WO2016056186A1 - 車両空調装置 - Google Patents

車両空調装置 Download PDF

Info

Publication number
WO2016056186A1
WO2016056186A1 PCT/JP2015/004826 JP2015004826W WO2016056186A1 WO 2016056186 A1 WO2016056186 A1 WO 2016056186A1 JP 2015004826 W JP2015004826 W JP 2015004826W WO 2016056186 A1 WO2016056186 A1 WO 2016056186A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
air
blower
air flow
duct
Prior art date
Application number
PCT/JP2015/004826
Other languages
English (en)
French (fr)
Inventor
修三 小田
落合 利徳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016056186A1 publication Critical patent/WO2016056186A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices

Definitions

  • the present disclosure relates to a vehicle air conditioner that supplies an air flow to a cabin of a vehicle.
  • Patent Document 1 describes a vehicle air conditioner including a temperature control device and a blower device provided independently of each other.
  • the temperature control device is provided on the instrument panel of the cabin, while the air blower is attached to the cabin ceiling.
  • the temperature control device has an evaporator and a heater, and cools and heats the air. Furthermore, the temperature control device is configured to blow cool air or warm air from the air outlet provided in the cabin instrument panel toward the ceiling and the vehicle rear side. Cold air or warm air blown from the air outlet of the temperature control device reaches the cabin ceiling, and further flows toward the vehicle rear side along the ceiling.
  • the blower has a blower such as a blower.
  • the blower is configured to suck air from the front side of the vehicle and to blow an air flow toward the rear side of the vehicle. Therefore, the air blower sucks the cold air or the hot air blown from the temperature control device, and further blows out toward the vehicle rear side.
  • the temperature control device and the air blower configured as described above are operated in cooperation. Thereby, the said vehicle air conditioner supplies cold wind and warm air to the vehicle rear side.
  • the air blower is disposed in a portion near the center in the vehicle left-right direction in the ceiling of the cabin.
  • the airflow blown out from the temperature control device to the cabin diffuses in a wide range in the vehicle left-right direction after being blown out from the blowout port.
  • the air flow that diffuses and flows through the parts near the both ends of the cabin in the left-right direction of the vehicle is hardly sucked into the blower. Also, the flow rate of the air flow is greatly reduced by diffusion. Therefore, there is a problem that the air flow whose temperature is adjusted by the temperature control device cannot be sufficiently supplied to the rear side of the vehicle.
  • the present disclosure is intended to provide a vehicle air conditioner that can sufficiently supply an air flow whose temperature is adjusted to the rear side of the vehicle while consuming less energy.
  • a vehicle air conditioner that supplies an air flow to a cabin of a vehicle is attached to a temperature control device that blows out the air flow adjusted in temperature toward the ceiling of the cabin, and the ceiling of the cabin.
  • a blower that supplies an air flow blown from the temperature control device to the vehicle rear side.
  • the blower includes a blower that sucks air from a suction port of the blower and blows out an air flow, and extends in the left-right direction of the vehicle, and the air flow blown from the blower is introduced into the interior, and at least a part of the outer surface thereof
  • a duct that forms a guide surface that flows along the air flow, and a slit formed in the duct, the longitudinal direction of which is the left-right direction of the vehicle, and the rear side of the vehicle along the guide surface with the air flow inside the duct
  • a blowout port that blows out toward the front.
  • the temperature control device is configured such that the blown airflow flows toward the suction port and the blowout port.
  • the air outlet formed in the duct of the blower blows an air flow toward the vehicle rear side along the guide surface on the outer side of the duct.
  • the temperature control apparatus is comprised so that the blown-out air flow may flow toward the suction inlet and blower outlet of a ventilation apparatus.
  • the blower outlet of the duct of the blower is formed to have a slit shape with the left-right direction of the vehicle as the longitudinal direction. For this reason, even if the air flow blown out from the temperature control device diffuses in the left-right direction of the vehicle, it can be reliably pulled in by the air flow blown out from the duct outlet. Therefore, it is not necessary to use a large blower for drawing the air flow blown out from the temperature control device, and the air flow whose temperature is adjusted can be sufficiently supplied to the rear side of the vehicle while the energy consumption is small. It becomes possible.
  • FIG. 4 is a cross-sectional view showing a IV-IV cross section of FIG. 3. It is the schematic diagram which looked at a part of vehicles provided with the vehicle air conditioner concerning an embodiment from the left.
  • the outline of the vehicle air conditioner 100 according to the embodiment will be described with reference to FIGS. 1 to 3.
  • the vehicle air conditioner 100 includes a blower 10 and a temperature control device 20.
  • the blower 10 is attached to the ceiling VL of the cabin VC of the vehicle VH.
  • the blower device 10 includes a blower unit 11, two ducts 12 and 12, and two flaps 14 and 14.
  • the cabin VC is provided with sheets S1, S2, and S3 in the first to third rows.
  • the blower 10 is disposed above the heads of the occupants P1, P2, P3 seated on the seats S1, S2, S3, respectively.
  • the front-rear direction, the left-right direction, and the up-down direction refer to the front-rear direction, the left-right direction, and the up-down direction when the occupants P1, P2, P3 face the forward direction of the vehicle VH, respectively.
  • the blower unit 11 is a device that generates an air flow, and includes a blower case 111, a blower 112, and a branch body 113, as shown in FIG.
  • the blower case 111 is formed in a flat shape in which the dimension in the vertical direction is smaller than the dimension in the other direction, and is arranged at the center of the cabin VC in the horizontal direction.
  • a suction port 111 a that communicates the inside and outside of the blower case 111 is formed at the front end of the blower case 111.
  • a pair of air outlets 111b and 111b communicating with the inside and outside of the fan case 111 are formed on the left and right side surfaces of the rear part of the fan case 111, respectively.
  • the blower 112 is an electric blower that generates an air flow, and is accommodated in the blower case 111.
  • the blower 112 has a centrifugal multiblade fan (not shown) inside. As this centrifugal multiblade fan rotates, the air in the cabin VC is sucked in through the suction port 111a of the blower case 111 and blown out from the blower outlet 112a of the blower 112 toward the rear side.
  • the branch body 113 is a T-shaped member extending from the front end portion to the rear side, branching left and right in the middle and extending to the rear end portion.
  • the branch body 113 is accommodated in the blower case 111, and the branch passage 113 a is defined in the blower case 111.
  • the branch body 113 has a front end connected to the air outlet 112 a of the blower 112 and a rear end connected to the pair of air outlets 111 b and 111 b of the blower case 111.
  • the airflow blown out from the blower outlet 112a of the blower 112 is introduced into the branch flow path 113a, is divided into right and left, and is supplied to the blower outlets 111b and 111b of the blower case 111.
  • the ducts 12 and 12 are provided on both the left and right sides of the blower unit 11, respectively.
  • the duct 12 is a hollow member formed so as to extend linearly in the left-right direction, and an end portion on the blower case 111 side is connected to the blower outlet 111 b of the blower case 111.
  • a slit-like air outlet 121 is formed in a portion of the lower side surface 122 of the duct 12 closer to the front. Thereby, the airflow generated by the blower 112 is introduced into the duct 12 through the blower outlet 111 b of the blower case 111 and blown out from the blower outlet 121 of the duct 12. Since the ducts 12 and 12 are formed substantially symmetrically in the left-right direction, the right duct 12 will be described below as an example.
  • the flap 14 is a plate-like member disposed on the rear side outside the duct 12. One end of the flap 14 on the duct 12 side is supported by a shaft 141 (see FIG. 4) provided in the duct. Thereby, the flap 14 is rotatable about the shaft 141 and can be stopped at an arbitrary position.
  • the temperature control device 20 is provided inside the instrument panel VP of the vehicle VH.
  • the temperature adjustment device 20 includes a temperature adjustment unit 21, a lower vent 22, and an upper vent 23.
  • the temperature control unit 21 includes a blower, an evaporator, a heater, and the like (all not shown).
  • the temperature control unit 21 sucks air when the blower operates, and blows it out as air flow to the cabin VC.
  • the evaporator and the heater are disposed on the downstream side of the blower, and cool and heat the air flow blown out from the blower. Thereby, the temperature of the air flow is adjusted so as to be an appropriate one desired by the passengers P1 to P3.
  • the temperature control unit 21 blows out the air flow whose temperature is adjusted in this way from the lower vent 22 or the upper vent 23 to the cabin VC.
  • the lower vent 22 is provided on the surface of the rear end portion of the instrument panel VP. Accordingly, the air flow that is adjusted in temperature and blown from the lower vent 22 to the cabin VC flows toward the occupant P1 as indicated by the arrow FL.
  • the upper vent 23 is provided on the upper surface of the instrument panel VP. Moreover, the upper vent 23 has a plurality of louvers 23a that are arranged at intervals in the front-rear direction. Therefore, the temperature is adjusted, and the air flow blown out from the upper vent 23 to the cabin VC passes through the plurality of louvers 23a and is blown out to the cabin VC. As indicated by an arrow FT1 in FIG. 1, the upper vent 23 blows out an air flow toward the ceiling portion VL of the cabin VC.
  • the upper vent 23 is provided in a portion of the upper surface of the instrument panel VP that is closer to the center of the cabin VC in the left-right direction. However, the air blown out from the upper vent 23 to the cabin VC diffuses in the left-right direction toward the rear side as indicated by an arrow FT2.
  • the air outlet 121 is formed in a portion of the lower surface 122 of the duct 12 below the duct internal flow path 128 and near the front end of the duct 12. .
  • the blower outlet 121 communicates the inside and outside of the duct internal flow path 128.
  • the duct 12 has a wall body 124 that is inclined downward toward the rear side and a wall body 123 that is disposed below the wall body 124 at a site near the front end.
  • the outer side surface on the front side of the wall body 123 is an inclined guide surface 123 a that is inclined downward toward the rear side and extends to the outlet 121.
  • a throttle channel 125 extending from the inlet 125a to the outlet 121 is formed.
  • the throttle channel 125 has a gradually decreasing cross-sectional area from the inlet 125 a toward the outlet 121.
  • plate-shaped ribs 127a to 127d are formed on the inclined guide surface 123a.
  • the ribs 127a to 127d are formed so as to protrude downward from the inclined guide surface 123a and to extend toward the outlet 121 in the front-rear direction.
  • the direction in which the ribs 127a to 127d extend is substantially parallel to the front-rear direction, and is set to be substantially the same as the direction of a primary air flow F1 blown out from an outlet 121 described later.
  • the ribs 127a to 127d are arranged linearly at intervals in the left-right direction. Further, as shown in FIG. 4, the ribs 127c and 127d arranged at the portion near the side edge of the cabin VC protrude larger than the ribs 127a and 127b arranged at the portion near the center of the cabin VC. It is formed as follows.
  • a plurality of guide vanes 126 are provided in the duct internal flow path 128. As shown in FIG. 3, the plurality of guide vanes 126 are provided so as to be arranged in a straight line at intervals in the left-right direction.
  • the guide vane 126 is a plate-like member having a rear end portion directed toward the blower unit 11 and a front end portion curved toward the front side and having an arc-shaped outer surface in plan view.
  • the plurality of guide vanes 126 change the flow velocity component in the left-right direction of the airflow by flowing the airflow along the arc-shaped outer surface.
  • the airflow flowing through the duct internal flow path 128 has forward and rightward flow velocity components. However, as indicated by the arrow F0 in FIG. 4, the air flow flows along the outer surface of the guide vane 126 and loses the flow velocity component in the right direction. As a result, the air flow changes into a direction substantially parallel to the front-rear direction and flows into the inlet 125a of the throttle channel 125.
  • the air flow that has flowed into the inlet 125 a flows through the throttle channel 125 toward the outlet 121, so that the flow velocity is increased. Since the air flow in the duct internal flow path 128 flows into the inlet 125a in a direction substantially parallel to the front-rear direction, it passes through the throttle flow path 125 while maintaining a direction substantially parallel to the front-rear direction due to inertia. It blows out toward the rear side. Therefore, the direction of the primary air flow F1 blown out rearward from the blower outlet 121 is substantially parallel to the front-rear direction.
  • the primary air flow F1 blown out toward the rear side from the outlet 121 first flows along the lower surface 122 of the duct 12 by the Coanda effect. Furthermore, the air flow that has passed through the lower side 122 then flows along the lower side 142 of the flap 14 by the Coanda effect. That is, the lower surface 122 of the duct 12 and the lower surface 142 of the flap 14 constitute a guide surface GS that flows along the air flow.
  • the primary air flow F1 When the primary air flow F1 is blown out from the air outlet 121, the air around the primary air flow F1 is drawn to form a secondary air flow F2. As a result, the primary air flow F1 blown out from the air outlet 121 of the duct 12 is supplied to the rear side while increasing the flow rate.
  • the primary air flow F1 and the secondary air flow F2 flow along the lower side surface 142 of the flap 14 to change the front-rear direction and are supplied to the passenger P2 or P3 of the cabin VC.
  • the air flow FT ⁇ b> 3 whose temperature is adjusted in the temperature control device 20, blown out, and flows along the ceiling portion VL flows toward the outlet 121. Therefore, this air flow FT3 is also drawn in by the primary air flow F1 blown from the blower outlet 121, and flows along the inclined guide surface 123a of the duct 12.
  • the air flow FT3 flows along the inclined guide surface 123a, it flows along the outer surfaces of the plate-like ribs 127a to 127d formed on the inclined guide surface 123a. As a result, the air flow FT3 flows in a direction substantially parallel to the front-rear direction.
  • the air outlet 121 formed in the duct 12 of the blower 10 causes the primary air flow F1 to be directed rearward along the lower side surface 122 of the duct 12. Blow out.
  • the temperature control device 20 is configured such that the blown air flow FT3 flows toward the suction port 111a and the blower port 121 of the blower device 10. Thereby, the air flow FT3 blown out after the temperature is adjusted in the temperature control device 20 is drawn in by the primary air flow F1 blown out from the blowout port 121 of the blower device 10, merges at the guide surface GS, and further on the rear side. To be supplied.
  • the air outlet 121 of the duct 12 of the blower 10 is formed to have a slit shape with the left-right direction as the longitudinal direction. For this reason, even if the air flow FT3 blown out from the temperature control device 20 diffuses in the left-right direction, it can be reliably drawn in by the primary air flow F1 blown out from the air outlet 121 of the duct 12. Therefore, it is not necessary to use a large blower for drawing the air flow FT3 blown out from the temperature control device 20, and it is possible to sufficiently supply the air flow whose temperature is adjusted to the rear side while the energy consumption is small. It becomes.
  • the temperature of the air flow blown out from the temperature control device 20 is affected by the ceiling portion VL of the cabin VC.
  • the ceiling portion VL is heated by sunlight and becomes high temperature. Therefore, even when the temperature control device 20 is blowing out a cooled air flow, the air flow may exchange heat with the ceiling portion VL when flowing along the ceiling portion VL, and the temperature may increase. Thereby, there exists a possibility that a low-temperature air flow cannot fully be supplied to the back side.
  • the vehicle air conditioner 100 solves the problem by configuring the guide surface GS of the blower device 10 with the lower side surface 122 of the duct 12. That is, heat exchange between the ceiling portion VL and the airflow can be suppressed by causing the airflow blown from the temperature control device 20 to flow along the lower side surface 122 of the duct 12 far from the ceiling portion VL. As a result, the air flow whose temperature is adjusted by the temperature control device 20 can be sufficiently supplied to the rear side while maintaining the temperature.
  • the air outlet 121 is formed in a portion near the front end of the duct 12.
  • the air flow FT3 blown out from the temperature control device 20 can be reliably drawn in by the primary air flow F1 blown out from the air outlet 121.
  • the primary air flow F1 is stably along the guide surface GS by the Coanda effect, and the air flow FT3 is further increased. It can be reliably pulled in.
  • the duct 12 has an inclined guide surface 123 a that is inclined downward toward the rear side and extends toward the outlet 121 at a site on the front side of the outlet 121.
  • the duct 12 has ribs 127a to 127c that protrude downward from the inclined guide surface 123a and extend toward the outlet 121. Thereby, the air flow blown out from the temperature control device 20 and flowing along the ceiling portion VL of the cabin VC is made to flow along the ribs 127a to 127c, and the diffusion in the left-right direction is suppressed, and the air outlet 121 is smoothly moved. It can be pulled in.
  • the duct 12 has a plurality of ribs 127a to 127d arranged at intervals in the left-right direction.
  • the ribs 127c and 127d that are disposed near the side edge of the cabin VC are formed to protrude larger than the ribs 127a and 127b that are disposed near the center of the cabin VC. .
  • a large amount of airflow can be caused to flow along the ribs 127c and 127d that protrude greatly in the portion near the side edge of the cabin VC where the airflow that flows is smaller than the portion near the center of the cabin VC.
  • the air flow FT3 blown out after the temperature is adjusted in the temperature control device 20 can be drawn into the outlet 121 in a state of being uniformly distributed in the left-right direction.
  • the duct 12 has a guide vane 126 for adjusting the direction of the primary air flow F1 blown from the blower outlet 121 inside.
  • the ribs 127a to 127d are formed so as to extend in substantially the same direction as the primary air flow F1 blown out from the blower outlet 121.
  • the air flow FT3 blown out from the temperature control device 20 and flowing along the ceiling portion VL of the cabin VC can smoothly merge with the primary air flow F1 and be sufficiently supplied to the rear side. .
  • the temperature control device 20 blows out an air flow whose temperature is adjusted from the upper vent 23 provided on the upper surface of the instrument panel VP to the cabin VC. Further, the upper vent 23 has a plurality of louvers 23a.
  • each upper end of each louver 23a is inclined rearward so as to form an angle ⁇ from the horizontal plane.
  • the air flow FC hereinafter referred to as “cold air FC”
  • the heated air flow FH hereinafter referred to as “warm air FH”
  • the air is blown out from the upper vent 23.
  • the upper vent 23 blows out the cold air FC or the hot air FH toward the front part of the ceiling VL from the blower 10.
  • the air cooled by the temperature control device 20 has a higher specific gravity than the air of the cabin VC. Therefore, when the cold wind FC is blown from the horizontal plane in the direction of the angle ⁇ , the angle from the horizontal plane gradually decreases in the direction in which the cold wind FC flows thereafter due to the difference in specific gravity with the surrounding air.
  • the cold air FC flowing in this way is set to reach the blower 10 when the flowing direction becomes substantially horizontal.
  • the air heated by the temperature control device 20 has a specific gravity smaller than that of the cabin VC. Therefore, when the hot air FH is blown from the horizontal plane in the direction of the angle ⁇ , the angle from the horizontal plane gradually increases in the direction in which the hot air FH flows thereafter due to the difference in specific gravity with the surrounding air.
  • the hot air FH flowing in this way first reaches the front part of the ceiling part VL with respect to the blower 10. Next, it is set so as to flow toward the rear side along the ceiling VL and reach the blower 10.
  • the temperature control apparatus 20 blows off an air flow toward the site

Abstract

 送風装置(10)は、吸込口(111a)から空気を吸引して空気流を吹き出す送風機(112)と、車両左右方向に延び、送風機から吹き出された空気流が内部に導入されるとともに、その外側面の少なくとも一部が空気流を沿わせて流すガイド面(GS)を構成するダクト(12)と、ダクトに形成され、車両左右方向を長手方向とするスリット状を呈し、ダクトの内部の空気流をガイド面に沿わせて車両後方側に向けて吹き出す吹出口(121)と、を有している。温調装置(20)は、吹き出した空気流が吸込口及び吹出口に向けて流れるように構成されている。

Description

車両空調装置 関連出願の相互参照
 本出願は、2014年10月7日に出願された日本特許出願2014-206148号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両のキャビンに空気流を供給する車両空調装置に関する。
 従来、車両のキャビンに設けられる車両空調装置において、温度が調整された空気流(以下、単に「冷風」又は「温風」ともいう)を車両後方側に十分に供給するために、種々の検討がなされている。
 例えば、下記特許文献1には、互いに独立して設けられる温調装置及び送風装置を備えた車両空調装置が記載されている。当該車両空調装置では、温調装置がキャビンのインストルメントパネルに設けられる一方で、送風装置はキャビンの天井部に取り付けられる。
 温調装置は、エバポレータやヒータを有しており、空気の冷却や加熱を行う。さらに、温調装置は、冷風や温風を、キャビンのインストルメントパネルに設けられた吹出口から天井部側かつ車両後方側に向けて吹き出すように構成されている。温調装置の吹出口から吹き出された冷風や温風は、キャビンの天井部に至り、さらに、天井部に沿って車両後方側へと流れる。
 送風装置は、ブロア等の送風機を有している。送風装置は、車両前方側から空気を吸引するとともに、車両後方側に向けて空気流を吹き出すように構成されている。したがって、送風装置は、温調装置から吹き出された冷風や温風を吸引し、さらに車両後方側に向けて吹き出す。
 下記特許文献1に記載の車両空調装置では、このように構成された温調装置及び送風装置を連携させて運転させる。これにより、当該車両空調装置は、冷風や温風を車両後方側に供給する。
特開2005-35423号公報
 上記特許文献1に記載の車両空調装置では、送風装置は、キャビンの天井部のうち、車両左右方向の中央寄りの部位に配置されている。一方、温調装置からキャビンに吹き出される空気流は、吹出口から吹き出された後に、車両左右方向に広範囲に拡散する。
 拡散して車両左右方向においてキャビンの両端部寄りの部位を流れる空気流は、送風装置に殆ど吸引されない。また、空気流は、拡散によってその流速が大きく低下する。したがって、温調装置によって温度が調整された空気流を、車両後方側に十分に供給することができないという課題があった。
 この課題の解決方法として、送風機の出力を大きくし、キャビンの両端部寄りの部位を流れる空気流を吸引することが考えられる。しかし、この場合、送風機が大型化して消費エネルギーが増大したり、運転時の騒音が大きくなったりするという新たな課題を招来する。
 本開示は消費エネルギーが小さいながらも、温度が調整された空気流を車両後方側に十分に供給することが可能な車両空調装置を提供することを目的とする。
 上記課題を解決するために、車両のキャビンに空気流を供給する車両空調装置は、温度を調整した空気流をキャビンの天井部に向けて吹き出す温調装置と、キャビンの天井部に取り付けられ、温調装置から吹き出された空気流を車両後方側に供給する送風装置と、を備える。送風装置は、送風装置の吸込口から空気を吸引して空気流を吹き出す送風機と、車両左右方向に延び、送風機から吹き出された空気流が内部に導入されるとともに、その外側面の少なくとも一部が空気流を沿わせて流すガイド面を構成するダクトと、ダクトに形成され、車両左右方向を長手方向とするスリット状を呈し、ダクトの内部の空気流をガイド面に沿わせて車両後方側に向けて吹き出す吹出口と、を有する。温調装置は、吹き出した空気流が吸込口及び吹出口に向けて流れるように構成されている。
 車両空調装置は、送風装置のダクトに形成された吹出口が、ダクトの外側面のガイド面に沿わせて車両後方側に向けて空気流を吹き出す。また、温調装置は、吹き出した空気流が送風装置の吸込口及び吹出口に向けて流れるように構成されている。これにより、温調装置において温度が調整されて吹き出された空気流は、送風装置の吹出口から吹き出された空気流によって引き込まれ、ガイド面において合流してさらに車両後方側に供給される。
 送風装置のダクトの吹出口は、車両左右方向を長手方向とするスリット状を呈するように形成されている。このため、温調装置から吹き出された空気流が車両左右方向に拡散しても、ダクトの吹出口から吹き出した空気流によって確実に引き込むことが可能となる。したがって、温調装置から吹き出された空気流の引き込みのために大型の送風機を用いる必要が無く、消費エネルギーが小さいながらも、温度が調整された空気流を車両後方側に十分に供給することが可能となる。
 これによれば、消費エネルギーが小さいながらも、温度が調整された空気流を車両後方側に十分に供給することが可能な車両空調装置を提供することができる。
 本開示についての上記およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
実施形態に係る車両空調装置が設けられた車両を左方から見た模式図である。 実施形態に係る車両空調装置が設けられた車両を上方から見た模式図である。 実施形態に係る車両空調装置の送風装置を下方から見た模式図である。 図3のIV-IV断面を示す断面図である。 実施形態に係る車両空調装置が設けられた車両の一部を左方から見た模式図である。
 図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
 図1乃至図3を参照しながら、実施形態に係る車両空調装置100の概略について説明する。車両空調装置100は、送風装置10と、温調装置20と、を備えている。
 送風装置10は、車両VHのキャビンVCの天井部VLに取り付けられている。送風装置10は、送風ユニット11と、2つのダクト12,12と、2つのフラップ14,14と、を有している。キャビンVCには、1列目~3列目のシートS1,S2,S3が設けられている。送風装置10は、このシートS1,S2,S3のそれぞれに着席する乗員P1,P2,P3の頭部よりも上方に配置されている。
 尚、以下の説明において、前後方向、左右方向、上下方向について説明するときは、それぞれ乗員P1,P2,P3が車両VHの前進方向を向いた場合の前後方向、左右方向、上下方向を意味するものとする。
 送風ユニット11は、空気流を発生させる装置であり、図3に示されるように、送風機ケース111と、送風機112と、分岐体113と、を有している。
 送風機ケース111は、上下方向の寸法が他方向の寸法に比べて小さい扁平形状に形成されており、左右方向においてキャビンVCの中央部に配置されている。送風機ケース111の前端部には、送風機ケース111の内外を連通する吸込口111aが形成されている。また、送風機ケース111の後部の左右両側面には、送風機ケース111の内外を連通する一対の吹出口111b,111bがそれぞれ形成されている。
 送風機112は、空気流を発生させる電動送風機であり、送風機ケース111に収容されている。送風機112は、その内部に遠心式多翼ファン(不図示)を有している。この遠心式多翼ファンが回転することにより、キャビンVCの空気が送風機ケース111の吸込口111aを介して吸い込まれ、送風機112の吹出口112aから後方側に向けて吹き出される。
 分岐体113は、前端部から後方側に延び、途中で左右に分岐して後端部まで延びるT字状の部材である。分岐体113は、送風機ケース111に収容されており、送風機ケース111の内部において分岐流路113aを区画形成している。分岐体113は、前端部が送風機112の吹出口112aに接続されており、後端部が送風機ケース111の一対の吹出口111b,111bに接続されている。これにより、送風機112の吹出口112aから吹き出された空気流は、分岐流路113aに導入されて左右に分流し、送風機ケース111の吹出口111b,111bに供給される。
 ダクト12,12は、送風ユニット11の左右両側にそれぞれ設けられている。ダクト12は、左右方向に直線状に延びるように形成された中空の部材であり、送風機ケース111側の端部が送風機ケース111の吹出口111bに接続されている。ダクト12の下側面122のうち前方寄りの部位には、スリット状の吹出口121が形成されている。これにより、送風機112が発生させた空気流は、送風機ケース111の吹出口111bを介してダクト12の内部に導入され、ダクト12の吹出口121から吹き出される。尚、ダクト12,12は、左右方向に略対称に形成されているため、以下、右側のダクト12を例にとって説明する。
 フラップ14は、ダクト12の外部の後方側に配置されている板状の部材である。フラップ14は、そのダクト12側の一端部が、ダクトに設けられた軸141(図4参照)によって支持されている。これにより、フラップ14は軸141を中心として回動自在で、任意の位置で静止することが可能とされている。
 図1に示されるように、温調装置20は、車両VHのインストルメンタルパネルVPの内部に設けられている。温調装置20は、温調ユニット21と、ロアベント22と、アッパーベント23と、を有している。
 温調ユニット21は、送風機、エバポレータ、ヒータ等を有している(いずれも不図示)。温調ユニット21は、その送風機が運転することにより空気を吸引するとともに、キャビンVCに空気流として吹き出す。エバポレータやヒータは、送風機の下流側に配置されており、送風機から吹き出された空気流の冷却や加熱を行う。これにより、空気流の温度が、乗員P1~P3が所望する適切なものとなるように調整される。
 温調ユニット21は、このようにして温度が調整された空気流を、ロアベント22やアッパーベント23からキャビンVCに吹き出す。
 図1に示されるように、ロアベント22は、インストルメンタルパネルVPの後端部の面に設けられている。したがって、温度が調整され、ロアベント22からキャビンVCに吹き出される空気流は、矢印FLで示されるように乗員P1側に向けて流れる。
 図1に示されるように、アッパーベント23は、インストルメンタルパネルVPの上面に設けられている。また、アッパーベント23は、前後方向に互いに間隔を空けて配置される複数のルーバー23aを有している。したがって、温度が調整され、アッパーベント23からキャビンVCに吹き出される空気流は、複数のルーバー23aの間を通過してキャビンVCに吹き出される。図1に矢印FT1で示されるように、アッパーベント23は、キャビンVCの天井部VLに向けて空気流を吹き出す。
 図2に示されるように、アッパーベント23は、インストルメンタルパネルVPの上面のうち、左右方向においてキャビンVCの中央部寄りの部位に設けられている。しかしながら、アッパーベント23からキャビンVCに吹き出された空気は、矢印FT2で示されるように、後方側にかけて左右方向に拡散する。
 続いて、図3及び図4を参照しながら、送風装置10の構成について詳述するとともに、車両空調装置100による空気流の制御について説明する。
 図4に示されるように、吹出口121は、ダクト12の下側面122のうち、ダクト内流路128の下方の部位であって、かつ、ダクト12の前端部寄りの部位に形成されている。吹出口121は、ダクト内流路128の内外を連通している。
 ダクト12は、その前端部寄りの部位に、後方側に向かって下方に傾斜する壁体124と、壁体124の下方に配置される壁体123と、を有している。壁体123の前方側の外側面は、後方側に向かって下方に傾斜するとともに、吹出口121まで延びる傾斜ガイド面123aとなっている。
 このような壁体124と壁体123との間の隙間に、入口125aから吹出口121まで延びる絞り流路125が形成されている。絞り流路125は、入口125aから吹出口121に向けて断面積が漸次小さくなっている。
 また、傾斜ガイド面123aには、板状のリブ127a~127dが形成されている。このリブ127a~127dは、傾斜ガイド面123aから下方に向かって突出するとともに、前後方向で吹出口121に向かって延びるように形成されている。このリブ127a~127dが延びる向きは、前後方向に略平行な向きであって、後述する吹出口121から吹き出される一次空気流F1の向きと略同一となるように設定されている。
 図3に示されるように、リブ127a~127dは、左右方向に互いに間隔を空けて直線状に配置されている。また、図4に示されるように、キャビンVCの側端部寄りの部位に配置されるリブ127c,127dは、キャビンVCの中央部寄りの部位に配置されるリブ127a,127bよりも大きく突出するように形成されている。
 ダクト内流路128には、複数のガイドベーン126が設けられている。図3に示されるように、複数のガイドベーン126は、左右方向に互いに間隔を空けて直線状に並ぶように設けられている。ガイドベーン126は、その後端部を送風ユニット11側に向けるとともに、前端部を前方側に向けるように湾曲し、平面視で円弧状の外側面を有する板状部材である。複数のガイドベーン126は、空気流をその円弧状の外側面に沿わせて流すことで、空気流の左右方向の流速成分を変化させる。
 ダクト内流路128を流れる空気流は、前方向及び右方向の流速成分を有している。しかし、図4に矢印F0で示すように、空気流は、ガイドベーン126の外側面に沿って流れることにより、右方向の流速成分を失う。これにより、空気流は、その向きを前後方向に略平行な方向に変えて、絞り流路125の入口125aに流入する。
 入口125aに流入した空気流は、絞り流路125を吹出口121に向かって流れることで、その流速が高められる。ダクト内流路128の空気流は、前後方向に略平行な向きに入口125aに流入することから、慣性により、前後方向に略平行な向きのまま絞り流路125を通過し、吹出口121から後方側に向けて吹き出される。したがって、吹出口121から後方側に吹き出される一次空気流F1の向きは、前後方向に略平行なものとなる。
 吹出口121から後方側に向けて吹き出された一次空気流F1は、まず、コアンダ効果によってダクト12の下側面122に沿って流れる。さらに、下側面122を通過した空気流は、次に、コアンダ効果によってフラップ14の下側面142に沿って流れる。すなわち、ダクト12の下側面122とフラップ14の下側面142とは、いずれも空気流を沿わせて流すガイド面GSを構成している。
 吹出口121から一次空気流F1が吹き出されると、一次空気流F1の周囲の空気が引き込まれて二次空気流F2が形成される。この結果、ダクト12の吹出口121から吹き出された一次空気流F1は、その流量が増大しながら後方側へと供給される。一次空気流F1及び二次空気流F2は、フラップ14の下側面142に沿って流れることで、その前後方向の向きが変更され、キャビンVCの乗員P2あるいはP3に対して供給される。
 また、図4に示されるように、温調装置20において温度を調整され、吹き出されて天井部VLに沿って流れる空気流FT3は、吹出口121に向けて流れている。したがって、この空気流FT3も、吹出口121から吹き出される一次空気流F1によって引き込まれ、ダクト12の傾斜ガイド面123aに沿って流れる。
 さらに、空気流FT3が傾斜ガイド面123aに沿って流れる際、傾斜ガイド面123aに形成された板状のリブ127a~127dの外側面に沿って流れる。これにより、空気流FT3は、前後方向に略平行な向きに流れるようになる。
 傾斜ガイド面123aを通過し、吹出口121に到達した空気流FT3は、一次空気流F1及び二次空気流F2と合流し、後方側へと流れる。この結果、温調装置20において温度を調整された空気流が、さらに後方側に供給されることになる。
 以上のように、実施形態に係る車両空調装置100は、送風装置10のダクト12に形成された吹出口121が、ダクト12の下側面122に沿わせて後方側に向けて一次空気流F1を吹き出す。また、温調装置20は、吹き出した空気流FT3が送風装置10の吸込口111a及び吹出口121に向けて流れるように構成されている。これにより、温調装置20において温度が調整されて吹き出された空気流FT3は、送風装置10の吹出口121から吹き出された一次空気流F1によって引き込まれ、ガイド面GSにおいて合流してさらに後方側に供給される。
 送風装置10のダクト12の吹出口121は、左右方向を長手方向とするスリット状を呈するように形成されている。このため、温調装置20から吹き出された空気流FT3が左右方向に拡散しても、ダクト12の吹出口121から吹き出した一次空気流F1によって確実に引き込むことが可能となる。したがって、温調装置20から吹き出された空気流FT3の引き込みに大型の送風機を用いる必要が無く、消費エネルギーが小さいながらも、温度が調整された空気流を後方側に十分に供給することが可能となる。
 ところで、温調装置20から吹き出された空気流の温度は、キャビンVCの天井部VLの影響を受ける。例えば、夏季には、天井部VLは太陽光によって加熱されて高温となる。したがって、温調装置20が冷却された空気流を吹き出している場合でも、当該空気流は天井部VLに沿って流れる際に天井部VLと熱交換し、温度が上昇してしまうおそれがある。これにより、低温の空気流を、後方側に十分に供給できなくなるおそれがある。
 これに対し、本実施形態に係る車両空調装置100は、送風装置10のガイド面GSを、ダクト12の下側面122によって構成することで、その課題を解消している。すなわち、温調装置20から吹き出された空気流を、天井部VLから遠いダクト12の下側面122に沿って流すことで、天井部VLと空気流との熱交換を抑制することができる。これにより、温調装置20によって温度が調整された空気流を、その温度を維持したまま、後方側に十分に供給することが可能となる。
 また、吹出口121は、ダクト12の前端部寄りの部位に形成されている。これにより、温調装置20から吹き出されて流れてくる空気流FT3を、吹出口121が吹き出す一次空気流F1によって確実に引き込むことが可能となる。また、吹出口121よりも後方側に、広範囲にわたるガイド面GSを構成することが可能となり、その結果、コアンダ効果によって一次空気流F1をガイド面GSに安定的に沿わせ、空気流FT3をより確実に引き込むことが可能となる。
 また、ダクト12は、吹出口121よりも前方側の部位に、後方側に向かって下方に傾斜するとともに吹出口121に向かって延びる傾斜ガイド面123aを有している。これにより、温調装置20から吹き出され、キャビンVCの天井部VLに沿って流れてくる空気流を傾斜ガイド面123aに沿って流し、吹出口121までスムーズに引き込むことが可能となる。
 また、ダクト12は、傾斜ガイド面123aから下方に向かって突出するとともに吹出口121に向かって延びるように形成されたリブ127a~127cを有している。これにより、温調装置20から吹き出され、キャビンVCの天井部VLに沿って流れてくる空気流をリブ127a~127cに沿って流し、左右方向の拡散を抑制しながら、吹出口121までスムーズに引き込むことが可能となる。
 また、ダクト12は、左右方向に互いに間隔を空けて配置された複数のリブ127a~127dを有している。左右方向において、キャビンVCの側端部寄りの部位に配置されるリブ127c,127dは、キャビンVCの中央部寄りの部位に配置されるリブ127a,127bよりも大きく突出するように形成されている。これにより、キャビンVCの中央部寄りの部位に比べて流れる空気流が少ないキャビンVCの側端部寄りの部位において、大きく突出したリブ127c,127dによって多くの空気流を沿わせて流すことができる。これにより、温調装置20において温度が調整されて吹き出された空気流FT3を、左右方向に均一に分布させた状態で、吹出口121まで引き込むことが可能となる。
 また、ダクト12は、吹出口121から吹き出される一次空気流F1の向きを調整するガイドベーン126を内部に有している。そして、リブ127a~127dは、吹出口121から吹き出される一次空気流F1と略同一の向きに延びるように形成されている。これにより、温調装置20から吹き出され、キャビンVCの天井部VLに沿って流れてくる空気流FT3を、一次空気流F1にスムーズに合流させ、後方側に十分に供給することが可能となる。
 続いて、図5を参照しながら、温調装置20が空気流を吹き出す向きについて詳述する。
 前述したように、温調装置20は、インストルメンタルパネルVPの上面に設けられたアッパーベント23から、温度を調整された空気流をキャビンVCに吹き出す。また、アッパーベント23は、複数のルーバー23aを有している。
 各ルーバー23aは、水平面から角度θを成すように、その上端部が後方側に傾斜している。このため、温調装置20において冷却された空気流FC(以下、「冷風FC」という)、及び、加熱された空気流FH(以下、「温風FH」という)は、水平面から角度θの方向に向けて、アッパーベント23から吹き出される。アッパーベント23は、天井部VLのうち、送風装置10よりも前方側の部位に向けて冷風FCあるいは温風FHを吹き出す。
 夏季など、キャビンVCの温度が比較的高い状態では、温調装置20によって冷却された空気は、キャビンVCの空気よりも比重が大きくなる。したがって、冷風FCが水平面から角度θの方向に吹き出されると、周囲の空気との比重の差のため、その後に冷風FCが流れる方向は、徐々に水平面からの角度が小さくなる。このようにして流れる冷風FCは、流れる方向が略水平方向になったところで送風装置10に到達するように設定されている。
 一方、冬季など、キャビンVCの温度が比較的低い状態では、温調装置20によって加熱された空気は、キャビンVCの空気よりも比重が小さくなる。したがって、温風FHが水平面から角度θの方向に吹き出されると、周囲の空気との比重の差のため、その後に温風FHが流れる方向は、徐々に水平面からの角度が大きくなる。このようにして流れる温風FHは、まず、天井部VLのうち、送風装置10よりも前方側の部位に到達する。次に、天井部VLに沿って後方側に向かって流れ、送風装置10に到達するように設定されている。
 以上のように、本実施形態に係る車両空調装置100は、温調装置20は、天井部VLの送風装置10よりも前方側の部位に向けて空気流を吹き出す。これにより、温調装置20が冷風FC及び温風FHのいずれを吹き出す場合でも、それらを確実に送風装置10に到達させ、後方側に十分に供給することが可能となる。
 以上、具体例を参照しつつ実施の形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本開示の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。また、前述した各実施の形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本開示の範囲に包含される。

 

Claims (8)

  1.  車両(VH)のキャビン(VC)に空気流を供給する車両空調装置(100)であって、
     温度を調整した空気流を前記キャビンの天井部(VL)に向けて吹き出す温調装置(20)と、
     前記キャビンの天井部(VL)に取り付けられ、前記温調装置から吹き出された空気流を車両後方側に供給する送風装置(10)と、を備え、
     前記送風装置は、
      前記送風装置の吸込口(111a)から空気を吸引して空気流を吹き出す送風機(112)と、
      車両左右方向に延び、前記送風機から吹き出された空気流が内部に導入されるとともに、その外側面の少なくとも一部が空気流を沿わせて流すガイド面(GS)を構成するダクト(12)と、
      前記ダクトに形成され、車両左右方向を長手方向とするスリット状を呈し、前記ダクトの内部の空気流を前記ガイド面に沿わせて車両後方側に向けて吹き出す吹出口(121)と、を有し、
     前記温調装置は、吹き出した空気流が前記吸込口及び前記吹出口に向けて流れるように構成されている車両空調装置。
  2.  前記ガイド面は、前記ダクトの下側面(122)によって構成されている請求項1に記載の車両空調装置。
  3.  前記吹出口は、前記ダクトの前端部寄りの部位に形成されている請求項2に記載の車両空調装置。
  4.  前記ダクトは、前記吹出口よりも車両前方側の部位に、車両後方側に向かって下方に傾斜するとともに前記吹出口に向かって延びる傾斜ガイド面(123a)を有している請求項2又は3に記載の車両空調装置。
  5.  前記ダクトは、前記傾斜ガイド面から下方に向かって突出するとともに前記吹出口に向かって延びるように形成されたリブ(127a~127d)を有している請求項4に記載の車両空調装置。
  6.  前記ダクトは、車両左右方向に互いに間隔を空けて配置された複数の前記リブ(127a~127d)を有し、
     車両左右方向において、前記キャビンの側端部寄りの部位に配置される前記リブ(127c,127d)は、前記キャビンの中央部寄りの部位に配置される前記リブ(127a,127b)よりも大きく突出するように形成されている請求項5に記載の車両空調装置。
  7.  前記ダクトは、前記吹出口から吹き出される空気流の向きを調整するガイドベーン(126)を内部に有し、
     前記リブは、前記吹出口から吹き出される空気流と略同一の向きに延びるように形成されていることを特徴とする請求項6に記載の車両空調装置。
  8.  前記温調装置は、前記天井部の前記送風装置よりも車両前方側の部位に向けて空気流を吹き出す請求項3に記載の車両空調装置。

     
PCT/JP2015/004826 2014-10-07 2015-09-23 車両空調装置 WO2016056186A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014206148A JP6358028B2 (ja) 2014-10-07 2014-10-07 車両空調装置
JP2014-206148 2014-10-07

Publications (1)

Publication Number Publication Date
WO2016056186A1 true WO2016056186A1 (ja) 2016-04-14

Family

ID=55652824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004826 WO2016056186A1 (ja) 2014-10-07 2015-09-23 車両空調装置

Country Status (2)

Country Link
JP (1) JP6358028B2 (ja)
WO (1) WO2016056186A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547684B2 (ja) * 2016-05-30 2019-07-24 株式会社デンソー 車載用サーキュレータ
JP6569599B2 (ja) * 2016-05-30 2019-09-04 株式会社デンソー 車載用サーキュレータ
JP2020075598A (ja) * 2018-11-07 2020-05-21 三菱自動車工業株式会社 車両用サーキュレータ
JP7294580B2 (ja) * 2020-11-26 2023-06-20 ダイハツ工業株式会社 車両用空調機の吹出構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145172A1 (ja) * 2012-03-28 2013-10-03 トヨタ自動車株式会社 車両用空調装置
JP2014083919A (ja) * 2012-10-22 2014-05-12 Denso Corp 空調装置
JP2014139066A (ja) * 2012-12-20 2014-07-31 Denso Corp 車両用送風装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019270A (ja) * 2012-07-17 2014-02-03 Toyota Motor Corp 車両用空調装置
JP6544165B2 (ja) * 2014-10-02 2019-07-17 株式会社デンソー 送風装置
JP6536307B2 (ja) * 2014-10-02 2019-07-03 株式会社デンソー 送風装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145172A1 (ja) * 2012-03-28 2013-10-03 トヨタ自動車株式会社 車両用空調装置
JP2014083919A (ja) * 2012-10-22 2014-05-12 Denso Corp 空調装置
JP2014139066A (ja) * 2012-12-20 2014-07-31 Denso Corp 車両用送風装置

Also Published As

Publication number Publication date
JP6358028B2 (ja) 2018-07-18
JP2016074310A (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2014162670A1 (ja) 空気吹出装置
US20170008372A1 (en) Air-blowing device
JP5972736B2 (ja) 車両用空気調和装置
WO2016056186A1 (ja) 車両空調装置
US20170129312A1 (en) Air blowing device
JP2015164837A (ja) 車両用空気調和装置
JP2009286286A (ja) 車両用空調装置
JP6428004B2 (ja) 送風装置
WO2012077670A1 (ja) 車両用空気調和システム
JP6627976B2 (ja) 車両用空調装置
JP5163282B2 (ja) デフロスタノズル構造
JP6544165B2 (ja) 送風装置
JP2007331743A (ja) デフロスタ用送風ダクト
JP5640928B2 (ja) 空力音低減装置
WO2014155805A1 (ja) 車両用空気調和システム
JP2017149305A (ja) 車両用空気吹き出し装置
JP6565739B2 (ja) 車両用空気吹き出し装置
JP6481631B2 (ja) 車両用空気吹き出し装置
JP6415189B2 (ja) 風向制御構造
JP2014196028A (ja) 車両用空気調和システム
WO2016051754A1 (ja) 送風装置
JP2013132925A (ja) 車両用空気調和システムの吸込口装置
JP6235271B2 (ja) 車両用空調ユニット
JP6547684B2 (ja) 車載用サーキュレータ
WO2017208611A1 (ja) 車載用サーキュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848325

Country of ref document: EP

Kind code of ref document: A1