WO2016059777A1 - 吸着器 - Google Patents

吸着器 Download PDF

Info

Publication number
WO2016059777A1
WO2016059777A1 PCT/JP2015/005107 JP2015005107W WO2016059777A1 WO 2016059777 A1 WO2016059777 A1 WO 2016059777A1 JP 2015005107 W JP2015005107 W JP 2015005107W WO 2016059777 A1 WO2016059777 A1 WO 2016059777A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
medium
adsorbed
heat
unit
Prior art date
Application number
PCT/JP2015/005107
Other languages
English (en)
French (fr)
Inventor
伸介 竹内
永島 久夫
義之 岡本
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015143540A external-priority patent/JP6481541B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/516,295 priority Critical patent/US10539344B2/en
Priority to EP15850982.8A priority patent/EP3208558B1/en
Publication of WO2016059777A1 publication Critical patent/WO2016059777A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present disclosure relates to an adsorber that evaporates an adsorbed medium using an action of adsorbing an adsorbed medium in a gas phase, and exhibits a refrigerating capacity by the latent heat of evaporation. It is effective to apply.
  • an adsorbing portion in which an adsorbent that adsorbs and desorbs a medium to be adsorbed (for example, water) is filled in an airtight container maintained in a substantially vacuum, and a heat medium and a medium to be adsorbed supplied from the outside.
  • a medium to be adsorbed for example, water
  • an adsorber provided with an evaporating and condensing part (heat exchanger) for exchanging heat between them and evaporating or condensing the adsorbed medium (for example, see Patent Document 1).
  • the liquid-phase adsorbed medium is evaporated in the evaporative condensing unit in the sealed container to obtain the refrigerating capacity by the latent heat of evaporation, and the vapor-phase adsorbed medium is adsorbed in the adsorbing unit.
  • the evaporation is accelerated and the refrigeration capacity is continuously exerted.
  • the adsorber disclosed in Patent Document 1 uses a normal corrugated fin for the evaporating and condensing portion, and cannot hold the adsorbed medium directly on the heat transfer surface of the fin. For this reason, in order to secure a heat transfer area, the adsorbed medium is required to exceed the maximum adsorption capacity that can be adsorbed by the adsorption unit. In addition, there is a temperature difference (temperature amplitude) between the heat of the air-conditioning wind (during evaporation) and the heat of the external heat exchanger (during condensation) in the evaporative condensing part of the adsorber. If the amount of the medium is large, the heat capacity increases and the coefficient of performance (COP) of the adsorption refrigerator using the adsorber decreases.
  • COP coefficient of performance
  • the present disclosure aims to reduce the heat capacity of an adsorber including an adsorbent that adsorbs and desorbs a medium to be adsorbed.
  • a sealed container in which an adsorbed medium is enclosed, and an adsorbent that is provided inside the sealed container and adsorbs and desorbs the adsorbed medium.
  • An adsorbing unit, and an evaporation condensing unit that evaporates and condenses the adsorbed medium by exchanging heat with an externally supplied heat exchanging medium provided in the sealed container. It has a heat transfer part for transferring heat of the exchange medium to the adsorbed medium, and the heat transfer part is capable of holding an adsorbed medium in an amount that can be adsorbed by the adsorbent of the adsorbing part.
  • the heat transfer area for heat exchange between the adsorbed medium and the heat exchange medium is increased, and the heat exchange medium can be efficiently evaporated and condensed. .
  • the quantity of the to-be-adsorbed medium in an airtight container can be decreased as much as possible, and the heat capacity of the to-be-adsorbed medium can be minimized.
  • COP cooling output / heat amount required during operation
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is the schematic diagram which expanded a part of evaporation condensation part in 1st Embodiment. It is a schematic diagram which shows the specific example of the evaporation condensation part in 1st Embodiment.
  • FIG. 7A is a schematic diagram showing a state in which the adsorbed medium is evaporated and adsorbed by the adsorber in the first embodiment
  • FIG. 7A is a diagram showing evaporation of the adsorbed medium
  • FIG. 4 is a diagram showing heat exchange between an adsorbed medium and a heat exchange medium.
  • FIG. 8 is a schematic diagram illustrating a state where the adsorbed medium is desorbed and condensed in the adsorber according to the first embodiment
  • FIG. 8 is a schematic diagram illustrating a state where the adsorbed medium is desorbed and condensed in the adsorber according to the first embodiment
  • FIG. 8A is a diagram illustrating the condensation of the adsorbed medium desorbed from the adsorption unit.
  • FIG. 8B is a diagram showing a state where the adsorbed medium is held on the surface of the heat transfer section. It is a schematic diagram which shows the state which actuated the switching valve of the adsorption
  • FIG.14 (a) is a figure which shows the example comprised by the metal foam in the heat-transfer part
  • FIG.14 (b) is the example which provided the heat-transfer member in the fin
  • FIG.14 (c) is a figure which shows the example which comprised the heat-transfer member as a cut-and-raised part.
  • FIG.17 (a) is a figure which shows the example which comprised the heat-transfer part formed in several piping integrally
  • FIG.17 (b) is a multi-hole. It is a figure which shows the example which formed the heat-transfer part around the piping of a pipe
  • the adsorption refrigerator includes two adsorbers 100 and 200.
  • the first adsorber 100 and the second adsorber 200 have the same configuration, and when the adsorbing action is performed in one adsorber 100, 200, the desorbing action is performed in the other adsorber 100, 200.
  • the configuration of the adsorbers 100 and 200 will be described in detail later.
  • a heat exchange medium circulates from the vehicle running engine 300 or the vehicle air conditioner 400.
  • a pump (not shown) for circulating the heat exchange medium is provided in the circulation path of the heat exchange medium.
  • the engine 300 is a water-cooled internal combustion engine, and uses a fluid (engine cooling water) obtained by mixing water with an ethylene glycol antifreeze as a heat exchange medium for engine cooling.
  • the vehicle air conditioner 400 includes an air conditioning case 401 that forms a passage for air blown into the passenger compartment.
  • a blower 402 that circulates air in the air conditioning case 401 is provided on the upstream side of the air flow of the air conditioning case 401.
  • An indoor heat exchanger 403 that cools the air flowing through the air conditioning case 400 is provided on the downstream side of the air flow of the blower 402 in the air conditioning case 401.
  • the indoor heat exchanger 403 obtains a refrigerating capacity from the adsorbers 100 and 200 via a heat exchange medium for air conditioning.
  • a fluid obtained by mixing ethylene glycol antifreeze with water (same as engine cooling water) is used as a heat exchange medium for air conditioning.
  • the adsorption refrigerator of the present embodiment is provided with an outdoor heat exchanger 500 that exchanges heat between the heat exchange medium flowing out of the adsorbers 100 and 200 and outdoor air and cools the heat exchange medium.
  • the heat exchange medium cooled by the outdoor heat exchanger 500 flows into the adsorbers 100 and 200.
  • the adsorption type refrigerator of the present embodiment is provided with two switching valves 510 and 520 that switch the circulation path of the heat exchange medium that circulates in the adsorbers 100 and 200.
  • the operation of the switching valves 510 and 520, the pump (not shown) for circulating the heat exchange medium, and the blower 402 are controlled by an electronic control unit (not shown).
  • the adsorbers 100 and 200 will be described. Since the first adsorber 100 and the second adsorber 200 have the same configuration as described above, only the configuration of the first adsorber 100 will be described.
  • the adsorber 100 includes a sealed container 101, an adsorbing unit 102 and an evaporation condensing unit 103 provided in the sealed container 101.
  • the sealed container 101 has an airtight structure, and the inside is maintained in a substantially vacuum state.
  • An adsorbed medium (refrigerant) is sealed inside the sealed container 101. In this embodiment, water is used as the adsorbed medium.
  • the adsorption unit 102 and the evaporation condensing unit 103 of the present embodiment have substantially the same configuration, and transfer that promotes heat exchange between the pipes 102a and 103a through which the heat exchange medium flows and the heat exchange medium and the adsorbed medium. Heating portions 102b and 103b are provided.
  • the heat transfer parts 102b and 103b constitute fins.
  • the evaporative condensing unit 103 of the present embodiment is provided with 16 pipes 103a.
  • the pipe 103a is made of a metal having excellent thermal conductivity (in this embodiment, copper or a copper alloy).
  • the heat transfer section 103b is provided on the outer peripheral surface of the cylindrical pipe 103a.
  • the heat transfer section 103b has an enlarged heat transfer surface that directly holds the medium to be adsorbed on the surface and enlarges the heat transfer area as much as possible to exchange heat between the medium to be adsorbed and the heat exchange medium flowing through the pipe 103a. ing.
  • the heat transfer section 103b of the present embodiment is made of sintered metal.
  • Sintered metal is a metal powder or metal fiber that is excellent in thermal conductivity and is bonded by sintering without melting.
  • copper or a copper alloy can be used as the metal powder or the metal fiber.
  • the shape of the metal powder can be powdery, particulate, dendritic, scaly or fibrous.
  • the heat transfer section 103b having such a configuration is a porous heat transfer body having a high porosity, and can directly hold the adsorbed medium on the uneven surface. For this reason, in the heat transfer part 103b, the heat transfer area which heat-exchanges between a to-be-adsorbed medium and a heat exchange medium can be enlarged as much as possible, and evaporation and condensation of a heat exchange medium can be performed efficiently.
  • the heat transfer unit 103 b formed in the pipe 103 a at the lowest in the vertical direction is in contact with the bottom surface of the sealed container 101. That is, a part of the heat transfer unit 103 b of the evaporating and condensing unit 103 is in contact with the bottom surface of the sealed container 101. Therefore, when the liquid-phase adsorbed medium condensed in the sealed container 101 moves downward due to gravity, the adsorbed medium collected on the bottom surface of the sealed container 101 is in contact with the bottom surface of the sealed container 101. Will be held.
  • the adsorption unit 102 includes a pipe 102a and a heat transfer unit 102b having the same configuration as the evaporating and condensing unit 103, and the heat transfer unit 102b of the adsorption unit 102 is also made of sintered metal.
  • the heat transfer unit 102b of the adsorption unit 102 holds an adsorbent for adsorbing the adsorbed medium.
  • the adsorbent adsorbs the adsorbed medium (water vapor) in a gas phase by being cooled, and desorbs the adsorbed medium (water vapor) adsorbed by being heated.
  • the adsorbent is formed into a large number of fine particles, and is made of, for example, silica gel or zeolite.
  • the amount of the medium to be adsorbed that can be held by the heat transfer unit 103b of the evaporation condensing unit 103 may be equal to or less than the maximum adsorption capacity that can adsorb the medium to be adsorbed by the adsorbent of the adsorption unit 102. This point will be described with reference to FIG.
  • the maximum adsorption capacity in FIG. 6 is the maximum value of the medium to be adsorbed that can be adsorbed by the adsorption unit 102, and is determined by the type of adsorbent and the weight of the adsorbent.
  • ⁇ HL is the latent heat of the medium to be adsorbed
  • m is the amount of adsorption of the medium to be adsorbed
  • t is the elapsed time from the start of adsorption.
  • the average adsorption capacity Q of the adsorption unit 102 becomes maximum after a predetermined time has elapsed from the start of adsorption, and then gradually decreases. For this reason, the operation area of the adsorption unit 102 is set in a range where the average adsorption capability Q is as high as possible, and the adsorption and desorption of the adsorbed medium may be switched within this range. In the range where the average adsorption capacity Q of the adsorption unit 102 is as high as possible, the adsorption amount of the medium to be adsorbed in the adsorption unit 102 is smaller than the maximum adsorption capacity.
  • the amount of the medium to be adsorbed held by the heat transfer unit 103 b of the evaporation condensing unit 103 may be set to be equal to or less than the maximum adsorption capacity of the adsorption unit 102. For this reason, the heat transfer unit 103b only needs to be able to hold an adsorbed medium having a necessary capacity set to be equal to or less than the maximum adsorption capacity of the adsorption unit 102.
  • the pump (not shown) and the blower 402 are operated to circulate the heat exchange medium through the indoor heat exchanger 403 and circulate the air through the air conditioning case 401.
  • the switching valves 510 and 520 are operated to obtain the state shown in FIG.
  • the first switching valve 510 causes the heat exchange medium to circulate from the outdoor heat exchanger 500 to the adsorption unit 102 of the first adsorber 100 and the vehicle engine 300 to the adsorption unit 202 of the second adsorber 200.
  • the heat exchange medium circulates from.
  • the second switching valve 520 causes the heat exchange medium to circulate from the indoor heat exchanger 403 to the evaporation condensing unit 103 of the first adsorber 100, and from the outdoor heat exchanger 500 to the evaporation condensing unit 203 of the second adsorber 200.
  • the heat exchange medium circulates.
  • the adsorption medium is adsorbed by the adsorption unit 102 of the first adsorber 100, and the adsorption medium is desorbed by the adsorption unit 202 of the second adsorber 200.
  • the heat exchange medium after cooling the conditioned air by the indoor heat exchanger 403 flows into the evaporative condensing unit 103 of the first adsorber 100, and the liquid is absorbed by the heat of the heat exchange medium.
  • the adsorbed medium W of the phase evaporates.
  • the liquid-phase adsorbed medium W is held on the surface of the heat transfer section 103b of the evaporative condensation section 103, and has a heat transfer section 103b having an enlarged heat transfer surface.
  • the heat exchange between the medium to be adsorbed and the heat exchange medium flowing through the pipe 103a is promoted, and the medium to be adsorbed is efficiently evaporated.
  • the heat exchange medium is cooled by the latent heat of vaporization of the adsorbed medium W, the cooled heat exchange medium flows into the indoor heat exchanger 403, and the conditioned air blown into the room is cooled.
  • the adsorption unit 102 of the first adsorber 100 adsorbs the gas-phase adsorbed medium evaporated in the evaporation condensing unit 103 to promote evaporation in the evaporation condensing unit 103. At this time, the adsorbing unit 102 generates heat when adsorbing the gas-phase adsorbed medium.
  • the adsorption capacity of moisture by the adsorbent decreases, so that a heat exchange medium is circulated between the outdoor heat exchanger 500 and the adsorbing unit 102 to suppress the temperature rise of the adsorbing unit 102.
  • the heat exchange medium flows from the vehicle engine 300 into the adsorption unit 202 of the second adsorber 200, and is heated by the heat of the heat exchange medium in the adsorption unit 202.
  • the medium to be adsorbed that has been adsorbed by the adsorption unit 202 is desorbed from the adsorption unit 202.
  • the vapor-phase adsorbed medium (water vapor) desorbed from the adsorbing unit 202 is cooled and condensed.
  • the first adsorber 100 evaporates the adsorbed medium medium and adsorbs the vaporized adsorbed medium in the vapor phase.
  • the second adsorber 200 Desorption of the adsorbed medium to be adsorbed and cooling condensation of the desorbed gas-phase adsorbed medium are performed. Therefore, the evaporation condensing unit 103 of the first adsorber 100 functions as an evaporator for evaporating the liquid-phase adsorbed medium, and the evaporation condensing unit 203 of the second adsorber 200 is a condenser for condensing the gas-phase adsorbed medium. Function as.
  • the first switching valve 510 causes the heat exchange medium to circulate from the vehicle engine 300 to the adsorption unit 102 of the first adsorber 100, and the outdoor heat exchanger 500 to the adsorption unit 202 of the second adsorber 200.
  • the heat exchange medium circulates from.
  • the second switching valve 520 circulates the heat exchange medium from the outdoor heat exchanger 500 to the evaporation condensing unit 103 of the first adsorber 100, and from the indoor heat exchanger 403 to the evaporation condensing unit 203 of the second adsorber 200.
  • the heat exchange medium circulates.
  • the switching valves 510 and 520 by switching the flow path of the heat exchange medium from the state shown in FIG. 1 to the state shown in FIG. 9 by the switching valves 510 and 520, the adsorption action and the desorption action in the two adsorbers 100 and 200 are switched. be able to.
  • the first adsorber 100 desorbs the adsorbed medium to be adsorbed and cools and condenses the desorbed gas-phase adsorbed medium. Then, the adsorbed medium is evaporated and the vapor-phase adsorbed medium is adsorbed.
  • the evaporation condensing unit 103 of the first adsorber 100 functions as a condenser for condensing the gas-phase adsorbed medium
  • the evaporation condensing unit 203 of the second adsorber 200 is an evaporator for evaporating the liquid-phase adsorbed medium. Function as.
  • the switching valves 510 and 520 are operated every time a predetermined time elapses, and the adsorption refrigerator is continuously operated while alternately switching between the state shown in FIG. 1 and the state shown in FIG. 9.
  • the predetermined time for switching between the state shown in FIG. 1 and the state shown in FIG. 9 is selected based on the average adsorption capacity Q of the adsorbent shown in FIG.
  • the heat transfer units 103b and 203b are porous heat transfer bodies having a high porosity, and liquid is formed on the uneven surface. This makes it possible to directly hold the phase-adsorbed medium. For this reason, in the heat transfer units 103b and 203b of the evaporation condensing units 103 and 203, the heat transfer area for heat exchange between the adsorbed medium and the heat exchange medium is increased, and the heat exchange medium is efficiently evaporated and condensed. be able to.
  • the amount of the adsorbed medium in the sealed containers 101 and 201 can be reduced as much as possible, the heat capacity of the adsorbed medium can be minimized, and the COP of the adsorption type refrigerator using the adsorbers 100 and 200 can be minimized. (Cooling output / amount of heat required during operation) can be improved.
  • the amount of the medium to be adsorbed that can be held by the heat transfer unit 103 b of the evaporation condensing unit 103 is set to be equal to or less than the maximum adsorption capacity of the adsorption unit 102.
  • the adsorption units 102 and 202 can be operated within a range in which the average adsorption capability Q of the adsorption units 102 and 202 becomes as large as possible, and the efficiency of the adsorbers 100 and 200 can be improved.
  • the evaporation condensing units 103 and 203 and the adsorbing units 102 and 202 have the same configuration except for the presence or absence of an adsorbent.
  • the evaporating and condensing units 103 and 203 of the adsorbers 100 and 200 are in contact with the bottom surfaces of the sealed containers 101 and 201. For this reason, even if the liquid-phase adsorbed medium condensed in the heat transfer sections 103b and 203b moves downward due to gravity, the adsorbed medium accumulated on the bottom surfaces of the sealed containers 101 and 201 remains in the evaporation condensing sections 103 and 203. It will be held by the heat transfer sections 103b and 203b at the lowest position in the vertical direction.
  • the optimum range of the voids of the porous body constituting the heat transfer units 103b and 203b of the evaporating and condensing units 103 and 203 will be described with reference to FIGS. 10 and 11, the vertical axis represents the amount of the adsorbed medium held per unit volume in the heat transfer sections 103b and 203b, and the horizontal axis represents the gap equivalent diameter.
  • the void-corresponding diameter of the porous body constituting the heat transfer parts 103b and 203b can be calculated by the following formula 1 using the skeleton diameter (wire diameter) and the porosity of the heat transfer parts 103b and 203b.
  • the amount of the adsorbed medium that can be held in the heat transfer units 103b and 203b is generated in the weight of the adsorbed medium held in the heat transfer units 103b and 203b and the adsorbed medium held in the heat transfer units 103b and 203b. Determined from balance of surface tension. First, as the gap equivalent diameter of the heat transfer units 103b and 203b increases, the void volume of the heat transfer units 103b and 203b increases, and the amount of adsorbed medium that can be held in the heat transfer units 103b and 203b also increases. .
  • the gap equivalent diameter of the heat transfer units 103b and 203b exceeds a predetermined value
  • the gravity acting on the adsorbed medium exceeds the surface tension, so the adsorbed medium falls from the heat transfer units 103b and 203b.
  • the amount of adsorbed medium held in the heat transfer units 103b and 203b decreases.
  • the heat transfer portions 103b and 203b have the same gap equivalent diameter, the amount of adsorbed medium that can be held increases as the wire diameter (skeleton diameter) of the heat transfer portions 103b and 203b decreases.
  • the heat transfer portions 103b and 203b have three types of wire diameters of 5 ⁇ m, 50 ⁇ m, and 100 ⁇ m.
  • the lower limit of the wire diameter of a generally available porous body is about 5 ⁇ m.
  • the adsorbed medium held per 1 cm 3 of the volume of the heat transfer parts 103b and 203b is 0.6 grams or more. This means that the amount of the adsorbed medium held in the gaps of the heat transfer units 103b and 203b occupies 60% or more per unit volume.
  • the adsorbed medium held per 1 cm 3 of the volume of the heat transfer sections 103b and 203b is 0.6 grams or more.
  • the gap equivalent diameter of the hot portions 103b and 203b is in the range of 7 to 260 ⁇ m.
  • the heat transfer parts 103b and 203b whose adsorbed medium held per 1 cm 3 of the volume of the heat transfer parts 103b and 203b is 0.6 g or more.
  • the void equivalent diameter is in the range of 80 to 260 ⁇ m.
  • the heat transfer parts 103b and 203b in which the adsorbed medium held per 1 cm 3 of the volume of the heat transfer parts 103b and 203b is 0.6 g or more.
  • the void equivalent diameter is in the range of 140 to 240 ⁇ m.
  • the gap equivalent diameter of the heat transfer parts 103b and 203b may be set in the range of 7 to 260 ⁇ m.
  • FIG. 11 shows the relationship between the amount of adsorbed medium that can be held by the heat transfer units 103b and 203b and the gap equivalent diameter when vibrations assumed during vehicle travel on a general road are generated. .
  • the adsorbed medium held per 1 cm 3 of the volume of the heat transfer parts 103b and 203b is 0.6 grams or more.
  • the gap equivalent diameters of the hot portions 103b and 203b are in the range of 7 to 140 ⁇ m.
  • the heat transfer parts 103b and 203b when the wire diameter of the heat transfer parts 103b and 203b is 50 ⁇ m, the heat transfer parts 103b and 203b whose adsorbed medium held per 1 cm 3 of the volume of the heat transfer parts 103b and 203b is 0.6 g or more.
  • the void equivalent diameter is in the range of 80 to 130 ⁇ m.
  • the void equivalent diameter may be in the range of 7 to 140 ⁇ m.
  • a sufficient amount of adsorbed medium is held in the heat transfer portions 103b and 203b by setting the gap equivalent diameter of the heat transfer portions 103b and 203b in the range of 7 to 260 ⁇ m. It becomes possible. As a result, the heat transfer area for heat exchange between the adsorbed medium and the heat exchange medium in the heat transfer sections 103b and 203b is increased, and the COP (cooling output / heat amount required for operation) of the adsorption refrigeration machine is improved. Can be made.
  • the heat transfer sections 103b and 203b provided in the adjacent pipes 103a and 203a are opposed to each other with a predetermined gap.
  • a plurality of concave portions 103c and 203c are formed in the heat transfer portions 103b and 203b of the third embodiment.
  • the recesses 103c and 203c are formed from the surface of the heat transfer parts 103b and 203b toward the pipes 103a and 203a, and are formed as cylindrical recesses in the third embodiment.
  • the heat-transfer part 103b of this 3rd Embodiment is comprised with the sintered metal.
  • the adsorbed media that have passed through the gaps in the heat transfer units 103b and 203b merge at the recesses 103c and 203c. Then, the adsorption medium that has passed through the plurality of recesses 103 c and 203 c merges in the gap between the adjacent heat transfer units 103 b and 203, and is discharged to the outside of the evaporation condensing units 103 and 203.
  • the interval between the gaps (first passages) of the heat transfer units 103b and 203b that hold the adsorbed medium is defined as the first passage interval A, and the adsorbed medium flowing through the first passage is the first.
  • the interval between the second passages that circulate immediately after the first passage is defined as a second passage interval B, and the interval between the third passages that the adsorbed medium that circulates through the second passage circulates immediately after the second passage is defined as a third passage interval C.
  • the first passage interval A ⁇ the second passage interval B ⁇ the third passage interval C.
  • the passages of the adsorbed medium vaporized in the heat transfer sections 103b and 203b are increased in the order of the first passage interval A ⁇ second passage interval B ⁇ third passage interval C, thereby adsorbing these passages. Resistance when the medium passes can be made as small as possible, and the adsorbed medium can be passed efficiently.
  • the heat transfer units 103b and 203b of the evaporating and condensing units 103 and 203 are made of copper or a copper alloy, but the invention is not limited thereto, and may be made of a different material such as aluminum or stainless steel.
  • the heat-transfer parts 103b and 203b of the evaporation condensation parts 103 and 203 were comprised with the sintered metal, the heat-transfer parts 103b and 203b should just hold
  • the recesses 103c and 203c are provided in the heat transfer parts 103b and 203b made of sintered metal.
  • the present invention is not limited to this.
  • Concave portions 103c and 203c may be provided in the heat portions 103b and 203b.
  • the trays 104 and 204 are placed in contact with the heat transfer units 103 b and 203 b below the heat transfer units 103 b and 203 b of the evaporating and condensing units 103 and 203. It may be provided.
  • the trays 104 and 204 only need to be able to store a liquid-phase adsorbed medium. Thus, even if the liquid-phase adsorbed medium condensed in the heat transfer units 103b and 203b moves downward due to gravity, the adsorbed medium collected in the trays 104 and 204 is in contact with the trays 104 and 204.
  • the vertical direction of the evaporation condensing units 103 and 203 is determined.
  • the trays 104 and 204 may be provided below the heat transfer sections 103b and 203b at the lowest direction so as to contact the heat transfer sections 103b and 203b.
  • FIG. 3 although it comprised so that the heat-transfer parts 103b and 203b might be provided in each of the some piping 103a and 203a of the evaporative condensation parts 103 and 203, it is good also as a different aspect. .
  • the adsorption medium is less likely to evaporate and condense on the far side away from the outer periphery of the heat transfer sections 103b and 203b, so the adsorption medium is evaporated and condensed inside the heat transfer sections 103b and 203b.
  • the pipes 103a and 203a may be multi-hole pipes having a plurality of small passages therein, and the heat transfer portions 103b and 203b may be formed around the pipes.
  • the present invention is applied to the adsorption refrigerator for a vehicle air conditioner.
  • the present invention is not limited to this, and may be applied to an adsorption refrigerator for home use or business use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

 吸着器は、内部に被吸着媒体が封入された密閉容器(101、201)と、密閉容器(101、201)の内部に設けられ、被吸着媒体を吸着および脱離する吸着剤を有する吸着部(102、202)と、密閉容器(101、201)の内部に設けられ、外部から供給される熱交換媒体と熱交換させることで、被吸着媒体を蒸発および凝縮させる蒸発凝縮部(103、203)とを備える。蒸発凝縮部(103、203)は、熱交換媒体の熱を被吸着媒体に伝える伝熱部(103b、203b)を有しており、伝熱部(103b、203b)は吸着部(102、202)の吸着剤で吸着可能な量の被吸着媒体を保持可能になっている。

Description

吸着器 関連出願の相互参照
 本出願は、2014年10月15日に出願された日本特許出願番号2014-210756号と、2015年7月20日に出願された日本特許出願番号2015-143540号に基づくもので、ここにその記載内容を援用する。
 本開示は、吸着剤が気相の被吸着媒体を吸着する作用を利用して被吸着媒体を蒸発させて、その蒸発潜熱により冷凍能力を発揮する吸着器に関するものであり、特に、空調装置に適用して有効である。
 従来より、略真空に保たれた密閉容器の内部に、被吸着媒体(例えば水)を吸着および脱離する吸着剤が充填された吸着部と、外部から供給される熱媒体と被吸着媒体との間で熱交換を行い被吸着媒体を蒸発または凝縮させる蒸発凝縮部(熱交換器)とが設けられた吸着器が知られている(例えば、特許文献1参照)。この種の吸着器では、密閉容器内で液相の被吸着媒体を蒸発凝縮部で蒸発させて、その蒸発潜熱により冷凍能力を得るとともに、蒸発した気相の被吸着媒体を吸着部で吸着剤にて吸着することにより蒸発を促進して持続的に冷凍能力を発揮させるようにしている。
特開2007-64573号公報
 しかしながら、上記特許文献1の吸着器では、蒸発凝縮部に通常のコルゲートフィンを用いており、フィンの伝熱面に直接被吸着媒体を保持することができない。このため、伝熱面積を確保するために、被吸着媒体が吸着部で吸着可能な最大吸着容量以上に必要となる。さらに、吸着器の蒸発凝縮部には、空調風の熱が伝わるとき(蒸発時)と外部熱交換器の熱が伝わるとき(凝縮時)の温度差(温度振幅)が存在するため、被吸着媒体の量が多いと熱容量が増大し、吸着器を用いた吸着式冷凍機の成績係数(COP)が低下する。
 そこで、本開示は上記点に鑑み、被吸着媒体を吸着及び脱離する吸着剤を備える吸着器の熱容量を低減させることを目的とする。
 上記目的を達成するため、本開示の1つの態様では、内部に被吸着媒体が封入された密閉容器と、前記密閉容器の内部に設けられ、被吸着媒体を吸着および脱離する吸着剤を有する吸着部と、前記密閉容器の内部に設けられ、外部から供給される熱交換媒体と熱交換させることで、被吸着媒体を蒸発および凝縮させる蒸発凝縮部とを備え、前記蒸発凝縮部は、熱交換媒体の熱を被吸着媒体に伝える伝熱部を有しており、前記伝熱部は前記吸着部の吸着剤で吸着可能な量の被吸着媒体を保持可能になっていることを特徴としている。
 本態様によれば、蒸発凝縮部の伝熱部では、被吸着媒体と熱交換媒体との間で熱交換する伝熱面積が大きくなり、熱交換媒体の蒸発および凝縮を効率よく行うことができる。これにより、密閉容器内の被吸着媒体の量を極力少なくすることができ、被吸着媒体の熱容量を最小化することができる。この結果、吸着器を吸着式冷凍機に適用した場合には、COP(冷房出力/作動時に必要となる熱量)を向上させることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
第1実施形態における吸着式冷凍機の全体構成を示す模式図である。 第1実施形態における吸着器の全体構成を示す模式図である。 図2のIII-III断面図である。 第1実施形態における蒸発凝縮部の一部を拡大した模式図である。 第1実施形態における蒸発凝縮部の具体例を示す模式図である。 第1実施形態における時間の経過に伴う吸着剤の吸着量および平均吸着能力の変化を示す特性図である。 第1実施形態における吸着器で被吸着媒体の蒸発および吸着が行われている状態を示す模式図であり、図7(a)は被吸着媒体の蒸発を示す図であり、図7(b)は被吸着媒体と熱交換媒体との間の熱交換を示す図である。 第1実施形態における吸着器で被吸着媒体の脱離および凝縮が行われている状態を示す模式図であり、図8(a)は吸着部から脱離した被吸着媒体の凝縮を示す図であり、図8(b)は被吸着媒体が伝熱部の表面上に保持される状態を示す図である。 第1実施形態における吸着式冷凍機の切替弁を作動させて図1に示す状態から熱交換媒体の流路を切り替えた状態を示す模式図である。 第2実施形態において、蒸発凝縮部の伝熱部における空隙相当径と保水量の関係を示す図である。 第2実施形態で振動が発生する場合において、蒸発凝縮部の伝熱部における空隙相当径と保水量の関係を示す図である。 第3実施形態の蒸発凝縮部の一部を拡大した模式図である。 第3実施形態の蒸発凝縮部の具体例を示す模式図である。 蒸発凝縮部の変形例を示す模式図であり、図14(a)は伝熱部で発泡金属で構成した例を示す図であり、図14(b)はフィンに伝熱部材を設けた例を示す図であり、図14(c)は伝熱部材を切起部として構成した例を示す図である。 蒸発凝縮部の変形例を示す模式図である。 蒸発凝縮部の変形例を示す模式図である。 蒸発凝縮部の変形例を示す模式図であり、図17(a)は複数の配管に形成された伝熱部を一体的に構成した例を示す図であり、図17(b)は多穴管の配管の周囲に伝熱部を形成した例を示す図である。
(第1実施形態)
 以下、本開示の吸着器を吸着式冷凍機に適用した第1実施形態を図1~図9に基づいて説明する。本実施形態では、吸着器を車両用空調装置用吸着式冷凍機に適用している。
 図1に示すように、吸着式冷凍機は、2つの吸着器100、200を備えている。第1吸着器100および第2吸着器200は同一の構成であり、一方の吸着器100、200で吸着作用が行われているときに他方の吸着器100、200で脱離作用が行われる。吸着器100、200の構成については、後で詳細に説明する。
 吸着器100、200には、車両走行用のエンジン300または車両用空調装置400から熱交換媒体が循環するようになっている。熱交換媒体の循環経路には、熱交換媒体を循環させるポンプ(図示せず)が設けられている。エンジン300は水冷式内燃機関であり、エンジン冷却用の熱交換媒体として、水にエチレングリコール系の不凍液を混合した流体(エンジン冷却水)を用いている。
 車両用空調装置400は、車室内に吹き出す空気の通路を構成する空調ケース401を備えている。空調ケース401の空気流れ上流側には、空調ケース401内に空気を流通させる送風機402が設けられている。空調ケース401における送風機402の空気流れ下流側には、空調ケース400内を流通する空気を冷却する室内熱交換器403が設けられている。室内熱交換器403は、空調用の熱交換媒体を介して吸着器100、200から冷凍能力を得ている。なお、本実施形態では、空調用の熱交換媒体として水にエチレングリコール系の不凍液を混合した流体(エンジン冷却水と同一)を用いている。
 本実施形態の吸着式冷凍機には、吸着器100、200から流出する熱交換媒体と室外空気とを熱交換し、熱交換媒体を冷却する室外熱交換器500が設けられている。室外熱交換器500にて冷却された熱交換媒体は、吸着器100、200に流入する。
 また、本実施形態の吸着式冷凍機には、吸着器100、200に循環する熱交換媒体の循環経路を切り替える2つの切替弁510、520が設けられている。これらの切替弁510、520、熱交換媒体を循環させるポンプ(図示せず)、および送風機402は、電子制御装置(図示せず)によりその作動が制御されている。
 ここで、吸着器100、200について説明する。上述のように、第1吸着器100および第2吸着器200は同一の構成であるので、第1吸着器100の構成についてのみ説明する。
 図2に示すように、吸着器100は、密閉容器101と、密閉容器101内に設けられた吸着部102および蒸発凝縮部103を備えている。密閉容器101は気密構造となっており、内部が略真空状態に保たれている。密閉容器101の内部には被吸着媒体(冷媒)が封入されている。本実施形態では、被吸着媒体として水を用いている。
 本実施形態の吸着部102および蒸発凝縮部103は、ほぼ同一の構成を備えており、熱交換媒体が流通する配管102a、103aと、熱交換媒体と被吸着媒体との熱交換を促進する伝熱部102b、103bとが設けられている。伝熱部102b、103bはフィンを構成している。
 図3に示すように、本実施形態の蒸発凝縮部103には、16本の配管103aが設けられている。配管103aは、熱伝導性に優れる金属(本実施形態では、銅または銅合金)により構成されている。図3、図4に示すように、伝熱部103bは、円筒状の配管103aの外周面に設けられている。伝熱部103bは、表面上に被吸着媒体を直接保持するとともに、被吸着媒体と配管103aを流れる熱交換媒体との間で熱交換する伝熱面積をできるだけ大きくした拡大伝熱面を有している。
 図5に示すように、本実施形態の伝熱部103bは焼結金属によって構成されている。焼結金属は、熱伝導性に優れる金属粉または金属繊維を加熱して、溶融することなく焼結によって結合したものである。金属粉または金属繊維は、例えば銅または銅合金を用いることができる。金属粉の形状は、粉末状、粒子状、樹枝状、鱗片状または繊維状などとすることができる。
 このような構成の伝熱部103bは、空隙率が高い多孔質伝熱体となっており、凹凸状の表面に被吸着媒体を直接保持することができるようになっている。このため、伝熱部103bでは、被吸着媒体と熱交換媒体との間で熱交換する伝熱面積をできるだけ大きくすることができ、熱交換媒体の蒸発および凝縮を効率よく行うことができる。
 また、図3に示すように、吸着器100の蒸発凝縮部103は、鉛直方向最下方の配管103aに形成された伝熱部103bが密閉容器101の底面に接している。つまり、蒸発凝縮部103の伝熱部103bの一部が密閉容器101の底面に接している。このため、密閉容器101内で凝縮した液相の被吸着媒体が重力で下方に移動した場合に、密閉容器101の底面上に溜まった被吸着媒体は密閉容器101の底面に接する伝熱部103bに保持されることとなる。
 吸着部102は、蒸発凝縮部103と同様の構成の配管102aおよび伝熱部102bを備えており、吸着部102の伝熱部102bも焼結金属によって構成されている。吸着部102の伝熱部102bには、被吸着媒体を吸着するための吸着剤が保持されている。吸着剤は、冷却されることで気相状態の被吸着媒体(水蒸気)を吸着し、加熱されることで吸着した被吸着媒体(水蒸気)を脱離するものである。吸着剤は、微小な多数の粒子状に形成されており、例えばシリカゲルやゼオライトから構成されている。
 蒸発凝縮部103の伝熱部103bで保持できる被吸着媒体の量は、吸着部102の吸着剤によって被吸着媒体を吸着可能な最大吸着容量以下であればよい。この点について図6に基づいて説明する。
 図6上段に示すように、吸着部102の吸着剤による被吸着媒体の吸着開始直後は、吸着速度が速くなっており、吸着開始から時間が経過するにつれて吸着速度が遅くなる。図6の最大吸着容量は、吸着部102で吸着可能な被吸着媒体の最大値であり、吸着剤の種類と吸着剤の重量によって決定される。また、吸着部102の平均吸着能力Qは、Q=(ΔHL・m)/tからなる数式によって求めることができる。
 ここで、ΔHLは被吸着媒体の潜熱であり、mは被吸着媒体の吸着量、tは吸着開始からの経過時間を示している。
 図6下段に示すように、吸着部102の平均吸着能力Qは、吸着開始から所定時間経過後に最大になり、その後は徐々に低下している。このため、吸着部102の作動領域を平均吸着能力Qができるだけ高くなる範囲とし、この範囲で被吸着媒体の吸着および脱離を切り替えればよい。このような吸着部102の平均吸着能力Qができるだけ高くなる範囲では、吸着部102における被吸着媒体の吸着量は最大吸着容量よりも小さくなる。
 したがって、蒸発凝縮部103の伝熱部103bで保持する被吸着媒体の量は、吸着部102の最大吸着容量以下とすればよい。このため、伝熱部103bでは、吸着部102の最大吸着容量以下で設定される必要容量の被吸着媒体を保持できればよい。
 次に、上記構成を備える吸着式冷凍機の作動を説明する。まず、ポンプ(図示せず)および送風機402を作動させて室内熱交換器403に熱交換媒体を流通させ、空調ケース401に空気を流通させる。そして、切替弁510、520を作動させ、図1に示す状態にする。
 図1に示す状態では、第1切替弁510によって、第1吸着器100の吸着部102に室外熱交換器500から熱交換媒体が循環し、第2吸着器200の吸着部202に車両エンジン300から熱交換媒体が循環する。また、第2切替弁520によって、第1吸着器100の蒸発凝縮部103に室内熱交換器403から熱交換媒体が循環し、第2吸着器200の蒸発凝縮部203に室外熱交換器500から熱交換媒体が循環する。このとき、第1吸着器100の吸着部102で被吸着媒体の吸着が行われ、第2吸着器200の吸着部202で被吸着媒体の脱離が行われる。
 図7(a)に示すように、第1吸着器100の蒸発凝縮部103には、室内熱交換器403で空調風を冷却した後の熱交換媒体が流入し、熱交換媒体の熱によって液相の被吸着媒体Wが蒸発する。このとき、図7(b)に示すように、液相の被吸着媒体Wは、蒸発凝縮部103の伝熱部103bの表面上に保持されており、拡大伝熱面を備える伝熱部103bを介して被吸着媒体と配管103aを流れる熱交換媒体との間の熱交換が促進され、被吸着媒体の蒸発が効率よく行われる。蒸発凝縮部103では、被吸着媒体Wの蒸発潜熱で熱交換媒体が冷却され、冷却された熱交換媒体が室内熱交換器403に流入し、室内に吹き出す空調風が冷却される。
 第1吸着器100の吸着部102では、蒸発凝縮部103で蒸発した気相の被吸着媒体を吸着して、蒸発凝縮部103での蒸発を促進する。このとき、吸着部102は気相の被吸着媒体を吸着する際に熱を発生する。吸着部102の温度が上昇すると、吸着剤による水分の吸着能力が低下するため、室外熱交換器500と吸着部102との間で熱交換媒体を循環させて吸着部102の温度上昇を抑制する。
 図8(a)に示すように、第2吸着器200の吸着部202には、車両エンジン300から熱交換媒体が流入し、吸着部202では熱交換媒体の熱で加熱される。これにより、吸着部202に吸着されていた被吸着媒体が吸着部202から脱離する。第2吸着器200の蒸発凝縮部203では、吸着部202から脱離した気相の被吸着媒体(水蒸気)が冷却され凝縮する。このとき、拡大伝熱面を備える伝熱部203bを介して被吸着媒体と配管203aを流れる熱交換媒体との間の熱交換が促進され、被吸着媒体の凝縮が効率よく行われる。図8(b)に示すように、凝縮した被吸着媒体Wは、蒸発凝縮部203の伝熱部203bの表面上に保持される。
 以上のように、図1に示す状態では、第1吸着器100においては、被吸着媒体媒の蒸発及びその蒸発した気相の被吸着媒体の吸着が行われ、第2吸着器200においては、吸着していた被吸着媒体の脱離及びその脱離した気相の被吸着媒体の冷却凝縮が行われる。したがって、第1吸着器100の蒸発凝縮部103は液相の被吸着媒体を蒸発させる蒸発器として機能し、第2吸着器200の蒸発凝縮部203は気相の被吸着媒体を凝縮させる凝縮器として機能する。
 次に、図1に示す状態での運転が所定時間経過すると、切替弁510、520を作動させ、図9に示す状態に切り替える。
 図9に示す状態では、第1切替弁510によって、第1吸着器100の吸着部102に車両エンジン300から熱交換媒体が循環し、第2吸着器200の吸着部202に室外熱交換器500から熱交換媒体が循環する。また、第2切替弁520によって、第1吸着器100の蒸発凝縮部103に室外熱交換器500から熱交換媒体が循環し、第2吸着器200の蒸発凝縮部203に室内熱交換器403から熱交換媒体が循環する。
 このように、切替弁510、520によって、熱交換媒体の流路を図1に示す状態から図9に示す状態に切り替えることによって、2つの吸着器100、200における吸着作用および脱離作用を切り替えることができる。つまり、図9に示す状態では、第1吸着器100では、吸着していた被吸着媒体の脱離及びその脱離した気相の被吸着媒体の冷却凝縮が行われ、第2吸着器200では、被吸着媒体の蒸発及びその蒸発した気相の被吸着媒体の吸着が行われる。従って、第1吸着器100の蒸発凝縮部103は気相の被吸着媒体を凝縮させる凝縮器として機能し、第2吸着器200の蒸発凝縮部203は液相の被吸着媒体を蒸発させる蒸発器として機能する。
 以後、所定時間が経過する毎に切替弁510、520を作動させ、図1に示す状態と図9に示す状態とを交互に切り替えながら、吸着式冷凍機を連続的に稼働させる。なお、図1に示す状態と図9に示す状態とを切り替える所定時間は、図6で示した吸着剤の平均吸着能力Qに基づいて選定される。
 以上説明した本実施形態によれば、吸着器100、200の蒸発凝縮部103、203において、伝熱部103b、203bを空隙率が高い多孔質伝熱体としており、その凹凸状の表面に液相の被吸着媒体を直接保持することを可能としている。このため、蒸発凝縮部103、203の伝熱部103b、203bでは、被吸着媒体と熱交換媒体との間で熱交換する伝熱面積が大きくなり、熱交換媒体の蒸発および凝縮を効率よく行うことができる。これにより、密閉容器101、201内の被吸着媒体の量を極力少なくすることができ、被吸着媒体の熱容量を最小化することができ、吸着器100、200を用いた吸着式冷凍機のCOP(冷房出力/作動時に必要となる熱量)を向上させることができる。
 また、本実施形態では、蒸発凝縮部103の伝熱部103bで保持できる被吸着媒体の量を吸着部102の最大吸着容量以下としている。これにより、吸着部102、202の平均吸着能力Qができるだけ大きくなる範囲で吸着部102、202を作動させることができ、吸着器100、200の効率を向上させることができる。
 また、本実施形態の吸着器100、200では、吸着剤の有無を除いて蒸発凝縮部103、203と吸着部102、202を同一構成としている。これにより、蒸発凝縮部103、203と吸着部102、202の製造工程を共通化することができるので、吸着器100、200の製造工程を簡略化でき、製造コストを抑えることができる。
 また、本実施形態では、吸着器100、200の蒸発凝縮部103、203が密閉容器101、201の底面に接するようにしている。このため、伝熱部103b、203bで凝縮した液相の被吸着媒体が重力で下方に移動したとしても、密閉容器101、201の底面上に溜まった被吸着媒体は蒸発凝縮部103、203の鉛直方向最下方の伝熱部103b、203bに保持されることとなる。この結果、蒸発凝縮部103、203にて被吸着媒体を蒸発させる際に伝熱部103b、203bの周囲に液相の被吸着媒体が存在しない状態(ドライアウト)を防ぐことができる。
(第2実施形態)
 次に、第2実施形態について説明する。本第2実施形態では、上記第1実施形態と同様の部分は説明を省略し、異なる部分についてのみ説明する。
 本第2実施形態では、蒸発凝縮部103、203の伝熱部103b、203bを構成する多孔質体の空隙の最適範囲を図10、図11に基づいて説明する。図10、図11において、縦軸は伝熱部103b、203bにおける単位体積当たりの被吸着媒体の保持量を示し、横軸は空隙相当径を示している。伝熱部103b、203bを構成する多孔質体の空隙相当径は、伝熱部103b、203bの骨格径(線径)および空隙率を用い、以下の数式1によって算出することができる。
Figure JPOXMLDOC01-appb-M000001
 伝熱部103b、203bに保持可能な被吸着媒体の量は、伝熱部103b、203bに保持される被吸着媒体の重量と、伝熱部103b、203bに保持される被吸着媒体に発生する表面張力のバランスから決定される。まず、伝熱部103b、203bの空隙相当径が増加するにしたがって、伝熱部103b、203bの空隙体積が増加し、伝熱部103b、203bに保持可能となる被吸着媒体の量も増加する。一方、伝熱部103b、203bの空隙相当径が所定値を上回ると、被吸着媒体に作用する重力が表面張力を上回るようになるため、伝熱部103b、203bから被吸着媒体が落下する。この結果、伝熱部103b、203bにおける被吸着媒体の保持量が低下する。
 また、伝熱部103b、203bの空隙相当径が同じでも、伝熱部103b、203bの線径(骨格径)が細くなるほど、保持できる被吸着媒体の量が増加する。本第2実施形態では、伝熱部103b、203bの線径を5μm、50μm、100μmの3種類としている。一般的に入手可能な多孔質体の線径の下限値が5μm程度である。
 伝熱部103b、203bにおける被吸着媒体と熱交換媒体との間で熱交換する伝熱面積を大きくし、吸着式冷凍機のCOP(冷房出力/作動時に必要となる熱量)を向上させるためには、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上であればよい。これは、伝熱部103b、203bの空隙に保持される被吸着媒体の量が単位体積当たり6割以上を占めることを意味する。
 図10に示すように、伝熱部103b、203bの線径を5μmとした場合に、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上となる伝熱部103b、203bの空隙相当径は7~260μmの範囲である。また、伝熱部103b、203bの線径を50μmとした場合に、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上となる伝熱部103b、203bの空隙相当径は80~260μmの範囲である。また、伝熱部103b、203bの線径を100μmとした場合に、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上となる伝熱部103b、203bの空隙相当径は140~240μmの範囲である。
 このため、伝熱部103b、203bで充分な量の被吸着媒体を保持するためには、伝熱部103b、203bの空隙相当径を7~260μmの範囲内とすればよい。
 また、車両走行時などの振動が発生する条件下では、下向きの加速度が発生する。このため、被吸着媒体に作用する重力が大きくなり、伝熱部103b、203bで充分な量の被吸着媒体を保持するために適切な伝熱部103b、203bの空隙相当径の上限値が小さくなる。
 図11は、一般的な道路での車両走行時に想定される振動を発生させた場合において、伝熱部103b、203bで保持可能な被吸着媒体の量と空隙相当径との関係を示している。図11に示すように、伝熱部103b、203bの線径を5μmとした場合に、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上となる伝熱部103b、203bの空隙相当径は7~140μmの範囲である。また、伝熱部103b、203bの線径を50μmとした場合に、伝熱部103b、203bの体積1cm3当たりに保持される被吸着媒体が0.6グラム以上となる伝熱部103b、203bの空隙相当径は80~130μmの範囲である。
 このため、一般的な道路での車両走行時に想定される振動が発生する場合には、伝熱部103b、203bで充分な量の被吸着媒体を保持するためには、伝熱部103b、203bの空隙相当径を7~140μmの範囲内とすればよい。
 以上説明した本第2実施形態によれば、伝熱部103b、203bの空隙相当径を7~260μmの範囲とすることで、伝熱部103b、203bに充分な量の被吸着媒体を保持することが可能となる。この結果、伝熱部103b、203bにおける被吸着媒体と熱交換媒体との間で熱交換する伝熱面積を大きくし、吸着式冷凍機のCOP(冷房出力/作動時に必要となる熱量)を向上させることができる。
 また、伝熱部103b、203bの空隙相当径を7~140μmの範囲とすることで、車両走行時に振動が発生する場合においても、伝熱部103b、203bに充分な量の被吸着媒体を保持することが可能となる。
(第3実施形態)
 次に、第3実施形態について説明する。本第3実施形態では、上記第1実施形態と同様の部分は説明を省略し、異なる部分についてのみ説明する。
 図12に示すように、隣り合う配管103a、203aに設けられた伝熱部103b、203b同士は、所定間隔の隙間が設けられた状態で対向している。本第3実施形態の伝熱部103b、203bには、複数の凹部103c、203cが形成されている。凹部103c、203cは、伝熱部103b、203bの表面から配管103a、203aに向かって形成され、本第3実施形態では円筒形状の凹みとして形成されている。また、図13に示すように、本第3実施形態の伝熱部103bは焼結金属によって構成されている。
 被吸着媒体を保持する伝熱部103b、203bから蒸発凝縮部103、203の外部に至るまでに、気相となった被吸着媒体(すなわち、水蒸気)が効率よく通過できる通路が設けられていればよい。
 伝熱部103b、203bに保持されている液相の被吸着媒体が気相に変化した場合には、伝熱部103b、203bの空隙を通過した被吸着媒体が凹部103c、203cで合流する。そして、複数の凹部103c、203cを通過した吸着媒体が隣接する伝熱部103b、203の間の隙間で合流し、蒸発凝縮部103、203の外部に放出される。伝熱部103b、203bの空隙(第1通路)→凹部103c、203c(第2通路)→隣接する伝熱部103b、203の間の隙間(第3通路)の順に、通過する被吸着媒体の量が増加する。
 このため、本第3実施形態では、被吸着媒体を保持する伝熱部103b、203bの空隙(第1通路)の間隔を第1通路間隔Aとし、第1通路を流通した被吸着媒体が第1通路の直後に流通する第2通路の間隔を第2通路間隔Bとし、第2通路を流通した被吸着媒体が第2通路の直後に流通する第3通路の間隔を第3通路間隔Cとした場合に、第1通路間隔A<第2通路間隔B<第3通路間隔Cの関係となっている。
 このように、伝熱部103b、203bで気化した被吸着媒体の通路を、第1通路間隔A<第2通路間隔B<第3通路間隔Cの順に大きくすることで、これらの通路を被吸着媒体が通過する際の抵抗を極力小さくし、被吸着媒体を効率よく通過させることができる。
 以上、実施形態について説明したが、本開示はこれに限定されるものではなく、本開示の範囲を逸脱しない限り、記載文言に限定されず、当業者がそれらから容易に置き換えられる範囲にも及び、かつ、当業者が通常有する知識に基づく改良を適宜付加することができる。上記実施形態の変形例について以下に述べる。
 例えば、上記各実施形態では、蒸発凝縮部103、203の伝熱部103b、203bを銅または銅合金によって構成したが、これに限らず、アルミニウムやステンレスなどの異なる材料によって構成してもよい。
 また、上記第1実施形態では、蒸発凝縮部103、203の伝熱部103b、203bを焼結金属によって構成したが、伝熱部103b、203bは被吸着媒体を保持できればよく、上記第1実施形態と異なる態様としてもよい。例えば、図14(a)に示すように、伝熱部103b、203bを発泡金属によって構成してもよい。また、図14(b)に示すように、配管103a、203aの周囲にフィン103d、203dを設け、このフィン103d、203dに伝熱部材103b、203bを設けてもよい。また、図14(c)に示すように、伝熱部材103b、203bをフィン103d、203dの表面を切り起こして形成された切起部として構成してもよい。あるいは、伝熱部材103b、203bを表面が凹凸状のアルミナによって構成してもよい。
 また、上記第3実施形態では、焼結金属によって構成した伝熱部103b、203bに凹部103c、203cを設けたが、これに限らず、例えば図15に示すように、発泡金属によって構成した伝熱部103b、203bに凹部103c、203cを設けてもよい。
 また、上記各実施形態の構成において、図16に示すように、蒸発凝縮部103、203の伝熱部103b、203bの下方において、当該伝熱部103b、203bに接するように受け皿104、204を設けてもよい。受け皿104、204は、液相の被吸着媒体を貯留することができるようになっていればよい。これにより、伝熱部103b、203bで凝縮した液相の被吸着媒体が重力で下方に移動したとしても、受け皿104、204に溜まった被吸着媒体は受け皿104、204に接している伝熱部103b、203bに保持されるため、被吸着媒体を蒸発させる際に伝熱部103b、203bの周囲に液相の被吸着媒体が存在しない状態(ドライアウト)を防ぐことができる。また、蒸発凝縮部103、203の鉛直方向最下方の伝熱部103b、203bと密閉容器101、201の底面との間に隙間が設けられている場合には、蒸発凝縮部103、203の鉛直方向最下方の伝熱部103b、203bの下方に、当該伝熱部103b、203bに接するように受け皿104、204を設けてもよい。
 また、上記各実施形態では、図3に示すように、蒸発凝縮部103、203の複数の配管103a、203aのそれぞれに伝熱部103b、203bを設けるように構成したが、異なる態様としてもよい。例えば、図17(a)に示すように、複数の配管103a、203aに形成された伝熱部103b、203bを一体的に構成してもよい。この場合には、伝熱部103b、203bにおける外周部から離れた奥側では被吸着媒体の蒸発および凝縮が行われ難くなるので、伝熱部103b、203bの内部に被吸着媒体の蒸発および凝縮を促進するための貫通孔103c、203cを設ければよい。また、図17(b)に示すように、配管103a、203aを内部に複数の小通路を有する多穴管とし、その周囲に伝熱部103b、203bを形成してもよい。
 また、上記各実施形態では、車両用空調装置用吸着式冷凍機に適用したが、これに限らず、家庭用や業務用等の吸着式冷凍機に適用してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (10)

  1.  内部に被吸着媒体が封入された密閉容器(101、201)と、
     前記密閉容器(101、201)の内部に設けられ、被吸着媒体を吸着および脱離する吸着剤を有する吸着部(102、202)と、
     前記密閉容器(101、201)の内部に設けられ、外部から供給される熱交換媒体と熱交換させることで、被吸着媒体を蒸発および凝縮させる蒸発凝縮部(103、203)とを備え、
     前記蒸発凝縮部(103、203)は、熱交換媒体の熱を被吸着媒体に伝える伝熱部(103b、203b)を有しており、前記伝熱部(103b、203b)は前記吸着部(102、202)の吸着剤で吸着可能な量の被吸着媒体を保持可能になっていることを特徴とする吸着器。
  2.  前記伝熱部(103b、203b)にて保持可能な被吸着媒体の量は、前記吸着部(102、202)にて被吸着媒体を吸着可能な容量以下に設定されていることを特徴とする請求項1に記載の吸着器。
  3.  前記伝熱部(103b、203b)は、多孔質伝熱体であることを特徴とする請求項1または2に記載の吸着器。
  4.  前記伝熱部(103b、203b)は、焼結金属または発泡金属の何れかであることを特徴とする請求項3に記載の吸着器。
  5.  前記吸着部(102、202)は、前記蒸発凝縮部(103、203)の伝熱部(103b、203b)と同一構成の多孔質体に前記吸着剤が設けられた吸着用の伝熱部(102b、202b)を有していることを特徴とする請求項3または4に記載の吸着器。
  6.  前記伝熱部(103b、203b)の下記数式1で示される空隙相当径は、7~260μmの範囲内であることを特徴とする請求項3ないし5のいずれか1つに記載の吸着器。
    Figure JPOXMLDOC01-appb-M000002
  7.  前記伝熱部(103b、203b)の空隙相当径は、7~140μmの範囲内であることを特徴とする請求項6に記載の吸着器。
  8.  前記伝熱部(103b、203b)の空隙からなる第1通路の間隔を第1通路間隔(A)、前記第1通路を流通した被吸着媒体が前記第1通路の直後に流通する第2通路の間隔を第2通路間隔(B)、前記第2通路を流通した被吸着媒体が前記第2通路の直後に流通する第3通路の間隔を第3通路間隔(C)としたとき、第1通路間隔(A)<第2通路間隔(B)<第3通路間隔(C)の関係となっていることを特徴とする請求項3ないし7のいずれか1つに記載の吸着器。
  9.  前記蒸発凝縮部(103、203)の伝熱部(103b、203b)は、前記密閉容器(101、201)の底面に接していることを特徴とする請求項1ないし8のいずれか1つに記載の吸着器。
  10.  前記蒸発凝縮部(103、203)の伝熱部(103b、203b)の鉛直方向下方に、当該伝熱部(103b、203b)に接するように受け皿(104、204)が設けられていることを特徴とする請求項1ないし9のいずれか1つに記載の吸着器。

     
PCT/JP2015/005107 2014-10-15 2015-10-08 吸着器 WO2016059777A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/516,295 US10539344B2 (en) 2014-10-15 2015-10-08 Adsorber
EP15850982.8A EP3208558B1 (en) 2014-10-15 2015-10-08 Adsorber

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-210756 2014-10-15
JP2014210756 2014-10-15
JP2015-143540 2015-07-20
JP2015143540A JP6481541B2 (ja) 2014-10-15 2015-07-20 吸着器

Publications (1)

Publication Number Publication Date
WO2016059777A1 true WO2016059777A1 (ja) 2016-04-21

Family

ID=55746339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005107 WO2016059777A1 (ja) 2014-10-15 2015-10-08 吸着器

Country Status (1)

Country Link
WO (1) WO2016059777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246750A (zh) * 2016-08-05 2017-10-13 广西大学 一种用于吸附制冷的旋转式连续吸附床
WO2018033418A1 (de) * 2016-08-19 2018-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klimamaschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300129A (ja) * 2004-03-19 2005-10-27 Denso Corp 吸着式冷凍機用吸着器
JP2008039223A (ja) * 2006-08-02 2008-02-21 Denso Corp 吸着式熱交換器およびその製造方法
JP2009036429A (ja) * 2007-08-01 2009-02-19 Noritz Corp 一体型吸着器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300129A (ja) * 2004-03-19 2005-10-27 Denso Corp 吸着式冷凍機用吸着器
JP2008039223A (ja) * 2006-08-02 2008-02-21 Denso Corp 吸着式熱交換器およびその製造方法
JP2009036429A (ja) * 2007-08-01 2009-02-19 Noritz Corp 一体型吸着器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208558A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107246750A (zh) * 2016-08-05 2017-10-13 广西大学 一种用于吸附制冷的旋转式连续吸附床
WO2018033418A1 (de) * 2016-08-19 2018-02-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Klimamaschine

Similar Documents

Publication Publication Date Title
JP6481541B2 (ja) 吸着器
WO2018047533A1 (ja) 機器温調装置
JP6436557B2 (ja) 吸着式冷凍機
JP2018538507A (ja) 熱交換器および空調システム
WO2016059777A1 (ja) 吸着器
JP4363336B2 (ja) 冷暖房装置
JP2006284051A (ja) 吸着コアおよび吸着式ヒートポンプ。
JP2005009851A (ja) 空気調和装置
JP6658885B2 (ja) 蓄冷熱交換器
JP6398621B2 (ja) 冷凍機
WO2020235475A1 (ja) 機器温調装置
JP6011499B2 (ja) 吸着器
JP2013019616A (ja) 吸着式ヒートポンプ及び情報処理システム
WO2018070182A1 (ja) 機器温調装置
JP2020183814A (ja) 冷却装置
JP6904190B2 (ja) 車両用熱交換装置
JP6578876B2 (ja) 冷凍機用吸着器
WO2019225383A1 (ja) 吸着器及び吸着器の製造方法
JP6714866B2 (ja) 吸着器
JP3282244B2 (ja) 吸着式冷凍装置
JP2001082831A (ja) 吸着式冷凍機用吸着器
JP6638314B2 (ja) 冷凍機用吸着器
CN205878699U (zh) 一种抑菌型高效换热汽车空调蒸发器
WO2018043059A1 (ja) 冷熱生成装置
CN114992916A (zh) 用于执行工质的交替的蒸发和冷凝过程的换热器和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850982

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516295

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015850982

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015850982

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE