film having a 1/4 wavelength plate function (hereinafter sometimes referred to as a 1/4 wavelength plate).
  • a circularly polarizing plate can be obtained by using a quarter wave plate for the substrate.
  • the lamination is preferably performed so that the transmission axis of the polarizing film and the slow axis (optical axis) of the quarter-wave plate are substantially 45 °.
  • Substantially 45 ° is usually in the range of 45 ⁇ 5 °.
  • the polarizing film which functions as an optical compensation film can be obtained by making the optical axis of a polarizing film and a quarter wavelength plate correspond or make orthogonal.
  • the quarter-wave plate usually has an optical characteristic represented by the formula (40), and preferably has an optical characteristic represented by the formula (40-1).
  • Re (550) represents an in-plane retardation value for light having a wavelength of 550 nm.
  • the quarter wave plate preferably has reverse wavelength dispersion characteristics.
  • the inverse chromatic dispersion characteristic is that the in-plane retardation value at a short wavelength is larger than the in-plane retardation value at a long wavelength, and is preferably expressed by Expression (50) and Expression (51). Satisfy optical properties.
  • Re ( ⁇ ) represents an in-plane retardation value for light having a wavelength of ⁇ nm.
  • the circularly polarizing plate provided with the quarter wavelength plate having the optical characteristics represented by the formulas (50) and (51) has uniform polarization conversion characteristics for light of each wavelength in the visible light region. As a result, the antireflection properties tend to be excellent.
  • the base material may be a retardation film having a half-wave plate function.
  • the resin constituting the substrate examples include polyolefins such as polyethylene, polypropylene, and norbornene polymers; cyclic olefin resins; polyvinyl alcohol; polyethylene terephthalate; polymethacrylates; polyacrylates; triacetylcellulose, diacetylcellulose, and Cellulose esters such as cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide; and polyphenylene oxide.
  • Cellulose ester is obtained by esterifying at least a part of hydroxyl groups contained in cellulose, and can be obtained from the market. Moreover, the base material containing a cellulose ester can also be obtained from a market. Examples of the substrate containing a commercially available cellulose ester include Fujitac (registered trademark) film (Fuji Photo Film Co., Ltd.), KC8UX2M, KC8UY, KC4UY (Konica Minolta Opto Co., Ltd.), and the like.
  • the cyclic olefin-based resin includes polymers of cyclic olefins such as norbornene or polycyclic norbornene-based monomers, or copolymers thereof.
  • the cyclic olefin-based resin may include a ring-opening structure, or may be a hydrogenated cyclic olefin-based resin including a ring-opening structure.
  • the cyclic olefin-based resin may contain a structural unit derived from a chain olefin and a vinylated aromatic compound as long as the transparency is not significantly impaired and the hygroscopicity is not significantly increased.
  • the cyclic olefin resin may have a polar group introduced in its molecule. Examples of the chain olefin include ethylene and propylene, and examples of the vinylated aromatic compound include styrene, ⁇ -methylstyrene, and alkyl-substituted styrene.
  • the cyclic olefin-based resin is a copolymer of a cyclic olefin and a chain olefin or a vinylated aromatic compound
  • the content of structural units derived from the cyclic olefin is based on the total structural units of the copolymer. The amount is usually 50 mol% or less, preferably 15 to 50 mol%.
  • the cyclic olefin-based resin is a ternary copolymer of a cyclic olefin, a chain olefin, and a vinylated aromatic compound
  • the content of structural units derived from the chain olefin is the total structure of the copolymer.
  • the content of the structural unit derived from the vinylated aromatic compound is usually 5 to 80 mol% based on the unit, and the content ratio of the structural unit derived from the vinylated aromatic compound is usually 5 to 80 mol% based on the total structural unit of the copolymer.
  • Such a terpolymer has the advantage that the amount of expensive cyclic olefin used can be relatively reduced.
  • Cyclic olefin resin is available from the market.
  • Commercially available cyclic olefin resins include Topas (registered trademark) (manufactured by Ticona (Germany)), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (manufactured by Nippon Zeon Corporation).
  • ZEONEX registered trademark
  • Apel registered trademark
  • Such a cyclic olefin-based resin can be formed into a substrate by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • a base material containing a commercially available cyclic olefin resin Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), Zeonore Film (registered trademark) (Optes Corporation) Company) and Arton Film (registered trademark) (manufactured by JSR Corporation).
  • the substrate may be surface treated.
  • the surface treatment method include a method of treating the surface of the substrate with corona or plasma in an atmosphere of vacuum to atmospheric pressure, a method of laser treating the substrate surface, a method of treating the substrate surface with ozone, A method of saponifying a material surface, a method of flame-treating a substrate surface, a method of applying a coupling agent to the substrate surface, a method of primer-treating the substrate surface, and a reactive monomer or a reactive polymer
  • a graft polymerization method may be used in which the substrate is adhered to the surface of the substrate and then reacted by irradiation with radiation, plasma, or ultraviolet rays.
  • a method of corona or plasma treatment of the substrate surface in an atmosphere of vacuum to atmospheric pressure is preferable.
  • a method of performing surface treatment of a substrate with corona or plasma a method of performing surface treatment of the substrate by installing a substrate between opposed electrodes and generating corona or plasma under a pressure near atmospheric pressure.
  • the surface treatment of a substrate by flowing a gas between opposed electrodes, converting the gas into a plasma between the electrodes, and blowing the plasmaized gas onto the substrate, and generating glow discharge plasma under low pressure conditions.
  • a method of performing a surface treatment of a substrate by setting a substrate between opposed electrodes under a pressure near atmospheric pressure and generating corona or plasma, or flowing a gas between the opposed electrodes, A method is preferred in which the gas is converted into plasma and the plasmaized gas is sprayed onto the substrate.
  • Such surface treatment with corona or plasma is usually performed by a commercially available surface treatment apparatus.
  • the base material may have a protective film on the surface opposite to the surface on which the composition of the present invention is applied.
  • the protective film include films such as polyethylene, polyethylene terephthalate, polycarbonate, and polyolefin, and films having an adhesive layer on the film. Of these, polyethylene terephthalate is preferred because of its small thermal deformation during drying.
  • the thickness of the base material is preferably thinner in terms of weight that allows practical handling, but if it is too thin, the strength tends to decrease and workability tends to be poor.
  • the thickness of the substrate is usually 5 to 300 ⁇ m, preferably 20 to 200 ⁇ m.
  • the length of the substrate in the longitudinal direction is usually 10 to 3000 m, preferably 100 to 2000 m.
  • the length in the short direction of the substrate is usually 0.1 to 5 m, preferably 0.2 to 2 m.
  • the alignment film in the present invention has an alignment regulating force that aligns the polymerizable liquid crystal compound in a desired direction.
  • the alignment film those having solvent resistance that does not dissolve by application of the composition of the present invention and heat resistance in heat treatment for removing the solvent or aligning the polymerizable liquid crystal compound are preferable.
  • Examples of such an alignment film include an alignment film containing an alignment polymer, a photo-alignment film, and a groove alignment film that forms an uneven pattern or a plurality of grooves on the surface and aligns the film.
  • orientation polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule and hydrolyzates thereof, polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, Examples include polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Among these, polyvinyl alcohol is preferable. Two or more orientation polymers may be used in combination.
  • the alignment film containing the alignment polymer is usually applied to a substrate with a composition in which the alignment polymer is dissolved in a solvent (hereinafter sometimes referred to as an alignment polymer composition), and the solvent is removed or alignment. It is formed on the surface of the substrate by applying the functional polymer composition to the substrate, removing the solvent, and rubbing (rubbing method).
  • the solvent examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether and other alcohol solvents, ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, Propylene glycol methyl ether acetate, ester solvents such as ethyl lactate, ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, methyl isobutyl ketone, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, toluene, Aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile, solvents such as tetrahydrofur
  • the concentration of the orienting polymer in the orienting polymer composition may be within a range in which the orienting polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% by mass in terms of solid content with respect to the solution, About 0.1 to 10% by mass is more preferable.
  • a commercially available alignment film material may be used as it is as the alignment polymer composition.
  • Examples of commercially available alignment film materials include Sunever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optomer (registered trademark, manufactured by JSR Corporation), and the like.
  • Examples of methods for applying the alignment polymer composition to the substrate include spin coating, extrusion, gravure coating, die coating, slit coating, bar coating, applicator and other application methods, flexo methods And publicly known methods such as printing methods.
  • a printing method such as a gravure coating method, a die coating method, or a flexo method is usually employed.
  • Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • rubbing is performed as necessary (rubbing method).
  • the direction of the orientation regulating force can be arbitrarily controlled.
  • a rubbing cloth was wound, and the orientation polymer composition was applied to the rotating rubbing roll and annealed and formed on the substrate surface.
  • membrane of an orientation polymer contact is mentioned.
  • the photo-alignment film is usually obtained by applying a composition containing a polymer or monomer having a photoreactive group and a solvent (hereinafter sometimes referred to as “photo-alignment film-forming composition”) to a substrate, and applying light ( Preferably, it is formed on the surface of the substrate by irradiating polarized UV).
  • the photo-alignment film is more preferable in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the irradiated light.
  • the photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light.
  • groups involved in photoreactions that are the origin of liquid crystal alignment ability such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction or photodecomposition reaction caused by light irradiation.
  • a group involved in the dimerization reaction or the photocrosslinking reaction is preferable in terms of excellent orientation.
  • an unsaturated bond particularly a group having a double bond is preferable, and a carbon-carbon double bond (C ⁇ C bond), a carbon-nitrogen double bond (C ⁇ N bond), or a nitrogen-nitrogen two-bond.
  • a group having at least one selected from the group consisting of a heavy bond (N ⁇ N bond) and a carbon-oxygen double bond (C ⁇ O bond) is particularly preferred.
  • Examples of the photoreactive group having a C ⁇ C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group.
  • Examples of the photoreactive group having a C ⁇ N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone.
  • Examples of the photoreactive group having an N ⁇ N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure.
  • Examples of the photoreactive group having a C ⁇ O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
  • a photoreactive group involved in the photodimerization reaction is preferable, the amount of polarized light irradiation necessary for photoalignment is relatively small, and a photoalignment film excellent in thermal stability and temporal stability can be easily obtained.
  • a cinnamoyl group and a chalcone group are preferred.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group in which the terminal portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • Examples of the solvent contained in the composition for forming a photoalignment film include the same solvents as those contained in the above-mentioned oriented polymer composition, and are appropriately selected according to the solubility of the polymer or monomer having a photoreactive group. can do.
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the target photo-alignment film, and is at least 0.2% by mass. The range is preferably 0.3 to 10% by mass. As long as the characteristics of the photo-alignment film are not significantly impaired, the composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer.
  • Examples of the method for applying the composition for forming a photo-alignment film to a substrate include the same methods as those for applying the alignment polymer composition to a substrate.
  • Examples of the method for removing the solvent from the applied composition for forming a photo-alignment film include the same method as the method for removing the solvent from the oriented polymer composition.
  • polarized light In order to irradiate polarized light, it is possible to irradiate polarized light from the substrate side and transmit the polarized light even in the form of irradiating polarized UV directly to the composition from which the solvent is removed from the composition for forming a photo-alignment film applied on the substrate. It is also possible to irradiate.
  • the polarized light is particularly preferably substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength region where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferable.
  • Examples of the light source used for the polarized light irradiation include xenon lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, ultraviolet lasers such as KrF and ArF, and the like. High pressure mercury lamps, ultra high pressure mercury lamps and metal halides. A lamp is more preferred. These lamps are preferable because of high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • a polarizing prism such as a polarizing filter, Glan Thompson, or Grand Taylor, or a wire grid type polarizer can be used.
  • a plurality of regions (patterns) having different directions of liquid crystal alignment can be formed by performing masking when performing rubbing or polarized light irradiation.
  • the Glub alignment film is a film in which liquid crystal alignment is obtained by a concavo-convex pattern or a plurality of grooves on the film surface.
  • H. V. Kennel et al. Reported the fact that when liquid crystal molecules are placed on a substrate having a plurality of linear grooves (grooves) arranged at equal intervals, the liquid crystal molecules are aligned in the direction along the grooves ( Physical Review A24 (5), page 2713, 1981).
  • a method of removing the polyimide film to form a concavo-convex pattern, a method of forming a UV curable resin layer on a plate-shaped master having grooves on the surface, a method of curing after transferring the resin layer to a base film, and forming a UV curable resin layer examples include a method in which the base film is conveyed and a roll-shaped master having a plurality of grooves is pressed against the surface of the UV curable resin layer to form an unevenness and then cured, as disclosed in JP-A-6-34976 and JP-2011. The method described in JP-A-2424243 can be used.
  • a method in which a roll-shaped master having a plurality of grooves is pressed against the surface of the UV curable resin layer to form unevenness and then cured is preferable.
  • the roll-shaped master stainless steel (SUS) steel can be used from the viewpoint of durability.
  • a polymer of a monofunctional acrylate, a polymer of a polyfunctional acrylate, or a polymer of a mixture thereof can be used.
  • the monofunctional acrylate is a group selected from the group consisting of an acryloyloxy group (CH 2 ⁇ CH—COO—) and a methacryloyloxy group (CH 2 ⁇ C (CH 3 ) —COO—) (hereinafter referred to as (meth) acryloyloxy). In some cases, it is a compound having one in the molecule.
  • Monofunctional acrylates having one (meth) acryloyloxy group include alkyl (meth) acrylates having 4 to 16 carbon atoms, ⁇ -carboxyalkyl (meth) acrylates having 2 to 14 carbon atoms, and alkylation having 2 to 14 carbon atoms. Examples include phenyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and isobornyl (meth) acrylate.
  • the polyfunctional acrylate is usually a compound having 2 to 6 (meth) acryloyloxy groups in the molecule.
  • Examples of the bifunctional acrylate having two (meth) acryloyloxy groups include 1,3-butanediol di (meth) acrylate; 1,6-hexanediol di (meth) acrylate; ethylene glycol di (meth) acrylate; diethylene glycol di (Meth) acrylate; neopentyl glycol di (meth) acrylate; triethylene glycol di (meth) acrylate; tetraethylene glycol di (meth) acrylate; polyethylene glycol diacrylate; bis (acryloyloxyethyl) ether of bisphenol A; ethoxy Bisphenol A di (meth) acrylate; propoxylated neopentyl glycol di (meth) acrylate; ethoxylated neopentyl glycol di (meth) acrylate and 3-methylpen Such Njioruji (meth) acrylate.
  • (meth) acrylate means an acrylate or a methacrylate.
  • the caprolactone modification means that a ring-opened product of caprolactone or a ring-opened polymer is introduced between the alcohol-derived site of the (meth) acrylate compound and the (meth) acryloyloxy group.
  • a commercial item can also be used for this polyfunctional acrylate.
  • Such commercial products include A-DOD-N, A-HD-N, A-NOD-N, APG-100, APG-200, APG-400, A-GLY-9E, A-GLY-20E, A- TMM-3, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH, HD-N, NOD-N, NPG, TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), “ARONIX "M-220", “M-325", “M-240", “M-270", “M-309", “M-310", “M-321”, “M-350”"M-360”,”M-305","M-306",”M-450”,”M-451”,”M-408”,"M-400”"M-402",”M-403”,”M-404",”M-4" 5 ”,“ M-406 ”(manufactured by To
  • the width of the convex portion is preferably 0.05 to 5 ⁇ m
  • the width of the concave portion is preferably 0.1 to 5 ⁇ m
  • the depth of the uneven step is preferably 2 ⁇ m or less. Is preferably 0.01 to 1 ⁇ m or less. Within this range, it is possible to obtain liquid crystal alignment with little alignment disturbance.
  • the thickness of the alignment film is usually 10 nm to 10000 nm, preferably 10 nm to 1000 nm, more preferably 10 nm to 500 nm.
  • Examples of the method for applying the composition of the present invention include the same methods as those exemplified as the method for applying the alignment polymer composition to the substrate.
  • composition of the present invention contains a solvent
  • the solvent is usually removed from the formed coating film.
  • the method for removing the solvent include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • the polymerizable liquid crystal compound contained in the formed coating film is usually heated to a temperature higher than the temperature at which it transitions to a solution state and then cooled to a temperature at which the liquid crystal is aligned to form a liquid crystal phase.
  • the temperature at which the polymerizable liquid crystal compound contained in the formed coating film is aligned may be obtained in advance by texture observation using a composition containing the polymerizable liquid crystal compound. Further, the removal of the solvent and the liquid crystal alignment may be performed simultaneously. The temperature at this time depends on the solvent to be removed and the type of the polymerizable liquid crystal compound, but is preferably in the range of 50 to 200 ° C., and more preferably in the range of 80 to 130 ° C. when the substrate is a resin substrate. preferable.
  • the orientation direction of the polymerizable liquid crystal compound is determined by the polarizing film obtained.
  • the slow axis (optical axis) of the substrate may be substantially 45 °.
  • the polymerizable liquid crystal compound is polymerized by irradiating the aligned polymerizable liquid crystal compound with active energy rays.
  • a polarizing film including the polymerizable liquid crystal compound polymerized in the aligned state and the compound (1) aligned with the polymerizable liquid crystal compound is obtained.
  • a polarizing film containing a polymerizable liquid crystal compound polymerized while retaining a smectic liquid crystal phase is a conventional host-guest type polarizing film, that is, a polarizing film obtained by polymerizing a polymerizable liquid crystal compound or the like while retaining a nematic liquid crystal phase.
  • the polarizing performance is higher than that of the dichroic dye, and the polarizing performance and strength are excellent as compared with the case where only the dichroic dye or the lyotropic liquid crystal type liquid crystal compound is applied.
  • the light source for the active energy ray may be any light source that generates ultraviolet rays, electron beams, X-rays, or the like.
  • the light source has a light emission distribution at a wavelength of 400 nm or less, such as a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, or a metal halide lamp.
  • Irradiation energy of the active energy ray is preferably the irradiation intensity of the wavelength region effective for activation of the polymerization initiator is set to be 10 ⁇ 5000mJ / cm 2, more preferably at 100 ⁇ 2000mJ / cm 2 .
  • the irradiation energy is lower than 10 mJ / cm 2 , the polymerizable liquid crystal compound tends to be insufficiently cured.
  • the thickness of the polarizing film of the present invention thus formed is preferably in the range of 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the thickness of the polarizing film of the present invention can be determined by measurement with an interference film thickness meter, a laser microscope or a stylus thickness meter.
  • the polarizing film of the present invention is particularly preferably a Bragg peak obtained in X-ray diffraction measurement.
  • Examples of the polarizing film of the present invention from which such a Bragg peak is obtained include those showing a diffraction peak derived from a hexatic phase or a crystal phase.
  • the maximum absorption ( ⁇ max1 ) of the polarizing film of the present invention is preferably in the range of 350 to 550 nm, more preferably in the range of 410 to 540 nm, and still more preferably in the range of 430 to 530 nm.
  • ⁇ max1 is shifted by a long wavelength as compared with the maximum absorption ( ⁇ max2 ) measured by dissolving the compound (1) contained in the polarizing film of the present invention in an applicable solvent.
  • a long wavelength shift is manifested when the compound (1) is dispersed between molecular chains formed by the polymerized polymerizable liquid crystal compound, and the compound (1) strongly interacts with the molecular chain. It shows that.
  • Long wavelength shift means that the difference in absorption maximum ( ⁇ max1 ⁇ max2 ) is a positive value, and the difference is preferably 10 nm or more, and more preferably 30 nm or more.
  • the dichroic ratio exhibited by the polarizing film of the present invention is preferably 15 or more, more preferably 25 or more.
  • a circularly polarizing plate can be obtained by laminating the obtained polarizing film of the present invention and a quarter wavelength plate.
  • the lamination is preferably performed so that the transmission axis of the polarizing film of the present invention and the slow axis (optical axis) of the quarter-wave plate are substantially 45 °.
  • the polarizing plate which functions as an optical compensation film can also be obtained by making the transmission axis of the polarizing film of this invention and the optical axis of retardation films, such as a quarter wavelength plate, correspond or make orthogonal.
  • Lamination of the polarizing film of the present invention and the quarter wavelength plate may be performed together with the base material on which the polarizing film of the present invention is formed, or the base material on which the alignment film is formed. Alternatively, the alignment film may be removed.
  • the lamination of the polarizing film of the present invention formed on the surface of the base material or the base material on which the alignment film is formed and the quarter wavelength plate is, for example, the surface on which the polarizing film of the present invention is formed, After bonding the four-wave plate with an adhesive, the substrate or the substrate on which the alignment film is formed can be removed. Under the present circumstances, an adhesive agent may be apply
  • the continuous manufacturing method of the polarizing film of this invention is preferably manufactured continuously by the Roll to Roll format.
  • FIG. 1 an example of the main part of the method for continuously producing the polarizing film of the present invention in the Roll to Roll format will be described.
  • the first roll 210 in which the base material is wound around the first core 210A can be easily obtained from the market, for example.
  • a base material which can be obtained from the market in the form of such a roll the film etc. which consist of a cellulose ester, cyclic olefin resin, a polycarbonate, a polyethylene terephthalate, or a polymethacrylic acid ester are mentioned among the base materials already illustrated.
  • the base material is unwound from the first roll 210.
  • the method for unwinding the substrate is performed by installing an appropriate rotating means on the core 210A of the first roll 210 and rotating the first roll 210 by the rotating means.
  • an appropriate auxiliary roll 300 may be installed in the direction of transporting the base material from the first roll 210 and the base material may be unwound by the rotating means of the auxiliary roll 300.
  • the first winding core 210A and the auxiliary roll 300 may be provided with a rotating means so that the substrate is unwound while applying an appropriate tension to the substrate.
  • the composition for forming a photo-alignment film is applied onto the surface of the base material by the coating device 211A.
  • a gravure coating method, a die coating method, and a flexo method are preferable.
  • the base material that has passed through the coating apparatus 211A is conveyed to the drying furnace 212A and dried by the drying furnace 212A, so that a first coating film is continuously formed on the surface of the base material.
  • the drying furnace 212A for example, a hot-air drying furnace that combines a ventilation drying method and a heating drying method is used.
  • the preset temperature of the drying furnace 212A is determined according to the type of solvent contained in the composition for forming a photo-alignment film.
  • the drying furnace 212A may be composed of a plurality of zones having different set temperatures, or may be a series of a plurality of drying furnaces having different set temperatures.
  • a photo-alignment film is obtained by irradiating the obtained first coating film with polarized light by the polarized UV irradiation device 213A.
  • the base material on which the photo-alignment film is formed passes through the coating device 211B.
  • the composition of the present invention containing the solvent is applied onto the photo-alignment film by the coating device 211B
  • the second liquid crystal compound contained in the composition of the present invention is aligned by passing through a drying furnace 212B.
  • a coating film is obtained.
  • the drying oven 212B has a role of removing the solvent from the composition of the present invention containing the solvent applied on the photo-alignment film, and a role of giving thermal energy so that the polymerizable liquid crystal compound contained in the composition is aligned. Take on.
  • the drying furnace 212B may be composed of a plurality of zones having different set temperatures, or may be a series of a plurality of drying furnaces having different set temperatures. .
  • the active energy ray irradiation device 213B In the state in which the polymerizable liquid crystal compound contained in the second coating film is aligned, it is conveyed to the active energy ray irradiation device 213B. In the active energy ray irradiation device 213B, the active energy ray is further irradiated. By irradiating the active energy ray by the active energy ray irradiating device 213B, the polymerizable liquid crystal compound is polymerized in an aligned state to obtain a polarizing film.
  • the present polarizing plate manufactured continuously is wound around the second core 220 ⁇ / b> A to obtain the form of the second roll 220.
  • the base material passes from the first roll 210 in the order of the coating apparatus 211A, the drying furnace 212A, the polarized UV irradiation apparatus 213A, the coating apparatus 211B, the drying furnace 212B, and the active energy ray irradiation apparatus 213B.
  • the polarizing plate can be continuously produced in the Roll-to-Roll format.
  • the base material is applied from the first roll to the coating device 211A, the drying furnace 212A, and the polarized UV irradiation device. 213A is passed in this order, and a roll-shaped base material and a photo-alignment film laminate are manufactured by winding this around a core, and further, the roll-like laminate is unwound, and a coating apparatus 211B, a drying furnace
  • the polarizing film of this invention can also be continuously manufactured by letting 212B and the active energy ray irradiation apparatus 213B pass in order.
  • the long polarizing film of the present invention is unwound from the second roll 220, cut into a predetermined dimension, and then the cut polarized light.
  • a circularly polarizing plate can be produced by laminating a quarter wave plate to the film.
  • a long circularly-polarizing plate can also be continuously manufactured by preparing the 3rd roll by which the long quarter wave plate is wound by the core.
  • a method for continuously producing a long circularly polarizing plate will be described with reference to FIG.
  • Such a manufacturing method is: The polarizing film of the present invention is continuously unwound from the second roll 220, and the long quarter-wave plate is continuously wound from the third roll 230 on which the long quarter-wave plate is wound. And a process of A step of continuously bonding the polarizing film of the present invention and the long quarter-wave plate to obtain a long circularly polarizing plate; The obtained long circularly polarizing plate is wound around a fourth core 240A to obtain a fourth roll 240.
  • This method is so-called Roll to Roll bonding.
  • a display device is a device having a display element and includes a light emitting element or a light emitting device as a light emitting source.
  • Examples of the display device including the polarizing plate include a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, an electron emission display device (for example, a field emission display device (FED), a surface electric field).
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FED field emission display device
  • Emission display device SED
  • electronic paper display device using electronic ink or electrophoretic element
  • plasma display device projection display device (for example, grating light valve (GLV) display device, digital micromirror device (DMD))
  • Liquid crystal display devices such as transmissive liquid crystal display devices, transflective liquid crystal display devices, reflective liquid crystal display devices, direct view liquid crystal display devices, and projection liquid crystal display devices.
  • These display devices include a display for displaying a two-dimensional image. May be a location, it may be a stereoscopic display apparatus for displaying a three-dimensional image.
  • the polarizing film of the present invention can be effectively used particularly for a liquid crystal display device, an organic electroluminescence (EL) display device and an inorganic electroluminescence (EL) display device.
  • the circularly polarizing plate having the polarizing film and the quarter-wave plate of the present invention can be effectively used particularly for an organic electroluminescence (EL) display device and an inorganic electroluminescence (EL) display device.
  • the polarizing film of the present invention When the polarizing film of the present invention is used in a liquid crystal display device, the polarizing film of the present invention may be provided outside the liquid crystal cell or inside the liquid crystal cell.
  • the display device 30 includes a first substrate 31, a polarizing film 32 of the first invention, a color filter layer 33, a planarizing layer 34, an ITO electrode layer 35, a first alignment film 36, a liquid crystal layer 37, a second The alignment film 38, the polarizing film 39 of the second invention, the TFT layer 40 including the thin film transistor circuit and the pixel electrode, and the second substrate 41.
  • the color filter layer refers to a layer that extracts light having a desired wavelength from incident light from the substrate 41 side. For example, light having a wavelength other than the desired wavelength is absorbed from white light and only light having the desired wavelength is transmitted. It may be a layer, or a layer that converts the wavelength of incident light to emit light having a desired wavelength.
  • an alignment film may be included on the first and second substrate sides, respectively.
  • the alignment film may be a rubbing alignment film or a photo-alignment film.
  • the polarizing film of the first aspect of the present invention may include a retardation layer.
  • the display device 60 includes a first base 61, a polarizing film 62 of the first invention, a color filter layer 63, a planarizing layer 64, an ITO electrode layer 65, a first alignment film 66, a liquid crystal layer 67, a second.
  • the second polarizing film 72 positioned on the opposite side of the TFT layer 70 of the second substrate 71 may be the polarizing film of the present invention, or polarized light produced by dyeing polyvinyl alcohol with iodine and stretching it. It may be a membrane.
  • the display device 80 includes a first substrate 81, a color filter layer 82, a polarizing film 83 of the first invention, a planarization layer 84, an ITO electrode layer 85, a first alignment film 86, a liquid crystal layer 87, and a second.
  • the alignment film 88, the TFT layer 90 including the thin film transistor circuit and the pixel electrode, the second base 91, and the second polarizing film 92 are included.
  • the second polarizing film 92 may be the polarizing film of the present invention, or may be a polarizing film prepared by dyeing polyvinyl alcohol with iodine and stretching it.
  • the second polarizing film 92 is a polarizing film according to the present invention, the second polarizing film may be located between the second base 91 and the TFT layer 90, as in the first configuration.
  • the color filter layer 82 may be located on the side opposite to the liquid crystal layer of the first base 81.
  • the polarized light is scattered by the particles included in the color filter layer, and the depolarization can occur. Therefore, among the first to third configurations, the third configuration in which the first polarizing film according to the present invention is located closer to the liquid crystal layer than the color filter layer is more preferable.
  • Example 1 1.00 g of the compound represented by the formula (2A), 4.00 g of water and 1.30 g of 35% hydrochloric acid were mixed. The obtained mixture was cooled to 0 ° C., and 0.74 g of 33% aqueous sodium nitrite solution was added dropwise. The resulting mixture was stirred for 30 minutes and then 0.03 g of amidosulfuric acid was added. The obtained mixture was added dropwise at 0 ° C. to a mixture composed of 0.74 g of the compound represented by the formula (3), 1.06 g of sodium acetate and 7.44 g of water. The precipitate was filtered and washed 3 times with water. To the obtained precipitate, 0.32 g of sodium hydroxide and 8.00 g of water were added.
  • the resulting mixture was stirred at 100 ° C. for 2 hours and then cooled to 10 ° C.
  • the precipitate was filtered and washed with water.
  • the obtained solid was dried and purified by silica gel column chromatography (eluent: toluene).
  • the obtained solid was washed with acetonitrile and then dried to obtain 0.12 g of an orange solid.
  • 0.12 g of the obtained orange solid, 0.12 g of triethylamine, and 2.8 g of tetrahydrofuran were mixed.
  • the resulting mixture was cooled to 0 ° C., and 0.08 g of acetyl chloride was added dropwise.
  • the resulting mixture was stirred at 25 ° C. for 18 hours.
  • Example 3 In Example 1, it replaced with the compound represented by Formula (2A), and except having used the compound represented by Formula (2C), it implemented similarly to Example 1 and is the formula (1C which is orange solid) ) (0.009 g) (hereinafter, referred to as compound (1C)) was obtained.
  • Mw 400 (LC-MS)
  • Maximum absorption wavelength ( ⁇ max2 ) 399 nm (chloroform solution)
  • Example 5 3.60 g of the compound represented by the formula (2E), 57.0 g of acetic acid and 33.0 g of concentrated sulfuric acid were mixed. The obtained mixture was cooled to 0 ° C., and 7.85 g of 33% aqueous sodium nitrite solution was added dropwise. After stirring the resulting mixture for 30 minutes, 1.66 g of amidosulfuric acid was added. The obtained mixture was added dropwise at 0 ° C. to a mixture consisting of 4.36 g of the compound represented by the formula (3), 6.22 g of sodium acetate and 87.26 g of water. The resulting mixture was added dropwise to 295.0 g of acetonitrile.
  • 2E 3.60 g of the compound represented by the formula (2E), 57.0 g of acetic acid and 33.0 g of concentrated sulfuric acid were mixed. The obtained mixture was cooled to 0 ° C., and 7.85 g of 33% aqueous sodium nitrite solution was added dropwise. After stirring
  • the precipitate was filtered and washed with acetonitrile and water. To the obtained solid, 1.90 g of sodium hydroxide and 48.0 g of water were added. The resulting mixture was stirred at 100 ° C. for 2 hours and then cooled to 10 ° C. Celite was added and the precipitate was collected by filtration. Tetrahydrofuran was added to the obtained solid, filtered, and the obtained filtrate was concentrated to obtain 2.80 g of an orange solid. 0.30 g of the obtained orange solid and 3.64 g of acetic anhydride were mixed. The resulting mixture was heated for 18 hours and then added dropwise to water. The precipitate was collected by filtration and purified by silica gel column chromatography (eluent: chloroform).
  • Example 6 In Example 5, except that trifluoroacetic anhydride was used in place of acetic anhydride, the same procedure as in Example 5 was performed to obtain a compound represented by the formula (1F) which is a red solid (hereinafter referred to as Compound (1F) )) was obtained.
  • Mw 516 (LC-MS)
  • Maximum absorption wavelength ( ⁇ max2 ) 499 nm (chloroform solution)
  • Example 7 In Example 5, it replaced with the compound represented by Formula (2E), and except having used the compound represented by Formula (2G), it implemented similarly to Example 5 and is a formula (1G which is orange solid) ) 0.123 g (hereinafter referred to as compound (1G)).
  • Maximum absorption wavelength ( ⁇ max2 ) 508 nm (chloroform solution)
  • Example 8 In Example 1, it replaced with the compound represented by Formula (2A), and except having used the compound represented by Formula (2H), it implemented like Example 1 and is the formula (1H which is orange solid) ) (0.198 g) represented by the following formula (hereinafter referred to as compound (1H)).
  • Maximum absorption wavelength ( ⁇ max2 ) 389 nm (chloroform solution)
  • Polymerizable liquid crystal compound As the polymerizable liquid crystal compound contained in the composition, a compound represented by the following formula (4-6) [hereinafter referred to as compound (4-6)], a compound represented by the following formula (4-8) [hereinafter , Compound (4-8)], compound represented by formula (4-14) below [hereinafter referred to as compound (4-14)] and compound represented by formula (4-17) below [hereinafter, Compound (4-17)] was used.
  • Compound (4-6) was prepared from Lub et al. Recl. Trav. Chim. It was synthesized by the method described in Pays-Bas, 115, 321-328 (1996).
  • Compound (4-8) was produced according to this method.
  • Compound (4-14) and Compound (4-17) were produced according to the method described in Japanese Patent No. 4719156.
  • phase transition temperature of the compound (4-6) was confirmed by determining the phase transition temperature of the film made of the compound (4-6).
  • the operation is as follows. A film composed of the compound (4-6) was formed on the glass substrate on which the alignment film was formed, and the phase transition temperature was confirmed by texture observation with a polarizing microscope (BX-51, Olympus) while heating. Compound (4-6) was heated to 120 ° C., and when the temperature was lowered, the phase transitioned to the nematic phase at 112 ° C., the phase transition to the smectic A phase at 110 ° C., and the phase transition to the smectic B phase at 94 ° C. .
  • phase transition temperature The phase transition temperature of compound (4-8) was confirmed in the same manner as in the measurement of the phase transition temperature of compound (4-6).
  • Compound (4-8) was heated to 140 ° C., and at the time of temperature decrease, the phase transitioned to the nematic phase at 131 ° C., the phase transition to the smectic A phase at 80 ° C., and the phase transition to the smectic B phase at 68 ° C.
  • phase transition temperature The phase transition temperature of compound (4-14) was confirmed in the same manner as in the measurement of the phase transition temperature of compound (4-6).
  • Compound (4-14) was heated to 140 ° C., and at the time of temperature decrease, the phase transitioned to the nematic phase at 106 ° C., the phase transition to the smectic A phase at 103 ° C., and the phase transition to the smectic B phase at 86 ° C.
  • phase transition temperature The phase transition temperature of compound (4-17) was confirmed in the same manner as in the measurement of the phase transition temperature of compound (4-6).
  • Compound (4-17) was heated to 140 ° C., and at the time of cooling, the phase transitioned to the nematic phase at 119 ° C., the phase transition to the smectic A phase at 100 ° C., and the phase transition to the smectic B phase at 77 ° C.
  • Example 9 (Preparation of composition) The following components were mixed and stirred at 80 ° C. for 1 hour to obtain a composition (1).
  • phase transition temperature Similarly to the compound (4-6), the phase transition temperature of the component contained in the composition (1) was determined. This component was heated to 140 ° C., and at the time of cooling, the phase transitioned to the nematic phase at 115 ° C., the phase transition to the smectic A phase at 105 ° C., and the phase transition to the smectic B phase at 75 ° C.
  • the rubbing process uses a semi-automatic rubbing apparatus (trade name: LQ-008 type, manufactured by Joyo Engineering Co., Ltd.) and a push-in amount of 0.15 mm using a cloth (trade name: YA-20-RW, manufactured by Yoshikawa Chemical Co., Ltd.). , Under the conditions of 500 rpm and 16.7 mm / s. By such rubbing treatment, a laminate 1 having an alignment film formed on a glass substrate was obtained.
  • the composition (1) is applied onto the alignment film of the laminate 1 by spin coating, dried by heating on a hot plate at 120 ° C. for 1 minute, and then quickly cooled to room temperature to perform the alignment. A dry film containing an aligned polymerizable liquid crystal compound was formed on the film. Next, by using a UV irradiation apparatus (SPOT CURE SP-7; manufactured by Ushio Electric Co., Ltd.), the ultraviolet ray is irradiated to the dry film with an exposure amount of 2000 mJ / cm 2 (365 nm standard), thereby polymerization contained in the dry film. The liquid crystalline compound was polymerized while maintaining the alignment state, and the polarizing film (1) was formed from the dried film to obtain a laminate 2. When the thickness of the polarizing film at this time was measured with a laser microscope (OLS3000 manufactured by Olympus Corporation), it was 1.7 ⁇ m.
  • OLS3000 manufactured by Olympus Corporation
  • a sharp diffraction peak (Bragg peak) having a peak half width (FWHM) of about 0.31 ° was obtained.
  • the order period (d) obtained from the peak position is about 4.4 mm, and it was found that a structure reflecting a higher-order smectic phase was formed.
  • the absorbance (A 1 ) in the transmission axis direction and the absorbance (A 2 ) in the absorption axis direction at the maximum absorption wavelength are provided in a spectrophotometer (UV-3150, manufactured by Shimadzu Corporation), and the laminate 2 is provided.
  • the folder was measured by the double beam method using the set device.
  • the folder was provided with a mesh that cuts the light amount by 50% on the reference side.
  • the ratio (A 2 / A 1 ) was calculated from the measured values of absorbance (A 1 ) in the transmission axis direction and absorbance (A 2 ) in the absorption axis direction to obtain a dichroic ratio.
  • the maximum absorption wavelength ( ⁇ max1 ) was 404 nm, and the dichroic ratio at this wavelength was as high as 19. It can be said that the higher the dichroic ratio, the more useful as a polarizing film. Since the maximum absorption wavelength ( ⁇ max2 ) of the compound (1A) was 389 nm, it was found that the compound was shifted by a long wavelength. As a result of this long wavelength shift, when the compound (1A) is dispersed between dense molecular chains formed by polymerization of the polymerizable liquid crystal compound in the polarizing film of the present invention, the compound (1A) It shows that it interacts strongly with the molecular chain.
  • a protective film 40 ⁇ m TAC (“KC4UY” manufactured by Konica Minolta Co., Ltd.) is disposed on the surface of the formed polarizing film (1), and light resistance is evaluated by irradiating light under the following conditions.
  • the formed polarizing film is excellent in light resistance.
  • the light irradiation conditions in the light resistance test are as follows. Equipment used: Suntest XLS + manufactured by ATLAS Light source used: Xenon arc lamp Exposure condition: 250 mW / m 2 Test time: 120 hours Exposure: 108000 KJ / m 2 Temperature: 60 ° C
  • Example 10 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1B) is used in place of the compound (1A).
  • Example 9 is the same as Example 9 except that compound (4-14) is used instead of compound (4-6) and compound (4-17) is used instead of compound (4-8). By carrying out, a composition and a polarizing film are obtained.
  • Example 12 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1C) is used in place of the compound (1A).
  • Example 13 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1D) is used in place of the compound (1A).
  • Example 14 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1E) is used in place of the compound (1A).
  • Example 15 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1F) is used in place of the compound (1A).
  • Example 16 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1G) is used in place of the compound (1A).
  • Example 17 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1H) is used in place of the compound (1A).
  • Example 18 In Example 1, it replaced with the compound represented by Formula (2A), and except having used the compound represented by Formula (2I), it represented by Formula (1I) by implementing similarly to Example 1. Is obtained.
  • Example 19 In Example 1, it replaces with the compound represented by Formula (2A), and it represents by Formula (1J) by implementing similarly to Example 1 except using the compound represented by Formula (2J). Is obtained.
  • Example 20 In Example 1, it replaces with the compound represented by Formula (2A), and it represents by Formula (1K) by implementing similarly to Example 1 except using the compound represented by Formula (2K). Is obtained.
  • Example 21 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1I) is used in place of the compound (1A).
  • Example 22 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1J) is used in place of the compound (1A).
  • Example 23 In Example 9, a composition and a polarizing film are obtained by carrying out in the same manner as in Example 9 except that the compound (1K) is used in place of the compound (1A).
  • Example 25 0.10 g of the compound (1H) obtained in Example 8, 0.039 g of 60% sodium hydride and 2.3 g of tetrahydrofuran were mixed, and 0.14 g of methyl iodide was added dropwise. The reaction mixture was warmed to 50 ° C. and stirred for 1 hour. After cooling to 20 ° C., water was added dropwise to detoxify sodium hydride and concentrated to distill off the solvent. The concentrate was purified by silica gel column chromatography (eluent: chloroform). The obtained solid was washed with acetonitrile and dried to obtain 0.035 g of a compound (hereinafter referred to as compound (1M)) represented by the formula (1M) as a red solid.
  • compound (1M) represented by the formula (1M) as a red solid.
  • Example 26 0.50 g of the compound represented by the formula (2C), 2.00 g of water and 0.65 g of 35% hydrochloric acid were mixed. The obtained mixture was cooled to 0 ° C., and 0.81 g of 33% aqueous sodium nitrite solution was added dropwise. The resulting mixture was stirred for 30 minutes and then 0.19 g of amidosulfuric acid was added. The obtained mixture was added dropwise at 0 ° C. to a mixture consisting of 0.37 g of phenol, 0.65 g of sodium acetate, 1.85 g of water and 1.85 g of methanol. The precipitate was filtered, washed 3 times with water and dried to obtain 0.50 g of a yellow solid.
  • Example 27 0.20 g of the compound represented by the formula (4A), 0.11 g of 60% sodium hydride and 3.3 g of tetrahydrofuran were mixed, and 0.39 g of methyl iodide was added dropwise. The reaction mixture was warmed to 50 ° C. and stirred for 1 hour. After cooling to 20 ° C., water was added dropwise to detoxify sodium hydride and concentrated to distill off the solvent. The concentrate was purified by silica gel column chromatography (eluent: chloroform). The obtained solid was washed with acetonitrile and dried to obtain 0.051 g of a compound represented by the formula (1O) as a yellow solid (hereinafter referred to as compound (1O)).
  • compound (1O) a yellow solid
  • the novel compound of the present invention is a compound having a maximum absorption in the wavelength range of 350 nm to 550 nm and functioning as a dichroic dye, and the composition of the present invention containing the compound is a polarizing film having a high dichroic ratio. give.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

 波長350nm~550nmの範囲に極大吸収を有する、二色性色素として機能する化合物を提供すること。 式(1): [式中、Rは、水素原子等を、Rは,炭素数1~20のアシル基等を、Rは、水素原子等を、Yは、式(Y1): (式中、*はNとの結合部位を表す。) で示される基または式(Y2): (式中、*はNとの結合部位を表し、PおよびPは、それぞれ独立して、-S-等を、QおよびQは、それぞれ独立して、=N-等を表す。) で示される基を表す。] で表される化合物。

Description

化合物および組成物
 本発明は、化合物および組成物に関する。
 特許文献1には、配向した重合性液晶化合物に分散した、二色性の光を吸収する化合物(二色性色素)を含む偏光膜が記載されている。
 特許文献2には、波長350~550nmに極大吸収を有する二色性色素として、1,4-ナフチル構造を有するビスアゾ系色素が記載されている。しかしながら、当該二色性色素を含む偏光膜の二色比は低かった。
特表2007-510946号公報 特許1454637号公報(特公昭63-1357号公報)
 波長350nm~550nmの範囲に極大吸収を有する、二色性色素として機能する化合物が求められていた。
 本発明は以下の発明を含む。
[1]式(1):

Figure JPOXMLDOC01-appb-I000004
[式中、R1は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアシルオキシ基または-N(R10)(R11)を表し、R10は、炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表わし、R11は、水素原子または炭素数1~20のアルキル基を表し、R10とR11とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。前記アルキル基、前記アルコキシ基、前記アシル基、前記アルコキシカルボニル基、前記アシルオキシ基、前記アルキルスルホニル基および前記アリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置き換わっていてもよい。前記アルキル基および前記アルコキシ基を構成する炭素原子間には、-O-または-NR20-が挿入されていてもよく、R20は、水素原子または炭素数1~20のアルキル基を表わす。
 R7およびR8は、水素原子以外の置換基であって、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表し、上記炭素数1~4のアルキル基および上記炭素数1~4アルコキシ基を構成する少なくとも一つの水素原子は、ハロゲン原子またはヒドロキシ基で置換されていてもよく、p及びqは、それぞれ独立して0~2の整数である。
 R2は,炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表し、R3は水素原子または炭素数1~20のアルキル基を表し、R2とR3とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。前記アルキル基、前記アシル基、前記アルキルスルホニル基および前記アリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置き換わっていてもよい。前記アルキル基を構成する炭素原子間には、-O-または-NR30-が挿入されていてもよく、R30は、水素原子または炭素数1~20のアルキル基を表わす。
 Yは、式(Y1):

Figure JPOXMLDOC01-appb-I000005
(式中、*はNとの結合部位を表す。R9は、水素原子以外の置換基であって、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表し、上記炭素数1~4のアルキル基および上記炭素数1~4アルコキシ基を構成する少なくとも一つの水素原子は、ハロゲン原子またはヒドロキシ基で置換されていてもよく、rは0~2の整数である。)
で示される基または式(Y2):
Figure JPOXMLDOC01-appb-I000006
(式中、*はNとの結合部位を表し、P1およびP2は、それぞれ独立して、-S-、-O-または-N(R12)-を表し、R12は、水素原子または炭素数1~4のアルキル基を表し、Q1およびQ2は、それぞれ独立して、=N-または=CH-を表す。)
で示される基を表す。]
で表される化合物。
[2] p、qおよびrが0である[1]に記載の化合物。
[3]重合性液晶化合物と[1]または[2]に記載の化合物とを含む組成物。
[4]重合性液晶化合物が、スメクチック液晶相を示す[3]に記載の組成物。
[5]さらに重合開始剤を含む[3]または[4]に記載の組成物。
[6][1]または[2]に記載の化合物を含む偏光膜。
[7][3]~[5]のいずれかに記載の組成物から形成される偏光膜。
[8]偏光膜の極大吸収波長(λmax1)が、式(1)で表される化合物の極大吸収波長(λmax2)よりも長い[6]または[7]に記載の偏光膜。
[9]λmax1と、λmax2との差が10nm以上である[8]に記載の偏光膜。
[10]X線回折測定においてブラッグピークを示す[6]~[9]のいずれかに記載の偏光膜。
[11][6]~[10]のいずれかに記載の偏光膜を備える液晶表示装置。
[12][6]~[10]のいずれかに記載の偏光膜、液晶層および基体を備える液晶セル。
[13]偏光膜が、基体と液晶層との間に配置される[12]に記載の液晶セル。
[14]基体と液晶層との間に、カラーフィルタがさらに配置される[13]に記載の液晶セル。
[15][6]~[10]のいずれかに記載の偏光膜と1/4波長板とを有する円偏光板。
[16][6]~[10]のいずれかに記載の偏光膜と有機EL素子とを備える有機EL表示装置。
[17][15]に記載の円偏光板と有機EL素子とを備える有機EL表示装置。
 本発明の化合物は、波長350nm~550nmの範囲に極大吸収を有する、二色性色素として機能する新規な化合物であり、該化合物を含む組成物から、二色比が高い偏光膜を形成することができる。
本発明の偏光膜の連続的製造方法を示す模式図である。 本発明の偏光膜を有する円偏光板の連続的製造方法の模式図である。 本発明の偏光膜を備える液晶セルの模式図である。 本発明の偏光膜を備える液晶セルの模式図である。 本発明の偏光膜を備える液晶セルの模式図である。
<式(1)で表される化合物>
 本発明の式(1)で表される化合物(以下、化合物(1)ということがある)のアゾ基は、トランスのアゾ基であることが好ましい。
 式(1)中、R1は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアシルオキシ基または-N(R10)(R11)を表す。
 炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の無置換の(置換基を有していない)直鎖状又は分枝鎖状の炭素数1~20のアルキル基が挙げられる。
 かかる炭素数1~20のアルキル基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置換されていてもよい。置換基を有するアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基などが挙げられる。一つ以上の水素原子がハロゲン原子等で置き換わったアルキル基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ノナフルオロブチル基等の炭素数1~20のハロアルキル基、ヒドロキシメチル基、2-ヒドロキシエチル基等の炭素数1~20のヒドロキシアルキル基、アミノメチル基、2-(N,N-ジメチルアミノ)エチル基等の無置換または置換基を有するアミノ基を有する炭素数1~20のアルキル基が挙げられる。
 前記アルキル基を構成する炭素原子間には、-O-または-NR20-が挿入されていてもよく、R20は、水素原子または炭素数1~20のアルキル基を表わし、炭素数1~20のアルキル基としては、上記と同様の基が挙げられる。炭素原子間に、-O-または-NR20-が挿入されたアルキル基としては、メトキシメチル基、2-エトキシエチル基、2-(2-エトキシエトキシ)エチル基、2-[2-(エチルアミノ)エチル)アミノ]エチル基等が挙げられる。
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等の無置換の直鎖状又は分枝鎖状の炭素数1~20のアルコキシ基が挙げられる。
 かかる炭素数1~20のアルコキシ基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置換されていてもよい。置換基を有するアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基などが挙げられる。一つ以上の水素原子がハロゲン原子等で置き換わったアルコキシ基としては、フルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、ノナフルオロブトキシ基等の炭素数1~20のハロアルコキシ基、ヒドロキシメトキシ基、2-ヒドロキシエトキシ基等の炭素数1~20のヒドロキシアルコキシ基、アミノメトキシ基、2-(N,N-ジメチルアミノ)エトキシ基等の無置換または置換基を有するアミノ基を有する炭素数1~20のアルコキシ基が挙げられる。
 前記アルコキシ基を構成する炭素原子間には、-O-または-NR20-が挿入されていてもよく、炭素原子間に、-O-または-NR20-が挿入されたアルコキシ基としては、メトキシメトキシ基、2-エトキシエトキシ基、2-(2-エトキシエトキシ)エトキシ基、2-[2-(エチルアミノ)エチル)アミノ]エトキシ基等が挙げられる。
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、エチルカルボニル基、n-プロピルカルボニル基、イソプロピルカルボニル基、n-ブチルカルボニル基、イソブチルカルボニル基、tert-ブチルカルボニル基、n-ペンチルカルボニル基、イソペンチルカルボニル基、ネオペンチルカルボニル基、n-ヘキシルカルボニル基、n-ヘプチルカルボニル基、n-オクチルカルボニル基、n-ノニルカルボニル基、n-デシルカルボニル基等の無置換の炭素数1~20のアシル基が挙げられる。かかるアシル基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基(例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基)で置き換わっていてもよい。一つ以上の水素原子がハロゲン原子等で置き換わったアシル基としては、トリフルオロアセチル基、ペンタフルオロエチルカルボニル基、ノナフルオロブチルカルボニル基等の炭素数1~20のハロアシル基等が挙げられる。
 炭素数2~20のアルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、ネオペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-オクチルオキシカルボニル基、n-ノニルオキシカルボニル基、n-デシルオキシカルボニル基等の無置換の炭素数2~20のアルコキシカルボニル基が挙げられる。かかるアルコキシカルボニル基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置換されていてもよい。置換基を有するアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基などが挙げられる。一つ以上の水素原子がハロゲン原子等で置き換わったアルコキシカルボニル基としては、フルオロメトキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、ノナフルオロブトキシカルボニル基等の炭素数2~20のハロアルコキシカルボニル基が挙げられる。
 炭素数1~20のアシルオキシ基としては、アセチルオキシ基、エチルカルボニルオキシ基、n-プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基、n-ペンチルカルボニルオキシ基、イソペンチルカルボニルオキシ基、ネオペンチルカルボニルオキシ基、n-ヘキシルカルボニルオキシ基、n-ヘプチルカルボニルオキシ基、n-オクチルカルボニルオキシ基、n-ノニルカルボニルオキシ基、n-デシルカルボニルオキシ基等の無置換の炭素数1~20のアシルオキシ基が挙げられる。かかるアシルオキシ基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置換されていてもよい。置換基を有するアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基などが挙げられる。一つ以上の水素原子がハロゲン原子等で置き換わったアシルオキシ基としては、フルオロアセチルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロエチルカルボニルオキシ基、ノナフルオロブチルカルボニルオキシ基等の炭素数1~20のハロアシルオキシ基が挙げられる。
 -N(R10)(R11)におけるR10は、炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表わし、R11は、水素原子または炭素数1~20のアルキル基を表し、R10とR11とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。R10におけるアシル基、アルキルスルホニル基およびアリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子(例えば、フッ素原子)、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置換されていてもよい。置換基を有するアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基等の一つまたは二つの炭素数1~20のアルキル基で置換されたアミノ基などが挙げられる。R11におけるアルキル基を構成する炭素原子間には、-O-または-NR20-が挿入されていてもよい。R10における炭素数1~20のアシル基としては、上記のR1における炭素数1~20のアシル基と同様のものが挙げられ、該アシル基を構成する一つ以上の水素原子が、ハロゲン原子等で置き換わったアシル基としては、上記R1における基と同様のものが挙げられる。
 炭素数1~20のアルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、n-プロピルスルホニル基等の無置換の炭素数1~20のアルキルスルホニル基が挙げられ、かかるアルキルスルホニル基を構成する一つ以上の水素原子が、ハロゲン原子等で置き換わった基としては、トリフルオロメチルスルホニル基、ペンタフルオロエチルスルホニル基、ヘプタフルオロ-n-プロピルスルホニル基等の炭素数1~20のハロアルキルスルホニル基が挙げられる。
 炭素数6~20のアリールスルホニル基としては、ベンゼンスルホニル基、p-トルエンスルホニル基等が挙げられ、かかるアリールスルホニル基を構成する一つ以上の水素原子が、ハロゲン原子等で置き換わった基としては、p-トリフルオロメチルベンゼンスルホニル基等が挙げられる。
 R11における炭素数1~20のアルキル基としては、上記のR1における炭素数1~20のアルキル基と同様のものが挙げられ、該アルキル基を構成する一つ以上の水素原子が、ハロゲン原子等で置き換わったアルキル基としては、上記R1における基と同様のものが挙げられる。
 -N(R10)(R11)の具体例としては、アシルアミノ基、エチルカルボニルアミノ基、n-プロピルカルボニルアミノ基、イソプロピルカルボニルアミノ基、n-ブチルカルボニルアミノ基、イソブチルカルボニルアミノ基、tert-ブチルカルボニルアミノ基、n-ペンチルカルボニルアミノ基、イソペンチルカルボニルアミノ基、ネオペンチルカルボニルアミノ基、n-ヘキシルカルボニルアミノ基、n-ヘプチルカルボニルアミノ基、n-オクチルカルボニルアミノ基、n-ノニルカルボニルアミノ基、n-デシルカルボニルアミノ基、トリフルオロアシルアミノ基が挙げられる。
 R10とR11とが互いに結合して、それらが結合する窒素原子とともに形成する-N-CO-または-N-SO2-を含む環は、4~10員環であることが好ましく、5~7員環であることがより好ましい。具体的には、2-ピロリドン-1-イル基等が挙げられる。
 R1は、好ましくは、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~10のアルキル基、構成する炭素原子間に-O-が挿入された炭素数1~20のアルキル基、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~10のアルコキシ基、構成する炭素原子間に-O-が挿入された炭素数1~20のアルコキシ基、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~10のアシル基、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数2~10のアルコキシカルボニル基、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~10のアシルオキシ基または-N(R10)(R11)であり、R10は、好ましくは、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~20のアシル基であり、R11は、好ましくは、水素原子である。
 R1は、より好ましくは、フッ素原子を有していてもよい直鎖状の炭素数1~10のアルキル基または-N(R10)(R11)であり、R10は、より好ましくは、フッ素原子を有していてもよい炭素数1~10のアシル基であり、R11は、好ましくは、水素原子である。
 R1は、特に好ましくは、フッ素原子を有していてもよい直鎖状の炭素数1~10のアルキル基である。
 式(1)において、二つのフェニレン基はそれぞれ、それを構成する少なくとも一つの水素原子が水素以外の置換基R7又はR8で置換されていてもよい。R7及びR8は、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表す。R7及びR8はそれぞれ、フェニレン基のどの位置の水素原子と置換されていてもよい。
 炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の、置換基を有していない直鎖状または分枝鎖状のアルキル基が挙げられる。
 かかる炭素数1~4のアルキル基を構成する少なくとも一つの水素原子は、フッ素原子等のハロゲン原子、またはヒドロキシ基で置換されていてもよい。これらの例としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ノナフルオロブチル基等の炭素数1~4のハロアルキル基;ヒドロキシメチル基、2-ヒドロキシエチル基等の炭素数1~4のヒドロキシアルキル基;が挙げられる。
 炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基等の、置換基を有していない直鎖状または分枝鎖状のアルコキシ基が挙げられる。
 かかる炭素数1~4のアルコキシ基を構成する少なくとも一つの水素原子は、フッ素原子等のハロゲン原子、またはヒドロキシ基で置換されていてもよい。これらの例としては、フルオロメトキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、ノナフルオロブトキシ基等の炭素数1~4のハロアルコキシ基;ヒドロキシメトキシ基、2-ヒドロキシエトキシ基等の炭素数1~4のヒドロキシアルコキシ基が挙げられる。
 式(1)中、R2は、炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表し、R3は水素原子または炭素数1~20のアルキル基を表し、R2とR3とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。前記アルキル基、前記アシル基、前記アルキルスルホニル基および前記アリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置き換わっていてもよい。前記アルキル基を構成する炭素原子間には、-O-または-NR30-が挿入されていてもよく、R30は、水素原子または炭素数1~20のアルキル基を表わす。
 R2における炭素数1~20のアシル基としては、上記のR1における炭素数1~20のアシル基と同様のものが挙げられる。
 R2における炭素数1~20のアルキルスルホニル基および炭素数6~20のアリールスルホニル基としては、それぞれ、上記のR10における炭素数1~20のアルキルスルホニル基および炭素数6~20のアリールスルホニル基と同様のものが挙げられる。
 R2とR3とが互いに結合して、それらが結合する窒素原子とともに形成する-N-CO-または-N-SO2-を含む環は、4~10員環であることが好ましく、5~7員環であることがより好ましい。具体的には、2-ピロリドン-1-イル基等が挙げられる。
 R30における、炭素数1~20のアルキル基としては、上記と同様の基が挙げられる。
 R2は、好ましくは、ハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~20のアシル基またはハロゲン原子(好ましくはフッ素原子)を有していてもよい炭素数1~20のアルキルスルホニル基であり、より好ましくは、フッ素原子を有していてもよい炭素数1~10のアシル基またはフッ素原子を有していてもよい炭素数1~10のアルキルスルホニル基である。
 R3は、好ましくは、水素原子である。
 式(1)中、Yは、式(Y1):

Figure JPOXMLDOC01-appb-I000007
(式中、*はNとの結合部位を表す。R9は、水素原子以外の置換基であって、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表し、上記炭素数1~4のアルキル基および上記炭素数1~4アルコキシ基を構成する少なくとも一つの水素原子は、ハロゲン原子またはヒドロキシ基で置換されていてもよく、rは0~2の整数である。)
で示される基または式(Y2):
Figure JPOXMLDOC01-appb-I000008
(式中、*はNとの結合部位を表し、P1およびP2は、それぞれ独立して、-S-、-O-または-N(R12)-を表し、R12は、水素原子または炭素数1~4のアルキル基を表し、Q1およびQ2は、それぞれ独立して、=N-または=CH-を表す。)
で示される基を表す。
 R9としては、上記R7およびR8で例示したものと同じものが挙げられる。
 P1は、好ましくは、-S-である。
 P2は、好ましくは、-S-である。
 R12における炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基及びtert-ブチル基が挙げられる。
 Q1は、好ましくは、=CH-である。
 Q2は、好ましくは、=N-である。
 式(1)中のp、qおよびrは、それぞれ独立して0~2の整数であり、好ましくは0である。
 化合物(1)の具体例としては、下記式(1-1)~式(1-20)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 中でも、式(1-1)、式(1-2)、式(1-4)、式(1-7)、式(1-11)及び式(1-14)で表される化合物が好ましく、式(1-7)及び式(1-11)で表される化合物がより好ましい。
 化合物(1)は、式(2):
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
[式中、R1、R7、pおよびYは、それぞれ上記と同一の意味を表す。]
で表される化合物(以下、化合物(2)ということがある)と、式(3):

Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019
[式中、R1、R7、R8、p、qおよびYは、上記と同一の意味を表す。]
で表される化合物(以下、化合物(4)ということがある)を得、化合物(4)から式(5):

Figure JPOXMLDOC01-appb-I000020
[式中、R1、R7、R8、p、qおよびYは、上記と同一の意味を表す。]
で表される化合物(以下、化合物(5)ということがある)を得、化合物(5)のアミノ基をアシル化等することにより、製造することができる。かかる方法は、例えば、ChemBioChem,2011,12,1712等に記載の方法に準じて行うことができる。
 化合物(1)は、反応終了後、再結晶、再沈殿、抽出、各種クロマトグラフィー等の通常の取り出し手段によって、を取り出すことができる。
 化合物(1)は二色性色素として機能する化合物であり、特に、重合性液晶化合物と共に配向することでより高い二色性を示す。したがって、化合物(1)が重合性液晶化合物と共に配向している偏光膜は、より高い二色性を示す。化合物(1)は、波長350nm~510nmの範囲、好ましくは波長400nm~500nmの範囲、より好ましくは波長410nm~490nmの範囲、さらに好ましくは波長420nm~480nmの範囲に極大吸収を有する。また、化合物(1)は、耐光性を有するため、本発明の化合物を含む偏光膜は、耐光性に優れる。
 偏光膜の耐光性は、例えば、以下の方法により判断することができる。
 形成された偏光膜表面に保護フィルムを配置し、その上から下記条件で光を照射する。試験前の偏光膜の極大吸収波長501nmの偏光膜の吸光度に対する、耐光性試験後の偏光膜の極大吸収波長501nmの偏光膜の吸光度の割合から、耐光性を判断する。
 例えば、特開2013-101328号公報に記載の式(1-10)で示される二色性色素を使用し偏光膜を形成して耐光性試験を行うと、この偏光膜の極大吸収波長548nmにおける、耐光性試験後の該偏光膜の吸光度は、試験前の47%となる。
 (耐光性試験における光の照射条件)
 使用機器:ATLAS社製 サンテストXLS+
 使用光源:キセノンアークランプ
 露光条件:250mW/m2
 試験時間:120時間
 暴露量:108000KJ/m2
 温度:60℃
 続いて、重合性液晶化合物と化合物(1)とを含む本発明の組成物について説明する。
 本発明の組成物は、二種以上の化合物(1)を含んでもよい。
<重合性液晶化合物>
 重合性液晶化合物とは、分子内に重合性基を有し、配向することによって液晶相を示すことができる化合物であり、好ましくは単独で配向することによって液晶相を示すことができる化合物である。
 重合性基とは、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、重合性基とは、後述する重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基及びオキセタニル基が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。
 重合性液晶化合物は、サーモトロピック液晶型であってもよいし、リオトロピック液晶型であってもよい。
 重合性液晶化合物は、ネマチック液晶相を示すものであってもよいし、スメクチック液晶相を示すものであってもよいし、ネマチック液晶相及びスメクチック液晶相の両方を示すものであってもよい。好ましくは、スメクチック液晶相を示すものであり、より好ましくは高次スメクチック液晶相を示すものである。スメクチック液晶相を示す重合性液晶化合物を含む本発明の組成物は、より偏光性能に優れる偏光膜を与えることができる。本発明の組成物は、二種以上の重合性液晶化合物を含んでもよい。
 化合物(1)は、スメクチック液晶相を示す重合性液晶化合物から形成された、密な分子鎖間に分散した状態であっても、高い二色性を示すことができ、化合物(1)を含む組成物は、二色比の高い偏光膜を与えることができる。
 高次スメクチック液晶相としては、スメクチックB相、スメクチックD相、スメクチックE相、スメクチックF相、スメクチックG相、スメクチックH相、スメクチックI相、スメクチックJ相、スメクチックK相及びスメクチックL相が挙げられる。中でも、スメクチックB相、スメクチックF相及びスメクチックI相が好ましい。重合性液晶化合物が示すスメクチック液晶相がこれらの高次スメクチック相であると、配向秩序度のより高い偏光膜が得られる。配向秩序度の高い高次スメクチック液晶相を示す重合性液晶化合物を含む組成物から得られる偏光膜はX線回折測定においてヘキサチック相又はクリスタル相といった高次構造由来のブラッグピークを示す。ブラッグピークとは、分子配向の面周期構造に由来するピークである。本発明の組成物から得られる偏光膜が有する周期間隔は、好ましくは3.0~5.0Å(0.30nm~0.50nm)である。
 重合性液晶化合物が示す液晶相の種類は、例えば、以下のようにして確認することができる。適当な基材を準備し、該基材に重合性液晶化合物と溶剤とを含む溶液を塗布して塗布膜を形成した後、加熱処理又は減圧処理することで塗布膜に含有される溶剤を除去する。続いて、基材上に形成された塗布膜を等方相温度まで加熱し、徐々に冷却することで発現する液晶相を、偏光顕微鏡によるテクスチャー観察、X線回折測定又は示差走査熱量測定により検査する。この検査において、例えば、第1温度まで冷却することでネマチック液晶相を示し、さらに第2温度まで除々に冷却することで、スメクチック液晶相を示すことを確認することができる。
 重合性液晶組成物は、好ましくは、式(4)で表される化合物(以下、化合物(4)ということがある)である。
  U1-V1-W1-X1-Y1-X2-Y2-X3-W2-V2-U2  (4)
[式(4)中、
 X1、X2及びX3は、互いに独立に、置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロヘキサン-1,4-ジイル基を表す。ただし、X1、X2及びX3のうち少なくとも1つは、置換基を有していてもよい1,4-フェニレン基である。シクロへキサン-1,4-ジイル基を構成する-CH2-は、-O-、-S-又は-NR-に置き換わっていてもよい。Rは、炭素数1~6のアルキル基又はフェニル基を表す。
 Y1及びY2は、互いに独立に、-CH2CH2-、-CH2O-、-COO-、-OCOO-、単結合、-N=N-、-CRa=CRb-、-C≡C-又は-CRa=N-を表す。Ra及びRbは、互いに独立に、水素原子又は炭素数1~4のアルキル基を表す。
 U1は、水素原子又は重合性基を表す。
 U2は、重合性基を表す。
 W1及びW2は、互いに独立に、単結合、-O-、-S-、-COO-又は-OCOO-を表す。
 V1及びV2は、互いに独立に、置換基を有していてもよい炭素数1~20のアルカンジイル基を表し、該アルカンジイル基を構成する-CH2-は、-O-、-S-又は-NH-に置き換わっていてもよい。]
 化合物(4)において、X1、X2及びX3のうち少なくとも1つは、好ましくは、置換基を有していてもよい1,4-フェニレン基である。
 置換基を有していてもよい1,4-フェニレン基は、好ましくは、置換基を有していない1,4-フェニレン基である。置換基を有していてもよいシクロへキサン-1,4-ジイル基は、好ましくは、置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基である。置換基を有していてもよいトランス-シクロへキサン-1,4-ジイル基は、好ましくは、置換基を有していないトランス-シクロへキサン-1,4-ジイル基である。
 置換基を有していてもよい1,4-フェニレン基又は置換基を有していてもよいシクロへキサン-1,4-ジイル基が任意に有する置換基としては、メチル基、エチル基、n-ブチル基等の炭素数1~4のアルキル基、シアノ基及びハロゲン原子が挙げられる。
 Y1は、好ましくは、-CH2CH2-、-COO-又は単結合であり、Y2は、好ましくは、-CH2CH2-又は-CH2O-である。
 U2は、重合性基である。U1は、水素原子又は重合性基であり、好ましくは重合性基である。U1及びU2は、ともに重合性基であることが好ましく、ともに光重合性基であることがより好ましい。光重合性基を有する重合性液晶化合物は、より低温条件下で重合できる点で有利である。
 U1及びU2で表される重合性基は互いに異なっていてもよいが、好ましくは、同一である。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基及びオキセタニル基が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。
 V1及びV2で表されるアルカンジイル基としては、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、テトラデカン-1,14-ジイル基及びイコサン-1,20-ジイル基が挙げられる。V1及びV2は、好ましくは炭素数2~12のアルカンジイル基であり、より好ましくは炭素数6~12のアルカンジイル基である。
 置換基を有していてもよい炭素数1~20のアルカンジイル基が任意に有する置換基としては、シアノ基及びハロゲン原子が挙げられる。該アルカンジイル基は、好ましくは、置換基を有していないアルカンジイル基であり、より好ましくは、置換基を有しておらず且つ直鎖状のアルカンジイル基である。
 W1及びW2は、互いに独立に、単結合又は-O-であることが好ましい。
 化合物(4)の具体例としては、下記式(4-1)~式(4-43)で表される化合物が挙げられる。化合物(4)が、シクロヘキサン-1,4-ジイル基を有する場合、そのシクロヘキサン-1,4-ジイル基は、トランス型であることが好ましい。
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
 中でも、式(4-5)、式(4-6)、式(4-7)、式(4-8)、式(4-9)、式(4-10)、式(4-11)、式(4-12)、式(4-13)、式(4-14)、式(4-15)、式(4-22)、式(4-24)、式(4-25)、式(4-26)、式(4-27)、式(4-28)及び式(4-29)で表される化合物からなる群より選ばれる少なくとも1種が好ましい。
 本発明の組成物は、二種以上の化合物(4)を含んでもよい。二種以上の重合性液晶化合物を組み合わせる場合、その内の少なくとも1種が化合物(4)であることが好ましく、その内の二種以上が化合物(4)であることがより好ましい。組み合わせることにより、液晶-結晶相転移温度以下の温度でも一時的に液晶相を保持することができる場合がある。二種の重合性液晶化合物を組み合わせる場合の混合比としては、通常1:99~50:50であり、好ましくは5:95~50:50であり、より好ましくは10:90~50:50である。
 化合物(4)は、例えば、Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)、特許第4719156号等の公知文献に記載の方法により製造することができる。
 本発明の組成物における重合性液晶化合物の含有割合は、重合性液晶化合物の配向性を高くするという観点から、本発明の組成物の固形分100質量部に対して、好ましくは70~99.5質量部であり、より好ましくは80~99質量部であり、さらに好ましくは80~94質量部であり、特に好ましくは80~90質量部である。ここで、固形分とは、本発明の組成物中の溶剤以外の成分の合計量をいう。
 本発明の組成物は、好ましくは、重合開始剤及び溶剤を含み、光増感剤、重合禁止剤及びレベリング剤を含んでもよい。
 本発明の組成物における化合物(1)の含有量は、重合性液晶化合物100質量部に対して、通常50質量部以下であり、好ましくは0.1質量部以上10質量部以下であり、より好ましくは0.1質量部以上5質量部以下である。重合性液晶化合物100質量部に対する化合物(1)の含有量が50質量部以下であると、重合性液晶化合物及び化合物(1)の配向の乱れが少ない偏光膜を得ることができる傾向がある。
<溶剤>
 溶剤は、重合性液晶化合物及び化合物(1)を完全に溶解し得るものが好ましい。また、重合性液晶化合物の重合反応に不活性な溶剤であることが好ましい。
 溶剤としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール溶剤;酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、メチルイソブチルケトン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤;トルエン、キシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤;テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤;及び、クロロホルム、クロロベンゼン等の塩素含有溶剤;が挙げられる。これら溶剤は、単独で用いてもよいし、複数を組み合わせて用いてもよい。
 本発明の組成物が溶剤を含む場合、溶剤の含有割合は、本発明の組成物の総量に対して50~98質量%が好ましい。換言すると、本発明の組成物における固形分は、2~50質量%が好ましい。該固形分が50質量%以下であると、本発明の組成物の粘度が低くなり、本発明の組成物から得られる偏光膜の厚みが略均一になり、当該偏光膜にムラが生じにくくなる傾向がある。かかる固形分は、製造しようとする偏光膜の厚みを考慮して定めることができる。
<重合開始剤>
 重合開始剤は、重合性液晶化合物の重合反応を開始し得る化合物である。重合開始剤としては、光の作用により活性ラジカルを発生する光重合開始剤が好ましい。
 重合開始剤としては、ベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩及びスルホニウム塩が挙げられる。
 ベンゾイン化合物としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテルが挙げられる。
 ベンゾフェノン化合物としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン及び2,4,6-トリメチルベンゾフェノンが挙げられる。
 アルキルフェノン化合物としては、ジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマーが挙げられる。
 アシルホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド及びビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドが挙げられる。
 トリアジン化合物としては、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン及び2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジンが挙げられる。
 ヨードニウム塩およびスルホニウム塩としては、例えば、下記式で表される塩が挙げられる。
Figure JPOXMLDOC01-appb-I000030
 重合開始剤は、一種類のみを用いてもよく、二種類以上を組み合わせて用いてもよい。
 重合開始剤としては、市販のものを用いることができる。市販の重合開始剤としては、イルガキュア(Irgacure)(登録商標)907、184、651、819、250及び369(チバ・スペシャルティ・ケミカルズ株式会社製);セイクオール(登録商標)BZ、Z及びBEE(精工化学株式会社製);カヤキュアー(kayacure)(登録商標)BP100及びUVI-6992(ダウ・ケミカル株式会社製);アデカオプトマーSP-152及びSP-170(株式会社ADEKA製);TAZ-A及びTAZ-PP(日本シイベルヘグナー株式会社製);及び、TAZ-104(株式会社三和ケミカル製)が挙げられる。
 本発明の組成物が重合開始剤を含む場合、本発明の組成物における重合開始剤の含有量は、重合性液晶化合物の配向を乱しにくいという観点から、重合性液晶化合物100質量部に対して、通常0.1~30質量部であり、好ましくは0.5~10質量部であり、より好ましくは0.5~8質量部である。
<光増感剤>
 本発明の組成物が光重合開始剤を含有する場合、本発明の組成物は、好ましくは光増感剤を含有する。本発明の組成物が、光重合開始剤及び光増感剤を含有することにより、重合性液晶化合物の重合反応がより促進される傾向がある。該光増感剤としては、キサントン及びチオキサントン等のキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン);アントラセン及びアルコキシ基含有アントラセン(例えば、ジブトキシアントラセン)等のアントラセン化合物;フェノチアジン及びルブレンが挙げられる。
 本発明の組成物が光増感剤を含む場合、本発明の組成物における光増感剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.5~10質量部であり、さらに好ましくは0.5~8質量部である。
<重合禁止剤>
 重合禁止剤としては、ハイドロキノン、アルコキシ基含有ハイドロキノン、アルコキシ基含有カテコール(例えば、ブチルカテコール)、ピロガロール、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル等のラジカル捕捉剤;チオフェノール類;β-ナフチルアミン類及びβ-ナフトール類が挙げられる。
 本発明の組成物が重合禁止剤を含むことにより、重合性液晶化合物の重合反応の進行度合いをコントロールすることができる。
 本発明の組成物が重合禁止剤を含む場合、本発明の組成物における重合禁止剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.1~30質量部であり、より好ましくは0.5~10質量部であり、さらに好ましくは0.5~8質量部である。
<レベリング剤>
 レベリング剤とは、本発明の組成物の流動性を調整し、本発明の組成物を塗布して得られる塗布膜をより平坦にする機能を有するものであり、例えば、界面活性剤が挙げることができる。好ましいレベリング剤は、ポリアクリレート化合物を主成分とするレベリング剤及びフッ素原子含有化合物を主成分とするレベリング剤である。
 ポリアクリレート化合物を主成分とするレベリング剤としては、BYK-350、BYK-352、BYK-353、BYK-354、BYK-355、BYK-358N、BYK-361N、BYK-380、BYK-381及びBYK-392(BYK-Chemie GmbH製)が挙げられる。
 フッ素原子含有化合物を主成分とするレベリング剤としては、メガファック(登録商標)R-08、R-30、R-90、F-410、F-411、F-443、F-445、F-470、F-471、F-477、F-479、F-482、F-483(DIC株式会社製);サーフロン(登録商標)S-381、S-382、S-383、S-393、SC-101、SC-105、KH-40及び、SA-100(AGCセイミケミカル株式会社製);E1830及び、E5844(株式会社ダイキンファインケミカル研究所製);エフトップEF301、EF303、EF351及びEF352(三菱マテリアル電子化成株式会社製)が挙げられる。
 本発明の組成物がレベリング剤を含む場合、レベリング剤の含有量は、重合性液晶化合物100質量部に対して、好ましくは0.3質量部以上5質量部以下であり、よりが好ましくは0.5質量部以上3質量部以下である。
 レベリング剤の含有量が前記の範囲内であると、重合性液晶化合物を水平配向させることが容易であり、且つ、得られる偏光膜がより平滑となる傾向がある。重合性液晶化合物に対するレベリング剤の含有量が前記の範囲を超えると、得られる偏光膜にムラが生じやすい傾向がある。本発明の組成物は、二種以上のレベリング剤を含んでもよい。
<偏光膜の製造方法>
 化合物(1)を含む偏光膜は、例えば、本発明の組成物を塗布することにより得ることができる。好ましくは、下記工程(A)~(C)を含む製造方法によって製造することができる。
工程(A):基材又は配向膜が形成された基材の表面に、本発明の組成物を塗布する工程工程(B):形成された塗布膜に含まれる重合性液晶化合物及び化合物(1)を配向させる工程
工程(C):配向した重合性液晶化合物に活性エネルギー線を照射することにより重合性液晶化合物を重合する工程
<工程(A)>
<基材>
 基材は、ガラス基材でも樹脂基材でもよいが、好ましくは、樹脂基材である。樹脂からなるフィルム基材を用いることで、薄い偏光板を得ることができる。
 樹脂基材は、好ましくは、透明樹脂基材である。透明樹脂基材とは、光、特に可視光を透過し得る透光性を有する基材を意味し、透光性とは、波長380nm~780nmにわたる光線に対しての視感度補正透過率が80%以上となる特性をいう。
 基材は、好ましくは1/4波長板機能を有する位相差フィルム(以下、1/4波長板ということがある)である。基材に1/4波長板を用いることによって、円偏光板を得ることができる。
 この際、偏光膜の透過軸と、1/4波長板の遅相軸(光軸)とが実質的に45°となるようにして積層するのが好ましい。実質的に45°とは、通常45±5°の範囲である。
また、偏光膜と1/4波長板の光軸を一致又は、直交させることで光学補償フィルムとして機能する偏光フィルムを得ることができる。
 1/4波長板は、通常、式(40)で表される光学特性を有し、好ましくは式(40-1)で表される光学特性を有する。
 100nm<Re(550)<160nm         (40)
 130nm<Re(550)<150nm         (40-1)
Re(550)は波長550nmの光に対する面内位相差値を表す。
 さらに、1/4波長板は、好ましくは、逆波長分散特性を有する。逆波長分散特性とは、短波長での面内位相差値の方が長波長での面内位相差値よりも大きい事であり、好ましくは、式(50)及び式(51)で表される光学特性を満たす。Re(λ)は波長λnmの光に対する面内位相差値を表す。式(50)及び式(51)で表される光学特性を有する1/4波長板を備えた円偏光板は、可視光域における各波長の光に対して、一様な偏光変換の特性が得られるため、反射防止特性に優れる傾向がある。
 Re(450)/Re(550)≦1.00     (50)
 1.00≦Re(630)/Re(550)     (51)
 基材は1/2波長板機能を有する位相差フィルムであってもよい。
 基材を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン、ノルボルネン系ポリマーなどのポリオレフィン;環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース及びセルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィド;及びポリフェニレンオキシド等が挙げられる。好ましくは、セルロースエステル、環状オレフィン系樹脂、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレート、又はポリメタクリル酸エステルである。
 セルロースエステルは、セルロースに含まれる水酸基の少なくとも一部が、エステル化されたものであり、市場から入手することができる。また、セルロースエステルを含む基材も市場から入手することができる。市販のセルロースエステルを含む基材としては、フジタック(登録商標)フィルム(富士写真フィルム株式会社製)、KC8UX2M、KC8UY及び、KC4UY(コニカミノルタオプト株式会社製)等が挙げられる。
 環状オレフィン系樹脂とは、ノルボルネン又は多環ノルボルネン系モノマー等の環状オレフィンの重合体、若しくはそれらの共重合体を含むものである。当該環状オレフィン系樹脂は、開環構造を含んでもよく、また、開環構造を含む環状オレフィン系樹脂を水素添加したものでもよい。また、当該環状オレフィン系樹脂は、透明性を著しく損なわず、著しく吸湿性を増大させない範囲で、鎖状オレフィン及びビニル化芳香族化合物に由来する構造単位を含んでいてもよい。また、当該環状オレフィン系樹脂は、その分子内に極性基が導入されていてもよい。
 鎖状オレフィンとしては、エチレン及びプロピレン等が挙げられ、ビニル化芳香族化合物としては、スチレン、α-メチルスチレン及びアルキル置換スチレン等が挙げられる。
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィン又はビニル化芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有量は、共重合体の全構造単位に対して、通常50モル%以下であり、好ましくは15~50モル%である。
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル化芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有量は、共重合体の全構造単位に対して、通常5~80モル%であり、ビニル化芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%である。このような三元共重合体は、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。
 環状オレフィン系樹脂は、市場から入手できる。市販の環状オレフィン系樹脂としては、Topas(登録商標)(Ticona社(独)製)、アートン(登録商標)(JSR株式会社製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン株式会社製)、ゼオネックス(ZEONEX)(登録商標)(日本ゼオン株式会社製)及び、アペル(登録商標)(三井化学株式会社製)等が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。 市販の環状オレフィン系樹脂を含む基材としては、エスシーナ(登録商標)(積水化学工業株式会社製)、SCA40(登録商標)(積水化学工業株式会社製)、ゼオノアフィルム(登録商標)(オプテス株式会社製)及び、アートンフィルム(登録商標)(JSR株式会社製)等が挙げられる。
 基材には、表面処理を施してもよい。表面処理の方法としては、例えば、真空から大気圧の雰囲気下で、コロナまたはプラズマで基材の表面を処理する方法、基材表面をレーザー処理する方法、基材表面をオゾン処理する方法、基材表面をケン化処理する方法、基材表面を火炎処理する方法、基材表面にカップリング剤を塗布する方法、基材表面をプライマー処理する方法、及び、反応性モノマーや反応性を有するポリマーを基材表面に付着させた後に放射線、プラズマ又は紫外線を照射して反応させるグラフト重合法などが挙げられる。中でも、真空から大気圧の雰囲気下で、基材表面をコロナまたはプラズマ処理する方法が好ましい。
 コロナまたはプラズマで基材の表面処理を行う方法としては、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナまたはプラズマを発生させて、基材の表面処理を行う方法、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法、および、低圧条件下で、グロー放電プラズマを発生させて、基材の表面処理を行う方法が挙げられる。
 中でも、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナまたはプラズマを発生させて、基材の表面処理を行う方法、または、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法が好ましい。かかるコロナまたはプラズマによる表面処理は、通常、市販の表面処理装置により行われる。
 基材は、本発明の組成物を塗布する面とは反対の面に保護フィルムを有していてもよい。保護フィルムとしては、ポリエチレン、ポリエチレンテレフタレート、ポリカーボネート及びポリオレフィンなどのフィルム、並びに、当該フィルムにさらに粘着層を有するフィルム等が挙げられる。中でも、乾燥時における熱変形が小さいため、ポリエチレンテレフタレートが好ましい。保護フィルムを、本組成物を塗布する面とは反対の面に有することで、基材搬送時のフィルムのゆれや塗布面のわずかな振動を抑えることができ、塗膜の均一性を向上させることができる。
 基材の厚さは、実用的な取扱いができる程度の重量である点では、薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。基材の厚さは、通常5~300μmであり、好ましくは20~200μmである。
 基材の長手方向の長さは、通常10~3000mであり、好ましくは100~2000mである。基材の短手方向の長さは、通常0.1~5mであり、好ましくは0.2~2mである。
<配向膜>
 本発明における配向膜とは、重合性液晶化合物を所望の方向に配向させる、配向規制力を有するものである。
 配向膜としては、本発明の組成物の塗布などにより溶解しない溶剤耐性を有し、また、溶剤の除去や重合性液晶化合物の配向のための加熱処理における耐熱性を有するものが好ましい。かかる配向膜としては、配向性ポリマーを含む配向膜、光配向膜及び表面に凹凸パターンや複数の溝を形成し配向させるグルブ配向膜等が挙げられる。
 配向性ポリマーとしては、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。2種以上の配向性ポリマーを組み合わせて用いてもよい。
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶剤に溶解した組成物(以下、配向性ポリマー組成物ということがある。)を基材に塗布し、溶剤を除去する、又は、配向性ポリマー組成物を基材に塗布し、溶剤を除去し、ラビングする(ラビング法)ことで基材の表面に形成される。
 前記溶剤としては、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール溶剤、酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチルなどのエステル溶剤、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶剤、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤、テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤、および、クロロホルム、クロロベンゼン等の塩素化炭化水素溶剤が挙げられる。これら溶剤は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶剤に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20質量%が好ましく、0.1から10質量%程度がさらに好ましい。
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業株式会社製)、オプトマー(登録商標、JSR株式会社製)などが挙げられる。
 配向性ポリマー組成物を基材に塗布する方法としては、スピンコ-ティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、スリットコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法などの公知の方法が挙げられる。本発明の偏光膜を、後述するRoll to Roll形式の連続的製造方法により製造する場合、当該塗布方法には通常、グラビアコーティング法、ダイコーティング法又はフレキソ法などの印刷法が採用される。
 配向性ポリマー組成物に含まれる溶剤を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。
 配向膜に配向規制力を付与するために、必要に応じてラビングを行う(ラビング法)。
ラビングする方向を選択することにより、配向規制力の方向を任意に制御することができる。
 ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材に塗布しアニールすることで基材表面に形成された配向性ポリマーの膜を、接触させる方法が挙げられる。
 光配向膜は、通常、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物(以下、「光配向膜形成用組成物」ということがある。)を基材に塗布し、光(好ましくは、偏光UV)を照射することで基材の表面に形成される。光配向膜は、照射する光の偏光方向を選択することにより、配向規制力の方向を任意に制御できる点でより好ましい。
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾール基、スチルバゾリウム基、カルコン基およびシンナモイル基が挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基が挙げられる。これらの基は、アルキル基、アルコキシ基、アリール基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。
 光配向膜形成用組成物に含まれる溶剤としては、上述の配向性ポリマー組成物に含まれる溶剤と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコールやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。
 光配向膜形成用組成物を基材に塗布する方法としては、配向性ポリマー組成物を基材に塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶剤を除去する方法としては、例えば、配向性ポリマー組成物から溶剤を除去する方法と同じ方法が挙げられる。
 偏光を照射するには、基板上に塗布された光配向膜形成用組成物から、溶剤を除去したものに直接、偏光UVを照射する形式でも、基材側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプがより好ましい。これらのランプは、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテーラーなどの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。
 なお、ラビング又は偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。
 グルブ配向膜は、膜表面の凹凸パターンまたは複数の溝によって液晶配向が得られる膜である。H.V.ケネルらによって、複数の等間隔に並んだ直線状のグルブ(溝)を有する基材に液晶分子を置いた場合、その溝に沿った方向に液晶分子が配向するという事実が報告されている(Physical Review A24(5)、2713ページ、1981年)。
 グルブ配向膜を基材の表面に形成する具体的な方法としては、感光性ポリイミド表面に周期的なパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って不要なポリイミド膜を除去し凹凸パターンを形成する方法、表面に溝を有する板状の原盤にUV硬化樹脂層を形成し、樹脂層を基材フィルムへ移してから硬化する方法、UV硬化樹脂層を形成した基材フィルムを搬送し、複数の溝を有するロール状の原盤をUV硬化樹脂層表面に押し当てて凹凸を形成後硬化する方法等が挙げられ、特開平6-34976号公報、特開2011-242743号公報記載の方法等を用いることができる。
 上記方法の中でも、複数の溝を有するロール状の原盤をUV硬化樹脂層表面に押し当てて凹凸を形成後硬化する方法が好ましい。ロール状原盤としては、耐久性の観点からステンレス(SUS)鋼を用いることができる。
 UV硬化樹脂としては、単官能アクリレートの重合体、多官能アクリレートの重合体またはこれらの混合物の重合体を用いることができる。
 単官能アクリレートとは、アクリロイルオキシ基(CH2=CH-COO-)及びメタクリロイルオキシ基(CH2=C(CH3)-COO-)からなる群より選ばれる基(以下、(メタ)アクリロイルオキシ基と記すこともある。)を分子内に1個有する化合物である。
 (メタ)アクリロイルオキシ基を1個有する単官能アクリレートとしては、炭素数4から16のアルキル(メタ)アクリレート、炭素数2から14のβカルボキシアルキル(メタ)アクリレート、炭素数2から14のアルキル化フェニル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート及びイソボニル(メタ)アクリレートなどが挙げられる。
 多官能アクリレートとは、通常、(メタ)アクリロイルオキシ基を分子内に2個乃至6個有する化合物である。
 (メタ)アクリロイルオキシ基を2個有する2官能アクリレートとしては、1,3-ブタンジオールジ(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート;ネオペンチルグリコールジ(メタ)アクリレート;トリエチレングリコールジ(メタ)アクリレート;テトラエチレングリコールジ(メタ)アクリレート;ポリエチレングリコールジアクリレート;ビスフェノールAのビス(アクリロイロキシエチル)エーテル;エトキシ化ビスフェノールAジ(メタ)アクリレート;プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート;エトキシ化ネオペンチルグリコールジ(メタ)アクリレート及び3-メチルペンタンジオールジ(メタ)アクリレートなどが例示される。
 (メタ)アクリロイルオキシ基を3個乃至6個有する多官能アクリレートとしては、
 トリメチロールプロパントリ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;エトキシ化トリメチロールプロパントリ(メタ)アクリレート;プロポキシ化トリメチロールプロパントリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレート;トリペンタエリスリトールテトラ(メタ)アクリレート;トリペンタエリスリトールペンタ(メタ)アクリレート;トリペンタエリスリトールヘキサ(メタ)アクリレート;トリペンタエリスリトールヘプタ(メタ)アクリレート;トリペンタエリスリトールオクタ(メタ)アクリレート;
 ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物;ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物;
トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物;
 カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート;カプロラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールテトラ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールペンタ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールヘキサ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールオクタ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物;カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物、及びカプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物などが挙げられる。なお、ここに示した多官能アクリレートの具体例において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。また、カプロラクトン変性とは、(メタ)アクリレート化合物のアルコール由来部位と(メタ)アクリロイルオキシ基との間に、カプロラクトンの開環体、又は、開環重合体が導入されていることを意味する。
 かかる多官能アクリレートには市販品を用いることもできる。
かかる市販品としては、A-DOD-N、A-HD-N、A-NOD-N、APG-100、APG-200、APG-400、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH、HD-N、NOD-N、NPG、TMPT(新中村化学株式会社製)、”ARONIX M-220”、同”M-325”、同”M-240”、同”M-270”同”M-309”同”M-310”、同”M-321”、同”M-350” 、同”M-360” 、同”M-305” 、同”M-306” 、同”M-450” 、同”M-451” 、同”M-408” 、同”M-400” 、同”M-402” 、同”M-403” 、同”M-404” 、同”M-405” 、同”M-406”(東亜合成株式会社製)、”EBECRYL11”、同”145” 、同”150” 、同”40” 、同”140” 、同”180” 、DPGDA、HDDA、TPGDA、HPNDA、PETIA、PETRA、TMPTA、TMPEOTA、DPHA、EBECRYLシリーズ(ダイセル・サイテック株式会社製)などを挙げることができる。
 グルブ配向膜の凹凸としては、凸部の幅は0.05~5μmであることが好ましく、凹部の幅は0.1~5μmであることが好ましく、凹凸の段差の深さは2μm以下、好ましくは0.01~1μm以下であることが好ましい。この範囲であれば、配向乱れの小さな液晶配向を得ることができる。
 配向膜の厚さは、通常10nm~10000nmであり、好ましくは10nm~1000nmであり、より好ましくは10nm~500nmである。
 本発明の組成物を塗布する方法としては、配向性ポリマー組成物を基材に塗布する方法として例示したものと同じ方法が挙げられる。
<工程(B)>
 本発明の組成物が溶剤を含む場合には、通常、形成された塗布膜から溶剤を除去する。
溶剤の除去方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。
 形成された塗布膜に含まれる重合性液晶化合物は、通常、溶液状態に転移する温度以上に加熱し、次いで液晶配向する温度まで冷却することによって配向し液晶相を形成する。
 形成された塗布膜に含まれる重合性液晶化合物が配向する温度は、予め、当該重合性液晶化合物を含む組成物を用いたテクスチャー観察などにより求めればよい。また、溶剤の除去と液晶配向とを同時に行ってもよい。この際の温度としては、除去する溶媒や重合性液晶化合物の種類にもよるが、50~200℃の範囲が好ましく、基材が樹脂基材の場合には、80~130℃の範囲がより好ましい。
 1/4波長板である基材を用いて、本発明の偏光膜と該1/4波長板とを有する円偏光板を得る場合には、重合性液晶化合物の配向方向は、得られる偏光膜の透過軸と、該基材の遅相軸(光軸)とが実質的に45°となるようにすればよい。
<工程(C)>
 配向した重合性液晶化合物に活性エネルギー線を照射することにより、重合性液晶化合物を重合する。
 配向した重合性液晶化合物が重合することによって、配向した状態で重合した重合性液晶化合物と、該重合性液晶化合物と共に配向した化合物(1)とを含む偏光膜が得られる。
 スメクチック液晶相を保持したまま重合した重合性液晶化合物を含む偏光膜は、従来のホストゲスト型偏光膜、すなわち、ネマチック液晶相を保持したままで重合性液晶化合物等を重合して得られる偏光膜と比較して偏光性能が高く、また、二色性色素又はリオトロピック液晶型の液晶化合物のみを塗布したものと比較して、偏光性能及び強度に優れる。
 活性エネルギー線の光源としては、紫外線、電子線、X線等を発生するものであればよい。好ましくは、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ等の波長400nm以下に発光分布を有する光源である。
 活性エネルギー線の照射エネルギーは、重合開始剤の活性化に有効な波長領域の照射強度が10~5000mJ/cm2となるように設定することが好ましく、より好ましくは100~2000mJ/cm2である。照射エネルギーが10mJ/cm2よりも低いと重合性液晶化合物の硬化が不十分となる傾向がある。
 かくして形成された本発明の偏光膜の厚みは、0.5μm以上10μm以下の範囲が好ましく、1μm以上5μm以下がさらに好ましい。本発明の偏光膜の厚さは、干渉膜厚計やレーザー顕微鏡あるいは触針式膜厚計の測定で求めることができる。
 本発明の偏光膜は、X線回折測定においてブラッグピークが得られるものであると特に好ましい。このようなブラッグピークが得られる本発明の偏光膜としては、例えば、ヘキサチック相又はクリスタル相に由来する回折ピークを示すものが挙げられる。
 本発明の偏光膜の極大吸収(λmax1)は、好ましくは350~550nmの範囲に存在し、より好ましくは410~540nmの範囲に存在し、さらに好ましくは430~530nmの範囲に存在する。また、本発明の偏光膜に含まれる化合物(1)を適用な溶媒に溶解して測定した極大吸収(λmax2)に比して、λmax1は長波長シフトしていると好ましい。かかる長波長シフトは、重合した重合性液晶化合物によって形成された分子鎖間に、化合物(1)が分散したときに発現するものであり、化合物(1)が該分子鎖に強く相互作用していることを示している。長波長シフトとは、吸収極大の差分(λmax1-λmax2)が正の値となることを意味し、その差は、10nm以上であると好ましく、30nm以上であるとさらに好ましい。
 本発明の偏光膜が示す二色比は、好ましくは15以上であり、より好ましくは25以上である。
 使用した基材が1/4波長板でない場合は、得られた本発明の偏光膜と、1/4波長板とを積層することで円偏光板を得ることができる。この際、本発明の偏光膜の透過軸と、1/4波長板の遅相軸(光軸)とが実質的に45°となるようにして積層するのが好ましい。また、本発明の偏光膜の透過軸と、1/4波長板等の位相差フィルムの光軸とを一致又は、直交させることで光学補償フィルムとして機能する偏光板を得ることもできる。
 本発明の偏光膜と1/4波長板との積層は、本発明の偏光膜が形成された、基材又は配向膜が形成された基材と共に行ってもよいし、基材又は、基材及び配向膜を取り除いて行ってもよい。基材又は配向膜が形成された基材の表面に形成された本発明の偏光膜と、1/4波長板との積層は、例えば、本発明の偏光膜が形成された面と、1/4波長板とを接着剤を用いて貼合した後、該基材又は配向膜が形成された基材を取り除くことで行うことができる。この際、接着剤は、本発明の偏光膜に塗布されてもよいし、1/4波長板に塗布されてもよい。
<本発明の偏光膜の連続的製造方法>
 本発明の偏光膜は、好ましくは、Roll to Roll形式により連続的に製造される。図1を参照しながら、Roll to Roll形式により、本発明の偏光膜を連続的に製造する方法の要部の一例を説明する。
 基材が第1の巻芯210Aに巻き取られている第1ロール210は例えば、市場から容易に入手できる。このようなロールの形態で市場から入手できる基材としては、すでに例示した基材の中でも、セルロースエステル、環状オレフィン系樹脂、ポリカーボネート、ポリエチレンテレフタレート又はポリメタクリル酸エステルからなるフィルムなどが挙げられる。
 続いて、前記第1ロール210から基材を巻き出す。基材を巻き出す方法は該第1ロール210の巻芯210Aに適当な回転手段を設置し、当該回転手段により第1ロール210を回転させることにより行われる。また、第1ロール210から基材を搬送する方向に、適当な補助ロール300を設置し、当該補助ロール300の回転手段で基材を巻き出す形式でもよい。さらに、第1の巻芯210A及び補助ロール300ともに回転手段を設置することで、基材に適度な張力を付与しながら、基材を巻き出す形式でもよい。
 前記第1ロール210から巻き出された基材は、塗布装置211Aを通過する際に、その表面上に当該塗布装置211Aにより光配向膜形成用組成物が塗布される。このように連続的に光配向膜形成用組成物を塗布するための塗布装置211Aとしては、グラビアコーティング法、ダイコーティング法及び、フレキソ法が好ましい。
 塗布装置211Aを通過した基材は、乾燥炉212Aへと搬送され、乾燥炉212Aによって乾燥されて、基材表面に第一の塗布膜が連続的に形成される。乾燥炉212Aには、例えば、通風乾燥法と加熱乾燥法とを組み合わせた熱風式乾燥炉が用いられる。乾燥炉212Aの設定温度は、前記光配向膜形成用組成物に含まれる溶剤の種類などに応じて定められる。乾燥炉212Aは、互いに異なる設定温度の、複数のゾーンからなるものであってもよいし、互いに異なる設定温度の複数の乾燥炉を直列に設置したものであってもよい。
 得られた第一の塗布膜に、偏光UV照射装置213Aによって偏光を照射することにより、光配向膜が得られる。
 続いて、光配向膜が形成された基材は、塗布装置211Bを通過する。塗布装置211Bによって光配向膜上に溶剤を含む本発明の組成物が塗布された後、乾燥炉212Bを通過することにより、該本発明の組成物に含まれる重合性液晶化合物が配向した第二の塗布膜が得られる。乾燥炉212Bは、光配向膜上に塗布された溶剤を含む本発明の組成物から溶剤を除去する役割とともに、該組成物に含まれる重合性液晶化合物が配向するように熱エネルギーを与える役割とを担う。乾燥炉212Bは、乾燥炉212Aと同様に、互いに異なる設定温度の複数のゾーンからなるものであってもよいし、互いに異なる設定温度の複数の乾燥炉を直列に設置したものであってもよい。
 第二の塗布膜に含まれる重合性液晶化合物が配向した状態で、活性エネルギー線照射装置213Bへと搬送される。活性エネルギー線照射装置213Bにおいて、さらに活性エネルギー線照射がされる。活性エネルギー線照射装置213Bによる活性エネルギー線照射によって、重合性液晶化合物が配向した状態で重合し偏光膜が得られる。
 かくして連続的に製造された本偏光板は、第2の巻芯220Aに巻き取られ、第2ロール220の形態が得られる。なお、巻き取る際には、適当なスペーサを用いた供巻きを行ってもよい。
 このように、基材が、第1ロール210から、塗布装置211A、乾燥炉212A、偏光UV照射装置213A、塗布装置211B、乾燥炉212B、活性エネルギー線照射装置213B、の順で通過することで、Roll to Roll形式により連続的に本偏光板を製造することができる。
 また、図1に示す製造方法では、本発明の偏光膜を連続的に製造する方法を示したが、例えば、基材を、第1ロールから、塗布装置211A、乾燥炉212A、偏光UV照射装置213Aの順で通過させ、これを巻芯に巻き取ることでロール状の基材と光配向膜の積層体を製造し、さらに、該ロール状の積層体を巻き出し、塗布装置211B、乾燥炉212B、活性エネルギー線照射装置213Bの順で通過させることで、本発明の偏光膜を連続的に製造することもできる。
 第2ロール220の形態で、本発明の偏光膜を製造した場合には、第2ロール220から長尺の本発明の偏光膜を巻き出し、所定の寸法に裁断してから、裁断された偏光膜に1/4波長板を貼合することにより円偏光板を製造することができる。また、長尺の1/4波長板が巻芯に巻き取られている第3ロールを準備することで、長尺の円偏光板を連続的に製造することもできる。
 長尺の円偏光板を連続的に製造する方法について、図2を参照して説明する。かかる製造方法は、
 第2ロール220から連続的に本発明の偏光膜を巻き出すとともに、長尺の1/4波長板が巻き取られている第3ロール230から連続的に長尺の1/4波長板を巻き出す工程と、
 本発明の偏光膜と、前記長尺の1/4波長板とを連続的に貼合して長尺の円偏光板を得る工程と、
 得られた長尺の円偏光板を第4の巻芯240Aに巻き取り、第4ロール240を得る工程とからなる。この方法はいわゆるRoll to Roll貼合である。なお、貼合には接着剤を用いてもよい。
<本発明の偏光膜の用途>
 本発明の偏光膜、及び、本発明の偏光膜と1/4波長板とを有する円偏光板は、さまざまな表示装置に用いることができる。
 表示装置とは、表示素子を有する装置であり、発光源として発光素子又は発光装置を含むものである。本偏光板を備える表示装置としては、例えば、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)及び圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置及び投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。
 本発明の偏光膜は、特に、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置及び無機エレクトロルミネッセンス(EL)表示装置に有効に用いることができる。
 本発明の偏光膜と1/4波長板とを有する円偏光板は、特に、有機エレクトロルミネッセンス(EL)表示装置及び無機エレクトロルミネッセンス(EL)表示装置に有効に用いることができる。
 本発明の偏光膜を液晶表示装置に用いる場合、本発明の偏光膜は液晶セルの外部に備えられてもよいし、液晶セル内部に備えられてもよい。
 特に透過型のアクティブマトリックスのカラー液晶表示装置の液晶セル内部に備えられている場合の第一の構成を、図3を用いて以下説明する。該表示装置30は、第一の基体31、第一の本発明の偏光膜32、カラーフィルタ層33、平坦化層34、ITO電極層35、第一の配向膜36、液晶層37、第二の配向膜38、第二の本発明の偏光膜39、薄膜トランジスタ回路およびピクセル電極を含むTFT層40、並びに、第二の基体41から構成される。
 カラーフィルタ層とは、基盤41側からの入射光から所望の波長の光を取り出す層を示し、たとえば白色光から所望の波長以外の波長の光を吸収して所望の波長の光のみを透過させる層であってもよいし、入射光の波長を波長変換させて所望の波長の光を出射させる層であってもよい。
 前期第一および第二の本発明の偏光膜はそれぞれ配向膜を第一および第二の基体側に包含していてもよい。配向膜はラビング配向膜であってもよいし光配向膜を用いてもよい。
また第一の本発明の偏光膜は位相差層を包含していてもよい。
 次に第二の構成を、図4を用いて以下説明する。該表示装置60は、第一の基体61、第一の本発明の偏光膜62、カラーフィルタ層63、平坦化層64、ITO電極層65、第一の配向膜66、液晶層67、第二の配向膜68、薄膜トランジスタ回路およびピクセル電極を含むTFT層70、並びに第二の基体71、第二の偏光膜72、から構成される。
 第二の基盤71のTFT層70の反対側に位置する第二の偏光膜72は、本発明の偏光膜であってもよいし、ポリビニルアルコールをヨウ素で染色して延伸して作成される偏光膜であってもよい。
 第三の構成を、図5を用いて以下説明する。該表示装置80は、第一の基体81、カラーフィルタ層82、第一の本発明の偏光膜83、平坦化層84、ITO電極層85、第一の配向膜86、液晶層87、第二の配向膜88、薄膜トランジスタ回路およびピクセル電極を含むTFT層90、並びに第二の基体91、第二の偏光膜92、から構成される。
 第三の構成のうち、第二の偏光膜92は本発明の偏光膜であってもよいし、ポリビニルアルコールをヨウ素で染色して延伸して作成される偏光膜であってもよい。第二の偏光膜92が本発明による偏光膜である場合、第二の偏光膜は第一の構成と同様に、第二の基体91とTFT層90の間に位置していてもよい。
 また第三の構成のうちカラーフィルタ層82は第一の基体81の液晶層と反対側に位置していてもよい。
 カラーフィルタ層に包含される粒子によって偏光が散乱して偏光解消がおこり得る。そのため、第一~第三の構成のうち、本発明による第一の偏光膜がカラーフィルタ層より液晶層側に位置している第三の構成がより好ましい。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記ない限り、質量%及び質量部である。
実施例1
Figure JPOXMLDOC01-appb-I000031
 式(2A)で表される化合物1.00g、水4.00g及び35%塩酸1.30gを混合した。得られた混合物を、0℃に冷却した後、33%亜硝酸ナトリウム水溶液0.74gを滴下した。得られた混合物を、30分間撹拌した後、アミド硫酸0.03gを加えた。得られた混合物を、式(3)で表される化合物0.74gと酢酸ナトリウム1.06gと水7.44gとからなる混合物に、0℃で滴下した。析出物を濾過し、水で3回洗浄した。
 得られた析出物に、水酸化ナトリウム0.32gと水8.00gとを加えた。得られた混合物を100℃で2時間撹拌した後、10℃に冷却した。析出物を濾過し、水で洗浄した。得られた固体を乾燥した後、シリカゲルカラムクロマトグラフィー(溶出液:トルエン)で精製した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、橙色固体0.12gを得た。
 得られた橙色固体0.12gとトリエチルアミン0.12gとテトラヒドロフラン2.8gとを混合した。得られた混合物を、0℃に冷却した後、塩化アセチル0.08gを滴下した。得られた混合物を、25℃で18時間撹拌した。得られた反応混合物を濃縮した後、酢酸エチルおよび水で洗浄し、濾過した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、橙色固体である式(1A)で表される化合物(以下、化合物(1A)という)0.071gを得た。
 収率:(式(2A)で表される化合物基準):8%。
 Mw:455(LC-MS)
 極大吸収波長(λmax2)=389nm(クロロホルム溶液)
実施例2
Figure JPOXMLDOC01-appb-I000032
 実施例1において、式(2A)で表される化合物に代えて、式(2B)で表される化合物を用いた以外は、実施例1と同様に実施して、橙色固体である式(1B)で表される化合物(以下、化合物(1B)という)0.020gを得た。
 Mw:399(LC-MS)
 極大吸収波長(λmax2)=389nm(クロロホルム溶液)
実施例3
Figure JPOXMLDOC01-appb-I000033
 実施例1において、式(2A)で表される化合物に代えて、式(2C)で表される化合物を用いた以外は、実施例1と同様に実施して、橙色固体である式(1C)で表される化合物(以下、化合物(1C)という)0.009gを得た。
 Mw:400(LC-MS)
 極大吸収波長(λmax2)=399nm(クロロホルム溶液)
実施例4
Figure JPOXMLDOC01-appb-I000034
 実施例3において、塩化アセチルに代えて、バレリルクロリドを用いた以外は、実施例3と同様に実施して、橙色固体である式(1D)で表される化合物(以下、化合物(1D)という)0.016gを得た。
 Mw:442(LC-MS)
 極大吸収波長(λmax2)=400nm(クロロホルム溶液)
実施例5
Figure JPOXMLDOC01-appb-I000035
 式(2E)で表される化合物3.60g、酢酸57.0g及び濃硫酸33.0gを混合した。得られた混合物を、0℃に冷却した後、33%亜硝酸ナトリウム水溶液7.85gを滴下した。得られた混合物を、30分間撹拌した後、アミド硫酸1.66gを加えた。
得られた混合物を、式(3)で表される化合物4.36gと酢酸ナトリウム6.22gと水87.26gとからなる混合物に0℃で滴下した。得られた混合物をアセトニトリル295.0gに滴下した。析出物を濾過し、アセトニトリル及び水で洗浄した。
 得られた固体に水酸化ナトリウム1.90gと水48.0gを加えた。得られた混合物を、100℃で2時間撹拌した後、10℃に冷却した。セライトを加えて析出物を濾取した。得られた固体にテトラヒドロフランを加え、濾過し、得られた濾液を濃縮することにより、橙色固体2.80gを得た。
 得られた橙色固体0.30gと無水酢酸3.64gとを混合した。得られた混合物を18時間加熱した後、水に滴下した。析出物を濾取し、シリカゲルカラムクロマトグラフィー(溶出液:クロロホルム)で精製した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、赤色固体である式(1E)で表される化合物(以下、化合物(1E)という)0.033gを得た。
 収率(式(2E)で表される化合物基準):6%。
 Mw:462(LC-MS)
 極大吸収波長(λmax2)=508nm(クロロホルム溶液)
実施例6
Figure JPOXMLDOC01-appb-I000036
 実施例5において、無水酢酸に代えてトリフルオロ酢酸無水物を用いた以外は、実施例5と同様に実施して、赤色固体である式(1F)で表される化合物(以下、化合物(1F)という)0.057gを得た。
 Mw:516(LC-MS)
 極大吸収波長(λmax2)=499nm(クロロホルム溶液)
実施例7
Figure JPOXMLDOC01-appb-I000037
 実施例5において、式(2E)で表される化合物に代えて、式(2G)で表される化合物を用いた以外は、実施例5と同様に実施して、橙色固体である式(1G)で表される化合物(以下、化合物(1G)という)0.123gを得た。
 Mw:518(LC-MS)
 極大吸収波長(λmax2)=508nm(クロロホルム溶液)
実施例8
Figure JPOXMLDOC01-appb-I000038
 実施例1において、式(2A)で表される化合物に代えて、式(2H)で表される化合物を用いた以外は、実施例1と同様に実施して、橙色固体である式(1H)で表される化合物(以下、化合物(1H)という)0.198gを得た。
 Mw:411(LC-MS)
 極大吸収波長(λmax2)=389nm(クロロホルム溶液)
[重合性液晶化合物]
 本組成物に含まれる重合性液晶化合物として、下記式(4-6)で表される化合物[以下、化合物(4-6)という]、下記式(4-8)で表される化合物[以下、化合物(4-8)という]、下記式(4-14)で表される化合物[以下、化合物(4-14)という]及び、下記式(4-17)で表される化合物[以下、化合物(4-17)という]を用いた。
 なお、化合物(4-6)は、Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)記載の方法で合成した。また、この方法に準拠して、化合物(4-8)を製造した。
 化合物(4-14)及び化合物(4-17)は、特許第4719156号記載の方法をに準拠して製造した
化合物(4-6):
Figure JPOXMLDOC01-appb-I000039
〔相転移温度の測定〕
 化合物(4-6)の相転移温度は、化合物(4-6)からなる膜の相転移温度を求めることで確認した。その操作は以下のとおりである。
 配向膜を形成したガラス基板上に、化合物(4-6)からなる膜を形成し、加熱しながら、偏光顕微鏡(BX-51、オリンパス社製)によるテクスチャー観察によって相転移温度を確認した。化合物(4-6)は、120℃まで昇温後、降温時において、112℃でネマチック相に相転移し、110℃でスメクチックA相に相転移し、94℃でスメクチックB相へ相転移した。
化合物(4-8):
Figure JPOXMLDOC01-appb-I000040
〔相転移温度の測定〕
 化合物(4-6)の相転移温度測定と同様にして、化合物(4-8)の相転移温度を確認した。化合物(4-8)は、140℃まで昇温後、降温時において、131℃でネマチック相に相転移し80℃でスメクチックA相に相転移し、68℃でスメクチックB相へ相転移した。
化合物(4-14):
Figure JPOXMLDOC01-appb-I000041
〔相転移温度の測定〕
 化合物(4-6)の相転移温度測定と同様にして、化合物(4-14)の相転移温度を確認した。化合物(4-14)は、140℃まで昇温後、降温時において、106℃でネマチック相に相転移し103℃でスメクチックA相に相転移し、86℃でスメクチックB相へ相転移した。
化合物(4-17):
Figure JPOXMLDOC01-appb-I000042
〔相転移温度の測定〕
 化合物(4-6)の相転移温度測定と同様にして、化合物(4-17)の相転移温度を確認した。化合物(4-17)は、140℃まで昇温後、降温時において、119℃でネマチック相に相転移し100℃でスメクチックA相に相転移し、77℃でスメクチックB相へ相転移した。
実施例9
〔組成物の調製〕
 下記の成分を混合し、80℃で1時間攪拌することで、組成物(1)を得た。
 重合性液晶化合物;化合物(4-6)     75部
          化合物(4-8)     25部
 化合物(1);  化合物(1A)      2.5部
 重合開始剤;
2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバ スペシャルティケミカルズ社製) 
                       6部
 レベリング剤;
ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)
                       1.5部
 溶剤;クロロホルム又はジメチルホルムアミド 250部
〔相転移温度の測定〕
 化合物(4-6)と同様に、組成物(1)に含まれる成分の相転移温度を求めた。かかる成分は、140℃まで昇温後、降温時において、115℃でネマチック相に相転移し105℃でスメクチックA相に相転移し、75℃でスメクチックB相へ相転移した。
〔本偏光膜の製造及び評価〕
1.配向膜の形成
 ガラス基板上に、ポリビニルアルコール(ポリビニルアルコール1000完全ケン化型、和光純薬工業株式会社製)の2質量%水溶液をスピンコート法により塗布し、乾燥後、厚さ100nmの膜を形成した。続いて、得られた膜の表面にラビング処理を施すことにより配向膜を形成した。ラビング処理は、半自動ラビング装置(商品名:LQ-008型、常陽工学株式会社製)を用いて、布(商品名:YA-20-RW、吉川化工株式会社製)によって、押し込み量0.15mm、回転数500rpm、16.7mm/sの条件で行った。かかるラビング処理により、ガラス基板上に配向膜が形成された積層体1を得た。
2.偏光膜の形成
 積層体1の配向膜上に、組成物(1)をスピンコート法により塗布し、120℃のホットプレート上で1分間加熱乾燥した後、速やかに室温まで冷却して、前記配向膜上に配向した重合性液晶化合物を含む乾燥被膜を形成した。次いで、UV照射装置(SPOT CURE SP-7;ウシオ電機株式会社製)を用い、紫外線を、露光量2000mJ/cm2(365nm基準)で乾燥被膜に照射することにより、該乾燥被膜に含まれる重合性液晶化合物を、配向状態を保持したまま重合させ、該乾燥被膜から偏光膜(1)を形成し積層体2を得た。この際の偏光膜の厚みをレーザー顕微鏡(オリンパス株式会社社製 OLS3000)により測定したところ、1.7μmであった。
3.X線回折測定
 偏光膜(1)に対して、X線回折装置X’Pert PRO MPD(スペクトリス株式会社製)を用いてX線回折測定を行った。ターゲットとしてCuを用いてX線管電流40mA、X線管電圧45kVの条件で発生したX線を固定発散スリット1/2°を介してラビング方向(予め、偏光膜下にある配向膜のラビング方向を求めておく。)から入射させ、走査範囲2θ=4.0~40.0°の範囲で2θ=0.01671°ステップで走査して測定を行った結果、2θ=20.1°付近にピーク半価幅(FWHM)=約0.31°のシャープな回折ピーク(ブラッグピーク)が得られた。また、ラビング垂直方向からの入射でも同等な結果を得た。ピーク位置から求めた秩序周期(d)は約4.4Åであり、高次スメクチック相を反映した構造を形成していることがわかった。
4.二色比の測定
 極大吸収波長における透過軸方向の吸光度(A1)及び吸収軸方向の吸光度(A2)を、分光光度計(島津製作所株式会社製 UV-3150)に、積層体2を備えたフォルダーを、セットした装置を用いてダブルビーム法で測定した。該フォルダーは、リファレンス側は光量を50%カットするメッシュを設置した。測定された透過軸方向の吸光度(A1)及び吸収軸方向の吸光度(A2)の値から、比(A2/A1)を算出し、二色比とした。極大吸収波長(λmax1)は404nmであり、この波長での二色比は19と高い値を示した。二色比が高いほど、偏光膜として有用であるといえる。化合物(1A)の極大吸収波長(λmax2)は389nmであることから、長波長シフトしていることが判明した。この長波長シフトの結果は、本発明の偏光膜中において、重合性液晶化合物が重合してなる密な分子鎖間に、化合物(1A)が分散しているとき、該化合物(1A)がその分子鎖と強く相互作用していることを示すものである。
 また、形成された偏光膜(1)表面に保護フィルム(40μmTAC(コニカミノルタ株式会社製「KC4UY」))を配置し、その上から下記条件で光を照射することによって耐光性を評価する。形成された偏光膜は、耐光性に優れる。
 耐光性試験における光の照射条件は以下の通りである。
使用機器:ATLAS社製 サンテストXLS+
使用光源:キセノンアークランプ
露光条件:250mW/m2
試験時間:120時間
暴露量:108000KJ/m2
温度:60℃
実施例10
 実施例9において、化合物(1A)に代えて、化合物(1B)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例11
 実施例9において、化合物(4-6)に代えて、化合物(4-14)を、化合物(4-8)に代えて、化合物(4-17)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例12
 実施例9において、化合物(1A)に代えて、化合物(1C)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例13
 実施例9において、化合物(1A)に代えて、化合物(1D)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例14
 実施例9において、化合物(1A)に代えて、化合物(1E)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例15
 実施例9において、化合物(1A)に代えて、化合物(1F)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例16
 実施例9において、化合物(1A)に代えて、化合物(1G)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例17
 実施例9において、化合物(1A)に代えて、化合物(1H)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例18
 実施例1において、式(2A)で表される化合物に代えて、式(2I)で表される化合物を用いる以外は、実施例1と同様に実施することにより、式(1I)で表される化合物が得られる。
Figure JPOXMLDOC01-appb-I000043
実施例19
 実施例1において、式(2A)で表される化合物に代えて、式(2J)で表される化合物を用いる以外は、実施例1と同様に実施することにより、式(1J)で表される化合物が得られる。
Figure JPOXMLDOC01-appb-I000044
実施例20
 実施例1において、式(2A)で表される化合物に代えて、式(2K)で表される化合物を用いる以外は、実施例1と同様に実施することにより、式(1K)で表される化合物が得られる。
Figure JPOXMLDOC01-appb-I000045
実施例21
 実施例9において、化合物(1A)に代えて、化合物(1I)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例22
 実施例9において、化合物(1A)に代えて、化合物(1J)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例23
 実施例9において、化合物(1A)に代えて、化合物(1K)を用いる以外は、実施例9と同様に実施することにより、組成物および偏光膜が得られる。
実施例24
Figure JPOXMLDOC01-appb-I000046
 実施例6において、式(2E)で示される化合物に代えて、式(2L)で示される化合物を用いた以外は、実施例6と同様に実施して、赤色固体である式(1L)で表される化合物(以下、化合物(1L)という)0.01gを得た。
 M/Z:529(EI-MS)
 極大吸収波長(λmax2)=486nm(クロロホルム溶液)
実施例25
Figure JPOXMLDOC01-appb-I000047
 実施例8で得られた化合物(1H)0.10g、60%水素化ナトリウム0.039g及びテトラヒドロフラン2.3gを混合し、ヨウ化メチル0.14gを滴下した。反応混合物を50℃に昇温し、1時間撹拌した。20℃に冷却後、水を滴下して水素化ナトリウムを除害し、濃縮して溶媒を留去した。濃縮物をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム)で精製した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、赤色固体である式(1M)で表される化合物(以下、化合物(1M)という)0.035gを得た。
M/Z:426(EI-MS)
 極大吸収波長(λmax2)=382nm(クロロホルム溶液)
1H-NMR(CDCl3):δ(ppm) 2.00(s、3H)、3.50(s、3H)、7.38(d、2H)、7.81(d、2H)、8.07(m、8H)。
実施例26
Figure JPOXMLDOC01-appb-I000048
 式(2C)で表される化合物0.50g、水2.00g及び35%塩酸0.65gを混合した。得られた混合物を、0℃に冷却した後、33%亜硝酸ナトリウム水溶液0.81gを滴下した。得られた混合物を、30分間撹拌した後、アミド硫酸0.19gを加えた。得られた混合物を、フェノール0.37g、酢酸ナトリウム0.65g、水1.85g及びメタノール1.85gとからなる混合物に、0℃で滴下した。析出物を濾過し、水で3回洗浄後に乾燥させることにより、黄色固体0.50gを得た。
 上記で得られた黄色固体0.20gに、炭酸カリウム0.17g、N,N-ジメチルアセトアミド4.0g及び臭化ブチル0.15gを加え、60℃で4時間撹拌した。反応混合物を水に滴下し、析出物を濾過した。得られた固体を乾燥した後、シリカゲルカラムクロマトグラフィー(溶出液:酢酸エチル及びテトラヒドロフラン)で精製した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、黄色固体である式(1N)で表される化合物(以下、化合物(1N)という)0.046gを得た。
 収率:(式(2C)で表される化合物基準):14%。
 M/Z:416(EI-MS)
 極大吸収波長(λmax2)=398nm(クロロホルム溶液)
実施例27
Figure JPOXMLDOC01-appb-I000049
 式(4A)で表される化合物0.20g、60%水素化ナトリウム0.11g及びテトラヒドロフラン3.3gを混合し、ヨウ化メチル0.39gを滴下した。反応混合物を50℃に昇温し、1時間撹拌した。20℃に冷却後、水を滴下して水素化ナトリウムを除害し、濃縮して溶媒を留去した。濃縮物をシリカゲルカラムクロマトグラフィー(溶出液:クロロホルム)で精製した。得られた固体をアセトニトリルで洗浄後、乾燥させることにより、黄色固体である式(1O)で表される化合物(以下、化合物(1O)という)0.051gを得た。
M/Z:388(EI-MS)
 極大吸収波長(λmax2)=383nm(クロロホルム溶液)
1H-NMR(CDCl3):δ(ppm) 1.98(s、3H)、3.34(s、3H)、3.92(s、3H)、7.06(d、2H)、7.38(d、2H)、8.02(m、8H)。
 本発明の新規な化合物は、波長350nm~550nmの範囲に極大吸収を有し、二色性色素として機能する化合物であり、該化合物を含む本発明の組成物は、二色比が高い偏光膜を与える。
210 第1ロール
210A 巻芯
220 第2ロール
220A 巻芯
211A,211B 塗布装置
212A,212B 乾燥炉
213A 偏光UV照射装置
213B 活性エネルギー線照射装置
300 補助ロール
230 第3ロール
230A 巻芯
240 第4ロール
240A 巻芯
300 補助ロール

Claims (17)

  1.  式(1):
    Figure JPOXMLDOC01-appb-I000001
    [式中、R1は、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアシル基、炭素数2~20のアルコキシカルボニル基、炭素数1~20のアシルオキシ基または-N(R10)(R11)を表し、R10は、炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表わし、R11は、水素原子または炭素数1~20のアルキル基を表し、R10とR11とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。前記アルキル基、前記アルコキシ基、前記アシル基、前記アルコキシカルボニル基、前記アシルオキシ基、前記アルキルスルホニル基および前記アリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置き換わっていてもよい。前記アルキル基および前記アルコキシ基を構成する炭素原子間には、-O-または-NR20-が挿入されていてもよく、R20は、水素原子または炭素数1~20のアルキル基を表わす。
     R7およびR8は、水素原子以外の置換基であって、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表し、上記炭素数1~4のアルキル基および上記炭素数1~4アルコキシ基を構成する少なくとも一つの水素原子は、ハロゲン原子またはヒドロキシ基で置換されていてもよく、p及びqは、それぞれ独立して0~2の整数である。
     R2は,炭素数1~20のアシル基、炭素数1~20のアルキルスルホニル基または炭素数6~20のアリールスルホニル基を表し、R3は水素原子または炭素数1~20のアルキル基を表し、R2とR3とが互いに結合して、それらが結合する窒素原子とともに、-N-CO-または-N-SO2-を含む環を形成してもよい。前記アルキル基、前記アシル基、前記アルキルスルホニル基および前記アリールスルホニル基を構成する一つ以上の水素原子は、ハロゲン原子、ヒドロキシ基、アミノ基または置換基を有するアミノ基で置き換わっていてもよい。前記アルキル基を構成する炭素原子間には、-O-または-NR30-が挿入されていてもよく、R30は、水素原子または炭素数1~20のアルキル基を表わす。
     Yは、式(Y1):
    Figure JPOXMLDOC01-appb-I000002
    (式中、*はNとの結合部位を表す。R9は、水素原子以外の置換基であって、それぞれ独立して、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、ハロゲン原子、またはシアノ基を表し、上記炭素数1~4のアルキル基および上記炭素数1~4アルコキシ基を構成する少なくとも一つの水素原子は、ハロゲン原子またはヒドロキシ基で置換されていてもよく、rは0~2の整数である。)
    で示される基または式(Y2):
    Figure JPOXMLDOC01-appb-I000003
    (式中、*はNとの結合部位を表し、P1およびP2は、それぞれ独立して、-S-、-O-または-N(R12)-を表し、R12は、水素原子または炭素数1~4のアルキル基を表し、Q1およびQ2は、それぞれ独立して、=N-または=CH-を表す。)
    で示される基を表す。]
    で表される化合物。
  2.  p、qおよびrが0である請求項1に記載の化合物。
  3.  重合性液晶化合物と請求項1または2に記載の化合物とを含む組成物。
  4.  重合性液晶化合物が、スメクチック液晶相を示す請求項3に記載の組成物。
  5.  さらに重合開始剤を含む請求項3または4に記載の組成物。
  6.  請求項1または2に記載の化合物を含む偏光膜。
  7.  請求項3~5のいずれかに記載の組成物から形成される偏光膜。
  8.  偏光膜の極大吸収波長(λmax1)が、式(1)で表される化合物の極大吸収波長(λmax2)よりも長い請求項6または7に記載の偏光膜。
  9.  λmax1と、λmax2との差が10nm以上である請求項8に記載の偏光膜。
  10.  X線回折測定においてブラッグピークを示す請求項6~9のいずれかに記載の偏光膜。
  11.  請求項6~10のいずれかに記載の偏光膜を備える液晶表示装置。
  12.  請求項6~10のいずれかに記載の偏光膜、液晶層および基体を備える液晶セル。
  13.  偏光膜が、基体と液晶層との間に配置される請求項12に記載の液晶セル。
  14.  基体と液晶層との間に、カラーフィルタがさらに配置される請求項13に記載の液晶セル。
  15.  請求項6~10のいずれかに記載の偏光膜と1/4波長板とを有する円偏光板。
  16.  請求項6~10のいずれかに記載の偏光膜と有機EL素子とを備える有機EL表示装置。
  17.  請求項15に記載の円偏光板と有機EL素子とを備える有機EL表示装置。
PCT/JP2015/079073 2014-10-17 2015-10-14 化合物および組成物 WO2016060174A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237020118A KR20230093526A (ko) 2014-10-17 2015-10-14 화합물 및 조성물
KR1020177011452A KR102594216B1 (ko) 2014-10-17 2015-10-14 화합물 및 조성물
CN201580055985.0A CN107074746B (zh) 2014-10-17 2015-10-14 化合物和组合物
US15/519,373 US10961456B2 (en) 2014-10-17 2015-10-14 Dichroic dye compound, polarizing film, and uses thereof
JP2016554109A JP6737180B2 (ja) 2014-10-17 2015-10-14 化合物および組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014212370 2014-10-17
JP2014-212370 2014-10-17
JP2015-112874 2015-06-03
JP2015112874 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016060174A1 true WO2016060174A1 (ja) 2016-04-21

Family

ID=55746716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079073 WO2016060174A1 (ja) 2014-10-17 2015-10-14 化合物および組成物

Country Status (6)

Country Link
US (1) US10961456B2 (ja)
JP (1) JP6737180B2 (ja)
KR (2) KR20230093526A (ja)
CN (1) CN107074746B (ja)
TW (1) TWI670253B (ja)
WO (1) WO2016060174A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198804A (ja) * 2016-04-26 2017-11-02 住友化学株式会社 光学フィルム
WO2019132020A1 (ja) * 2017-12-28 2019-07-04 富士フイルム株式会社 偏光子、及び、画像表示装置
WO2019132018A1 (ja) * 2017-12-28 2019-07-04 富士フイルム株式会社 偏光子、及び、画像表示装置
JP2019133151A (ja) * 2018-02-01 2019-08-08 住友化学株式会社 偏光膜形成用組成物
JP2020095139A (ja) * 2018-12-12 2020-06-18 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
WO2022138465A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 光吸収異方性膜、光学フィルムおよび液晶表示装置
KR20220134646A (ko) 2020-03-11 2022-10-05 후지필름 가부시키가이샤 액정 조성물, 광흡수 이방성막, 적층체 및 화상 표시 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230093526A (ko) * 2014-10-17 2023-06-27 스미또모 가가꾸 가부시끼가이샤 화합물 및 조성물
WO2020122116A1 (ja) * 2018-12-14 2020-06-18 富士フイルム株式会社 光吸収異方性膜、積層体および画像表示装置
GB2588162B (en) * 2019-10-10 2023-06-14 Flexenable Tech Limited Liquid crystal devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387811A (en) * 1971-04-01 1975-03-19 Yorkshire Chemicals Ltd Process for the colouration of polyester fibres
JPS5036784A (ja) * 1973-08-02 1975-04-07
JPS5573757A (en) * 1978-11-22 1980-06-03 Bayer Ag Polyether disazo dyestuff
JPH07276821A (ja) * 1994-04-12 1995-10-24 Mitsubishi Chem Corp 感熱転写用ジスアゾ系色素及び感熱転写シート
JPH10111523A (ja) * 1996-10-04 1998-04-28 Sony Corp ゲストホスト液晶表示装置
JPH10292175A (ja) * 1997-01-24 1998-11-04 Sony Corp ゲストホスト液晶表示装置及びゲストホスト液晶組成物
JP2000313881A (ja) * 1999-03-01 2000-11-14 Mitsubishi Chemicals Corp 二色性色素組成物、これを含む液晶組成物および液晶素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2036779B (en) 1978-11-22 1983-03-09 Bayer Ag Polyether disazo dyestuffs
DE2948456A1 (de) * 1979-12-01 1981-06-11 Basf Ag, 6700 Ludwigshafen Disazofarbstoffe
JPS56104984A (en) 1980-01-24 1981-08-21 Nippon Kanko Shikiso Kenkyusho:Kk Bichromic pigment for yellow liquid crystal
DE3019064A1 (de) * 1980-05-19 1981-11-26 Cassella Ag, 6000 Frankfurt Verfahren zum faerben und bedrucken von hydrophoben fasermaterialien und dazu geeignete azofarbstoffe
US6039893A (en) * 1997-01-24 2000-03-21 Sony Corporation Guest-host liquid crystal display device and guest-host liquid crystal composition
US7763330B2 (en) 2003-11-06 2010-07-27 Sumitomo Chemical Co., Ltd. Dichroic guest-host polarizer comprising an oriented polymer film
CN102918117B (zh) * 2010-06-14 2015-08-12 巴斯夫欧洲公司 黑色二色性染料
TWI564598B (zh) * 2011-10-12 2017-01-01 Sumitomo Chemical Co A polarizing film, a circularly polarizing plate, and the like
KR20230093526A (ko) * 2014-10-17 2023-06-27 스미또모 가가꾸 가부시끼가이샤 화합물 및 조성물
JP6444763B2 (ja) * 2015-02-20 2018-12-26 住友化学株式会社 化合物およびこれを含む組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387811A (en) * 1971-04-01 1975-03-19 Yorkshire Chemicals Ltd Process for the colouration of polyester fibres
JPS5036784A (ja) * 1973-08-02 1975-04-07
JPS5573757A (en) * 1978-11-22 1980-06-03 Bayer Ag Polyether disazo dyestuff
JPH07276821A (ja) * 1994-04-12 1995-10-24 Mitsubishi Chem Corp 感熱転写用ジスアゾ系色素及び感熱転写シート
JPH10111523A (ja) * 1996-10-04 1998-04-28 Sony Corp ゲストホスト液晶表示装置
JPH10292175A (ja) * 1997-01-24 1998-11-04 Sony Corp ゲストホスト液晶表示装置及びゲストホスト液晶組成物
JP2000313881A (ja) * 1999-03-01 2000-11-14 Mitsubishi Chemicals Corp 二色性色素組成物、これを含む液晶組成物および液晶素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PAUL RUGGLI ET AL., HELVETICA CHIMICA ACTA, vol. 21, 1938, pages 711 - 732 *
PAUL RUGGLI ET AL., HELVETICA CHIMICA ACTA, vol. 27, 1944, pages 1371 - 1384 *
PAUL RUGGLI ET AL., HELVETICA CHIMICA ACTA, vol. 30, 1947, pages 739 - 742 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198804A (ja) * 2016-04-26 2017-11-02 住友化学株式会社 光学フィルム
CN111819476B (zh) * 2017-12-28 2022-05-13 富士胶片株式会社 偏振器及图像显示装置
US11467442B2 (en) 2017-12-28 2022-10-11 Fujifilm Corporation Polarizer and image display device
WO2019132018A1 (ja) * 2017-12-28 2019-07-04 富士フイルム株式会社 偏光子、及び、画像表示装置
JPWO2019132020A1 (ja) * 2017-12-28 2020-07-16 富士フイルム株式会社 偏光子、及び、画像表示装置
JPWO2019132018A1 (ja) * 2017-12-28 2020-07-27 富士フイルム株式会社 偏光子、及び、画像表示装置
CN111819476A (zh) * 2017-12-28 2020-10-23 富士胶片株式会社 偏振器及图像显示装置
WO2019132020A1 (ja) * 2017-12-28 2019-07-04 富士フイルム株式会社 偏光子、及び、画像表示装置
US11339329B2 (en) 2017-12-28 2022-05-24 Fujifilm Corporation Polarizer and image display device
US11822180B2 (en) 2017-12-28 2023-11-21 Fujifilm Corporation Polarizer and image display device
JP2019133151A (ja) * 2018-02-01 2019-08-08 住友化学株式会社 偏光膜形成用組成物
WO2019151228A1 (ja) * 2018-02-01 2019-08-08 住友化学株式会社 偏光膜形成用組成物
JP2020095139A (ja) * 2018-12-12 2020-06-18 富士フイルム株式会社 液晶組成物、光吸収異方性膜、積層体および画像表示装置
KR20220134646A (ko) 2020-03-11 2022-10-05 후지필름 가부시키가이샤 액정 조성물, 광흡수 이방성막, 적층체 및 화상 표시 장치
WO2022138465A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 光吸収異方性膜、光学フィルムおよび液晶表示装置

Also Published As

Publication number Publication date
JPWO2016060174A1 (ja) 2017-07-27
TWI670253B (zh) 2019-09-01
KR20230093526A (ko) 2023-06-27
US10961456B2 (en) 2021-03-30
JP6737180B2 (ja) 2020-08-05
KR102594216B1 (ko) 2023-10-25
US20170240810A1 (en) 2017-08-24
TW201619125A (zh) 2016-06-01
CN107074746B (zh) 2019-10-01
KR20170070085A (ko) 2017-06-21
CN107074746A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016060174A1 (ja) 化合物および組成物
JP6609992B2 (ja) 組成物
WO2016136561A1 (ja) 組成物
JP6680211B2 (ja) 化合物および組成物
US10513612B2 (en) Dichroic azo compound and composition containing the same
WO2016133137A1 (ja) 化合物およびこれを含む組成物
JP6853902B2 (ja) 組成物
JP6874874B2 (ja) 組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016554109

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519373

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177011452

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15850517

Country of ref document: EP

Kind code of ref document: A1