WO2016056389A1 - Frequency synthesizer - Google Patents

Frequency synthesizer Download PDF

Info

Publication number
WO2016056389A1
WO2016056389A1 PCT/JP2015/076896 JP2015076896W WO2016056389A1 WO 2016056389 A1 WO2016056389 A1 WO 2016056389A1 JP 2015076896 W JP2015076896 W JP 2015076896W WO 2016056389 A1 WO2016056389 A1 WO 2016056389A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
clock
dds
signal
output
Prior art date
Application number
PCT/JP2015/076896
Other languages
French (fr)
Japanese (ja)
Inventor
出村博之
小林薫
Original Assignee
日本電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015133738A external-priority patent/JP6655896B2/en
Application filed by 日本電波工業株式会社 filed Critical 日本電波工業株式会社
Priority to CN201580054650.7A priority Critical patent/CN106797218B/en
Priority to US15/517,520 priority patent/US10153776B2/en
Publication of WO2016056389A1 publication Critical patent/WO2016056389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Definitions

  • the present invention relates to a frequency synthesizer including a PLL circuit that performs phase comparison with a reference frequency signal generated using a DDS (Direct Digital Synthesizer) and outputs a frequency signal from a voltage controlled oscillator.
  • DDS Direct Digital Synthesizer
  • the frequency synthesizer divides the frequency signal output from the voltage controlled oscillator with a frequency divider, and extracts the phase difference between the phase of the divided frequency signal and the phase of the reference frequency signal with a phase comparator,
  • a PLL (Phase Locked Loop) circuit that feeds back a control voltage corresponding to the phase difference to the voltage controlled oscillator via a loop filter is provided, and a stable frequency signal is output using the PLL circuit.
  • a frequency signal with a desired frequency can be output by variously changing the frequency dividing number of the frequency divider and the frequency dividing number of the frequency divider provided on the reference frequency signal side.
  • a technique that enables fine frequency adjustment while supplying a high-frequency reference frequency signal to a frequency synthesizer there is a technique that uses a DDS (Direct Digital Synthesizer) as a signal source of the reference frequency signal.
  • the DDS is a device that obtains a frequency signal of a desired frequency by reading amplitude data from a waveform table based on phase data output according to the input timing of a clock signal.
  • the frequency signal output from the DDS includes a spurious component, and this spurious component is a factor that degrades the quality of the frequency signal output from the frequency synthesizer.
  • spurious components There are various causes for the generation of spurious components. As one of them, the harmonic component generated due to the frequency (clock frequency) of the clock signal that operates the DDS is included in the frequency band of the DDS as aliasing. May appear. *
  • Patent Document 1 in a frequency synthesizer using DDS, a program frequency divider is provided between a reference oscillator that generates a clock signal and the DDS, and a spurious frequency is calculated in advance according to the output frequency Fo of the DDS.
  • a configuration is described in which the frequency division of the program frequency divider is set so that a clock signal whose spurious frequency does not exist within a preset frequency range is supplied to the DDS.
  • JP-A-8-256058 paragraphs 0024, 0026, 0029, FIG.
  • the spurious generation position included in the output of the DDS can be adjusted by changing the frequency of the clock signal supplied to the DDS by the program frequency divider.
  • a spurious having a frequency sufficiently higher than the loop band of the loop filter provided in the frequency synthesizer is generated, and this spurious is removed by the loop filter.
  • unnecessary frequency components included in the frequency signal that is the output of the frequency synthesizer using DDS are not limited to the above-described harmonic spurious components, and may be caused by, for example, the configuration of the frequency synthesizer. For this reason, when changing the frequency of the clock signal supplied to the DDS, it is necessary to take comprehensive measures in consideration of the influence on these other factors.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a frequency synthesizer in which the output frequency can be switched at high speed and there are few unnecessary frequency components in the output frequency signal. .
  • the frequency synthesizer divides the frequency signal output from the voltage controlled oscillator by the variable frequency divider, and compares the phase difference between the phase of the divided frequency signal and the phase of the reference frequency signal.
  • a frequency synthesizer including a PLL circuit that supplies a control voltage corresponding to the phase difference from a loop filter to the voltage controlled oscillator.
  • a reference frequency that operates based on a clock signal and has a reference frequency corresponding to a value obtained by dividing the set value of the output frequency of the frequency signal output from the voltage controlled oscillator by the frequency division number set in the variable frequency divider A DDS for generating a signal;
  • a clock signal supply unit for supplying a clock signal according to a clock frequency selected from a plurality of clock frequencies prepared in advance to the DDS;
  • the DDS is operated by a clock signal having a clock frequency selected from the plurality of clock frequencies and a reference frequency signal having the reference frequency is generated from the DDS, a spurious component included in a use frequency band of the DDS
  • the reference frequency at which the frequency of the variable frequency divider does not exist within a preset frequency range and the frequency division number of the variable frequency divider is minimum is obtained in advance, and the clock frequency, the reference frequency, and the minimum frequency division number are obtained.
  • a storage unit for storing A setting unit that selects a combination of a clock frequency, a reference frequency, and a minimum frequency dividing number corresponding to the set value of the output frequency and sets the clock signal supply unit, the DDS, and the variable frequency divider. It is characterized by that.
  • the frequency synthesizer described above may have the following features.
  • A When a frequency signal having a reference frequency associated with the minimum frequency division number is generated by the DDS, a frequency of a spurious component exists within a preset frequency range from the clock signal supply unit.
  • the storage unit When the clock signals having different clock frequencies can be supplied, the storage unit has the spurious component frequency generated due to the different clock frequencies in the neighborhood spurious component closest to the frequency range.
  • the DDS includes a DDS setting unit that sets a digital setting value corresponding to a reference frequency acquired from the setting unit and operates based on an operation clock supplied from the outside, and the clock signal supply unit includes: And a multiplier for multiplying the operation clocks by different multiplication numbers to prepare clock signals having the plurality of clock frequencies.
  • the storage unit corresponds to a preset representative frequency included in each frequency range in association with the clock frequency and the minimum frequency division number for each of a plurality of preliminarily divided frequency ranges.
  • a reference frequency is stored, a calculation unit for calculating which frequency range of the plurality of frequency ranges corresponds to a value in the frequency range, and a representative in the frequency range specified by the calculation unit Setting of the frequency based on a value obtained by dividing a difference value between the frequency and the set value of the frequency by the frequency dividing number set in the variable frequency divider and a reference frequency stored corresponding to the representative frequency And a generation unit for generating a reference frequency for the value.
  • D a digital / analog conversion unit that converts the frequency signal output from the DDS into an analog signal and outputs the analog signal, and the digital / analog conversion unit is based on the clock signal supplied from the clock signal supply unit.
  • the clock signal for operating the DDS is switched, and the reference frequency signal generated by the DDS is used for phase comparison of the PLL circuit to output the frequency signal from the frequency synthesizer.
  • a combination of a clock frequency and a reference frequency that does not have spurious components in the surroundings and that minimizes the frequency dividing number of the variable frequency divider provided in the frequency synthesizer is selected. As a result, unnecessary frequency components in the frequency signal output from the frequency synthesizer are comprehensively reduced and the phase noise is optimized.
  • the frequency synthesizer 1 includes a PLL circuit 3 provided with a VCO (Voltage Controlled Oscillator) 32 and a DDS 2 that supplies a reference frequency signal for phase comparison to the PLL circuit 3 and associates it with a plurality of channels.
  • the frequency signal of the set frequency f VCO can be output from the VCO 32.
  • the PLL circuit 3 includes a VCO 32, a variable frequency divider 302 that divides the frequency signal output from the VCO 32 based on a preset frequency division number, and a reference frequency signal ( From the phase comparator 301 and the phase comparator 301 that compares the phase of the reference frequency f c ) with the phase of the frequency signal divided by the variable frequency divider 302 and outputs a phase difference.
  • a loop filter 31 that extracts a control voltage corresponding to the output phase difference and feeds it back to the VCO 32;
  • the phase comparator 301 and the variable frequency divider 302 of this example are provided in a common PLL-IC 30, and the variable frequency divider 302 is divided by the setting signal from the outside. N can be changed.
  • the DDS 2 cumulatively adds the digital set value F DATA set corresponding to the output reference frequency f c in accordance with the input timing of the clock signal f clk supplied from the outside, and the reference frequency a phase accumulator 211 to output as the phase data of the signal f c, the amplitude data of a sine wave is stored in association with the phase data, a sine wave table 212 for outputting amplitude data corresponding to the phase data obtained from the phase accumulator 211 , digital / analog converter for converting digital signals outputted from the sine wave table 212 into an analog signal (a DAC (digital analog Convertor) 22, a low pass filter for removing high frequency components included in the reference frequency signal f c (hereinafter, 23) (referred to as “filter”).
  • the phase accumulator 211 and the sine wave table 212 of this example are provided in a common DDS signal processing unit 21.
  • the resolution D of the DDS2 is expressed by the following equation (1):
  • the set value F DATA can be obtained from equation (2).
  • F c is a digital value of the reference frequency.
  • D F clk / (2 20 )
  • the frequency signal generated by the DDS 2 is included as a aliasing noise spurious component of a harmonic component.
  • Figure 4 illustrates the generation pattern of the spurious components due to harmonics of the reference frequency signal generated by DDS2 (reference frequency f c).
  • reference frequency f c reference frequency
  • the spurious component of the second harmonic (2f c ) is generated at the position of the frequency f clk ⁇ 2f c folded with reference to f clk / 2 (in FIG. 4, the correspondence relationship between the frequencies before and after the folding is shown). It is indicated by a dashed line).
  • 3 spurious component of harmonic (3f c) is aliasing components of the frequency 2f clk -3f c generated folded relative to the f clk is further folded back relative to the f clk / 2 in the frequency -f clk + 3f It appears at the position c (in FIG. 4, the correspondence relationship between the frequencies before and after the folding is indicated by a two-dot chain line).
  • the range corresponding to the expression (3) is shown in gray.
  • the harmonic spurious frequency generated in the range represented by the following equation (5) can be calculated by the following equation (6).
  • the range corresponding to the equation (5) is shown in white.
  • knowing the frequency division number of 302 it is possible to know in advance the spurious frequency f Sn based on the relationship between the clock frequency and the reference frequency f c.
  • These relationships also mean that the generation position of the spurious frequency f Sn can be changed by changing the clock frequency f clk .
  • the frequency synthesizer 1 is configured to be able to switch the clock frequency f clk of the clock signal supplied to the DDS 2 based on the above concept.
  • the DDS 2 includes a first changeover switch 25 that switches a clock signal supplied to the DDS signal processing unit 21 (phase accumulator 211), and a changeover setting of the first changeover switch 25.
  • a second changeover switch 26 for switching the clock signal supplied to the DAC 22 in accordance with the switching of the clock signal supplied to the DDS signal processing unit 21.
  • the first changeover switch 25 and the DDS control unit 24 on the DDS signal processing unit 21 side are provided in a DDS-IC 20 that is shared with the DDS signal processing unit 21.
  • the DDS control unit 24, in addition to switching of the first selector switch 25, 26 of the DDS signal processing unit 21, and DAC 22, a digital set corresponding to the reference frequency signal f c to the phase accumulator 211 in the DDS signal processing unit 21 It has a function of outputting the value F DATA and a function of outputting a reset signal for causing the DAC 22 to execute a reset operation.
  • a clock signal having a clock frequency f clk 0 is supplied to the DDS 2 as an operation clock. Then, the output obtained by multiplying the clock signal by multipliers (first multiplier 41 and second multiplier 42) having different multiplication numbers is switched by the first and second changeover switches 25 and 26.
  • the DDS signal processing unit 21 phase accumulator 211) and the DAC 22 are supplied.
  • the frequency source that supplies the clock signal having the clock frequency f clk 0, the first and second multipliers 41 and 42, and the first changeover switch 25 correspond to the clock signal supply unit of the present embodiment.
  • the frequency division number N of the variable frequency divider 302 and the clock frequency f clk are appropriately changed based on the relationships of the above-described equations (3) to (7). are allowed, it is possible to determine the reference frequency f c spurious frequency f Sn due to harmonics within a predetermined frequency range are not present. And it can be output when operating the PLL circuit 3 performs phase comparison between the reference frequency signal with the reference frequency f c, the less frequency signal effect of the spurious component from the frequency synthesizer 1.
  • the reference frequency according to f c settings dividing number N is changed in the variable frequency divider 302, and in the frequency synthesizer 1 also changes the clock frequency f clk for operating the DDS2, these frequency division number and the clock
  • the influence of the frequency on the frequency signal output from the frequency synthesizer 1 cannot be ignored.
  • phase noise level Noise [dBc / Hz] generated in the frequency synthesizer 1 is expressed by the following equation (8).
  • Noise Noise (PLL) +10 ⁇ log (f c) + 20 ⁇ log (N) (8)
  • Noise (PLL) is phase noise generated in the PLL-IC 30.
  • the frequency division number N of the variable frequency divider 302 is set for the frequency synthesizer 1, is in inversely proportional to the reference frequency f c, the frequency division number (or As the reference frequency is increased, the reference frequency (or frequency division number) is decreased.
  • the influence of accordance Invite frequency division number change (8) since come into play at 20x log (N), is better to choose a small frequency division number as possible, increasing the reference frequency f c The effect of suppressing the influence of the phase noise caused by is great.
  • the frequency synthesizer 1 has no spurious component within a preset range and a frequency division number corresponding to a channel indicating a predetermined output frequency fVCO.
  • a combination of the minimum clock frequency f clk , reference frequency f c , and frequency division number N is stored in the memory (storage unit) 12 in advance.
  • control unit 11 provided in the frequency synthesizer 1 receives an input of the channel setting signal, selects a combination of the clock frequency f clk , the reference frequency f c , and the frequency division number N corresponding to the channel,
  • the switch 25 is switched, the digital setting value F DATA is set for the DDS signal processing unit 21, and the frequency division number is set for the variable frequency divider 302.
  • the control unit 11 and the DDS control unit 24 constitute a setting unit of the present embodiment.
  • the 6th-order spurious f S6 60.870 MHz is closest to the upper limit value (58 MHz) of the frequency range.
  • FIG. 11 summarizes the calculation procedure of the setting items (clock frequency f clk , reference frequency fc, frequency division number N) registered in the memory 12 described above.
  • the spurious frequency when the reference frequency signal is generated from the DDS2 by changing the clock frequency f clk and the frequency division number N of the variable frequency divider 302 is calculated. (Step P1).
  • a combination of a clock frequency f clk and a frequency division number N that does not have a spurious frequency within a preset frequency range and has a minimum frequency division number is selected (step P2). Further, when there are a plurality of combinations having the smallest frequency division number N, a clock frequency whose spurious frequency of the nearest spurious closest to the frequency range is farther from the upper limit value or the lower limit value of the frequency range is selected (step) P3).
  • the memory 12 stores, for example, 100 channels of combinations of these setting items.
  • the control unit 11 of the frequency synthesizer 1 accepts selection of a channel registered in the memory 12 from the outside, and reads a combination of setting items corresponding to the selected channel from the memory 12. Next, the control unit 11 sets the frequency division number of the variable frequency divider 302 for the PLL-IC 30 based on the read setting item, and also selects the selected clock frequency for the DDS control unit 24 of the DDS2. Information corresponding to f clk and the reference frequency f c is output.
  • the DDS control unit 24 performs switching between the first changeover switch 25 and the second changeover switch 26 based on the selected clock frequency f clk .
  • the DDS control unit 24 outputs to the phase accumulator 211 of the DDS signal processing unit 21 calculates the digital set value F DATA corresponding to the reference frequency f c, resets the DAC 22.
  • DDS2 is operated by the selected clock frequency f clk, the reference frequency signal of the reference frequency f c is output to the PLL circuit 3.
  • the phase comparator 301 of the PLL circuit 3 the phase comparison between the reference frequency signal and the output signal of the VCO 32 divided by the variable frequency divider 302 is performed, and feedback is made to the VCO 32 according to the magnitude of the phase difference.
  • the controlled voltage is increased or decreased.
  • the PLL circuit 3 When the phase difference becomes substantially zero, the PLL circuit 3 is locked, and a frequency signal that is stable at the output frequency f VCO and has few unnecessary frequency components is output from the VCO 32.
  • a frequency signal with a stable output frequency is output with a response time of about 20 to 30 microseconds. can do.
  • the frequency synthesizer 1 has the following effects.
  • a clock signal for operating the DDS 2 is switched and the reference frequency signal generated by the DDS 2 is used for phase comparison of the PLL circuit 3 and a frequency signal is output from the frequency synthesizer 1
  • a spurious component is generated around the reference frequency signal.
  • a combination of a clock frequency and a reference frequency that minimizes the frequency dividing number of the variable frequency divider 302 provided in the frequency synthesizer 1 is selected.
  • unnecessary frequency components in the frequency signal output from the frequency synthesizer 1 are comprehensively reduced and the phase noise is optimized to be the lowest.
  • the frequency synthesizer 1a according to the second embodiment has a frequency interval (for example, 1 kHz interval) smaller than the output frequency interval (for example, several tens MHz interval) set in association with each channel shown in FIG.
  • the output frequency f VCO of the VCO 32 can be set.
  • the set value of the output frequency of the VCO 32 of each channel, the clock frequency f clk selected corresponding to this set value, the reference frequency fc of DDS2, and the distribution of the PLL circuit 3 The frequency N is registered in the memory 12 in advance. However, for example, if these data are registered for all output frequencies selected at intervals of 1 kHz, the required capacity of the memory 12 becomes enormous.
  • each data registered in the memory 12 includes a reference frequency f c (frequency obtained by dividing the output frequency f VCO of the VCO 32 by the frequency division number N) output from the DDS 2. It is determined based on the distance ⁇ f between the spurious frequency f Sn determined by the reference frequency f c and the clock frequency f clk.
  • the reference frequency f c is changed several kHz Also, the spurious frequency f Sn does not change significantly.
  • the selected clock frequencies f clk 1, f clk 2 and the value of the frequency division number N are changed according to the change of the output frequency f VCO. You can see that it doesn't change.
  • the clock frequencies f clk 1 and f clk 2 and the frequency division number N selected by the method described with reference to FIGS. 5 to 9 are coarser intervals of about several tens kHz to several hundreds kHz. It has been confirmed in advance that
  • the output frequency f VCO of the VCO 32 is set at 1 kHz intervals
  • the clock frequencies f clk 1 and f clk 2 and the frequency division number N registered in the memory 12 are coarser than this. You may set by a frequency interval.
  • the reference frequency f c in response to setting interval of the output frequency f VCO, it is required to set at a high resolution.
  • setting data of the clock frequencies f clk 1 and f clk 2 and the frequency division number N are registered in the memory 12 of the frequency synthesizer 1a of this example at intervals of 100 kHz (FIG. 15 ( a)).
  • the output frequency f VCO of the set value of the VCO32 input at 1kHz intervals (designated frequency)
  • F DATA for output is generated.
  • the frequency synthesizer 1a calculates the address of the memory 12 associated with each setting value described above from the specified frequency, and a calculation unit 13 for calculating the fractional frequency number used for generating a digital setting value F dATA, includes a DDS setting data generator 14 for generating a digital setting value F dATA, the.
  • the contents of various setting data registered in the memory 12 will be described with reference to FIG.
  • the memory 12 corresponds to the output frequency range of the VCO 32 set at 100 kHz intervals.
  • the minimum value f VCO (min) 199.900 MHz (representative frequency) of the range is divided by the frequency division number N based on the equation (7). to determine the reference frequency f c by. Then the digital value F C of the reference frequency f c, using the digital value F clk of the selected clock frequency f clk, is calculated (2) DDS output coarse frequency setting value F DATA 'based on formula, the Data corresponding to the value is registered in the memory 12 (described as “F DATA (199.900)” in FIG. 15A).
  • the clock frequency f clk , the DDS output coarse frequency setting value F DATA ′, and the frequency division number N are a memory address set in correspondence with a value obtained by cutting out the upper 4 digits of each output frequency range. Registered in association. That is, for the output frequency range f VCO within the output frequency range of 199.900 to 199.999 MHz, the memory address “1989” is set based on the correspondence with the specified frequency data described later. . As shown in FIG. 15B, various setting data actually registered in the memory 12 are set and processed according to the contents of the calculation executed by the calculation unit 13 and the DDS setting data generation unit 14. The specific data structure will be described later.
  • the calculation unit 13 whose configuration example is shown in FIG. 13 is based on the set value (designated frequency) of the output frequency fVCO input to the frequency synthesizer 1a, and the memory address set for the frequency range including the output frequency. And the fractional frequency number for generating the digital set value F DATA of DDS2 in combination with the DDS output coarse frequency set value F DATA ′ registered in the memory 12 is calculated.
  • Designated frequency data (binary data) is input to the frequency synthesizer 1a.
  • the designated frequency data is a channel number set in advance corresponding to the set value (designated frequency) of the output frequency fVCO .
  • the output frequency range of “1.000 to 1.099 MHz” shown in FIG. 15A is associated with designated frequency data of “0 to 99” at 1 kHz intervals, and “1.100 to 1
  • the designated frequency data of “100 to 199” is associated with the output frequency range of “.199 MHz”.
  • the output frequency range of “199.900 to 199.999 MHz” is associated with the designated frequency data of “198900 to 198999”
  • the output frequency range of “200.000 to 200.099 MHz” is associated with the output frequency range of “199.900 to 199.999 MHz”. Is associated with designated frequency data of “199000 to 199099”.
  • Designated frequency data input to the frequency synthesizer 1a is in the data "1" is added by the addition unit 131, a value corresponding to "2 22/100" further by multiplication section 132 "41943" is multiplied Is done.
  • the memory address is the result of performing the operation of truncating the lower 22 bits on the data obtained in this way by the truncation operation unit 133.
  • the above calculation is to calculate how many times the specified frequency data is 100 (natural number). For example, when the specified frequency data is “199001 (corresponding to the specified frequency of 200.001 MHz)”, the binary data “11111000110” corresponding to the memory address “1990” is output when the above calculation is performed. On the other hand, if the same calculation is performed when the specified frequency data is “198999 (corresponding to the specified frequency of 199.999 MHz)”, binary data “11111000101” corresponding to the memory address “1989” is output. *
  • the calculation unit 13 multiplies the output from the truncation calculation unit 133 by “100” by the multiplication unit 134, and further takes the difference value from the designated frequency by the addition unit 135. Then, the cutout calculation unit 136 cuts out the lower 7 bits of the difference value to obtain a fractional frequency number.
  • This calculation is to take out the last two digits of the numerical value truncated by the calculation in the truncation calculation unit 133 that counts the specified frequency data at intervals corresponding to 100 kHz.
  • the data of the fractional frequency number extracted when the designated frequency data is “199001 (designated frequency 200.001 MHz)” is “0000001” corresponding to the last two digits “01” of “199001”.
  • the data taken out when the designated frequency data is “198999 (designated frequency 199.999 MHz)” is “1100011” corresponding to the numerical value “99” of the last two digits of “198999”.
  • the memory 12 stores “clock frequency setting data” for setting the clock frequency f clk in association with the memory address output from the calculation unit 13, “DDS” described above. "Output coarse frequency setting data” and “frequency division number setting data” for setting the frequency division number N are registered.
  • the setting data associated with the memory address “1989” output from the calculation unit 13 is output as shown in FIG.
  • the setting data is read out by the control unit 11.
  • the digital set value F DATA to be set for the DDS2 stores the designated frequency in the memory is a value obtained by dividing the division number N corresponding to the frequency division number setting data read out from the 12, is calculated on the basis of the reference frequency f c ((2) type).
  • the DDS setting data generation unit 14 may calculate a digital setting value corresponding to the last two digits of the specified frequency that is rounded down at the DDS output coarse frequency.
  • F c is a digital value of the reference frequency. Accordingly, the digital value F c (99) corresponding to the designated frequency 99 kHz is 99 times the digital value F c (1) corresponding to the designated frequency 1 kHz. Therefore, the second term on the right side of (2) ′ can be rewritten as “99 ⁇ F c (1) / (F clk / (2 20 ))”, and “F c (1) / (F clk / When (2 20 )) ”is regarded as a coefficient, the value of“ 99 ”multiplied by the coefficient is nothing but the fractional frequency number output from the calculation unit 13.
  • the DDS setting data generation unit 14 shown in FIG. 14 has a configuration capable of performing the above-described calculation.
  • frequency synthesizer 1a of this example four types of frequency division numbers N can be selected, and the frequency division numbers N to be selected depend on the selection of the clock frequencies f clk 1 and f clk 2. Change. Accordingly, eight types of coefficients (F c (1) / (F clk / (2 20 ))) determined in accordance with the combination of the frequency division number N and the clock frequencies f clk 1 and f clk 2 are registered in advance. if it is possible to generate a reference frequency f c corresponding to all cases.
  • each of the registers 142 a to 142 d includes It is registered a value increasing the number of significant digits is multiplied by 2 4 to the coefficient.
  • this digit number adjustment may be omitted as appropriate according to the accuracy required for the frequency synthesizer 1a (in this case, operations in multipliers 147 and 148 described later are also omitted).
  • the preceding stage selectors 143 a and 143 b read the corresponding coefficients of the frequency division number N, and output these coefficients to the subsequent stage selector 144.
  • the clock frequency f clk 1 / f clk suitable for the output of the designated frequency among the coefficients selected by the two previous selectors 143a and 143b.
  • the clock frequency f clk 1 / f clk suitable for the output of the designated frequency among the coefficients selected by the two previous selectors 143a and 143b.
  • the value corresponding to the DDS output coarse frequency setting data read from the memory 12 is multiplied by “2 4 ” in the multiplication unit 147 in accordance with the coefficients registered in the registers 142a to 142d.
  • the digit number adjustment performs processing further multiplying 2 -4 at multiplying unit 148, a digital set value corresponding to the reference frequency f c F dATA Is generated.
  • the digital setting value F DATA is output from the DDS setting data generation unit 14.
  • the memory (storage unit) 12 includes, for example, a plurality of frequency ranges divided in units of 100 kHz. Further, reference frequency f c corresponding to a preset representative frequency (for example, the minimum value of each frequency range) in association with f clk determined by the method described with reference to FIGS.
  • the DDS output coarse frequency setting value F DATA ′ is stored. Then, the calculation unit 13 calculates a memory address to determine whether the set value (designated frequency) of the output frequency of the VCO 32 corresponds to a value in any one of a plurality of frequency ranges.
  • the DDS setting data generation unit 14 is a value corresponding to a value obtained by dividing the difference value (fractional number) between the representative frequency within the frequency range specified by the calculation unit 13 and the specified frequency by the frequency division number N. and (setting data outputted from the multiplication unit 145), a digital setting based on the DDS output coarse frequency set value F dATA 'and registered in the memory 12, corresponding to the reference frequency f c of the designated frequency corresponding to the representative frequency Generate the value F DATA .
  • the calculation unit 13 calculates the memory address and the fractional frequency number.
  • the control unit 11 reads clock frequency setting data, DDS output coarse frequency setting data, and frequency division number setting data from the memory 12 and inputs them to the DDS setting data generation unit 14. Further, the input fraction frequency number output from the calculator 13 to the DDS setting data generation unit 14, a digital set value F of the preferred reference frequency f c to output designated frequency from VCO32 Based on these data DATA is generated.
  • control unit 11 inputs the clock frequency setting data read from the memory and the digital setting value F DATA acquired from the DDS setting data generation unit 14 to the DDS control unit 24 of the DDS2. As a result, switching of the first changeover switch 25 and the second changeover switch 26, setting of the phase accumulator 211 of the DDS signal processing unit 21 corresponding to the digital setting value FDATA, and the like are performed. Further, the control unit 11 outputs the frequency division number setting data read from the memory 12 to the PLL-IC 30 and sets the frequency division number of the variable frequency divider 302.
  • the frequency synthesizer 1a in the frequency synthesizer 1a according to the second embodiment shown in FIGS. 12 to 15, data corresponding to the coarse frequency set value F DATA ′ obtained from the reference frequency fc is registered in the memory 12, been described for generating a digital setting value F dATA of the reference frequency f c at DDS setting data generation unit 14 reads out the data.
  • the digital setting value F DATA may be calculated by the DDS control unit 24.
  • coefficients (1 / frequency division number N) necessary for changing the reference frequency by 1 kHz are registered, and these coefficients are selected according to the selected frequency division number N. 143a is selected. Then, the selected coefficient is multiplied by the fraction number in the multiplication unit 145, the multiplication value and the calculated reference frequency fc (min) read from the memory 12 are added, and DDS control is performed as the reference frequency fc. Is output to the unit 24.
  • the number of clock signals that can be switched is not limited to the two examples shown in FIGS. Three or more clock signals having different clock frequencies may be used in a switchable manner.
  • the method of preparing a plurality of clock signals having different clock frequencies is not limited to the case where the operation clock of the DDS-IC 20 such as the DDS control unit 24 illustrated in FIGS. 1 and 12 is multiplied.
  • the high-frequency signal may be frequency-divided by frequency dividers having different frequency division numbers, or the frequency multiplier frequency or the frequency divider frequency may be variable.
  • clock signals having different clock frequencies may be supplied from oscillators having different oscillation frequencies.
  • the frequency synthesizers 1 and 1a may divide the frequency signal supplied from the DDS 2 and use the divided frequency signal as a reference frequency. As described in Equation (8), the frequency signal divided by the frequency divider includes phase noise, but if it is at a level that does not cause a problem as an effect on the output frequency of the VCO 32, it is divided into the output side of the DDS2. There is no denying the provision of a divider.

Abstract

Provided is a frequency synthesizer capable of high-speed switching and having few unwanted frequency components in the output frequency signal. In this frequency synthesizer (1), a direct digital synthesizer (DDS) (2) operating on the basis of a clock signal generates a reference frequency signal having a prescribed reference frequency, and clock signal supply units (41, 42) are switched to supply clock signals having a different clock frequency to the DDS (2). A storage unit (12) stores, in association with the output frequency (fVCO) from the frequency synthesizer (1), combinations of clock frequencies (fclk), reference frequencies (fc), and division numbers (N) for which spurious frequencies do not exist within a preset frequency range and the division number of a variable frequency divider (302) provided in a PLL circuit (3) is the smallest when the DDS (2) is operated by switching the clock signal. Setting units (11, 24) read the setting items stored in the storage unit (12), and perform settings in each unit.

Description

周波数シンセサイザFrequency synthesizer
 本発明は、DDS(Direct Digital Synthesizer)を用いて発生させた基準周波数信号との位相比較を行って、電圧制御発振器より周波数信号を出力するPLL回路を備えた周波数シンセサイザに関する。 The present invention relates to a frequency synthesizer including a PLL circuit that performs phase comparison with a reference frequency signal generated using a DDS (Direct Digital Synthesizer) and outputs a frequency signal from a voltage controlled oscillator.
 周波数シンセサイザは、電圧制御発振器から出力された周波数信号を分周器にて分周し、分周された周波数信号の位相と、基準周波数信号の位相との位相差を位相比較器にて取り出し、ループフィルタを介してこの位相差に対応する制御電圧を電圧制御発振器にフィードバックするPLL(Phase Locked Loop)回路を備え、このPLL回路を利用して安定した周波数信号を出力する。そして、分周器の分周数や基準周波数信号側に設けられた分周器の分周数を種々変化させることにより、所望の周波数の周波数信号を出力することができる。  The frequency synthesizer divides the frequency signal output from the voltage controlled oscillator with a frequency divider, and extracts the phase difference between the phase of the divided frequency signal and the phase of the reference frequency signal with a phase comparator, A PLL (Phase Locked Loop) circuit that feeds back a control voltage corresponding to the phase difference to the voltage controlled oscillator via a loop filter is provided, and a stable frequency signal is output using the PLL circuit. A frequency signal with a desired frequency can be output by variously changing the frequency dividing number of the frequency divider and the frequency dividing number of the frequency divider provided on the reference frequency signal side. *
 上述の周波数シンセサイザから出力される周波数信号の周波数を高速に切り替える手法として、基準周波数信号の周波数を高くする手法がある。しかしながら高周波の基準周波数信号を用いると、分周器の分周数に応じて切り替えられる出力周波数のステップ幅が大きくなってしまい、微細な周波数調整を行うことができない。  As a technique for switching the frequency of the frequency signal output from the above-described frequency synthesizer at high speed, there is a technique for increasing the frequency of the reference frequency signal. However, when a high-frequency reference frequency signal is used, the step width of the output frequency that is switched according to the frequency division number of the frequency divider becomes large, and fine frequency adjustment cannot be performed. *
 そこで、周波数シンセサイザに高周波の基準周波数信号を供給しつつ、微細な周波数調整を可能とする手法として、基準周波数信号の信号源としてDDS(Direct Digital Synthesizer)を用いるものがある。DDSは、クロック信号の入力タイミングに応じて出力された位相データに基づき、波形テーブルから振幅データを読み出すことにより、所望の周波数の周波数信号を得る装置である。このDDSで発生させた信号を基準周波数信号として利用することにより、周波数シンセサイザから出力される周波数信号の周波数を微細に変更しつつ、高速な切り替えを実現することができる。  Therefore, as a technique that enables fine frequency adjustment while supplying a high-frequency reference frequency signal to a frequency synthesizer, there is a technique that uses a DDS (Direct Digital Synthesizer) as a signal source of the reference frequency signal. The DDS is a device that obtains a frequency signal of a desired frequency by reading amplitude data from a waveform table based on phase data output according to the input timing of a clock signal. By using the signal generated by the DDS as a reference frequency signal, high-speed switching can be realized while finely changing the frequency of the frequency signal output from the frequency synthesizer. *
 ところが、DDSから出力される周波数信号にはスプリアス成分が含まれており、このスプリアス成分は、周波数シンセサイザから出力される周波数信号の品質を低下させる要因となる。スプリアス成分の発生原因は種々あるが、その一つとしてDDSを動作させるクロック信号の周波数(クロック周波数)に起因して発生する高調波成分が、折り返し雑音(エイリアシング)としてDDSの使用周波数帯域内に現れる場合がある。  However, the frequency signal output from the DDS includes a spurious component, and this spurious component is a factor that degrades the quality of the frequency signal output from the frequency synthesizer. There are various causes for the generation of spurious components. As one of them, the harmonic component generated due to the frequency (clock frequency) of the clock signal that operates the DDS is included in the frequency band of the DDS as aliasing. May appear. *
 ここで特許文献1には、DDSを利用した周波数シンセサイザにおいて、クロック信号を発生させる基準発振器とDDSとの間にプログラム分周器を設け、DDSの出力周波数Foに応じてスプリアスの周波数を予め計算し、これらスプリアスの周波数が予め設定した周波数範囲内に存在しないクロック信号がDDSへと供給されるように、プログラム分周器の分周を設定する構成が記載されている。 Here, in Patent Document 1, in a frequency synthesizer using DDS, a program frequency divider is provided between a reference oscillator that generates a clock signal and the DDS, and a spurious frequency is calculated in advance according to the output frequency Fo of the DDS. A configuration is described in which the frequency division of the program frequency divider is set so that a clock signal whose spurious frequency does not exist within a preset frequency range is supplied to the DDS.
特開平8-256058号公報:段落0024、0026、0029、図1JP-A-8-256058: paragraphs 0024, 0026, 0029, FIG.
 特許文献1に記載の周波数シンセサイザにおいては、プログラム分周器にてDDSに供給されるクロック信号の周波数を変化させることにより、DDSの出力に含まれるスプリアスの発生位置を調節することができる。この結果、例えば周波数シンセサイザに設けられているループフィルタのループ帯域よりも十分に高い周波数のスプリアスを発生させて、このスプリアスをループフィルタにて除去している。  In the frequency synthesizer described in Patent Document 1, the spurious generation position included in the output of the DDS can be adjusted by changing the frequency of the clock signal supplied to the DDS by the program frequency divider. As a result, for example, a spurious having a frequency sufficiently higher than the loop band of the loop filter provided in the frequency synthesizer is generated, and this spurious is removed by the loop filter. *
 しかしながらDDSを利用した周波数シンセサイザの出力である周波数信号に含まれる不要な周波数成分は、上述の高調波スプリアス成分に限られず、例えば周波数シンセサイザの構成に起因するものがある。このため、DDSに供給されるクロック信号の周波数を変更する場合には、これら他の要因への影響も考慮して総合的な対策を講じる必要がある。 However, unnecessary frequency components included in the frequency signal that is the output of the frequency synthesizer using DDS are not limited to the above-described harmonic spurious components, and may be caused by, for example, the configuration of the frequency synthesizer. For this reason, when changing the frequency of the clock signal supplied to the DDS, it is necessary to take comprehensive measures in consideration of the influence on these other factors.
 本発明はこのような事情の下になされたものであり、その目的は、出力周波数を高速で切り替え可能であって、出力周波数信号中の不要な周波数成分が少ない周波数シンセサイザを提供することにある。 The present invention has been made under such circumstances, and an object of the present invention is to provide a frequency synthesizer in which the output frequency can be switched at high speed and there are few unnecessary frequency components in the output frequency signal. .
 本発明に係る周波数シンセサイザは、電圧制御発振器から出力された周波数信号を可変分周器にて分周し、分周された周波数信号の位相と、基準周波数信号の位相との位相差を位相比較部にて取り出し、前記位相差に対応する制御電圧をループフィルタより前記電圧制御発振器に供給するPLL回路を備えた周波数シンセサイザにおいて、
 クロック信号に基づいて動作し、前記電圧制御発振器から出力する周波数信号の出力周波数の設定値を前記可変分周器に設定された分周数にて除した値に対応する基準周波数を持つ基準周波数信号を発生させるためのDDSと、
 予め用意された複数のクロック周波数の中から、選択されたクロック周波数に応じたクロック信号を前記DDSに供給するためのクロック信号供給部と、
 前記複数のクロック周波数から選択されるクロック周波数のクロック信号により前記DDSを動作させて、前記基準周波数を持つ基準周波数信号を前記DDSから発生させる場合に、当該DDSの使用周波数帯域に含まれるスプリアス成分の周波数が予め設定された周波数範囲内に存在せず、且つ、前記可変分周器の分周数が最小となる基準周波数が予め求められ、これらクロック周波数、基準周波数、及び最小の分周数を対応付けて記憶する記憶部と、
 前記出力周波数の設定値に対応する、クロック周波数、基準周波数、及び最小の分周数の組み合わせを選択し、前記クロック信号供給部、DDS及び可変分周器に設定する設定部と、を備えたことを特徴とする。 
The frequency synthesizer according to the present invention divides the frequency signal output from the voltage controlled oscillator by the variable frequency divider, and compares the phase difference between the phase of the divided frequency signal and the phase of the reference frequency signal. In a frequency synthesizer including a PLL circuit that supplies a control voltage corresponding to the phase difference from a loop filter to the voltage controlled oscillator.
A reference frequency that operates based on a clock signal and has a reference frequency corresponding to a value obtained by dividing the set value of the output frequency of the frequency signal output from the voltage controlled oscillator by the frequency division number set in the variable frequency divider A DDS for generating a signal;
A clock signal supply unit for supplying a clock signal according to a clock frequency selected from a plurality of clock frequencies prepared in advance to the DDS;
When the DDS is operated by a clock signal having a clock frequency selected from the plurality of clock frequencies and a reference frequency signal having the reference frequency is generated from the DDS, a spurious component included in a use frequency band of the DDS The reference frequency at which the frequency of the variable frequency divider does not exist within a preset frequency range and the frequency division number of the variable frequency divider is minimum is obtained in advance, and the clock frequency, the reference frequency, and the minimum frequency division number are obtained. And a storage unit for storing
A setting unit that selects a combination of a clock frequency, a reference frequency, and a minimum frequency dividing number corresponding to the set value of the output frequency and sets the clock signal supply unit, the DDS, and the variable frequency divider. It is characterized by that.
 上述の周波数シンセサイザは、下記の特徴を備えていてもよい。
(a)前記最小の分周数に対応付けられた基準周波数の周波数信号を前記DDSにて発生させる場合に、前記クロック信号供給部から、予め設定された周波数範囲内にスプリアス成分の周波数が存在しない、互いに異なるクロック周波数のクロック信号を供給可能なとき、前記記憶部には、これら互いに異なるクロック周波数に起因して発生するスプリアス成分の周波数が、前記周波数範囲に最も近い近傍スプリアス成分について、当該周波数範囲の上下限値と、前記近傍スプリアス成分の周波数との差の絶対値が最大となるクロック周波数を持つクロック信号と、前記基準周波数と最小の分周数とが対応付けて記憶されていること。
(b)前記DDSは、前記設定部から取得した基準周波数に対応するディジタル設定値の設定を行い、外部から供給された動作クロックに基づいて動作するDDS設定部を備え、前記クロック信号供給部は、前記動作クロックを互いに異なる逓倍数で逓倍して前記複数のクロック周波数のクロック信号を用意するための逓倍器を備えたこと。
(c)前記記憶部には、予め区分された複数の周波数範囲毎に、前記クロック周波数、及び最小の分周数と対応付けて、各周波数範囲内に含まれる予め設定した代表周波数に対応する基準周波数が記憶され、前記周波数の設定値が前記複数の周波数範囲のうちのいずれの周波数範囲内の値に対応するか計算する計算部と、前記計算部にて特定された周波数範囲内の代表周波数と、周波数の設定値との差分値を可変分周器に設定された分周数にて除した値と、前記代表周波数に対応して記憶された基準周波数とに基づき、前記周波数の設定値の基準周波数を生成する生成部と、を備えたこと。
(d)前記DDSから出力された周波数信号をアナログ信号に変換して出力するディジタル/アナログ変換部を備え、前記ディジタル/アナログ変換部は、前記クロック信号供給部から供給されたクロック信号に基づいて動作すること。
The frequency synthesizer described above may have the following features.
(A) When a frequency signal having a reference frequency associated with the minimum frequency division number is generated by the DDS, a frequency of a spurious component exists within a preset frequency range from the clock signal supply unit. When the clock signals having different clock frequencies can be supplied, the storage unit has the spurious component frequency generated due to the different clock frequencies in the neighborhood spurious component closest to the frequency range. A clock signal having a clock frequency that maximizes the absolute value of the difference between the upper and lower limit values of the frequency range and the frequency of the neighboring spurious component, and the reference frequency and the minimum frequency division number are stored in association with each other. thing.
(B) The DDS includes a DDS setting unit that sets a digital setting value corresponding to a reference frequency acquired from the setting unit and operates based on an operation clock supplied from the outside, and the clock signal supply unit includes: And a multiplier for multiplying the operation clocks by different multiplication numbers to prepare clock signals having the plurality of clock frequencies.
(C) The storage unit corresponds to a preset representative frequency included in each frequency range in association with the clock frequency and the minimum frequency division number for each of a plurality of preliminarily divided frequency ranges. A reference frequency is stored, a calculation unit for calculating which frequency range of the plurality of frequency ranges corresponds to a value in the frequency range, and a representative in the frequency range specified by the calculation unit Setting of the frequency based on a value obtained by dividing a difference value between the frequency and the set value of the frequency by the frequency dividing number set in the variable frequency divider and a reference frequency stored corresponding to the representative frequency And a generation unit for generating a reference frequency for the value.
(D) a digital / analog conversion unit that converts the frequency signal output from the DDS into an analog signal and outputs the analog signal, and the digital / analog conversion unit is based on the clock signal supplied from the clock signal supply unit. To work.
 本発明によれば、DDSを動作させるクロック信号を切り替え、このDDSにて発生させた基準周波数信号をPLL回路の位相比較に利用して、周波数シンセサイザから周波数信号を出力するにあたり、基準周波数信号の周囲にスプリアス成分が存在せず、且つ、周波数シンセサイザに設けられた可変分周器の分周数が最小となるクロック周波数、基準周波数の組み合わせを選択する。この結果、周波数シンセサイザから出力される周波数信号中の不要な周波数成分を総合的に低減し、且つ、位相雑音が低くなるように最適化される。 According to the present invention, the clock signal for operating the DDS is switched, and the reference frequency signal generated by the DDS is used for phase comparison of the PLL circuit to output the frequency signal from the frequency synthesizer. A combination of a clock frequency and a reference frequency that does not have spurious components in the surroundings and that minimizes the frequency dividing number of the variable frequency divider provided in the frequency synthesizer is selected. As a result, unnecessary frequency components in the frequency signal output from the frequency synthesizer are comprehensively reduced and the phase noise is optimized.
本発明の実施の形態に係る周波数シンセサイザの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the frequency synthesizer which concerns on embodiment of this invention. 前記周波数シンセサイザに設けられているPLL回路のブロック図である。It is a block diagram of a PLL circuit provided in the frequency synthesizer. 前記周波数シンセサイザに設けられているDDSのブロック図である。It is a block diagram of DDS provided in the frequency synthesizer. 高調波に起因するスプリアス成分の発生パターンの説明図である。It is explanatory drawing of the generation pattern of the spurious component resulting from a harmonic. 高調波の発生位置と、スプリアス周波数の算出法との関係に係る説明図である。It is explanatory drawing which concerns on the relationship between the generation position of a harmonic, and the calculation method of a spurious frequency. スプリアス周波数の第1の計算例を示す表である。It is a table | surface which shows the 1st calculation example of a spurious frequency. スプリアス周波数の第2の計算例を示す表である。It is a table | surface which shows the 2nd calculation example of a spurious frequency. スプリアス周波数の第3の計算例を示す表である。It is a table | surface which shows the 3rd calculation example of a spurious frequency. スプリアス周波数の第4の計算例を示す表である。It is a table | surface which shows the 4th example of calculation of a spurious frequency. チャネルに対応付けてメモリに設定されている基準周波数、可変分周器の分周数、及びクロック周波数の設定例である。It is an example of setting the reference frequency, the frequency division number of the variable frequency divider, and the clock frequency set in the memory in association with the channel. 各設定項目を決定する手順を示す説明図である。It is explanatory drawing which shows the procedure which determines each setting item. 第2の実施の形態に係る周波数シンセサイザのブロック図である。It is a block diagram of the frequency synthesizer which concerns on 2nd Embodiment. 前記周波数シンセサイザに設けられている計算部のブロック図である。It is a block diagram of the calculation part provided in the said frequency synthesizer. 前記周波数シンセサイザに設けられているDDS設定データ生成部のブロック図である。It is a block diagram of the DDS setting data generation part provided in the frequency synthesizer. 前記周波数シンセサイザ内のメモリに登録されるデータの説明図である。It is explanatory drawing of the data registered into the memory in the said frequency synthesizer.
 図1~図4を参照しながら本発明の実施の形態に係る周波数シンセサイザ1の全体構成について説明する。
 周波数シンセサイザ1は、VCO(Voltage Controlled Oscillator:電圧制御発振器)32を備えたPLL回路3と、このPLL回路3に位相比較用の基準周波数信号を供給するDDS2とを備え、複数のチャネルに対応付けて設定された周波数fVCOの周波数信号をVCO32から出力することができる。 
The overall configuration of the frequency synthesizer 1 according to the embodiment of the present invention will be described with reference to FIGS.
The frequency synthesizer 1 includes a PLL circuit 3 provided with a VCO (Voltage Controlled Oscillator) 32 and a DDS 2 that supplies a reference frequency signal for phase comparison to the PLL circuit 3 and associates it with a plurality of channels. The frequency signal of the set frequency f VCO can be output from the VCO 32.
 図2に示すようにPLL回路3は、VCO32と、VCO32から出力された周波数信号を予め設定された分周数に基づいて分周する可変分周器302と、DDS2から取得した基準周波数信号(基準周波数f)の位相と、可変分周器302にて分周された周波数信号の位相とを比較し、位相差を出力する位相比較器(位相比較部)301と、位相比較器301から出力された位相差に対応する制御電圧を取り出してVCO32にフィードバックするループフィルタ31とを備えている。  As shown in FIG. 2, the PLL circuit 3 includes a VCO 32, a variable frequency divider 302 that divides the frequency signal output from the VCO 32 based on a preset frequency division number, and a reference frequency signal ( From the phase comparator 301 and the phase comparator 301 that compares the phase of the reference frequency f c ) with the phase of the frequency signal divided by the variable frequency divider 302 and outputs a phase difference. A loop filter 31 that extracts a control voltage corresponding to the output phase difference and feeds it back to the VCO 32;
 図1、図2に示すように、本例の位相比較器301及び可変分周器302は共通のPLL-IC30内に設けられ、可変分周器302は外部からの設定信号により、分周数Nを変更することができる。  As shown in FIGS. 1 and 2, the phase comparator 301 and the variable frequency divider 302 of this example are provided in a common PLL-IC 30, and the variable frequency divider 302 is divided by the setting signal from the outside. N can be changed. *
 図3に示すようにDDS2は、出力する基準周波数fに対応して設定されたディジタル設定値FDATAを、外部から供給されたクロック信号fclkの入力タイミングに応じて累積加算し、基準周波数信号fの位相データとして出力する位相アキュムレータ211と、正弦波の振幅データを位相データに対応付けて記憶し、位相アキュムレータ211から取得した位相データに対応する振幅データを出力する正弦波テーブル212と、正弦波テーブル212から出力されたディジタル信号をアナログ信号に変換するディジタル/アナログ変換部(DAC(Digital Analog Convertor)22と、基準周波数信号fに含まれる高周波成分を除去するローパスフィルタ(以下、「フィルタ」という)23と、を備えている。
 また図1、図3に示すように、本例の位相アキュムレータ211及び正弦波テーブル212は共通のDDS信号処理部21内に設けられている。 
As shown in FIG. 3, the DDS 2 cumulatively adds the digital set value F DATA set corresponding to the output reference frequency f c in accordance with the input timing of the clock signal f clk supplied from the outside, and the reference frequency a phase accumulator 211 to output as the phase data of the signal f c, the amplitude data of a sine wave is stored in association with the phase data, a sine wave table 212 for outputting amplitude data corresponding to the phase data obtained from the phase accumulator 211 , digital / analog converter for converting digital signals outputted from the sine wave table 212 into an analog signal (a DAC (digital analog Convertor) 22, a low pass filter for removing high frequency components included in the reference frequency signal f c (hereinafter, 23) (referred to as “filter”).
As shown in FIGS. 1 and 3, the phase accumulator 211 and the sine wave table 212 of this example are provided in a common DDS signal processing unit 21.
 例えば位相アキュムレータ211を構成する加算器のビット数が20ビット(k=20)であり、クロック周波数のディジタル値がFclkである場合、DDS2の解像度Dは下記(1)式で表され、ディジタル設定値FDATAは(2)式より求めることができる。ここでFは基準周波数のディジタル値である。
  D=Fclk/(220) …(1)
  FDATA=F/D
  =F/(Fclk/(220)) …(2)
For example, when the number of bits of the adder constituting the phase accumulator 211 is 20 bits (k = 20) and the digital value of the clock frequency is F clk , the resolution D of the DDS2 is expressed by the following equation (1): The set value F DATA can be obtained from equation (2). Here, F c is a digital value of the reference frequency.
D = F clk / (2 20 ) (1)
F DATA = F c / D
= F c / (F clk / (2 20 )) (2)
 一般に、DDS2にて発生させた周波数信号には高調波成分の折り返し雑音スプリアス成分として含まれている。図4は、DDS2にて発生させた基準周波数信号(基準周波数f)の高調波に起因するスプリアス成分の発生パターンを示している。クロック周波数fclkのクロック信号によりDDS2を動作させるとき、DDS2の使用周波数帯域は0≦f≦fclk/2の範囲となる。この使用周波数帯域内には、基準周波数信号f(基本波)の高調波(n・f、但し、n=2,3,…)の折り返し雑音(エイリアシング)がスプリアス成分として現れる。  In general, the frequency signal generated by the DDS 2 is included as a aliasing noise spurious component of a harmonic component. Figure 4 illustrates the generation pattern of the spurious components due to harmonics of the reference frequency signal generated by DDS2 (reference frequency f c). When operating the DDS2 by the clock signal of the clock frequency f clk, use frequency band of the DDS2 is in the range of 0 ≦ f c ≦ f clk / 2. In this use frequency band, aliasing of aliasing (n · f c , where n = 2, 3,...) Of the reference frequency signal f c (fundamental wave) appears as a spurious component.
 図4において、2倍波(2f)のスプリアス成分は、fclk/2を基準に折り返した周波数fclk-2fの位置に発生する(図4中に、折り返し前後の周波数の対応関係を一点鎖線で示してある)。また、3倍波(3f)のスプリアス成分は、fclkを基準に折り返して発生した周波数2fclk-3fの折り返し成分が、さらにfclk/2を基準に折り返されて周波数-fclk+3fの位置に現れる(図4中に、折り返し前後の周波数の対応関係を二点鎖線で示してある)。  In FIG. 4, the spurious component of the second harmonic (2f c ) is generated at the position of the frequency f clk −2f c folded with reference to f clk / 2 (in FIG. 4, the correspondence relationship between the frequencies before and after the folding is shown). It is indicated by a dashed line). Further, 3 spurious component of harmonic (3f c) is aliasing components of the frequency 2f clk -3f c generated folded relative to the f clk is further folded back relative to the f clk / 2 in the frequency -f clk + 3f It appears at the position c (in FIG. 4, the correspondence relationship between the frequencies before and after the folding is indicated by a two-dot chain line).
 このように、「m・(fclk/2)(但し、m=1、2、…)」の高次の折り返し位置における折り返しの影響までも考慮すると、折り返し雑音の影響によるスプリアス成分は、例えば数百次の高調波までがスプリアス成分としてDDS2の使用周波数帯域内に現れることとなる。  In this way, considering the effect of aliasing at higher-order aliasing positions of “m · (f clk / 2) (where m = 1, 2,...)”, The spurious component due to the effect of aliasing noise is, for example, Up to several hundreds of harmonics appear as spurious components in the frequency band used for DDS2.
 そして下記(3)式で表される範囲に発生する高調波のスプリアス成分の周波数(スプリアス周波数fSn)は、下記(4)式で計算することができる。
 {(2m-1)/2}・fclk<n・f≦m・fclk …(3)
 fSn=m・fclk-n・f …(4)
 (但し、m=1,2,3,…、n=2,3,…)
 なお図5には、(3)式に相当する範囲を灰色で示してある。 
The frequency (spurious frequency f Sn ) of the spurious component of the harmonic generated in the range represented by the following equation (3) can be calculated by the following equation (4).
{(2m−1) / 2} · f clk <n · f c ≦ m · f clk (3)
f Sn = m · f clk −n · f c (4)
(However, m = 1, 2, 3,..., N = 2, 3,...)
In FIG. 5, the range corresponding to the expression (3) is shown in gray.
 一方、下記(5)式で表される範囲に発生する高調波のスプリアス周波数)は、下記(6)式で計算することができる。
 m・fclk<n・f≦{(2m+1)/2}・fclk …(5)
 fSn=n・f-m・fclk …(6)
 (但し、m=1,2,3,…、n=2,3,…)
 なお図5には、(5)式に相当する範囲を白色で示してある。 
On the other hand, the harmonic spurious frequency generated in the range represented by the following equation (5) can be calculated by the following equation (6).
m · f clk <n · f c ≦ {(2m + 1) / 2} · f clk (5)
f Sn = n · f c −m · f clk (6)
(However, m = 1, 2, 3,..., N = 2, 3,...)
In FIG. 5, the range corresponding to the equation (5) is shown in white.
 また、可変分周器302の分周数がNであり、PLL回路3にて分周後の周波数信号と、基準周波数信号との位相が揃っている(ロックしている)とき、基準周波数fとVCO32の出力周波数fVCOとの関係は、下記(7)式で表される。
 fVCO=N・f …(7) 
When the frequency dividing number of the variable frequency divider 302 is N and the phase of the frequency signal after frequency division by the PLL circuit 3 and the phase of the reference frequency signal are aligned (locked), the reference frequency f The relationship between c and the output frequency f VCO of the VCO 32 is expressed by the following equation (7).
f VCO = N · f c (7)
 以上に説明した(3)~(7)式の関係によれば、周波数シンセサイザ1から、周波数fVCOの周波数信号を出力するにあたり、PLL回路3を動作させるクロック周波数fclk、及び可変分周器302の分周数が分かれば、クロック周波数と基準周波数fとの関係に基づいてスプリアス周波数fSnを予め知ることができる。
 これらの関係は、クロック周波数fclkを変更することで、スプリアス周波数fSnの発生位置を変えることができることも意味している。 
According to the relationship of the expressions (3) to (7) described above, the clock frequency f clk for operating the PLL circuit 3 and the variable frequency divider when the frequency synthesizer 1 outputs the frequency signal of the frequency f VCO . knowing the frequency division number of 302, it is possible to know in advance the spurious frequency f Sn based on the relationship between the clock frequency and the reference frequency f c.
These relationships also mean that the generation position of the spurious frequency f Sn can be changed by changing the clock frequency f clk .
 本実施の形態に係る周波数シンセサイザ1は、上述の考え方に基づきDDS2に供給されるクロック信号のクロック周波数fclkを切り替えることができる構成となっている。
 当該構成に関し、図1に示すようにDDS2には、DDS信号処理部21(位相アキュムレータ211)に供給されるクロック信号を切り替える第1の切替スイッチ25と、当該第1の切替スイッチ25の切り替え設定を行うDDS制御部24と、DDS信号処理部21に供給されるクロック信号の切り替えに合わせて、DAC22に供給されるクロック信号を切り替える第2の切替スイッチ26とを備えている。 
The frequency synthesizer 1 according to the present embodiment is configured to be able to switch the clock frequency f clk of the clock signal supplied to the DDS 2 based on the above concept.
With respect to this configuration, as shown in FIG. 1, the DDS 2 includes a first changeover switch 25 that switches a clock signal supplied to the DDS signal processing unit 21 (phase accumulator 211), and a changeover setting of the first changeover switch 25. And a second changeover switch 26 for switching the clock signal supplied to the DAC 22 in accordance with the switching of the clock signal supplied to the DDS signal processing unit 21.
 本例のDDS2においては、DDS信号処理部21側の第1の切替スイッチ25やDDS制御部24は、DDS信号処理部21と共通のDDS-IC20に設けられている。またDDS制御部24は、DDS信号処理部21、及びDAC22の第1の切替スイッチ25、26の切り替えに加え、DDS信号処理部21内の位相アキュムレータ211へ基準周波数信号fに対応するディジタル設定値FDATAを出力する機能や、DAC22に対してリセット動作を実行させるためのリセット信号を出力する機能を備えている。  In the DDS 2 of this example, the first changeover switch 25 and the DDS control unit 24 on the DDS signal processing unit 21 side are provided in a DDS-IC 20 that is shared with the DDS signal processing unit 21. The DDS control unit 24, in addition to switching of the first selector switch 25, 26 of the DDS signal processing unit 21, and DAC 22, a digital set corresponding to the reference frequency signal f c to the phase accumulator 211 in the DDS signal processing unit 21 It has a function of outputting the value F DATA and a function of outputting a reset signal for causing the DAC 22 to execute a reset operation.
 図1に示すように、DDS2には動作クロックとしてクロック周波数fclk0のクロック信号が供給されている。そして、当該クロック信号を互いに逓倍数が異なる逓倍器(第1の逓倍器41、第2の逓倍器42)にて逓倍した出力が、第1、第2の切替スイッチ25、26にて切り替えられ、DDS信号処理部21(位相アキュムレータ211)及びDAC22に供給される。  As shown in FIG. 1, a clock signal having a clock frequency f clk 0 is supplied to the DDS 2 as an operation clock. Then, the output obtained by multiplying the clock signal by multipliers (first multiplier 41 and second multiplier 42) having different multiplication numbers is switched by the first and second changeover switches 25 and 26. The DDS signal processing unit 21 (phase accumulator 211) and the DAC 22 are supplied.
 本実施の形態においては、例えばDDS制御部24用の動作クロックのクロック周波数がfclk0=40MHzであり、このクロック信号を第1の逓倍器41、第2の逓倍器42にて各々5逓倍、6逓倍して、クロック周波数fclk1=200MHz、fclk2=240MHzのクロック信号が切り替えられてDDS2に供給される。
 クロック周波数fclk0のクロック信号を供給する周波数源や第1、第2の逓倍器41、42、第1の切替スイッチ25は、本実施の形態のクロック信号供給部に相当する。 
In the present embodiment, for example, the clock frequency of the operation clock for the DDS control unit 24 is f clk 0 = 40 MHz, and this clock signal is multiplied by 5 by the first multiplier 41 and the second multiplier 42, respectively. The clock signal having a clock frequency f clk 1 = 200 MHz and f clk 2 = 240 MHz is switched and supplied to the DDS 2.
The frequency source that supplies the clock signal having the clock frequency f clk 0, the first and second multipliers 41 and 42, and the first changeover switch 25 correspond to the clock signal supply unit of the present embodiment.
 複数のクロック信号を切り替え可能な上記DDS2を利用すれば、既述の(3)~(7)式の関係に基づき、可変分周器302の分周数Nとクロック周波数fclkとを適宜変化させ、所定の周波数範囲内に高調波に起因するスプリアス周波数fSnが存在しない基準周波数fを決定することができる。そしてこの基準周波数fを持つ基準周波数信号との位相比較を行ってPLL回路3を作動させると、スプリアス成分の影響が少ない周波数信号を周波数シンセサイザ1から出力することができる。  If the DDS2 capable of switching a plurality of clock signals is used, the frequency division number N of the variable frequency divider 302 and the clock frequency f clk are appropriately changed based on the relationships of the above-described equations (3) to (7). are allowed, it is possible to determine the reference frequency f c spurious frequency f Sn due to harmonics within a predetermined frequency range are not present. And it can be output when operating the PLL circuit 3 performs phase comparison between the reference frequency signal with the reference frequency f c, the less frequency signal effect of the spurious component from the frequency synthesizer 1.
 一方で、基準周波数fの設定に応じて可変分周器302の分周数Nが変化し、またDDS2を動作させるクロック周波数fclkも変化する周波数シンセサイザ1においては、これら分周数やクロック周波数が周波数シンセサイザ1から出力される周波数信号に与える影響も無視できないことを発明者らは把握している。  On the other hand, the reference frequency according to f c settings dividing number N is changed in the variable frequency divider 302, and in the frequency synthesizer 1 also changes the clock frequency f clk for operating the DDS2, these frequency division number and the clock The inventors understand that the influence of the frequency on the frequency signal output from the frequency synthesizer 1 cannot be ignored.
 例えば周波数シンセサイザ1にて発生する位相雑音レベルNoise[dBc/Hz]は、下記(8)式で表される。
 Noise=Noise(PLL)+10・log(f
       +20・log(N) …(8)
 ここでNoise(PLL)は、PLL-IC30内で発生する位相雑音である。
For example, the phase noise level Noise [dBc / Hz] generated in the frequency synthesizer 1 is expressed by the following equation (8).
Noise = Noise (PLL) +10 · log (f c)
+ 20 · log (N) (8)
Here, Noise (PLL) is phase noise generated in the PLL-IC 30.
 既述の(7)式によれば、周波数シンセサイザ1に対して設定される可変分周器302の分周数Nと、基準周波数fとは逆比例の関係にあり、分周数(または基準周波数)を大きくするに従って、基準周波数(または分周数)が小さくなる。一方で、(8)式によれば分周数の変更の影響は、log(N)の20倍で効いてくるので、できる限り小さな分周数を選択する方が、基準周波数fの増大に起因する位相雑音の影響を抑える効果が大きい。  According to above-described (7), the frequency division number N of the variable frequency divider 302 is set for the frequency synthesizer 1, is in inversely proportional to the reference frequency f c, the frequency division number (or As the reference frequency is increased, the reference frequency (or frequency division number) is decreased. On the other hand, the influence of accordance Invite frequency division number change (8), since come into play at 20x log (N), is better to choose a small frequency division number as possible, increasing the reference frequency f c The effect of suppressing the influence of the phase noise caused by is great.
 本実施の形態に係る周波数シンセサイザ1は、この考え方に基づいて、所定の出力周波数fVCOを示すチャネルに対応させて、予め設定した範囲内にスプリアス成分が存在せず、且つ、分周数が最小となるクロック周波数fclk、基準周波数f、分周数Nの組み合わせがメモリ(記憶部)12内に予め記憶されている。そして、周波数シンセサイザ1に設けられた制御部11にてチャネル設定信号の入力を受け付け、そのチャネルに対応するクロック周波数fclk、基準周波数f、分周数Nの組み合わせを選択し、第1の切替スイッチ25の切り替え、DDS信号処理部21に対するディジタル設定値FDATAの設定、及び可変分周器302に対する分周数の設定を行う構成となっている。
 この観点において、制御部11やDDS制御部24は、本実施の形態の設定部を構成している。 
Based on this concept, the frequency synthesizer 1 according to the present embodiment has no spurious component within a preset range and a frequency division number corresponding to a channel indicating a predetermined output frequency fVCO. A combination of the minimum clock frequency f clk , reference frequency f c , and frequency division number N is stored in the memory (storage unit) 12 in advance. Then, the control unit 11 provided in the frequency synthesizer 1 receives an input of the channel setting signal, selects a combination of the clock frequency f clk , the reference frequency f c , and the frequency division number N corresponding to the channel, The switch 25 is switched, the digital setting value F DATA is set for the DDS signal processing unit 21, and the frequency division number is set for the variable frequency divider 302.
From this viewpoint, the control unit 11 and the DDS control unit 24 constitute a setting unit of the present embodiment.
 以下、クロック周波数fclk、基準周波数f、分周数Nの設定例について、簡単な例を挙げて説明する。なお、以下の計算例は、本発明の内容を理解するうえでの便宜上の設定値を示したものであり、実際の設定値を示すものではない。
 図6~図9の各表には、出力周波数fVCO=920MHz、960MHz、1000MHz、1040MHzの周波数信号をVCO32から出力する場合において、クロック周波数fclkを200(=fclk1)MHz、240(=fclk2)MHzと変化させ、また可変分周器302の分周数Nを20、23、26、29と変化させたときの2倍波~6倍波までの高調波成分の周波数(上段側のセル)及び、各高調波のスプリアス成分の周波数(下段側のセル)を示している。 
Hereinafter, a setting example of the clock frequency f clk , the reference frequency f c , and the frequency division number N will be described with a simple example. Note that the following calculation examples show setting values for convenience in understanding the contents of the present invention, and do not show actual setting values.
6 to 9, the clock frequency f clk is set to 200 (= f clk 1) MHz, 240 (when the frequency signal of the output frequency f VCO = 920 MHz, 960 MHz, 1000 MHz, 1040 MHz is output from the VCO 32. = F clk 2) The frequency of the harmonic component from the second harmonic to the sixth harmonic (when the frequency dividing number N of the variable frequency divider 302 is changed to 20, 23, 26, 29) The upper cell) and the frequency of the spurious component of each harmonic (lower cell) are shown.
 ここで図6~図9には、(3)式で示される範囲(図5の灰色で示した範囲)に発生する高調波成分の周波数が示されているセルを灰色で塗り潰して表示してある。また、予め設定されている周波数範囲を48±10MHzとし、この周波数範囲内に含まれるスプリアス周波数には表中の数字に下線を付してある。  Here, in FIG. 6 to FIG. 9, cells in which the frequencies of the harmonic components generated in the range shown by the equation (3) (the range shown in gray in FIG. 5) are shown in gray. is there. Further, the preset frequency range is 48 ± 10 MHz, and the spurious frequencies included in this frequency range are underlined in the numbers in the table. *
 図6に示す例(fVCO=920MHz)では、クロック周波数fclk1=200MHzの場合は、分周数N=20、26において48±10MHzの周波数範囲内にスプリアス周波数が存在しない。また、クロック周波数fclk2=240MHzの場合は、分周数N=26において上記周波数範囲内にスプリアス周波数が存在しない。従って、これらクロック周波数fclk1、fclk2に応じて選択される分周数を比較すると、分周数が最小(N=20)となるクロック周波数fclk1が選択される。そして分周数N=20とfVCO=920MHzとに基づいて基準周波数f=46.000MHzが算出される。
 この結果、fVCO=920MHzに対応する設定値として、「クロック周波数fclk1=200MHz、基準周波数f=46.000MHz、分周数N=20」の値がメモリ12に登録される(図10のチャネルCH10参照)。 
In the example shown in FIG. 6 (f VCO = 920 MHz), when the clock frequency f clk 1 = 200 MHz, there is no spurious frequency within the frequency range of 48 ± 10 MHz at the frequency division number N = 20 and 26. In the case of the clock frequency f clk 2 = 240 MHz, there is no spurious frequency within the frequency range at the frequency division number N = 26. Therefore, when the frequency division numbers selected according to the clock frequencies f clk 1 and f clk 2 are compared, the clock frequency f clk 1 at which the frequency division number is minimum (N = 20) is selected. Then, the reference frequency f c = 46.000 MHz is calculated based on the frequency division number N = 20 and f VCO = 920 MHz.
As a result, the values of “clock frequency f clk 1 = 200 MHz, reference frequency f c = 46.000 MHz, frequency division number N = 20” are registered in the memory 12 as setting values corresponding to f VCO = 920 MHz (FIG. 10 channels CH10).
 一方、図7(fVCO=960MHz)、図9(fVCO=1040MHz)の例では、上記周波数範囲内にスプリアス周波数が存在せず、且つ、分周数Nが最小となる組み合わせは、クロック周波数fclk2=240MHz側に存在する(図7においてはN=23、図9においてはN=20)。
 この結果、図10のチャネルCH11に示すように、fVCO=960MHzに対応する設定値として、「クロック周波数fclk2=240MHz、基準周波数f=41.739MHz、分周数N=23」が登録され、またチャネルCH13に示すようにfVCO=1040MHzに対応する設定値として「クロック周波数fclk2=240MHz、基準周波数fc=52.000MHz、分周数N=20」が登録される。
On the other hand, in the example of FIG. 7 (f VCO = 960 MHz) and FIG. 9 (f VCO = 1040 MHz), the combination in which the spurious frequency does not exist within the frequency range and the frequency division number N is the minimum is the clock frequency. f clk 2 is present on the side of 240 MHz (N = 23 in FIG. 7, N = 20 in FIG. 9).
As a result, as shown in the channel CH11 of FIG. 10, the setting values corresponding to f VCO = 960 MHz are “clock frequency f clk 2 = 240 MHz, reference frequency f c = 41.739 MHz, frequency division number N = 23”. As shown in the channel CH13, “clock frequency f clk 2 = 240 MHz, reference frequency fc = 52.000 MHz, frequency division number N = 20” is registered as a setting value corresponding to f VCO = 1040 MHz.
 次いで、図8(fVCO=1000MHz)の例においては、クロック周波数fclk1=200MHz、fclk2=240MHzのいずれにおいても、上記周波数範囲内にスプリアス周波数が存在せず、且つ、分周数Nが最小となる組み合わせにおける分周数が等しい(N=23)。そこでこの場合は、上記周波数範囲に最も近いスプリアス周波数(近傍スプリアスの周波数)を比較し、上記周波数範囲の上限値、または下限値からの距離(周波数差の絶対値)がより大きくなる方のクロック周波数を採用している。  Next, in the example of FIG. 8 (f VCO = 1000 MHz), the spurious frequency does not exist within the frequency range at any of the clock frequencies f clk 1 = 200 MHz and f clk 2 = 240 MHz, and the frequency division number The frequency division numbers in the combination where N is the smallest are equal (N = 23). Therefore, in this case, the spurious frequency closest to the frequency range (neighboring spurious frequency) is compared, and the clock with the larger distance (absolute value of the frequency difference) from the upper limit value or lower limit value of the frequency range is selected. The frequency is adopted.
 図8によれば、クロック周波数fclk1=200MHzの場合は6次スプリアスfS6=60.870MHzが最も上記周波数範囲の上限値(58MHz)に近い。一方、クロック周波数fclk2=240MHzの場合は、4次スプリアスfS4=66.087が上記周波数範囲の上限値(58MHz)に近い。これらのスプリアス成分と、上記周波数範囲の上限値または下限値(本例の場合は上限値)との距離Δf(周波数差の絶対値)がより大きいのは、クロック周波数fclk2=240MHzである(クロック周波数fclk1の場合は、Δf=12.870MHz、クロック周波数fclk2の場合は、Δf=18.087MHz、)。
 この結果、図10のチャネルCH12に示すように、fVCO=1000MHzに対応する設定値として「クロック周波数fclk2=240MHz、基準周波数fc=43.478MHz、分周数N=23」が登録される。 
According to FIG. 8, when the clock frequency f clk 1 = 200 MHz, the 6th-order spurious f S6 = 60.870 MHz is closest to the upper limit value (58 MHz) of the frequency range. On the other hand, when the clock frequency f clk 2 = 240 MHz, the fourth-order spurious f S4 = 66.087 is close to the upper limit value (58 MHz) of the frequency range. The distance Δf (absolute value of the frequency difference) between these spurious components and the upper limit value or the lower limit value (upper limit value in this example) of the frequency range is larger than the clock frequency f clk 2 = 240 MHz. (In the case of the clock frequency f clk 1, Δf = 12.870 MHz, and in the case of the clock frequency f clk 2, Δf = 18.087 MHz).
As a result, as shown in the channel CH12 of FIG. 10, “clock frequency f clk 2 = 240 MHz, reference frequency fc = 43.478 MHz, frequency division number N = 23” is registered as a setting value corresponding to f VCO = 1000 MHz. The
 図11には、以上に説明したメモリ12に登録される設定項目(クロック周波数fclk、基準周波数fc、分周数N)の算出手順をまとめてある。
 初めに、周波数シンセサイザ1からの出力周波数fVCOに応じて、クロック周波数fclk及び可変分周器302の分周数Nを変化させてDDS2から基準周波数信号を発生させたときのスプリアス周波数を算出する(工程P1)。
FIG. 11 summarizes the calculation procedure of the setting items (clock frequency f clk , reference frequency fc, frequency division number N) registered in the memory 12 described above.
First, in accordance with the output frequency f VCO from the frequency synthesizer 1, the spurious frequency when the reference frequency signal is generated from the DDS2 by changing the clock frequency f clk and the frequency division number N of the variable frequency divider 302 is calculated. (Step P1).
 次に、予め設定した周波数範囲内にスプリアス周波数が存在せず、分周数が最小となるクロック周波数fclkと分周数Nとの組み合わせを選択する(工程P2)。更に、分周数Nが最小となる組み合わせが複数ある場合は、上記周波数範囲に最も近い近傍スプリアスのスプリアス周波数が、当該周波数範囲の上限値または下限値から遠い方のクロック周波数を選択する(工程P3)。  Next, a combination of a clock frequency f clk and a frequency division number N that does not have a spurious frequency within a preset frequency range and has a minimum frequency division number is selected (step P2). Further, when there are a plurality of combinations having the smallest frequency division number N, a clock frequency whose spurious frequency of the nearest spurious closest to the frequency range is farther from the upper limit value or the lower limit value of the frequency range is selected (step) P3).
 そして、選択した分周数Nから基準周波数fを算出し、これらクロック周波数fclk、基準周波数f、及び分周数Nの組み合わせを出力周波数fVCOと対応付けてチャネル登録する(工程P4)。
 図10に示すように、メモリ12には、これら設定項目の組み合わせが例えば100チャネル記憶されている。 
Then, it calculates a reference frequency f c from the frequency dividing number N of selected, these clock frequency f clk, the reference frequency f c, and minute combinations division number N in association with the output frequency f VCO channel register (step P4 ).
As shown in FIG. 10, the memory 12 stores, for example, 100 channels of combinations of these setting items.
 以上に説明した構成を備える周波数シンセサイザ1の作用について説明する。
 図1に示すように周波数シンセサイザ1の制御部11は、メモリ12に登録されているチャネルの選択を外部から受け付け、選択されたチャネルに対応する設定項目の組み合わせをメモリ12から読み出す。次いで制御部11は、読み出した設定項目に基づき、PLL-IC30に対して可変分周器302の分周数の設定を行い、また、DDS2のDDS制御部24に対して、選択されたクロック周波数fclk、及び基準周波数fに対応する情報を出力する。 
The operation of the frequency synthesizer 1 having the configuration described above will be described.
As shown in FIG. 1, the control unit 11 of the frequency synthesizer 1 accepts selection of a channel registered in the memory 12 from the outside, and reads a combination of setting items corresponding to the selected channel from the memory 12. Next, the control unit 11 sets the frequency division number of the variable frequency divider 302 for the PLL-IC 30 based on the read setting item, and also selects the selected clock frequency for the DDS control unit 24 of the DDS2. Information corresponding to f clk and the reference frequency f c is output.
 DDS制御部24は、選択されたクロック周波数fclkに基づき、第1の切替スイッチ25及び第2の切替スイッチ26の切り替えを実行する。またDDS制御部24は、基準周波数fに対応するディジタル設定値FDATAを算出してDDS信号処理部21の位相アキュムレータ211に対して出力すると共に、DAC22のリセットを行う。  The DDS control unit 24 performs switching between the first changeover switch 25 and the second changeover switch 26 based on the selected clock frequency f clk . The DDS control unit 24 outputs to the phase accumulator 211 of the DDS signal processing unit 21 calculates the digital set value F DATA corresponding to the reference frequency f c, resets the DAC 22.
 この結果、選択されたクロック周波数fclkによってDDS2が作動し、基準周波数fの基準周波数信号がPLL回路3へと出力される。PLL回路3の位相比較器301においては、基準周波数信号と、可変分周器302で分周されたVCO32の出力信号との位相比較が行われ、位相差の大きさに応じてVCO32へとフィードバックされる制御電圧が増減される。  As a result, DDS2 is operated by the selected clock frequency f clk, the reference frequency signal of the reference frequency f c is output to the PLL circuit 3. In the phase comparator 301 of the PLL circuit 3, the phase comparison between the reference frequency signal and the output signal of the VCO 32 divided by the variable frequency divider 302 is performed, and feedback is made to the VCO 32 according to the magnitude of the phase difference. The controlled voltage is increased or decreased.
 そして、前記位相差がほぼゼロとなるとPLL回路3がロックして、出力周波数fVCOで安定し、且つ、不要な周波数成分の少ない周波数信号がVCO32から出力される。
 本実施の形態に係るDDS2を備えた周波数シンセサイザ1においては、例えば30~40マイクロ秒毎にチャネルが切り替わった場合でも、20~30マイクロ秒程度の応答時間で出力周波数の安定した周波数信号を出力することができる。 
When the phase difference becomes substantially zero, the PLL circuit 3 is locked, and a frequency signal that is stable at the output frequency f VCO and has few unnecessary frequency components is output from the VCO 32.
In the frequency synthesizer 1 having the DDS 2 according to the present embodiment, for example, even when the channel is switched every 30 to 40 microseconds, a frequency signal with a stable output frequency is output with a response time of about 20 to 30 microseconds. can do.
 本実施の形態に係る周波数シンセサイザ1によれば以下の効果がある。DDS2を動作させるクロック信号を切り替え、このDDS2にて発生させた基準周波数信号をPLL回路3の位相比較に利用して、周波数シンセサイザ1から周波数信号を出力するにあたり、基準周波数信号の周囲にスプリアス成分が存在せず、且つ、周波数シンセサイザ1に設けられた可変分周器302の分周数が最小となるクロック周波数、基準周波数の組み合わせを選択する。この結果、周波数シンセサイザ1から出力される周波数信号中の不要な周波数成分を総合的に低減し、且つ、位相雑音が最も低くなるように最適化される。  The frequency synthesizer 1 according to the present embodiment has the following effects. When a clock signal for operating the DDS 2 is switched and the reference frequency signal generated by the DDS 2 is used for phase comparison of the PLL circuit 3 and a frequency signal is output from the frequency synthesizer 1, a spurious component is generated around the reference frequency signal. And a combination of a clock frequency and a reference frequency that minimizes the frequency dividing number of the variable frequency divider 302 provided in the frequency synthesizer 1 is selected. As a result, unnecessary frequency components in the frequency signal output from the frequency synthesizer 1 are comprehensively reduced and the phase noise is optimized to be the lowest. *
 次に、図12~図15を参照しながら第2の実施の形態に係る周波数シンセサイザ1aについて説明する。なお、図12~図14において、図1~図3に示した周波数シンセサイザ1と共通の構成要素には、これらの図に付したものと共通の符号を付してある。
 第2の実施の形態に係る周波数シンセサイザ1aは、図10に示した各チャネルに対応付けて設定されている出力周波数の間隔(例えば数十MHz間隔)よりも細かい周波数間隔(例えば1kHz間隔)でVCO32の出力周波数fVCOの設定を受け付けることが可能な構成となっている。 
Next, a frequency synthesizer 1a according to the second embodiment will be described with reference to FIGS. 12 to 14, the same reference numerals as those used in these drawings are attached to the same components as those of the frequency synthesizer 1 shown in FIGS.
The frequency synthesizer 1a according to the second embodiment has a frequency interval (for example, 1 kHz interval) smaller than the output frequency interval (for example, several tens MHz interval) set in association with each channel shown in FIG. The output frequency f VCO of the VCO 32 can be set.
 ここで図10を用いて説明したように、各チャネルのVCO32の出力周波数の設定値、この設定値に対応して選択されるクロック周波数fclk、DDS2の基準周波数fc、及びPLL回路3の分周数Nは、予めメモリ12内に登録されている。しかしながら、例えば1kHz間隔で選択される全ての出力周波数に対して、これらのデータを登録するとすれば、必要となるメモリ12の容量が膨大となってしまう。  Here, as described with reference to FIG. 10, the set value of the output frequency of the VCO 32 of each channel, the clock frequency f clk selected corresponding to this set value, the reference frequency fc of DDS2, and the distribution of the PLL circuit 3 The frequency N is registered in the memory 12 in advance. However, for example, if these data are registered for all output frequencies selected at intervals of 1 kHz, the required capacity of the memory 12 becomes enormous.
 図5~図9を用いて説明したように、メモリ12に登録される各データは、DDS2から出力される基準周波数f(VCO32の出力周波数fVCOを分周数Nで除した周波数)と、この基準周波数f及びクロック周波数fclkによって決まるスプリアス周波数fSnとの距離Δfに基づいて決定される。一方で、(4)式や(6)式に示したスプリアス周波数fSnの計算式によれば、レベルの大きな比較的低次のスプリアスにおいては、基準周波数fを数kHz程度変化させたとしてもスプリアス周波数fSnが大幅に変化するものでもない。  As described with reference to FIGS. 5 to 9, each data registered in the memory 12 includes a reference frequency f c (frequency obtained by dividing the output frequency f VCO of the VCO 32 by the frequency division number N) output from the DDS 2. It is determined based on the distance Δf between the spurious frequency f Sn determined by the reference frequency f c and the clock frequency f clk. On the other hand, though (4) According to the formula of the spurious frequency f Sn shown in formula or (6), in a large relatively low order spurious level, the reference frequency f c is changed several kHz Also, the spurious frequency f Sn does not change significantly.
 そうすると、VCO32の出力周波数fVCOを1kHz間隔で次第に変化させていったとき、選択されるクロック周波数fclk1、fclk2や分周数Nの値が出力周波数fVCOの変化に応じてめまぐるしく変化するわけではないことが分かる。実際に、図5~図9を用いて説明した既述の手法で選択されるクロック周波数fclk1、fclk2や分周数Nは、数十kHz~数百kHz程度の、より粗い間隔で変化することが予め確認されている。 Then, when the output frequency f VCO of the VCO 32 is gradually changed at intervals of 1 kHz, the selected clock frequencies f clk 1, f clk 2 and the value of the frequency division number N are changed according to the change of the output frequency f VCO. You can see that it doesn't change. Actually, the clock frequencies f clk 1 and f clk 2 and the frequency division number N selected by the method described with reference to FIGS. 5 to 9 are coarser intervals of about several tens kHz to several hundreds kHz. It has been confirmed in advance that
 この事実によれば、VCO32の出力周波数fVCOが1kHz間隔で設定される場合であっても、メモリ12に登録するクロック周波数fclk1、fclk2や分周数Nは、これよりも粗い周波数間隔で設定してもよい。一方で、基準周波数fについては、出力周波数fVCOの設定間隔に対応して、高解像度で設定することが要求される。  According to this fact, even when the output frequency f VCO of the VCO 32 is set at 1 kHz intervals, the clock frequencies f clk 1 and f clk 2 and the frequency division number N registered in the memory 12 are coarser than this. You may set by a frequency interval. Meanwhile, for the reference frequency f c, in response to setting interval of the output frequency f VCO, it is required to set at a high resolution.
 以上に説明した考え方に基づき、本例の周波数シンセサイザ1aのメモリ12内には、100kHz間隔でクロック周波数fclk1、fclk2や分周数Nの設定データが登録されている(図15(a))。一方、1kHz間隔で入力されるVCO32の出力周波数fVCOの設定値(指定周波数)を用いて、これらの設定値の選択、及び前記指定周波数に対応してDDS2から基準周波数fの周波数信号を出力するためのディジタル設定値FDATAの生成が行われる。
 なお、以下の説明では、クロック周波数はfclk1=200MHz、fclk2=240MHzから選択可能であり、分周数はN=16、20、32、40から選択可能であるとする。 
Based on the concept described above, setting data of the clock frequencies f clk 1 and f clk 2 and the frequency division number N are registered in the memory 12 of the frequency synthesizer 1a of this example at intervals of 100 kHz (FIG. 15 ( a)). On the other hand, with the output frequency f VCO of the set value of the VCO32 input at 1kHz intervals (designated frequency), the selection of these settings, and a frequency signal of the reference frequency f c from the DDS2 corresponding to the designated frequency A digital set value F DATA for output is generated.
In the following description, it is assumed that the clock frequency can be selected from f clk 1 = 200 MHz and f clk 2 = 240 MHz, and the frequency division number can be selected from N = 16, 20, 32, and 40.
 上述の各設定値の選択、及びディジタル設定値FDATAの生成を行うため、周波数シンセサイザ1aは、前記指定周波数から、既述の各設定値に対応付けられているメモリ12のアドレスの算出、及びディジタル設定値FDATAを生成する際に用いる端数周波数番号の算出を行う計算部13と、ディジタル設定値FDATAの生成を行うDDS設定データ生成部14と、を備えている。  In order to select each setting value and generate the digital setting value F DATA , the frequency synthesizer 1a calculates the address of the memory 12 associated with each setting value described above from the specified frequency, and a calculation unit 13 for calculating the fractional frequency number used for generating a digital setting value F dATA, includes a DDS setting data generator 14 for generating a digital setting value F dATA, the.
 初めに図15(a)を参照しながらメモリ12に登録される各種設定データの内容を説明しておく。例えば1kHz(0.001MHz)間隔で1MHz~数百MHzまでの出力周波数fVCOを指定可能とする場合に、メモリ12には、100kHz間隔で設定されたVCO32の出力周波数範囲に対応して、既述の手法(図5~図9参照)で選択したクロック周波数fclk、分周数Nに加えて、ディジタル設定値FDATAを生成するためのDDS出力粗周波数設定値FDATA’に対応する値が登録されている。  First, the contents of various setting data registered in the memory 12 will be described with reference to FIG. For example, when an output frequency f VCO from 1 MHz to several hundreds of MHz can be specified at 1 kHz (0.001 MHz) intervals, the memory 12 corresponds to the output frequency range of the VCO 32 set at 100 kHz intervals. In addition to the clock frequency f clk and the frequency division number N selected by the method described above (see FIGS. 5 to 9), a value corresponding to the DDS output coarse frequency setting value F DATA ′ for generating the digital setting value F DATA Is registered.
 例えば出力周波数範囲が199.900~199.999MHzであるとき、(7)式に基づいて、当該範囲の最小値fVCO(min)=199.900MHz(代表周波数)を、分周数Nで除して基準周波数fを求める。そしてこの基準周波数fのディジタル値Fと、選択されたクロック周波数fclkのディジタル値Fclkとを用い、(2)式に基づいてDDS出力粗周波数設定値FDATA’が算出され、この値に対応するデータがメモリ12に登録される(図15(a)中には「FDATA(199.900)」と記載してある)。  For example, when the output frequency range is 199.900 to 199.999 MHz, the minimum value f VCO (min) = 199.900 MHz (representative frequency) of the range is divided by the frequency division number N based on the equation (7). to determine the reference frequency f c by. Then the digital value F C of the reference frequency f c, using the digital value F clk of the selected clock frequency f clk, is calculated (2) DDS output coarse frequency setting value F DATA 'based on formula, the Data corresponding to the value is registered in the memory 12 (described as “F DATA (199.900)” in FIG. 15A).
 メモリ12内において、上述のクロック周波数fclk、DDS出力粗周波数設定値FDATA’、分周数Nは、各出力周波数範囲の上位4桁を切り出した値に対応して設定されたメモリアドレスと関連付けて登録されている。即ち、既述の199.900~199.999MHzの出力周波数範囲内の出力周波数範囲fVCOに対しては、後述する指定周波数データとの対応関係に基づき、メモリアドレス「1989」が設定されている。
 なお図15(b)に示すように、メモリ12内に実際に登録されている各種設定データは、計算部13やDDS設定データ生成部14にて実行される演算の内容に応じて設定、加工されたバイナリデータであるが、具体的なデータ構成については後段で説明する。 
In the memory 12, the clock frequency f clk , the DDS output coarse frequency setting value F DATA ′, and the frequency division number N are a memory address set in correspondence with a value obtained by cutting out the upper 4 digits of each output frequency range. Registered in association. That is, for the output frequency range f VCO within the output frequency range of 199.900 to 199.999 MHz, the memory address “1989” is set based on the correspondence with the specified frequency data described later. .
As shown in FIG. 15B, various setting data actually registered in the memory 12 are set and processed according to the contents of the calculation executed by the calculation unit 13 and the DDS setting data generation unit 14. The specific data structure will be described later.
 図13に構成例を示した計算部13は、周波数シンセサイザ1aに入力された出力周波数fVCOの設定値(指定周波数)に基づき、当該出力周波数が含まれる周波数範囲に対して設定されたメモリアドレスの算出と、メモリ12に登録されているDDS出力粗周波数設定値FDATA’と組み合わせてDDS2のディジタル設定値FDATAを生成するための端数周波数番号の算出とを行う。  The calculation unit 13 whose configuration example is shown in FIG. 13 is based on the set value (designated frequency) of the output frequency fVCO input to the frequency synthesizer 1a, and the memory address set for the frequency range including the output frequency. And the fractional frequency number for generating the digital set value F DATA of DDS2 in combination with the DDS output coarse frequency set value F DATA ′ registered in the memory 12 is calculated.
 周波数シンセサイザ1aに対しては、指定周波数データ(バイナリデータ)が入力される。指定周波数データは、出力周波数fVCOの設定値(指定周波数)に対応させて予め設定されたチャネル番号である。例えば、図15(a)に示す「1.000~1.099MHz」の出力周波数範囲に対しては、1kHz間隔で「0~99」の指定周波数データが対応付けられ、「1.100~1.199MHz」の出力周波数範囲に対しては「100~199」の指定周波数データが対応付けられている。従って、「199.900~199.999MHz」の出力周波数範囲に対しては、「198900~198999」の指定周波数データが対応付けられ、「200.000~200.099MHz」の出力周波数範囲に対しては、「199000~199099」の指定周波数データが対応付けられていることが分かる。  Designated frequency data (binary data) is input to the frequency synthesizer 1a. The designated frequency data is a channel number set in advance corresponding to the set value (designated frequency) of the output frequency fVCO . For example, the output frequency range of “1.000 to 1.099 MHz” shown in FIG. 15A is associated with designated frequency data of “0 to 99” at 1 kHz intervals, and “1.100 to 1 The designated frequency data of “100 to 199” is associated with the output frequency range of “.199 MHz”. Therefore, the output frequency range of “199.900 to 199.999 MHz” is associated with the designated frequency data of “198900 to 198999”, and the output frequency range of “200.000 to 200.099 MHz” is associated with the output frequency range of “199.900 to 199.999 MHz”. Is associated with designated frequency data of “199000 to 199099”.
 周波数シンセサイザ1aに入力された指定周波数データは、加算部131にて当該データに「1」が加算され、さらに乗算部132にて「222/100」に対応する値である「41943」が乗算される。こうして得られたデータに対し、切り捨て演算部133にて下位22ビットを切り捨てる演算を行った結果が、メモリアドレスとなる。 Designated frequency data input to the frequency synthesizer 1a is in the data "1" is added by the addition unit 131, a value corresponding to "2 22/100" further by multiplication section 132 "41943" is multiplied Is done. The memory address is the result of performing the operation of truncating the lower 22 bits on the data obtained in this way by the truncation operation unit 133.
 上述の演算は、指定周波数データが100の何倍(自然数)に相当する値であるかを算出するものである。例えば、指定周波数データが「199001(指定周波数200.001MHzに相当する)」である場合、上述の演算を行うと、メモリアドレス「1990」に対応するバイナリデータ「11111000110」が出力される。一方で、指定周波数データが「198999(指定周波数199.999MHzに相当する)」である場合に同様の演算を行うと、メモリアドレス「1989」に対応するバイナリデータ「11111000101」が出力される。  The above calculation is to calculate how many times the specified frequency data is 100 (natural number). For example, when the specified frequency data is “199001 (corresponding to the specified frequency of 200.001 MHz)”, the binary data “11111000110” corresponding to the memory address “1990” is output when the above calculation is performed. On the other hand, if the same calculation is performed when the specified frequency data is “198999 (corresponding to the specified frequency of 199.999 MHz)”, binary data “11111000101” corresponding to the memory address “1989” is output. *
 さらに計算部13においては、切り捨て演算部133からの出力に対して乗算部134にて「100」を乗算し、さらに加算部135にて指定周波数との差分値を取る。そして切り出し演算部136にて、前記差分値の下位7ビットを切り出して端数周波数番号を得る。  Further, the calculation unit 13 multiplies the output from the truncation calculation unit 133 by “100” by the multiplication unit 134, and further takes the difference value from the designated frequency by the addition unit 135. Then, the cutout calculation unit 136 cuts out the lower 7 bits of the difference value to obtain a fractional frequency number. *
 この演算は、指定周波数データを100kHzに相当する間隔でカウントする切り捨て演算部133での演算にて切り捨てられた下2桁の数値を取り出すものである。例えば、指定周波数データが「199001(指定周波数200.001MHz)」にて取り出される端数周波数番号のデータは、「199001」の下2桁の数値「01」に対応する「0000001」である。一方、指定周波数データが「198999(指定周波数199.999MHz)」にて取り出されるデータは、「198999」の下2桁の数値「99」に対応する「1100011」である。  This calculation is to take out the last two digits of the numerical value truncated by the calculation in the truncation calculation unit 133 that counts the specified frequency data at intervals corresponding to 100 kHz. For example, the data of the fractional frequency number extracted when the designated frequency data is “199001 (designated frequency 200.001 MHz)” is “0000001” corresponding to the last two digits “01” of “199001”. On the other hand, the data taken out when the designated frequency data is “198999 (designated frequency 199.999 MHz)” is “1100011” corresponding to the numerical value “99” of the last two digits of “198999”. *
 図15(b)に示すように、メモリ12には、計算部13から出力されるメモリアドレスに対応付けて、クロック周波数fclkを設定するための「クロック周波数設定データ」、既述の「DDS出力粗周波数設定データ」、及び分周数Nを設定するための「分周数設定データ」が登録されている。  As shown in FIG. 15B, the memory 12 stores “clock frequency setting data” for setting the clock frequency f clk in association with the memory address output from the calculation unit 13, “DDS” described above. "Output coarse frequency setting data" and "frequency division number setting data" for setting the frequency division number N are registered.
 クロック周波数設定データは、各クロック周波数fclk1=200MHz、fclk2=240MHzに対応させて「0/1」の値が割り当てられている。DDS出力粗周波数設定値FDATA’は、図15(a)にて説明したバイナリデータであり、後述のDDS設定データ生成部14内で行われる演算に対応させて、「FDATA’」のデータが登録されている。また分周数設定データとしては、本例にて選択可能な分周数「N=16、20、32、40」に対応させて「00/01/10/11」の値が割り当てられている。 The clock frequency setting data is assigned a value of “0/1” corresponding to each clock frequency f clk 1 = 200 MHz and f clk 2 = 240 MHz. The DDS output coarse frequency setting value F DATA ′ is the binary data described with reference to FIG. 15A, and data of “F DATA ′” is associated with an operation performed in the DDS setting data generation unit 14 described later. Is registered. Further, as the frequency division number setting data, a value “00/01/10/11” is assigned in correspondence with the frequency division numbers “N = 16, 20, 32, 40” that can be selected in this example. .
 例えば、指定周波数が「199.999MHz(指定周波数データ198999)」のとき、計算部13から出力されるメモリアドレス「1989」に対応付けられている各設定データは、図15(a)に示す出力周波数範囲「199.900~199.999MHz」に対応する値である。即ち、クロック周波数fclk=200MHz(=fclk1)、分周数N=20を選択する設定データ、及びこれらクロック周波数、分周数を用いて(7)式、及び(2)式に基づいて算出された、代表周波数fVCO(min)=199.900MHzのときのDDS2のディジタル設定値(FDATA(199.900))である。
 指定周波数に基づいて計算部13からメモリアドレスが出力されると、制御部11によってこれらの設定データが読み出されることになる。 
For example, when the specified frequency is “199.999 MHz (specified frequency data 1989999)”, the setting data associated with the memory address “1989” output from the calculation unit 13 is output as shown in FIG. This value corresponds to the frequency range “199.900 to 199.999 MHz”. That is, based on the setting data for selecting the clock frequency f clk = 200 MHz (= f clk 1) and the frequency division number N = 20, and the clock frequency and the frequency division number, the equations (7) and (2) are used. The DDS2 digital setting value (F DATA (199.900)) when the representative frequency f VCO (min) = 199.900 MHz is calculated.
When the memory address is output from the calculation unit 13 based on the designated frequency, the setting data is read out by the control unit 11.
 また指定周波数が「200.001MHz(指定周波数データ199001)」のときは、同様の考え方に基づいて登録された出力周波数範囲「200.000~200.099MHz」に対応する各設定データが読み出される。  Also, when the specified frequency is “200.001 MHz (specified frequency data 199001)”, each setting data corresponding to the output frequency range “200.000 to 200.099 MHz” registered based on the same concept is read. *
 次に、図14に構成例を示すDDS設定データ生成部14にて行われる演算の概要について説明する。外部から指定周波数データ(VCO32から出力されるべき出力周波数fVCOに対応付けられたチャネル番号)が入力されたとき、DDS2に対して設定されるべきディジタル設定値FDATAは、指定周波数を、メモリ12から読み出された分周数設定データに対応する分周数Nで除した値である、基準周波数fに基づいて算出される((2)式)。  Next, an outline of the calculation performed by the DDS setting data generation unit 14 whose configuration example is shown in FIG. 14 will be described. When the designated frequency data (channel number associated with the output frequency f VCO to be output from the VCO 32) is input from the outside, the digital set value F DATA to be set for the DDS2 stores the designated frequency in the memory is a value obtained by dividing the division number N corresponding to the frequency division number setting data read out from the 12, is calculated on the basis of the reference frequency f c ((2) type).
 このディジタル設定値FDATAを算出するにあたって、メモリ12には出力周波数範囲に対応付けて、100kHz単位刻みのDDS出力粗周波数設定値FDATA’に対応するデータが登録されている。そうすると、DDS設定データ生成部14においては、DDS出力粗周波数にて切り捨てられている、指定周波数の下2桁に対応するディジタル設定値を算出すればよい。  In calculating the digital set value F DATA , data corresponding to the DDS output coarse frequency set value F DATA ′ in increments of 100 kHz is registered in the memory 12 in association with the output frequency range. Then, the DDS setting data generation unit 14 may calculate a digital setting value corresponding to the last two digits of the specified frequency that is rounded down at the DDS output coarse frequency.
 図15(a)によると、例えば指定周波数が「199.999MHz(199999kHz)」のとき、分周数はN=20なので、基準周波数はf=199999/20(=(19900+99)/20)[kHz]となる。一方で、メモリ12に登録されているデータからは「199900/20kHz」に対応するDDS出力粗周波数設定値FDATA’が得られるので、残る「99/20kHz」に対応する設定データを生成すればよい。  According to FIG. 15A, for example, when the designated frequency is “199.999 MHz (199999 kHz)”, since the frequency division number is N = 20, the reference frequency is f c = 199999/20 (= (19900 + 99) / 20) [ kHz]. On the other hand, since the DDS output coarse frequency setting value F DATA ′ corresponding to “199900/20 kHz” is obtained from the data registered in the memory 12, if setting data corresponding to the remaining “99/20 kHz” is generated. Good.
 指定周波数が「199999kHz」のとき既述の(2)式は下記(2)’式のように書き替えることができる。
  FDATA(199999)=F(199999)/(Fclk/(220))
  ={F(199900)+F(99)}/(Fclk/(220))
  =FDATA’+F(99)/(Fclk/(220)) …(2)’
 そうすると、上記「99/20kHz」に対応する設定データは、(2)’の右辺第2項「F(99)/(Fclk/(220))」から計算することができる。 
When the specified frequency is “199999 kHz”, the above-described expression (2) can be rewritten as the following expression (2) ′.
F DATA (199999) = F c (199999) / (F clk / (2 20 ))
= {F c (199900) + F c (99)} / (F clk / (2 20 ))
= F DATA '+ F c (99) / (F clk / (2 20 )) (2) ′
Then, the setting data corresponding to the “99/20 kHz” can be calculated from the second term “F c (99) / (F clk / (2 20 ))” on the right side of (2) ′.
 ここで(2)式の説明にて定義したように、Fは基準周波数のディジタル値である。従って、指定周波数99kHzに相当するディジタル値F(99)は、指定周波数1kHzに相当するディジタル値F(1)の99倍値である。よって(2)’の右辺第2項は「99・F(1)/(Fclk/(220))」と書き替えることが可能であり、「F(1)/(Fclk/(220))」を係数とみなしたとき、当該係数に乗算される「99」の値は、計算部13から出力される端数周波数番号に他ならない。  Here, as defined in the description of the expression (2), F c is a digital value of the reference frequency. Accordingly, the digital value F c (99) corresponding to the designated frequency 99 kHz is 99 times the digital value F c (1) corresponding to the designated frequency 1 kHz. Therefore, the second term on the right side of (2) ′ can be rewritten as “99 · F c (1) / (F clk / (2 20 ))”, and “F c (1) / (F clk / When (2 20 )) ”is regarded as a coefficient, the value of“ 99 ”multiplied by the coefficient is nothing but the fractional frequency number output from the calculation unit 13.
 そこで、分周数N=20が選択される場合には、予め「F(1)/(Fclk/(220))」に相当する係数を登録しておき、計算部13から出力された端数周波数番号に対して、当該係数を乗算すれば、「99/20kHz」に対応する設定データを計算できる。そして、この計算結果と、メモリ12から読み出して得られたDDS出力粗周波数設定値FDATA’とを加算することによって、基準周波数fに対応するディジタル設定値FDATAを生成することができる。
 図14に示すDDS設定データ生成部14は上述の演算を行うことが可能な構成となっている。 
Therefore, when the frequency division number N = 20 is selected, a coefficient corresponding to “F c (1) / (F clk / (2 20 ))” is registered in advance and output from the calculation unit 13. By multiplying the fractional frequency number by the coefficient, setting data corresponding to “99/20 kHz” can be calculated. Then, a calculation result, by adding the DDS output coarse frequency set value F DATA 'obtained from the memory 12 can generate a digital setpoint F DATA corresponding to the reference frequency f c.
The DDS setting data generation unit 14 shown in FIG. 14 has a configuration capable of performing the above-described calculation.
 ここで既述のように、本例の周波数シンセサイザ1aにおいては4種類の分周数Nが選択可能であり、選択される分周数Nはクロック周波数fclk1、fclk2の選択に応じて変化する。従って、分周数Nとクロック周波数fclk1、fclk2との組み合わせに応じて決定される8種類の係数(F(1)/(Fclk/(220)))を予め登録しておけば、全てのケースに対応して基準周波数fを生成することが可能となる。  Here, as described above, in the frequency synthesizer 1a of this example, four types of frequency division numbers N can be selected, and the frequency division numbers N to be selected depend on the selection of the clock frequencies f clk 1 and f clk 2. Change. Accordingly, eight types of coefficients (F c (1) / (F clk / (2 20 ))) determined in accordance with the combination of the frequency division number N and the clock frequencies f clk 1 and f clk 2 are registered in advance. if it is possible to generate a reference frequency f c corresponding to all cases.
 そこでDDS設定データ生成部14は、クロック周波数fclk1が選択されたときに、各分周数N(=16、20、32、40)に応じて選択される4種類の係数が登録されたレジスタ141a~141dと、クロック周波数fclk2が選択されたときに、各分周数Nに応じて選択される4種類の係数が登録されたレジスタ142a~142dとを備える。なお、1kHz刻みの指定周波数に相当する係数「F(1)/(Fclk/(220))」の設定に伴う量子化誤差の影響を低減するため、各レジスタ142a~142dには、上記係数に2を乗じて有効桁数を増やした値を登録してある。また、この桁数調整は、周波数シンセサイザ1aに要求される精度に応じて適宜省略してもよい(その場合は、後述の乗算部147、148における演算も省略される)。
 そして、メモリ12から読み出された分周数設定データに基づき、前段セレクタ143a、143bにて、対応する分周数Nの係数が読み出され、これらの係数が後段セレクタ144に出力される。 
Therefore, when the clock frequency f clk 1 is selected, the DDS setting data generation unit 14 is registered with four types of coefficients selected according to each frequency division number N (= 16, 20, 32, 40). Registers 141a to 141d and registers 142a to 142d in which four types of coefficients selected according to the frequency division number N when the clock frequency f clk 2 is selected are provided. In order to reduce the influence of the quantization error associated with the setting of the coefficient “F c (1) / (F clk / (2 20 ))” corresponding to the designated frequency in 1 kHz increments, each of the registers 142 a to 142 d includes It is registered a value increasing the number of significant digits is multiplied by 2 4 to the coefficient. Further, this digit number adjustment may be omitted as appropriate according to the accuracy required for the frequency synthesizer 1a (in this case, operations in multipliers 147 and 148 described later are also omitted).
Based on the frequency division number setting data read from the memory 12, the preceding stage selectors 143 a and 143 b read the corresponding coefficients of the frequency division number N, and output these coefficients to the subsequent stage selector 144.
 後段セレクタ144では、メモリ12から読み出されたクロック周波数設定データに基づき、2つの前段セレクタ143a、143bにて選択された係数のうち、指定周波数の出力に適したクロック周波数fclk1/fclk2側の係数を選択する。この係数に対して、計算部13から出力された端数周波数番号を乗算部145にて乗算すると、既述の(2)’式の右辺第2項に相当する設定データが算出される。  In the subsequent selector 144, based on the clock frequency setting data read from the memory 12, the clock frequency f clk 1 / f clk suitable for the output of the designated frequency among the coefficients selected by the two previous selectors 143a and 143b. Select the two-sided coefficient. When this coefficient is multiplied by the fractional frequency number output from the calculation unit 13 by the multiplication unit 145, setting data corresponding to the second term on the right side of the above-described equation (2) ′ is calculated.
 一方、メモリ12から読み出されたDDS出力粗周波数設定データに対応する値に対しては、レジスタ142a~142dに登録されている係数に合わせて乗算部147にて「2」が乗算された後、加算部146にて、端数側の設定データと加算され、さらに乗算部148にて2-4を乗ずる処理を行って桁数調整を行い、基準周波数fに対応するディジタル設定値FDATAが生成される。DDS設定データ生成部14からはこのディジタル設定値FDATAが出力される。  On the other hand, the value corresponding to the DDS output coarse frequency setting data read from the memory 12 is multiplied by “2 4 ” in the multiplication unit 147 in accordance with the coefficients registered in the registers 142a to 142d. after at adding unit 146, is added to the fraction side of the setting data, the digit number adjustment performs processing further multiplying 2 -4 at multiplying unit 148, a digital set value corresponding to the reference frequency f c F dATA Is generated. The digital setting value F DATA is output from the DDS setting data generation unit 14.
 以上、図12~図15を用いて説明した第2の実施の形態に係る周波数シンセサイザ1aの説明をまとめると、メモリ(記憶部)12には、例えば100kHz単位で区分された複数の周波数範囲毎に、図5~図9を用いて説明した手法で決定されたfclk、分周数Nと対応付けて、予め設定した代表周波数(例えば各周波数範囲の最小値)に対応する基準周波数fのDDS出力粗周波数設定値FDATA’が記憶されている。そして、計算部13は、VCO32の出力周波数の設定値(指定周波数)が複数の周波数範囲のうちのいずれの周波数範囲内の値に対応するかメモリアドレスを計算する。またDDS設定データ生成部14は、計算部13にて特定された前記周波数範囲内の代表周波数と、指定周波数との差分値(端数番号)を分周数Nにて除した値に対応する値(乗算部145から出力される設定データ)と、代表周波数に対応してメモリ12に登録されたDDS出力粗周波数設定値FDATA’とに基づき、指定周波数の基準周波数fに対応するディジタル設定値FDATAを生成する。  As described above, the description of the frequency synthesizer 1a according to the second embodiment described with reference to FIGS. 12 to 15 is summarized. The memory (storage unit) 12 includes, for example, a plurality of frequency ranges divided in units of 100 kHz. Further, reference frequency f c corresponding to a preset representative frequency (for example, the minimum value of each frequency range) in association with f clk determined by the method described with reference to FIGS. The DDS output coarse frequency setting value F DATA ′ is stored. Then, the calculation unit 13 calculates a memory address to determine whether the set value (designated frequency) of the output frequency of the VCO 32 corresponds to a value in any one of a plurality of frequency ranges. Further, the DDS setting data generation unit 14 is a value corresponding to a value obtained by dividing the difference value (fractional number) between the representative frequency within the frequency range specified by the calculation unit 13 and the specified frequency by the frequency division number N. and (setting data outputted from the multiplication unit 145), a digital setting based on the DDS output coarse frequency set value F dATA 'and registered in the memory 12, corresponding to the reference frequency f c of the designated frequency corresponding to the representative frequency Generate the value F DATA .
 次に、第2の実施の形態に係る周波数シンセサイザ1aの作用を述べる。外部からVCO32の出力周波数fVCOの設定値(指定周波数データ)が入力されると、算出部13にてメモリアドレスと端数周波数番号の算出が行われる。  Next, the operation of the frequency synthesizer 1a according to the second embodiment will be described. When the set value (designated frequency data) of the output frequency f VCO of the VCO 32 is input from the outside, the calculation unit 13 calculates the memory address and the fractional frequency number.
 制御部11は、算出されたメモリアドレスに基づき、クロック周波数設定データ、DDS出力粗周波数設定データ、分周数設定データをメモリ12から読み出し、DDS設定データ生成部14に入力する。また、DDS設定データ生成部14には算出部13から出力された端数周波数番号が入力され、これらのデータに基づいて指定周波数をVCO32から出力するのに好適な基準周波数fのディジタル設定値FDATAが生成される。  Based on the calculated memory address, the control unit 11 reads clock frequency setting data, DDS output coarse frequency setting data, and frequency division number setting data from the memory 12 and inputs them to the DDS setting data generation unit 14. Further, the input fraction frequency number output from the calculator 13 to the DDS setting data generation unit 14, a digital set value F of the preferred reference frequency f c to output designated frequency from VCO32 Based on these data DATA is generated.
 さらに制御部11は、メモリから読み出したクロック周波数設定データとDDS設定データ生成部14から取得したディジタル設定値FDATAをDDS2のDDS制御部24に入力する。この結果、第1の切替スイッチ25及び第2の切替スイッチ26の切り替えやディジタル設定値FDATAに対応するDDS信号処理部21の位相アキュムレータ211の設定などが行われる。
 また制御部11は、メモリ12から読み出した分周数設定データをPLL-IC30に出力し、可変分周器302の分周数の設定を行う。 
Further, the control unit 11 inputs the clock frequency setting data read from the memory and the digital setting value F DATA acquired from the DDS setting data generation unit 14 to the DDS control unit 24 of the DDS2. As a result, switching of the first changeover switch 25 and the second changeover switch 26, setting of the phase accumulator 211 of the DDS signal processing unit 21 corresponding to the digital setting value FDATA, and the like are performed.
Further, the control unit 11 outputs the frequency division number setting data read from the memory 12 to the PLL-IC 30 and sets the frequency division number of the variable frequency divider 302.
 これらの設定により、VCO32の出力周波数fVCOを1kHz単位で変化させつつ、第1の実施の形態に係る周波数シンセサイザ1と同様に、周波数信号中の不要な周波数成分を総合的に低減し、且つ、位相雑音が最も低くなるように最適化された周波数信号を出力することができる。 With these settings, while changing the output frequency fVCO of the VCO 32 in units of 1 kHz, unnecessary frequency components in the frequency signal are comprehensively reduced as in the frequency synthesizer 1 according to the first embodiment, and It is possible to output a frequency signal that is optimized so as to minimize phase noise.
 ここで図12~図15に示した第2の実施の形態に係る周波数シンセサイザ1aにおいては、基準周波数fcから求められる粗周波数設定値FDATA’に対応するデータをメモリ12に登録しておき、このデータを読み出してDDS設定データ生成部14にて基準周波数fのディジタル設定値FDATAの生成を行う場合について説明した。
 一方で、第1の実施の形態に係る周波数シンセサイザ1と同様に、ディジタル設定値FDATAはDDS制御部24にて算出する構成としてもよい。
Here, in the frequency synthesizer 1a according to the second embodiment shown in FIGS. 12 to 15, data corresponding to the coarse frequency set value F DATA ′ obtained from the reference frequency fc is registered in the memory 12, been described for generating a digital setting value F dATA of the reference frequency f c at DDS setting data generation unit 14 reads out the data.
On the other hand, similarly to the frequency synthesizer 1 according to the first embodiment, the digital setting value F DATA may be calculated by the DDS control unit 24.
 この場合には、メモリ12には、出力周波数範囲の最小値に対応する基準周波数fcに対応する値(例えば最小値fVCO(min)=199.900MHz、分周数N=20の場合、199900kHz/20に対応する値)が登録される。また、DDS設定データ生成部14では、選択されたクロック周波数fclkに応じて係数を変更する必要がないので、4つの分周数Nに応じて4つのレジスタ141a~141dのみが設けられる。  In this case, the memory 12 stores a value corresponding to the reference frequency fc corresponding to the minimum value of the output frequency range (for example, when the minimum value f VCO (min) = 199.900 MHz and the frequency division number N = 20, 199900 kHz / Value corresponding to / 20) is registered. Further, since the DDS setting data generation unit 14 does not need to change the coefficient according to the selected clock frequency f clk , only four registers 141a to 141d are provided according to the four frequency division numbers N.
 そして、これらのレジスタ141a~141d内には、基準周波数を1kHz変更するのに必要な係数(1/分周数N)が登録され、選択された分周数Nに応じてこれらの係数がセレクタ143aにより選択される。そして、選択された係数が乗算部145にて端数番号と乗算され、当該乗算値と、メモリ12から読み出された算出した基準周波数fc(min)とが加算されて、基準周波数fcとしてDDS制御部24に出力されることとなる。  In these registers 141a to 141d, coefficients (1 / frequency division number N) necessary for changing the reference frequency by 1 kHz are registered, and these coefficients are selected according to the selected frequency division number N. 143a is selected. Then, the selected coefficient is multiplied by the fraction number in the multiplication unit 145, the multiplication value and the calculated reference frequency fc (min) read from the memory 12 are added, and DDS control is performed as the reference frequency fc. Is output to the unit 24. *
 以上に説明した第1、第2の実施形態に係る周波数シンセサイザ1、1aにおいては、切り替え可能なクロック信号の数は、図1、図12に示した2つの例に限定されるものではない。クロック周波数が異なる3つ以上のクロック信号を切り替え自在に利用してもよい。また、クロック周波数の異なる複数のクロック信号を用意する手法は、図1、図12に例示されたDDS制御部24などDDS-IC20の動作クロックを逓倍する場合に限定されない。高周波信号を分周数が互いに異なる分周器で分周してもよいし、逓倍器の逓倍数や分周器の分周数を可変としてもよい。さらには、発振周波数が互いに異なる発振器から、クロック周波数の異なるクロック信号を供給してもよい。 In the frequency synthesizers 1 and 1a according to the first and second embodiments described above, the number of clock signals that can be switched is not limited to the two examples shown in FIGS. Three or more clock signals having different clock frequencies may be used in a switchable manner. Further, the method of preparing a plurality of clock signals having different clock frequencies is not limited to the case where the operation clock of the DDS-IC 20 such as the DDS control unit 24 illustrated in FIGS. 1 and 12 is multiplied. The high-frequency signal may be frequency-divided by frequency dividers having different frequency division numbers, or the frequency multiplier frequency or the frequency divider frequency may be variable. Further, clock signals having different clock frequencies may be supplied from oscillators having different oscillation frequencies.
 また周波数シンセサイザ1、1aは、DDS2から供給される周波数信号を分周して、この分周された周波数信号を基準周波数としてもよい。(8)式で説明したように、分周器で分周した周波数信号には位相雑音が含まれるが、VCO32の出力周波数への影響として問題の無いレベルであれば、DDS2の出力側に分周器を設けることを否定するものではない。 The frequency synthesizers 1 and 1a may divide the frequency signal supplied from the DDS 2 and use the divided frequency signal as a reference frequency. As described in Equation (8), the frequency signal divided by the frequency divider includes phase noise, but if it is at a level that does not cause a problem as an effect on the output frequency of the VCO 32, it is divided into the output side of the DDS2. There is no denying the provision of a divider.
1、1a  周波数シンセサイザ
11    制御部
12    メモリ
13    計算部
14    DDS設定データ生成部
2     DDS
21    DDS信号処理部
22    DAC
25    第1の切替スイッチ
26    第2の切替スイッチ
3     PLL回路
30    PLL-IC
1, 1a Frequency synthesizer 11 Control unit 12 Memory 13 Calculation unit 14 DDS setting data generation unit 2 DDS
21 DDS signal processor 22 DAC
25 First changeover switch 26 Second changeover switch 3 PLL circuit 30 PLL-IC

Claims (5)

  1.  電圧制御発振器から出力された周波数信号を可変分周器にて分周し、分周された周波数信号の位相と、基準周波数信号の位相との位相差を位相比較部にて取り出し、前記位相差に対応する制御電圧をループフィルタより前記電圧制御発振器に供給するPLL回路を備えた周波数シンセサイザにおいて、
     クロック信号に基づいて動作し、前記電圧制御発振器から出力する周波数信号の出力周波数の設定値を前記可変分周器に設定された分周数にて除した値に対応する基準周波数を持つ基準周波数信号を発生させるためのDDSと、
     予め用意された複数のクロック周波数の中から、選択されたクロック周波数に応じたクロック信号を前記DDSに供給するためのクロック信号供給部と、
     前記複数のクロック周波数から選択されるクロック周波数のクロック信号により前記DDSを動作させて、前記基準周波数を持つ基準周波数信号を前記DDSから発生させる場合に、当該DDSの使用周波数帯域に含まれるスプリアス成分の周波数が予め設定された周波数範囲内に存在せず、且つ、前記可変分周器の分周数が最小となる基準周波数が予め求められ、これらクロック周波数、基準周波数、及び最小の分周数を対応付けて記憶する記憶部と、
     前記出力周波数の設定値に対応する、クロック周波数、基準周波数、及び最小の分周数の組み合わせを選択し、前記クロック信号供給部、DDS及び可変分周器に設定する設定部と、を備えたことを特徴とする周波数シンセサイザ。
    The frequency signal output from the voltage controlled oscillator is frequency-divided by the variable frequency divider, and the phase difference between the phase of the frequency signal thus frequency-divided and the phase of the reference frequency signal is taken out by the phase comparator, and the phase difference In a frequency synthesizer including a PLL circuit that supplies a control voltage corresponding to the above to the voltage controlled oscillator from a loop filter,
    A reference frequency that operates based on a clock signal and has a reference frequency corresponding to a value obtained by dividing the set value of the output frequency of the frequency signal output from the voltage controlled oscillator by the frequency division number set in the variable frequency divider A DDS for generating a signal;
    A clock signal supply unit for supplying a clock signal according to a clock frequency selected from a plurality of clock frequencies prepared in advance to the DDS;
    When the DDS is operated by a clock signal having a clock frequency selected from the plurality of clock frequencies and a reference frequency signal having the reference frequency is generated from the DDS, a spurious component included in a use frequency band of the DDS The reference frequency at which the frequency of the variable frequency divider does not exist within a preset frequency range and the frequency division number of the variable frequency divider is minimum is obtained in advance, and the clock frequency, the reference frequency, and the minimum frequency division number are obtained. And a storage unit for storing
    A setting unit that selects a combination of a clock frequency, a reference frequency, and a minimum frequency dividing number corresponding to the set value of the output frequency and sets the clock signal supply unit, the DDS, and the variable frequency divider. This is a frequency synthesizer.
  2.  前記最小の分周数に対応付けられた基準周波数の周波数信号を前記DDSにて発生させる場合に、前記クロック信号供給部から、予め設定された周波数範囲内にスプリアス成分の周波数が存在しない、互いに異なるクロック周波数のクロック信号を供給可能なとき、前記記憶部には、これら互いに異なるクロック周波数に起因して発生するスプリアス成分の周波数が、前記周波数範囲に最も近い近傍スプリアス成分について、当該周波数範囲の上下限値と、前記近傍スプリアス成分の周波数との差の絶対値が最大となるクロック周波数を持つクロック信号と、前記基準周波数と最小の分周数とが対応付けて記憶されていることを特徴とする請求項1に記載の周波数シンセサイザ。 When the DDS generates a frequency signal having a reference frequency associated with the minimum frequency division number, the clock signal supply unit does not have a spurious component frequency within a preset frequency range. When a clock signal having a different clock frequency can be supplied, the storage unit has a frequency of a spurious component generated due to the different clock frequencies in the vicinity of the spurious component closest to the frequency range. A clock signal having a clock frequency that maximizes the absolute value of the difference between the upper and lower limit values and the frequency of the neighboring spurious component, and the reference frequency and the minimum frequency division number are stored in association with each other. The frequency synthesizer according to claim 1.
  3.  前記DDSは、前記設定部から取得した基準周波数に対応するディジタル設定値の設定を行い、外部から供給された動作クロックに基づいて動作するDDS設定部を備え、
     前記クロック信号供給部は、前記動作クロックを互いに異なる逓倍数で逓倍して前記複数のクロック周波数のクロック信号を用意するための逓倍器を備えたことを特徴とする請求項1または2に記載の周波数シンセサイザ。
    The DDS includes a DDS setting unit that sets a digital setting value corresponding to a reference frequency acquired from the setting unit and operates based on an operation clock supplied from the outside.
    The said clock signal supply part was equipped with the multiplier for multiplying the said operation clock by a mutually different multiplication number, and preparing the clock signal of these several clock frequency, The Claim 1 or 2 characterized by the above-mentioned. Frequency synthesizer.
  4.  前記記憶部には、予め区分された複数の周波数範囲毎に、前記クロック周波数、及び最小の分周数と対応付けて、各周波数範囲内に含まれる予め設定した代表周波数に対応する基準周波数が記憶され、前記周波数の設定値が前記複数の周波数範囲のうちのいずれの周波数範囲内の値に対応するか計算する計算部と、前記計算部にて特定された周波数範囲内の代表周波数と、周波数の設定値との差分値を可変分周器に設定された分周数にて除した値と、前記代表周波数に対応して記憶された基準周波数とに基づき、前記周波数の設定値の基準周波数を生成する生成部と、を備えたことを備えたことを特徴とする請求項1ないし3のいずれか一つに記載の周波数シンセサイザ。 In the storage unit, for each of a plurality of pre-divided frequency ranges, a reference frequency corresponding to a preset representative frequency included in each frequency range is associated with the clock frequency and the minimum frequency division number. A calculation unit that is stored and calculates whether a set value of the frequency corresponds to a value in any one of the plurality of frequency ranges; a representative frequency in the frequency range specified by the calculation unit; Based on the value obtained by dividing the difference value from the frequency setting value by the frequency division number set in the variable frequency divider and the reference frequency stored corresponding to the representative frequency, the reference of the frequency setting value The frequency synthesizer according to claim 1, further comprising: a generation unit that generates a frequency.
  5.  前記DDSから出力された周波数信号をアナログ信号に変換して出力するディジタル/アナログ変換部を備え、
     前記ディジタル/アナログ変換部は、前記クロック信号供給部から供給されたクロック信号に基づいて動作することを特徴とする請求項1ないし4のいずれか一つに記載の周波数シンセサイザ。
    A digital / analog converter that converts the frequency signal output from the DDS into an analog signal and outputs the analog signal;
    5. The frequency synthesizer according to claim 1, wherein the digital / analog conversion unit operates based on a clock signal supplied from the clock signal supply unit. 6.
PCT/JP2015/076896 2014-10-08 2015-09-24 Frequency synthesizer WO2016056389A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580054650.7A CN106797218B (en) 2014-10-08 2015-09-24 Frequency synthesizer
US15/517,520 US10153776B2 (en) 2014-10-08 2015-09-24 Frequency synthesizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014207428 2014-10-08
JP2014-207428 2014-10-08
JP2015-133738 2015-07-02
JP2015133738A JP6655896B2 (en) 2014-10-08 2015-07-02 Frequency synthesizer

Publications (1)

Publication Number Publication Date
WO2016056389A1 true WO2016056389A1 (en) 2016-04-14

Family

ID=55653007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076896 WO2016056389A1 (en) 2014-10-08 2015-09-24 Frequency synthesizer

Country Status (1)

Country Link
WO (1) WO2016056389A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022825A (en) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Frequency synthesizer
JP2000332539A (en) * 1999-01-01 2000-11-30 Advantest Corp Frequency synthesizer
JP2002141797A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Frequency synthesizer
JP2002217724A (en) * 2000-12-08 2002-08-02 Agilent Technol Inc Frequency synthesizer
JP2007208367A (en) * 2006-01-31 2007-08-16 Kenwood Corp Synchronizing signal generating apparatus, transmitter, and control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022825A (en) * 1996-06-28 1998-01-23 Mitsubishi Electric Corp Frequency synthesizer
JP2000332539A (en) * 1999-01-01 2000-11-30 Advantest Corp Frequency synthesizer
JP2002141797A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Frequency synthesizer
JP2002217724A (en) * 2000-12-08 2002-08-02 Agilent Technol Inc Frequency synthesizer
JP2007208367A (en) * 2006-01-31 2007-08-16 Kenwood Corp Synchronizing signal generating apparatus, transmitter, and control method

Similar Documents

Publication Publication Date Title
US5371765A (en) Binary phase accumulator for decimal frequency synthesis
JP6655896B2 (en) Frequency synthesizer
JP5672092B2 (en) Spread spectrum clock generator
CN101569103B (en) The method of frequency synthesizer and the output signal by this synthesizer generation expected frequency
US7015733B2 (en) Spread-spectrum clock generator using processing in the bitstream domain
US7844650B2 (en) Pulse output direct digital synthesis circuit
JP2004519917A (en) Σ-ΔN frequency divider with improved noise and spur performance
US5898325A (en) Dual tunable direct digital synthesizer with a frequency programmable clock and method of tuning
KR102418966B1 (en) Digital phase locked loop and driving method thereof
US9071195B2 (en) Method and system for signal synthesis
JPH04503137A (en) &#39;N&#39; Fractional Synthesizer
US20190319630A1 (en) Divider-Less Phase Locked Loop
JP2008172512A (en) Frequency synthesizer, phase lock loop, and clock generation method
WO2016056389A1 (en) Frequency synthesizer
US10148275B1 (en) Low power digital-to-analog converter (DAC)-based frequency synthesizer
JP2011151532A (en) Frequency generator
Sotiriadis Diophantine frequency synthesis
JP6366523B2 (en) Frequency synthesizer
JP2018007097A (en) Synthesizer circuit
JP2006033414A (en) Phase-locked circuit
JP5624571B2 (en) Mobile communication device test signal generator and frequency control method thereof
US8994422B2 (en) Use of Frequency addition in a PLL control loop
JP2008098790A (en) Oscillation device and frequency detection device
JP2015103895A (en) Spread spectrum clock generation circuit
JP2002141797A (en) Frequency synthesizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849504

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15517520

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15849504

Country of ref document: EP

Kind code of ref document: A1