WO2016058236A1 - 基于铰接系统实现车辆安全回转的液压缓冲器及其方法 - Google Patents

基于铰接系统实现车辆安全回转的液压缓冲器及其方法 Download PDF

Info

Publication number
WO2016058236A1
WO2016058236A1 PCT/CN2014/091079 CN2014091079W WO2016058236A1 WO 2016058236 A1 WO2016058236 A1 WO 2016058236A1 CN 2014091079 W CN2014091079 W CN 2014091079W WO 2016058236 A1 WO2016058236 A1 WO 2016058236A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil passage
vehicle
articulated
oil
damping
Prior art date
Application number
PCT/CN2014/091079
Other languages
English (en)
French (fr)
Inventor
郝庆军
谭小亮
苏贤进
李大山
韦威尚
王晓宝
赵建伟
Original Assignee
伊卡路斯(苏州)车辆系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊卡路斯(苏州)车辆系统有限公司 filed Critical 伊卡路斯(苏州)车辆系统有限公司
Priority to EP14904031.3A priority Critical patent/EP3208488A4/en
Priority to RU2017116896A priority patent/RU2667133C1/ru
Publication of WO2016058236A1 publication Critical patent/WO2016058236A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/22Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with one or more cylinders each having a single working space closed by a piston or plunger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity

Definitions

  • the invention relates to the technical field of articulated passenger cars, in particular to a hydraulic buffer based on an articulated system for realizing safe rotation of a vehicle and a method thereof.
  • the articulated vehicle generally consists of two compartments.
  • the front and rear compartments are connected by a chassis hinge system.
  • the chassis articulation system includes a front frame, a rear frame, a slewing bearing and a hydraulic buffer that provides damping.
  • the front frame is fixedly connected to the front car through the front cross member.
  • the rear frame is fixedly connected to the rear compartment through the rear cross beam, and the left and right sides of the hydraulic buffer are connected between the front frame and the rear frame of the hinge system.
  • the object of the present invention is to overcome the above-mentioned shortcomings of the prior art, and to provide a damping torque that is increased according to an increase in the angle of the vehicle or the vehicle speed during the turning of the vehicle, and changes in the angle or speed of the vehicle during the turning of the vehicle.
  • a hydraulic buffer and a method thereof for achieving safe rotation of a vehicle based on an articulated system with a small increase in damping torque is to overcome the above-mentioned shortcomings of the prior art, and to provide a damping torque that is increased according to an increase in the angle of the vehicle or the vehicle speed during the turning of the vehicle, and changes in the angle or speed of the vehicle during the turning of the vehicle.
  • a hydraulic damper and a method thereof for realizing safe rotation of a vehicle based on an articulated system of the present invention have the following constitutions:
  • the hydraulic shock absorber based on the hinge system realizes safe rotation of the vehicle, wherein the hydraulic shock absorber comprises a piston assembly, a cylinder assembly and a storage tank, and the piston assembly is disposed in the cylinder assembly. And the piston assembly divides the corresponding cylinder into a rod chamber and a rodless chamber, wherein the hydraulic buffer further comprises a hydraulic control oil passage, the cylinder assembly, the hydraulic control The oil passage and the oil storage tank are fixedly connected in sequence, and the hydraulic control oil passage includes a first oil suction oil passage, a second oil suction oil passage, a first oil pressure oil passage, a second pressure oil passage, and a base damping oil.
  • Road, reinforced damping circuit, safety lock circuit and reversing assembly where:
  • the basic damping oil passage and the supercharging control oil passage are connected in parallel to form an articulated damping pressure control oil passage;
  • the first oil absorption oil passage is disposed between the oil storage tank and the rodless cavity;
  • the second oil absorption oil passage is disposed between the oil storage tank and the rod cavity;
  • the first pressure oil passage is disposed between the rodless chamber and the hinged damping pressure control oil passage;
  • the second oil pressure oil passage is disposed between the rod-shaped cavity and the hinged damping pressure control oil passage;
  • a return oil passage is disposed between the hinged damping pressure control oil passage and the oil storage tank;
  • the safety lock oil passage is disposed between the rod-shaped cavity and the return oil passage;
  • the reversing component is disposed in the second pressure oil passage.
  • the reversing component is a mechanical valve, and the mechanical valve is disposed on the piston assembly.
  • the piston assembly includes a piston and a piston rod
  • the mechanical valve includes a mechanical valve spring and a mechanical valve baffle
  • the first end of the mechanical valve spring is fixed to the piston
  • the second end of the mechanical valve spring is coupled to the mechanical valve baffle
  • the mechanical valve spring and the mechanical valve baffle are sleeved on the piston rod.
  • the cylinder assembly includes an integrated block, and the hinged damping pressure control oil passage, the second oil suction oil passage, the second oil pressure oil passage, and the safety lock oil passage are integrated in the integrated block.
  • the integrated block is further provided with an oil sump and a rod-cavity hinged oil inlet, wherein the oil sump is provided with a safety lock inlet port and a second oil suction inlet port.
  • first oil suction oil passage includes a first one-way valve
  • second oil suction oil passage includes a fourth one-way valve
  • first oil pressure oil passage includes a second one-way valve
  • second pressure oil passage includes a third one-way valve
  • the reversing component is a solenoid valve, and the solenoid valve is disposed between the third one-way valve and the hinged damping pressure control oil passage.
  • the basic damping oil passage includes a basic hydraulic damping and a basic electromagnetic valve
  • the pressurized control oil passage includes an enhanced relief valve or enhanced hydraulic damping
  • the safety locking oil passage includes a safety overflow. valve
  • the hinge system includes a proximity switch, a front frame and a rear frame, the proximity switch is disposed between the front frame and the rear frame, and the proximity switch and the The vehicle electronic control system of the articulated vehicle is connected, and the vehicle electronic control system is configured to send a basic solenoid valve control command to the hinge system according to the trigger signal sent by the proximity switch.
  • the present invention also provides a method for achieving a safe rotation of an articulated vehicle by the above-described hydraulic buffer, the main feature of which is that the method comprises the following steps:
  • the hinge system determines whether the state of the articulated vehicle is a turning state or a turning state, if it is a turning state, proceeding to step (2), if it is a turning state, continuing to step (5);
  • step (3) The vehicle electronic control system determines whether the trigger signal of the proximity switch is received, and if yes, proceeds to step (3), otherwise proceeds to step (2);
  • the vehicle electronic control system transmits a basic solenoid valve control command to the articulated system
  • the hinge system determines whether the turning angle of the handover vehicle is within a first set angle range, and if so, proceeds to step (6), otherwise proceeds to step (7);
  • the vehicle electronic control system maintains a communication state of the basic electromagnetic valve, and the hydraulic buffer provides a base damping
  • the vehicle electronic control system determines whether to send a basic solenoid valve control command to the articulated system, and if so, proceeds to step (8), otherwise proceeds to step (10);
  • the vehicle electronic control system transmits a basic solenoid valve control command to the articulated system
  • the hinge system controls the basic solenoid valve to open, and returns to the above step (1);
  • vehicle electronic control system determines whether to send a basic solenoid valve control command to the articulated system, specifically:
  • the vehicle electronic control system determines whether a trigger signal and a reverse signal of the proximity switch are received, and if so, the vehicle electronic control system determines to send the basic solenoid valve control command to the The articulation system, otherwise the vehicle electronic control system determines that the basic solenoid valve control command is not sent to the articulation system.
  • vehicle electronic control system determines whether to send a basic solenoid valve control command to the articulated system, specifically:
  • the vehicle electronic control system determines whether any one of a brake signal, a vehicle speed upper limit trigger signal or an emergency switch button trigger signal is received, and if so, the vehicle electronic control system determines to send the basis
  • the solenoid valve controls the command to the articulation system, otherwise the vehicle electronic control system determines not to send the base solenoid valve control command to the articulation system.
  • the utility model adopts the hydraulic buffer and the method thereof for realizing safe rotation of the vehicle based on the hinge system.
  • the damping torque is increased with the increase of the angle or the vehicle speed to ensure the driving.
  • the damping torque is gradually increased, so that the vehicle can be swiftly and quickly rotated, avoiding the vehicle turning after turning.
  • the phenomenon of the trailer, and the tail of the vehicle after the vehicle is squared; at the same time, when the vehicle has an accident, the vehicle is kept in the shape of the accident, avoiding a greater hazard, and is safer and more comfortable to drive than the prior art.
  • the mechanical valve baffle blocks the rod-cavity inlet port on the integrated block, and the hydraulic oil can enter the safety lock through the oil sump.
  • the oil port and the second oil inlet port so when the vehicle turns to a certain angle, the hydraulic buffer with the rod cavity compressed provides a damping force by the safety lock oil path.
  • the hinged damping pressure control oil circuit adopts hydraulic damping as the normal state, and the relief valve is pressurized, instead of the overflow valve.
  • the hydraulic damping In the normal state, the hydraulic damping is in a pressurized state.
  • Such a configuration makes full use of the pressure difference generated by the hydraulic damping and the over-flow of the hydraulic oil, that is, under normal conditions, the hinge damping is proportional to the angular velocity of the vehicle; when the damping is required within a small rotation angle, Increase the damping pressure to a higher, relatively constant value, so use hydraulic damping and relief valves to obtain damping pressure instead of using a proportional relief valve (or proportional relief valve) to achieve damping pressure, reducing hydraulic buffering Manufacturing costs and complexity of electrical control.
  • the hinged damping pressure control oil circuit is in the form of a parallel connection of the relief valve and the hydraulic damping.
  • the relief valve and the hydraulic damping are connected in parallel.
  • FIG. 1 is a structural view of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • FIG. 2 is a structural view of a first hydraulic control oil passage of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • FIG. 3 is a structural view of a cylinder block assembly and a piston assembly of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • FIG. 4 is a structural view of a second hydraulic control oil passage of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • Fig. 5 is a structural view showing a third hydraulic control oil passage of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • Fig. 6 is a structural view showing a mechanical valve of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • Fig. 7 is a structural diagram of an integrated block of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • Fig. 8 is an overall structural view of a hydraulic damper for realizing safe rotation of a vehicle based on an articulated system of the present invention.
  • a stepped damping buffer is connected between the front frame 1 and the rear frame 2 of the hinge system, and each stepped damping buffer includes a hydraulic control oil passage.
  • the frame 1 is coupled, and the piston assembly 4 is disposed within the cylinder assembly 3 and is slidable within the cylinder assembly 3.
  • FIG. 2 it is a schematic structural diagram of a hydraulic control oil passage, the hydraulic control oil is routed to the first one-way valve 61, and the second one-way Valve 62, third check valve 63, fourth check valve 64, reversing assembly (reversing assembly may be mechanical valve 75 or solenoid valve 75', Figure 2 is mechanical valve 75), basic solenoid valve 73, safety spill Flow valve 71, enhanced relief valve 72 (which may also be enhanced hydraulic damping 72', Figure 2 is enhanced relief valve 72) and basic hydraulic damping 74, wherein:
  • the first check valve 61 is disposed between the oil storage tank 5 and the rodless chamber 44 of the cylinder 31 as a first oil suction passage; the fourth check valve 64 is disposed in the rod chamber 43 and the oil storage tank 5 of the cylinder 31 Between the second oil suction oil passage; the second check valve 62 is disposed between the rodless chamber 44 of the cylinder 31 and the pressure control oil passage as the first pressure oil passage; the third check valve 63 is disposed at The cylinder 31 has a rod chamber 43 and a pressure control oil passage as a second pressure oil passage; the basic solenoid valve 73, the enhanced relief valve 72 and the basic hydraulic damping 74 constitute an articulated damping pressure control oil passage; the hinge damping pressure The oil passage between the oil passage and the oil storage tank 5 is controlled as a return oil passage; the safety relief valve 71 is disposed between the rod chamber 43 and the return oil passage as a safety lock oil passage; the reversing component is disposed at the Two pressure oil in the road.
  • the mechanical valve 75 includes a mechanical valve spring 751 and a mechanical valve baffle 752, and the first end of the mechanical valve spring 751 Fixed to the piston 41, the second end of the mechanical valve spring 751 is coupled to the mechanical valve baffle 752, and the mechanical valve spring 751 and the mechanical valve baffle 752 are sleeved on the piston rod 42.
  • a first check valve 61 is disposed between the oil storage tank 5 and the rodless chamber 44 as a first oil suction passage;
  • a fourth check valve 64 is disposed between the oil storage tank 5 and the rod chamber 43 as a second oil suction oil passage;
  • 3 second check valve 62 is disposed between the rodless chamber 44 and the hinged damping pressure control oil passage as the first pressure oil passage;
  • a third check valve 63 is disposed between the rod chamber 43 and the hinged damping pressure control oil passage as a second pressure oil passage;
  • the basic hydraulic damping 74 and the basic electromagnetic valve 73 are connected in series to form a basic damping oil passage;
  • the enhanced relief valve 72 is set to be higher than the basic hydraulic damping 74 under normal conditions, and the opening pressure lower than the safety relief valve 71 is used as the enhanced damping oil passage;
  • the safety relief valve 71 is set to have a relatively high opening pressure connected between the rod chamber 43 and the return oil passage as a safety lock oil passage.
  • the enhanced relief valve 72 can be replaced by the enhanced hydraulic damping 72'; as shown in Fig. 5, the reversing assembly is a structural view of the solenoid valve 75'.
  • the cylinder assembly 3 includes a welded triplex, a cylinder 31, a rear end cap 32, a crimping tube 33 and associated cylinder seals.
  • the welding triple piece is welded by the integrated block 34, the outer tube 25 and the flange in sequence, and all the components of the pressure control oil path are integrally disposed in the integrated block 34 of the welded triple piece;
  • the cylinder tube 31 is arranged to be installed in the welding triple The inside of the piece is in mating contact with the integrated block 34 in the welding triple piece, and one end seal is formed by the cylinder seal;
  • the rear end cover 32 is disposed at the other end of the cylinder barrel 31 and the welded triple piece, and the cylinder barrel is sealed by the cylinder seal 31 and the other end of the welded triplex;
  • a flat end set screw 36 is disposed on the integrated block 34 of the welded triple piece, and the cylinder 31 in the welded triplet is pressed to prevent the cylinder 31 from being in the integrated block 34 and the rear end cover 32.
  • the axial movement is between; the crimping tube 33 is disposed between the rear end cover 32 and the integrated block 34 of the welded triple piece to realize the connection between the first pressure oil passage and the pressure control oil passage in the manifold block 34; An annular sealing region between the barrel 31 and the welded three connecting outer tube 25 forms an oil storage tank 5.
  • the integrated block 34 is further provided with an oil sump 341 and a rod cavity hinged oil inlet 342 , and a safety lock oil inlet 343 is opened in the oil sump 341 . And a second oil suction inlet 345.
  • the piston assembly 4 includes a piston 41, a piston rod 42 and associated piston rod seals.
  • the piston 41 is disposed to be installed in the cylinder 31, and the cylinder 31 is divided into two cavities by the piston rod 42 seal; the piston rod 42 passes through the integrated block 34 in the welding triplet and the piston 41 located in the cylinder barrel.
  • the two cavities in which the piston 41 separates the cylinder 31 are referred to as having a cavity 43 through which the piston rod 42 passes, and the cavity through which the piston rod 42 does not pass is a rodless cavity 44.
  • the basic solenoid valve is powered.
  • the front and rear workshops drive the front frame and the rear frame to rotate relative to each other.
  • the piston assembly of the left hydraulic shock absorber rotates with the front frame and slides in the cylinder cavity.
  • Extending; the piston assembly of the right hydraulic damper rotates with the front frame and slides in the cylinder to the rodless cavity.
  • the volume of the cavity of the rod cavity is reduced, and the hydraulic oil compressed in the rod cavity passes through the second oil drain passage, and flows to the hinged damping pressure control oil passage for pressure control to generate a pressure value.
  • the oil return flow will be stored in the oil tank; the pressure generated by the rod cavity acts on the piston to relieve the tendency of the piston to slide to the rod cavity, that is, to alleviate the tendency of the hinge system to rotate to the right, that is, to alleviate the tendency of the vehicle to turn right.
  • the basic solenoid valve is energized and connected, and the hinged damping pressure is generated by the basic hydraulic damping.
  • the generated damping pressure value and the hydraulic oil flow through the hydraulic damping are Proportional, that is, proportional to the linear velocity of the piston rod; when the turning angle reaches between 48° and 51°, the proximity switch triggers, and the vehicle electronic control system sends a signal to power off the basic solenoid valve, which is closed and hinged.
  • the damping pressure is generated by the enhanced relief valve and produces a substantially constant damping pressure value; when the turning angle reaches between 51° and 54°, the basic solenoid valve remains de-energized while the mechanical valve follows the piston End to the movable manifold, clogging hinged control rod chamber damping pressure oil inlet passage, the safety locking rod chamber pressure is set by the safety relief valve; piston rod cavity to slide inside the cylinder, without The volume of the cavity of the rod cavity is increased, and after the negative pressure is generated, the oil is sucked from the oil storage tank through the first oil suction circuit, and the cavity is filled with the hydraulic oil.
  • the piston rod when the turning angle is between 0° and 38.6°, the piston rod is retracted, the basic solenoid valve is energized, the articulated damping pressure is generated by hydraulic damping, and the generated damping pressure value and the basic hydraulic damping are generated.
  • the hydraulic oil flow rate is proportional to the linear speed of the piston rod retraction; when the turning angle is 38.6°, the axis of the piston rod passes through the rotation center of the front and rear frames of the hinge system, and the piston rod is reduced to the shortest position.
  • the right hydraulic damper When the right hydraulic damper has a damping force and a force arm of 0; when the turning angle is between 38.6° and 48°, the basic solenoid valve is electrically connected, the right hydraulic damper piston rod is extended, and the hinge damping pressure is based on Hydraulic damping occurs; when the turning angle reaches between 48° and 51°, the proximity switch triggers, and the vehicle's electronic control system sends a signal to de-energize the basic solenoid valve, which is in the closed state, and the hinged damping pressure is generated by the enhanced relief valve.
  • a substantially constant damping pressure value when the turning angle reaches between 51° and 54°, the near-fast closing continues to be in the triggered state, and the basic solenoid valve continues to lose power and is in the off state.
  • Hinge damping pressure state the right hydraulic shock generated by the enhanced spill valve, to provide enhanced damping.
  • the vehicle electronic control system receives the corresponding upper speed trigger signal, brake signal or emergency switching button trigger signal, and articulates The system's hydraulic buffer sends a signal, the base solenoid valve loses power, and the hydraulic buffer is in an reinforced damping state.
  • the left and right hydraulic dampers provide a damping force for the hinge system, and the hinge system obtains a damping torque that is opposite to the direction of the vehicle turning, thereby relieving the tendency of the vehicle to turn.
  • the left and right hydraulic buffers of the articulated system correspond to one arm value at any position.
  • the turning angle is 38.6°
  • one of the hydraulic buffers is shortened to the shortest, and the total force arm of the hydraulic buffer is 0° ⁇
  • the 38.6° is decremented, and as the turning angle of the vehicle increases, the damping torque that needs to be provided also increases.
  • the damping torque that needs to be provided also increases.
  • the right and left hydraulic damper movement state is opposite to that when turning, when the turning angle is rotated between 0° and 38.6°, the hinge system is retracted by the left hydraulic damper to provide basic damping, and the right hydraulic damper is extended to provide basic damping;
  • the left hydraulic shock absorber is retracted to provide basic damping, and the right hydraulic shock absorber is also retracted to provide basic damping;
  • the turning angle is between 48° and 51°
  • the left hydraulic buffer The indentation provides basic damping and the right hydraulic shock absorber is also retracted to provide base damping; when the turning angle is swiveled between 51° and 54°, the left hydraulic shock absorber is retracted to provide basic damping and the right hydraulic shock absorber is also indented Provide basic damping.
  • the hydraulic damper only provides the basic damping, and does not enhance the damping force when turning, in order to make the vehicle can be swiftly and quickly turned to the straight state, avoiding the danger of trailers. It should be pointed out that when the turning angle is rotated between 0° and 48°, the vehicle electronic control system maintains the power supply for the basic electromagnetic valve of the hydraulic buffer.
  • the pressure damper provides the basic damping; when the vehicle turning angle is above 48°, it will only appear when the vehicle is reversing. If the vehicle electronic control system receives the proximity switch trigger signal and the reverse signal at the same time, the whole vehicle is powered.
  • the control system sends out a signal, and the hydraulic buffer base solenoid valve loses power; if the vehicle electronic control system only receives the proximity switch trigger signal and does not receive the reverse signal, the hydraulic buffer base solenoid valve is kept energized, thus achieving a light and fast rotation. the goal of.
  • the hydraulic buffer When the vehicle is faulty and the vehicle electronic control system is powered off, the hydraulic buffer provides enhanced damping so that the vehicle can safely drive back to the repair shop; when the vehicle has an accident and the electronic control system is powered off, the articulated system is in an enhanced damping state. The vehicle maintains the shape of the accident and avoids further hazards.
  • angles in the above may be other angle values than just a specific angle value.
  • the utility model adopts the hydraulic buffer and the method thereof for realizing safe rotation of the vehicle based on the hinge system.
  • the damping torque is increased with the increase of the angle or the vehicle speed to ensure the driving.
  • the damping torque is gradually increased, so that the vehicle can be swiftly and quickly rotated, avoiding the vehicle turning after turning.
  • the phenomenon of the trailer, and the tail of the vehicle after the vehicle is squared; at the same time, when the vehicle has an accident, the vehicle is kept in the shape of the accident, avoiding a greater hazard, and is safer and more comfortable to drive than the prior art.
  • the mechanical valve baffle blocks the rod-shaped hinged oil inlet on the integrated block, and the hydraulic oil can enter the safety lock through the oil groove.
  • the port and the second oil inlet port so when the vehicle turns to a certain angle, the hydraulic buffer with the rod cavity compressed provides a damping force by the safety lock circuit.
  • the hinged damping pressure control oil circuit adopts hydraulic damping as the normal state, the overflow valve is in the pressurized state, the non-relieving valve is the normal state, and the hydraulic damping is the pressurized state.
  • Such a configuration makes full use of the pressure difference generated by the hydraulic damping and the over-flow of the hydraulic oil, that is, under normal conditions, the hinge damping is proportional to the angular velocity of the vehicle; when the damping is required within a small rotation angle, Increase the damping pressure to a higher, relatively constant value, so use hydraulic damping and relief valves to obtain damping pressure instead of using a proportional relief valve (or proportional relief valve) to achieve damping pressure, reducing hydraulic buffering Manufacturing costs and complexity of electrical control.
  • the hinged damping pressure control oil circuit is in the form of a parallel connection of the relief valve and the hydraulic damping.
  • the relief valve and the hydraulic damping are connected in parallel.

Abstract

一种基于铰接系统实现铰接车辆安全回转的液压缓冲器,其中包括基础阻尼油路和增压控制油路并联组成铰接阻尼压力控制油路;铰接阻尼压力控制油路和储油箱(5)之间设置有回油油路;第二吸油油路设置于储油箱(5)与有杆腔(43)之间;安全锁止油路设置于有杆腔(43)和回油油路之间;换向组件(75)设置于第二压油油路内,此外还提供了一种通过上述液压缓冲器实现铰接车辆安全回转的方法。采用本发明的基于铰接系统实现车辆安全回转的液压缓冲器及其方法,使车辆可以轻便快速回转,避免回转时出现拖车现象和车辆摆正后甩尾,同时当车辆发生事故时,使车辆保持事故发生时的形状,避免出现更大的危害,具有更广泛的应用范围。

Description

基于铰接系统实现车辆安全回转的液压缓冲器及其方法 技术领域
本发明涉及铰接客车技术领域,具体是指一种基于铰接系统实现车辆安全回转的液压缓冲器及其方法。
背景技术
铰接车辆一般由两节车厢组成,前车厢和后车厢由底盘铰接系统连接,底盘铰接系统包括前架、后架、转盘轴承和提供阻尼的液压缓冲器,前架通过前横梁与前车厢固定连接,后架通过后横梁与后车厢固定连接,液压缓冲器左右各一件连接在铰接系统前架和后架之间,车辆在行驶中转弯时,前车和后车带动铰接系统的前架和后架相对转动,转动过程中可以触发接近开关,连接在铰接系统前架和后架之间,并和整车电控系统连接。
现有技术中,交接车辆在转弯和回转两种状态中阻尼力矩是相同的,容易导致车辆拖车和向反方向惯性甩尾的现象。
发明内容
本发明的目的是克服了上述现有技术的缺点,提供了一种车辆转弯过程中根据车辆的角度或车速的增大而增大阻尼扭矩,在车辆回转过程中,根据车辆角度或速度的变小逐渐增大阻尼扭矩的基于铰接系统实现车辆安全回转的液压缓冲器及其方法。
为了实现上述目的,本发明的基于铰接系统实现车辆安全回转的液压缓冲器及其方法具有如下构成:
该基于铰接系统实现车辆安全回转的液压缓冲器,其主要特点是,所述的液压缓冲器包括活塞组件、缸筒组件和储油箱,所述的活塞组件设置在所述的缸筒组件内,且所述的活塞组件将相应的缸筒分隔为有杆腔和无杆腔,其特征在于,所述的液压缓冲器还包括液压控制油路,所述的缸筒组件、所述的液压控制油路和所述的储油箱依次固定连接,且所述的液压控制油路包括第一吸油油路、第二吸油油路、第一压油油路、第二压油油路、基础阻尼油路、增强阻尼油路、安全锁止油路和换向组件,其中:
所述的基础阻尼油路和增压控制油路并联组成铰接阻尼压力控制油路;
所述的第一吸油油路设置于所述的储油箱与所述的无杆腔之间;
所述的第二吸油油路设置于所述的储油箱与所述的有杆腔之间;
所述的第一压油油路设置于所述的无杆腔与所述的铰接阻尼压力控制油路之间;
所述的第二压油油路设置于所述的有杆腔和所述的铰接阻尼压力控制油路之间;
所述的铰接阻尼压力控制油路和所述的储油箱之间设置有回油油路;
所述的安全锁止油路设置于所述的有杆腔和所述的回油油路之间;
所述的换向组件设置于所述的第二压油油路内。
进一步地,所述的换向组件为机械阀,且所述的机械阀设置于所述的活塞组件上。
更进一步地,所述的活塞组件包括活塞和活塞杆,所述的机械阀包括机械阀弹簧和机械阀挡板,所述的机械阀弹簧的第一端固定于所述的活塞,所述的机械阀弹簧的第二端与所述的机械阀挡板连接,且所述的机械阀弹簧和机械阀挡板均套设于所述的活塞杆上。
更进一步地,所述的缸筒组件包括集成块,所述的铰接阻尼压力控制油路、第二吸油油路、第二压油油路及安全锁止油路集成于所述的集成块内,所述的集成块还设有过油槽和有杆腔铰接进油口,所述的过油槽内开设有安全锁止进油口和第二吸油进油口。
进一步地,所述的第一吸油油路包括第一单向阀,所述的第二吸油油路包括第四单向阀,所述的第一压油油路包括第二单向阀,所述的第二压油油路包括第三单向阀。
更进一步地,所述的换向组件为电磁阀,且所述的电磁阀设置于所述的第三单向阀与所述的铰接阻尼压力控制油路之间。
更进一步地,所述的基础阻尼油路包括基础液压阻尼和基础电磁阀,所述的增压控制油路包括增强溢流阀或增强液压阻尼,所述的安全锁止油路包括安全溢流阀。
更进一步地,所述的铰接系统包括接近开关、前架和后架,所述的接近开关设置于所述的前架和所述的后架之间,且所述的接近开关与所述的铰接车辆的整车电控系统连接,所述的整车电控系统用于根据所述的接近开关发送的触发信号向所述的铰接系统发送基础电磁阀控制指令。
此外,本发明还提供一种通过上述液压缓冲器实现铰接车辆安全回转的方法,其主要特点是,所述的方法包括以下步骤:
(1)所述的铰接系统判断所述的铰接车辆的状态是否为转弯状态或回转状态,如果为转弯状态,则继续步骤(2),如果为回转状态,则继续步骤(5);
(2)所述的整车电控系统判断是否收到所述的接近开关的触发信号,如果是,则继续步骤(3),否则继续步骤(2);
(3)所述的整车电控系统向所述的铰接系统发送基础电磁阀控制指令;
(4)所述的铰接系统控制所述的基础电磁阀断开,并返回上述步骤(1);
(5)所述的铰接系统判断交接车辆的转弯角度是否在第一设定角度范围内,如果是,则继续步骤(6),否则继续步骤(7);
(6)所述的整车电控系统保持所述的基础电磁阀的连通状态,且所述的液压缓冲器提供基础阻尼;
(7)所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,如果是,则继续步骤(8),否则继续步骤(10);
(8)所述的整车电控系统向所述的铰接系统发送基础电磁阀控制指令;
(9)所述的铰接系统控制所述的基础电磁阀断开,并返回上述步骤(1);
(10)所述的整车电控系统保持所述的基础电磁阀的连通状态。
进一步地,所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,具体为:
所述的整车电控系统判断是否收到所述的接近开关的触发信号和倒车信号,如果是,则所述的整车电控系统判定发送所述的基础电磁阀控制指令至所述的铰接系统,否则所述的整车电控系统判定不发送基础电磁阀控制指令至所述的铰接系统。
进一步地,所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,具体为:
所述的整车电控系统判断是否收到刹车信号、车速上限触发信号或者紧急切换按钮触发信号中的任意一种信号,如果是,则所述的整车电控系统判定发送所述的基础电磁阀控制指令至所述的铰接系统,否则所述的整车电控系统判定不发送基础电磁阀控制指令至所述的铰接系统。
采用了本发明中的基于铰接系统实现车辆安全回转的液压缓冲器及其方法,当车辆转弯过程中,根据车辆对缓冲阻尼的需要,随角度或车速的增大而增大阻尼扭矩,保证行车不会出现甩尾现象;在车辆转弯后,需要回转到直行的过程中,反过来随角度的变小逐渐增大阻尼扭矩,使车辆可以轻便快速回转,避免了车辆在转弯后,回转时出现拖车现象,和车辆摆正后甩尾;同时当车辆发生事故时,使车辆保持事故发生时的形状,避免出现更大的危害,较现有技术对比,更安全,获得更舒适的驾车感受。
此外,当液压缓冲器的有杆腔内的活塞杆伸出达到特定长度时,机械阀挡板堵塞集成块上的有杆腔铰接进油口,液压油可以通过过油槽进入到安全锁止进油口和第二吸油口进油口,所以当车辆转弯达到一定角度时,有杆腔被压缩的液压缓冲器由安全锁止油路提供阻尼力。
同时,铰接阻尼压力控制油路采用以液压阻尼为常态,溢流阀为增压状态,而非溢流阀 为常态,液压阻尼为增压状态。这样的配置充分利用了液压阻尼产生的压差和液压油的过流量成正比的特性,即在常态下,铰接阻尼是和车辆转弯角速度成正比的;当较小旋转角度内需要增强阻尼时,将阻尼压力提高至一个较高的相对恒定的数值,因此,使用液压阻尼和溢流阀来获得阻尼压力,而非采用比例溢流阀(或比例减压阀)获得阻尼压力,降低了液压缓冲器的制造成本和电气控制的复杂程度。此外,铰接阻尼压力控制油路采用溢流阀和液压阻尼并联的形式。溢流阀和液压阻尼并联,当油路产生液压冲击,压力瞬间增大时,溢流阀可以打开泄压,减少压力冲击,同时减少液压阻尼瞬间过流量太大而产生噪音。
附图说明
图1为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的结构图。
图2为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的第一种液压控制油路的结构图。
图3为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的缸筒组件和活塞组件的结构图。
图4为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的第二种液压控制油路的结构图。
图5为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的第三种液压控制油路的结构图。
图6为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的机械阀的结构图。
图7为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的集成块的结构图。
图8为本发明的基于铰接系统实现车辆安全回转的液压缓冲器的整体结构图。
其中:
1          前架
2          后架
3          缸筒组件
31         缸筒
32         后端盖
33         扣压管
34         集成块
341        过油槽
342        有杆腔铰接进油口
343        安全锁止进油口
345        第二吸油进油口
35         外管
36         平端紧定螺钉
4          活塞组件
41         活塞
42         活塞杆
43         有杆腔
43a        左液压缓冲器的有杆腔
43b        右液压缓冲器的有杆腔
44         无杆腔
44a        左液压缓冲器的无杆腔
44b        右液压缓冲器的无杆腔
5          储油箱
5a         左液压缓冲器的储油箱
5b         右液压缓冲器的储油箱
61         第一单向阀
61a        左液压缓冲器的第一单向阀
61b        右液压缓冲器的第一单向阀
62         第二单向阀
62a        左液压缓冲器的第二单向阀
62b        右液压缓冲器的第二单向阀
63         第三单向阀
63a        左液压缓冲器的第三单向阀
63b        右液压缓冲器的第三单向阀
64         第四单向阀
64a        左液压缓冲器的第四单向阀
64b        右液压缓冲器的第四单向阀
71         安全溢流阀
71a         左液压缓冲器的安全溢流阀
71b         右液压缓冲器的安全溢流阀
72          增强溢流阀
72a         左液压缓冲器的增强溢流阀
72b         右液压缓冲器的增强溢流阀
72’        增强液压阻尼
73          基础电磁阀
73a         左液压缓冲器的基础电磁阀
73b         右液压缓冲器的基础电磁阀
74          基础液压阻尼
74a         左液压缓冲器的基础液压阻尼
74b         右液压缓冲器的基础液压阻尼
75          机械阀
75a         左液压缓冲器的机械阀
75b         右液压缓冲器的机械阀
751         机械阀弹簧
752         机械阀挡板
75’        电磁阀
8           左液压缓冲器
9           右液压缓冲器
具体实施方式
为了能够更清楚地描述本发明的技术内容,下面结合具体实施例来进行进一步的描述。
在本发明的一种实施方式中,如图1所示,铰接系统的前架1和后架2之间左右各连接一个阶梯式阻尼缓冲器,各个阶梯式阻尼缓冲器包括液压控制油路,缸筒组件3,活塞组件4和储油箱5,其中,液压控制油路、缸筒组件3和储油箱5固定连接,且再与铰接系统的后架2连接;活塞组件4和铰接系统的前架1连接,活塞组件4设置在缸筒组件3内,并可在缸筒组件3内滑动。
1)液压控制油路的组成部件
如图2所示,为液压控制油路的结构示意图,液压控制油路由第一单向阀61,第二单向 阀62,第三单向阀63,第四单向阀64,换向组件(换向组件可为机械阀75或电磁阀75’,图2为机械阀75),基础电磁阀73,安全溢流阀71,增强溢流阀72(也可为增强液压阻尼72’,图2为增强溢流阀72)和基础液压阻尼74组成,其中:
第一单向阀61设置在储油箱5与缸筒31的无杆腔44之间,作为第一吸油油路;第四单向阀64设置在缸筒31的有杆腔43和储油箱5之间,作为第二吸油油路;第二单向阀62设置在缸筒31的无杆腔44和压力控制油路之间,作为第一压油油路;第三单向阀63设置在缸筒31的有杆腔43和压力控制油路之间,作为第二压油油路;基础电磁阀73,增强溢流阀72和基础液压阻尼74组成铰接阻尼压力控制油路;铰接阻尼压力控制油路和储油箱5之间的油路作为回油油路;安全溢流阀71设置在有杆腔43和回油油路之间,作为安全锁止油路;换向组件设置于第二压油油路内。
此外,在一种更优选的实施方式中,上述的机械阀75的具体结构如图6所示,该机械阀75包括机械阀弹簧751和机械阀挡板752,机械阀弹簧751的第一端固定于活塞41,机械阀弹簧751的第二端与机械阀挡板752连接,且机械阀弹簧751和机械阀挡板752均套设于活塞杆42上。
以下为各油路具体组成情况:
①第一单向阀61设置在储油箱5与无杆腔44之间,作为第一吸油油路;
②第四单向阀64设置在储油箱5和有杆腔43之间,作为第二吸油油路;
③第二单向阀62设置在无杆腔44和铰接阻尼压力控制油路之间,作为第一压油油路;
④第三单向阀63设置在有杆腔43和铰接阻尼压力控制油路之间,作为第二压油油路;
⑤基础液压阻尼74和基础电磁阀73串联,组成基础阻尼油路;
⑥增强溢流阀72设定在正常情况下比基础液压阻尼74高,比安全溢流阀71低的开启压力作为增强阻尼油路;
⑦基础阻尼油路和增压控制油路并联后,组成铰接阻尼压力控制油路;
⑧安全溢流阀71设定相对较高的开启压力连接在有杆腔43和回油油路之间,作为安全锁止油路。
此外,如图4所示,增强溢流阀72可以被增强液压阻尼72’所替代;如图5所示,为换向组件为电磁阀75’的结构示意图。
2)缸筒组件3的组成部件
如图3所示,缸筒组件3包括焊接三联件,缸筒31,后端盖32,扣压管33及相关缸筒密封件。
其中,焊接三联件由集成块34、外管25及法兰依次焊接而成,压力控制油路的所有元器件,集成设置在焊接三联件的集成块34内;缸筒31设置安装在焊接三联件内,和焊接三联件中的集成块34配合接触,通过缸筒密封件形成一端密封;后端盖32设置安装在缸筒31及焊接三联件的另一端,通过缸筒密封件密封缸筒31及焊接三联件的另一端;在焊接三联件的集成块34上设置有平端紧定螺钉36,压紧焊接三联件内的缸筒31,避免缸筒31在集成块34与后端盖32之间轴向移动;扣压管33设置安装在后端盖32和焊接三联件的集成块34之间,实现第一压油油路和集成块34内的压力控制油路之间的连接;缸筒31和焊接三连接外管25之间的环形密封区域形成储油箱5。
此外,如图7所示,当换向组件为机械阀75时,集成块34还设有过油槽341和有杆腔铰接进油口342,过油槽341内开设有安全锁止进油口343和第二吸油进油口345。
3)活塞组件4的组成部件
如图3所示,活塞组件4包括活塞41,活塞杆42及相关活塞杆密封件。
其中,活塞41设置安装在缸筒31内,通过活塞杆42密封件将缸筒31分隔为两个容腔;活塞杆42穿过焊接三联件中的集成块34和位于缸桶内的活塞41连接;由于活塞41将缸筒31分隔的两个容腔中,称有活塞杆42穿过的容腔为有杆腔43,没有活塞杆42穿过的容腔为无杆腔44。
结合图1至图8,进行进一步的描述:
车辆启动后基础电磁阀得电,以车辆右转弯为例,前车和后车间带动前架和后架相对转动,左液压缓冲器的活塞组件随前架旋转,在缸筒内向有杆腔滑动伸出;右液压缓冲器的活塞组件随前架旋转,在缸筒内向无杆腔滑动缩进。
此时,对于左液压缓冲器,有杆腔的容腔体积缩小,压缩有杆腔内的液压油经第二排油油路,流到铰接阻尼压力控制油路进行压力控制,产生压力值,再经回油油路流会储油箱;有杆腔产生的压力作用在活塞上,缓解活塞向有杆腔滑动的趋势,即缓解铰接系统向右旋转的趋势,即缓解车辆右转的趋势,在此过程中,转弯角度在0°~48°之间时,基础电磁阀得电,处于连通状态,铰接阻尼压力由基础液压阻尼产生,产生的阻尼压力数值和通过液压阻尼的液压油流量成正比,即和活塞杆伸出的线速度成正比;转弯角度达到48°~51°之间时,接近开关触发,整车电控系统发出信号,使基础电磁阀断电,处于关闭状态,铰接阻尼压力由增强溢流阀产生,产生基本恒定的阻尼压力数值;当转弯角度达到51°~54°之间时,基础电磁阀保持断电,同时机械阀随活塞滑动至集成块端,堵塞有杆腔的铰接阻尼压力控制油路的进油口,有杆腔由安全溢流阀设定安全锁止压力;活塞在缸筒内向有杆腔滑动时,无 杆腔的容腔体积增大,产生负压后,通过第一吸油回路从储油箱吸油,保持容腔内充满液压油。
对于右液压缓冲器,转弯角度在0°~38.6°之间时,活塞杆缩进,基础电磁阀得电处于连通状态,铰接阻尼压力由液压阻尼产生,产生的阻尼压力数值和通过基础液压阻尼的液压油流量成正比,即和活塞杆缩进的线速度成正比;转弯角度在38.6°时,活塞杆的轴线经过铰接系统前架和后架的旋转中心,活塞杆缩至最短位置,此时右液压缓冲器的阻尼力和力臂均为0;转弯角度在38.6°~48°之间时,基础电磁阀得电处于连通状态,右液压缓冲器活塞杆伸出,铰接阻尼压力由基础液压阻尼产生;转弯角度达到48°~51°之间时,接近开关触发,整车电控系统发出信号,使基础电磁阀断电,处于关闭状态,铰接阻尼压力由增强溢流阀产生,产生基本恒定的阻尼压力数值;当转弯角度达到51°~54°之间时,接近快关继续处于触发状态,基础电磁阀继续失电,处于关闭状态,右液压缓冲器的铰接阻尼压力由增强溢流阀产生,提供增强阻尼。另外,当车辆行驶速度达到60km/小时、司机踩下刹车或者司机按下紧急切换按钮时,整车电控系统收到相应的车速上限触发信号、刹车信号或者紧急切换按钮触发信号,并给铰接系统的液压缓冲器发送信号,基础电磁阀失电,液压缓冲器处于增强阻尼状态。
在车辆右转过程中,左右液压缓冲器为铰接系统提供缓冲阻尼力,铰接系统获得和车辆转弯方向相反的阻尼扭矩,以此来缓解车辆转弯的趋势。车辆转弯时,铰接系统的左右液压缓冲器在任一位置都对应一力臂值,因转弯角度为38.6°时,其中一件液压缓冲器缩至最短,液压缓冲器的总力臂在0°~38.6°之间递减,而随着车辆转弯角度的增大,需要提供的阻尼扭矩也增大,通过增强阻尼和安全锁止,达到增大阻尼扭矩的目的。
车辆在右转结束开始回转时,车辆由实时的转弯角度逐渐回转至直行状态。
此时,右左液压缓冲器运动状态和转弯时相反,转弯角度在0°~38.6°之间回转时,铰接系统由左液压缓冲器缩进提供基础阻尼,右液压缓冲器伸出提供基础阻尼;转弯角度在38.6°~48°之间回转时,左液压缓冲器缩进提供基础阻尼,右液压缓冲器也缩进提供基础阻尼;转弯角度在48°~51°之间回转时,左液压缓冲器缩进,提供基础阻尼,右液压缓冲器也缩进提供基础阻尼;转弯角度在51°~54°之间回转时,左液压缓冲器缩进,提供基础阻尼,右液压缓冲器也缩进,提供基础阻尼。
车辆在转弯后回转,液压缓冲器都只是提供了基础阻尼,而不像转弯时对阻尼力进行了增强,是为了使车辆可以轻便快速回转至直行状态,避免出现拖车等危险。需要指出的是,转弯角度在0°~48°之间回转时,整车电控系统保持为液压缓冲器的基础电磁阀供电,液 压缓冲器提供基础阻尼;而车辆转弯角度在48°以上的情况,只会在车辆倒车的时候才会出现,如整车电控系统同时收到接近开关触发信号和倒车信号时,整车电控系统发出信号,液压缓冲器基础电磁阀失电;若整车电控系统只收到接近开关触发信号没有收到倒车信号时,使液压缓冲器基础电磁阀保持得电,这样达到轻便快速回转的目的。
当车辆产生故障,整车电控系统断电时,液压缓冲器提供增强阻尼,使车辆可以安全行驶回修理厂;当车辆发生事故,电控系统断电时,铰接系统处于增强阻尼状态,使车辆保持事故发生时的形状,避免出现更大的危害。
当车辆左转时,左液压缓冲器缩进,右液压缓冲器伸出,也是同样的工作原理。
应理解,上述内容中的角度(如“0~48°”,“51°”)可以是其他角度数值而不仅仅是特定角度数值。
采用了本发明中的基于铰接系统实现车辆安全回转的液压缓冲器及其方法,当车辆转弯过程中,根据车辆对缓冲阻尼的需要,随角度或车速的增大而增大阻尼扭矩,保证行车不会出现甩尾现象;在车辆转弯后,需要回转到直行的过程中,反过来随角度的变小逐渐增大阻尼扭矩,使车辆可以轻便快速回转,避免了车辆在转弯后,回转时出现拖车现象,和车辆摆正后甩尾;同时当车辆发生事故时,使车辆保持事故发生时的形状,避免出现更大的危害,较现有技术对比,更安全,获得更舒适的驾车感受。
此外,当液压缓冲器的有杆腔内的活塞杆伸出达到特定长度时,机械阀挡板堵塞集成块上的有杆腔铰接进油口,液压油可以通过油槽进入到安全锁止进油口和第二吸油口进油口,所以当车辆转弯达到一定角度时,有杆腔被压缩的液压缓冲器由安全锁止油路提供阻尼力。
同时,铰接阻尼压力控制油路采用以液压阻尼为常态,溢流阀为增压状态,而非溢流阀为常态,液压阻尼为增压状态。这样的配置充分利用了液压阻尼产生的压差和液压油的过流量成正比的特性,即在常态下,铰接阻尼是和车辆转弯角速度成正比的;当较小旋转角度内需要增强阻尼时,将阻尼压力提高至一个较高的相对恒定的数值,因此,使用液压阻尼和溢流阀来获得阻尼压力,而非采用比例溢流阀(或比例减压阀)获得阻尼压力,降低了液压缓冲器的制造成本和电气控制的复杂程度。此外,铰接阻尼压力控制油路采用溢流阀和液压阻尼并联的形式。溢流阀和液压阻尼并联,当油路产生液压冲击,压力瞬间增大时,溢流阀可以打开泄压,减少压力冲击,同时减少液压阻尼瞬间过流量太大而产生噪音。
在此说明书中,本发明已参照其特定的实施例作了描述。但是,很显然仍可以作出各种修改和变换而不背离本发明的精神和范围。因此,说明书和附图应被认为是说明性的而非限制性的。

Claims (11)

  1. 一种基于铰接系统实现铰接车辆安全回转的液压缓冲器,所述的液压缓冲器包括活塞组件、缸筒组件和储油箱,所述的活塞组件设置在所述的缸筒组件内,且所述的活塞组件将相应的缸筒分隔为有杆腔和无杆腔,其特征在于,所述的液压缓冲器还包括液压控制油路,所述的缸筒组件、所述的液压控制油路和所述的储油箱依次固定连接,且所述的液压控制油路包括第一吸油油路、第二吸油油路、第一压油油路、第二压油油路、基础阻尼油路、增强阻尼油路、安全锁止油路和换向组件,其中:
    所述的基础阻尼油路和增压控制油路并联组成铰接阻尼压力控制油路;
    所述的第一吸油油路设置于所述的储油箱与所述的无杆腔之间;
    所述的第二吸油油路设置于所述的储油箱与所述的有杆腔之间;
    所述的第一压油油路设置于所述的无杆腔与所述的铰接阻尼压力控制油路之间;
    所述的第二压油油路设置于所述的有杆腔和所述的铰接阻尼压力控制油路之间;
    所述的铰接阻尼压力控制油路和所述的储油箱之间设置有回油油路;
    所述的安全锁止油路设置于所述的有杆腔和所述的回油油路之间;
    所述的换向组件设置于所述的第二压油油路内。
  2. 根据权利要求1所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的换向组件为机械阀,且所述的机械阀设置于所述的活塞组件上。
  3. 根据权利要求2所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的活塞组件包括活塞和活塞杆,所述的机械阀包括机械阀弹簧和机械阀挡板,所述的机械阀弹簧的第一端固定于所述的活塞,所述的机械阀弹簧的第二端与所述的机械阀挡板连接,且所述的机械阀弹簧和机械阀挡板均套设于所述的活塞杆上。
  4. 根据权利要求3所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的缸筒组件包括集成块,所述的铰接阻尼压力控制油路、第二吸油油路、第二压油油路及安全锁止油路集成于所述的集成块内,所述的集成块还设有过油槽和有杆腔铰接进油口,所述的过油槽内开设有安全锁止进油口和第二吸油进油口。
  5. 根据权利要求1所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的第一吸油油路包括第一单向阀,所述的第二吸油油路包括第四单向阀,所述的第一压油油路包括第二单向阀,所述的第二压油油路包括第三单向阀。
  6. 根据权利要求5所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在 于,所述的换向组件为电磁阀,且所述的电磁阀设置于所述的第三单向阀与所述的铰接阻尼压力控制油路之间。
  7. 根据权利要求2或6所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的基础阻尼油路包括基础液压阻尼和基础电磁阀,所述的增压控制油路包括增强溢流阀或增强液压阻尼,所述的安全锁止油路包括安全溢流阀。
  8. 根据权利要求7所述的基于铰接系统实现铰接车辆安全回转的液压缓冲器,其特征在于,所述的铰接系统包括接近开关、前架和后架,所述的接近开关设置于所述的前架和所述的后架之间,且所述的接近开关与所述的铰接车辆的整车电控系统连接,所述的整车电控系统用于根据所述的接近开关发送的触发信号向所述的铰接系统发送基础电磁阀控制指令。
  9. 一种通过权利要求1至6中任一项所述的液压缓冲器实现铰接车辆安全回转的方法,其特征在于,铰接系统包括接近开关、前架和后架,所述的接近开关设置于所述的前架和所述的后架之间,且所述的接近开关与所述的铰接车辆的整车电控系统连接,所述的基础阻尼油路包括基础液压阻尼和基础电磁阀,所述的方法包括以下步骤:
    (1)所述的铰接系统判断所述的铰接车辆的状态是否为转弯状态或回转状态,如果为转弯状态,则继续步骤(2),如果为回转状态,则继续步骤(5);
    (2)所述的整车电控系统判断是否收到所述的接近开关的触发信号,如果是,则继续步骤(3),否则继续步骤(2);
    (3)所述的整车电控系统向所述的铰接系统发送基础电磁阀控制指令;
    (4)所述的铰接系统控制所述的基础电磁阀断开,并返回上述步骤(1);
    (5)所述的铰接系统判断交接车辆的转弯角度是否在第一设定角度范围内,如果是,则继续步骤(6),否则继续步骤(7);
    (6)所述的整车电控系统保持所述的基础电磁阀的连通状态,且所述的液压缓冲器提供基础阻尼;
    (7)所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,如果是,则继续步骤(8),否则继续步骤(10);
    (8)所述的整车电控系统向所述的铰接系统发送基础电磁阀控制指令;
    (9)所述的铰接系统控制所述的基础电磁阀断开,并返回上述步骤(1);
    (10)所述的整车电控系统保持所述的基础电磁阀的连通状态。
  10. 根据权利要求9所述的液压缓冲器实现铰接车辆安全回转的方法,其特征在于,所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,具体为:
    所述的整车电控系统判断是否收到所述的接近开关的触发信号和倒车信号,如果是,则所述的整车电控系统判定发送所述的基础电磁阀控制指令至所述的铰接系统,否则所述的整车电控系统判定不发送基础电磁阀控制指令至所述的铰接系统。
  11. 根据权利要求9所述的液压缓冲器实现铰接车辆安全回转的方法,其特征在于,所述的整车电控系统判断是否发送基础电磁阀控制指令至所述的铰接系统,具体为:
    所述的整车电控系统判断是否收到刹车信号、车速上限触发信号或者紧急切换按钮触发信号中的任意一种信号,如果是,则所述的整车电控系统判定发送所述的基础电磁阀控制指令至所述的铰接系统,否则所述的整车电控系统判定不发送基础电磁阀控制指令至所述的铰接系统。
PCT/CN2014/091079 2014-10-16 2014-11-14 基于铰接系统实现车辆安全回转的液压缓冲器及其方法 WO2016058236A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14904031.3A EP3208488A4 (en) 2014-10-16 2014-11-14 Articulated system-based hydraulic buffer for realizing safe turn-back of vehicle, and method therefor
RU2017116896A RU2667133C1 (ru) 2014-10-16 2014-11-14 Гидравлический амортизатор на основе шарнирно-сочлененной системы для выполнения безопасного разворота транспортного средства и способ его выполнения

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410546135.8 2014-10-16
CN201410546135 2014-10-16
CN201410624557.2A CN104329406B (zh) 2014-10-16 2014-11-07 基于铰接系统实现车辆安全回转的液压缓冲器及其方法
CN201410624557.2 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016058236A1 true WO2016058236A1 (zh) 2016-04-21

Family

ID=52404183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091079 WO2016058236A1 (zh) 2014-10-16 2014-11-14 基于铰接系统实现车辆安全回转的液压缓冲器及其方法

Country Status (4)

Country Link
EP (1) EP3208488A4 (zh)
CN (1) CN104329406B (zh)
RU (1) RU2667133C1 (zh)
WO (1) WO2016058236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655204A (zh) * 2018-02-21 2020-09-11 奥托伯克保健产品有限公司 具有阀体的液压阻尼器
CN112519668A (zh) * 2021-01-12 2021-03-19 成都豪均衡科技有限公司 一种防止意外发生的建筑钢管运输车厢装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017107136A1 (zh) * 2015-12-24 2017-06-29 伊卡路斯(苏州)车辆系统有限公司 液压缓冲系统及组装方法
CN105443643B (zh) * 2015-12-24 2017-10-10 伊卡路斯(苏州)车辆系统有限公司 液压缓冲系统及组装方法
CN105840726B (zh) * 2016-06-04 2018-06-26 江苏锡沂高新区科技发展有限公司 一种全液压缓冲装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US471706A (en) * 1892-03-29 Puzzle
EP0558714A1 (de) * 1991-09-21 1993-09-08 Robert Bosch Gmbh Aufhängungssystem für fahrzeuge
JPH06241264A (ja) * 1993-02-12 1994-08-30 Kayaba Ind Co Ltd 緩衝器
CN1699781A (zh) * 2005-06-24 2005-11-23 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
CN101818779A (zh) * 2009-12-18 2010-09-01 伊卡露斯(苏州)车辆系统有限公司 可锁止阻尼控制减震系统
CN101818780A (zh) * 2009-12-18 2010-09-01 伊卡露斯(苏州)车辆系统有限公司 多档阻尼控制减震系统
CN102102728A (zh) * 2010-03-29 2011-06-22 伊卡露斯(苏州)车辆系统有限公司 液压缓冲系统
CN103161869A (zh) * 2012-09-07 2013-06-19 伊卡路斯(苏州)车辆系统有限公司 无极阻尼减震系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL103111C (zh) * 1957-10-09
DE3114807A1 (de) * 1981-04-11 1982-11-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München "gelenkfahrzeug mit einer vorrichtung zur daempfung oder blockierung der knickung"
GR79630B (zh) * 1982-08-18 1984-10-31 Falkenried Fahrzeug Gmbh
DE3327240A1 (de) * 1982-08-18 1984-02-23 FFG Fahrzeugwerkstätten Falkenried GmbH, 2000 Hamburg Verfahren zur regelung der knickstabilitaet von strassenfahrzeugen mit mindestens zwei durch eine gelenkeinheit verbundenen fahrzeugteilen und gelenkeinheit zur durchfuehrung des verfahrens
SE458195B (sv) * 1986-02-10 1989-03-06 Saab Scania Ab Arrangemang foer kontrollerad daempning av ledvinkelroerelser vid ett fordon med tvaa med varandra ledbart foerbundna fordonsenheter
DE3615071A1 (de) * 1986-05-03 1987-11-05 Daimler Benz Ag Knickschutzvorrichtung fuer gelenkfahrzeuge
DE4007684A1 (de) * 1990-03-10 1991-09-12 Man Nutzfahrzeuge Ag Gelenkdaempfungsvorrichtung an gelenkomnibussen
RU2297561C2 (ru) * 2002-12-15 2007-04-20 Серпуховский военный институт ракетных войск (СВИ РВ) Гидравлический амортизатор подвески автомобиля
SE530628C3 (sv) * 2006-12-12 2008-08-19 Scania Cv Ab Ledstyrsystem
JP5462110B2 (ja) * 2009-09-22 2014-04-02 日本車輌製造株式会社 鉄道車両の制振用ダンパ
CN201627869U (zh) * 2010-03-29 2010-11-10 伊卡露斯(苏州)车辆系统有限公司 液压缓冲系统
WO2011143917A1 (zh) * 2010-05-21 2011-11-24 Hao Yun 铰接车用底盘铰接系统
BR112012030617B8 (pt) * 2010-06-02 2022-04-19 Jointech Suzhou Vehicle System Sistema de chassi articulado de veículo articulado grande
CN102588496A (zh) * 2012-03-20 2012-07-18 伊卡路斯(苏州)车辆系统有限公司 安全锁止液压缓冲系统
CN202468824U (zh) * 2012-03-20 2012-10-03 伊卡路斯(苏州)车辆系统有限公司 安全锁止液压缓冲系统
CN202851798U (zh) * 2012-09-07 2013-04-03 伊卡路斯(苏州)车辆系统有限公司 无极阻尼减震系统
CN202743000U (zh) * 2012-09-07 2013-02-20 伊卡路斯(苏州)车辆系统有限公司 铰接式客车用电控装置
ES2548170T3 (es) * 2012-11-30 2015-10-14 HÜBNER GmbH & Co. KG Vehículo articulado con una articulación entre las partes del vehículo
CN204284291U (zh) * 2014-10-16 2015-04-22 伊卡路斯(苏州)车辆系统有限公司 基于铰接系统实现车辆安全回转的液压缓冲器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US471706A (en) * 1892-03-29 Puzzle
EP0558714A1 (de) * 1991-09-21 1993-09-08 Robert Bosch Gmbh Aufhängungssystem für fahrzeuge
JPH06241264A (ja) * 1993-02-12 1994-08-30 Kayaba Ind Co Ltd 緩衝器
CN1699781A (zh) * 2005-06-24 2005-11-23 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
CN101818779A (zh) * 2009-12-18 2010-09-01 伊卡露斯(苏州)车辆系统有限公司 可锁止阻尼控制减震系统
CN101818780A (zh) * 2009-12-18 2010-09-01 伊卡露斯(苏州)车辆系统有限公司 多档阻尼控制减震系统
CN102102728A (zh) * 2010-03-29 2011-06-22 伊卡露斯(苏州)车辆系统有限公司 液压缓冲系统
CN103161869A (zh) * 2012-09-07 2013-06-19 伊卡路斯(苏州)车辆系统有限公司 无极阻尼减震系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3208488A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655204A (zh) * 2018-02-21 2020-09-11 奥托伯克保健产品有限公司 具有阀体的液压阻尼器
CN112519668A (zh) * 2021-01-12 2021-03-19 成都豪均衡科技有限公司 一种防止意外发生的建筑钢管运输车厢装置
CN112519668B (zh) * 2021-01-12 2022-07-19 王光文 一种防止意外发生的建筑钢管运输车厢装置

Also Published As

Publication number Publication date
EP3208488A1 (en) 2017-08-23
CN104329406A (zh) 2015-02-04
CN104329406B (zh) 2016-05-04
RU2667133C1 (ru) 2018-09-14
EP3208488A4 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
WO2016058236A1 (zh) 基于铰接系统实现车辆安全回转的液压缓冲器及其方法
US9981688B2 (en) Steering system and independent suspension wheel-type heavy vehicle
JPS59102659A (ja) 舵取り補正装置
JP6108531B2 (ja) 車高昇降装置
WO2016060066A1 (ja) シリンダ装置
WO2016065656A1 (zh) 铰接车底盘铰接系统
US8459400B2 (en) Force steer axle assembly with redundant centering
JP2012176698A (ja) 船舶推進機用トリム・チルト装置
JP2011037435A (ja) 積極的にトー調整するための装置
CN104228622A (zh) 车辆及其防挥鞭伤的座椅组件和平动吸能装置
CN204284291U (zh) 基于铰接系统实现车辆安全回转的液压缓冲器
CN205533484U (zh) 自卸车调平用液压缸的液压控制系统
RU2013150925A (ru) Амортизирующее устройство железнодорожного вагона
CN204186860U (zh) 铰接车底盘铰接系统
US9651066B2 (en) Telescopic actuator
HU209913B (en) Joint-stabilizing structure for articulated vehicles
JP5156689B2 (ja) フロントフォーク
IT201700006900A1 (it) Attuatore lineare idraulico con sistema di bloccaggio atto a bloccare il movimento di compressione dell'attuatore.
KR101826507B1 (ko) 차량의 현가장치
CN104590367B (zh) 轻型越野汽车后桥转向机构
CN205533531U (zh) 自卸车调平用副车架调平液压控制系统
CN104058006B (zh) 一种车辆横向行驶转向机构
WO2016065575A1 (zh) 实现力平衡输出的液压缓冲系统
CN109723308A (zh) 一种自动泄压闭门器
CN106080905B (zh) 变形摩托车车架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014904031

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017116896

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: A20170165

Country of ref document: BY