WO2016059864A1 - 除湿装置 - Google Patents

除湿装置 Download PDF

Info

Publication number
WO2016059864A1
WO2016059864A1 PCT/JP2015/072905 JP2015072905W WO2016059864A1 WO 2016059864 A1 WO2016059864 A1 WO 2016059864A1 JP 2015072905 W JP2015072905 W JP 2015072905W WO 2016059864 A1 WO2016059864 A1 WO 2016059864A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
heating member
blower fan
dehumidifying
hygroscopic material
Prior art date
Application number
PCT/JP2015/072905
Other languages
English (en)
French (fr)
Inventor
浦元 嘉弘
伸基 崎川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580038495.XA priority Critical patent/CN106659967A/zh
Publication of WO2016059864A1 publication Critical patent/WO2016059864A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents

Definitions

  • the present invention relates to a dehumidifying device that dehumidifies moisture in the air using a hygroscopic material.
  • a desiccant-type dehumidifier is known as a dehumidifier that dehumidifies moisture in the air using a hygroscopic material (see, for example, Patent Documents 1 and 2).
  • a moisture-absorbing material such as zeolite or silica gel applied to a breathable rotor (for example, a honeycomb-shaped rotor) to adsorb moisture in the air and absorb moisture.
  • Moisture adsorbed is released as water vapor by applying high-temperature air heated by a heater to the material, and water is taken out by cooling high-temperature air containing water vapor with a heat exchanger.
  • the dehumidifying devices described in Patent Documents 1 and 2 are configured such that the air to be dehumidified passes through a part of the disk-shaped hygroscopic material in a direction perpendicular to the plate surface (for example, a large number provided in a honeycomb shape).
  • the configuration of passing through the ventilation hole for this reason, once the air to be dehumidified passes through the hygroscopic material once, it does not contact the hygroscopic material again (the contact between the dehumidifying target air and the hygroscopic material is basically only once), so the contact time is short. There is a problem that the dehumidification efficiency is low.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dehumidifying device having high dehumidifying efficiency.
  • a dehumidifying apparatus is a dehumidifying apparatus that desorbs moisture in the air by absorbing moisture in the air, and includes a moisture absorbing chamber in which a moisture absorbing material is mounted on an inner wall surface. It is made of a material that absorbs moisture at a temperature lower than the temperature sensing point and releases moisture in a liquid state at a temperature exceeding the temperature sensing point, and the air introduced into the moisture absorption chamber passes through the moisture absorption chamber along the inner wall surface. In this case, the moisture is discharged from the moisture absorption chamber after flowing in a spiral shape.
  • the moisture absorbing material is attached to the inner wall surface of the moisture absorbing chamber, and the air introduced into the moisture absorbing chamber is discharged after flowing in a spiral along the inner wall surface of the moisture absorbing chamber.
  • the contact time with the material can be lengthened, thereby improving the dehumidification efficiency.
  • the moisture absorbed by the hygroscopic material can be released as liquid water simply by heating the hygroscopic material to a temperature-sensing point or higher, reducing power consumption compared to conventional desiccant-type dehumidifiers. Can be simplified.
  • FIG. 1 A is a longitudinal cross-sectional view of the dehumidification apparatus shown in FIG. 1
  • (b) is a cross-sectional view of the dehumidification apparatus shown in FIG.
  • It is a flowchart which shows the flow of a process in the dehumidification apparatus shown in FIG.
  • It is a longitudinal cross-sectional view which shows the state at the time of the dehydration process in the dehumidification apparatus shown in FIG.
  • FIG. 1 is a perspective view showing an appearance of a dehumidifying apparatus 100 according to the present embodiment.
  • 2 is a longitudinal sectional view (vertical sectional view) of the dehumidifying apparatus 100
  • FIG. 3 is a transverse sectional view (horizontal sectional view) of the dehumidifying apparatus 100.
  • the dehumidifying device 100 includes a housing 10, an intake port 20, a moisture absorption unit 30, a blower fan 40, an exhaust port 50, a drainage tank 60, and an operation unit 70.
  • the air inlet 20 is provided on the back side of the housing 10, and the air sucked from the air inlet 20 by the suction force of the blower fan 40 (see arrow Ain) enters the moisture absorption unit 30 via the filter 21 and the air intake path 22. be introduced.
  • the air introduced from the intake passage 22 is dehumidified, and the dehumidified air is discharged from the exhaust port 50 through the exhaust passage 41 by the suction force of the blower fan 40 (see arrow Aout).
  • the moisture dehumidified from the air by the moisture absorption unit 30 is discharged from the drain port 36 provided at the lower part of the moisture absorption unit 30 to the drain tank 60 provided at the lower part of the dehumidifier 100.
  • the drain tank 60 is provided so as to be removable with respect to the housing 10, and water drained into the drain tank 60 can be appropriately removed.
  • the drain tank 60 may be omitted, and the moisture discharged from the drain port 36 may be discharged directly to the outside of the dehumidifier 100, or may be discharged from the drain port 36 via a drain pipe (or drain hose). .
  • the moisture absorption unit 30 includes a moisture absorption chamber (cyclone chamber) 35 provided with a substantially cylindrical outer shell portion 31.
  • a heater 32, a base material 33, and a polymer hygroscopic material 34 are arranged in this order from the outer shell portion 31 side at a position facing the inner wall surface (inner peripheral surface) of the outer shell portion 31.
  • the moisture absorption chamber 35 does not necessarily have a cylindrical shape, and may be, for example, a substantially conical shape.
  • the intake passage 22 is arranged so that air flows in along a substantially circumferential direction at a position eccentric to the cylindrical center of the moisture absorption chamber 35 in the upper portion of the moisture absorption chamber 35.
  • the air flowing into the moisture absorption chamber 35 from the intake passage 22 moves from the upper part to the lower part while turning along the inner wall surface (inner peripheral surface) of the moisture absorption chamber 35, and the air reaching the lower part of the moisture absorption chamber 35 is It rises through the central portion of the moisture absorption chamber 35 and is discharged from the exhaust passage 41 provided at a position corresponding to the center of the cylindrical shape in the upper portion of the moisture absorption chamber 35 to the exhaust port 50.
  • the polymer hygroscopic material 34 is mounted on the inner peripheral surface side of the base material 33 over the entire circumferential direction, and the heater 32 is disposed so as to face the surface of the base material 33 on the outer shell portion 31 side.
  • the polymer hygroscopic material 34 is provided on the inner peripheral surface of the base material 33 over the entire area in the circumferential direction, but may not necessarily be provided over the entire area in the circumferential direction.
  • the polymer hygroscopic material 34 may be applied by being applied to the base material 33, or may be attached by being attached to the base material 33 with an adhesive or the like, using a pin or the like. They may be joined and mounted, or may be fixed with a frame or mesh. In addition, in order to improve the bonding property, the surface of the base material 33 on which the polymer moisture absorbent 34 is applied may be provided with unevenness or the surface may be roughened.
  • the polymer hygroscopic material 34 is hydrophilic (hygroscopic) in a temperature range below a predetermined temperature sensitive point determined according to the material of the polymer hygroscopic material 34, and is hydrophobic due to phase transition at a temperature exceeding the temperature sensitive point. A material exhibiting properties (dehydration property) is used.
  • the temperature-sensitive polymer hygroscopic material which is a dry body adsorbs and absorbs moisture (water vapor) in the air in the moisture absorption process.
  • the polymer hygroscopic material 34 for example, a dry material such as poly-N-isopropylacrylamide (PNIPAM) and derivatives thereof, thermosensitive polymers such as polyvinyl ether and derivatives thereof can be used.
  • the said temperature sensitive point can be suitably adjusted by preparing the material of a polymer hygroscopic material.
  • the above-described phenomenon in the polymer hygroscopic material 34 (a phenomenon in which hygroscopicity is exhibited below the temperature sensitive point and dehydration is exhibited at a temperature exceeding the temperature sensitive point) is reversible and is repeatedly given a temperature change. Thus, moisture absorption in the air at normal temperature and water droplet discharge by heating can be repeatedly performed.
  • the polymer hygroscopic material 34 made of the above material hardly generates heat of adsorption, and can maintain the hygroscopic force even when the above temperature change is repeatedly applied.
  • the material of the polymeric moisture absorbent 34 is such that the temperature sensitive point is within a predetermined temperature range higher than normal temperature (preferably 40 to 70 ° C., more preferably 50 to 60 ° C.). Is adjusted.
  • the base material 33 is attached so as to face the outer shell portion 31 of the moisture absorption chamber 35 with the heater 32 interposed therebetween, holds the polymer moisture absorbent 34, and transfers the heat from the heater 32 to the polymer moisture absorbent. 34.
  • the material of the base material 33 is a material having an appropriate strength for holding the polymer hygroscopic material 34 and thermal conductivity for transferring heat from the heater 32 to the polymer hygroscopic material 34.
  • a metal such as aluminum or iron, a resin or ceramic having thermal conductivity, or the like can be used.
  • the heater 32 is disposed between the outer shell 31 of the moisture absorption chamber 35 and the base material 33, and heats the polymer moisture absorbent 34 to a temperature higher than the temperature sensing point during the dehydration process described later, thereby absorbing the polymer moisture.
  • the moisture absorbed by the material 34 is dehydrated.
  • the configuration of the heater 32 is not particularly limited as long as the polymer hygroscopic material 34 can be heated to a temperature higher than the temperature sensitive point.
  • FIG. 3 is an explanatory diagram showing a configuration of a control system in the dehumidifying apparatus 100.
  • the dehumidifying apparatus 100 includes an operation unit 70 and a control unit 80.
  • the operation unit 70 receives an instruction input from the user (for example, a power on / off instruction, a dehumidification start / stop instruction, a dehydration start / stop instruction, various setting instructions such as an operation time). This is transmitted to the control unit 80.
  • the operation unit 70 is disposed on the upper surface of the housing 10, but the present invention is not limited to this.
  • the operation unit 70 may be disposed on the front surface or the side surface, and may receive wireless input from a remote controller or the like.
  • the control unit 80 controls the operation of each unit (such as the blower fan 40 and the heater 32) of the dehumidifier 100 in response to an instruction input from the user transmitted via the operation unit 70.
  • the control unit 80 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or realized by a CPU (Central Processing Unit) executing software (program). May be.
  • FIG. 4 is a flowchart showing a processing flow in the dehumidifying apparatus 100.
  • the control unit 80 determines whether or not a dehumidification start instruction is input via the operation unit 70 (S1).
  • the air sucked into the moisture absorbing chamber 35 by the suction force of the blower fan 40 moves while rotating along the inner wall surface (inner peripheral surface) of the moisture absorbing chamber 35 and uniformly contacts the polymer moisture absorbing material 34.
  • the moisture in the sucked air is efficiently absorbed by the polymer hygroscopic material 34, and the air dehumidified and dried is discharged from the exhaust port 50.
  • control unit 80 determines whether or not a dehumidifying process stop instruction is input via the operation unit 70 (S3). If the stop instruction is not input, the control unit 80 determines the operation state of S2. Let it continue.
  • control unit 80 stops the rotation of the blower fan 40 (off), and keeps the heater 32 off (S4).
  • the polymer hygroscopic material 34 is heated to the temperature sensing point or higher, and the moisture absorbed by the polymer hygroscopic material 34 is released as a liquid. As shown in FIG. become. Further, the water in the form of water droplets is discharged from the drain port 36 to the drain tank 60 through the polymer hygroscopic material 34.
  • control unit 80 determines whether or not a dehydration stop instruction has been input via the operation unit 70 (S7). If the stop instruction has not been input, the control unit 80 changes the operation state of S6. Let it continue.
  • control unit 80 stops the rotation of the blower fan 40 (off), and keeps the heater 32 off (S8).
  • control unit 80 determines whether a power-off instruction has been input via the operation unit 70 ( S9) If it is determined that the input has been made, the process is terminated. On the other hand, when determining that the power-off instruction has not been input, the control unit 80 returns to the process of S1.
  • the dehumidifying apparatus 100 includes the moisture absorption chamber 35 formed so that the sucked outside air moves while turning along the inner wall surface (inner circumferential surface), and the inside of the moisture absorption chamber 35. And a polymer hygroscopic material 34 installed on the wall surface.
  • the dehumidifying efficiency can be improved. That is, the polymer hygroscopic material 34 has the ability to absorb moisture of several tens of times its own weight or more if it is brought into direct contact with water in the liquid state. The moisture absorption effect is not as good as when directly touching liquid water.
  • the outside air taken into the dehumidifying device 100 is swung along the inner wall surface of the moisture absorption chamber 35, so that the polymer moisture absorbent 34 installed on the inner wall surface (inner circumferential surface) Since the contact can be made uniformly over a wide range for a relatively long time, it is possible to effectively absorb the moisture in the polymer moisture absorbent 34 and improve the moisture absorption efficiency.
  • the dehumidifying apparatus 100 includes a heater 32 that heats the polymer hygroscopic material 34 to a temperature higher than the temperature sensing point of the polymer hygroscopic material 34, and a drain port provided at the lower portion of the moisture absorbing chamber 35. 36.
  • the polymer moisture absorbent 34 is heated to the temperature sensitive point or higher by the heater 32 to release the moisture absorbed by the polymer moisture absorbent 34 as a liquid, and the discharged water droplets are moved downward to be discharged. It can be discharged from the mouth 36.
  • a polymer hygroscopic material 34 having a temperature-sensitive point of about 40 ° C. that changes from a hygroscopic state to a dehydrated state moisture is absorbed simply by heating to 40-60 ° C. with the heater 32 during dehydration.
  • the moisture can be released as a liquid, and the moisture released by the wind flowing in the hygroscopic chamber 35 in a spiral shape can be efficiently discharged.
  • the air sucked into the moisture absorption chamber 35 moves while turning in the moisture absorption chamber 35.
  • dust, dust, etc. in the air can be separated from the air and dropped and discharged from the drain port 36. Therefore, clean air from which dust and dirt have been removed can be discharged from the drain port 36.
  • the filter 12 provided at the suction port 11 only needs to be able to remove large dust, dust, and the like, and therefore a filter having a relatively large aperture ratio can be used as the filter 12. For this reason, compared with the case where a filter with a small aperture ratio is used, the suction load of the blower fan 40 can be reduced and the power consumption can be reduced.
  • the dehumidification process is started when the user gives an instruction to start the dehumidification process via the operation unit 70.
  • the present invention is not limited to this.
  • an outside air humidity sensor (not shown) that detects the outside air humidity of the dehumidifying device 100 is provided, and the control unit 80 automatically performs a dehumidifying process when the outside air humidity exceeds a preset value. May be started.
  • FIG. 6 is a flowchart showing a processing flow of the dehumidifying apparatus 100 in the present embodiment. 6 differs from FIG. 4 in the first embodiment in that the process of S6b is performed instead of the process of S6 in FIG. 4, and the other points are the same as in FIG.
  • the blower fan 40 is stopped and the heater 32 is turned on during the dehydration process.
  • the heater 32 is turned on while the blower fan 40 is rotated during the dehydration process.
  • FIG. 7 is a cross-sectional view showing a state in which the process of S6b in the dehumidifier 100 is performed.
  • heating by the heater 32 is performed while the blower fan 40 is rotated during the moisture retention process.
  • the moisture of the liquid released from the polymer hygroscopic material 34 becomes water droplets on the surface of the polymer hygroscopic material 34.
  • the air sucked into the moisture absorption chamber 35 by the suction force of the blower fan 40 moves while turning inside the moisture absorption chamber 35 along the inner wall surface.
  • the control unit 80 may change the rotational speed (rotational speed) of the blower fan 40 between the dehumidifying process and the dehydrating process.
  • the wind speed generated in the moisture absorption chamber 35 by the suction force of the blower fan 40 is such that water droplets deposited on the surface of the polymer moisture absorbent 34 move on the surface of the polymer moisture absorbent 34. What is necessary is just to adjust the rotation speed of the ventilation fan 40 so that it may become.
  • the air blowing fan 40 is rotated so that the air introduced into the moisture absorption chamber 35 is swung along the inner wall of the moisture absorption chamber 35 so that the wind speed is such that it uniformly contacts the entire polymer moisture absorbent 34. Adjust the number.
  • the wind speed in the moisture absorption chamber 35 can be set to a wind speed suitable for each of the dehumidifying process and the dehydrating process, and the dehumidifying efficiency and the dewatering efficiency can be optimized.
  • a member having the function of the heater 32 is used as the base material 33, and the heater 32 is omitted.
  • a ceramic heater or the like can be used as the member.
  • the configuration in which the control unit 80 starts the dehydration process when an instruction to start the dehydration process is input via the operation unit 70 has been described.
  • the dehydration process is performed when a predetermined time has elapsed after the dehumidification process is started.
  • FIG. 8 is an explanatory diagram showing a configuration of a control system in the dehumidifying apparatus 100 according to the present embodiment.
  • the dehumidifying apparatus 100 according to the present embodiment includes a timer 81 in addition to the configuration shown in the first embodiment.
  • FIG. 9 is a flowchart showing a processing flow of the dehumidifying apparatus 100 in the present embodiment.
  • the control unit 80 determines whether or not a dehumidification start instruction is input via the operation unit 70 (S11).
  • control unit 80 When it is determined in S11 that the dehumidifying process start instruction is not input, the control unit 80 continues the process of S11 and monitors whether the dehumidifying process start instruction is input.
  • the control unit 80 When it is determined in S11 that a dehumidifying process start instruction has been input, the control unit 80 causes the timing unit 81 to start measuring the dehumidifying process time (S12), and activates (turns on) the blower fan 40 to perform the dehumidifying process. Start (S13).
  • control unit 80 determines whether or not a predetermined time has elapsed from the start of the dehumidifying process based on the dehumidifying process time counted by the time measuring unit 81 (S14).
  • the control unit 80 When it is determined in S14 that the predetermined time has elapsed since the start of the dehumidifying process, the control unit 80 resets the dehumidifying process time counted by the time measuring unit 81 (S15), and causes the time measuring unit 81 to count the dehydrating process time. While starting (S16), the blower fan 40 and the heater 32 are controlled to start the dehydration process (S17). In this embodiment, the heater 32 is turned on during the dehydration process and the blower fan 40 is stopped (turned off). However, the present invention is not limited to this, and the blower fan 40 is driven during the dehydration process as in the second embodiment. The heater 32 may be turned on while being left.
  • control unit 80 determines whether or not a predetermined time has elapsed from the start of the dehydration process based on the dehydration process time counted by the time measuring unit 81 (S18).
  • control unit 80 When it is determined in S18 that the predetermined time has not elapsed since the start of the dehydration process, the control unit 80 returns to S17 and continues the dehydration process.
  • control unit 80 resets the dehydration process time counted by the time measuring unit 81 (S19), and returns to the process of S12.
  • control unit 80 determines whether or not a dehumidifying process stop instruction has been input via the operation unit 70 (S20).
  • control unit 80 When it is determined in S20 that the dehumidifying process stop instruction has not been input, the control unit 80 returns to S13 and continues the dehumidifying process.
  • the control unit 80 stops the blower fan 40 to end the dehumidifying process (S21), and a power-off instruction is input via the operation unit 70. It is determined whether or not (S22). If it is determined in S22 that the power-off instruction has not been input, the control unit 80 returns to the process of S11. On the other hand, if it is determined in S22 that a power-off instruction has been input, the control unit 80 ends the process.
  • the dehydration process of the polymer moisture absorbent 34 can be automatically performed when a predetermined time has elapsed since the start of the dehumidification process, so that the moisture absorption capacity of the polymer moisture absorbent 34 is reduced and the dehumidification efficiency is improved. It is possible to prevent the decrease.
  • FIG. 10 is an explanatory diagram illustrating a configuration of a control system in the dehumidifying apparatus 100 according to the present embodiment.
  • the dehumidifying apparatus 100 includes an exhaust humidity sensor 82 in addition to the configuration shown in the fourth embodiment.
  • the exhaust humidity sensor 82 is disposed in the exhaust path 41 or in the vicinity of the exhaust port 50, detects the exhaust humidity of the dehumidifier 100, and transmits it to the control unit 80.
  • the exhaust humidity sensor 82 detects the exhaust humidity of the dehumidifier 100 and the exhaust humidity sensor. The dehydration process is automatically performed according to the detection result 82.
  • FIG. 11 is a flowchart showing a processing flow of the dehumidifying apparatus 100 in the present embodiment.
  • the control unit 80 determines whether or not a dehumidification start instruction is input via the operation unit 70 (S31).
  • control unit 80 When it is determined in S31 that the dehumidifying process start instruction is not input, the control unit 80 continues the process of S31 and monitors whether the dehumidifying process start instruction is input.
  • control unit 80 determines whether or not the exhaust humidity of the dehumidifier 100 has risen above a predetermined value based on the detection result of the exhaust humidity sensor 82 (S33). Note that the process of S33 may be performed without performing the process of S33 until a predetermined time elapses after the dehumidification process is started.
  • the control unit 80 causes the timing unit 81 to start measuring the dehydration time (S34), and controls the blower fan 40 and the heater 32 to dehydrate.
  • the process is started (S35).
  • the heater 32 is turned on during the dehydration process and the blower fan 40 is stopped (turned off).
  • the present invention is not limited to this, and the blower fan 40 is driven during the dehydration process as in the second embodiment.
  • the heater 32 may be turned on while being left.
  • control unit 80 determines whether or not a predetermined time has elapsed from the start of the dehydration process based on the dehydration process time counted by the time measuring unit 81 (S36).
  • control unit 80 When it is determined in S36 that the predetermined time has not elapsed since the start of the dehydration process, the control unit 80 returns to S35 and continues the dehydration process.
  • control unit 80 resets the dehydration process time counted by the time measuring unit 81 (S37), and returns to the process of S32.
  • control unit 80 determines whether or not a dehumidifying process stop instruction has been input via the operation unit 70 (S38).
  • control unit 80 When it is determined in S38 that the dehumidifying process stop instruction has not been input, the control unit 80 returns to S32 and continues the dehumidifying process.
  • the control unit 80 stops the blower fan 40 to end the dehumidifying process (S39), and a power-off instruction is input via the operation unit 70. It is determined whether or not (S40). If it is determined in S40 that the power-off instruction has not been input, the control unit 80 returns to S31. On the other hand, if it is determined in S40 that a power-off instruction has been input, the control unit 80 ends the process.
  • the moisture absorption amount of the polymer moisture absorbent 34 is increased, the hygroscopicity is lowered, and the dehydration process can be automatically performed when the exhaust humidity rises to a predetermined value or more, so the dehumidification efficiency is lowered. Can be prevented.
  • the configuration in which the dehydration process is automatically performed according to the exhaust humidity in the present embodiment and the configuration in which the dehydration process is automatically performed when a predetermined time has elapsed after the dehumidification process in the fourth embodiment is started are combined. May be used.
  • FIG. 12 is an explanatory diagram illustrating a configuration of a control system in the dehumidifying apparatus 100 according to the present embodiment.
  • the dehumidifying apparatus 100 includes an outside air humidity sensor 83 in addition to the configuration shown in the fifth embodiment.
  • the outside air humidity sensor 83 detects the outside air humidity of the dehumidifier 100 and transmits it to the controller 80.
  • the installation position of the outside air humidity sensor 83 is not particularly limited as long as the outside air humidity of the dehumidifying device 100 can be detected.
  • the outside air humidity sensor 83 is arranged in the intake passage 22 or in the vicinity of the intake port 20.
  • FIG. 13 is a flowchart showing a processing flow of the dehumidifying apparatus 100 in the present embodiment.
  • control unit 80 performs the process of S33b instead of the process of S33 of FIG. 11, and the other points are the same.
  • the control unit 80 calculates a humidity difference between the outside air humidity detected by the outside air humidity sensor 83 and the exhaust humidity detected by the exhaust air humidity sensor 82, and whether or not the calculated humidity difference has decreased to a predetermined value or less. Judgment is made (S33b). If it is determined that the value has decreased below the predetermined value, the process proceeds to S34. If it is determined that the value has not decreased below the predetermined value, the process proceeds to S38.
  • the dehydration process is automatically performed according to the humidity difference between the outside air humidity and the exhaust humidity in the present embodiment, and the dehydration process is automatically performed when a predetermined time has elapsed since the dehumidification process in the fourth embodiment is started.
  • a configuration that is automatically performed may be used in combination.
  • a dehumidifying device 100 is a dehumidifying device 100 that absorbs moisture in the air to a hygroscopic material (polymer hygroscopic material 34) and dehumidifies the dehumidifying device 100 on the inner wall surface. ), And the moisture absorbent material (polymer moisture absorbent material 34) absorbs moisture at a temperature below a predetermined temperature sensing point, and absorbs moisture in a liquid state at a temperature exceeding the temperature sensing point.
  • a hygroscopic material polymer hygroscopic material 34
  • the moisture absorbing material (polymer moisture absorbing material 34) is attached to the inner wall surface of the moisture absorbing chamber 35, and the air introduced into the moisture absorbing chamber 35 spirals along the inner wall surface in the moisture absorbing chamber 35. Since it is discharged after flowing, the contact time between the air and the hygroscopic material (polymer hygroscopic material 34) can be lengthened, thereby improving the dehumidifying efficiency.
  • the moisture absorbed by the moisture absorbent (polymer moisture absorbent 34) can be released as liquid water simply by heating the moisture absorbent (polymer moisture absorbent 34) above the temperature sensing point. The power consumption can be reduced and the structure can be simplified as compared with the desiccant type dehumidifier. Further, by turning the air introduced from outside in the moisture absorption chamber 35, dust, dust, etc. in the air can be separated and dropped from the air as in the case of the cyclone type vacuum cleaner.
  • the dehumidifying apparatus 100 includes a heating member (heater 32) that heats the hygroscopic material (polymer hygroscopic material 34) to a temperature equal to or higher than the temperature sensitive point in the above aspect 1. It is.
  • the hygroscopic material (polymeric hygroscopic material 34) is absorbed by the hygroscopic material (polymeric hygroscopic material 34) by heating the hygroscopic material (polymeric hygroscopic material 34) to a temperature higher than the temperature sensitive point by the heating member (heating heater 32).
  • Moisture can be easily released.
  • the dehumidifying device 100 includes the base material 33 disposed opposite to the outer shell portion 31 of the hygroscopic chamber 35 in the second aspect, and the hygroscopic material (polymer hygroscopic material 34) is the above base.
  • the heating member (heating heater 32) is disposed between the base material 33 and the outer shell portion 31, or the base material 33 is the hygroscopic material (polymer hygroscopic material). 34) and a function of the heating member (heater 32).
  • a heating member heater 32
  • a hygroscopic material (polymer hygroscopic material 34) is heated efficiently. be able to.
  • the dehumidifying apparatus 100 according to the fourth aspect of the present invention is the dehumidifying device 100 according to the second or third aspect, wherein the blower fan 40 that generates a suction force to introduce air into the moisture absorption chamber 35, the blower fan 40, and the heating member (heater heater). 32), the dehumidifying mode in which the heating member (heating heater 32) is deactivated and the blower fan 40 is driven, and the heating member (heating heater 32) is activated to operate the hygroscopic material (polymer moisture absorption).
  • the heating member (heater 32) is operated in a state where the fan 40 is operated and the blower fan 40 is not operated.
  • the heating member (heater 32) by deactivating the heating member (heater 32) in the dehumidifying mode, it is possible to dehumidify using the entire area of the hygroscopic material (polymer hygroscopic material 34), thereby improving the dehumidifying efficiency. be able to. Further, the power consumption can be reduced by disabling the heating member (heater 32) in the dehumidifying mode and starting the heating member (heater 32) in the dehydrating mode.
  • the dehumidifying apparatus 100 according to the fifth aspect of the present invention is the dehumidifying device 100 according to the second or third aspect, wherein the blower fan 40 that generates a suction force to introduce air into the moisture absorption chamber 35, the blower fan 40, and the heating member (heater heater). 32), the dehumidifying mode in which the heating member (heating heater 32) is deactivated and the blower fan 40 is driven, and the heating member (heating heater 32) is activated to operate the hygroscopic material (polymer moisture absorption).
  • the heating member (heater 32) is operated in a state where the fan 40 is operated and the blower fan 40 is operated.
  • the heating member (heater 32) in the dehumidifying mode by deactivating the heating member (heater 32) in the dehumidifying mode, it is possible to dehumidify using the entire area of the hygroscopic material (polymer hygroscopic material 34), thereby improving the dehumidifying efficiency. be able to. Further, the power consumption can be reduced by disabling the heating member (heater 32) in the dehumidifying mode and starting the heating member (heater 32) in the dehydrating mode. Further, by performing the dehydration mode process while the blower fan 40 is in operation, water droplets condensed on the surface of the hygroscopic material (polymer hygroscopic material 34) are swept along the inner wall surface by the air flow.
  • the dehumidifying apparatus 100 is the Aspect 4 or 5, wherein the control unit 80 causes the dehydration mode to be performed when a predetermined time has elapsed after starting the dehumidification mode. It is a configuration.
  • the moisture absorbed by the moisture absorbent material (polymer moisture absorbent material 34) is periodically obtained by causing the treatment in the dehydration mode to be performed when a predetermined time has elapsed after the treatment in the dehumidification mode has started.
  • the moisture absorption capacity of the moisture absorbent material (polymer moisture absorbent material 34) can be recovered, and the decrease in the dehumidification capacity can be suppressed.
  • the dehumidifying device 100 includes the exhaust humidity sensor 82 that detects the exhaust humidity discharged from the moisture absorption chamber 35 in any one of the Aspects 4 to 6, and the control unit 80 includes the exhaust humidity.
  • the dehydration mode is performed when the value rises above a predetermined value.
  • the moisture absorption amount of the hygroscopic material approaches the saturation state and the hygroscopic capacity is reduced by detecting the exhaust humidity and performing the dehydration mode processing ( By recovering the hygroscopic capacity of the polymer hygroscopic material 34), it is possible to suppress the decrease in the dehumidifying capacity.
  • the dehumidifying device 100 according to the eighth aspect of the present invention is the dehumidifying device 100 according to any one of the fourth to sixth aspects, wherein the outside air humidity sensor 83 detects the outside air humidity and the exhaust humidity sensor detects the exhaust humidity discharged from the moisture absorption chamber 35. 82, and the control unit 80 is configured to perform the dehydration mode process when the humidity difference between the outside air humidity and the exhaust humidity decreases to a predetermined value or less.
  • the moisture absorption amount of the hygroscopic material (polymer hygroscopic material 34) approaches a saturated state and the hygroscopic capacity is reduced by detecting the difference in humidity between the outside air humidity and the exhaust humidity, and processing in the dehydration mode is performed.
  • the recovery it is possible to suppress a decrease in the dehumidifying capacity by restoring the hygroscopic capacity of the hygroscopic material (polymer hygroscopic material 34).
  • the dehumidifying device 100 according to the ninth aspect of the present invention is the dehumidifying device 100 according to any one of the first to eighth aspects, wherein the hygroscopic material (polymer) is positioned below the hygroscopic material (polymer hygroscopic material 34) in the moisture absorbing chamber 35.
  • a drain port 36 for draining liquid moisture released from the hygroscopic material 34 is provided.
  • liquid moisture released from the moisture absorbent (polymer moisture absorbent 34) can be discharged to the outside of the dehumidifier. Further, by turning the air introduced from outside in the moisture absorption chamber 35, dust, dust, etc. in the air can be separated and dropped from the air and discharged from the drain port 36.
  • the control unit 80 makes the rotational speed of the blower fan 40 in the dehydration mode faster than the rotational speed of the blower fan 40 in the dehumidifying mode. It is a configuration.
  • the air containing the moisture to be dehumidified is sufficiently permeated into the hygroscopic material (polymer hygroscopic material 34) to improve the dehumidifying efficiency.
  • the wind speed in the dehydration mode is relatively high, water droplets can be blown off from the surface of the moisture absorbent (polymer moisture absorbent 34) and drained efficiently.
  • the present invention can be applied to a dehumidifying device that absorbs moisture in the air using a hygroscopic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 除湿効率が高い除湿装置を提供する。内壁面に吸湿材(高分子吸湿材34)が装着された吸湿室(35)を備え、上記吸湿材(高分子吸湿材34)は、所定の感温点以下の温度では水分を吸湿し、上記感温点を超える温度では液体状態の水分を放出する材質からなり、上記吸湿室(35)に導入された空気は当該吸湿室(35)内を上記内壁面に沿って渦状に流れた後に当該吸湿室(35)から排出される。

Description

除湿装置
 本発明は、吸湿材を用いて空気中の水分を除湿する除湿装置に関するものである。
 従来、吸湿材を用いて空気中の水分を除湿する除湿装置として、デシカント式の除湿装置が知られている(例えば特許文献1,2参照)。
 デシカント式の除湿装置では、通気性のロータ(例えばハニカム状のロータ)に塗布されたゼオライトやシリカゲル等の吸湿材に室内の空気を当てて空気中の水分を吸着させるとともに、水分を吸着した吸湿材にヒータで温めた高温の風を当てることで吸着されている水分を水蒸気として放出させ、水蒸気を含んだ高温の空気を熱交換機で冷却することで水分を取出すようになっている。
日本国公開特許公報「特開2000-126540号公報(2000年5月9日公開)」 日本国公開特許公報「特開2010-69428号公報(2010年4月2日公開)」
 しかしながら、上記特許文献1,2に記載されている除湿装置は、除湿対象の空気が円板状の吸湿材の一部を板面に垂直な方向に通過する構成(例えばハニカム状に設けた多数の通気孔を通過する構成)である。このため、除湿対象の空気は吸湿材を一度通過すると再び吸湿材に接触することはないため(除湿対象の空気と吸湿材との接触は基本的に1回だけのため)、接触時間が短く、除湿効率が低いという問題がある。
 また、吸湿した水分を脱水するためには、吸湿材に吸湿された水分を200℃以上の高温の空気を吸湿材に当てることによって吸湿材から水蒸気として放出させ、それを冷却することで結露させて水分を取り出す必要があるので、消費電力が大きく、構造が複雑になるという問題がある。
 本発明は、上記の問題点に鑑みて成されたものであり、その目的は、除湿効率の高い除湿装置を提供することにある。
 本発明の一態様にかかる除湿装置は、空気中の水分を吸湿材に吸湿させて除湿する除湿装置であって、内壁面に吸湿材が装着された吸湿室を備え、上記吸湿材は、所定の感温点以下の温度では水分を吸湿し、上記感温点を超える温度では液体状態の水分を放出する材質からなり、上記吸湿室に導入された空気が当該吸湿室内を上記内壁面に沿って渦状に流れた後に当該吸湿室から排出されることを特徴としている。
 上記の構成によれば、吸湿室の内壁面に吸湿材が装着されており、吸湿室に導入された空気が吸湿室内を内壁面に沿って渦状に流れた後に排出されるので、空気と吸湿材との接触時間を長くすることができ、それによって除湿効率を向上することができる。また、吸湿材を感温点以上に加熱するだけで吸湿材に吸湿された水分を液体状態の水として放出させることができるので、従来のデシカント式の除湿装置よりも消費電力を低減するとともに構造を簡略化することができる。
本発明の実施形態1にかかる除湿装置の外観を示す斜視図である。 (a)は図1に示した除湿装置の縦断面図であり、(b)は図1に示した除湿装置の横断面図である。 図1に示した除湿装置の制御系の構成を示す説明図である。 図1に示した除湿装置における処理の流れを示すフローチャートである。 図1に示した除湿装置における脱水処理時の状態を示す縦断面図である。 本発明の実施形態2にかかる除湿装置における処理の流れを示すフローチャートである。 図6に示した除湿装置における脱水処理時の状態を示す縦断面図である。 本発明の実施形態4にかかる除湿装置における制御系の構成を示す説明図である。 図8に示した除湿装置における処理の流れを示すフローチャートである。 本発明の実施形態5にかかる除湿装置における制御系の構成を示す説明図である。 図10に示した除湿装置における処理の流れを示すフローチャートである。 本発明の実施形態6にかかる除湿装置における制御系の構成を示す説明図である。 図12に示した除湿装置における処理の流れを示すフローチャートである。
  〔実施形態1〕
 本発明の一実施形態について説明する。
 図1は本実施形態にかかる除湿装置100の外観を示す斜視図である。また、図2は除湿装置100の縦断面図(鉛直面の断面図)、図3は除湿装置100の横断面図(水平面の断面図)である。
 これら各図に示すように、除湿装置100は、筐体10、吸気口20、吸湿ユニット30、送風ファン40、排気口50、排水タンク60、および操作部70を備えている。
 吸気口20は筐体10の背面側に設けられており、送風ファン40の吸引力によって吸気口20から吸気された空気(矢印Ain参照)はフィルタ21および吸気路22を介して吸湿ユニット30に導入される。吸湿ユニット30では吸気路22から導入された空気の除湿が行われ、除湿された空気は送風ファン40の吸引力によって排気路41を介して排気口50から排出される(矢印Aout参照)。
 また、吸湿ユニット30で空気中から除湿された水分は、吸湿ユニット30の下部に設けられた排水口36から除湿装置100の下部に設けられた排水タンク60に排出される。
 排水タンク60は、筐体10に対して取り外し可能に備えられており、排水タンク60内に排水された水を適宜除去できるようになっている。なお、排水タンク60を省略し、排水口36から排出される水分を除湿装置100の外部に直接排出してもよく、排水口36から排水管(あるいは排水ホース)を介して排出してもよい。
 吸湿ユニット30は、略円筒形状の外殻部31を備えた吸湿室(サイクロン室)35を備えている。また、外殻部31の内壁面(内周面)に対向する位置には、加熱ヒータ32、基材33、および高分子吸湿材34が外殻部31側からこの順で配置されている。なお、吸湿室35は必ずしも円筒形状でなくてもよく、例えば略円錐形状であってもよい。
 また、吸気路22は、吸湿室35の上部における吸湿室35の円筒形状の中心に対して偏心した位置に略周方向に沿って空気を流入させるように配置されている。これにより、吸気路22から吸湿室35に流入した空気は、吸湿室35の内壁面(内周面)に沿って旋回しながら上部から下部へ移動し、吸湿室35の下部に到達した空気は吸湿室35の中心部を通って上昇し、吸湿室35の上部における円筒形状の中心に対応する位置に設けられた排気路41から排気口50へ排出される。
 高分子吸湿材34は基材33の内周面側に周方向の全域にわたって装着されており、加熱ヒータ32は基材33における外殻部31側の面に対向するように配置されている。なお、本実施形態では、基材33の内周面に周方向の全域にわたって高分子吸湿材34が設けられているが、必ずしも周方向の全域に設けられていなくてもよい。
 また、高分子吸湿材34は、基材33に対して塗り付けて装着されていてもよく、基材33に対して接着剤等で貼り付けて装着されていてもよく、ピン等を用いて接合されて装着されていてもよく、枠やメッシュ等で固定されていてもよい。また、基材33における高分子吸湿材34の塗布面に、接合性を向上させるために、凹凸を設けたり、表面の目粗しを行ったりしてもよい。
 高分子吸湿材34としては、当該高分子吸湿材34の材質に応じて定まる所定の感温点以下の温度領域では親水性(吸湿性)を示し、感温点を超える温度では相転移により疎水性(脱水性)を示す材料を用いる。なお、乾燥体である感温性高分子吸湿材は、吸湿工程で空気中の水分(水蒸気)を吸着及び吸収する。これを学術的には収着と称すが、本明細書では内部に吸収された水分を放出することを主眼としているため、感温点以下で生じる収着現象を吸湿又は水分の吸収と称し、感温点を超える温度で液体状態の水を放出する現象を水の放出又は脱水(脱水工程)と称する。
 具体的には、高分子吸湿材34としては、例えば、ポリN-イソプロピルアクリルアミド(PNIPAM)及びその誘導体、ポリビニルエーテル及びその誘導体等の感温性高分子などの乾燥体を用いることができる。なお、上記感温点は、高分子吸湿材の材質を調製することにより適宜調整することができる。また、高分子吸湿材34における上記の現象(感温点以下で吸湿性を示し、感温点を超える温度で脱水性を示す現象)は可逆性を有するものであり、温度変化を繰り返して与えることにより、常温での空気に含まれる水分の吸湿と、加熱による水滴放出とを繰り返して行わせることができる。また、上記の材料からなる高分子吸湿材34は、吸着熱がほとんど生じず、上記の温度変化を繰り返し与えても吸湿力を持続できる。本実施形態では、上記感温点が常温より高い所定温度範囲内(好ましくは40~70℃、さらに好ましくは50~60℃の範囲内の所定温度)になるように高分子吸湿材34の材質を調整している。
 基材33は、吸湿室35の外殻部31に加熱ヒータ32を挟んで対向するように取り付けられており、高分子吸湿材34を保持するとともに、加熱ヒータ32からの熱を高分子吸湿材34に伝達する。なお、基材33の材質は、高分子吸湿材34を保持するための適度な強度と、加熱ヒータ32からの熱を高分子吸湿材34に伝達するための熱伝導性とを有する材質であれば特に限定されるものではないが、例えば、アルミニウムや鉄等の金属、熱伝導性を有する樹脂やセラミックなどを用いることができる。
 加熱ヒータ32は、吸湿室35の外殻部31と基材33との間に配置されており、後述する脱水処理時に高分子吸湿材34を感温点以上の温度に加熱して高分子吸湿材34に吸湿された水分を脱水させる。加熱ヒータ32の構成は、特に限定されるものではなく、高分子吸湿材34を感温点以上の温度に加熱させることができる構成であればよい。
 図3は、除湿装置100における制御系の構成を示す説明図である。この図に示すように、除湿装置100は、操作部70および制御部80を備えている。
 操作部70は、ユーザからの指示入力(例えば、電源オン/オフの指示、除湿処理の開始/停止の指示、脱水処理の開始/停止の指示、動作時間などの各種設定指示など)を受け付けて制御部80に伝達する。なお、本実施形態では、図1に示したように、操作部70が筐体10の上面に配置されているが、これに限るものではない。操作部70は、例えば、正面あるいは側面に配置されていてもよく、リモコン等による無線入力を受け付けるものであってもよい。
 制御部80は、操作部70を介して伝達されるユーザからの指示入力に応じて除湿装置100の各部(送風ファン40および加熱ヒータ32など)の動作を制御する。なお、制御部80は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)がソフトウェア(プログラム)を実行することにより実現してもよい。
 図4は、除湿装置100における処理の流れを示すフローチャートである。
 制御部80は、除湿装置100の電源がオンされると、操作部70を介して除湿処理の開始指示が入力されたか否かを判断する(S1)。
 S1において除湿処理(除湿モード)の開始指示が入力されたと判断した場合、制御部80は、送風ファン40の回転を開始させ(オン)、加熱ヒータ32についてはオフのまま維持して除湿処理を行わせる(S2)。
 これにより、送風ファン40の吸引力によって吸湿室35内に吸引された空気は吸湿室35の内壁面(内周面)に沿って旋回しながら移動し、高分子吸湿材34に満遍なく接触する。その結果、吸入された空気中の水分が高分子吸湿材34に効率よく吸湿され、水分を除湿されて乾燥した空気が排気口50から排出される。
 S2の処理の後、制御部80は、操作部70を介して除湿処理の停止指示が入力されたか否かを判断し(S3)、停止指示が入力されていない場合にはS2の動作状態を継続させる。
 S3において除湿処理の停止指示が入力されたと判断した場合、制御部80は、送風ファン40の回転を停止させ(オフ)、加熱ヒータ32についてはオフのまま維持する(S4)。
 S1において除湿処理の開始指示が入力されていないと判断した場合、およびS4の処理を行った後、操作部70を介して脱水処理(脱水モード)の開始指示が入力されたか否かを判断する(S5)
 S5において脱水処理の開始指示が入力されたと判断した場合、制御部80は、送風ファン40をオフのまま維持し、加熱ヒータ32をオンにして脱水処理を行わせる(S6)。
 これにより、高分子吸湿材34が感温点以上に加熱されて高分子吸湿材34に吸湿されていた水分が液体として放出され、図5に示すように、高分子吸湿材34の表面で水滴になる。また、水滴になった水分は高分子吸湿材34を伝って排水口36から排水タンク60に排出される。
 S6の処理の後、制御部80は、操作部70を介して脱水処理の停止指示が入力されたか否かを判断し(S7)、停止指示が入力されていない場合にはS6の動作状態を継続させる。
 S7において脱水処理の停止指示が入力されたと判断した場合、制御部80は、送風ファン40の回転を停止させ(オフ)、加熱ヒータ32についてはオフのままにする(S8)。
 S5において脱水処理の開始指示が入力されていないと判断した場合、およびS8の処理を行った後、制御部80は、操作部70を介して電源オフ指示が入力されたか否かを判断し(S9)、入力されたと判断した場合には処理を終了する。一方、電源オフ指示が入力されていないと判断した場合、制御部80は、S1の処理に戻る。
 以上のように、本実施形態にかかる除湿装置100は、吸入された外気が内壁面(内周面)に沿って旋回しながら移動するように形成された吸湿室35と、吸湿室35の内壁面に設置された高分子吸湿材34とを備えている。
 これにより、吸入した外気を高分子吸湿材34の全体に比較的長時間接触させることができるので、除湿効率を向上させることができる。すなわち、高分子吸湿材34は、液体状態の水に直接触れさせれば自重の数十倍あるいはそれ以上の水分を吸湿する能力があるが、空気中の気体状態の水分については、通常は、液体状態の水に直接触れさせた場合ほどの吸湿効果は得られない。これに対して、本実施形態では、除湿装置100内に取り入れた外気を吸湿室35の内壁面に沿って旋回させることにより、内壁面(内周面)に設置された高分子吸湿材34に広範囲にわたって満遍なく比較的長時間接触させることができるので、高分子吸湿材34に効果的に吸湿させて吸湿効率を向上させることができる。
 また、本実施形態にかかる除湿装置100は、高分子吸湿材34を当該高分子吸湿材34の感温点以上の温度に加熱する加熱ヒータ32と、吸湿室35の下部に設けられた排水口36とを備えている。
 これにより、高分子吸湿材34を加熱ヒータ32によって感温点以上に加熱することで、高分子吸湿材34に吸湿された水分を液体として放出させ、放出された水滴を下方に移動させて排水口36から排出させることができる。例えば、吸湿状態から脱水状態へと状態変化する感温点が40℃程度である高分子吸湿材34を用いることにより、脱水処理時に加熱ヒータ32によって40~60℃に加熱するだけで吸湿された水分を液体として放出させることができ、さらに吸湿室35内を渦状に流れる風によって放出された水分を効率的に排出させることができる。また、吸湿処理時には高分子吸湿材34の温度を室温程度に戻すだけで空気中の水分を吸湿する状態に簡単に戻すことができる。
したがって、上述した従来のデシカント式除湿装置とは異なり、吸湿材に吸着させた水分を水蒸気として放出させるための加熱処理、および吸湿材から放出された水蒸気を水に替えるための冷却処理を行う必要がないので、エネルギ効率を向上させることができる。
 また、本実施形態では、吸湿室35に吸引された空気が吸湿室35内を旋回しながら移動する。これにより、サイクロン方式の掃除機と同様、空気中のゴミや埃等を空気と分離させて落下させ、排水口36から排出させることができる。したがって、ゴミや埃を除去した清潔な空気を排水口36から排出することができる。また、吸入口11に設けられるフィルタ12は大きなゴミや埃等を除去できればよいので、フィルタ12として開口率が比較的大きいフィルタを用いることができる。このため、開口率の小さいフィルタを用いる場合に比べて送風ファン40の吸引負荷を低減して消費電力を低減できる。
 なお、本実施形態では、ユーザが操作部70を介して除湿処理の開始指示を行ったときに除湿処理を開始するものとしたが、これに限るものではない。例えば、除湿装置100の外気の湿度を検知する外気湿度センサ(図示せず)を設けておき、外気の湿度が予め設定された設定値以上になったときに制御部80が自動的に除湿処理を開始させるようにしてもよい。
  〔実施形態2〕
 本発明の他の実施形態について説明する。なお、説明の便宜上、実施形態1で説明した部材と同じ機能を有する部材には同じ符号を付し、その説明を省略する。
 図6は、本実施形態における除湿装置100の処理の流れを示すフローチャートである。図6における実施形態1の図4との相違点は、図4のS6の処理に代えてS6bの処理を行う点であり、その他の点は図4と同様である。
 すなわち、実施形態1では、図4のS6に示したように、脱水処理時に送風ファン40を停止させて加熱ヒータ32をオンにしていた。これに対して、本実施形態では、図6のS6bに示すように、脱水処理時に、送風ファン40を回転させた状態で加熱ヒータ32をオンにする。
 図7は、除湿装置100におけるS6bの処理を行っている状態の断面図である。この図に示すように、本実施形態では、保湿処理時に送風ファン40を回転させたまま加熱ヒータ32による加熱を行う。これにより、高分子吸湿材34から放出された液体の水分は高分子吸湿材34の表面で水滴になる。また、送風ファン40の吸引力によって吸湿室35に吸引された空気は吸湿室35内を内壁面に沿って旋回しながら移動する。このため、高分子吸湿材34の表面で多数の水滴が内壁面に沿って旋回する風によって内壁面上を移動させられ、他の水滴とぶつかって結合することでより大きな水滴になる。その結果、水滴の自重が増して下方に移動・滴下しやすくなるので、放出された水分の回収効率を向上させることができる。
 なお、制御部80が、除湿処理時と脱水処理時とで送風ファン40の回転数(回転速度)を変化させるようにしてもよい。例えば、脱水処理時には、送風ファン40の吸引力によって吸湿室35内に生じる風の風速が、高分子吸湿材34の表面に析出した水滴が高分子吸湿材34の表面を移動する程度の風速になるように送風ファン40の回転数を調整すればよい。また、除湿処理時には、吸湿室35に導入された空気が吸湿室35の内壁に沿って旋回することで高分子吸湿材34の全体に満遍なく接触する程度の風速になるように送風ファン40の回転数を調整すればよい。これにより、吸湿室35内での風速を除湿処理および脱水処理のそれぞれに適した風速に設定し、除湿効率および脱水効率を最適化することができる。
  〔実施形態3〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態で説明した部材と同じ機能を有する部材には同じ符号を付し、その説明を省略する。
 上述した各実施形態では、吸湿室35の外殻部31と基材33との間に加熱ヒータ32を配置した構成について説明した。
 これに対して、本実施形態では、基材33として加熱ヒータ32の機能を兼ね備えた部材を用い、加熱ヒータ32を省略する。上記部材としては、例えば、セラミックヒータなどを用いることができる。これにより、除湿装置100の部品数を低減し、構造を簡略化させることができる。また、高分子吸湿材34を効率よく加熱することができる。
  〔実施形態4〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態で説明した部材と同じ機能を有する部材には同じ符号を付し、その説明を省略する。
 上述した各実施形態では、操作部70を介して脱水処理の開始指示が入力されたときに、制御部80が脱水処理を開始させる構成について説明した。これに対して、本実施形態では、除湿処理を開始した後、所定時間が経過した時に脱水処理を行う。
 図8は、本実施形態にかかる除湿装置100における制御系の構成を示す説明図である。この図に示すように、本実施形態にかかる除湿装置100は、実施形態1で示した構成に加えて、計時部81を備えている。
 図9は、本実施形態における除湿装置100の処理の流れを示すフローチャートである。
 制御部80は、除湿装置100の電源がオンされると、操作部70を介して除湿処理の開始指示が入力されたか否かを判断する(S11)。
 S11において除湿処理の開始指示が入力されていないと判断した場合、制御部80はS11の処理を継続し、除湿処理の開始指示が入力されることを監視する。
 S11において除湿処理の開始指示が入力されたと判断した場合、制御部80は、計時部81に除湿処理時間の計時を開始させるとともに(S12)、送風ファン40を起動(オン)させて除湿処理を開始させる(S13)。
 その後、制御部80は、計時部81が計時している除湿処理時間に基づいて除湿処理の開始から所定時間が経過したか否かを判断する(S14)。
 S14において除湿処理の開始から所定時間が経過したと判断した場合、制御部80は、計時部81が計時している除湿処理時間をリセットさせ(S15)、計時部81に脱水処理時間の計時を開始させるとともに(S16)、送風ファン40および加熱ヒータ32を制御して脱水処理を開始させる(S17)。なお、本実施形態では、脱水処理時に加熱ヒータ32をオンさせ、送風ファン40を停止(オフ)させるものとしているが、これに限らず、実施形態2と同様、脱水処理時に送風ファン40を駆動させたまま加熱ヒータ32をオンするようにしてもよい。
 その後、制御部80は、計時部81が計時している脱水処理時間に基づいて脱水処理の開始から所定時間が経過したか否かを判断する(S18)。
 S18において脱水処理の開始から所定時間が経過していないと判断した場合、制御部80は、S17に戻って脱水処理を継続する。
 一方、S18において脱水処理の開始から所定時間が経過していないと判断した場合、制御部80は、計時部81が計時している脱水処理時間をリセットさせ(S19)、S12の処理に戻る。
 また、S14において除湿処理の開始から所定時間が経過していないと判断した場合、制御部80は、操作部70を介して除湿処理の停止指示が入力されたか否かを判断する(S20)。
 S20において除湿処理の停止指示が入力されていないと判断した場合、制御部80は、S13に戻って除湿処理を継続する。
 一方、S20において除湿処理の停止指示が入力されたと判断した場合、制御部80は、送風ファン40を停止させて除湿処理を終了させ(S21)、操作部70を介して電源オフ指示が入力されたか否かを判断する(S22)。そして、S22において電源オフ指示が入力されていないと判断した場合、制御部80はS11の処理に戻る。一方、S22において電源オフ指示が入力されたと判断した場合、制御部80は処理を終了する。
 これにより、除湿処理を開始してから所定時間が経過した時に高分子吸湿材34の脱水処理を自動的に行わせることができるので、高分子吸湿材34の吸湿能力が低下して除湿効率が低下することを防止することができる。
  〔実施形態5〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態で説明した部材と同じ機能を有する部材には同じ符号を付し、その説明を省略する。
 図10は、本実施形態にかかる除湿装置100における制御系の構成を示す説明図である。この図に示すように、本実施形態にかかる除湿装置100は、実施形態4で示した構成に加えて、排気湿度センサ82を備えている。排気湿度センサ82は、排気路41内または排気口50の近傍に配置され、除湿装置100の排気湿度を検知して制御部80に伝達する。
 実施形態4では除湿処理を開始してから所定時間が経過する毎に脱水処理を行う構成について説明したが、本実施形態では除湿装置100の排気湿度を排気湿度センサ82で検知し、排気湿度センサ82の検知結果に応じて脱水処理を自動的に行う。
 図11は、本実施形態における除湿装置100の処理の流れを示すフローチャートである。
 制御部80は、除湿装置100の電源がオンされると、操作部70を介して除湿処理の開始指示が入力されたか否かを判断する(S31)。
 S31において除湿処理の開始指示が入力されていないと判断した場合、制御部80はS31の処理を継続し、除湿処理の開始指示が入力されることを監視する。
 S31において除湿処理の開始指示が入力されたと判断した場合、送風ファン40を起動(オン)させて除湿処理を開始させる(S32)。
 その後、制御部80は、排気湿度センサ82の検知結果に基づいて除湿装置100の排気湿度が予め設定された所定値以上に上昇したか否かを判断する(S33)。なお、除湿処理を開始してから所定時間が経過するまではS33の処理は行わずにS37の処理に移行するようにしてもよい。
 S33において排気湿度が所定値以上に上昇したと判断した場合、制御部80は、計時部81に脱水処理時間の計時を開始させるとともに(S34)、送風ファン40および加熱ヒータ32を制御して脱水処理を開始させる(S35)。なお、本実施形態では、脱水処理時に加熱ヒータ32をオンさせ、送風ファン40を停止(オフ)させるものとしているが、これに限らず、実施形態2と同様、脱水処理時に送風ファン40を駆動させたまま加熱ヒータ32をオンするようにしてもよい。
 その後、制御部80は、計時部81が計時している脱水処理時間に基づいて脱水処理の開始から所定時間が経過したか否かを判断する(S36)。
 S36において脱水処理の開始から所定時間が経過していないと判断した場合、制御部80は、S35に戻って脱水処理を継続する。
 一方、S36において脱水処理の開始から所定時間が経過していないと判断した場合、制御部80は、計時部81が計時している脱水処理時間をリセットさせ(S37)、S32の処理に戻る。
 また、S33において排気湿度が所定値以上に上昇していないと判断した場合、制御部80は、操作部70を介して除湿処理の停止指示が入力されたか否かを判断する(S38)。
 S38において除湿処理の停止指示が入力されていないと判断した場合、制御部80は、S32の処理に戻って除湿処理を継続する。
 一方、S38において除湿処理の停止指示が入力されたと判断した場合、制御部80は、送風ファン40を停止させて除湿処理を終了させ(S39)、操作部70を介して電源オフ指示が入力されたか否かを判断する(S40)。そして、S40において電源オフ指示が入力されていないと判断した場合、制御部80はS31の処理に戻る。一方、S40において電源オフ指示が入力されたと判断した場合、制御部80は処理を終了する。
 これにより、高分子吸湿材34の吸湿量が増加して吸湿性が低下し、排気湿度が所定値以上に上昇したときに、脱水処理を自動的に行わせることができるので、除湿効率が低下することを防止することができる。
 なお、本実施形態における排気湿度に応じて脱水処理を自動的に行う構成と、実施形態4における除湿処理を開始してから所定時間が経過したときに脱水処理を自動的に行う構成とを組み合わせて用いてもよい。
  〔実施形態6〕
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、上述した実施形態で説明した部材と同じ機能を有する部材には同じ符号を付し、その説明を省略する。
 図12は、本実施形態にかかる除湿装置100における制御系の構成を示す説明図である。この図に示すように、本実施形態にかかる除湿装置100は、実施形態5で示した構成に加えて、外気湿度センサ83を備えている。外気湿度センサ83は、除湿装置100の外気湿度を検知して制御部80に伝達する。なお、外気湿度センサ83の設置位置は、除湿装置100の外気湿度を検出できる位置であれば特に限定されるものではないが、例えば吸気路22内または吸気口20の近傍に配置される。
 図13は、本実施形態における除湿装置100の処理の流れを示すフローチャートである。
 実施形態5の図11と異なる点は、制御部80が、図11のS33の処理に代えてS33bの処理を行う点であり、その他の点は同様である。
 S33bにおいて、制御部80は、外気湿度センサ83が検知した外気湿度と排気湿度センサ82が検知した排気湿度との湿度差を算出し、算出した湿度差が所定値以下に低下したか否かを判断する(S33b)。そして、所定値以下に低下したと判断した場合にはS34の処理に進み、所定値以下に低下していないと判断した場合にはS38の処理に進む。
 これにより、高分子吸湿材34の吸湿量が増加して吸湿性が低下し、外気湿度と排気湿度との湿度差が所定値以下に低下したときに、脱水処理を自動的に行わせることができるので、除湿効率が低下することを防止することができる。
 なお、本実施形態における外気湿度と排気湿度との湿度差に応じて脱水処理を自動的に行う構成と、実施形態4における除湿処理を開始してから所定時間が経過したときに脱水処理を自動的に行う構成とを組み合わせて用いてもよい。
  〔まとめ〕
 本発明の態様1にかかる除湿装置100は、空気中の水分を吸湿材(高分子吸湿材34)に吸湿させて除湿する除湿装置100であって、内壁面に吸湿材(高分子吸湿材34)が装着された吸湿室35を備え、上記吸湿材(高分子吸湿材34)は、所定の感温点以下の温度では水分を吸湿し、上記感温点を超える温度では液体状態の水分を放出する材質からなり、上記吸湿室35に導入された空気が当該吸湿室35内を上記内壁面に沿って渦状に流れた後に当該吸湿室35から排出されることを特徴としている。
 上記の構成によれば、吸湿室35の内壁面に吸湿材(高分子吸湿材34)が装着されており、吸湿室35に導入された空気が吸湿室35内を内壁面に沿って渦状に流れた後に排出されるので、空気と吸湿材(高分子吸湿材34)との接触時間を長くすることができ、それによって除湿効率を向上させることができる。また、吸湿材(高分子吸湿材34)を感温点以上に加熱するだけで吸湿材(高分子吸湿材34)に吸湿された水分を液体状態の水として放出させることができるので、従来のデシカント式の除湿装置よりも消費電力を低減するとともに構造を簡略化することができる。また、外部から導入された空気を吸湿室35内で旋回させることにより、サイクロン方式の掃除機と同様、空気中のゴミや埃等を空気と分離・落下させることができる。
 本発明の態様2にかかる除湿装置100は、上記態様1において、上記吸湿材(高分子吸湿材34)を上記感温点以上の温度に加熱する加熱部材(加熱ヒータ32)を備えている構成である。
 上記の構成によれば、加熱部材(加熱ヒータ32)によって吸湿材(高分子吸湿材34)を感温点以上の温度に加熱することにより、吸湿材(高分子吸湿材34)に吸湿された水分を簡単に放出させることができる。また、上述した従来のデシカント式除湿装置のように吸湿材に吸着された水分を水蒸気として放出させるための加熱処理および吸湿材から放出された水蒸気を水に替えるための冷却処理を行う必要がないので、エネルギ効率を向上させることができる。
 本発明の態様3にかかる除湿装置100は、上記態様2において、上記吸湿室35の外殻部31に対向配置された基材33を備え、上記吸湿材(高分子吸湿材34)は上記基材33に装着されており、上記加熱部材(加熱ヒータ32)が上記基材33と上記外殻部31との間に配置されているか、あるいは上記基材33が上記吸湿材(高分子吸湿材34)を保持する機能と上記加熱部材(加熱ヒータ32)の機能とを兼ね備えている構成である。
 上記の構成によれば、加熱部材(加熱ヒータ32)を吸湿材(高分子吸湿材34)に近接する位置に配置することができるので、吸湿材(高分子吸湿材34)を効率よく加熱することができる。
 本発明の態様4にかかる除湿装置100は、上記態様2または3において、吸引力を生じさせて上記吸湿室35に空気を導入させる送風ファン40と、上記送風ファン40および上記加熱部材(加熱ヒータ32)の動作を制御し、上記加熱部材(加熱ヒータ32)を非稼働にして上記送風ファン40を駆動させる除湿モードと上記加熱部材(加熱ヒータ32)を稼働させて上記吸湿材(高分子吸湿材34)に吸湿された水分を放出させる脱水モードとを切り替える制御部80とを備え、上記制御部80は、上記除湿モードでは上記加熱部材(加熱ヒータ32)を非稼働にした状態で上記送風ファン40を稼働させ、上記脱水モードでは上記送風ファン40を非稼働にした状態で上記加熱部材(加熱ヒータ32)を稼働させる構成である。
 上記の構成によれば、除湿モードにおいて加熱部材(加熱ヒータ32)を非稼働にすることで、吸湿材(高分子吸湿材34)の全域を用いて除湿することができるので除湿効率を向上させることができる。また、除湿モードでは加熱部材(加熱ヒータ32)を非稼働とし、脱水モードの場合に加熱部材(加熱ヒータ32)を起動することにより、消費電力を低減できる。
 本発明の態様5にかかる除湿装置100は、上記態様2または3において、吸引力を生じさせて上記吸湿室35に空気を導入させる送風ファン40と、上記送風ファン40および上記加熱部材(加熱ヒータ32)の動作を制御し、上記加熱部材(加熱ヒータ32)を非稼働にして上記送風ファン40を駆動させる除湿モードと上記加熱部材(加熱ヒータ32)を稼働させて上記吸湿材(高分子吸湿材34)に吸湿された水分を放出させる脱水モードとを切り替える制御部80とを備え、上記制御部80は、上記除湿モードでは上記加熱部材(加熱ヒータ32)を非稼働にした状態で上記送風ファン40を稼働させ、上記脱水モードでは上記送風ファン40を稼働させた状態で上記加熱部材(加熱ヒータ32)を稼働させる構成である。
 上記の構成によれば、除湿モードにおいて加熱部材(加熱ヒータ32)を非稼働にすることで、吸湿材(高分子吸湿材34)の全域を用いて除湿することができるので除湿効率を向上させることができる。また、除湿モードでは加熱部材(加熱ヒータ32)を非稼働とし、脱水モードの場合に加熱部材(加熱ヒータ32)を起動することにより、消費電力を低減できる。また、送風ファン40を稼働させた状態で脱水モードの処理を行うことにより、吸湿材(高分子吸湿材34)の表面で結露した水滴同士が内壁面に沿って旋回する空気流によって内壁面上を移動し、他の水滴とぶつかって結合することでより大きな水滴になる。その結果、水滴の自重が増して下方に移動・滴下しやすくなるので、吸湿材(高分子吸湿材34)から放出された水分の回収効率を向上させることができる。
 本発明の態様6にかかる除湿装置100は、上記態様4または5において、上記制御部80は、上記除湿モードの処理を開始させた後、所定時間が経過した時に上記脱水モードの処理を行わせる構成である。
 上記の構成によれば、除湿モードの処理を開始させた後、所定時間が経過した時に脱水モードの処理を行わせることで、吸湿材(高分子吸湿材34)に吸湿された水分を定期的に放出させ、吸湿材(高分子吸湿材34)の吸湿能力を回復させて除湿能力の低下を抑制することができる。
 本発明の態様7にかかる除湿装置100は、上記態様4から6のいずれかにおいて、上記吸湿室35から排出される排気湿度を検出する排気湿度センサ82を備え、上記制御部80は、排気湿度が所定値以上に上昇したときに上記脱水モードの処理を行わせる構成である。
 上記の構成によれば、吸湿材(高分子吸湿材34)の吸湿量が飽和状態に近づいて吸湿能力が低下したことを排気湿度により検知し、脱水モードの処理を行わせることで吸湿材(高分子吸湿材34)の吸湿能力を回復させることで除湿能力の低下を抑制することができる。
 本発明の態様8にかかる除湿装置100は、上記態様4から6のいずれか1において、外気湿度を検出する外気湿度センサ83と、上記吸湿室35から排出される排気湿度を検出する排気湿度センサ82とを備え、上記制御部80は、外気湿度と排気湿度との湿度差が所定値以下に低下したときに上記脱水モードの処理を行わせる構成である。
 上記の構成によれば、吸湿材(高分子吸湿材34)の吸湿量が飽和状態に近づいて吸湿能力が低下したことを外気湿度と排気湿度との湿度差により検知し、脱水モードの処理を行わせることで吸湿材(高分子吸湿材34)の吸湿能力を回復させることで除湿能力の低下を抑制することができる。
 本発明の態様9にかかる除湿装置100は、上記態様1から8のいずれかにおいて、上記吸湿室35における上記吸湿材(高分子吸湿材34)よりも下方の位置に、上記吸湿材(高分子吸湿材34)から放出された液体状態の水分を排水する排水口36が設けられている構成である。
 上記の構成によれば、吸湿材(高分子吸湿材34)から放出された液体状態の水分を除湿装置の外部に排出することができる。また、外部から導入された空気を吸湿室35内で旋回させることにより、空気中のゴミや埃等を空気と分離・落下させ、排水口36から排出することができる。
 本発明の態様10にかかる除湿装置100は、上記態様5において、上記制御部80は、上記脱水モードにおける上記送風ファン40の回転速度を上記除湿モードにおける上記送風ファン40の回転速度よりも速くする構成である。
 上記の構成によれば、除湿モードにおける風速を比較的遅く設定することにより、除湿対象の湿気を含んだ空気を吸湿材(高分子吸湿材34)に十分に浸透させて除湿効率を向上させることができる。また、脱水モードにおける風速を比較的速く設定することにより、吸湿材(高分子吸湿材34)の表面から水滴を吹き飛ばし、効率よく排水させることができる。すなわち、脱水モードにおける風速が弱すぎると、吸湿材(高分子吸湿材34)の表面に放出された水滴が表面張力の寄与等によって吸湿材(高分子吸湿材34)に付着して吸湿材(高分子吸湿材34)から離脱せず、離脱する前に蒸発してしまう場合があるが、脱水モードにおける風速を速く設定することにより、吸湿材(高分子吸湿材34)の表面から水滴を吹き飛ばして効率よく排水させることができる。
 本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することもできる。
 本発明は、吸湿材を用いて空気中の水分を吸湿する除湿装置に適用できる。
10 筐体
11 吸入口
12 フィルタ
20 吸気口
21 フィルタ
22 吸気路
30 吸湿ユニット
31 外殻部
32 加熱ヒータ(加熱部材)
33 基材
34 高分子吸湿材(吸湿材)
35 吸湿室(サイクロン室)
36 排水口
40 送風ファン
41 排気路
50 排気口
60 排水タンク
70 操作部
80 制御部
81 計時部
82 排気湿度センサ
83 外気湿度センサ
100 除湿装置

Claims (6)

  1.  空気中の水分を吸湿材に吸湿させて除湿する除湿装置であって、
     内壁面に吸湿材が装着された吸湿室を備え、
     上記吸湿材は、所定の感温点以下の温度では水分を吸湿し、上記感温点を超える温度では液体状態の水分を放出する材質からなり、
     上記吸湿室に導入された空気が当該吸湿室内を上記内壁面に沿って渦状に流れた後に当該吸湿室から排出されることを特徴とする除湿装置。
  2.  上記吸湿材を上記感温点以上の温度に加熱する加熱部材を備えていることを特徴とする請求項1に記載の除湿装置。
  3.  上記吸湿室の外殻部に対向配置された基材を備え、
     上記吸湿材は上記基材に装着されており、
     上記加熱部材が上記基材と上記外殻部との間に配置されているか、あるいは上記基材が上記吸湿材を保持する機能と上記加熱部材の機能とを兼ね備えていることを特徴とする請求項2に記載の除湿装置。
  4.  吸引力を生じさせて上記吸湿室に空気を導入させる送風ファンと、
     上記送風ファンおよび上記加熱部材の動作を制御し、上記加熱部材を非稼働にして上記送風ファンを駆動させる除湿モードと上記加熱部材を稼働させて上記吸湿材に吸湿された水分を放出させる脱水モードとを切り替える制御部とを備え、
     上記制御部は、
     上記除湿モードでは上記加熱部材を非稼働にした状態で上記送風ファンを稼働させ、
     上記脱水モードでは上記送風ファンを非稼働にした状態で上記加熱部材を稼働させることを特徴とする請求項2または3に記載の除湿装置。
  5.  吸引力を生じさせて上記吸湿室に空気を導入させる送風ファンと、
     上記送風ファンおよび上記加熱部材の動作を制御し、上記加熱部材を非稼働にして上記送風ファンを駆動させる除湿モードと上記加熱部材を稼働させて上記吸湿材に吸湿された水分を放出させる脱水モードとを切り替える制御部とを備え、
     上記制御部は、
     上記除湿モードでは上記加熱部材を非稼働にした状態で上記送風ファンを稼働させ、
     上記脱水モードでは上記送風ファンを稼働させた状態で上記加熱部材を稼働させることを特徴とする請求項2または3に記載の除湿装置。
  6.  上記制御部は、上記脱水モードにおける上記送風ファンの回転速度を上記除湿モードにおける上記送風ファンの回転速度よりも速くすることを特徴とする請求項5に記載の除湿装置。
PCT/JP2015/072905 2014-10-16 2015-08-13 除湿装置 WO2016059864A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580038495.XA CN106659967A (zh) 2014-10-16 2015-08-13 除湿装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-212091 2014-10-16
JP2014212091A JP6433752B2 (ja) 2014-10-16 2014-10-16 除湿装置

Publications (1)

Publication Number Publication Date
WO2016059864A1 true WO2016059864A1 (ja) 2016-04-21

Family

ID=55746412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072905 WO2016059864A1 (ja) 2014-10-16 2015-08-13 除湿装置

Country Status (3)

Country Link
JP (1) JP6433752B2 (ja)
CN (1) CN106659967A (ja)
WO (1) WO2016059864A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050882B (zh) * 2017-09-04 2022-03-04 夏普株式会社 调湿装置
JP7051226B2 (ja) * 2018-05-25 2022-04-11 矢崎エナジーシステム株式会社 除湿構造体
KR102351105B1 (ko) * 2021-05-21 2022-01-17 (주)명성하나엔지니어링 제연구역 환기시스템
CN117123036A (zh) * 2023-08-31 2023-11-28 山东春源电气有限公司 一种配电变压器用变压器吸湿装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676798U (ja) * 1993-04-07 1994-10-28 三輪精機株式会社 エアドライヤ装置
JPH07328373A (ja) * 1994-06-07 1995-12-19 Nippon Soken Inc 水分除去装置
JPH08109824A (ja) * 1994-10-12 1996-04-30 Nippon Soken Inc 内燃機関用の未燃焼炭化水素の吸着装置
JP2004069257A (ja) * 2002-08-09 2004-03-04 Daikin Ind Ltd 調湿エレメント及び調湿装置
JP2004337694A (ja) * 2003-05-14 2004-12-02 Takayoshi Imai 除湿装置
JP2005095836A (ja) * 2003-09-26 2005-04-14 Canon Inc 排ガスの脱臭処理方法および排ガスの脱臭処理装置
JP2009517622A (ja) * 2005-11-28 2009-04-30 オプティマイアー ホールディング ベー フェー イー オー 露点冷却装置
JP2009136750A (ja) * 2007-12-05 2009-06-25 Osaka Gas Co Ltd デシカント除湿器及びデシカント空調システム
JP2009539014A (ja) * 2006-05-29 2009-11-12 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 気液混合物を分離するための装置
JP2014128745A (ja) * 2012-12-27 2014-07-10 Axis Co Ltd 除湿装置及びその除湿装置を適用した空気清浄器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676798U (ja) * 1993-04-07 1994-10-28 三輪精機株式会社 エアドライヤ装置
JPH07328373A (ja) * 1994-06-07 1995-12-19 Nippon Soken Inc 水分除去装置
JPH08109824A (ja) * 1994-10-12 1996-04-30 Nippon Soken Inc 内燃機関用の未燃焼炭化水素の吸着装置
JP2004069257A (ja) * 2002-08-09 2004-03-04 Daikin Ind Ltd 調湿エレメント及び調湿装置
JP2004337694A (ja) * 2003-05-14 2004-12-02 Takayoshi Imai 除湿装置
JP2005095836A (ja) * 2003-09-26 2005-04-14 Canon Inc 排ガスの脱臭処理方法および排ガスの脱臭処理装置
JP2009517622A (ja) * 2005-11-28 2009-04-30 オプティマイアー ホールディング ベー フェー イー オー 露点冷却装置
JP2009539014A (ja) * 2006-05-29 2009-11-12 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 気液混合物を分離するための装置
JP2009136750A (ja) * 2007-12-05 2009-06-25 Osaka Gas Co Ltd デシカント除湿器及びデシカント空調システム
JP2014128745A (ja) * 2012-12-27 2014-07-10 Axis Co Ltd 除湿装置及びその除湿装置を適用した空気清浄器

Also Published As

Publication number Publication date
JP2016077968A (ja) 2016-05-16
JP6433752B2 (ja) 2018-12-05
CN106659967A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2016059864A1 (ja) 除湿装置
US10195563B2 (en) Dehumidification device
JP4457932B2 (ja) 除湿装置
CN105297372B (zh) 一种衣物烘干系统及烘干方法、洗衣干衣一体机、干衣机
WO2024045477A1 (zh) 一种衣物处理装置
US8137440B2 (en) Dryer having structure for enhanced drying and method of use
US20160146479A1 (en) Dehumidification device and dehumidification system
CN103453621A (zh) 一种自动控温的转轮式除湿机
JP6770672B2 (ja) 空気清浄システム
US20080276802A1 (en) Dryer and drying apparatus with enhanced moisture removal
JP2011092785A (ja) ダクトレス乾燥機
JP2009285225A (ja) ハイブリッド式乾燥機
JP2005161316A (ja) 除湿機の制御装置
JP2006266607A (ja) 浴室乾燥装置
KR102175912B1 (ko) 외부열원을 이용하는 흡착제습식 바디 드라이어
EP2655726A1 (en) A heat pump laundry dryer
JP4710313B2 (ja) 除湿装置
JP2014100639A (ja) 除湿乾燥機
TWI651499B (zh) 除濕空調裝置
KR101501728B1 (ko) 데시칸트 제습기
JP3794430B1 (ja) カビ発生防止装置
WO2021230052A1 (ja) 乾燥機、乾燥方法および除湿フィルター
WO2014136544A1 (ja) 除湿機
CN106192285B (zh) 一种滚筒式洗衣机
TWM557811U (zh) 除濕空調裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850192

Country of ref document: EP

Kind code of ref document: A1