WO2016052225A1 - Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board - Google Patents

Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board Download PDF

Info

Publication number
WO2016052225A1
WO2016052225A1 PCT/JP2015/076441 JP2015076441W WO2016052225A1 WO 2016052225 A1 WO2016052225 A1 WO 2016052225A1 JP 2015076441 W JP2015076441 W JP 2015076441W WO 2016052225 A1 WO2016052225 A1 WO 2016052225A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
printed wiring
wiring board
shield
opening
Prior art date
Application number
PCT/JP2015/076441
Other languages
French (fr)
Japanese (ja)
Inventor
白髪 潤
村川 昭
亘 冨士川
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2016523342A priority Critical patent/JP5975195B1/en
Publication of WO2016052225A1 publication Critical patent/WO2016052225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a shield film used for a printed wiring board, a shield printed wiring board using the shield film, and a manufacturing method thereof.
  • the signal transmission path of the printed wiring board is also considered to be shielded in order to reduce the influence on the other parts due to the noise generated by itself and not to be affected by the noise generated from the other parts.
  • a method for forming the shield for example, in a printed wiring board having a signal wiring and a ground wiring on an insulating substrate, a metal thin film layer having a high conductivity and a high electromagnetic wave shielding effect as a shielding material on the signal wiring cover layer And a shielded printed wiring board having a structure in which the ground wiring of the printed wiring board and the metal thin film layer are conducted through a conductive adhesive has been proposed (for example, see Patent Document 1).
  • the above-mentioned shielded printed wiring board can solve the problem of noise countermeasures inside the equipment, but the means for matching the impedance with other equipment to be connected by controlling the impedance of the printed wiring board is a signal wiring pattern.
  • the problem can be solved only by narrowing the width, and the degree of freedom of the pattern of the signal wiring is limited.
  • an electromagnetic wave shielding sheet used for a wiring board having signal wiring contains a thermosetting resin composition having a glass transition temperature of 0 to 150 ° C., and can flow under conditions of a temperature of 150 ° C. and a pressure of 1 kg / cm 2.
  • An electromagnetic wave shielding sheet having a bonding layer having insulation and a conductive layer provided on one surface of the bonding layer and having a plurality of openings has been proposed (for example, see Patent Document 2).
  • the impedance of the printed wiring board is adjusted by providing an opening in the conductive layer and directly connecting to the ground wiring of the printed wiring board through a through hole provided in the printed wiring board.
  • the impedance can be adjusted by appropriately setting the shape and the opening ratio of the opening of the electromagnetic wave shielding sheet, but the opening ratio is as high as 40% or more. In such a case, there is a problem that the performance of shielding electromagnetic waves is greatly reduced.
  • the conductive layer of the electromagnetic wave shielding sheet and the ground wiring of the printed wiring board are directly connected, so the hardness of the conductive layer, the line width of the pattern, the printed wiring
  • the connection reliability is insufficient.
  • the line width of the pattern of the conductive layer of the electromagnetic wave shielding sheet is made thicker than the ground wiring of the printed wiring board, it becomes difficult to connect the conductive layer and the ground wiring. Since the adhesion area of the layer becomes very small, there is a problem that connection reliability becomes insufficient.
  • the connection reliability is insufficient.
  • the insulating protective layer of the printed wiring board is thick, the height of the through hole provided on the ground wiring also increases, and if the conductive layer of the electromagnetic wave shield sheet is not flexible, the conductive layer is disconnected at the step of the through hole. There was also a problem to do.
  • an impedance control shield film including an impedance control film having an open metal layer and having a shield layer on the surface opposite to the open metal layer has been proposed (see, for example, Patent Document 3).
  • this impedance control shield film the impedance of the printed wiring board is adjusted by the opening metal layer, and unnecessary radiation that cannot be shielded by the opening metal layer is shielded by the shield layer that is a non-opening metal layer. Can be compatible.
  • the printed wiring board using the impedance control shield film described above requires two layers, an open metal layer and a non-open metal layer (shield layer), and the shield film as a whole becomes thick. There is a problem that it is difficult to meet the demand for thinner printed wiring boards.
  • the present inventors have established a conductive adhesive layer, a patterned copper plating layer on a printed wiring board provided with a signal wiring, a ground wiring, and an insulating protective layer,
  • a shield film composed of a patterned conductive ink layer and insulating protective layer
  • the impedance of the printed wiring board can be controlled without reducing the pattern width of the signal wiring, and high electromagnetic waves can be used as a noise countermeasure.
  • a thin shield film that has shielding properties and can reduce the thickness of the printed wiring board is obtained.
  • Excellent connection reliability between the shield film and the ground wiring of the printed wiring board, and freedom of design in impedance control The present invention has been completed by finding that a shield printed wiring board having a high thickness can be obtained.
  • the present invention is a shield film for a printed wiring board in which signal wiring, ground wiring, and a first insulating protective layer are provided on a base insulating base material, A conductive adhesive layer laminated on the entire surface of the first insulating protective layer; A copper plating layer patterned with a film thickness of 0.5 to 20 ⁇ m and an aperture ratio of 40 to 95% on the conductive adhesive layer; A layer (A-1) formed using a conductive ink on the copper plating layer; A layer (A-2) formed using a conductive ink inside the opening of the copper plating layer on the conductive adhesive layer; A shield film comprising the conductive adhesive layer, the copper plating layer, the layer (A-1), and a second insulating protective layer on the layer (A-2), and the shield film
  • the present invention relates to a shield printed wiring board. Moreover, it is related with the manufacturing method of the said shield film and a shield printed wiring board.
  • the shield film and shield printed wiring board of the present invention are related to the impedance control required for a printed wiring board used at a high frequency, and are not controlled only by the pattern width of the signal wiring, but the copper plating layer pattern on the shield film side.
  • the aperture ratio one factor of impedance control, impedance matching can be achieved while maintaining the freedom of the line width of the signal wiring. Therefore, for example, it can be suitably used as a shield printed wiring board used inside an electronic device such as a mobile phone, a notebook computer, a smartphone, a tablet terminal, a wearable device, a digital still camera, and a digital video camera.
  • the shield film of the present invention can be made thin, it can cope with the thinning of smartphones and tablet terminals that have been progressing in recent years.
  • FIG. 1 is a cross-sectional view of a shielded printed wiring board according to the present invention.
  • FIG. 2 is a cross-sectional view of the shield printed wiring board of the present invention, in which a polymer layer is provided between a second insulating protective layer and a layer formed using conductive ink.
  • FIG. 3 is a cross-sectional view of the shield printed wiring board of the present invention, in which a polymer layer is provided between the second insulating protective layer and a layer formed using conductive ink, and the layer is formed using conductive ink.
  • An electroless copper plating layer is provided on the surface opposite to the surface in contact with the polymer layer.
  • FIG. 4 is a plan view of a pattern of a copper plating layer and a pattern of a conductive ink layer or an electroless copper plating layer as viewed from the conductive adhesive layer side of the shield printed wiring board of the present invention.
  • FIG. 5 is a perspective view of a pattern of a copper plating layer and a pattern of a conductive ink layer or an electroless copper plating layer as seen from the conductive adhesive layer side of the shield printed wiring board of the present invention.
  • FIG. 6 is a plan view of a pattern printed with conductive ink when the shield printed wiring board of the present invention was produced in Example 1.
  • the shield film of the present invention is a shield film for a printed wiring board in which a signal wiring, a ground wiring, and a first insulating protective layer are provided on a base insulating base material, A conductive adhesive layer laminated on the entire surface of the first insulating protective layer; A copper plating layer patterned with a film thickness of 0.5 to 20 ⁇ m and an aperture ratio of 40 to 95% on the conductive adhesive layer; A layer (A-1) formed using a conductive ink on the copper plating layer; A layer (A-2) formed using a conductive ink inside the opening of the copper plating layer on the conductive adhesive layer; A second insulating protective layer is provided on the conductive adhesive layer, the copper plating layer, the layer (A-1), and the layer (A-2).
  • the base insulating base material is a base material for a printed wiring board.
  • the material of the base insulating base material include, for example, polyester resins such as polyimide, polyamideimide, polyamide, and polyethylene terephthalate, polyethylene naphthalate, polycarbonate, ABS (acrylonitrile-butadiene-styrene) resin, acrylic resin such as polymethyl methacrylate, Fluorine resin such as phenol resin, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, LCP (liquid crystal polymer), PEEK (polyether ether ketone) resin, PEI (polyether imide) resin , PPS (polyphenylene sulfide) resin, PSF (polysulfone) resin, PES (polyethersulfone) resin, polyarylate resin, PBT ( Ribbylene terephthalate)
  • the base insulating base material for example, a base material made of synthetic fibers such as polyester fiber, polyamide fiber, and aramid fiber; natural fibers such as cotton and hemp can be used.
  • the fibers may be processed in advance.
  • the base insulating substrate it is preferable to use a flexible and flexible support when the shield printed wiring board of the present invention to be described later is used for applications that require bending flexibility. Specifically, it is preferable to use a film or sheet-like support.
  • Examples of the film or sheet-like base insulating base material include a polyethylene terephthalate film, a polyimide film, a polyethylene naphthalate film, and a liquid crystal polymer (LCP) film.
  • the base insulating base material improves the adhesion with signal wiring and ground wiring, which will be described later, so that the surface is roughened by sandblasting, solvent treatment, etc. (Corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet ray / electron beam irradiation treatment, oxidation treatment, etc. can be used.
  • the thickness of the film or sheet support is preferably about 1 to 5,000 ⁇ m, and preferably about 1 to 300 ⁇ m. It is more preferable that When the conductive pattern of the present invention is used for a flexible printed circuit board or the like that requires flexibility, it is preferable to use a film-like film having a thickness of about 1 to 200 ⁇ m as the base insulating base material. .
  • a commercially available copper-clad base material can be used in order to form signal wiring and ground wiring described later.
  • copper other than a wiring part can be removed by an etching process to form a wiring pattern.
  • the signal wiring and ground wiring can be made of the above-described copper-based wiring, and may be composed of other conductive materials, for example, by printing conductive ink mainly composed of silver. It is also possible to use the formed wiring pattern. Further, the conductive ink pattern can be made into a wiring by thickening it by copper plating, nickel plating or the like.
  • the shield printed wiring board of the present invention is provided with a first insulating protective layer on the signal wiring and the ground wiring.
  • the first insulating protective layer include a polyimide film or the like coated with an adhesive, a photosensitive coverlay film or the like having a photosensitivity and capable of forming a pattern by exposure and development, a liquid coverlay.
  • an insulating protective layer can be formed by applying a liquid material such as a photosensitive liquid coverlay or a solder resist.
  • the shield film of the present invention comprises a conductive adhesive layer laminated on the entire surface of the first insulating protective layer, a film thickness of 0.5 to 20 ⁇ m, and an aperture ratio of 40 to 95 on the conductive adhesive layer.
  • a copper plating layer patterned with%, a layer (A-1) formed using a conductive ink on the copper plating layer, and an opening inside the copper plating layer on the conductive adhesive layer,
  • a shield film comprising a layer (A-2) formed using a conductive ink and a second insulating protective layer.
  • the conductive adhesive layer is made of an adhesive resin containing a conductive substance.
  • the conductive substance include metal plating such as copper, silver, nickel, and aluminum, metal whiskers, and silver plating on copper powder.
  • These conductive materials can be used alone or in combination of two or more.
  • the adhesive resin includes styrene resin, vinyl acetate resin, polyester resin, polyolefin resin such as polyethylene and polypropylene, amide resin, amideimide resin, styrene-butadiene resin, acrylonitrile-butadiene resin, (meth) acryl-butadiene resin, (meth )
  • Thermoplastic resins such as acrylic resins and urethane resins; Thermosetting resins such as phenol resins, epoxy resins, melamine resins, and alkyd resins; UV curable resins such as urethane acrylates, epoxy acrylates, and acrylic acrylates.
  • These adhesive resins can be used alone or in combination of two or more.
  • the shield film of the present invention has a copper plating layer patterned with a film thickness of 0.5 to 20 ⁇ m and an aperture ratio of 40 to 95% on the conductive adhesive layer.
  • the pattern of the copper plating layer is not particularly limited, but can be appropriately selected according to required shielding properties, impedance to be controlled, and the like.
  • the specific pattern of the copper plating layer is preferably a mesh pattern, and the shape of the opening is a triangle such as a regular triangle, an isosceles triangle, a right triangle; a square, a rectangle, a rhombus, a parallelogram, a trapezoid, and the like.
  • n-gons (n is an integer greater than or equal to 5); circles, ellipses, stars, etc. Examples include geometric figures. It is preferable that the openings are arranged at equal intervals because of excellent shielding properties against electromagnetic waves. Further, the aperture ratio of the pattern is preferably in the range of 40 to 95%. The aperture ratio is an important factor in controlling the impedance of the shield printed wiring board. When the aperture ratio is less than 40%, the impedance can be controlled without adjusting the line width of the signal wiring of the shield printed wiring board.
  • the aperture ratio in this invention is an aperture ratio when the part which does not have a copper plating layer in the said copper plating layer is made into an opening part.
  • the layer (A-2) formed using the conductive ink located inside the opening of the copper plating layer is referred to as a non-opening portion inside the opening, and may be referred to as an opening internal pattern.
  • the film thickness of the copper plating layer is in the range of 0.5 to 20 ⁇ m.
  • the impedance of the signal line of the shield printed wiring board can be set to a desired value, and the capacitance can be reduced to prevent the waveform from being blunted.
  • the thickness of the copper plating layer exceeds 20 ⁇ m, it becomes difficult to satisfy the requirement of thinning the shield printed wiring board itself, and the flexibility is greatly reduced when used as a flexible printed wiring board.
  • the thickness of the copper plating layer is preferably in the range of 0.5 to 8 ⁇ m.
  • Examples of the method of forming the copper plating layer include a method of removing the pattern of the opening from the copper foil by etching, but this method has a problem that the manufacturing method is complicated and the copper plating layer is difficult to be thinned. . Therefore, in the present invention, the copper plating layer can be easily patterned with a desired aperture ratio, and the degree of freedom in design in controlling the impedance is increased. Therefore, a layer formed using a conductive ink described later. After producing the pattern in (A-1), the copper plating layer is formed thereon.
  • the conductive ink is used for producing a pattern as a base of a copper plating layer as described above, and is excellent in adhesion to a copper plating layer formed on the copper plating layer and plating deposition at the time of copper plating. Therefore, those containing metal nanoparticles as the conductive substance (a2) are preferable. Furthermore, since the said metal nanoparticle is excellent in adhesiveness with the 2nd insulating protective layer mentioned later, it is preferable that it is the metal nanoparticle disperse
  • the polymer dispersant is preferably a polymer having a functional group coordinated to the metal nanoparticles.
  • the functional group include a carboxyl group, an amino group, a cyano group, an acetoacetoxy group, a phosphorus atom-containing group, a thiol group, a thiocyanato group, and a glycinato group.
  • the metal nanoparticles include a transition metal or a compound thereof, and an ionic transition metal is preferable among the transition metals.
  • the ionic transition metal include metals such as copper, silver, gold, nickel, palladium, platinum, and cobalt, and composites of these metals. These metal nanoparticles can be used alone or in combination of two or more. Among these metal nanoparticles, silver nanoparticles are preferable from the viewpoints of handling problems such as oxidative degradation and cost.
  • the conductive substance (a2) contained in the conductive ink can use a plating nucleating agent in place of the metal nanoparticles.
  • a plating nucleating agent in place of the metal nanoparticles.
  • an oxide of the transition metal, a metal whose surface is coated with an organic substance, or the like can be used.
  • These plating nucleating agents can be used alone or in combination of two or more.
  • the transition metal oxide is usually in an inactive (insulating) state.
  • the metal is exposed by treatment with a reducing agent such as dimethylaminoborane to impart activity (conductivity). be able to.
  • examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. These are usually in an inactive (insulating) state. However, for example, by removing the organic substance using a laser or the like, the metal can be exposed to impart activity (conductivity).
  • the conductive substance (a2) is preferably in the form of particles having an average particle diameter of about 1 to 100 nm, preferably having an average particle diameter of 1 to 50 nm. Compared to the case of using a conductive material having an average particle size of 1, a fine conductive pattern can be formed, and the resistance value after firing described later can be further reduced, which is more preferable.
  • the average particle diameter is a volume average value measured by a dynamic light scattering method after diluting the conductive substance (a2) with a dispersion good solvent. For this measurement, “Nanotrack UPA” manufactured by Microtrack Corporation can be used.
  • the shield film of the present invention has a layer (A-2) formed using a conductive ink inside the opening of the patterned copper plating layer.
  • the layer (A-2) exhibits a function of enhancing the shielding property of electromagnetic waves by filling the opening of the copper plating layer.
  • the pattern of the layer (A-2) is not particularly limited in shape, but can be appropriately selected according to the required electromagnetic shielding effect.
  • the layer (A-2) is preferably formed in the range of 15 to 95% of the opening area of the copper plating layer, and more preferably in the range of 40 to 95%.
  • the layer (A-2) may be in contact with the copper plating layer, but when the copper plating layer is produced by an electrolytic copper plating method described later, the layer (A-2) is a copper plating layer. Preferably it is not in contact with.
  • Specific pattern shapes of the layer (A-2) include, for example, triangles such as regular triangles, isosceles triangles, and right triangles; squares such as squares, rectangles, rhombuses, parallelograms, and trapezoids; (positive) pentagons , (Positive) hexagons, (positive) octagons, (positive) n-gons such as dodecagons (n is an integer of 5 or more); geometric shapes such as circles, ellipses, and stars; spirals; Examples of the shape include a ring shape, a coil shape, and a spiral shape.
  • the film thickness of the layer (A-2) is preferably in the range of 0.02 to 2 ⁇ m.
  • the film thickness of the layer (A-2) is 0.02 ⁇ m or more, the electromagnetic wave shielding effect of the shield printed wiring board can be enhanced.
  • the film thickness of the layer (A-2) is less than 2 ⁇ m, it is possible to provide a difference in film thickness from the copper plating layer.
  • a thickness smaller than the film thickness is preferable because it becomes easy to adjust the impedance of the shield printed wiring board to a desired value.
  • the film thickness of the copper plating layer is preferably 3 to 100 times the film thickness of the layer (A-2). That is, by reducing the film thickness of the metal layer inside the opening and increasing the copper plating layer of the opening pattern part, the impedance can be set to a desired value, and the capacitance can be reduced to prevent the waveform from being blunted. Furthermore, electromagnetic wave shielding can be achieved.
  • the same ink as the layer (A-1) can be used.
  • the layer (A-2) may be formed of only conductive ink, but a metal plating layer may be formed on the conductive ink. Although there is no restriction
  • the metal contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the conductive material constituting the pattern of the layer (A-2). It is the method of forming the electroless-plating layer (coating) which consists of.
  • Examples of the electroless plating solution include those containing a metal, a reducing agent, and a solvent such as an aqueous medium or an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid
  • malic acid lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid, citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, glutamic acid
  • iminodiacetic acid nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc.
  • Organic acids such as aminopolycarboxylic acid compounds or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.); complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. And the like can be used ones.
  • the electroless plating solution is preferably used in the range of 20 to 98 ° C.
  • the layer (A-1) and the layer (A-2) formed using the conductive ink are formed on the second insulating protective layer described later in the manufacturing method of the present invention.
  • the polymer forming the second insulating protective layer is a reactive functional group described later. Those having the group [Y] are preferred.
  • the polymer forming the second insulating protective layer described later does not have the reactive functional group [Y] described later, the polymer is applied to the surface of the second insulating protective layer, dried, and dried. After providing the molecular layer (B), the layer (A-1) and the layer (A-2) are formed thereon, whereby the surface of the second insulating protective layer described later and the layer (A-1) are formed. ) And the layer (A-2) can be further improved.
  • the polymer forming the polymer layer (B) preferably has a reactive functional group [Y] described later.
  • the conductive ink further improves the adhesion between the copper plating layer and a second insulating protective layer described later. Therefore, what contains the compound (a1) which has reactive functional group [X], and the said electroconductive substance (a2) is preferable.
  • the reactive functional group [X] possessed by the compound (a1) is involved in binding to the reactive functional group [Y] described later, and specific examples include an amino group, an amide group, and an alkylolamide group. , Carboxyl group, anhydrous carboxyl group, carbonyl group, acetoacetoxy group, epoxy group, alicyclic epoxy group, oxetane ring, vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group Etc., silsesquioxane compounds, and the like.
  • the reactive functional group [X] is preferably a basic nitrogen atom-containing group in order to further improve the adhesion to the second insulating protective layer described later.
  • Examples of the basic nitrogen atom-containing group in the compound having a basic nitrogen atom-containing group include an imino group, a primary amino group, and a secondary amino group.
  • the compound (a1) having a plurality of basic nitrogen atom-containing groups in one molecule one of the basic nitrogen atom-containing groups is converted into the layer (A-1) and the layer (A-2). ),
  • the other contributes to the interaction with the conductive material (a2) such as silver contained in the layer (A-1) and the layer (A-2), and finally obtains the copper plating layer This is preferable because the adhesion to the second insulating protective layer can be further improved.
  • the compound (a1) having a basic nitrogen atom-containing group can further improve the dispersion stability of the conductive substance (a2) and the adhesion to the second insulating protective layer described later, a polyalkyleneimine, or A polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit is preferred.
  • the polyalkyleneimine having the above may be a linear bond of polyethyleneimine and polyoxyalkylene, and the polyoxyalkylene is present in the side chain of the main chain composed of polyethyleneimine. May be grafted.
  • polyalkyleneimine having the polyoxyalkylene structure examples include a block copolymer of polyethyleneimine and polyoxyethylene, and an addition reaction of ethylene oxide with a part of imino group present in the main chain of polyethyleneimine.
  • examples thereof include those obtained by introducing a polyoxyethylene structure, those obtained by reacting an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin.
  • Examples of commercially available products of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318”, “PAO718” and the like of “Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
  • the number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
  • the reactive functional group [X] of the compound (a1) is a carboxyl group, an amino group, a cyano group, an acetoacetoxy group, a phosphorus atom-containing group, a thiol group, a thiocyanato group, a glycinato group, etc. Since the functional group also functions as a functional group that coordinates with the metal nanoparticles, the compound (a1) can also be used as a polymer dispersant for the metal nanoparticles.
  • the conductive ink preferably has an appropriate viscosity using a solvent in order to impart printability in various printing methods described later.
  • a solvent include aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water; and organic solvents such as alcohol solvents, ether solvents, ketone solvents, and ester solvents.
  • Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol.
  • Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone, and the like.
  • Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like.
  • organic solvents include nonpolar solvents such as cyclohexane, toluene, octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, trimethylbenzene, etc.
  • nonpolar solvents such as cyclohexane, toluene, octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, trimethylbenzene, etc.
  • solvents can be used in combination with the above as necessary.
  • a solvent such as mineral spirit or solvent naphtha, which is a mixed solvent, can be used in
  • the conductive ink can be produced, for example, by mixing the polymer dispersant, the conductive substance, and, if necessary, the solvent. Specifically, an ion solution of the conductive substance prepared in advance is added to a medium in which a compound having a polyalkyleneimine chain, a hydrophilic segment, and a hydrophobic segment is dispersed, and the metal ions are reduced. Can be manufactured by.
  • the conductive ink may contain a surfactant, an erasing agent, or the like, if necessary, in order to improve the dispersion stability of the conductive substance in a solvent such as an aqueous medium or an organic solvent and the wettability to the coated surface.
  • Foaming agents, rheology modifiers, etc. may be added.
  • the conductive ink is printed on a second insulating protective layer to be described later to form a pattern comprising the layer (A-1) and the layer (A-2).
  • the printing method include an inkjet printing method, a reverse printing method, a flexographic printing method, a screen printing method, a gravure printing method, and a gravure offset printing method.
  • the ink jet printing method is preferable.
  • an ink jet printer As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include “Konica Minolta EB100, XY100” (manufactured by Konica Minolta IJ Co., Ltd.), “Dimatics Material Printer DMP-3000, DMP-2831” (manufactured by Fuji Film Co., Ltd.), and the like.
  • the conductive ink is applied to the surface of various blankets, and is brought into contact with a plate from which a non-image portion protrudes.
  • the pattern is formed on the surface of the blanket or the like by selectively transferring the conductive ink corresponding to the image area to the surface of the plate, and then the pattern is formed on the second insulating protective layer ( And a method of transferring to the surface).
  • the polymer layer (B) is provided for the purpose of further improving the adhesion between the surface of the second insulating protective layer, which will be described later, and the layer (A-1) and the layer (A-2).
  • examples of the polymer that forms the polymer layer (B) include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, What contains various resins, such as polyvinylpyrrolidone, and a solvent is mentioned.
  • urethane resin urethane resin
  • vinyl resin urethane-vinyl composite resin
  • urethane resin vinyl resin, and urethane-vinyl composite resin
  • Urethane resin having a polyether structure Urethane resin having a polyether structure, urethane resin having a polycarbonate structure, urethane resin having a polyester structure, and acrylic resin
  • one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferable.
  • a urethane-acrylic composite resin is more preferable because a conductive pattern having excellent adhesion and conductivity can be obtained.
  • the polymer forming the polymer layer (B) is reactive with the reactive functional group [X].
  • the compound (b1) having a functional group [Y] having Examples of the compound (b1) having the reactive functional group [Y] include an amino group, an amide group, an alkylolamide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetoxy group, an epoxy group, and an alicyclic epoxy.
  • the polymer layer (B) is formed.
  • the polymer has a reactive functional group [Y] such as carboxyl group, carbonyl group, acetoacetoxy group, epoxy group, alicyclic epoxy group, alkylolamide group, isocyanate group, vinyl group, (meth) acryloyl group, allyl group. It is preferable that the adhesion between the finally obtained metal layer and the second insulating protective layer can be improved.
  • Examples of the method for applying the polymer forming the polymer layer (B) to the surface of the second insulating protective layer described later include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method. Can be mentioned.
  • the surface of the second insulating protective layer to be described later is improved in adhesion with the polymer layer (B), for example, plasma discharge treatment method such as corona discharge treatment method; dry treatment such as ultraviolet treatment method.
  • plasma discharge treatment method such as corona discharge treatment method
  • dry treatment such as ultraviolet treatment method.
  • Surface treatment may be performed by a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent, or the like.
  • a method of volatilizing the solvent is common.
  • the drying temperature is preferably set to a temperature within which the solvent can be volatilized and does not adversely affect the support.
  • the thickness of the polymer (B) layer formed using the polymer (B) is in the range of 5 to 5,000 nm because the adhesion between the second insulating protective layer and the metal layer can be further improved.
  • the range of 10 to 500 nm is more preferable.
  • the polymer (B) can be used as it is as the second insulating protective layer, and further, the polymer (B) can be mixed and used in the second insulating protective layer. In this case, the polymer (B) needs to be present in a portion of the second insulating protective layer in contact with the conductive ink.
  • the baking step performed after applying the conductive ink to form a pattern as a plating base with the conductive ink is to adhere and bond the conductive substances contained in the conductive ink.
  • the firing is preferably performed at a temperature range of 80 to 300 ° C. for about 1 to 200 minutes.
  • the firing temperature be in the range of 100 to 200 ° C.
  • the firing may be performed in the air, part or all of the firing step may be performed in a reducing atmosphere in order to prevent the conductive material from being oxidized.
  • the baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, light irradiation (flash irradiation apparatus), or the like.
  • the pattern composed of the layer (A-1) and the layer (A-2) formed using the conductive ink by the method as described above is in the range of 80 to 99.9% by mass in the pattern.
  • the conductive material is preferably contained in a range of 0.1 to 20% by mass.
  • the film thickness of the layer (A-1) and the layer (A-2) formed using the conductive ink can form a conductive pattern having a low resistance and excellent conductivity.
  • the range of is preferable.
  • the layer (A-1) formed using the conductive ink is used as a main conductive layer on the shield film side as a plating base pattern, and a film is formed thereon. It has a copper plating layer patterned with a thickness of 0.5 to 20 ⁇ m and an aperture ratio of 40 to 95%.
  • Patent Document 2 as a conductive layer, a method of printing conductive ink or conductive paste in a predetermined pattern on a base film, a method of forming an opening by etching a metal foil, It is disclosed that a metal layer having a predetermined pattern is formed by vapor deposition or sputtering, and that a wire mesh is used as such a conductive layer.
  • Patent Document 2 discloses that the material of the conductive layer is preferably a metal such as gold, silver, or copper and an alloy thereof, a conductive filler-containing resin, a conductive polymer, or the like. ing.
  • the conductive layer itself is poorly conductive and may deteriorate the transmission loss of signal lines on the printed wiring board. It has been known. Moreover, in the method of forming the opening by etching the metal foil, the manufacturing process becomes complicated, the shield printed wiring board becomes expensive, and the thickness of the conductive layer is arbitrarily adjusted (thinned). It becomes difficult. Further, in the method of forming a metal layer having a predetermined pattern by metal vapor deposition or sputtering, only a thin conductive layer can be formed, and there is also a problem with a method of patterning openings.
  • the layer (A-1) having a pattern formed with the conductive ink is used as a plating base, and a copper plating layer obtained by performing copper plating thereon is used. All the above problems can be solved.
  • Examples of the method for forming the copper plating layer include wet plating methods such as an electrolytic plating method and an electroless plating method, and the copper plating layer may be formed by combining two or more of these plating methods.
  • the adhesion between the pattern of the layer (A-1) and the copper plating layer formed by the plating method is further improved, and a pattern having excellent conductivity can be obtained.
  • a wet plating method such as a plating method or an electroless plating method is preferred, and an electrolytic plating method is more preferred because of excellent productivity and mechanical properties of the resulting metal film.
  • copper plating is performed only on the layer (A-1) which is a pattern having an opening, it is preferable to carry out by an electrolytic plating method.
  • the electrolytic plating method for example, current is applied in a state where an electrolytic plating solution is in contact with the surface of the metal constituting the layer (A-1) or the electroless plating layer (coating) formed by the electroless treatment.
  • a metal such as copper contained in the electrolytic plating solution is deposited on the surface of the conductive material constituting the layer (A-1) placed on the cathode to form an electrolytic plating layer (metal coating). It is a method to do.
  • Examples of the electrolytic plating solution include those containing copper sulfide, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
  • the electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
  • the electrolytic plating treatment method is preferable because it has good workability without using a highly toxic substance as compared with the electroless plating method.
  • Electrolytic copper plating is preferable because it can shorten the plating time and control the thickness of the plating as compared with electroless copper plating. Furthermore, the copper plating layer obtained by electrolytic copper plating has excellent mechanical properties, is difficult to break even when bent, and has excellent flexibility. It is preferable to use the formed copper plating layer.
  • the copper plating layer may be formed by laminating another metal plating layer on the copper plating layer.
  • a nickel plating layer, a gold plating layer, or a tin plating layer is provided, the surface of the copper plating layer is deteriorated by oxidation or corroded. Can be prevented.
  • the thickness of the copper plating layer formed by the above plating method is preferably in the range of 0.5 to 20 ⁇ m because it is excellent in conductivity as a conductive layer and can meet the demand for thinning the shield printed wiring board.
  • the thickness of the layer can be adjusted by controlling the processing time, current density, the amount of plating additive used, etc. in the copper plating process. .
  • a second insulating protective layer is provided on the pattern of the copper plating layer, the layer (A-1) and the layer (A-2).
  • the second insulating protective layer comprises an insulating resin sheet or film, or an insulating resin coating layer.
  • the insulating resin sheet or film include polyester film, polyolefin film, polyimide film, polyamideimide film, polyphenylene sulfide film, polyethylene naphthalate film, liquid crystal polymer (LCP) film, and polycycloolefin film.
  • Insulating resin coating layers include styrene resins, vinyl acetate resins, polyester resins, polyolefin resins such as polyethylene and polypropylene, amide resins, amideimide resins, styrene-butadiene resins, acrylonitrile-butadiene resins, and (meth) acryl-butadiene resins.
  • UV rays composed of thermoplastic resins such as (meth) acrylic resin and urethane resin, thermosetting resins such as phenolic resin, epoxy resin, melamine resin and alkyd resin, urethane-acrylate, epoxy-acrylate, acrylic-acrylate, etc.
  • a curable resin or the like can be used alone or in combination of two or more.
  • thermosetting resin or an ultraviolet curable resin is preferable, and an epoxy resin, a urethane resin
  • an epoxy resin, a urethane resin It is preferable to use a polyester resin, a melamine resin, an acrylic resin, urethane-acrylate, epoxy acrylate, acrylic-acrylate, etc. alone, in combination of two or more, or in combination with a crosslinking agent.
  • urethane resin is included.
  • a conductive ink is formed directly on the second insulating protective layer or after the polymer layer (B) is formed on the second insulating protective layer.
  • An opening pattern having an opening ratio of 40 to 95% and an opening inner pattern of 15 to 95% of the opening area are formed in the opening of the opening pattern, and electrolytic copper plating is applied only on the opening pattern.
  • the method of forming a copper plating layer and forming a conductive adhesive layer on it is mentioned.
  • an opening pattern having an opening ratio of 40 to 90% and an opening inside the opening pattern are formed with conductive ink.
  • a pattern of 15 to 95% of the opening area is formed, and a copper plating layer is formed by applying electroless plating on the opening pattern and the pattern formed inside the opening, and then electrolytic copper is formed only on the opening pattern.
  • an opening pattern with an opening ratio of 40 to 95% and a pattern with an opening area of 15 to 95% inside the opening of the opening pattern (1) After forming an opening pattern using a conductive ink, electrolytic copper plating is applied to the opening pattern to form a copper plating layer, and then the opening pattern is formed with a conductive ink inside the opening pattern.
  • the method (2) of simultaneously forming the opening pattern and the opening inner pattern is preferable because of excellent production efficiency.
  • the opening pattern and the opening inner pattern are not contacted.
  • electrolytic copper plating is applied only to the opening pattern portion. It can also implement by the method of giving and forming a copper plating layer. Even in this case, it is preferable that the opening pattern and the opening inner pattern are non-contact.
  • the formation method of the polymer layer (B), the layer (A-1) and the layer (A-2) is as described above.
  • the second insulating protective layer can be an insulating resin sheet or film, or an insulating resin coating layer. However, when the second insulating protective layer is manufactured by coating the insulating resin, it is supported. A release film can be used as the substrate.
  • a plastic film or release paper can be used as the release film.
  • the plastic film include a polyester film, a polyolefin film, a polyimide film, and a film in which a silicone release layer, a fluorine release layer, an olefin release layer, and the like are further provided on these films. It is done.
  • the release paper include those in which a sealing layer is provided on a paper substrate and then a silicone release layer, a fluorine release layer, and an olefin release layer are provided thereon.
  • said 2nd insulation protective layer formed by coating what coated resin etc. which were illustrated above can be used, for example, an insulating resin is applied to the said peeling film, it is dried, and resin is needed as needed. Can be cured by heat curing and ultraviolet curing to produce the second insulating protective layer.
  • a conductive adhesive layer is formed on the copper plating layer.
  • the conductive adhesive layer specifically, those described above can be used.
  • the conductive adhesive layer can be formed by applying the conductive adhesive on the copper plating layer pattern and drying it as necessary.
  • the shield film obtained in this manner can be used as a shield film that is attached to the outermost surface of the shield printed wiring board of the present invention.
  • the manufacturing method of the shield printed wiring board of the present invention will be described.
  • the printed wiring board constituting the shield printed wiring board of the present invention is formed with signal wiring and ground wiring on a printed wiring board substrate, and a first insulating protective layer is provided thereon, and the first insulating protective layer is A ground wire having a partly exposed via is used.
  • the shield printed wiring board of the present invention is a flexible printed wiring board (FPC), a single-sided FPC having a printed circuit only on one side of the base film, and a double-sided FPC having a printed circuit on both sides of the base film Multi-layer FPC in which a plurality of such FPCs are laminated, Flexboard (registered trademark) having a multilayer component mounting portion and a cable portion, a flex rigid board having a rigid member constituting the multilayer portion, or a tape carrier A TAB tape or the like for the package can be adopted as appropriate.
  • FPC flexible printed wiring board
  • a single-sided FPC having a printed circuit only on one side of the base film and a double-sided FPC having a printed circuit on both sides of the base film
  • Multi-layer FPC in which a plurality of such FPCs are laminated
  • Flexboard registered trademark
  • Flexboard having a multilayer component mounting portion and a cable portion
  • the conductive adhesive layer of the shield film of the present invention is disposed so as to be in contact, and the printed wiring board and the shield film are shielded by pressing in a direction approaching each other.
  • the shield printed wiring board of the present invention can be manufactured by flowing the conductive adhesive layer of the film and connecting it to the ground layer of the printed wiring board.
  • the printed wiring board and the shield film are pressurized to cause the conductive adhesive layer to flow and join with the ground layer of the printed wiring board, it can be heated, and the conductive adhesive can be thermoset.
  • the heating conditions can be adjusted according to the curing conditions of the resin.
  • the heating temperature is usually preferably in the range of 50 to 250 ° C.
  • the shield printed wiring board of the present invention may have a configuration in which a shield film is attached to one side of the printed wiring board or a configuration in which shield films are attached to both sides.
  • conductive ink (1) By dispersing silver particles having an average particle diameter of 20 nm in a mixed solvent of 35 parts by mass of ethylene glycol and 65 parts by mass of ion-exchanged water, using a compound in which polyoxyethylene is added to polyethyleneimine as a dispersant, metal nanoparticles are dispersed. A metal nanoparticle dispersion containing particles and a polymer dispersant having a basic nitrogen atom-containing group as a reactive functional group was prepared. Next, ion-exchanged water and a surfactant were added to the obtained metal nanoparticle dispersion, and the viscosity was adjusted to 11 mPa ⁇ s to prepare a conductive ink (1) for inkjet printing.
  • polyester polyol polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, nitrogen gas inlet tube and stirrer Polyol, a hydroxyl group equivalent of 1,000 g / equivalent
  • 17.4 parts by mass of 2,2-dimethylolpropionic acid 17.4 parts by mass of 1,4-cyclohexanedimethanol
  • 106.2 parts by mass of dicyclohexylmethane diisocyanate By mixing and reacting in 178 parts by mass, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
  • a vinyl monomer mixture containing 60 parts by mass of methyl methacrylate, 10 parts by mass of n-butyl acrylate and 30 parts by mass of glycidyl methacrylate, and azoisobutyro
  • a polymerization initiator solution containing 1 part by mass of nitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from another dropping funnel over 240 minutes while maintaining the temperature in the reaction vessel at 80 ⁇ 1 ° C.
  • polyester polyol polyol obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, nitrogen gas inlet tube and stirrer Polyol, hydroxyl group equivalent 1000 g / equivalent), 17.4 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol and 106.2 parts by mass of dicyclohexylmethane diisocyanate, and 178 parts by mass of methyl ethyl ketone.
  • a urethane resin having an isocyanate group at the molecular end was obtained. Subsequently, methyl ethyl ketone was added to the obtained urethane resin to obtain an organic solvent solution of a urethane resin having a solid content of 50% by mass.
  • Example 1 As a printed wiring board, a wiring composed of a copper wiring pattern for ground having a copper thickness of 12 ⁇ m and a line width of 500 ⁇ m and a signal copper wiring pattern having a copper thickness of 12 ⁇ m and a line width of 150 ⁇ m is formed on a polyimide base film.
  • the first insulating protective layer having a film thickness of 27.5 ⁇ m is formed of an adhesive layer having a film thickness of 15 ⁇ m and a polyimide film layer having a film thickness of 12.5 ⁇ m.
  • a printed wiring board having a 400 ⁇ m square opening in the ground wiring portion was used.
  • the second insulating protective layer resin produced above is applied so that the film thickness after drying is 5 ⁇ m, and dried to form a second insulating protective layer. Formed.
  • the polymer layer (B-1) resin produced above was applied so that the film thickness after drying was 0.2 ⁇ m, and dried to form a polymer layer (B-1).
  • the conductive ink (1) obtained above is applied onto the second insulating protective layer on which the polymer layer (B-1) formed by the above method is laminated, by an inkjet printer (inkjet manufactured by Konica Minolta Co., Ltd.).
  • an inkjet printer inkjet manufactured by Konica Minolta Co., Ltd.
  • EB100 test machine “EB100”
  • an evaluation printer head KM512L evaluation printer head KM512L
  • a discharge amount of 14 pL a lattice pattern having a line width of 90 ⁇ m and an aperture ratio of 82% is formed in the opening so that the characteristic impedance of the shield printed wiring board is 80 ⁇ .
  • a square non-opening portion having an area of 68% with respect to the area of the opening portion was printed so as not to contact the lattice pattern portion.
  • a plan view of the printed pattern is shown in FIG.
  • the lattice pattern portion of the layer made of the conductive ink (1) obtained above is set as the cathode, the phosphorous copper is set as the anode, and the current density is 2 A using an electrolytic plating solution containing copper sulfate.
  • electrolytic copper plating at / dm 2 for 10 minutes, a copper plating layer having a thickness of 5 ⁇ m was laminated only on the lattice pattern portion on the surface of the layer made of conductive ink.
  • the copper electroplating solution 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used.
  • the line width of the lattice pattern portion after electrolytic copper plating was 100 ⁇ m
  • the aperture ratio was 80%
  • the area of the layer made of conductive ink (opening internal pattern) inside the opening was 71% of the opening area.
  • the conductive adhesive produced in (1) was applied to a film thickness of 5 ⁇ m after drying, and dried to produce a shield film.
  • the printed wiring board obtained by opening the ground wiring part obtained above and the shielding film obtained above are formed on the insulating protective layer of the printed wiring board, and the conductive adhesive layer of the shielding film.
  • the printed wiring board and the shield film are pressed in a direction approaching each other (pressure: 1.96 MPa, heating temperature: 150 ° C., treatment time: 30 minutes), and the shield film is conductive.
  • the conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
  • Example 2 instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used. Further, in place of the shield film used in Example 1, the polymer layer (B) resin shown in Table 1 was used, and the copper shown in Table 1 so that the characteristic impedance of the shield printed wiring board was 80 ⁇ .
  • a shield printed wiring board was produced in the same manner as in Example 1 except that the aperture ratio of the plating layer and the area ratio of the conductive ink layer (opening internal pattern) inside the opening to the opening area of the copper plating layer.
  • Example 5 instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used.
  • the second insulating protective layer resin produced above is applied so that the film thickness after drying is 5 ⁇ m, and dried to form a second insulating protective layer. Formed.
  • the conductive ink (1) is used in the same manner as in Example 1, and the line width is adjusted so that the characteristic impedance of the shield printed wiring board is 80 ⁇ .
  • a grid pattern having a size of 90 ⁇ m and an aperture ratio of 58% and a rectangular non-opening with an area of 40% with respect to the area of the opening inside the opening were printed so as not to contact the grid pattern.
  • a layer (film thickness 0.2 ⁇ m) made of a conductive ink (1) having a lattice pattern with an aperture ratio of 58% and a square non-opening inside the opening is formed. did.
  • the lattice pattern portion of the layer made of the conductive ink (1) obtained above was set as the cathode, the phosphorous copper was set as the anode, and the layer made of the conductive ink was set in the same manner as in Example 1.
  • a copper plating layer having a thickness of 5 ⁇ m was laminated only on the lattice pattern portion.
  • the line width of the lattice pattern portion after electrolytic copper plating was 100 ⁇ m, the aperture ratio was 56%, and the area of the layer made of conductive ink (opening internal pattern) inside the opening was 43% of the opening area.
  • the conductive adhesive produced in (1) was applied to a film thickness of 5 ⁇ m after drying, and dried to produce a shield film.
  • the printed wiring board provided with an opening in the ground wiring portion and the shield film obtained above were pressure-bonded onto the insulating protective layer of the printed wiring board in the same manner as in Example 1,
  • the conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
  • Example 6 Instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used. Further, in place of the shield film used in Example 1, the polymer layer (B) resin shown in Table 1 was used. Next, on the second insulating protective layer on which the polymer layer (B-1) formed by the above method is laminated, the conductive ink (1) is used in the same apparatus as in Example 1, and the shield printed wiring board is used. A lattice pattern having a line width of 90 ⁇ m and an aperture ratio of 74%, and a square non-opening with an area of 69% of the area of the opening inside the opening, Printed out of contact. Next, by baking at 120 ° C. for 20 minutes, a layer (film thickness 0.05 ⁇ m) made of a conductive ink (1) having a lattice pattern with an aperture ratio of 74% and a square non-opening inside the opening is formed. did.
  • electroless copper plating is performed on the layer (thickness 0.05 ⁇ m) made of the conductive ink (1) having a rectangular non-opening inside the lattice pattern obtained above, and the thickness An electroless copper plating film having a thickness of 0.2 ⁇ m was formed.
  • ARG Copper (Okuno Pharmaceutical Co., Ltd.) is built under standard recommended conditions (ARG Copper 1:30 ml / L, ARG Copper 2: 15 ml / L, ARG Copper 3: 200 ml / L). This was performed by bathing and holding at a bath temperature of 45 ° C., and immersing the object to be plated (conductive ink layer) in this for 15 minutes to precipitate a copper plating film.
  • the lattice pattern part in which the electroless copper plating film was formed on the layer made of the conductive ink (1) obtained above was set as the cathode, and phosphorous copper was set as the anode.
  • a copper plating film having a thickness of 3 ⁇ m was laminated only on the lattice pattern portion on the surface of the layer made of the electroless copper plating film.
  • the line width of the lattice pattern portion after electrolytic copper plating is 97 ⁇ m
  • the aperture ratio is 72%
  • the area of the layer made of electroless copper plating film inside the opening (opening internal pattern) is 70% of the opening area
  • the film thickness is It was 0.2 ⁇ m.
  • the conductive adhesive produced above was applied so as to have a film thickness of 5 ⁇ m after drying, and dried to produce a shield film.
  • the printed wiring board provided with an opening in the ground wiring portion and the shield film obtained above were pressure-bonded onto the insulating protective layer of the printed wiring board in the same manner as in Example 1,
  • the conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
  • Example 1 a printed wiring board having a line width of the signal copper wiring pattern described in Table 1 was used.
  • the film thickness after drying the resin for the second insulating protective layer obtained above on a rolled copper foil having a film thickness of 5 ⁇ m so that the aperture ratio becomes 0%. was applied to a thickness of 5 ⁇ m and dried to form a second insulating protective layer.
  • the surface of the rolled copper foil opposite to the surface on which the second insulating protective layer is formed is coated with the conductive adhesive obtained above so as to have a film thickness after drying of 5 ⁇ m, and dried to obtain an aperture ratio.
  • a shield film having a 0% copper layer was prepared.
  • the line width of the signal copper wiring pattern described in Table 1 is used, and the printed wiring board having a 400 ⁇ m square opening in the ground wiring part and the shield film obtained above are insulated from the printed wiring board. It arrange
  • Comparative Example 2 instead of the printed wiring board used in Comparative Example 1, the line width of the signal copper wiring pattern was changed to the line width described in Table 1, and the comparative example with an aperture ratio of 0% was made in the same manner as in Comparative Example 1. A shield printed wiring board was produced.
  • Comparative Conductive Ink (R1) 333 parts by mass of the resin solution for conductive ink for comparison obtained above and 20 parts by mass of bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) were stirred and mixed to obtain a resin composition solution.
  • a resin composition solution 180 parts by mass of a conductive filler (“AgXF-301” manufactured by Fukuda Metal Foil Powder Co., Ltd.) is added and mixed by stirring to a total of 100 parts by mass of the polyurethane polyurea resin and the epoxy resin.
  • a comparative conductive ink (R1) containing 300 parts by mass of a conductive filler was obtained.
  • a comparative conductive ink (R1) obtained as described above is formed on a release-treated polyester film by using a grid having a line width of 100 ⁇ m, an aperture ratio of 65%, and a film thickness after drying of 5 ⁇ m. It screen-printed so that it might become a pattern, and it dried and formed the conductive layer. Next, the resin for bonding layer obtained above was applied on the release-treated polyester film so that the film thickness after drying was 15 ⁇ m and dried. Next, the conductive layer formed on the releasable film and the bonding layer formed on the releasable film were bonded together to produce a shield film.
  • the wiring width of the signal copper wiring pattern is set to 100 ⁇ m, and a 400 ⁇ m square opening is provided in the ground wiring portion.
  • the shield film was placed on the insulating protective layer of the printed wiring board so that the conductive layer of the shield film was in contact, and the printed wiring board and the shield film were pressurized in a direction approaching each other (pressure: 1.96 MPa). , Heating temperature: 150 ° C., processing time: 30 minutes), and the shielded printed wiring board for comparison without the conductive adhesive layer, which is bonded to the ground layer of the printed wiring board by flowing the bonding layer of the shield film and flowing. was made.
  • the shielded printed wiring boards obtained in the above examples and comparative examples are irradiated with electromagnetic waves under the conditions of 100 MHz to 6 GHz using a coaxial tube type shield effect measuring system in accordance with ASTM D4935 and subjected to electromagnetic waves.
  • the measured value of attenuation is expressed in decibels (unit dB).
  • the electromagnetic wave shielding property is good as long as it is 40 dB (or more than 99% of electromagnetic waves are blocked).
  • B 40 dB or more and less than 45 dB when irradiated with 6 GHz electromagnetic waves.
  • C 35 dB or more and less than 40 dB when irradiated with 6 GHz electromagnetic waves.
  • D Less than 35 dB when irradiated with 6 GHz electromagnetic waves.
  • connection reliability between shield film and printed circuit board ground wiring For the shield printed wiring boards obtained in the above examples and comparative examples, a solder reflow process at the time of component connection is assumed, and the shield printed wiring board is cooled to 25 ° C. after passing through a reflow furnace at 240 ° C. for 25 seconds. Repeat the reflow operation 5 times, measure the volume resistance value between the shield film before and after that and the ground wiring of the printed wiring board, calculate the rate of change of the volume resistance value using the following formula, and shield film and printed wiring
  • the connection reliability of the plate with the ground wiring was evaluated according to the following criteria. [Evaluation criteria] A: The rate of change of the volume resistance value is less than 20%. B: The rate of change of the volume resistance value is 20% or more and less than 50%. C: The change rate of the volume resistance value is 50% or more and less than 80%. D: The change rate of the volume resistance value is 80% or more.
  • the pattern width of the signal copper wiring of the printed wiring board was changed to 50 to 150 ⁇ m.
  • the characteristic impedance of the shield printed wiring board could be controlled to 80 ⁇ by adjusting the aperture ratio of the metal layer (copper plating layer) of the shield film.
  • the electromagnetic wave shielding property was 45 dB or more, and it was confirmed that the electromagnetic wave shielding property was also excellent.
  • the film thickness of the shield film portions of Examples 1 to 6 which are the shield films of the present invention is as thin as 13 to 16 ⁇ m in total thickness of the second insulating layer, the copper plating layer, and the conductive adhesive layer.
  • the shield film has a feature that the film thickness of the shield film can be further reduced.
  • the pattern width of the signal copper wiring of the printed wiring board is 150 ⁇ m, and the aperture ratio of the metal layer (copper plating layer) of the shield film is 0% (entire copper plating layer).
  • the characteristic impedance of this shield printed wiring board was 20 ⁇ and could not be controlled to 80 ⁇ .
  • the aperture ratio of the metal layer (copper plating layer) of the shield film was set to 0% (entire copper plating layer) as in Comparative Example 1, and the pattern of the signal copper wiring on the printed wiring board Even when the width was 20 ⁇ m, the characteristic impedance was 50 ⁇ . Furthermore, this shielded printed wiring board has a transmission loss that increases as the communication speed becomes higher compared to the shielded printed wiring board of the embodiment, by reducing the pattern width of the signal copper wiring of the printed wiring board to 20 ⁇ m. There was an increasing problem.
  • the shield printed wiring board of the present invention has the desired characteristics by adjusting the opening ratio of the metal layer of the shield film even when the pattern width of the signal copper wiring of the printed wiring board is changed. It was possible to adjust the impedance, and it was confirmed that the electromagnetic wave shielding property was high.
  • the shield printed wiring board of Comparative Example 3 is an example in which there is no essential conductive adhesive layer in the shield printed wiring board of the present invention.
  • This shielded printed wiring board has insufficient electromagnetic wave shielding properties, and has a problem in connection reliability between the conductive layer on the shield film side and the ground wiring on the printed wiring side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

 The present invention provides: a shield film for a printed wiring board in which signal wiring, ground wiring, and a first insulation protection layer are provided on a base insulation substrate, wherein the shield film has an electroconductive adhesive layer laminated on the entire surface of the first insulation protection layer, a copper-plating layer patterned on the electroconductive adhesive layer at a film thickness of 0.5-20 μm and an opening ratio of 40-95%, a layer (A-1) formed on the copper-plating layer using electroconductive ink, a layer (A-2) formed on the inside of the openings in the copper plating layer on the electroconductive adhesive layer by using electroconductive ink, and a second insulation protection layer on the electroconductive adhesive layer, the copper-plating layer, the layer (A-1), and the layer (A-2); and a shield printed wiring board in which the shield film is used. The shield film has high electromagnetic shield performance and a thin profile. In the shield printed wiring board, exceptional reliability of connection with the ground wiring of the printed wiring board is achieved, and a high degree of freedom of design is provided in relation to impedance control.

Description

シールドフィルム、シールドプリント配線板及びそれらの製造方法SHIELD FILM, SHIELD PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
 本発明は、プリント配線板に用いるシールドフィルム、該シールドフィルムを用いたシールドプリント配線板及びそれらの製造方法に関するものである。 The present invention relates to a shield film used for a printed wiring board, a shield printed wiring board using the shield film, and a manufacturing method thereof.
 近年、電子機器業界では、USB3.0、IEEE1394、HDMI(登録商標)等の高速伝送を必要とする規格が日進月歩で策定され、高速シリアル通信が多く採用されている。また、機器内の伝送方式も作動伝送のひとつであるLVDS(Low Voltage Differential Signal)伝送が多くの機器で採用されてきており、機器間インターフェースのインピーダンス整合が重要となっている。最近では、さらに信号の高速化が要求されており、機器間のインターフェースでインピーダンスが整合していないと、伝送路端で反射が生じ、信号波と反射波の重畳により波形ひずみが発生し、信号の伝送損失が大きくなる問題がある。特に、使用する周波数が高くなると、インピーダンス不整合による反射波の影響が大きくなるため、高い周波数で使用するプリント配線板には、インピーダンスを制御し、接続される他の基板や部品とインピーダンスが整合した状態で使用することが必要となる。 In recent years, in the electronic equipment industry, standards requiring high-speed transmission such as USB 3.0, IEEE 1394, HDMI (registered trademark), etc., have been steadily developed, and high-speed serial communication is often adopted. In addition, LVDS (Low Voltage Differential Signal) transmission, which is one of operation transmissions, is adopted in many devices, and impedance matching of the interface between devices is important. Recently, there has been a demand for higher signal speed, and if the impedance is not matched at the interface between devices, reflection occurs at the end of the transmission path, and waveform distortion occurs due to superposition of the signal wave and the reflected wave. There is a problem that the transmission loss increases. In particular, since the influence of reflected waves due to impedance mismatching increases as the frequency used increases, the impedance of the printed wiring board used at high frequencies is controlled and matched with other boards and components to be connected. It is necessary to use it in the state.
 また、電子機器の小型化に伴いプリント配線板には薄型化の要求が高まっている。プリント配線板が薄型化すると、信号線とグランド層との距離が近くなり、信号線の容量成分が増加し、同一のインピーダンスを保つためには信号線の線幅(パターン幅)を細くして容量成分を減少させる必要がある。しかし、信号線のパターン幅が細くなると抵抗損失の増加、直流抵抗の増加などの問題があるため、一定のパターン幅を保った状態でインピーダンスを制御することが要求されている。 Also, with the miniaturization of electronic devices, there is an increasing demand for thinner printed wiring boards. When the printed wiring board is made thinner, the distance between the signal line and the ground layer becomes closer, the capacitance component of the signal line increases, and in order to maintain the same impedance, the line width (pattern width) of the signal line is reduced. It is necessary to reduce the capacitive component. However, when the pattern width of the signal line becomes narrow, there are problems such as an increase in resistance loss and an increase in DC resistance, and therefore it is required to control the impedance while maintaining a constant pattern width.
 一方、電子機器の高性能化に伴い、機器内部でもノイズ対策が重要になってきている。プリント配線板の信号伝達経路も、自身が出すノイズによる他の部品への影響を低減し、他の部品から発せられたノイズの影響を受けないためにシールド化が検討されている。このシールド化の方法としては、例えば、絶縁基板上に信号配線とグランド配線を有するプリント配線板において、信号配線のカバー層の上にシールド材として導電性が高く電磁波の遮蔽効果が高い金属薄膜層が設けられ、導電性接着剤を介してプリント配線板のグランド配線と金属薄膜層が導通した構造のシールドプリント配線板が提案されている(例えば、特許文献1参照。)。 On the other hand, with the improvement in performance of electronic devices, noise countermeasures have become important inside the devices. The signal transmission path of the printed wiring board is also considered to be shielded in order to reduce the influence on the other parts due to the noise generated by itself and not to be affected by the noise generated from the other parts. As a method for forming the shield, for example, in a printed wiring board having a signal wiring and a ground wiring on an insulating substrate, a metal thin film layer having a high conductivity and a high electromagnetic wave shielding effect as a shielding material on the signal wiring cover layer And a shielded printed wiring board having a structure in which the ground wiring of the printed wiring board and the metal thin film layer are conducted through a conductive adhesive has been proposed (for example, see Patent Document 1).
 しかし、上記のシールドプリント配線板では、機器内部のノイズ対策の課題は解決できるが、プリント配線板のインピーダンスを制御して、接続する他の機器とのインピーダンスを整合させる手段は、信号配線のパターン幅を狭くすることでしか解決できず、信号配線のパターンの自由度が制限されてしまうという問題があった。 However, the above-mentioned shielded printed wiring board can solve the problem of noise countermeasures inside the equipment, but the means for matching the impedance with other equipment to be connected by controlling the impedance of the printed wiring board is a signal wiring pattern. The problem can be solved only by narrowing the width, and the degree of freedom of the pattern of the signal wiring is limited.
 また、信号配線を有する配線板に用いられる電磁波シールドシートとして、ガラス転移温度が0~150℃の熱硬化性樹脂組成物を含有し、温度150℃かつ圧力1kg/cmの条件で流動可能な絶縁性を備える接合層と、前記接合層の一方の面に設けられ、複数の開口部を備える導電層とを有する電磁波シールドシートが提案されている(例えば、特許文献2参照。)。この電磁波シールドシートでは、前記導電層に開口部を設け、プリント配線板に設けた貫通孔を通じてプリント配線板のグランド配線と直接接続することで、プリント配線板のインピーダンスを調整する。 Further, as an electromagnetic wave shielding sheet used for a wiring board having signal wiring, it contains a thermosetting resin composition having a glass transition temperature of 0 to 150 ° C., and can flow under conditions of a temperature of 150 ° C. and a pressure of 1 kg / cm 2. An electromagnetic wave shielding sheet having a bonding layer having insulation and a conductive layer provided on one surface of the bonding layer and having a plurality of openings has been proposed (for example, see Patent Document 2). In this electromagnetic wave shielding sheet, the impedance of the printed wiring board is adjusted by providing an opening in the conductive layer and directly connecting to the ground wiring of the printed wiring board through a through hole provided in the printed wiring board.
 しかし、上記の電磁波シールドシートを用いたプリント配線板では、電磁波シールドシートの開口部の形状及び開口率を適宜設定することにより、インピーダンスを調整することはできるが、開口率を40%以上と高くした場合、電磁波を遮蔽する性能が大きく低下するという問題があった。 However, in the printed wiring board using the electromagnetic wave shielding sheet, the impedance can be adjusted by appropriately setting the shape and the opening ratio of the opening of the electromagnetic wave shielding sheet, but the opening ratio is as high as 40% or more. In such a case, there is a problem that the performance of shielding electromagnetic waves is greatly reduced.
 さらに、上記の電磁波シールドシートを用いたプリント配線板では、電磁波シールドシートの導電層とプリント配線板のグランド配線との接続が直接行われるため、導電層の硬さ及びパターンの線幅、プリント配線板に設ける貫通孔の大きさ等に制限があり、さらに接続信頼性が不十分であるという問題があった。例えば、電磁波シールドシートの導電層のパターンの線幅を、プリント配線板のグランド配線より太くした場合、導電層とグランド配線の接続が難しくなり、仮に直接接続ができたとしても、熱硬化性樹脂層の接着面積が非常に小さくなるため接続信頼性が不十分となる問題があった。また、プリント配線板のグランド配線上に設ける貫通孔が小さい場合も同様に、接続信頼性が不十分となる。さらに、プリント配線板の絶縁保護層が厚いとグランド配線の上に設けた貫通孔の高さも高くなり、電磁波シールドシートの導電層が柔軟性に乏しい場合は、貫通孔の段差で導電層が断線する問題もあった。 Furthermore, in the printed wiring board using the electromagnetic wave shielding sheet, the conductive layer of the electromagnetic wave shielding sheet and the ground wiring of the printed wiring board are directly connected, so the hardness of the conductive layer, the line width of the pattern, the printed wiring There is a problem that the size of the through hole provided in the plate is limited, and the connection reliability is insufficient. For example, when the line width of the pattern of the conductive layer of the electromagnetic wave shielding sheet is made thicker than the ground wiring of the printed wiring board, it becomes difficult to connect the conductive layer and the ground wiring. Since the adhesion area of the layer becomes very small, there is a problem that connection reliability becomes insufficient. Similarly, when the through hole provided on the ground wiring of the printed wiring board is small, the connection reliability is insufficient. Furthermore, if the insulating protective layer of the printed wiring board is thick, the height of the through hole provided on the ground wiring also increases, and if the conductive layer of the electromagnetic wave shield sheet is not flexible, the conductive layer is disconnected at the step of the through hole. There was also a problem to do.
 一方、インピーダンスコントロールシールドフィルムとして、開口金属層を有するインピーダンスコントロールフィルムを含み、開口金属層とは反対の面にシールド層を有するインピーダンスコントロールシールドフィルムが提案されている(例えば、特許文献3参照。)。このインピーダンスコントロールシールドフィルムでは、開口金属層でプリント配線板のインピーダンスを調整し、非開口金属層であるシールド層で開口金属層では遮蔽できない不要輻射を遮蔽するため、インピーダンスの調整と電磁波の遮蔽を両立できる。 On the other hand, as an impedance control shield film, an impedance control shield film including an impedance control film having an open metal layer and having a shield layer on the surface opposite to the open metal layer has been proposed (see, for example, Patent Document 3). . In this impedance control shield film, the impedance of the printed wiring board is adjusted by the opening metal layer, and unnecessary radiation that cannot be shielded by the opening metal layer is shielded by the shield layer that is a non-opening metal layer. Can be compatible.
 しかし、上記のインピーダンスコントロールシールドフィルムを用いたプリント配線板では、開口金属層と非開口金属層(シールド層)の2層が必要であり、シールドフィルム全体として厚くなるため、電子機器の小型化に伴うプリント配線板の薄型化要求に対応することが難しいという問題があった。 However, the printed wiring board using the impedance control shield film described above requires two layers, an open metal layer and a non-open metal layer (shield layer), and the shield film as a whole becomes thick. There is a problem that it is difficult to meet the demand for thinner printed wiring boards.
特開平7-122882号公報Japanese Patent Laid-Open No. 7-122882 特開2013-168643号公報JP 2013-168643 A 特開2006-24824号公報JP 2006-24824 A
 本発明が解決しようとする課題は、プリント配線板に用いることができ、プリント配線板のインピーダンスを信号配線のパターン幅を狭くしなくても制御でき、かつ、ノイズ対策として高い電磁波シールド性を有し、さらに、プリント配線板の薄型化できる薄型のシールドフィルムを提供することである。また、前記シールドフィルムと、プリント配線板のグランド配線との接続信頼性に優れ、インピーダンスの制御における設計の自由度が高いシールドプリント配線板を提供することである。さらには、前記シールドフィルム及びシールドプリント配線板の製造方法を提供することである。 The problems to be solved by the present invention can be applied to a printed wiring board, the impedance of the printed wiring board can be controlled without reducing the pattern width of the signal wiring, and the electromagnetic wave shielding property is high as a noise countermeasure. Furthermore, it is to provide a thin shield film capable of reducing the thickness of the printed wiring board. Another object of the present invention is to provide a shielded printed wiring board having excellent connection reliability between the shield film and the ground wiring of the printed wiring board and having a high degree of design freedom in impedance control. Furthermore, it is providing the manufacturing method of the said shield film and a shield printed wiring board.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、信号配線とグランド配線及び絶縁保護層が設けられたプリント配線板に、導電性接着剤層、パターン化された銅めっき層、パターン化された導電性インク層、絶縁保護層で構成されるシールドフィルムを設けることで、プリント配線板のインピーダンスが信号配線のパターン幅を狭くしなくても制御でき、かつ、ノイズ対策として高い電磁波シールド性を有し、さらに、プリント配線板を薄型化できる薄型のシールドフィルムが得られ、前記シールドフィルムと、プリント配線板のグランド配線との接続信頼性に優れ、インピーダンスの制御における設計の自由度が高いシールドプリント配線板が得られることを見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have established a conductive adhesive layer, a patterned copper plating layer on a printed wiring board provided with a signal wiring, a ground wiring, and an insulating protective layer, By providing a shield film composed of a patterned conductive ink layer and insulating protective layer, the impedance of the printed wiring board can be controlled without reducing the pattern width of the signal wiring, and high electromagnetic waves can be used as a noise countermeasure. A thin shield film that has shielding properties and can reduce the thickness of the printed wiring board is obtained. Excellent connection reliability between the shield film and the ground wiring of the printed wiring board, and freedom of design in impedance control The present invention has been completed by finding that a shield printed wiring board having a high thickness can be obtained.
 すなわち、本発明は、ベース絶縁基材上に信号配線とグランド配線及び第一絶縁保護層が設けられたプリント配線板用のシールドフィルムであって、
前記第一絶縁保護層上の全面に積層された導電性接着剤層と、
前記導電性接着剤層上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層と、
前記銅めっき層上に導電性インクを用いて形成した層(A-1)と、
前記導電性接着剤層上の前記銅めっき層の開口内部に、導電性インクを用いて形成した層(A-2)と、
前記導電性接着剤層、前記銅めっき層、前記層(A-1)及び前記層(A-2)上に第二絶縁保護層とを有することを特徴とするシールドフィルム及びこのシールドフィルムを有するシールドプリント配線板に関するものである。また、前記シールドフィルム及びシールドプリント配線板の製造方法に関するものである。
That is, the present invention is a shield film for a printed wiring board in which signal wiring, ground wiring, and a first insulating protective layer are provided on a base insulating base material,
A conductive adhesive layer laminated on the entire surface of the first insulating protective layer;
A copper plating layer patterned with a film thickness of 0.5 to 20 μm and an aperture ratio of 40 to 95% on the conductive adhesive layer;
A layer (A-1) formed using a conductive ink on the copper plating layer;
A layer (A-2) formed using a conductive ink inside the opening of the copper plating layer on the conductive adhesive layer;
A shield film comprising the conductive adhesive layer, the copper plating layer, the layer (A-1), and a second insulating protective layer on the layer (A-2), and the shield film The present invention relates to a shield printed wiring board. Moreover, it is related with the manufacturing method of the said shield film and a shield printed wiring board.
 本発明のシールドフィルム及びシールドプリント配線板は、高い周波数で使用するプリント配線板に求められるインピーダンスの制御に関し、信号配線のパターン幅のみで制御するのではなく、シールドフィルム側の銅めっき層パターンの開口率をインピーダンス制御の1つの因子とすることで、信号配線の線幅の自由度を維持しながらインピーダンスの整合を取ることができる。従って、例えば、携帯電話、ノート型パソコン、スマートフォン、タブレット端末、ウェアラブルデバイス、デジタルスチルカメラ、デジタルビデオカメラなどの電子機器の内部で使用されるシールドプリント配線板として好適に使用することができる。 The shield film and shield printed wiring board of the present invention are related to the impedance control required for a printed wiring board used at a high frequency, and are not controlled only by the pattern width of the signal wiring, but the copper plating layer pattern on the shield film side. By making the aperture ratio one factor of impedance control, impedance matching can be achieved while maintaining the freedom of the line width of the signal wiring. Therefore, for example, it can be suitably used as a shield printed wiring board used inside an electronic device such as a mobile phone, a notebook computer, a smartphone, a tablet terminal, a wearable device, a digital still camera, and a digital video camera.
 さらには、本発明のシールドフィルムは、薄型とすることが可能であることから、近年進んでいるスマートフォン、タブレット端末の薄型化にも対応可能である。 Furthermore, since the shield film of the present invention can be made thin, it can cope with the thinning of smartphones and tablet terminals that have been progressing in recent years.
図1は、本発明のシールドプリント配線板の断面図である。FIG. 1 is a cross-sectional view of a shielded printed wiring board according to the present invention. 図2は、本発明のシールドプリント配線板の断面図で、第二絶縁保護層と導電性インクを用いて形成した層との間に高分子層を設けたものである。FIG. 2 is a cross-sectional view of the shield printed wiring board of the present invention, in which a polymer layer is provided between a second insulating protective layer and a layer formed using conductive ink. 図3は、本発明のシールドプリント配線板の断面図で、第二絶縁保護層と導電性インクを用いて形成した層との間に高分子層を設け、導電性インクを用いて形成した層の高分子層と接している面と反対面に無電解銅めっき層を設けたものである。FIG. 3 is a cross-sectional view of the shield printed wiring board of the present invention, in which a polymer layer is provided between the second insulating protective layer and a layer formed using conductive ink, and the layer is formed using conductive ink. An electroless copper plating layer is provided on the surface opposite to the surface in contact with the polymer layer. 図4は、本発明のシールドプリント配線板の導電性接着剤層側から見た銅めっき層のパターンと導電性インク層または無電解銅めっき層のパターンの平面図である。FIG. 4 is a plan view of a pattern of a copper plating layer and a pattern of a conductive ink layer or an electroless copper plating layer as viewed from the conductive adhesive layer side of the shield printed wiring board of the present invention. 図5は、本発明のシールドプリント配線板の導電性接着剤層側から見た銅めっき層のパターンと導電性インク層または無電解銅めっき層のパターンの斜視図である。FIG. 5 is a perspective view of a pattern of a copper plating layer and a pattern of a conductive ink layer or an electroless copper plating layer as seen from the conductive adhesive layer side of the shield printed wiring board of the present invention. 図6は、本発明のシールドプリント配線板を実施例1で作製した際に、導電性インクで印刷したパターンの平面図である。FIG. 6 is a plan view of a pattern printed with conductive ink when the shield printed wiring board of the present invention was produced in Example 1. FIG.
 本発明のシールドフィルムは、ベース絶縁基材上に信号配線とグランド配線及び第一絶縁保護層が設けられたプリント配線板用のシールドフィルムであって、
前記第一絶縁保護層上の全面に積層された導電性接着剤層と、
前記導電性接着剤層上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層と、
前記銅めっき層上に導電性インクを用いて形成した層(A-1)と、
前記導電性接着剤層上の前記銅めっき層の開口内部に、導電性インクを用いて形成した層(A-2)と、
前記導電性接着剤層、前記銅めっき層、前記層(A-1)及び前記層(A-2)上に第二絶縁保護層とを有するものである。
The shield film of the present invention is a shield film for a printed wiring board in which a signal wiring, a ground wiring, and a first insulating protective layer are provided on a base insulating base material,
A conductive adhesive layer laminated on the entire surface of the first insulating protective layer;
A copper plating layer patterned with a film thickness of 0.5 to 20 μm and an aperture ratio of 40 to 95% on the conductive adhesive layer;
A layer (A-1) formed using a conductive ink on the copper plating layer;
A layer (A-2) formed using a conductive ink inside the opening of the copper plating layer on the conductive adhesive layer;
A second insulating protective layer is provided on the conductive adhesive layer, the copper plating layer, the layer (A-1), and the layer (A-2).
 前記ベース絶縁基材は、プリント配線板の基材となるものである。前記ベース絶縁基材の材質としては、例えば、ポリイミド、ポリアミドイミド、ポリアミド、ポリエチレンテレフタレート等のポリエステル樹脂、ポリエチレンナフタレート、ポリカーボネート、ABS(アクリロニトリル-ブタジエン-スチレン)樹脂、ポリメチルメタクリレート等のアクリル樹脂、フェノール樹脂、ポリフッ化ビニリデン等のフッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレン、ポリプロピレン、ポリウレタン、LCP(液晶ポリマー)、PEEK(ポリエーテルエーテルケトン)樹脂、PEI(ポリエーテルイミド)樹脂、PPS(ポリフェニレンサルファイド)樹脂、PSF(ポリサルフォン)樹脂、PES(ポリエーテルサルフォン)樹脂、ポリアリレート樹脂、PBT(ポリブチレンテレフタレート)樹脂、シリコーン樹脂、不飽和ポリエステル樹脂、ポリアセタール、ナイロン、セラミックス、アルミナ、ムライト、ステアタイト、フォルステライト、ジルコニア、ガラス、ガラス・エポキシ樹脂、ガラスポリイミド、紙フェノール、セルロースナノファイバー等が挙げられる。 The base insulating base material is a base material for a printed wiring board. Examples of the material of the base insulating base material include, for example, polyester resins such as polyimide, polyamideimide, polyamide, and polyethylene terephthalate, polyethylene naphthalate, polycarbonate, ABS (acrylonitrile-butadiene-styrene) resin, acrylic resin such as polymethyl methacrylate, Fluorine resin such as phenol resin, polyvinylidene fluoride, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyethylene, polypropylene, polyurethane, LCP (liquid crystal polymer), PEEK (polyether ether ketone) resin, PEI (polyether imide) resin , PPS (polyphenylene sulfide) resin, PSF (polysulfone) resin, PES (polyethersulfone) resin, polyarylate resin, PBT ( Ribbylene terephthalate) resin, silicone resin, unsaturated polyester resin, polyacetal, nylon, ceramics, alumina, mullite, steatite, forsterite, zirconia, glass, glass / epoxy resin, glass polyimide, paper phenol, cellulose nanofiber, etc. Can be mentioned.
 また、前記ベース絶縁基材としては、例えば、ポリエステル繊維、ポリアミド繊維、アラミド繊維等の合成繊維;綿、麻等の天然繊維などからなる基材を用いることもできる。前記繊維には、予め加工が施されていてもよい。 As the base insulating base material, for example, a base material made of synthetic fibers such as polyester fiber, polyamide fiber, and aramid fiber; natural fibers such as cotton and hemp can be used. The fibers may be processed in advance.
 前記ベース絶縁基材としては、後述する本発明のシールドプリント配線板が、折り曲げ可能な柔軟性を求められる用途に用いられる場合、柔軟でフレキシブルな支持体を用いることが好ましい。具体的には、フィルムまたはシート状の支持体を用いることが好ましい。 As the base insulating substrate, it is preferable to use a flexible and flexible support when the shield printed wiring board of the present invention to be described later is used for applications that require bending flexibility. Specifically, it is preferable to use a film or sheet-like support.
 フィルムまたはシート状のベース絶縁基材としては、例えば、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマー(LCP)フィルム等が挙げられる。 Examples of the film or sheet-like base insulating base material include a polyethylene terephthalate film, a polyimide film, a polyethylene naphthalate film, and a liquid crystal polymer (LCP) film.
 また、前記ベース絶縁基材は、後述する信号配線やグランド配線との密着性を向上するため、必要に応じて、その表面をサンドブラスト法、溶剤処理法等による表面の凹凸化処理、電気的処理(コロナ放電処理、大気圧プラズマ処理)、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線・電子線照射処理、酸化処理等により処理をしたものを使用することができる。 In addition, the base insulating base material improves the adhesion with signal wiring and ground wiring, which will be described later, so that the surface is roughened by sandblasting, solvent treatment, etc. (Corona discharge treatment, atmospheric pressure plasma treatment), chromic acid treatment, flame treatment, hot air treatment, ozone / ultraviolet ray / electron beam irradiation treatment, oxidation treatment, etc. can be used.
 前記ベース絶縁基材の形状がフィルム状またはシート状の場合、フィルム状またはシート状の支持体の厚さは、通常、1~5,000μm程度であることが好ましく、1~300μm程度の厚さであることがより好ましい。また、本発明の導電性パターンをフレキシブルプリント基板等の屈曲性が求められるものに用いる場合には、前記ベース絶縁基材として、1~200μm程度の厚さのフィルム状のものを用いることが好ましい。 When the shape of the base insulating substrate is a film or sheet, the thickness of the film or sheet support is preferably about 1 to 5,000 μm, and preferably about 1 to 300 μm. It is more preferable that When the conductive pattern of the present invention is used for a flexible printed circuit board or the like that requires flexibility, it is preferable to use a film-like film having a thickness of about 1 to 200 μm as the base insulating base material. .
 前記ベース絶縁基材としては、後述する信号配線やグランド配線を形成するために、市販の銅張基材を使用することができる。銅張基材を使用する場合、銅張基材上にレジスト材を設け、フォトマスクでパターンを露光した後、エッチング処理で配線部以外の銅を取り除いて配線パターンを形成することができる。 As the base insulating base material, a commercially available copper-clad base material can be used in order to form signal wiring and ground wiring described later. When using a copper clad base material, after providing a resist material on a copper clad base material and exposing a pattern with a photomask, copper other than a wiring part can be removed by an etching process to form a wiring pattern.
 また、信号配線やグランド配線は、前述の銅を主成分とした配線が使用できるとともに、その他の導電性物質で構成されていても良く、例えば、銀を主体とする導電性インクを印刷して形成した配線パターンを使用することも可能である。また、この導電性インクのパターン上に銅めっきやニッケルめっき等で厚膜化して配線とすることもできる。 The signal wiring and ground wiring can be made of the above-described copper-based wiring, and may be composed of other conductive materials, for example, by printing conductive ink mainly composed of silver. It is also possible to use the formed wiring pattern. Further, the conductive ink pattern can be made into a wiring by thickening it by copper plating, nickel plating or the like.
 本発明のシールドプリント配線板は、信号配線とグランド配線の上に第一絶縁保護層が設けられる。この第一絶縁保護層としては、ポリイミドフィルム等の片面に接着剤を塗布したものや、感光性カバーレイフィルム等の感光性を有しており露光現像によりパターンが形成できるものや、液状カバーレイ、感光性液状カバーレイ、ソルダーレジスト等の液状の材料を塗工して絶縁保護層を形成することもできる。 The shield printed wiring board of the present invention is provided with a first insulating protective layer on the signal wiring and the ground wiring. Examples of the first insulating protective layer include a polyimide film or the like coated with an adhesive, a photosensitive coverlay film or the like having a photosensitivity and capable of forming a pattern by exposure and development, a liquid coverlay. Alternatively, an insulating protective layer can be formed by applying a liquid material such as a photosensitive liquid coverlay or a solder resist.
 次に、本発明のシールドフィルムは、第一絶縁保護層上の全面に積層される導電性接着剤層と、前記導電性接着剤層上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層と、前記銅めっき層上に導電性インクを用いて形成した層(A-1)と、前記導電性接着剤層上の前記銅めっき層の開口内部に、導電性インクを用いて形成した層(A-2)と、第二絶縁保護層を有することを特徴とするシールドフィルムである。 Next, the shield film of the present invention comprises a conductive adhesive layer laminated on the entire surface of the first insulating protective layer, a film thickness of 0.5 to 20 μm, and an aperture ratio of 40 to 95 on the conductive adhesive layer. A copper plating layer patterned with%, a layer (A-1) formed using a conductive ink on the copper plating layer, and an opening inside the copper plating layer on the conductive adhesive layer, A shield film comprising a layer (A-2) formed using a conductive ink and a second insulating protective layer.
 前記導電性接着剤層は、導電性物質を含有する接着性樹脂からなり、導電性物質としては、例えば、銅、銀、ニッケル、アルミニウム等の金属粉や金属ウィスカー、銅粉に銀めっきを施した銀コート銅粉、ニッケル粉に銀めっきを施した銀コートニッケル粉、ニッケル粉に金めっきを施した金コートニッケル粉、カーボン、樹脂粒子やガラスビーズに金属めっきを施したフィラー等が挙げられる。これらの導電性物質は、1種で用いることも2種以上併用することもできる。 The conductive adhesive layer is made of an adhesive resin containing a conductive substance. Examples of the conductive substance include metal plating such as copper, silver, nickel, and aluminum, metal whiskers, and silver plating on copper powder. Silver-coated copper powder, silver-coated nickel powder obtained by applying silver plating to nickel powder, gold-coated nickel powder obtained by applying gold plating to nickel powder, fillers obtained by applying metal plating to carbon, resin particles and glass beads, etc. . These conductive materials can be used alone or in combination of two or more.
 前記接着性樹脂は、スチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ポリエチレンやポリプロピレン等のポリオレフィン樹脂、アミド樹脂、アミドイミド樹脂、スチレン-ブタジエン樹脂、アクリロニトリル-ブタジエン樹脂、(メタ)アクリル-ブタジエン樹脂、(メタ)アクリル樹脂、ウレタン樹脂等の熱可塑性樹脂;フェノール樹脂、エポキシ樹脂、メラミン樹脂、アルキッド樹脂等の熱硬化性樹脂;ウレタンアクリレート、エポキシアクリレート、アクリルアクリレート等の紫外線硬化型樹脂などが挙げられる。これらの接着性樹脂は、1種で用いることも2種以上併用することもできる。 The adhesive resin includes styrene resin, vinyl acetate resin, polyester resin, polyolefin resin such as polyethylene and polypropylene, amide resin, amideimide resin, styrene-butadiene resin, acrylonitrile-butadiene resin, (meth) acryl-butadiene resin, (meth ) Thermoplastic resins such as acrylic resins and urethane resins; Thermosetting resins such as phenol resins, epoxy resins, melamine resins, and alkyd resins; UV curable resins such as urethane acrylates, epoxy acrylates, and acrylic acrylates. These adhesive resins can be used alone or in combination of two or more.
 本発明のシールドフィルムは、前記導電性接着剤層上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層を有する。前記銅めっき層のパターンとしては、その形状には特に制限はないが、要求されるシールド性、制御するインピーダンス等に応じて適宜選択することができる。前記銅めっき層の具体的なパターンとしては、メッシュ状のパターンが好ましく、開口部の形状は、正三角形、二等辺三角形、直角三角形等の三角形;正方形、長方形、菱形、平行四辺形、台形等の四角形;(正)五角形、(正)六角形、(正)八角形、(正)十二角形等の(正)n角形(nは5以上の整数);円、楕円、星形などの幾何学図形が挙げられる。開口部は、等間隔で配置されていることが、電磁波のシールド性に優れるため好ましい。また、パターンの開口率は40~95%の範囲とすることが好ましい。開口率は、シールドプリント配線板のインピーダンスを制御する上で重要な因子となるが、開口率が40%未満の場合、シールドプリント配線板の信号配線の線幅を調整することなくインピーダンスを制御できる範囲が小さくなり、開口率を95%以下とすることで、シールドプリント配線板の信号線のインピーダンスを所望の値とし、かつ、キャパシタンスを小さくして波形の鈍化を防止することができる。なお、本発明における開口率とは、前記銅めっき層において、銅めっき層が無い部分を開口部とした際の開口率である。また、銅めっき層の開口内部に位置する導電性インクを用いて形成した層(A-2)は、開口内部の非開口部といい、開口内部パターンということもある。 The shield film of the present invention has a copper plating layer patterned with a film thickness of 0.5 to 20 μm and an aperture ratio of 40 to 95% on the conductive adhesive layer. The pattern of the copper plating layer is not particularly limited, but can be appropriately selected according to required shielding properties, impedance to be controlled, and the like. The specific pattern of the copper plating layer is preferably a mesh pattern, and the shape of the opening is a triangle such as a regular triangle, an isosceles triangle, a right triangle; a square, a rectangle, a rhombus, a parallelogram, a trapezoid, and the like. (Positive) pentagons, (positive) hexagons, (positive) octagons, (positive) dodecagons, etc. (positive) n-gons (n is an integer greater than or equal to 5); circles, ellipses, stars, etc. Examples include geometric figures. It is preferable that the openings are arranged at equal intervals because of excellent shielding properties against electromagnetic waves. Further, the aperture ratio of the pattern is preferably in the range of 40 to 95%. The aperture ratio is an important factor in controlling the impedance of the shield printed wiring board. When the aperture ratio is less than 40%, the impedance can be controlled without adjusting the line width of the signal wiring of the shield printed wiring board. By reducing the range and setting the aperture ratio to 95% or less, the impedance of the signal line of the shield printed wiring board can be set to a desired value, and the capacitance can be reduced to prevent the waveform from being blunted. In addition, the aperture ratio in this invention is an aperture ratio when the part which does not have a copper plating layer in the said copper plating layer is made into an opening part. Further, the layer (A-2) formed using the conductive ink located inside the opening of the copper plating layer is referred to as a non-opening portion inside the opening, and may be referred to as an opening internal pattern.
 前記銅めっき層の膜厚は0.5~20μmの範囲である。前記銅めっき層の膜厚を0.2μm以上とすることで、シールドプリント配線板の信号線のインピーダンスを所望の値とし、かつ、キャパシタンスを小さくして波形の鈍化を防止することができる。前記銅めっき層の膜厚が20μmを超えるとシールドプリント配線板自体を薄型化するという要求を満たすことが難しくなるとともに、フレキシブルプリント配線板として使用する場合においては、屈曲性が大幅に低下する問題がある。さらに、銅めっき層の膜厚は、0.5~8μmの範囲とすることが好ましい。 The film thickness of the copper plating layer is in the range of 0.5 to 20 μm. By setting the thickness of the copper plating layer to 0.2 μm or more, the impedance of the signal line of the shield printed wiring board can be set to a desired value, and the capacitance can be reduced to prevent the waveform from being blunted. When the thickness of the copper plating layer exceeds 20 μm, it becomes difficult to satisfy the requirement of thinning the shield printed wiring board itself, and the flexibility is greatly reduced when used as a flexible printed wiring board. There is. Further, the thickness of the copper plating layer is preferably in the range of 0.5 to 8 μm.
 前記銅めっき層の形成方法としては、銅箔から開口部のパターンをエッチング処理で取り除く方法が挙げられるが、この方法では製造方法が複雑となることや、銅めっき層を薄膜化しにくい問題がある。そこで、本発明では、前記銅めっき層を所望とする開口率でパターン化することが容易で、インピーダンスの制御における設計の自由度が高くなることから、後述する導電性インクを用いて形成した層(A-1)でパターンを作製した後、その上に前記銅めっき層を形成する。 Examples of the method of forming the copper plating layer include a method of removing the pattern of the opening from the copper foil by etching, but this method has a problem that the manufacturing method is complicated and the copper plating layer is difficult to be thinned. . Therefore, in the present invention, the copper plating layer can be easily patterned with a desired aperture ratio, and the degree of freedom in design in controlling the impedance is increased. Therefore, a layer formed using a conductive ink described later. After producing the pattern in (A-1), the copper plating layer is formed thereon.
 前記導電性インクは、上記の通り銅めっき層の下地としてパターンを作製するために使用されるが、その上に形成する銅めっき層との密着性や、銅めっき時のめっき析出性に優れることから、導電性物質(a2)として金属ナノ粒子を含有するものが好ましい。さらに、前記金属ナノ粒子は、後述する第二絶縁保護層との密着性に優れることから、高分子分散剤により分散された金属ナノ粒子であることが好ましい。 The conductive ink is used for producing a pattern as a base of a copper plating layer as described above, and is excellent in adhesion to a copper plating layer formed on the copper plating layer and plating deposition at the time of copper plating. Therefore, those containing metal nanoparticles as the conductive substance (a2) are preferable. Furthermore, since the said metal nanoparticle is excellent in adhesiveness with the 2nd insulating protective layer mentioned later, it is preferable that it is the metal nanoparticle disperse | distributed with the polymer dispersing agent.
 前記高分子分散剤は、金属ナノ粒子に配位する官能基を有する高分子が好ましい。前記官能基としては、例えば、カルボキシル基、アミノ基、シアノ基、アセトアセトキシ基、リン原子含有基、チオール基、チオシアナト基、グリシナト基等が挙げられる。 The polymer dispersant is preferably a polymer having a functional group coordinated to the metal nanoparticles. Examples of the functional group include a carboxyl group, an amino group, a cyano group, an acetoacetoxy group, a phosphorus atom-containing group, a thiol group, a thiocyanato group, and a glycinato group.
 前記金属ナノ粒子としては、遷移金属またはその化合物が挙げられ、前記遷移金属の中でもイオン性の遷移金属が好ましい。前記イオン性の遷移金属としては、例えば、銅、銀、金、ニッケル、パラジウム、白金、コバルト等の金属やこれら金属の複合体が挙げられる。これらの金属ナノ粒子は、1種で用いることも2種以上併用することもできる。また、これらの金属ナノ粒子の中でも、特に酸化劣化などの取り扱い上の問題点が少ないことやコストの面から、銀ナノ粒子が好ましい。 Examples of the metal nanoparticles include a transition metal or a compound thereof, and an ionic transition metal is preferable among the transition metals. Examples of the ionic transition metal include metals such as copper, silver, gold, nickel, palladium, platinum, and cobalt, and composites of these metals. These metal nanoparticles can be used alone or in combination of two or more. Among these metal nanoparticles, silver nanoparticles are preferable from the viewpoints of handling problems such as oxidative degradation and cost.
 また、前記導電性インクに含まれる導電性物質(a2)は、金属ナノ粒子に代えて、めっき核剤を用いることもできる。その場合には、前記遷移金属の酸化物、有機物によって表面被覆された金属等を使用することができる。これらのめっき核剤は、1種で用いることも2種以上併用することもできる。 In addition, the conductive substance (a2) contained in the conductive ink can use a plating nucleating agent in place of the metal nanoparticles. In that case, an oxide of the transition metal, a metal whose surface is coated with an organic substance, or the like can be used. These plating nucleating agents can be used alone or in combination of two or more.
 前記遷移金属の酸化物は、通常、不活性(絶縁)な状態であるが、例えば、ジメチルアミノボラン等の還元剤を用いて処理することによって金属を露出させ、活性(導電性)を付与することができる。 The transition metal oxide is usually in an inactive (insulating) state. For example, the metal is exposed by treatment with a reducing agent such as dimethylaminoborane to impart activity (conductivity). be able to.
 また、前記有機物によって表面被覆された金属としては、乳化重合法等によって形成した樹脂粒子(有機物)中に金属を内在させたものが挙げられる。これらは、通常、不活性(絶縁)な状態であるが、例えば、レーザー等を用いて前記有機物を除去することによって、金属を露出させ、活性(導電性)を付与することできる。 Further, examples of the metal whose surface is coated with the organic substance include those in which a metal is contained in resin particles (organic substance) formed by an emulsion polymerization method or the like. These are usually in an inactive (insulating) state. However, for example, by removing the organic substance using a laser or the like, the metal can be exposed to impart activity (conductivity).
 前記導電性物質(a2)としては、1~100nm程度の平均粒子径を有する粒子状のものを使用することが好ましく、1~50nmの平均粒子径を有するものを使用することが、マイクロメートルオーダーの平均粒子径を有する導電性物質を用いる場合と比較して、微細な導電性パターンが形成でき、後述する焼成後の抵抗値をより低下できることからより好ましい。なお、本発明において、平均粒子径は、前記導電性物質(a2)を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA」を用いることができる。 The conductive substance (a2) is preferably in the form of particles having an average particle diameter of about 1 to 100 nm, preferably having an average particle diameter of 1 to 50 nm. Compared to the case of using a conductive material having an average particle size of 1, a fine conductive pattern can be formed, and the resistance value after firing described later can be further reduced, which is more preferable. In the present invention, the average particle diameter is a volume average value measured by a dynamic light scattering method after diluting the conductive substance (a2) with a dispersion good solvent. For this measurement, “Nanotrack UPA” manufactured by Microtrack Corporation can be used.
 本発明のシールドフィルムは、前記パターン化された銅めっき層の開口内部に、導電性インクを用いて形成した層(A-2)を有する。前記層(A-2)は、銅めっき層の開口内部を埋めて電磁波の遮蔽性を高める機能を発揮する。前記層(A-2)のパターンとしては、その形状には特に制限はないが、要求される電磁波シールド効果に応じて適宜選択することができ、電磁波の遮蔽性能を高くするためには、前記銅めっき層の開口面積の15~95%の範囲に前記層(A-2)を形成することが好ましく、40~95%の範囲がより好ましい。前記層(A-2)は、前記銅めっき層と接触していても良いが、前記銅めっき層を後述する電解銅めっき法で製造する場合は、前記層(A-2)は銅めっき層と接触していないことが好ましい。 The shield film of the present invention has a layer (A-2) formed using a conductive ink inside the opening of the patterned copper plating layer. The layer (A-2) exhibits a function of enhancing the shielding property of electromagnetic waves by filling the opening of the copper plating layer. The pattern of the layer (A-2) is not particularly limited in shape, but can be appropriately selected according to the required electromagnetic shielding effect. In order to enhance the electromagnetic shielding performance, The layer (A-2) is preferably formed in the range of 15 to 95% of the opening area of the copper plating layer, and more preferably in the range of 40 to 95%. The layer (A-2) may be in contact with the copper plating layer, but when the copper plating layer is produced by an electrolytic copper plating method described later, the layer (A-2) is a copper plating layer. Preferably it is not in contact with.
 前記層(A-2)の具体的なパターン形状としては、例えば、正三角形、二等辺三角形、直角三角形等の三角形;正方形、長方形、菱形、平行四辺形、台形等の四角形;(正)五角形、(正)六角形、(正)八角形、(正)十二角形等の(正)n角形(nは5以上の整数);円、楕円、星形等の幾何学図形;渦巻き形、リング形、コイル形、螺旋形などの形状が挙げられる。 Specific pattern shapes of the layer (A-2) include, for example, triangles such as regular triangles, isosceles triangles, and right triangles; squares such as squares, rectangles, rhombuses, parallelograms, and trapezoids; (positive) pentagons , (Positive) hexagons, (positive) octagons, (positive) n-gons such as dodecagons (n is an integer of 5 or more); geometric shapes such as circles, ellipses, and stars; spirals; Examples of the shape include a ring shape, a coil shape, and a spiral shape.
 前記層(A-2)の膜厚は、0.02~2μmの範囲が好ましい。前記層(A-2)の膜厚を0.02μm以上とすると、シールドプリント配線板の電磁波シールド効果を高めることができる。前記層(A-2)の膜厚を2μm未満とすることで、前記銅めっき層との膜厚に差を設けることができ、前記層(A-2)の膜厚を前記銅めっき層の膜厚より薄くすると、シールドプリント配線板のインピーダンスを所望の値に調整することが容易になるため好ましい。 The film thickness of the layer (A-2) is preferably in the range of 0.02 to 2 μm. When the film thickness of the layer (A-2) is 0.02 μm or more, the electromagnetic wave shielding effect of the shield printed wiring board can be enhanced. By setting the film thickness of the layer (A-2) to less than 2 μm, it is possible to provide a difference in film thickness from the copper plating layer. A thickness smaller than the film thickness is preferable because it becomes easy to adjust the impedance of the shield printed wiring board to a desired value.
 前記銅めっき層の膜厚は、前記層(A-2)の膜厚の3~100倍とすることが好ましい。すなわち開口内部の金属層の膜厚を薄くし、開口パターン部の銅めっき層を厚くすることで、インピーダンスを所望の値とし、かつ、キャパシタンスを小さくして波形の鈍化を防止することができ、さらに電磁波の遮蔽も両立できる。 The film thickness of the copper plating layer is preferably 3 to 100 times the film thickness of the layer (A-2). That is, by reducing the film thickness of the metal layer inside the opening and increasing the copper plating layer of the opening pattern part, the impedance can be set to a desired value, and the capacitance can be reduced to prevent the waveform from being blunted. Furthermore, electromagnetic wave shielding can be achieved.
 前記層(A-2)を構成する導電性インクとしては、前記層(A-1)と同じものを使用することができる。 As the conductive ink constituting the layer (A-2), the same ink as the layer (A-1) can be used.
 前記層(A-2)は、導電性インクのみから形成されていても良いが、導電性インクの上に金属めっき層が形成されていても良い。金属めっき層としては、特に制限はないが、銅、ニッケル、金、銀、白金、パラジウム、クロム、スズ等が挙げられる。前記層(A-2)の上にめっきを施す方法としては、無電解めっき法で実施することができる。 The layer (A-2) may be formed of only conductive ink, but a metal plating layer may be formed on the conductive ink. Although there is no restriction | limiting in particular as a metal plating layer, Copper, nickel, gold | metal | money, silver, platinum, palladium, chromium, tin etc. are mentioned. As a method for plating the layer (A-2), an electroless plating method can be used.
 前記無電解めっき法は、例えば、前記層(A-2)のパターンを構成する導電性物質に、無電解めっき液を接触させることで、無電解めっき液中に含まれる金属を析出させ金属皮膜からなる無電解めっき層(被膜)を形成する方法である。 In the electroless plating method, for example, the metal contained in the electroless plating solution is deposited by bringing the electroless plating solution into contact with the conductive material constituting the pattern of the layer (A-2). It is the method of forming the electroless-plating layer (coating) which consists of.
 前記無電解めっき液としては、例えば、金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal, a reducing agent, and a solvent such as an aqueous medium or an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、またはこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等);エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものなどを使用することができる。 In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid; malic acid, lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid, citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, glutamic acid; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc. Organic acids such as aminopolycarboxylic acid compounds or soluble salts of these organic acids (sodium salts, potassium salts, ammonium salts, etc.); complexing agents such as amine compounds such as ethylenediamine, diethylenetriamine, triethylenetetramine, etc. And the like can be used ones.
 前記無電解めっき液は、20~98℃の範囲で使用することが好ましい。 The electroless plating solution is preferably used in the range of 20 to 98 ° C.
 前記導電性インクを用いて形成した前記層(A-1)及び前記層(A-2)は、本発明の製造方法では後述する第二絶縁保護層の上に形成されるが、後述する第二絶縁保護層の表面と前記層(A-1)及び前記層(A-2)との密着性をより向上するため、この第二絶縁保護層を形成する高分子は、後述する反応性官能基[Y]を有しているものが好ましい。 The layer (A-1) and the layer (A-2) formed using the conductive ink are formed on the second insulating protective layer described later in the manufacturing method of the present invention. In order to further improve the adhesion between the surface of the two insulating protective layers and the layer (A-1) and the layer (A-2), the polymer forming the second insulating protective layer is a reactive functional group described later. Those having the group [Y] are preferred.
 また、後述する第二絶縁保護層を形成する高分子が、後述する反応性官能基[Y]を有していない場合でも、第二絶縁保護層の表面に高分子を塗布、乾燥して高分子層(B)を設けた後、その上に前記層(A-1)及び前記層(A-2)を形成することで、後述する第二絶縁保護層の表面と前記層(A-1)及び前記層(A-2)との密着性をより向上することができる。また、前記高分子層(B)を形成する高分子は、後述する反応性官能基[Y]を有しているものが好ましい。 Even when the polymer forming the second insulating protective layer described later does not have the reactive functional group [Y] described later, the polymer is applied to the surface of the second insulating protective layer, dried, and dried. After providing the molecular layer (B), the layer (A-1) and the layer (A-2) are formed thereon, whereby the surface of the second insulating protective layer described later and the layer (A-1) are formed. ) And the layer (A-2) can be further improved. The polymer forming the polymer layer (B) preferably has a reactive functional group [Y] described later.
 後述する反応性官能基[Y]を有する高分子層(B)を設ける場合には、前記導電性インクとしては、前記銅めっき層と後述する第二絶縁保護層との密着性をさらに向上させるため、反応性官能基[X]を有する化合物(a1)及び前記導電性物質(a2)を含有するものが好ましい。 When the polymer layer (B) having a reactive functional group [Y] described later is provided, the conductive ink further improves the adhesion between the copper plating layer and a second insulating protective layer described later. Therefore, what contains the compound (a1) which has reactive functional group [X], and the said electroconductive substance (a2) is preferable.
 前記化合物(a1)が有する反応性官能基[X]は、後述する反応性官能基[Y]との結合に関与するものであり、具体例としては、アミノ基、アミド基、アルキロールアミド基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセトキシ基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等を有する化合物、シルセスキオキサン化合物等が挙げられる。 The reactive functional group [X] possessed by the compound (a1) is involved in binding to the reactive functional group [Y] described later, and specific examples include an amino group, an amide group, and an alkylolamide group. , Carboxyl group, anhydrous carboxyl group, carbonyl group, acetoacetoxy group, epoxy group, alicyclic epoxy group, oxetane ring, vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group Etc., silsesquioxane compounds, and the like.
 特に、後述する第二絶縁保護層との密着性をより向上させるため、前記反応性官能基[X]が塩基性窒素原子含有基であることが好ましい。 In particular, the reactive functional group [X] is preferably a basic nitrogen atom-containing group in order to further improve the adhesion to the second insulating protective layer described later.
 前記塩基性窒素原子含有基を有する化合物中の塩基性窒素原子含有基としては、例えばイミノ基、1級アミノ基、2級アミノ基等が挙げられる。 Examples of the basic nitrogen atom-containing group in the compound having a basic nitrogen atom-containing group include an imino group, a primary amino group, and a secondary amino group.
 また、1分子中に複数の塩基性窒素原子含有基を有する化合物(a1)を用いることで、前記塩基性窒素原子含有基の一方は、前記層(A-1)及び前記層(A-2)のパターンを形成した際に、後述する第二絶縁保護層を形成する高分子、または前記高分子層(B)を形成する高分子が有する反応性官能基[Y]との結合に関与し、他方は、前記層(A-1)及び前記層(A-2)中に含まれる銀等の導電性物質(a2)との相互作用に寄与し、最終的に得られる前記銅めっき層と第二絶縁保護層との密着性をさらに向上できるため好ましい。 In addition, by using the compound (a1) having a plurality of basic nitrogen atom-containing groups in one molecule, one of the basic nitrogen atom-containing groups is converted into the layer (A-1) and the layer (A-2). ), The polymer that forms the second insulating protective layer described later, or the reactive functional group [Y] that the polymer that forms the polymer layer (B) has. The other contributes to the interaction with the conductive material (a2) such as silver contained in the layer (A-1) and the layer (A-2), and finally obtains the copper plating layer This is preferable because the adhesion to the second insulating protective layer can be further improved.
 前記塩基性窒素原子含有基を有する化合物(a1)は、前記導電性物質(a2)の分散安定性、及び後述する第二絶縁保護層との密着性をより向上できることから、ポリアルキレンイミン、または、オキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンが好ましい。 Since the compound (a1) having a basic nitrogen atom-containing group can further improve the dispersion stability of the conductive substance (a2) and the adhesion to the second insulating protective layer described later, a polyalkyleneimine, or A polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit is preferred.
 前記を有するポリアルキレンイミンとしては、ポリエチレンイミンとポリオキシアルキレンとが、直鎖状の結合したものであってもよく、前記ポリエチレンイミンからなる主鎖に対して、その側鎖に前記ポリオキシアルキレンがグラフトしたものであってもよい。 The polyalkyleneimine having the above may be a linear bond of polyethyleneimine and polyoxyalkylene, and the polyoxyalkylene is present in the side chain of the main chain composed of polyethyleneimine. May be grafted.
 前記ポリオキシアルキレン構造を有するポリアルキレンイミンの具体例としては、ポリエチレンイミンとポリオキシエチレンとのブロック共重合体、ポリエチレンイミンの主鎖中に存在するイミノ基の一部にエチレンオキサイドを付加反応させてポリオキシエチレン構造を導入したもの、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させたもの等が挙げられる。 Specific examples of the polyalkyleneimine having the polyoxyalkylene structure include a block copolymer of polyethyleneimine and polyoxyethylene, and an addition reaction of ethylene oxide with a part of imino group present in the main chain of polyethyleneimine. Examples thereof include those obtained by introducing a polyoxyethylene structure, those obtained by reacting an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin.
 前記ポリアルキレンイミンの市販品としては、株式会社日本触媒製の「エポミン(登録商標)PAOシリーズ」の「PAO2006W」、「PAO306」、「PAO318」、「PAO718」等が挙げられる。 Examples of commercially available products of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318”, “PAO718” and the like of “Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
 前記ポリアルキレンイミンの数平均分子量は、3,000~30,000の範囲が好ましい。 The number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
 前記化合物(a1)が有する反応性官能基[X]が、カルボキシル基、アミノ基、シアノ基、アセトアセトキシ基、リン原子含有基、チオール基、チオシアナト基、グリシナト基等である場合は、これらの官能基は金属ナノ粒子と配位する官能基としても機能するため、前記化合物(a1)は金属ナノ粒子の高分子分散剤としても用いることができる。 When the reactive functional group [X] of the compound (a1) is a carboxyl group, an amino group, a cyano group, an acetoacetoxy group, a phosphorus atom-containing group, a thiol group, a thiocyanato group, a glycinato group, etc. Since the functional group also functions as a functional group that coordinates with the metal nanoparticles, the compound (a1) can also be used as a polymer dispersant for the metal nanoparticles.
 前記導電性インクは、後述する各種印刷方式での印刷適性を付与するため、溶媒を用いて適正な粘度にすることが好ましい。前記溶媒としては、例えば、蒸留水、イオン交換水、純水、超純水等の水性媒体;アルコール溶剤、エーテル溶剤、ケトン溶剤、エステル溶剤等の有機溶剤が挙げられる。 The conductive ink preferably has an appropriate viscosity using a solvent in order to impart printability in various printing methods described later. Examples of the solvent include aqueous media such as distilled water, ion-exchanged water, pure water, and ultrapure water; and organic solvents such as alcohol solvents, ether solvents, ketone solvents, and ester solvents.
 前記アルコール溶剤またはエーテル溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、ターピネオール、ジヒドロターピネオール、2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol. , Tridecanol, tetradecanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, dihydroterpineol, 2-ethyl-1,3-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol , Dipropylene glycol, 1,2-butanediol, 1,3-butanedio 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, tetraethylene glycol Monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tripropylene glycol mono Chirueteru, and the like.
 前記ケトン溶剤としては、例えば、アセトン、シクロヘキサノン、メチルエチルケトン等が挙げられる。また、前記エステル溶剤としては、例えば、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等が挙げられる。さらに、その他の有機溶剤として、シクロヘキサン、トルエン、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼン等の非極性溶剤が挙げられ、他の溶媒と必要に応じて組み合わせて用いることができる。さらに、混合溶剤であるミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。 Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone, and the like. Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like. Furthermore, other organic solvents include nonpolar solvents such as cyclohexane, toluene, octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetralin, trimethylbenzene, etc. These solvents can be used in combination with the above as necessary. Furthermore, a solvent such as mineral spirit or solvent naphtha, which is a mixed solvent, can be used in combination.
 前記導電性インクは、例えば、前記高分子分散剤と、前記導電性物質と、必要に応じて前記溶媒とを混合することによって製造することができる。具体的には、ポリアルキレンイミン鎖と、親水性セグメントと、疎水性セグメントとを有する化合物を分散した媒体中に、予め調製した前記導電性物質のイオン溶液を加え、該金属イオンを還元することによって製造することができる。 The conductive ink can be produced, for example, by mixing the polymer dispersant, the conductive substance, and, if necessary, the solvent. Specifically, an ion solution of the conductive substance prepared in advance is added to a medium in which a compound having a polyalkyleneimine chain, a hydrophilic segment, and a hydrophobic segment is dispersed, and the metal ions are reduced. Can be manufactured by.
 また、前記導電性インクには、水性媒体、有機溶剤等の溶媒中における導電性物質の分散安定性、被塗布面への濡れ性を向上するために、必要に応じて、界面活性剤、消泡剤、レオロジー調整剤等を加えてもよい。 In addition, the conductive ink may contain a surfactant, an erasing agent, or the like, if necessary, in order to improve the dispersion stability of the conductive substance in a solvent such as an aqueous medium or an organic solvent and the wettability to the coated surface. Foaming agents, rheology modifiers, etc. may be added.
 本発明では後述する第二絶縁保護層の上に前記導電性インクを印刷して、前記層(A-1)及び前記層(A-2)からなるパターンを形成するが、前記導電性インクを印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、グラビアオフセット印刷法等が挙げられる。これらの印刷法の中でも、シールドプリント配線板のインピーダンスを制御するために銅めっき層のパターンを変更する場合において、パターンに応じた印刷版を作製する必要がなく、パターンの変更に容易に対応できるため、インクジェット印刷法が好ましい。 In the present invention, the conductive ink is printed on a second insulating protective layer to be described later to form a pattern comprising the layer (A-1) and the layer (A-2). Examples of the printing method include an inkjet printing method, a reverse printing method, a flexographic printing method, a screen printing method, a gravure printing method, and a gravure offset printing method. Among these printing methods, when changing the pattern of the copper plating layer in order to control the impedance of the shield printed wiring board, it is not necessary to prepare a printing plate corresponding to the pattern, and can easily cope with the pattern change. Therefore, the ink jet printing method is preferable.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを使用することができる。具体的には、「コニカミノルタEB100、XY100」(コニカミノルタIJ株式会社製)、「ダイマティックス・マテリアルプリンターDMP-3000、DMP-2831」(富士フィルム株式会社製)等が挙げられる。 As the ink jet printing method, what is generally called an ink jet printer can be used. Specific examples include “Konica Minolta EB100, XY100” (manufactured by Konica Minolta IJ Co., Ltd.), “Dimatics Material Printer DMP-3000, DMP-2831” (manufactured by Fuji Film Co., Ltd.), and the like.
 また、高精細な金属層のパターンを作製する場合には、細線の印刷精度に優れる反転印刷法が好ましい。 In addition, when producing a high-definition metal layer pattern, a reverse printing method that is excellent in fine line printing accuracy is preferable.
 反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記導電性インクを塗布し、非画線部が突出した版と接触させ、前記非画線部に対応する導電性インクを前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記第二絶縁保護層の上(表面)に転写させる方法が挙げられる。 As the reversal printing method, a letterpress reversal printing method and an intaglio reversal printing method are known.For example, the conductive ink is applied to the surface of various blankets, and is brought into contact with a plate from which a non-image portion protrudes. The pattern is formed on the surface of the blanket or the like by selectively transferring the conductive ink corresponding to the image area to the surface of the plate, and then the pattern is formed on the second insulating protective layer ( And a method of transferring to the surface).
 また、上記のように、後述する第二絶縁保護層の表面と前記層(A-1)及び前記層(A-2)との密着性をより向上する目的で高分子層(B)を設ける場合に、前記高分子層(B)を形成する高分子としては、例えば、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、ポリビニルアルコール、ポリビニルピロリドン等の各種樹脂と溶媒とを含有するものが挙げられる。 Further, as described above, the polymer layer (B) is provided for the purpose of further improving the adhesion between the surface of the second insulating protective layer, which will be described later, and the layer (A-1) and the layer (A-2). In this case, examples of the polymer that forms the polymer layer (B) include urethane resin, vinyl resin, urethane-vinyl composite resin, epoxy resin, imide resin, amide resin, melamine resin, phenol resin, polyvinyl alcohol, What contains various resins, such as polyvinylpyrrolidone, and a solvent is mentioned.
 前記高分子(B)として用いる樹脂の中でも、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂が好ましく、ポリエーテル構造を有するウレタン樹脂、ポリカーボネート構造を有するウレタン樹脂、ポリエステル構造を有するウレタン樹脂、アクリル樹脂、及び、ウレタン-アクリル複合樹脂からなる群より選ばれる1種以上の樹脂がより好ましい。また、ウレタン-アクリル複合樹脂は、密着性、導電性に優れた導電性パターンが得られるのでさらに好ましい。 Among the resins used as the polymer (B), urethane resin, vinyl resin, and urethane-vinyl composite resin are preferable. Urethane resin having a polyether structure, urethane resin having a polycarbonate structure, urethane resin having a polyester structure, and acrylic resin And one or more resins selected from the group consisting of urethane-acrylic composite resins are more preferable. A urethane-acrylic composite resin is more preferable because a conductive pattern having excellent adhesion and conductivity can be obtained.
 前記導電性インク中に前記反応性官能基[X]を有する化合物(a1)を含有する場合、前記高分子層(B)を形成する高分子は、反応性官能基[X]との反応性を有する官能基[Y]を有する化合物(b1)であることが好ましい。前記反応性官能基[Y]を有する化合物(b1)としては、例えば、アミノ基、アミド基、アルキロールアミド基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセトキシ基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等を有する化合物、シルセスキオキサン化合物などが挙げられる。 When the conductive ink contains the compound (a1) having the reactive functional group [X], the polymer forming the polymer layer (B) is reactive with the reactive functional group [X]. The compound (b1) having a functional group [Y] having Examples of the compound (b1) having the reactive functional group [Y] include an amino group, an amide group, an alkylolamide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetoxy group, an epoxy group, and an alicyclic epoxy. Group, oxetane ring, vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group-containing compound, silsesquioxane compound and the like.
 特に、前記導電性インク中の前記反応性官能基[X]を有する化合物(a1)が、前記塩基性窒素原子含有基を有する化合物(a1)の場合、前記高分子層(B)を形成する高分子は、反応性官能基[Y]として、カルボキシル基、カルボニル基、アセトアセトキシ基、エポキシ基、脂環エポキシ基、アルキロールアミド基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基であることが、最終的に得られる前記金属層と前記第二絶縁保護層との密着性を向上できるので好ましい。 In particular, when the compound (a1) having the reactive functional group [X] in the conductive ink is the compound (a1) having the basic nitrogen atom-containing group, the polymer layer (B) is formed. The polymer has a reactive functional group [Y] such as carboxyl group, carbonyl group, acetoacetoxy group, epoxy group, alicyclic epoxy group, alkylolamide group, isocyanate group, vinyl group, (meth) acryloyl group, allyl group. It is preferable that the adhesion between the finally obtained metal layer and the second insulating protective layer can be improved.
 前記高分子層(B)を形成する高分子を後述する第二絶縁保護層の表面に塗布する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式等が挙げられる。 Examples of the method for applying the polymer forming the polymer layer (B) to the surface of the second insulating protective layer described later include a gravure method, a coating method, a screen method, a roller method, a rotary method, and a spray method. Can be mentioned.
 また、後述する第二絶縁保護層の表面は、前記高分子層(B)との密着性をより向上するため、例えば、コロナ放電処理法等のプラズマ放電処理法;紫外線処理法等の乾式処理法;水、酸性またはアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていてもよい。 Further, the surface of the second insulating protective layer to be described later is improved in adhesion with the polymer layer (B), for example, plasma discharge treatment method such as corona discharge treatment method; dry treatment such as ultraviolet treatment method. Method: Surface treatment may be performed by a wet treatment method using water, an acidic or alkaline chemical solution, an organic solvent, or the like.
 前記高分子層(B)を形成する高分子を後述する第二絶縁保護層の表面に塗布した後、その塗布層に含まれる溶媒を除去する方法としては、例えば乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ支持体に悪影響を与えない範囲の温度に設定することが好ましい。 After applying the polymer forming the polymer layer (B) to the surface of the second insulating protective layer described later, as a method of removing the solvent contained in the coating layer, for example, using a dryer, A method of volatilizing the solvent is common. The drying temperature is preferably set to a temperature within which the solvent can be volatilized and does not adversely affect the support.
 前記高分子(B)を用いて形成する高分子(B)層の厚さは、前記第二絶縁保護層と前記金属層との密着性をより向上できることから、5~5,000nmの範囲が好ましく、10~500nmの範囲がより好ましい。 The thickness of the polymer (B) layer formed using the polymer (B) is in the range of 5 to 5,000 nm because the adhesion between the second insulating protective layer and the metal layer can be further improved. The range of 10 to 500 nm is more preferable.
 また、前記高分子(B)をそのまま前記第二絶縁保護層として使用することも可能であり、さらに、前記第二絶縁保護層に前記高分子(B)を混合して使用することも可能であるが、この場合、前記高分子(B)が前記第二絶縁保護層の前記導電性インクと接触する部分に存在する必要がある。 Further, the polymer (B) can be used as it is as the second insulating protective layer, and further, the polymer (B) can be mixed and used in the second insulating protective layer. In this case, the polymer (B) needs to be present in a portion of the second insulating protective layer in contact with the conductive ink.
 次に、前記導電性インクで、めっき下地としてのパターンを形成するために前記導電性インクを塗布した後に行う焼成工程は、前記導電性インク中に含まれる導電性物質同士を密着し接合することで導電性を有するめっき下地パターンを形成するために行う。前記焼成は、80~300℃の温度範囲で、1~200分程度行うことが好ましい。ここで、前記第二絶縁保護層との密着性に優れためっき下地パターンを得るためには、前記焼成の温度を100~200℃の範囲にすることがより好ましい。 Next, the baking step performed after applying the conductive ink to form a pattern as a plating base with the conductive ink is to adhere and bond the conductive substances contained in the conductive ink. In order to form a plating base pattern having conductivity. The firing is preferably performed at a temperature range of 80 to 300 ° C. for about 1 to 200 minutes. Here, in order to obtain a plating base pattern having excellent adhesion to the second insulating protective layer, it is more preferable that the firing temperature be in the range of 100 to 200 ° C.
 前記焼成は大気中で行っても良いが、導電性物質が酸化することを防止するため、焼成工程の一部または全部を還元雰囲気下で行ってもよい。 Although the firing may be performed in the air, part or all of the firing step may be performed in a reducing atmosphere in order to prevent the conductive material from being oxidized.
 また、前記焼成工程は、例えば、オーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ、光照射(フラッシュ照射装置)等を用いて行うことができる。 The baking step can be performed using, for example, an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwave, light irradiation (flash irradiation apparatus), or the like.
 上記のような方法により、前記導電性インクを用いて形成された前記層(A-1)及び前記層(A-2)からなるパターンは、前記パターン中に80~99.9質量%の範囲で導電性物質を含有し、0.1~20質量%の範囲で高分子分散剤を含有するものであることが好ましい。 The pattern composed of the layer (A-1) and the layer (A-2) formed using the conductive ink by the method as described above is in the range of 80 to 99.9% by mass in the pattern. The conductive material is preferably contained in a range of 0.1 to 20% by mass.
 前記導電性インクを用いて形成した前記層(A-1)及び前記層(A-2)の膜厚は、低抵抗で導電性に優れた導電性パターンを形成できることから、0.05~1μmの範囲が好ましい。 The film thickness of the layer (A-1) and the layer (A-2) formed using the conductive ink can form a conductive pattern having a low resistance and excellent conductivity. The range of is preferable.
 次に、本発明のシールドフィルム及びシールドプリント配線板では、シールドフィルム側の主導電層として、前記導電性インクを用いて形成した前記層(A-1)をめっき下地パターンとして、その上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層を有する。一方、前記特許文献2では、導電層として、導電性インキまたは導電性ペーストを基材フィルム上に所定のパターンで印刷する方法、金属箔にエッチング処理することで開口部を形成する方法、金属の蒸着またはスパッタリングにより所定のパターンの金属層を形成する方法により作製したもの、さらにはこのような導電層として、金網を使用することが開示されている。また、前記特許文献2では、導電層の素材は、金、銀、または銅等の金属及びその合金、または、導電性フィラー含有樹脂、導電性高分子等を使用することが好ましいことが開示されている。しかし、導電層の素材として、導電性インクまたは導電性ペーストとして、導電性フィラー含有樹脂を使用した場合は、導電層自体の導電性が乏しく、プリント配線板の信号線の伝送損失を悪化させることが知られている。また、金属箔にエッチング処理をすることで開口部を形成する方法では、製造工程が複雑となり、シールドプリント配線板が高価になることや、導電層の膜厚を任意に調整(薄膜化)することが困難となる。また、金属の蒸着またはスパッタリングにより所定のパターンの金属層を形成する方法では、導電層の膜厚が薄いものしか形成できず、さらに、開口部をパターン化する方法についても課題を有する。また、金属の金網を使用する方法では、導電層のパターンを細線化することが困難であり、開口部の面積を小さくすることに制約を受ける。本発明では、シールドフィルム側の導電層として、前記導電性インクでパターンを形成した前記層(A-1)をめっき下地とし、その上に銅めっきを行った銅めっき層を使用することで、前述の問題点を全て解決することができる。 Next, in the shield film and shield printed wiring board of the present invention, the layer (A-1) formed using the conductive ink is used as a main conductive layer on the shield film side as a plating base pattern, and a film is formed thereon. It has a copper plating layer patterned with a thickness of 0.5 to 20 μm and an aperture ratio of 40 to 95%. On the other hand, in Patent Document 2, as a conductive layer, a method of printing conductive ink or conductive paste in a predetermined pattern on a base film, a method of forming an opening by etching a metal foil, It is disclosed that a metal layer having a predetermined pattern is formed by vapor deposition or sputtering, and that a wire mesh is used as such a conductive layer. Patent Document 2 discloses that the material of the conductive layer is preferably a metal such as gold, silver, or copper and an alloy thereof, a conductive filler-containing resin, a conductive polymer, or the like. ing. However, when a conductive filler-containing resin is used as a conductive ink or conductive paste as the conductive layer material, the conductive layer itself is poorly conductive and may deteriorate the transmission loss of signal lines on the printed wiring board. It has been known. Moreover, in the method of forming the opening by etching the metal foil, the manufacturing process becomes complicated, the shield printed wiring board becomes expensive, and the thickness of the conductive layer is arbitrarily adjusted (thinned). It becomes difficult. Further, in the method of forming a metal layer having a predetermined pattern by metal vapor deposition or sputtering, only a thin conductive layer can be formed, and there is also a problem with a method of patterning openings. Further, in the method using a metal wire mesh, it is difficult to make the pattern of the conductive layer thin, and there is a restriction in reducing the area of the opening. In the present invention, as the conductive layer on the shield film side, the layer (A-1) having a pattern formed with the conductive ink is used as a plating base, and a copper plating layer obtained by performing copper plating thereon is used. All the above problems can be solved.
 前記銅めっき層の形成方法としては、例えば、電解めっき法、無電解めっき法等の湿式めっき法が挙げられ、これらのめっき法を2つ以上組み合わせて前記銅めっき層を形成してもよい。 Examples of the method for forming the copper plating layer include wet plating methods such as an electrolytic plating method and an electroless plating method, and the copper plating layer may be formed by combining two or more of these plating methods.
 前記めっき法の中でも、前記層(A-1)のパターンと、前記めっき法で形成した銅めっき層との密着性がより向上し、また、導電性に優れたパターンが得られることから、電解めっき法、無電解めっき法等の湿式めっき法が好ましく、生産性や得られる金属膜の力学的特性に優れることから、電解めっき法がより好ましい。また、開口部を有するパターンである前記層(A-1)の上のみに銅めっきを施す場合は、電解めっき法で実施すること好ましい。 Among the plating methods, the adhesion between the pattern of the layer (A-1) and the copper plating layer formed by the plating method is further improved, and a pattern having excellent conductivity can be obtained. A wet plating method such as a plating method or an electroless plating method is preferred, and an electrolytic plating method is more preferred because of excellent productivity and mechanical properties of the resulting metal film. Further, when copper plating is performed only on the layer (A-1) which is a pattern having an opening, it is preferable to carry out by an electrolytic plating method.
 前記電解めっき法は、例えば、前記層(A-1)を構成する金属、または、前記無電解処理によって形成された無電解めっき層(被膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記層(A-1)を構成する導電性物質の表面に析出させ、電解めっき層(金属被膜)を形成する方法である。 In the electrolytic plating method, for example, current is applied in a state where an electrolytic plating solution is in contact with the surface of the metal constituting the layer (A-1) or the electroless plating layer (coating) formed by the electroless treatment. As a result, a metal such as copper contained in the electrolytic plating solution is deposited on the surface of the conductive material constituting the layer (A-1) placed on the cathode to form an electrolytic plating layer (metal coating). It is a method to do.
 前記電解めっき液としては、例えば、銅の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing copper sulfide, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
 前記電解めっき液は、20~98℃の範囲で使用することが好ましい。 The electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
 前記電解めっき処理の方法は、無電解めっき法と比較して毒性の高い物質を用いることなく、作業性がよいため好ましい。また、電解銅めっきは、無電解銅めっきと比較して、めっき時間が短縮でき、めっきの膜厚の制御が容易であることから好ましい。さらに、電解銅めっきにより得られる銅めっき層は、力学的特性に優れ、折り曲げても破断し難い、優れたフレキシビリティーを有することから、フレキシブルプリント配線板に使用する場合、電解銅めっき法で形成した銅めっき層を用いることが好ましい。 The electrolytic plating treatment method is preferable because it has good workability without using a highly toxic substance as compared with the electroless plating method. Electrolytic copper plating is preferable because it can shorten the plating time and control the thickness of the plating as compared with electroless copper plating. Furthermore, the copper plating layer obtained by electrolytic copper plating has excellent mechanical properties, is difficult to break even when bent, and has excellent flexibility. It is preferable to use the formed copper plating layer.
 前記銅めっき層は、銅めっき層の上にさらに別の金属のめっき層が積層されていてもよく、ニッケルめっき層や金めっき層、スズめっき層を設けると銅めっき層表面の酸化劣化や腐食が防止できる。 The copper plating layer may be formed by laminating another metal plating layer on the copper plating layer. When a nickel plating layer, a gold plating layer, or a tin plating layer is provided, the surface of the copper plating layer is deteriorated by oxidation or corroded. Can be prevented.
 前記めっき法で形成した銅めっき層の厚さは、導電層としての導電性に優れることと、シールドプリント配線板への薄膜化の要求に対応できることから、0.5~20μmの範囲が好ましい。また、電解めっき法により銅めっき層を形成する場合、その層の厚さは、銅めっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The thickness of the copper plating layer formed by the above plating method is preferably in the range of 0.5 to 20 μm because it is excellent in conductivity as a conductive layer and can meet the demand for thinning the shield printed wiring board. In addition, when a copper plating layer is formed by an electrolytic plating method, the thickness of the layer can be adjusted by controlling the processing time, current density, the amount of plating additive used, etc. in the copper plating process. .
 本発明のシールドプリント配線板は、前記銅めっき層、前記層(A-1)及び前記層(A-2)のパターンの上に第二絶縁保護層が設けられている。第二絶縁保護層としては、絶縁樹脂のシートまたはフィルム、または絶縁樹脂の塗工層からなる。絶縁樹脂のシートまたはフィルムとしては、ポリエステルフィルム、ポリオレフィンフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリフェニレンサルファイドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマー(LCP)フィルム、ポリシクロオレフィンフィルム等が挙げられる。絶縁樹脂の塗工層としては、スチレン樹脂、酢酸ビニル樹脂、ポリエステル樹脂、ポリエチレンやポリプロピレン等のポリオレフィン樹脂、アミド樹脂、アミドイミド樹脂、スチレン-ブタジエン樹脂、アクリロニトリル-ブタジエン樹脂、(メタ)アクリル-ブタジエン樹脂、(メタ)アクリル樹脂、ウレタン樹脂等の熱可塑性樹脂や、フェノール樹脂、エポキシ樹脂、メラミン樹脂、アルキッド樹脂等の熱硬化性樹脂や、ウレタン-アクリレート、エポキシ-アクリレート、アクリル-アクリレート等から成る紫外線硬化型樹脂等を単独で、または2種以上を組み合わせて使用することができる。これらの中でも、プリント配線板を搭載する電子機器を製造する際における過酷な熱条件(例えば、はんだリフロー時)を考慮すると、熱硬化性樹脂や紫外線硬化性樹脂が好ましく、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、メラミン樹脂、アクリル樹脂、ウレタン-アクリレート、エポキシアクリレート、アクリル-アクリレート等を単独で、または2種以上を組み合わせて、または架橋剤などと組み合わせて使用することが好ましい。また、フレキシブルなシールドプリント配線板として使用される場合は、ウレタン樹脂を含んでいることが好ましい。 In the shielded printed wiring board of the present invention, a second insulating protective layer is provided on the pattern of the copper plating layer, the layer (A-1) and the layer (A-2). The second insulating protective layer comprises an insulating resin sheet or film, or an insulating resin coating layer. Examples of the insulating resin sheet or film include polyester film, polyolefin film, polyimide film, polyamideimide film, polyphenylene sulfide film, polyethylene naphthalate film, liquid crystal polymer (LCP) film, and polycycloolefin film. Insulating resin coating layers include styrene resins, vinyl acetate resins, polyester resins, polyolefin resins such as polyethylene and polypropylene, amide resins, amideimide resins, styrene-butadiene resins, acrylonitrile-butadiene resins, and (meth) acryl-butadiene resins. UV rays composed of thermoplastic resins such as (meth) acrylic resin and urethane resin, thermosetting resins such as phenolic resin, epoxy resin, melamine resin and alkyd resin, urethane-acrylate, epoxy-acrylate, acrylic-acrylate, etc. A curable resin or the like can be used alone or in combination of two or more. Among these, in consideration of harsh thermal conditions (for example, during solder reflow) when manufacturing an electronic device on which a printed wiring board is mounted, a thermosetting resin or an ultraviolet curable resin is preferable, and an epoxy resin, a urethane resin, It is preferable to use a polyester resin, a melamine resin, an acrylic resin, urethane-acrylate, epoxy acrylate, acrylic-acrylate, etc. alone, in combination of two or more, or in combination with a crosslinking agent. Moreover, when using as a flexible shield printed wiring board, it is preferable that urethane resin is included.
 本発明のシールドフィルムの製造方法としては、例えば、前記第二絶縁保護層の上に直接、または前記第二絶縁保護層の上に前記高分子層(B)を形成した上に、導電性インクを用いて開口率40~95%の開口パターンと、前記開口パターンの開口内部に、開口面積の15~95%の開口内部パターンを形成し、前記開口パターンの上のみに電解銅めっきを施して銅めっき層を形成し、その上に導電性接着剤層を形成する方法が挙げられる。 As a method for producing the shield film of the present invention, for example, a conductive ink is formed directly on the second insulating protective layer or after the polymer layer (B) is formed on the second insulating protective layer. An opening pattern having an opening ratio of 40 to 95% and an opening inner pattern of 15 to 95% of the opening area are formed in the opening of the opening pattern, and electrolytic copper plating is applied only on the opening pattern. The method of forming a copper plating layer and forming a conductive adhesive layer on it is mentioned.
 また、第二絶縁保護層上または第二絶縁保護層上に設けた高分子層(B)上に、導電性インクで、開口率40~90%の開口パターンと、前記開口パターンの開口内部に、開口面積の15~95%のパターンを形成し、前記開口パターン及びその開口内部に形成したパターン上に無電解めっきを施して銅めっき層を形成し、次いで、前記開口パターン上のみに電解銅めっきを施して銅めっき層を形成し、その上に導電性接着剤層を形成する方法も挙げられる。 Further, on the second insulating protective layer or on the polymer layer (B) provided on the second insulating protective layer, an opening pattern having an opening ratio of 40 to 90% and an opening inside the opening pattern are formed with conductive ink. A pattern of 15 to 95% of the opening area is formed, and a copper plating layer is formed by applying electroless plating on the opening pattern and the pattern formed inside the opening, and then electrolytic copper is formed only on the opening pattern. There is also a method of forming a copper plating layer by plating and forming a conductive adhesive layer thereon.
 前記開口率40~95%の開口パターンと、前記開口パターンの開口内部に、開口面積の15~95%のパターンを形成する方法としては、
(1)導電性インクを用いて開口パターンを形成した後、開口パターンに電解銅めっきを施して銅めっき層を形成し、次いで前記開口パターンの内部に導電性インクを用いて開口面積の15~95%の開口内部パターンを形成する方法、(2)導電性インクを用いて、開口パターンと開口内部パターンを同時に形成し、開口パターンのみに電解銅めっきを施して銅めっき層を形成する方法、特に、前記(2)の開口パターンと開口内部パターンを同時に形成する方法が、生産効率に優れるため好ましい。前記(2)の方法の場合、開口パターンのみに電解銅めっきを施す必要があるため、開口パターンのみを電解銅めっきの導電層として使用するためには、開口パターンと開口内部パターンは非接触であることが好ましい。また、前記(2)の方法において、開口パターンと開口内部パターンを形成した後、無電解めっき法で開口パターンと開口内部パターンの両方を厚膜化した後、開口パターン部のみに電解銅めっきを施して銅めっき層を形成する方法でも実施することができる。この場合においても、開口パターンと開口内部パターンは非接触であることが好ましい。なお、前記高分子層(B)及び前記層(A-1)及び前記層(A-2)の形成方法は、前述した通りである。
As a method of forming an opening pattern with an opening ratio of 40 to 95% and a pattern with an opening area of 15 to 95% inside the opening of the opening pattern,
(1) After forming an opening pattern using a conductive ink, electrolytic copper plating is applied to the opening pattern to form a copper plating layer, and then the opening pattern is formed with a conductive ink inside the opening pattern. A method of forming a 95% opening internal pattern, (2) a method of simultaneously forming an opening pattern and an opening internal pattern using a conductive ink, and performing electrolytic copper plating only on the opening pattern to form a copper plating layer; In particular, the method (2) of simultaneously forming the opening pattern and the opening inner pattern is preferable because of excellent production efficiency. In the case of the method (2), since it is necessary to apply electrolytic copper plating only to the opening pattern, in order to use only the opening pattern as a conductive layer for electrolytic copper plating, the opening pattern and the opening inner pattern are not contacted. Preferably there is. In the method (2), after forming the opening pattern and the opening inner pattern, after thickening both the opening pattern and the opening inner pattern by an electroless plating method, electrolytic copper plating is applied only to the opening pattern portion. It can also implement by the method of giving and forming a copper plating layer. Even in this case, it is preferable that the opening pattern and the opening inner pattern are non-contact. The formation method of the polymer layer (B), the layer (A-1) and the layer (A-2) is as described above.
 前記第二絶縁保護層は、前述のように絶縁樹脂のシートまたはフィルムや、絶縁樹脂の塗工層が使用できるが、絶縁樹脂を塗工して第二絶縁保護層を製造する場合は、支持基材として剥離フィルムを用いることができる。 As described above, the second insulating protective layer can be an insulating resin sheet or film, or an insulating resin coating layer. However, when the second insulating protective layer is manufactured by coating the insulating resin, it is supported. A release film can be used as the substrate.
 前記剥離フィルムとしては、プラスチックフィルムや剥離紙を用いることができる。前記プラスチックフィルムとしては、例えば、ポリエステルフィルム、ポリオレフィンフィルム、ポリイミドフィルム等が挙げられ、さらにこれらのフィルムにシリコーン系離型層、フッ素系離型層、オレフィン系離型層等を設けたフィルムも挙げられる。前記剥離紙としては、例えば、紙基材の上に目止め層が設けた後、その上にシリコーン系離型層、フッ素系離型層、オレフィン系離型層を設けたものが挙げられる。 As the release film, a plastic film or release paper can be used. Examples of the plastic film include a polyester film, a polyolefin film, a polyimide film, and a film in which a silicone release layer, a fluorine release layer, an olefin release layer, and the like are further provided on these films. It is done. Examples of the release paper include those in which a sealing layer is provided on a paper substrate and then a silicone release layer, a fluorine release layer, and an olefin release layer are provided thereon.
 塗工により形成した前記第二絶縁保護層としては、例えば、前述で例示した樹脂等を塗工したものが使用でき、前記剥離フィルムに絶縁樹脂を塗工し、乾燥し、必要に応じて樹脂を加熱硬化、紫外線硬化で硬化させて第二絶縁保護層を製造することができる。 As said 2nd insulation protective layer formed by coating, what coated resin etc. which were illustrated above can be used, for example, an insulating resin is applied to the said peeling film, it is dried, and resin is needed as needed. Can be cured by heat curing and ultraviolet curing to produce the second insulating protective layer.
 本発明のシールドフィルムの製造方法では、前記銅めっき層の上に導電性接着剤層を形成する。導電性接着剤層としては、具体的には前述したものが使用でき、導電性接着剤を銅めっき層パターンの上に塗工して、必要に応じて乾燥して形成することができる。このようにして得られるシールドフィルムは、本発明のシールドプリント配線板の最表面に貼り付けられるシールドフィルムとして用いることができる。 In the shield film manufacturing method of the present invention, a conductive adhesive layer is formed on the copper plating layer. As the conductive adhesive layer, specifically, those described above can be used. The conductive adhesive layer can be formed by applying the conductive adhesive on the copper plating layer pattern and drying it as necessary. The shield film obtained in this manner can be used as a shield film that is attached to the outermost surface of the shield printed wiring board of the present invention.
 本発明のシールドプリント配線板の製造方法について説明する。本発明のシールドプリント配線板を構成するプリント配線板は、プリント配線板基材上に信号配線及びグランド配線を形成し、その上に第一絶縁保護層が設けられ、前記第一絶縁保護層は前記グランド配線の一部が露出したビアを有しているものを用いる。また、本発明のシールドプリント配線板をフレキシブルプリント配線板(FPC)とする場合は、ベースフィルムの一方の面にのみプリント回路を有する片面型FPC、ベースフィルムの両面にプリント回路を有する両面型FPC、この様なFPCが複数層積層された多層型FPC、多層部品搭載部とケーブル部を有するフレクスボード(登録商標)、多層部を構成する部材を硬質なものとしたフレックスリジッド基板、あるいは、テープキャリアパッケージのためのTABテープ等を適宜採用して実施することができる。 The manufacturing method of the shield printed wiring board of the present invention will be described. The printed wiring board constituting the shield printed wiring board of the present invention is formed with signal wiring and ground wiring on a printed wiring board substrate, and a first insulating protective layer is provided thereon, and the first insulating protective layer is A ground wire having a partly exposed via is used. When the shield printed wiring board of the present invention is a flexible printed wiring board (FPC), a single-sided FPC having a printed circuit only on one side of the base film, and a double-sided FPC having a printed circuit on both sides of the base film Multi-layer FPC in which a plurality of such FPCs are laminated, Flexboard (registered trademark) having a multilayer component mounting portion and a cable portion, a flex rigid board having a rigid member constituting the multilayer portion, or a tape carrier A TAB tape or the like for the package can be adopted as appropriate.
 前記プリント配線板の第一絶縁保護層の上に、本発明のシールドフィルムの導電性接着剤層が接するように配置し、プリント配線板とシールドフィルムとを互いに接近する方向に加圧することによりシールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続することにより、本発明のシールドプリント配線板を製造することができる。前記プリント配線板と前記シールドフィルムを加圧して、導電性接着剤層を流動させてプリント配線板のグランド層と接合する際には加熱することもでき、前記導電性接着剤が熱硬化可能な樹脂を含有するものである場合、その樹脂の硬化条件に応じて加熱条件を調整することができる。加熱する場合の温度は、通常50~250℃の範囲が好ましい。 On the first insulating protective layer of the printed wiring board, the conductive adhesive layer of the shield film of the present invention is disposed so as to be in contact, and the printed wiring board and the shield film are shielded by pressing in a direction approaching each other. The shield printed wiring board of the present invention can be manufactured by flowing the conductive adhesive layer of the film and connecting it to the ground layer of the printed wiring board. When the printed wiring board and the shield film are pressurized to cause the conductive adhesive layer to flow and join with the ground layer of the printed wiring board, it can be heated, and the conductive adhesive can be thermoset. In the case of containing a resin, the heating conditions can be adjusted according to the curing conditions of the resin. The heating temperature is usually preferably in the range of 50 to 250 ° C.
 なお、本発明のシールドプリント配線板は、プリント配線板の片面にシールドフィルムを貼り付けた構成や、両面にシールドフィルムを貼り付けた構成でもよい。 The shield printed wiring board of the present invention may have a configuration in which a shield film is attached to one side of the printed wiring board or a configuration in which shield films are attached to both sides.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
[導電性インク(1)の調製]
 エチレングリコール35質量部と、イオン交換水65質量部との混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径20nmの銀粒子を分散させることによって、金属ナノ粒子と、反応性官能基として塩基性窒素原子含有基を有する高分子分散剤とを含有する金属ナノ粒子分散液を調製した。次いで、得られた金属ナノ粒子分散液に、イオン交換水及び界面活性剤を添加して、その粘度を11mPa・sに調整することによって、インクジェット印刷用の導電性インク(1)を調製した。
[Preparation of conductive ink (1)]
By dispersing silver particles having an average particle diameter of 20 nm in a mixed solvent of 35 parts by mass of ethylene glycol and 65 parts by mass of ion-exchanged water, using a compound in which polyoxyethylene is added to polyethyleneimine as a dispersant, metal nanoparticles are dispersed. A metal nanoparticle dispersion containing particles and a polymer dispersant having a basic nitrogen atom-containing group as a reactive functional group was prepared. Next, ion-exchanged water and a surfactant were added to the obtained metal nanoparticle dispersion, and the viscosity was adjusted to 11 mPa · s to prepare a conductive ink (1) for inkjet printing.
[第二絶縁保護層用樹脂の製造]
 温度計、窒素ガス導入管及び攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール100質量部(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール、水酸基当量1,000g/当量)と2,2―ジメチロールプロピオン酸17.4質量部と1,4-シクロヘキサンジメタノール21.7質量部とジシクロヘキシルメタンジイソシアネート106.2質量部とを、メチルエチルケトン178質量部中で混合し反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Manufacture of resin for second insulating protective layer]
100 parts by mass of polyester polyol (polyester obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, nitrogen gas inlet tube and stirrer Polyol, a hydroxyl group equivalent of 1,000 g / equivalent), 17.4 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, and 106.2 parts by mass of dicyclohexylmethane diisocyanate. By mixing and reacting in 178 parts by mass, an organic solvent solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
 次いで、上記で得られたウレタンプレポリマーの有機溶剤溶液に、トリエチルアミンを13.3質量部加えることで前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水277質量部を加え十分に攪拌することにより、カルボキシル基を有するウレタン樹脂の水分散液を得た。 Next, 13.3 parts by mass of triethylamine was added to the organic solvent solution of the urethane prepolymer obtained above to neutralize part or all of the carboxyl groups of the urethane resin, and 277 parts by mass of water was further added. By sufficiently stirring, an aqueous dispersion of urethane resin having a carboxyl group was obtained.
 上記で得られたウレタン樹脂の水分散液に、25質量%のエチレンジアミン水溶液を8質量部加え、攪拌することによって、ウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、固形分30質量%のウレタン樹脂の水分散液を得た。次いで、得られたウレタン樹脂の水分散液333質量部に、ソルビトールポリグリシジルエーテル(エポキシ当量170)30質量部を加えて混合し、第二絶縁保護層用樹脂溶液を得た。 By adding 8 parts by mass of a 25% by mass ethylenediamine aqueous solution to the aqueous dispersion of the urethane resin obtained above and stirring, the urethane resin is chain-extended, and then aging / desolvent to obtain a solid content of 30% by mass. % Aqueous dispersion of urethane resin was obtained. Next, 30 parts by mass of sorbitol polyglycidyl ether (epoxy equivalent 170) was added to 333 parts by mass of the obtained aqueous dispersion of urethane resin and mixed to obtain a resin solution for the second insulating protective layer.
[高分子層(B-1)用樹脂の製造]
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら80℃まで昇温した。80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル60質量部、アクリル酸n-ブチル10質量部及びメタクリル酸グリシジル30質量部を含有するビニル単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を80±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却し、次いで、不揮発分が10質量%になるように酢酸エチルを加えて、反応性官能基としてエポキシ基を含有する高分子層(B-1)用樹脂を得た。
[Manufacture of polymer layer (B-1) resin]
Into a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture and dropping funnel for dropping the polymerization catalyst, 180 parts by mass of ethyl acetate was added and the temperature was increased to 80 ° C. while blowing nitrogen. The temperature rose. In a reaction vessel heated to 80 ° C., with stirring, a vinyl monomer mixture containing 60 parts by mass of methyl methacrylate, 10 parts by mass of n-butyl acrylate and 30 parts by mass of glycidyl methacrylate, and azoisobutyro A polymerization initiator solution containing 1 part by mass of nitrile and 20 parts by mass of ethyl acetate was dropped and polymerized from another dropping funnel over 240 minutes while maintaining the temperature in the reaction vessel at 80 ± 1 ° C. After completion of the dropwise addition, the mixture was stirred at the same temperature for 120 minutes, and then the temperature in the reaction vessel was cooled to 30 ° C., and then ethyl acetate was added so that the nonvolatile content was 10% by mass to obtain a reactive functional group. A resin for the polymer layer (B-1) containing an epoxy group was obtained.
[高分子層(B-2)用樹脂の製造]
 攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、ポリカーボネートポリオール(1,4-シクロヘキサンジメタノールと炭酸エステルとを反応させて得られる酸基当量1000g/当量のポリカーボネートジオール)を100質量部、2,2―ジメチロールプロピオン酸9.7質量部、1,4-シクロヘキサンジメタノール5.5質量部、ジシクロヘキシルメタンジイソシアネート51.4質量部を、メチルエチルケトン111質量部の混合溶剤中で反応させることによって、分子末端にイソシアネート基を有するウレタンプレポリマーの有機溶剤溶液を得た。
[Manufacture of resin for polymer layer (B-2)]
In a reaction vessel equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, polycarbonate polyol (polycarbonate diol having an acid group equivalent of 1000 g / equivalent obtained by reacting 1,4-cyclohexanedimethanol and carbonate ester) is added. 100 parts by weight, 9.7 parts by weight of 2,2-dimethylolpropionic acid, 5.5 parts by weight of 1,4-cyclohexanedimethanol, and 51.4 parts by weight of dicyclohexylmethane diisocyanate in a mixed solvent of 111 parts by weight of methyl ethyl ketone By making it react, the organic solvent solution of the urethane prepolymer which has an isocyanate group in the molecular terminal was obtained.
 次いで、前記ウレタン樹脂の有機溶剤溶液にトリエチルアミンを7.3質量部加えることで、前記ウレタン樹脂が有するカルボキシル基の一部または全部を中和し、さらに水355質量部を加え十分に攪拌することにより、ウレタン樹脂の水性分散液を得た。 Next, 7.3 parts by mass of triethylamine is added to the organic solvent solution of the urethane resin to neutralize part or all of the carboxyl groups of the urethane resin, and 355 parts by mass of water is further added and sufficiently stirred. Thus, an aqueous dispersion of urethane resin was obtained.
 次いで、前記水性分散液に、25質量%のエチレンジアミン水溶液を4.3質量部加え、攪拌することによって、粒子状のポリウレタン樹脂を鎖伸長させ、次いでエージング・脱溶剤することによって、固形分濃度30質量%のウレタン樹脂の水性分散液を得た。 Next, 4.3 parts by mass of a 25% by mass ethylenediamine aqueous solution is added to the aqueous dispersion, and the particulate polyurethane resin is chain-extended by stirring, followed by aging / desolving, so that the solid content concentration is 30. An aqueous dispersion of mass% urethane resin was obtained.
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、前記で得たウレタン樹脂の水分散液100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル60質量部、アクリル酸n-ブチル30質量部、N-n-ブトキシメチルアクリルアミド10質量部を含有する単量体混合物と、過硫酸アンモニウム水溶液(濃度:0.5質量%)20質量部を別々の滴下漏斗から、反応容器内温度を80±2℃に保ちながら120分間かけて滴下し重合した。 140 parts by mass of deionized water in a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture, dropping funnel for dropping the polymerization catalyst, water dispersion of the urethane resin obtained above 100 parts by mass of the liquid was added, and the temperature was raised to 80 ° C. while blowing nitrogen. In a reaction vessel heated to 80 ° C., a monomer mixture containing 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate, and 10 parts by mass of Nn-butoxymethylacrylamide with stirring was added. 20 parts by mass of an aqueous ammonium sulfate solution (concentration: 0.5% by mass) was dropped from a separate dropping funnel over 120 minutes while maintaining the temperature in the reaction vessel at 80 ± 2 ° C. for polymerization.
 滴下終了後、同温度にて60分間攪拌し、その後、前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が20質量%になるように脱イオン水を添加した後、200メッシュ濾布で濾過することによって、反応性官能基としてカルボキシル基とN-n-ブトキシメチルアクリルアミド基を含有する高分子層(B-2)用樹脂を得た。 After completion of the dropwise addition, the mixture was stirred for 60 minutes at the same temperature, then the temperature in the reaction vessel was cooled to 40 ° C., and deionized water was added so that the nonvolatile content was 20% by mass, and then 200 mesh. By filtering with a filter cloth, a polymer layer (B-2) resin containing a carboxyl group and an Nn-butoxymethylacrylamide group as a reactive functional group was obtained.
[導電性接着剤用樹脂の製造]
 温度計、窒素ガス導入管及び攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール100質量部(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール、水酸基当量1000g/当量)と2,2―ジメチロールプロピオン酸17.4質量部と1,4-シクロヘキサンジメタノール21.7質量部とジシクロヘキシルメタンジイソシアネート106.2質量部とを、メチルエチルケトン178質量部中で混合し反応させることによって、分子末端にイソシアネート基を有するウレタン樹脂を得た。次いで、得られたウレタン樹脂にメチルエチルケトンを加え、固形分50質量%のウレタン樹脂の有機溶剤溶液を得た。
[Manufacture of resin for conductive adhesive]
100 parts by mass of polyester polyol (polyester obtained by reacting 1,4-cyclohexanedimethanol, neopentyl glycol and adipic acid in a nitrogen-substituted container equipped with a thermometer, nitrogen gas inlet tube and stirrer Polyol, hydroxyl group equivalent 1000 g / equivalent), 17.4 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol and 106.2 parts by mass of dicyclohexylmethane diisocyanate, and 178 parts by mass of methyl ethyl ketone. By mixing and reacting in the part, a urethane resin having an isocyanate group at the molecular end was obtained. Subsequently, methyl ethyl ketone was added to the obtained urethane resin to obtain an organic solvent solution of a urethane resin having a solid content of 50% by mass.
[導電性接着剤の調製]
 上記で得られたウレタン樹脂の有機溶剤溶液200質量部に、ビスフェノールA型エポキシ樹脂(エポキシ当量180)20質量部を加えて混合し、さらに、銀フィラー(大研化学工業株式会社製「S-201」)80質量部を加えて混合し、導電性接着剤を調製した。
[Preparation of conductive adhesive]
To 200 parts by mass of the organic resin solution of urethane resin obtained above, 20 parts by mass of bisphenol A type epoxy resin (epoxy equivalent 180) is added and mixed, and further, a silver filler (“S— 201 ") 80 parts by mass was added and mixed to prepare a conductive adhesive.
(実施例1)
 プリント配線基板として、ポリイミド製のベースフィルムに、銅厚12μm、線幅500μmのグランド用銅配線パターンと、銅厚12μm、線幅150μmの信号用銅配線パターンとからなる配線が形成され、信号配線とグランド配線の線間をそれぞれ100μm、回路長100mmとし、さらに膜厚15μmの接着剤層と、膜厚12.5μmのポリイミド製フィルム層で膜厚27.5μmの第一絶縁保護層が形成され、グランド配線部に400μm角の開口部が設けられたプリント配線板を用いた。
(Example 1)
As a printed wiring board, a wiring composed of a copper wiring pattern for ground having a copper thickness of 12 μm and a line width of 500 μm and a signal copper wiring pattern having a copper thickness of 12 μm and a line width of 150 μm is formed on a polyimide base film. The first insulating protective layer having a film thickness of 27.5 μm is formed of an adhesive layer having a film thickness of 15 μm and a polyimide film layer having a film thickness of 12.5 μm. A printed wiring board having a 400 μm square opening in the ground wiring portion was used.
 シールドフィルムとして、離型処理されたポリエステルフィルム上に、上記で製造した第二絶縁保護層用樹脂を乾燥後の膜厚が5μmとなるように塗工し、乾燥して第二絶縁保護層を形成した。次いで、上記で製造した高分子層(B-1)用樹脂を乾燥後の膜厚が0.2μmとなるように塗工し、乾燥して高分子層(B-1)を形成した。 As a shield film, on the release-treated polyester film, the second insulating protective layer resin produced above is applied so that the film thickness after drying is 5 μm, and dried to form a second insulating protective layer. Formed. Next, the polymer layer (B-1) resin produced above was applied so that the film thickness after drying was 0.2 μm, and dried to form a polymer layer (B-1).
 次に、上記方法で形成した高分子層(B-1)が積層された第二絶縁保護層の上に、上記で得られた導電性インク(1)をインクジェットプリンター(コニカミノルタ株式会社製インクジェット試験機「EB100」、評価用プリンタヘッドKM512L、吐出量14pL)を用い、シールドプリント配線板の特性インピーダンスが80Ωとなるように、線幅90μm、開口率82%の格子パターンと、その開口内部に開口部の面積に対して68%の面積の四角形の非開口部を、格子パターン部と接触しないように印刷した。印刷したパターンの平面図を図5に示す。次いで、120℃で20分間焼成することによって、開口率82%の格子パターンと、その開口内部に四角形の非開口部を有する導電性インク(1)からなる層(膜厚0.2μm)を形成した。 Next, the conductive ink (1) obtained above is applied onto the second insulating protective layer on which the polymer layer (B-1) formed by the above method is laminated, by an inkjet printer (inkjet manufactured by Konica Minolta Co., Ltd.). Using a test machine “EB100”, an evaluation printer head KM512L, and a discharge amount of 14 pL), a lattice pattern having a line width of 90 μm and an aperture ratio of 82% is formed in the opening so that the characteristic impedance of the shield printed wiring board is 80Ω. A square non-opening portion having an area of 68% with respect to the area of the opening portion was printed so as not to contact the lattice pattern portion. A plan view of the printed pattern is shown in FIG. Next, by baking at 120 ° C. for 20 minutes, a layer (film thickness 0.2 μm) made of a conductive ink (1) having a lattice pattern with an aperture ratio of 82% and a square non-opening inside the opening is formed. did.
 次に、上記で得られた導電性インク(1)からなる層の格子パターン部を陰極に設定し、含リン銅を陽極に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2A/dmで10分間電解銅めっきを行うことによって、導電性インクからなる層の表面に、厚さ5μmの銅めっき層を格子パターン部のみに積層した。前記銅電解めっき液としては、硫酸銅70g/リットル、硫酸200g/リットル、塩素イオン50mg/リットル、添加剤(奥野製薬工業株式会社製「トップルチナSF-M」)5ml/リットルを使用した。電解銅めっき後の格子パターン部の線幅は100μm、開口率は80%であり、開口内部の導電性インクからなる層(開口内部パターン)の面積は、開口面積の71%であった。 Next, the lattice pattern portion of the layer made of the conductive ink (1) obtained above is set as the cathode, the phosphorous copper is set as the anode, and the current density is 2 A using an electrolytic plating solution containing copper sulfate. By performing electrolytic copper plating at / dm 2 for 10 minutes, a copper plating layer having a thickness of 5 μm was laminated only on the lattice pattern portion on the surface of the layer made of conductive ink. As the copper electroplating solution, 70 g / liter of copper sulfate, 200 g / liter of sulfuric acid, 50 mg / liter of chloride ions, and 5 ml / liter of additives (“Top Lucina SF-M” manufactured by Okuno Pharmaceutical Co., Ltd.) were used. The line width of the lattice pattern portion after electrolytic copper plating was 100 μm, the aperture ratio was 80%, and the area of the layer made of conductive ink (opening internal pattern) inside the opening was 71% of the opening area.
 次に、上記で得られた第二絶縁保護層の上に形成された開口率80%の格子パターンの銅めっき層及び開口内部の非開口部の導電性インクパターンを含む全面の上に、上記で製造した導電性接着剤を乾燥後の膜厚5μmとなるように塗工し、乾燥してシールドフィルムを作製した。 Next, on the entire surface including the copper plating layer of the lattice pattern with an aperture ratio of 80% formed on the second insulating protective layer obtained above and the conductive ink pattern of the non-opening portion inside the opening, the above-mentioned The conductive adhesive produced in (1) was applied to a film thickness of 5 μm after drying, and dried to produce a shield film.
 次に、上記で得られたグランド配線部に開口部が設けられたプリント配線板と上記で得られたシールドフィルムを、プリント配線板の絶縁保護層の上に、シールドフィルムの導電性接着剤層が接するように配置し、プリント配線板とシールドフィルムとを互いに接近する方向に加圧(圧力:1.96MPa、加熱温度:150℃、処理時間:30分間)して圧着し、シールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続し、シールドプリント配線板を作製した。 Next, the printed wiring board obtained by opening the ground wiring part obtained above and the shielding film obtained above are formed on the insulating protective layer of the printed wiring board, and the conductive adhesive layer of the shielding film. The printed wiring board and the shield film are pressed in a direction approaching each other (pressure: 1.96 MPa, heating temperature: 150 ° C., treatment time: 30 minutes), and the shield film is conductive. The conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
(実施例2~4)
 実施例1で用いたプリント配線板に代えて、表1に示した信号用銅配線のパターン幅のものとした。また、実施例1で用いたシールドフィルムに代えて、表1に示した高分子層(B)用樹脂を用い、さらにシールドプリント配線板の特性インピーダンスが80Ωとなるように表1に示した銅めっき層の開口率とし、銅めっき層の開口面積に対する開口内部の導電性インク層(開口内部パターン)の面積比率とした以外は、実施例1と同様にシールドプリント配線板を作製した。
(Examples 2 to 4)
Instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used. Further, in place of the shield film used in Example 1, the polymer layer (B) resin shown in Table 1 was used, and the copper shown in Table 1 so that the characteristic impedance of the shield printed wiring board was 80Ω. A shield printed wiring board was produced in the same manner as in Example 1 except that the aperture ratio of the plating layer and the area ratio of the conductive ink layer (opening internal pattern) inside the opening to the opening area of the copper plating layer.
(実施例5)
 実施例1で用いたプリント配線板に代えて、表1に示した信号用銅配線のパターン幅のものとした。シールドフィルムとして、離型処理されたポリエステルフィルム上に、上記で製造した第二絶縁保護層用樹脂を乾燥後の膜厚が5μmとなるように塗工し、乾燥して第二絶縁保護層を形成した。次に、上記方法で形成した第二絶縁保護層の上に、導電性インク(1)を実施例1と同様の装置を用い、シールドプリント配線板の特性インピーダンスが80Ωとなるように、線幅90μm、開口率58%の格子パターンと、その開口内部に開口部の面積に対して40%の面積の四角形の非開口部を、格子パターン部と接触しないように印刷した。次いで、120℃で20分間焼成することによって、開口率58%の格子パターンと、その開口内部に四角形の非開口部を有する導電性インク(1)からなる層(膜厚0.2μm)を形成した。
(Example 5)
Instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used. As a shield film, on the release-treated polyester film, the second insulating protective layer resin produced above is applied so that the film thickness after drying is 5 μm, and dried to form a second insulating protective layer. Formed. Next, on the second insulating protective layer formed by the above method, the conductive ink (1) is used in the same manner as in Example 1, and the line width is adjusted so that the characteristic impedance of the shield printed wiring board is 80Ω. A grid pattern having a size of 90 μm and an aperture ratio of 58% and a rectangular non-opening with an area of 40% with respect to the area of the opening inside the opening were printed so as not to contact the grid pattern. Next, by baking at 120 ° C. for 20 minutes, a layer (film thickness 0.2 μm) made of a conductive ink (1) having a lattice pattern with an aperture ratio of 58% and a square non-opening inside the opening is formed. did.
 次に、上記で得られた導電性インク(1)からなる層の格子パターン部を陰極に設定し、含リン銅を陽極に設定し、実施例1と同様にして導電性インクからなる層の表面に、厚さ5μmの銅めっき層を格子パターン部のみに積層した。電解銅めっき後の格子パターン部の線幅は100μm、開口率は56%であり、開口内部の導電性インクからなる層(開口内部パターン)の面積は、開口面積の43%であった。 Next, the lattice pattern portion of the layer made of the conductive ink (1) obtained above was set as the cathode, the phosphorous copper was set as the anode, and the layer made of the conductive ink was set in the same manner as in Example 1. On the surface, a copper plating layer having a thickness of 5 μm was laminated only on the lattice pattern portion. The line width of the lattice pattern portion after electrolytic copper plating was 100 μm, the aperture ratio was 56%, and the area of the layer made of conductive ink (opening internal pattern) inside the opening was 43% of the opening area.
 次に、上記で得られた第二絶縁保護層の上に形成された開口率56%の格子パターンの銅めっき層及び開口内部の非開口部の導電性インクパターンを含む全面の上に、上記で製造した導電性接着剤を乾燥後の膜厚5μmとなるように塗工し、乾燥してシールドフィルムを作製した。 Next, on the entire surface including the copper plating layer with a lattice pattern of 56% opening ratio formed on the second insulating protective layer obtained above and the conductive ink pattern of the non-opening portion inside the opening, the above-mentioned The conductive adhesive produced in (1) was applied to a film thickness of 5 μm after drying, and dried to produce a shield film.
 次に、グランド配線部に開口部が設けられたプリント配線板と上記で得られたシールドフィルムを、プリント配線板の絶縁保護層の上に、実施例1と同様にして圧着し、シールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続し、シールドプリント配線板を作製した。 Next, the printed wiring board provided with an opening in the ground wiring portion and the shield film obtained above were pressure-bonded onto the insulating protective layer of the printed wiring board in the same manner as in Example 1, The conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
(実施例6)
 実施例1で用いたプリント配線板に代えて、表1に示した信号用銅配線のパターン幅のものとした。また、実施例1で用いたシールドフィルムに代えて、表1に示した高分子層(B)用樹脂を用いた。次に、上記方法で形成した高分子層(B-1)が積層された第二絶縁保護層の上に、導電性インク(1)を実施例1と同様の装置を用い、シールドプリント配線板の特性インピーダンスが80Ωとなるように、線幅90μm、開口率74%の格子パターンと、その開口内部に開口部の面積に対して69%の面積の四角形の非開口部を、格子パターン部と接触しないように印刷した。次いで、120℃で20分間焼成することによって、開口率74%の格子パターンと、その開口内部に四角形の非開口部を有する導電性インク(1)からなる層(膜厚0.05μm)を形成した。
(Example 6)
Instead of the printed wiring board used in Example 1, the signal copper wiring pattern width shown in Table 1 was used. Further, in place of the shield film used in Example 1, the polymer layer (B) resin shown in Table 1 was used. Next, on the second insulating protective layer on which the polymer layer (B-1) formed by the above method is laminated, the conductive ink (1) is used in the same apparatus as in Example 1, and the shield printed wiring board is used. A lattice pattern having a line width of 90 μm and an aperture ratio of 74%, and a square non-opening with an area of 69% of the area of the opening inside the opening, Printed out of contact. Next, by baking at 120 ° C. for 20 minutes, a layer (film thickness 0.05 μm) made of a conductive ink (1) having a lattice pattern with an aperture ratio of 74% and a square non-opening inside the opening is formed. did.
 次に、上記で得られた格子パターンと、その開口内部に四角形の非開口部を有する導電性インク(1)からなる層(膜厚0.05μm)上に、無電解銅めっきを施し、厚さ0.2μmの無電解銅めっき膜を形成した。なお、無電解銅めっきは、ARGカッパー(奥野製薬工業株式会社製)を、標準推奨条件(ARGカッパー1:30ml/L、ARGカッパー2:15ml/L、ARGカッパー3:200ml/L)で建浴し、浴温45℃で保持し、これに上記の被めっき物(導電性インク層)を15分間浸漬して、銅めっき膜を析出させることにより行った。 Next, electroless copper plating is performed on the layer (thickness 0.05 μm) made of the conductive ink (1) having a rectangular non-opening inside the lattice pattern obtained above, and the thickness An electroless copper plating film having a thickness of 0.2 μm was formed. For electroless copper plating, ARG Copper (Okuno Pharmaceutical Co., Ltd.) is built under standard recommended conditions (ARG Copper 1:30 ml / L, ARG Copper 2: 15 ml / L, ARG Copper 3: 200 ml / L). This was performed by bathing and holding at a bath temperature of 45 ° C., and immersing the object to be plated (conductive ink layer) in this for 15 minutes to precipitate a copper plating film.
 次に、上記で得られた導電性インク(1)からなる層上に無電解銅めっき膜を形成した格子パターン部を陰極に設定し、含リン銅を陽極に設定し、実施例1と同様にして無電解銅めっき膜からなる層の表面に、厚さ3μmの銅めっき膜を格子パターン部のみに積層した。電解銅めっき後の格子パターン部の線幅は97μm、開口率は72%であり、開口内部の無電解銅めっき膜からなる層(開口内部パターン)の面積は開口面積の70%、膜厚は0.2μmであった。 Next, the lattice pattern part in which the electroless copper plating film was formed on the layer made of the conductive ink (1) obtained above was set as the cathode, and phosphorous copper was set as the anode. A copper plating film having a thickness of 3 μm was laminated only on the lattice pattern portion on the surface of the layer made of the electroless copper plating film. The line width of the lattice pattern portion after electrolytic copper plating is 97 μm, the aperture ratio is 72%, the area of the layer made of electroless copper plating film inside the opening (opening internal pattern) is 70% of the opening area, and the film thickness is It was 0.2 μm.
 次に、上記で得られた第二絶縁保護層の上に形成された開口率72%の格子パターンの銅めっき層及び開口内部の非開口部の無電解銅めっき膜からなる層を含む全面の上に、上記で製造した導電性接着剤を乾燥後の膜厚5μmとなるように塗工し、乾燥してシールドフィルムを作製した。 Next, the entire surface including the copper plating layer having a lattice pattern of 72% formed on the second insulating protective layer obtained as described above and the electroless copper plating film in the non-opening portion inside the opening. On top, the conductive adhesive produced above was applied so as to have a film thickness of 5 μm after drying, and dried to produce a shield film.
 次に、グランド配線部に開口部が設けられたプリント配線板と上記で得られたシールドフィルムを、プリント配線板の絶縁保護層の上に、実施例1と同様にして圧着し、シールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続し、シールドプリント配線板を作製した。 Next, the printed wiring board provided with an opening in the ground wiring portion and the shield film obtained above were pressure-bonded onto the insulating protective layer of the printed wiring board in the same manner as in Example 1, The conductive adhesive layer was allowed to flow and connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
(比較例1)
 実施例1で用いたプリント配線板の代わりに、信号用銅配線パターンの線幅を表1に記載した線幅としたプリント配線板を使用した。また、実施例1で用いたシールドフィルムの代わりに、開口率が0%となるように、膜厚5μmの圧延銅箔に上記で得られた第二絶縁保護層用樹脂を乾燥後の膜厚が5μmとなるように塗工し、乾燥して第二絶縁保護層を形成した。次いで、圧延銅箔の第二絶縁保護層を形成した面とは反対面に、上記で得られた導電性接着剤を乾燥後の膜厚5μmとなるように塗工し、乾燥して開口率0%の銅層を有するシールドフィルムを作製した。
(Comparative Example 1)
Instead of the printed wiring board used in Example 1, a printed wiring board having a line width of the signal copper wiring pattern described in Table 1 was used. In addition, instead of the shield film used in Example 1, the film thickness after drying the resin for the second insulating protective layer obtained above on a rolled copper foil having a film thickness of 5 μm so that the aperture ratio becomes 0%. Was applied to a thickness of 5 μm and dried to form a second insulating protective layer. Next, the surface of the rolled copper foil opposite to the surface on which the second insulating protective layer is formed is coated with the conductive adhesive obtained above so as to have a film thickness after drying of 5 μm, and dried to obtain an aperture ratio. A shield film having a 0% copper layer was prepared.
 次に、表1に記載した信号用銅配線パターンの線幅とし、グランド配線部に400μm角の開口部が設けられたプリント配線板と、上記で得られたシールドフィルムを、プリント配線板の絶縁保護層の上に、シールドフィルムの導電性接着剤層が接するように配置し、プリント配線板とシールドフィルムとを互いに接近する方向に加圧(圧力:1.96MPa、加熱温度:150℃、処理時間:30分間)して圧着し、シールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続し、シールドプリント配線板を作製した。 Next, the line width of the signal copper wiring pattern described in Table 1 is used, and the printed wiring board having a 400 μm square opening in the ground wiring part and the shield film obtained above are insulated from the printed wiring board. It arrange | positions so that the conductive adhesive layer of a shield film may contact | connect on a protective layer, and a printed wiring board and a shield film are pressurized in the direction which mutually approaches (pressure: 1.96 MPa, heating temperature: 150 degreeC, process (Time: 30 minutes) and pressure-bonded, and the conductive adhesive layer of the shield film was flowed to be connected to the ground layer of the printed wiring board to produce a shield printed wiring board.
(比較例2)
 比較例1で用いたプリント配線板に代えて、信号用銅配線パターンの線幅を表1に記載した線幅とした以外は、前記比較例1と同様にして、開口率0%の比較用シールドプリント配線板を作製した。
(Comparative Example 2)
Instead of the printed wiring board used in Comparative Example 1, the line width of the signal copper wiring pattern was changed to the line width described in Table 1, and the comparative example with an aperture ratio of 0% was made in the same manner as in Comparative Example 1. A shield printed wiring board was produced.
[比較用の導電性インク(R1)用樹脂の製造]
 攪拌機、温度計、還流冷却器、滴下装置、及び窒素導入管を備えた反応容器に、アジピン酸、テレフタル酸、及び3-メチル-1,5-ペンタンジオールから得られる数平均分子量が1006であるジオール414質量部、ジメチロールブタン酸8質量部、イソホロンジイソシアネート145質量部、及びトルエン40質量部を仕込み、窒素雰囲気下90℃で3時間反応させた。次いで、この反応溶液に、さらにトルエン300質量部を加えて、末端にイソシアネート基を有するウレタンプレポリマーの溶液を得た。
[Manufacture of Resin for Conductive Ink (R1) for Comparison]
The number average molecular weight obtained from adipic acid, terephthalic acid, and 3-methyl-1,5-pentanediol is 1006 in a reaction vessel equipped with a stirrer, thermometer, reflux condenser, dropping device, and nitrogen introduction tube. A diol (414 parts by mass), dimethylolbutanoic acid (8 parts by mass), isophorone diisocyanate (145 parts by mass) and toluene (40 parts by mass) were charged and reacted at 90 ° C. for 3 hours in a nitrogen atmosphere. Next, 300 parts by mass of toluene was further added to the reaction solution to obtain a urethane prepolymer solution having an isocyanate group at the terminal.
 次に、イソホロンジアミン27質量部、ジ-n-ブチルアミン3質量部、2-プロパノール342質量部及びトルエン576質量部を混合した混合物に、上記で得られたウレタンプレポリマーの溶液816質量部を添加し、70℃で3時間反応させてポリウレタンポリウレア樹脂の溶液を得た。これに、トルエン144質量部、及び2-プロパノール72質量部を加えて、ポリウレタンポリウレア樹脂の固形分30質量%である比較用の導電性インク(R1)用樹脂溶液を得た。 Next, 816 parts by mass of the urethane prepolymer solution obtained above was added to a mixture of 27 parts by mass of isophoronediamine, 3 parts by mass of di-n-butylamine, 342 parts by mass of 2-propanol and 576 parts by mass of toluene. And reacted at 70 ° C. for 3 hours to obtain a polyurethane polyurea resin solution. To this, 144 parts by mass of toluene and 72 parts by mass of 2-propanol were added to obtain a resin solution for a conductive ink (R1) for comparison having a solid content of 30% by mass of the polyurethane polyurea resin.
[比較用の導電性インク(R1)の調製]
 上記で得られた比較用の導電性インク用樹脂溶液333質量部、及びビスフェノールA型エポキシ樹脂(三菱化学株式会社製「JER828」)20質量部を攪拌混合し、樹脂組成物溶液を得た。この樹脂組成物溶液353質量部に、導電フィラー(福田金属箔粉工業株式会社製「AgXF-301」)180質量部を加えて攪拌混合し、ポリウレタンポリウレア樹脂とエポキシ樹脂との合計100質量部に対して、導電フィラー300質量部を含有する比較用の導電性インク(R1)を得た。
[Preparation of Comparative Conductive Ink (R1)]
333 parts by mass of the resin solution for conductive ink for comparison obtained above and 20 parts by mass of bisphenol A type epoxy resin (“JER828” manufactured by Mitsubishi Chemical Corporation) were stirred and mixed to obtain a resin composition solution. To 353 parts by mass of this resin composition solution, 180 parts by mass of a conductive filler (“AgXF-301” manufactured by Fukuda Metal Foil Powder Co., Ltd.) is added and mixed by stirring to a total of 100 parts by mass of the polyurethane polyurea resin and the epoxy resin. In contrast, a comparative conductive ink (R1) containing 300 parts by mass of a conductive filler was obtained.
[接合層用樹脂の製造]
 上記の導電性インク(R1)用樹脂と同様にして製造したポリウレタンポリウレア樹脂溶液333質量部に対して、ビスフェノールA型エポキシ樹脂20質量部を加えて、接合層用樹脂を得た。
[Manufacture of resin for bonding layers]
20 parts by mass of a bisphenol A type epoxy resin was added to 333 parts by mass of the polyurethane polyurea resin solution produced in the same manner as the resin for the conductive ink (R1) to obtain a resin for a bonding layer.
(比較例3)
 シールドフィルムの作製として、離型処理されたポリエステルフィルム上に、上記で得られた比較用の導電性インク(R1)を、線幅100μm、開口率65%、乾燥後の膜厚が5μmの格子パターンになるようにスクリーン印刷し、乾燥して導電層を形成した。次いで、離型処理されたポリエステルフィルム上に、上記で得られた接合層用樹脂を乾燥後の膜厚が15μmとなるように塗工し、乾燥した。次いで、離型性フィルム上に形成した導電層と、離型性フィルム上に形成した接合層とを貼り合わせてシールドフィルムを作製した。
(Comparative Example 3)
As a shield film, a comparative conductive ink (R1) obtained as described above is formed on a release-treated polyester film by using a grid having a line width of 100 μm, an aperture ratio of 65%, and a film thickness after drying of 5 μm. It screen-printed so that it might become a pattern, and it dried and formed the conductive layer. Next, the resin for bonding layer obtained above was applied on the release-treated polyester film so that the film thickness after drying was 15 μm and dried. Next, the conductive layer formed on the releasable film and the bonding layer formed on the releasable film were bonded together to produce a shield film.
 次に、実施例1で用いたプリント配線板の代わりに、信号用銅配線パターンの線幅を100μmとし、そのグランド配線部に400μm角の開口部が設けられたプリント配線板と、上記で得られたシールドフィルムを、プリント配線板の絶縁保護層の上に、シールドフィルムの導電層が接するように配置し、プリント配線板とシールドフィルムとを互いに接近する方向に加圧(圧力:1.96MPa、加熱温度:150℃、処理時間:30分間)して圧着し、シールドフィルムの接合層を流動させてプリント配線板のグランド層と接続し、導電性接着剤層が無い比較用シールドプリント配線板を作製した。 Next, instead of the printed wiring board used in Example 1, the wiring width of the signal copper wiring pattern is set to 100 μm, and a 400 μm square opening is provided in the ground wiring portion. The shield film was placed on the insulating protective layer of the printed wiring board so that the conductive layer of the shield film was in contact, and the printed wiring board and the shield film were pressurized in a direction approaching each other (pressure: 1.96 MPa). , Heating temperature: 150 ° C., processing time: 30 minutes), and the shielded printed wiring board for comparison without the conductive adhesive layer, which is bonded to the ground layer of the printed wiring board by flowing the bonding layer of the shield film and flowing. Was made.
[電磁波シールド性(透過減衰率)の測定]
 上記の実施例、比較例で得られたシールドプリント配線板について、ASTM D4935に準拠し、キーコム社の同軸管タイプのシールド効果測定システムを用いて、100MHz~6GHz条件で電磁波の照射を行い、電磁波がシールドフィルムで減衰する減衰量を測定し、以下の基準に従って電磁波シールド性を評価した。なお、減衰量の測定値は、デシベル(単位dB)で表記する。なお、一般に電磁波シールド性は、40dB(電磁波を99%以上遮断する)以上であれば良好である。
 A:マイクロ波領域の6GHzの電磁波を照射したときに、45dB以上を示す。
 B:6GHzの電磁波を照射したときに、40dB以上45dB未満を示す。
 C:6GHzの電磁波を照射したときに、35dB以上40dB未満を示す。
 D:6GHzの電磁波を照射したときに、35dB未満を示す。
[Measurement of electromagnetic shielding properties (transmission attenuation rate)]
The shielded printed wiring boards obtained in the above examples and comparative examples are irradiated with electromagnetic waves under the conditions of 100 MHz to 6 GHz using a coaxial tube type shield effect measuring system in accordance with ASTM D4935 and subjected to electromagnetic waves. Was measured by the shielding film, and the electromagnetic shielding properties were evaluated according to the following criteria. Note that the measured value of attenuation is expressed in decibels (unit dB). In general, the electromagnetic wave shielding property is good as long as it is 40 dB (or more than 99% of electromagnetic waves are blocked).
A: 45 dB or more when irradiated with 6 GHz electromagnetic waves in the microwave region.
B: 40 dB or more and less than 45 dB when irradiated with 6 GHz electromagnetic waves.
C: 35 dB or more and less than 40 dB when irradiated with 6 GHz electromagnetic waves.
D: Less than 35 dB when irradiated with 6 GHz electromagnetic waves.
[特性インピーダンスの測定]
 上記の実施例、比較例で得られたシールドプリント配線板について、ネットワークアナライザE5071C(アジレント・テクノロジーズ社製)を用いて特性インピーダンスの測定を行った。
[Measurement of characteristic impedance]
About the shield printed wiring board obtained by said Example and comparative example, characteristic impedance was measured using network analyzer E5071C (made by Agilent Technologies).
[シールドフィルムとプリント配線板のグランド配線との接続信頼性の評価]
 上記の実施例、比較例で得られたシールドプリント配線板について、部品接続時のはんだリフロー工程を想定し、240℃で25秒間のリフロー炉を通過させ、その後25℃までシールドプリント配線板を冷却するリフロー操作を5回繰り返し、その前後のシールドフィルムとプリント配線板のグランド配線間の体積抵抗値を測定し、下記の数式を用いて体積抵抗値の変化率を算出し、シールドフィルムとプリント配線板のグランド配線との接続信頼性を以下の基準に従って評価した。
[評価基準]
 A:体積抵抗値の変化率が20%未満である。
 B:体積抵抗値の変化率が20%以上50%未満である。
 C:体積抵抗値の変化率が50%以上80%未満である。
 D:体積抵抗値の変化率が80%以上である。
[Evaluation of connection reliability between shield film and printed circuit board ground wiring]
For the shield printed wiring boards obtained in the above examples and comparative examples, a solder reflow process at the time of component connection is assumed, and the shield printed wiring board is cooled to 25 ° C. after passing through a reflow furnace at 240 ° C. for 25 seconds. Repeat the reflow operation 5 times, measure the volume resistance value between the shield film before and after that and the ground wiring of the printed wiring board, calculate the rate of change of the volume resistance value using the following formula, and shield film and printed wiring The connection reliability of the plate with the ground wiring was evaluated according to the following criteria.
[Evaluation criteria]
A: The rate of change of the volume resistance value is less than 20%.
B: The rate of change of the volume resistance value is 20% or more and less than 50%.
C: The change rate of the volume resistance value is 50% or more and less than 80%.
D: The change rate of the volume resistance value is 80% or more.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記で評価した結果をまとめたものを表1に示す。 Table 1 summarizes the results evaluated above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の表1に示した結果から、本発明のシールドフィルムを用いた実施例1~5のシールドプリント配線板は、プリント配線板の信号用銅配線のパターン幅を50~150μmに変化させた場合においても、シールドフィルムの金属層(銅めっき層)の開口率を調整することで、シールドプリント配線板の特性インピーダンスを80Ωに制御することができた。また、電磁波シールド性も45dB以上を示し、電磁波の遮蔽性にも優れることが確認できた。 From the results shown in Table 1 above, in the shield printed wiring boards of Examples 1 to 5 using the shield film of the present invention, the pattern width of the signal copper wiring of the printed wiring board was changed to 50 to 150 μm. The characteristic impedance of the shield printed wiring board could be controlled to 80Ω by adjusting the aperture ratio of the metal layer (copper plating layer) of the shield film. Further, the electromagnetic wave shielding property was 45 dB or more, and it was confirmed that the electromagnetic wave shielding property was also excellent.
 また、本発明のシールドフィルムである実施例1~6のシールドフィルム部の膜厚は、第二絶縁層、銅めっき層、及び導電性接着剤層の合計膜厚が13~16μmと薄く、特許文献3に記載の開口金属層と非開口金属層(シールド層)の2層が必要なシールドフィルムと比較して、シールドフィルムの膜厚をさらに薄くできる特長がある。 In addition, the film thickness of the shield film portions of Examples 1 to 6 which are the shield films of the present invention is as thin as 13 to 16 μm in total thickness of the second insulating layer, the copper plating layer, and the conductive adhesive layer. Compared to a shield film that requires two layers of an open metal layer and a non-open metal layer (shield layer) described in Document 3, the shield film has a feature that the film thickness of the shield film can be further reduced.
 一方、比較例1のシールドプリント配線板は、プリント配線板の信号用銅配線のパターン幅を150μmとし、シールドフィルムの金属層(銅めっき層)の開口率を0%(全面銅めっき層)とした例である。このシールドプリント配線板の特性インピーダンスは20Ωになり、80Ωに制御することができなかった。 On the other hand, in the shield printed wiring board of Comparative Example 1, the pattern width of the signal copper wiring of the printed wiring board is 150 μm, and the aperture ratio of the metal layer (copper plating layer) of the shield film is 0% (entire copper plating layer). This is an example. The characteristic impedance of this shield printed wiring board was 20Ω and could not be controlled to 80Ω.
 比較例2のシールドプリント配線板は、比較例1と同様にシールドフィルムの金属層(銅めっき層)の開口率を0%(全面銅めっき層)とし、プリント配線板の信号用銅配線のパターン幅を20μmとした場合においても、特性インピーダンスは50Ωとなった。さらに、このシールドプリント配線板は、プリント配線板の信号用銅配線のパターン幅を20μmまで細くしたことにより、実施例のシールドプリント配線板と比較して、通信速度が速くなるに従い、伝送損失が増大する問題があった。 In the shield printed wiring board of Comparative Example 2, the aperture ratio of the metal layer (copper plating layer) of the shield film was set to 0% (entire copper plating layer) as in Comparative Example 1, and the pattern of the signal copper wiring on the printed wiring board Even when the width was 20 μm, the characteristic impedance was 50Ω. Furthermore, this shielded printed wiring board has a transmission loss that increases as the communication speed becomes higher compared to the shielded printed wiring board of the embodiment, by reducing the pattern width of the signal copper wiring of the printed wiring board to 20 μm. There was an increasing problem.
 上記の結果から、本発明のシールドプリント配線板は、プリント配線板の信号用銅配線のパターン幅を変化させた場合においても、シールドフィルムの金属層の開口率を調整することで、所望の特性インピーダンスに調整することが可能であり、かつ、電磁波シールド性が高いことが確認できた。 From the above results, the shield printed wiring board of the present invention has the desired characteristics by adjusting the opening ratio of the metal layer of the shield film even when the pattern width of the signal copper wiring of the printed wiring board is changed. It was possible to adjust the impedance, and it was confirmed that the electromagnetic wave shielding property was high.
 また、比較例3のシールドプリント配線板は、本発明のシールドプリント配線板では必須の導電性接着剤層がない構成での例である。このシールドプリント配線板では、電磁波シールド性が不十分であり、さらに、シールドフィルム側の導電層と、プリント配線側のグランド配線の接続信頼性に問題があった。 Further, the shield printed wiring board of Comparative Example 3 is an example in which there is no essential conductive adhesive layer in the shield printed wiring board of the present invention. This shielded printed wiring board has insufficient electromagnetic wave shielding properties, and has a problem in connection reliability between the conductive layer on the shield film side and the ground wiring on the printed wiring side.
 1・・・・シールドフィルム
 2・・・・第二絶縁保護層
 2’・・・高分子層
 3・・・・導電性インクを用いて形成した層
 3’・・・導電性インクを用いて形成した層の上に形成した銅めっき層
 4・・・・開口部を有する銅めっき層
 5・・・・導電性接着剤層
 6・・・・第一絶縁保護層
 7・・・・プリント配線板基材
 8・・・・信号配線
 9・・・・グランド配線
 10・・・第一絶縁保護層除去部(グランド配線と開口部を有する銅めっき層との導通部)
 11・・・プリント配線板
 12・・・シールドプリント配線板
DESCRIPTION OF SYMBOLS 1 .... Shield film 2 .... 2nd insulation protective layer 2 '... Polymer layer 3 .... Layer formed using conductive ink 3' ... Using conductive ink Copper plating layer formed on the formed layer 4... Copper plating layer having openings 5... Conductive adhesive layer 6... First insulation protective layer 7. Plate base material 8... Signal wiring 9... Ground wiring 10... First insulation protective layer removal portion (conduction portion between ground wiring and copper plating layer having opening)
11 ... Printed wiring board 12 ... Shield printed wiring board

Claims (15)

  1.  ベース絶縁基材上に信号配線とグランド配線及び第一絶縁保護層が設けられたプリント配線板用のシールドフィルムであって、
    前記第一絶縁保護層上の全面に積層された導電性接着剤層と、
    前記導電性接着剤層上に膜厚0.5~20μm、開口率40~95%でパターン化された銅めっき層と、
    前記銅めっき層上に導電性インクを用いて形成した層(A-1)と、
    前記導電性接着剤層上の前記銅めっき層の開口内部に、導電性インクを用いて形成した層(A-2)と、
    前記導電性接着剤層、前記銅めっき層、前記層(A-1)及び前記層(A-2)上に第二絶縁保護層とを有することを特徴とするシールドフィルム。
    A shield film for a printed wiring board in which a signal wiring, a ground wiring, and a first insulating protective layer are provided on a base insulating base material,
    A conductive adhesive layer laminated on the entire surface of the first insulating protective layer;
    A copper plating layer patterned with a film thickness of 0.5 to 20 μm and an aperture ratio of 40 to 95% on the conductive adhesive layer;
    A layer (A-1) formed using a conductive ink on the copper plating layer;
    A layer (A-2) formed using a conductive ink inside the opening of the copper plating layer on the conductive adhesive layer;
    A shielding film comprising a second insulating protective layer on the conductive adhesive layer, the copper plating layer, the layer (A-1) and the layer (A-2).
  2.  前記導電性接着剤層と前記層(A-2)との間に、さらに銅めっき層を有する請求項1記載のシールドフィルム。 The shield film according to claim 1, further comprising a copper plating layer between the conductive adhesive layer and the layer (A-2).
  3.  前記層(A-2)の面積が、前記銅めっき層の開口面積の15~95%であり、膜厚が0.02~2μmである請求項1または2記載のシールドフィルム。 3. The shield film according to claim 1, wherein the area of the layer (A-2) is 15 to 95% of the opening area of the copper plating layer and the film thickness is 0.02 to 2 μm.
  4.  前記導電性インクが、導電性物質(a2)として金属ナノ粒子を主成分とするインクである請求項1~3のいずれか1項記載のシールドフィルム。 The shield film according to any one of claims 1 to 3, wherein the conductive ink is an ink mainly composed of metal nanoparticles as a conductive substance (a2).
  5.  前記金属ナノ粒子が、高分子分散剤により分散されたものである請求項4記載のシールドフィルム。 The shield film according to claim 4, wherein the metal nanoparticles are dispersed by a polymer dispersant.
  6.  前記第二絶縁保護層と前記導電性インクを用いて形成した層(A-1)及び層(A-2)との間に高分子層(B)を有するものである請求項1~5のいずれか1項記載のシールドフィルム。 The polymer layer (B) is provided between the second insulating protective layer and the layer (A-1) and the layer (A-2) formed using the conductive ink. The shield film of any one of Claims.
  7.  前記導電性インクが、反応性官能基[X]を有する化合物(a1)及び導電性物質(a2)を含有する導電性インクであり、
    かつ、前記高分子層(B)が、反応性官能基[Y]を有する化合物(b1)を含有する高分子からなる層であり、
    前記導電性インクに含まれる前記化合物(a1)が有する反応性官能基[X]と、前記高分子層(B)に含まれる前記化合物(b1)が有する反応性官能基[Y]とを反応させることによって結合を形成したものである請求項6記載のシールドフィルム。
    The conductive ink is a conductive ink containing a compound (a1) having a reactive functional group [X] and a conductive substance (a2),
    And the polymer layer (B) is a layer composed of a polymer containing the compound (b1) having a reactive functional group [Y],
    The reactive functional group [X] of the compound (a1) contained in the conductive ink reacts with the reactive functional group [Y] of the compound (b1) contained in the polymer layer (B). The shield film according to claim 6, wherein a bond is formed by forming the bond.
  8.  前記導電性インクが、反応性官能基[X]として塩基性窒素原子含有基を有する化合物(a1)及び導電性物質(a2)を含有する導電性インクである請求項7記載のシールドフィルム。 The shield film according to claim 7, wherein the conductive ink is a conductive ink containing a compound (a1) having a basic nitrogen atom-containing group as a reactive functional group [X] and a conductive substance (a2).
  9.  前記塩基性窒素原子含有基を有する化合物(a1)が、ポリアルキレンイミン、または、オキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンである請求項8記載のシールドフィルム。 The shield film according to claim 8, wherein the compound (a1) having a basic nitrogen atom-containing group is a polyalkyleneimine or a polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit.
  10.  前記反応性官能基[Y]が、ケト基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群より選ばれる1種以上である請求項7~9のいずれか1項記載のシールドフィルム。 The reactive functional group [Y] is at least one selected from the group consisting of a keto group, an epoxy group, a carboxyl group, an N-alkylol group, an isocyanate group, a vinyl group, a (meth) acryloyl group, and an allyl group. The shield film according to any one of claims 7 to 9.
  11.  請求項1~10のいずれか1項記載のシールドフィルムを有することを特徴とするシールドプリント配線板。 A shield printed wiring board comprising the shield film according to any one of claims 1 to 10.
  12.  第二絶縁保護層上または第二絶縁保護層上に設けた高分子層(B)上に、
    導電性インクで、開口率40~90%の開口パターンと、前記開口パターンの開口内部に、開口面積の15~95%のパターンを形成し、
    前記開口パターン上に電解銅めっきを施して銅めっき層を形成し、
    その上に導電性接着剤層を形成することを特徴とするシールドフィルムの製造方法。
    On the second insulating protective layer or the polymer layer (B) provided on the second insulating protective layer,
    An opening pattern having an opening ratio of 40 to 90% and a pattern of 15 to 95% of the opening area are formed inside the opening of the opening pattern with conductive ink,
    Electrolytic copper plating is performed on the opening pattern to form a copper plating layer,
    A method for producing a shield film, comprising forming a conductive adhesive layer thereon.
  13.  第二絶縁保護層上または第二絶縁保護層上に設けた高分子層(B)上に、
    導電性インクで、開口率40~90%の開口パターンと、前記開口パターンの開口内部に、開口面積の15~95%のパターンを形成し、
    前記開口パターン及びその開口内部に形成したパターン上に無電解めっきを施して銅めっき層を形成し、
    次いで、前記開口パターン上のみに電解銅めっきを施して銅めっき層を形成し、
    その上に導電性接着剤層を形成することを特徴とするシールドフィルムの製造方法。
    On the second insulating protective layer or the polymer layer (B) provided on the second insulating protective layer,
    An opening pattern having an opening ratio of 40 to 90% and a pattern of 15 to 95% of the opening area are formed inside the opening of the opening pattern with conductive ink,
    Electroless plating is performed on the opening pattern and the pattern formed inside the opening to form a copper plating layer,
    Next, electrolytic copper plating is performed only on the opening pattern to form a copper plating layer,
    A method for producing a shield film, comprising forming a conductive adhesive layer thereon.
  14.  前記導電性インク(A)として金属ナノ粒子を主成分とするインクを用い、インクジェット印刷で開口率40~90%の開口パターンと、前記開口パターンの開口内部に開口面積の15~95%のパターンを形成する請求項12または13記載のシールドフィルムの製造方法。 As the conductive ink (A), an ink mainly composed of metal nanoparticles is used, and an opening pattern with an opening ratio of 40 to 90% by ink jet printing and a pattern with an opening area of 15 to 95% inside the opening of the opening pattern. The manufacturing method of the shield film of Claim 12 or 13 which forms.
  15.  信号配線とグランド配線及び絶縁保護層が設けられ、前記絶縁保護層はグランド配線の一部が露出したビアを有するプリント配線板において、
    プリント配線板の絶縁保護層の上に、請求項1~10のいずれか1項記載のシールドフィルムを、導電性接着剤層が前記プリント配線板の絶縁保護層に接するように配置し、プリント配線板とシールドフィルムとを互いに接近する方向に加圧することによりシールドフィルムの導電性接着剤層を流動させてプリント配線板のグランド層と接続することを特徴とするシールドプリント配線板の製造方法。
    A signal wiring, a ground wiring and an insulating protective layer are provided, and the insulating protective layer is a printed wiring board having a via in which a part of the ground wiring is exposed,
    A shield film according to any one of claims 1 to 10 is disposed on an insulating protective layer of a printed wiring board so that a conductive adhesive layer is in contact with the insulating protective layer of the printed wiring board. A method for producing a shielded printed wiring board, wherein the conductive adhesive layer of the shield film is caused to flow by pressurizing the board and the shield film toward each other to be connected to the ground layer of the printed wiring board.
PCT/JP2015/076441 2014-10-03 2015-09-17 Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board WO2016052225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016523342A JP5975195B1 (en) 2014-10-03 2015-09-17 SHIELD FILM, SHIELD PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-204796 2014-10-03
JP2014204796 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016052225A1 true WO2016052225A1 (en) 2016-04-07

Family

ID=55630265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076441 WO2016052225A1 (en) 2014-10-03 2015-09-17 Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board

Country Status (3)

Country Link
JP (1) JP5975195B1 (en)
TW (1) TW201626865A (en)
WO (1) WO2016052225A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156802A (en) * 2017-03-17 2018-10-04 セメダイン株式会社 Aqueous conductive paste, and product
CN110022639A (en) * 2018-01-09 2019-07-16 拓自达电线株式会社 Electromagnetic shielding film
WO2022210631A1 (en) * 2021-03-29 2022-10-06 タツタ電線株式会社 Electromagnetic wave shielding film and shielded printed wiring board
WO2023033007A1 (en) * 2021-09-02 2023-03-09 富士フイルム株式会社 Electronic device and manufacturing method therefor
TWI830257B (en) * 2022-06-09 2024-01-21 大陸商慶鼎精密電子(淮安)有限公司 Method for reducing ion content on the surface of solder mask, backlight module and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713845B (en) * 2017-08-07 2020-12-21 日商拓自達電線股份有限公司 Conductive adhesive
TW202044934A (en) 2019-05-24 2020-12-01 華碩電腦股份有限公司 Printed circuit board and motherboard with the same
TWI812913B (en) * 2020-03-02 2023-08-21 日商拓自達電線股份有限公司 Metal foil and electromagnetic wave shielding film
CN112332190B (en) * 2020-07-27 2023-03-28 深圳市卓汉材料技术有限公司 Method for manufacturing composite grounding film, method for manufacturing high-temperature-resistant grounding elastic piece and structure
CN112469260A (en) * 2020-11-23 2021-03-09 南昌联能科技有限公司 Shielding film, preparation method of shielding film and cable
JP7001187B1 (en) 2021-03-19 2022-01-19 東洋インキScホールディングス株式会社 Electromagnetic wave shield sheet and its manufacturing method, shielded wiring board, and electronic equipment
JP7232995B2 (en) * 2021-03-19 2023-03-06 東洋インキScホールディングス株式会社 Electromagnetic wave shielding sheet, manufacturing method thereof, shielding wiring board, and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307989A (en) * 1998-04-17 1999-11-05 Lintec Corp Radio wave shield material having frequency selective surface and manufacture thereof
JP2006024824A (en) * 2004-07-09 2006-01-26 Tatsuta System Electronics Kk Impedance control film, impedance control shield film, and wiring board using them
WO2010103722A1 (en) * 2009-03-10 2010-09-16 住友ベークライト株式会社 Circuit board
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263036A (en) * 2007-04-11 2008-10-30 Tatsuta System Electronics Kk Rigid wiring board with shield layer and its manufacturing method
JP2011204775A (en) * 2010-03-24 2011-10-13 Dainippon Printing Co Ltd Electromagnetic-wave shielding member
JP2013168643A (en) * 2012-01-17 2013-08-29 Toyo Ink Sc Holdings Co Ltd Electromagnetic wave shield sheet and manufacturing method of wiring board with electromagnetic wave shield layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307989A (en) * 1998-04-17 1999-11-05 Lintec Corp Radio wave shield material having frequency selective surface and manufacture thereof
JP2006024824A (en) * 2004-07-09 2006-01-26 Tatsuta System Electronics Kk Impedance control film, impedance control shield film, and wiring board using them
WO2010103722A1 (en) * 2009-03-10 2010-09-16 住友ベークライト株式会社 Circuit board
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018156802A (en) * 2017-03-17 2018-10-04 セメダイン株式会社 Aqueous conductive paste, and product
CN110022639A (en) * 2018-01-09 2019-07-16 拓自达电线株式会社 Electromagnetic shielding film
KR20190084851A (en) * 2018-01-09 2019-07-17 타츠타 전선 주식회사 Electromagnetic wave shield film
JP2019121707A (en) * 2018-01-09 2019-07-22 タツタ電線株式会社 Electromagnetic wave shield film
TWI720337B (en) * 2018-01-09 2021-03-01 日商拓自達電線股份有限公司 Electromagnetic wave shielding film
KR102385690B1 (en) * 2018-01-09 2022-04-11 타츠타 전선 주식회사 Electromagnetic wave shield film
WO2022210631A1 (en) * 2021-03-29 2022-10-06 タツタ電線株式会社 Electromagnetic wave shielding film and shielded printed wiring board
WO2023033007A1 (en) * 2021-09-02 2023-03-09 富士フイルム株式会社 Electronic device and manufacturing method therefor
TWI830257B (en) * 2022-06-09 2024-01-21 大陸商慶鼎精密電子(淮安)有限公司 Method for reducing ion content on the surface of solder mask, backlight module and manufacturing method thereof

Also Published As

Publication number Publication date
JP5975195B1 (en) 2016-08-23
TW201626865A (en) 2016-07-16
JPWO2016052225A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5975195B1 (en) SHIELD FILM, SHIELD PRINTED WIRING BOARD AND METHOD FOR PRODUCING THEM
WO2015137132A1 (en) Shield film, shield printed wiring board, and methods for producing same
JP6575738B1 (en) Manufacturing method of electronic component package
JP4913663B2 (en) Circuit board manufacturing method
JP5201433B1 (en) RECEPTION LAYER FORMING RESIN COMPOSITION AND RECEPTION SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED USING THE SAME
JP6766983B2 (en) Manufacturing method of printed wiring board
CN111937501A (en) Curable resin composition, cured product thereof, and printed wiring board
KR101563302B1 (en) Double side type nfc antenna printed by roll to roll printing and method for manufacturing thereof
KR20210023791A (en) Laminate for printed wiring board and printed wiring board using the same
KR20210023828A (en) Manufacturing method of printed wiring board
US9999923B2 (en) Silver powder
JP5569662B1 (en) Laminate, conductive pattern and electrical circuit
KR20220168571A (en) Laminate and method for producing the same
JP6237098B2 (en) Dispersant, metal particle dispersion for conductive substrate, and method for producing conductive substrate
WO2022097482A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
JP7332049B2 (en) Laminate for semi-additive construction method and printed wiring board using the same
WO2022097488A1 (en) Laminate for semi-additive construction method and printed wiring board
TW202233414A (en) Laminate for semi-additive manufacturing and printed wiring board using same
KR20230098579A (en) Laminate for semi-additive method and printed wiring board using the same
KR20090093295A (en) Film for antenna and electro-magnetic wave shield containing conductive micro pattern
JP2013236121A (en) High frequency circuit structure and manufacturing method of the same
JP2014075455A (en) Method for manufacturing conductive substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016523342

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848060

Country of ref document: EP

Kind code of ref document: A1