WO2016058282A1 - 一种脲包工艺中尿素的回收方法 - Google Patents
一种脲包工艺中尿素的回收方法 Download PDFInfo
- Publication number
- WO2016058282A1 WO2016058282A1 PCT/CN2015/000685 CN2015000685W WO2016058282A1 WO 2016058282 A1 WO2016058282 A1 WO 2016058282A1 CN 2015000685 W CN2015000685 W CN 2015000685W WO 2016058282 A1 WO2016058282 A1 WO 2016058282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- urea
- crystallization
- solution
- recycling
- unsaturated
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11B—PRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
- C11B7/00—Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils
- C11B7/0083—Separation of mixtures of fats or fatty oils into their constituents, e.g. saturated oils from unsaturated oils with addition of auxiliary substances, e.g. cristallisation promotors, filter aids, melting point depressors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C273/00—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
- C07C273/02—Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of urea, its salts, complexes or addition compounds
- C07C273/14—Separation; Purification; Stabilisation; Use of additives
- C07C273/16—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/487—Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C57/00—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
- C07C57/02—Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
- C07C57/03—Monocarboxylic acids
- C07C57/12—Straight chain carboxylic acids containing eighteen carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/14—Purification; Separation; Use of additives by crystallisation; Purification or separation of the crystals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/148—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
- C07C7/152—Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by forming adducts or complexes
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C1/00—Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
- C11C1/005—Splitting up mixtures of fatty acids into their constituents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Definitions
- the invention relates to a method for recovering urea, in particular to the recovery and reuse of urea in the process of separating and purifying unsaturated substances by urea encapsulation.
- Fat-soluble substances containing unsaturated double bonds in the molecular structure such as VE, squalene, polyunsaturated fatty acids - linoleic acid, linolenic acid, DHA, EPA, etc.
- VE unsaturated double bonds in the molecular structure
- squalene polyunsaturated fatty acids - linoleic acid, linolenic acid, DHA, EPA, etc.
- Some components are essential for humans. Long-term deficiency can cause cardiovascular diseases, low immunity, viral infections, etc., so they are found in food, health care products and medicine.
- a wide range of applications Since such a double bond-rich component is generally present in a mixed form with other non-biologically active materials, in order to better utilize such a substance in foods or pharmaceuticals, it needs to be isolated and purified.
- Urea bagging is a more traditional separation method.
- the urea molecules can be linearly compounded around the axis by strong hydrogen bonds, and the long-chain organic matter is tightly wrapped. Inclusion compound. Because the saturated and monounsaturated compounds have fewer double bonds, they are more likely to form inclusion complexes with urea molecules, while the polyunsaturated substances have more double bonds.
- the carbon chain bending has a certain spatial configuration and is not easily encapsulated by urea. Therefore, urea molecules Separation between different components of saturation can be achieved by crystallization filtration after mixing with the sample.
- urea encapsulation is widely used in the field of separation and purification of unsaturated fatty acids, and also has certain applications in the separation of fat-soluble substances such as VE and squalene.
- Jianxia Guo et al. used the urea-containing method to separate and purify linoleic acid from safflower seed oil to obtain linoleic acid products with a content of more than 70%.
- Tsumg-Shi Yang used urea-packaging method to separate and purify linoleic oil from soybean oil. Acid, a linoleic acid with a purity of 82% was obtained; Yuan Chengling et al. enriched the arachidonic acid (AA) in the microbial oil by the urea method, and increased the AA concentration from 38.29% to 78.97%.
- US 2003/0027865 discloses a process for purifying unsaturated fatty acids in vegetable oils and fish oils by using urea packs, and the EPA content in the linoleic acid and fish oil in the vegetable oil after purification is greatly improved.
- CN201210247842.8 describes a method for separating saturated and unsaturated fatty acids from algae oil. After inclusion, the content of DHA and DPA is more than 93%.
- the patent also mentions the method of water-soluble crystallization to recover urea, but urea. The solubility in water is relatively large, the required crystallization temperature is low, the energy consumption is large, and the recovery rate of the obtained urea is also low.
- CN201310442757.1 relates to a method for enriching VE, squalene and polyunsaturated fatty acids from a vegetable oil deodorized distillate, wherein a higher concentration of VE, squalene and polyunsaturated fatty acids is obtained by using the principle of urea pack.
- the recovery rate is above 80%.
- the inclusions of the inclusions are mainly fat-soluble substances rich in double bonds, including VE, polyunsaturated. Fatty acid, squalene, solanesol, etc.
- Urea bag also has certain drawbacks, mainly in the large amount of urea.
- the amount of urea used in the urea pack process is generally 1-10 times the mass of the inclusion of the guest, and the amount of urea used in actual industrial production is large.
- the price of urea is low, the large amount of use will inevitably lead to an increase in total cost.
- Urea emissions will have a greater impact on water quality and soil, and at the same time cause waste of resources.
- a recovery step of introducing urea into the urea pack process is very necessary. After the separation of unsaturated substances, a simple and easy urea recovery method is developed to completely release the encapsulated saturated substances, and the urea can be fully and rapidly crystallized and reused. The application is important.
- the invention intends to re-process the urea inclusion compound crystallized in the urea package process, add a polar solvent according to a certain ratio, and realize the combination by adjusting the solvent amount and the polarity of the solvent. Dissolving and stratifying, the upper layer is released into the inclusiond substance, and a certain amount of solvent is added to the lower layer to adjust the polarity, and the urea crystal can be crystallized under certain conditions, and the urea can be recovered and reused after a certain treatment.
- the reagents used can be recycled, reducing production costs and reducing environmental impact.
- an object of the present invention is to provide a method for urea recovery and reuse in a process of purifying unsaturated substances by urea encapsulation.
- the invention achieves the object of the invention by the following technical means: a method for recovering urea in a process of purifying an unsaturated substance by a urea-packing method, comprising the following steps:
- the urea inclusion step the ratio of the raw material, the urea, and the lower alcohol aqueous solution to the raw material and the urea is 1:1-4, the ratio of the urea to the alcohol is 1:3-6, and the inclusion temperature is 45-65.
- the inclusion was carried out at ° C, and then crystallization was carried out at a crystallization temperature of 0 to 10 ° C. After filtration, an unsaturated substance solution and a urea-saturated substance inclusion compound were obtained, and the filtrate was removed to obtain a target unsaturated component, and a filter cake was obtained.
- a urea inclusion compound the ratio of the raw material, the urea, and the lower alcohol aqueous solution to the raw material and the urea is 1:1-4, the ratio of the urea to the alcohol is 1:3-6, and the inclusion temperature is 45-65.
- the inclusion was carried out at ° C, and then crystallization was carried out at a crystallization temperature of 0 to 10 ° C. After
- a polar solvent is added to the urea clathrate, the polar solvent is water, a lower alcohol, or a mixture of water and a lower alcohol in any ratio, at a temperature of 50-90. Dissolving and stirring under heating at °C, standing layering to obtain a urea solution, and the upper layer of the urea solution is washed with water to obtain a component which is surrounded by urea;
- the target unsaturated component in step (1) includes but is not limited to VE, not full And a fat-soluble substance containing an unsaturated double bond such as a fatty acid or a methyl ester/ethyl ester thereof and squalene, and the saturated substance is another component having a higher saturation with respect to the target product.
- the polar solvent in the step (2) comprises water, a lower alcohol or a mixed solution thereof, and the polar solvent is added in a volume of 0.5 to 10 times the mass of the urea package.
- the lower alcohol is a C1-C4 saturated fatty alcohol.
- the specific polar or non-polar solvent in step (3) includes, but is not limited to, some lower alcohol, n-hexane, acetone, diethyl ether, ethyl acetate or a mixed solution thereof in any ratio.
- the lower alcohol is a C1-C4 saturated fatty alcohol. More preferably, the volume of the organic solvent added is from 0.3 to 10 times (V/V) the volume of the original solution.
- the solution has a crystallization temperature of -5 to 20 ° C, more preferably, a crystallization time of 1 to 24 h.
- the recovery rate of urea in the step (4) is above 80%.
- the technical route of the invention is that the sample to be separated is combined with urea and crystallized and filtered to realize separation between different saturation components, respectively, to obtain a specific unsaturated component and a urea-saturated component inclusion compound, and then urea.
- the inclusion compound is dissolved in a polar solvent and then layered to completely release the encapsulated component. Finally, a certain amount of a specific solvent is added to the urea solution to adjust the polarity of the system, and the urea is recovered and reused after cooling and crystallization.
- the step (1) is a urea encapsulation step, wherein the ratio of the raw material, the urea, and the lower alcohol aqueous solution to the raw material and the urea is 1:1-4, the ratio of the urea to the alcohol is 1:3-6, and the inclusion temperature is 45.
- the inclusion was carried out at -65 ° C, and then crystallization was carried out at a crystallization temperature of 0 to 10 ° C. After filtration, a solution of an unsaturated substance and a urea-saturated substance inclusion compound were obtained, and the filtrate was removed to obtain a target unsaturated component.
- the filter cake is a urea inclusion compound.
- the preferred crystallization time is not less than 2 h.
- Steps (2)-(4) are the recovery and reuse of urea, including the release of the inclusion complex and the crystallization of urea: the urea inclusion complex is dissolved in a certain amount of polar solvent to cause the encapsulated molecules from the urea molecule. It is released and can be separated from the urea solution to achieve two-phase separation; a certain amount of solvent is added to the urea solution, the solubility of the urea is changed by adjusting the polarity of the system, and the urea is crystallized under low temperature conditions, and the urea is precipitated.
- the recovery rate is above 80%. Realize the recycling of urea.
- the filter cake obtained by filtration i.e., urea clathrate
- the filter cake obtained by filtration was added to 0.5 times by mass of water, stirred at 90 ° C until clarified, and allowed to stand for stratification.
- Soybean oil is saponified and acidified to obtain free fatty acid, free fatty acid, urea and 95% aqueous ethanol solution are mixed uniformly at 65 ° C in a ratio of 1: 1: 3 (m: m: v), and the temperature is lowered to 10 ° C for crystallization. After suction filtration, the filtrate was vacuum-screwed and washed with water to obtain a linoleic acid product having a content of 87.8%.
- the filter cake obtained by filtration ie urea-fatty acid clathrate
- a 3 times by mass aqueous solution of 70% ethanol stirred at 50 ° C for 30 min, and allowed to stand for separation.
- the upper layer of the oil layer is washed with water.
- Saturated and monounsaturated fatty acids, the main components are palmitic acid, stearic acid, oleic acid and a small amount of linoleic acid.
- Example 2 The urea obtained by the recovery in "Example 2" was subjected to a urea pack test under the above conditions, and subjected to repeated recovery and collection, and the content of linoleic acid obtained each time was as shown in the following table. It can be seen that the urea recovered by this method is completely recovered and does not affect the effect of reuse.
- Ethyl ester type fish oil, urea and 95% aqueous methanol solution were uniformly mixed at 45 ° C in a ratio of 1:4:12 (m:m:v), cooled to 0 ° C, crystallized by vacuum filtration, and the filtrate was vacuum-screwed to obtain DHA.
- the release of the encapsulated ethyl ester 10 times the mass of methanol is added to the filter cake obtained by filtration (ie, the urea clathrate), stirred at 70 ° C until dissolved, and the layer is allowed to stand. The upper layer of the oil layer is washed with water to obtain a higher degree of saturation. Fatty acid ethyl ester.
- Urea inclusion sunflower oil is solubilized and acidified to obtain sunflower oil free fatty acid. Take 100g of free fatty acid, 400g of urea and 1200mL of 95% ethanol solution at 60 ° C The mixture was stirred under stirring; the solution was slowly cooled to 10 ° C, and the crystal was allowed to stand for 6 hours. The filtrate was separated from the solid crystal by vacuum filtration; the filtrate was vacuum-screwed to obtain an ⁇ -linolenic acid product having a content of 80% or more.
- the solid crystal ie solid inclusion compound
- the upper layer of the oil layer is washed with water to obtain a fatty acid having an unsaturation degree of less than 3, mainly including palmitic acid, stearic acid, Oleic acid, linoleic acid and a small amount of linolenic acid.
- the palm oil is subjected to urea coating after methyl esterification, and the methyl esterified palm oil, urea and 95% aqueous methanol solution are mixed at a ratio of 1:2:12 (m:m:v), and the reaction is stirred until clarification at 60 ° C.
- the crystal is cooled to 4 ° C, and the filtrate is subjected to crystallization, filtration, concentration, crystallization or rectification to prepare VE, and the obtained VE component content can reach 80% or more.
- the filter cake obtained by filtration (ie, urea clathrate) was added with 2 times the mass of 40% methanol aqueous solution, and stirred at 50 ° C for 45 min. After the system was clarified, it was allowed to stand for stratification. The upper layer was a fat-soluble substance surrounded by urea, and the lower layer was urea. Aqueous ethanol solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fats And Perfumes (AREA)
Abstract
本发明公开了一种尿素包合法分离纯化不饱和物质工艺中尿素的回收方法。以含有目标不饱和成分的脂溶性物质为原料,经尿素包合、结晶过滤后,滤液得到特定不饱和成分;将尿素包合物溶于极性溶剂中,分层释放被包合组分后,向尿素溶液中加入一定溶剂调节极性后降温结晶,回收尿素。该方法能实现被包合组分的完全释放及尿素的回收再利用,工艺简单,回收率高,回收尿素再利用时不影响包合效果,降低了脲包的生产成本,减轻了尿素排放对环境的不利影响。
Description
本发明涉及一种尿素的回收方法,尤其涉及尿素包合法分离纯化不饱和物质工艺中尿素的回收再利用。
分子结构中含有不饱和双键的脂溶性物质如VE、角鲨烯、多不饱和脂肪酸-亚油酸、亚麻酸、DHA、EPA等广泛存在于植物油或动物油中,具有抗氧化、抗衰老、提高免疫力、降血脂抗癌等生理活性,有些成分是人类所必需的,长期缺乏会引起心血管障碍、免疫力低、病毒感染等多种疾病,因此在食品、保健品和医药中都具有广泛的应用。由于这类富含双键的组分一般是和其它无生物活性的物质以混合形态存在的,为了更好的使此类物质在食品或药品中得到应用,需要对其进行分离纯化。
目前已有多种方法应用于饱和度不同组分之间的分离,包括精馏、低温结晶、溶剂萃取、常规吸附层析、超临界萃取等,但均存在着一定的不足,如:分离度不够、处理量小、成本高、不易产业化、对脂肪酸结构的破坏等,较难作为主要的纯化手段在工业生产中应用。
尿素包合法是一种较传统的分离方法,尿素分子可以以直链化合物为轴心,通过强大的氢键绕着轴心盘旋,和长链有机物紧紧包裹形
成包合物。由于饱和和单不饱和化合物双键少,较易和尿素分子形成包合物,而多不饱和物质双键较多,碳链弯曲具有一定的空间构型,不易被尿素包合,因此尿素分子和样品混合后通过结晶过滤即可以实现饱和度不同组分之间的分离。目前尿素包合法在分离纯化不饱和脂肪酸的领域应用较广,此外在VE、角鲨烯等脂溶性物质的分离中也有一定的应用、。
Jianxia Guo等利用脲包的方法对红花籽油中的亚油酸进行分离纯化,得到含量70%以上的亚油酸产品;Tsumg-Shi Yang等利用脲包法从大豆油中分离纯化亚油酸,得到纯度82%的亚油酸;袁成凌等利用脲包法对微生物油脂中的花生四烯酸(AA)进行富集,使AA浓度从38.29%提高到78.97%。
US.2003/0027865公开了一种利用脲包纯化植物油和鱼油中不饱和脂肪酸的工艺,纯化后植物油中的亚油酸以及鱼油中的EPA含量都有了很大的提高。CN201210247842.8描述了一种从藻油中分离饱和及不饱和脂肪酸的方法,经包合后DHA及DPA两者的含量达93%以上,该专利也提到了水溶结晶的方法回收尿素,但尿素在水中溶解度较大,所需结晶温度较低,能耗较大,所得尿素的回收率也会较低。
CN201310442757.1涉及一种自植物油脱臭馏出物中富集VE、角鲨烯和多不饱和脂肪酸的方法,其中采用脲包的原理,获得较高浓度VE、角鲨烯和多不饱和脂肪酸,回收率均在80%以上。
总体来看,已经公开的利用脲包纯化不饱和物质的报道中,被包合分离客体主要是一些富含双键的脂溶性物质,包括VE、多不饱和
脂肪酸、角鲨烯、茄尼醇等。这些工艺方法具有多种优势,如操作简单,易于产业化生产等。
脲包也存在着一定的弊端,主要表现在尿素的用量大。脲包过程中尿素的使用量一般为被包合客体质量的1-10倍,实际工业化生产中尿素的使用量很大。尽管尿素的价格较低,但大量使用势必会造成总成本的增加,尿素的排放对水质和土壤都会造成较大的影响,同时造成资源的浪费。
目前报道的脲包工艺中对尿素包合物几乎没有采取特别的处理措施,少量专利中通过加入水搅拌溶解尿素使被包合物释放,此举的目的主要是得到被包合的饱和度较高物质,对尿素的回收条件及效果没有专门的研究说明,特别是尿素在水中的溶解度较大,溶于水中的尿素需要较低的温度才能实现结晶,能耗高,回收率低。
此外,以水为溶剂回收尿素需要伴随浓缩步骤,一方面处理过程复杂,另一方面浓缩中对一些杂质组分有富集作用,回收的尿素纯度较低,晶型较差,影响再利用时的包合效果。
为了解决以上问题,在脲包工艺中引入尿素的回收步骤是十分必要的。在实现不饱和物质的分离后,开发一种简单易行的尿素回收方法,使被包合的饱和物质能完全释放,又能使尿素充分快速的结晶再利用,对脲包技术在实际生产中的应用有重要意义。
发明内容
本发明拟对脲包过程中结晶出的尿素包合物进行再处理,按一定比例加入极性溶剂,通过调节溶剂量以及溶剂的极性,实现结合物的
溶解分层,上层得释放出的被包合物质,下层溶液中加入一定量的溶剂调节极性,即可在一定的条件下结晶出尿素晶体,经一定处理后可实现尿素的回收再利用,所用的试剂均能实现回收套用,降低了生产成本,减少了对环境的不利影响。
鉴于以上问题,本发明的目的在于提供一种尿素包合法纯化不饱和物质工艺中尿素回收再利用的方法。
本发明通过以下技术手段来实现发明目的:一种脲包法纯化不饱和物质工艺中尿素的回收方法,包括以下步骤:
(1)尿素包合步骤,将原料、尿素、以及低级醇水溶液按照原料和尿素的比例为1∶1-4,尿素和醇的比例为1∶3-6,在包合温度为45-65℃下进行包合,然后在结晶温度为0-10℃下进行结晶,过滤后得到不饱和物质的溶液和尿素-饱和物质包合物,滤液脱除溶剂后得到目标不饱和组分,滤饼为尿素包合物;
(2)被包合物的释放:向所述尿素包合物中加入一极性溶剂,所述极性溶剂为水、低级醇、或任意比例的水与低级醇混合物,在温度50-90℃下加热搅拌溶解,静置分层,得到尿素溶液,所述尿素溶液的上层经水洗后得到被尿素包合的组分;
(3)尿素的结晶:向所述尿素溶液的下层中加入有机溶剂,所述有机溶剂为低级醇、正己烷、丙酮、乙醚、乙酸乙酯、或其任意比例的混合物,搅拌混合,缓慢降温结晶、过滤、干燥,得到尿素晶体,用于回收尿素的再利用。
优选地,步骤(1)中目标不饱和组分包括但不局限于VE、不饱
和脂肪酸或其甲酯/乙酯及角鲨烯等含不饱和双键的脂溶性物质,饱和物质为相对与目标产物饱和度较高的其它组分。
优选地,步骤(2)中极性溶剂包括水、低级醇或其混合溶液,极性溶剂加入体积为脲包物的质量的0.5-10倍。所述低级醇为C1~C4的饱和脂肪醇。
优选地,步骤(3)中特定的极性或非极性溶剂包括但不局限于一些低级醇、正己烷、丙酮、乙醚、乙酸乙酯或其任意比例的混合溶液。所述低级醇为C1~C4的饱和脂肪醇。更优选地,所述有机溶剂的体积加入量为原溶液体积的0.3-10倍(V/V)。
优选地,溶液结晶温度为-5-20℃,更优选地,结晶时间1-24h。
优选地,所述步骤(4)中尿素的回收率在80%以上。
本发明的技术路线是先将待分离样品与尿素包合后结晶过滤实现不同饱和度组分之间的分离,分别得到特定不饱和组分及尿素-较饱和组分包合物,再将尿素包合物溶于极性溶剂后分层以完全释放被包合组分,最后向尿素溶液中加入一定量的特定溶剂调节体系的极性,降温结晶后实现尿素的回收再利用。
步骤(1)为尿素包合步骤,将原料、尿素、以及低级醇水溶液按照原料和尿素的比例为1∶1-4,尿素和醇的比例为1:3-6,在包合温度为45-65℃下进行包合,然后在结晶温度为0-10℃下进行结晶,过滤后得到不饱和物质的溶液和尿素-饱和物质包合物,滤液脱除溶剂后得到目标不饱和组分,滤饼为尿素包合物。其中,优选的结晶时间不低于2h。这里,不同的样品组成、不同的目标产物需要在该比例
范围内进行相应的调整,以得到理想纯度和回收率的目标不饱和组分。此外,包合温度、结晶温度以及结晶时间对产品的纯度和回收率也有明显的影响。
步骤(2)-(4)为尿素的回收再利用,包括被包合物的释放以及尿素的结晶:将尿素包合物溶于一定量的极性溶剂中,使被包裹的分子从尿素分子中释放出来,并能和尿素溶液分层实现两相分离;向尿素溶液中加入一定量的溶剂,通过调节体系的极性来改变尿素的溶解性,促进尿素在低温条件下结晶析出,尿素的回收率在80%以上。实现尿素的循环利用。
下面用实施例来进一步说明本发明,本发明的实施例仅用于说明本发明的技术方案,并非限定本发明。
实施例1
大豆脱臭馏出物甲酯化产物按一定比例加入到尿素95%甲醇水溶液中,其中甲酯∶尿素∶甲醇=1∶2∶10(m∶m∶v),50℃下搅拌反应至溶液澄清,缓慢降温至6℃,静置结晶,滤液回收溶剂后精馏,得到含量70%以上角鲨烯产品。
被包合物的释放:将过滤所得滤饼(即尿素包合物)加入到0.5倍质量的水中,90℃搅拌至澄清,静置分层。
尿素的回收:向下层尿素溶液中加入0.3倍体积的丙酮,混合均匀后缓慢降温至-5℃,静置结晶1h后过滤,晶体经干燥后得回收尿
素晶体,尿素回收率85%以上。
尿素的套用:回收的尿素重复利用于大豆脱臭馏出物甲酯化产物的脲包工艺,结果表明对所得产品中角鲨烯的纯度没有明显影响。
实施例2
大豆油经皂化、酸化后得其游离脂肪酸,游离脂肪酸、尿素和95%乙醇水溶液按1∶1∶3(m∶m∶v)的比例在65℃下混合均匀,降温至10℃结晶,真空抽滤,滤液进行真空旋蒸,水洗得到含量87.8%的亚油酸产品。
被包合脂肪酸的释放:将过滤所得滤饼(即尿素-脂肪酸包合物)加入到3倍质量的70%乙醇水溶液中,50℃搅拌30min,静置分层,上层油脂层经水洗后得饱和及单不饱和脂肪酸,主要成分为棕榈酸、硬脂酸、油酸及少量的亚油酸。
尿素的回收:向下层溶液中加入0.5倍体积的正己烷,混合均匀后缓慢降温至5℃,静置结晶16h后过滤,晶体经干燥后得回收尿素晶体,尿素回收率85%以上。
实施例3
利用“实施例2”中回收所得的尿素按照上述条件进行脲包试验,并进行多次反复回收套用,每次所得亚油酸的含量如下表所示。可以看出,通过此方法回收的尿素回收完全,且不影响再利用的效果。
实施例4
乙酯型鱼油、尿素和95%甲醇水溶液按1∶4∶12(m∶m∶v)比例在45℃下混合均匀,降温至0℃结晶,真空抽滤,滤液进行真空旋蒸,得到DHA、EPA总含量90%的鱼油产品。
被包合乙酯的释放:向过滤所得滤饼(即尿素包合物)中加入10倍质量的甲醇,70℃搅拌至溶解,静置分层,上层油脂层经水洗后得饱和度较高的脂肪酸乙酯。
尿素的回收:向下层尿素溶液中加入5倍体积的乙酸乙酯,溶液缓慢降温至20℃,静置结晶24h后过滤,晶体经干燥后得回收尿素晶体,尿素回收率90%以上。
回收尿素的再利用:利用回收的尿素继续对乙酯型鱼油进行包合分离,相对于初次使用,得到DHA、EPA总含量没有明显改变,可达90%。
实施例5
尿素包合:葵花籽油经皂解、酸化后得葵花籽油游离脂肪酸。取100g游离脂肪酸、400g尿素和1200mL的95%乙醇水溶液在60℃
下搅拌混合;溶液缓慢降温至10℃,静置结晶6h,真空抽滤将滤液与固体结晶分离;滤液进行真空旋蒸得到含量80%以上的α-亚麻酸产品。
固体结晶(即固体包合物)60℃下搅拌溶于4倍质量的水中,静置分层,上层油脂层经水洗后得不饱和度小于3的脂肪酸,主要包括棕榈酸、硬脂酸、油酸、亚油酸和少量的亚麻酸。
向下层溶液中加入2倍体积的甲醇,缓慢降温至4℃,静置结晶8h后过滤,晶体经干燥后得回收尿素晶体,尿素回收率90%以上。
实施例6
棕榈油经甲酯化后进行脲包处理,甲酯化的棕榈油、尿素和95%甲醇水溶液按1∶2∶12(m∶m∶v)比例混合,60℃下搅拌反应至澄清,缓慢降温至4℃结晶,结晶过滤后滤液经浓缩、结晶或精馏等步骤制备VE,所得VE组分含量可达80%以上。
过滤所得滤饼(即尿素包合物)中加入2倍质量的40%甲醇水溶液,50℃搅拌45min,待体系澄清后静置分层,上层为被尿素包合的脂溶性物质,下层为尿素的乙醇水溶液。
向下层(尿素的乙醇水溶液)中加入10倍体积的乙醚,混合均匀后缓慢降温至0℃,静置结晶12h,过滤干燥回收尿素晶体,回收率80%,可重复利用于脲包工艺。
通过实施例1~6看出,采用本发明工艺,尿素的回收率在80%以上。
本发明通过上面的实施例进行举例说明,但是,应当理解,本发明并不限于这里所描述的特殊实例和实施方案。在这里包含这些特殊实例和实施方案的目的在于帮助本领域中的技术人员实践本发明。任何本领域中的技术人员很容易在不脱离本发明精神和范围的情况下进行进一步的改进和完善,因此本发明只受到本发明权利要求的内容和范围的限制,其意图涵盖所有包括在由附录权利要求所限定的本发明精神和范围内的备选方案和等同方案。
Claims (9)
- 一种脲包法纯化不饱和物质工艺中尿素的回收方法,所述回收方法包括以下步骤:(1)尿素包合步骤,将原料、尿素、以及低级醇水溶液按照原料和尿素的比例为1∶1-4,尿素和醇的比例为1∶3-6,在包合温度为45-65℃下进行包合,然后在结晶温度为0-10℃下进行结晶,过滤后得到不饱和物质的溶液和尿素-饱和物质包合物,滤液脱除溶剂后得到目标不饱和组分,滤饼为尿素包合物;(2)被包合物的释放:向所述尿素包合物中加入一极性溶剂,所述极性溶剂为水、低级醇、或任意比例的水与低级醇混合物,在温度50-90℃下加热搅拌溶解,静置分层,得到尿素溶液,所述尿素溶液的上层经水洗后得到被尿素包合的组分;(3)尿素的结晶:向所述尿素溶液的下层中加入有机溶剂,所述有机溶剂为低级醇、正己烷、丙酮、乙醚、乙酸乙酯、或其任意比例的混合物,搅拌混合,缓慢降温结晶、过滤、干燥,得到尿素晶体,用于回收尿素的再利用。
- 如权利要求1所述的回收方法,其特征在于,步骤(1)中,所述目标不饱和组分包括VE、不饱和脂肪酸、或其甲酯/乙酯及角鲨烯的含不饱和双键的脂溶性物质,所述饱和物质为相对与目标产物饱和度较高的其它组分。
- 如权利要求1或2所述的回收方法,其特征在于,步骤(1) 中,结晶时间不低于2h。
- 如权利要求1所述的回收方法,其特征在于,步骤(2)中,所述极性溶剂的加入体积为脲包物的质量的0.5-10倍。
- 如权利要求1所述的回收方法,其特征在于,步骤(3)中,所述有机溶剂的体积加入量为原溶液体积的0.3-10倍。
- 如权利要求1或5所述的回收方法,其特征在于,步骤(3)中,溶液结晶温度为-5-20℃。
- 如权利要求6所述的回收方法,其特征在于,步骤(3)中,结晶时间1-24h。
- 如权利要求1所述的回收方法,其特征在于,步骤(4)中尿素的回收率在80%以上。
- 如权利要求1所述的回收方法,其特征在于,所述低级醇为C1~C4的饱和脂肪醇。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/519,552 US11180445B2 (en) | 2014-10-17 | 2015-10-12 | Method for recycling urea in urea adduct process |
EP15850981.0A EP3208257B1 (en) | 2014-10-17 | 2015-10-12 | Method for recycling urea in urea adduct process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410554974.4 | 2014-10-17 | ||
CN201410554974.4A CN105566167B (zh) | 2014-10-17 | 2014-10-17 | 一种脲包工艺中尿素的回收方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016058282A1 true WO2016058282A1 (zh) | 2016-04-21 |
Family
ID=55746027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/000685 WO2016058282A1 (zh) | 2014-10-17 | 2015-10-12 | 一种脲包工艺中尿素的回收方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11180445B2 (zh) |
EP (1) | EP3208257B1 (zh) |
CN (1) | CN105566167B (zh) |
WO (1) | WO2016058282A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107090357A (zh) * | 2017-06-21 | 2017-08-25 | 江苏中兴药业有限公司 | 一种在水飞蓟油中提取纯化不饱和脂肪酸的方法 |
CN107311854B (zh) * | 2017-07-21 | 2020-03-10 | 浙江师范大学 | 一种固体粉状油酸钾的制备方法 |
CN108191638B (zh) * | 2017-12-11 | 2021-03-16 | 中国科学院水生生物研究所 | 一种使用尿素纯化藻油中的gla的方法 |
CN112159320B (zh) * | 2020-09-25 | 2022-05-20 | 菏泽中禾健元生物科技有限公司 | 一种亚麻酸的生产方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102746947A (zh) * | 2012-07-18 | 2012-10-24 | 福建华尔康生物科技有限公司 | 一种分离、纯化裂壶藻油中dha和饱和脂肪酸的方法 |
CN103333747A (zh) * | 2013-06-05 | 2013-10-02 | 安徽农业大学 | 一种从瓜蒌籽油混合脂肪酸中富集纯化多不饱和脂肪酸的方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2892870A (en) * | 1955-11-21 | 1959-06-30 | Lonza Electric & Chem Works | Process for purifying and crystallizing urea |
EP0347509A1 (en) * | 1988-06-21 | 1989-12-27 | Century Laboratories Inc. | A process of extraction and purification of polyunsaturated fatty acids from natural sources |
US4792418A (en) * | 1985-08-14 | 1988-12-20 | Century Laboratories, Inc. | Method of extraction and purification of polyunsaturated fatty acids from natural sources |
JPH08100191A (ja) * | 1994-09-30 | 1996-04-16 | Nisshin Flour Milling Co Ltd | 高度不飽和脂肪酸またはそのエステルの精製方法 |
US5847209A (en) * | 1997-12-03 | 1998-12-08 | Gupta; Anurag Ateet | Process for recovery of solid and reusable urea from the urea adduction process |
JP2000044982A (ja) * | 1998-07-27 | 2000-02-15 | Tama Seikagaku Kk | 不飽和脂肪酸アルキルエステルの濃縮分離方法 |
NO310113B1 (no) * | 1999-08-11 | 2001-05-21 | Norsk Hydro As | Fremgangsmåte for utvinning av flerumettede fettsyrer fra ureakomplekser |
WO2001051598A1 (en) * | 2000-01-11 | 2001-07-19 | Monsanto Technology Llc | Process for making an enriched mixture of polyunsaturated fatty acid esters |
KR20010008387A (ko) * | 2000-11-30 | 2001-02-05 | 이성권 | 결정화방법을 이용한 고순도 불포화지방산의 분리 정제 방법 |
CN1515660A (zh) * | 2003-05-21 | 2004-07-28 | 青海大学 | 胡麻油中-亚麻酸的分离纯化方法 |
WO2007068137A1 (fr) * | 2005-11-17 | 2007-06-21 | The Chinese University Of Hong Kong | Procede pour la preparation de biodiesel |
CN100335602C (zh) * | 2005-11-18 | 2007-09-05 | 扬州大学 | 一种油酸的清洁生产方法 |
CN101942357B (zh) * | 2010-09-10 | 2013-08-14 | 中国林业科学研究院林产化学工业研究所 | 一种小桐子油脂多不饱和脂肪酸单离的方法 |
WO2014140864A2 (en) * | 2013-03-13 | 2014-09-18 | Dsm Nutritional Products Ag | Recovering urea and oil from a urea/oil complex |
CN103483305B (zh) * | 2013-09-25 | 2015-04-15 | 潘见 | 一种自植物油脱臭馏出物中富集/回收ve、角鲨烯和多不饱和脂肪酸的方法 |
-
2014
- 2014-10-17 CN CN201410554974.4A patent/CN105566167B/zh active Active
-
2015
- 2015-10-12 US US15/519,552 patent/US11180445B2/en active Active
- 2015-10-12 WO PCT/CN2015/000685 patent/WO2016058282A1/zh active Application Filing
- 2015-10-12 EP EP15850981.0A patent/EP3208257B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102746947A (zh) * | 2012-07-18 | 2012-10-24 | 福建华尔康生物科技有限公司 | 一种分离、纯化裂壶藻油中dha和饱和脂肪酸的方法 |
CN103333747A (zh) * | 2013-06-05 | 2013-10-02 | 安徽农业大学 | 一种从瓜蒌籽油混合脂肪酸中富集纯化多不饱和脂肪酸的方法 |
Non-Patent Citations (2)
Title |
---|
LV , WEI ET AL.: "Technology of recovering urea from urea inclusion compounds produced in the separation of fatty acids using urea complexation", CHEMICAL INDUSTRY AND ENGINEERING PROGRESS, vol. 31, no. 1, 31 January 2012 (2012-01-31), pages 202, XP008172909 * |
See also references of EP3208257A4 * |
Also Published As
Publication number | Publication date |
---|---|
US11180445B2 (en) | 2021-11-23 |
CN105566167A (zh) | 2016-05-11 |
EP3208257B1 (en) | 2019-12-11 |
CN105566167B (zh) | 2018-04-03 |
EP3208257A1 (en) | 2017-08-23 |
EP3208257A4 (en) | 2018-07-25 |
US20170240507A1 (en) | 2017-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6664405B2 (en) | Method for isolating high-purified unsaturated fatty acids using crystallization | |
WO2016058282A1 (zh) | 一种脲包工艺中尿素的回收方法 | |
US8680305B2 (en) | Method for obtaining polyunsaturated fatty acid derivatives | |
WO2014054435A1 (ja) | 高度不飽和脂肪酸アルキルエステル含有組成物の製造方法 | |
JP2013151689A (ja) | Dhaを含有する脂肪酸組成物を製造する方法 | |
JP2006291204A (ja) | 不飽和脂肪酸の製造方法 | |
WO2016041506A1 (zh) | 一种以植物油为原料纯化制备高含量共轭亚油酸的方法 | |
WO2009063500A2 (en) | Novel methods of isolation of poly unsaturated fatty acids | |
KR20170044852A (ko) | 오메가-7계 불포화 지방산의 정제공정 | |
JP2017502130A (ja) | ポリ不飽和脂肪酸を製造するためのクロマトグラフィ方法 | |
CN103483305B (zh) | 一种自植物油脱臭馏出物中富集/回收ve、角鲨烯和多不饱和脂肪酸的方法 | |
CA2986213C (en) | Production method of highly unsaturated fatty acid with high purity/high yield | |
CN106590939A (zh) | 一种以植物油为原料纯化制备高含量亚油酸的方法 | |
US20140303406A1 (en) | Process for Preparing Xanthophyll Crystal | |
AU2006313172B2 (en) | Method of refining episesamin | |
JPH04159398A (ja) | 高度不飽和脂肪酸の取得方法 | |
CN107162910B (zh) | 从鱼油中制备高纯度epa-ee的方法 | |
JPH04243849A (ja) | 高度不飽和脂肪酸類の精製方法 | |
JP4393640B2 (ja) | 植物ステロールの製法 | |
WO2020196749A1 (ja) | エイコサペンタエン酸アルキルエステル含有組成物の製造方法 | |
CN108157970A (zh) | 蚕蛹复合油脂微胶囊的制备方法 | |
CN108715577B (zh) | 一种从松籽油中提取高纯度异海松酸的方法 | |
JPH035496A (ja) | コレステロールの製造法 | |
CN105646631A (zh) | 一种提取鹅去氧胆酸的方法 | |
CN117603040A (zh) | 文冠果油中神经酸的提纯方法及其复合纳米乳液的制备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15850981 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15519552 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015850981 Country of ref document: EP |