WO2010103722A1 - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
WO2010103722A1
WO2010103722A1 PCT/JP2010/000659 JP2010000659W WO2010103722A1 WO 2010103722 A1 WO2010103722 A1 WO 2010103722A1 JP 2010000659 W JP2010000659 W JP 2010000659W WO 2010103722 A1 WO2010103722 A1 WO 2010103722A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
signal wiring
circuit board
shield layer
characteristic impedance
Prior art date
Application number
PCT/JP2010/000659
Other languages
French (fr)
Japanese (ja)
Inventor
及川昭
栗林宏行
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009056697A external-priority patent/JP2010212439A/en
Priority claimed from JP2009211526A external-priority patent/JP2011061126A/en
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2010103722A1 publication Critical patent/WO2010103722A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • H05K1/0219Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09236Parallel layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09681Mesh conductors, e.g. as a ground plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/0969Apertured conductors

Definitions

  • the present invention relates to a ground layer and a circuit board in which signal wirings are arranged with respect to the ground layer via an insulator layer.
  • a circuit board on which a device operating in a high frequency band is mounted has a characteristic impedance (hereinafter also referred to as Zo) of a signal transmission path (hereinafter also referred to as signal wiring) in order to suppress signal reflection and waveform distortion. It is necessary to match the input / output impedance of the device.
  • a microstrip structure in which a ground layer is opposed to a signal transmission path (strip line) having an appropriate pattern width with an insulating layer having an appropriate thickness interposed therebetween is employed. Yes.
  • the ground layer in the circuit board structure described above serves as an electrical reference plane that defines the characteristic impedance of the signal transmission path.
  • the characteristic impedance is often selected to be around 50 ⁇ for single-ended transmission and around 100 ⁇ for differential transmission.
  • Zo in the circuit board described above is a ratio of reactance L per unit length of the signal transmission path and capacitance C per unit area between the signal transmission path and the ground layer (reactance L / electrostatic capacity). It is a value approximated by the square root of the capacitance C).
  • the ground layer formed as a so-called solid electrode layer is removed in a mesh shape so that the opposing area between the ground layer and the signal wiring per unit area is substantially reduced. Proposals have been made to ensure the width of the signal wiring by making it smaller. This is disclosed in the following prior art documents.
  • the present invention has been made by paying attention to the technical problems described above, and can sufficiently control the characteristic impedance of the signal transmission path, and also exhibits the effect in the above-mentioned EMI countermeasures. It is an object of the present invention to provide a circuit board having a signal wiring capable of performing single-ended transmission and a circuit board having a pair of signal wirings capable of performing differential transmission.
  • the circuit board according to the present invention which has been made to solve the above-described problems, includes a ground layer and a signal wiring disposed through an insulator layer with respect to the ground layer, and capacitive coupling between the ground layer and the signal wiring.
  • an insulating coating layer is formed on the signal wiring disposed on the insulator layer, Further, a shield layer made of a conductive material is formed, and an opening of the shield layer where the shield layer is not laid is formed on the insulating coating layer facing the signal wiring.
  • the signal wiring on which the characteristic impedance is controlled is a signal wiring on which single-ended transmission is performed
  • the signal wiring on which the characteristic impedance is controlled when the thickness of the insulator layer is t1. It is preferable that the distance U between both outer sides of the shield layer and the opening edge of the shield layer is set in a range of 3t1 ⁇ U ⁇ 20t1.
  • the signal wiring for which characteristic impedance control is performed is a pair wiring that is differentially transmitted
  • the distance between the pair wirings is S
  • both outer sides of the pair wiring and the shield It is desirable that the distance U from the opening edge of the layer is set in a range of 3S ⁇ U ⁇ 20S.
  • the ground layer facing the signal wiring whose characteristic impedance is controlled is formed in a mesh-shaped conductor portion provided with a number of holes, and a solid electrode that is not provided with holes outside the mesh-shaped conductor portion.
  • the boundary between the mesh-like conductor portion and the solid electrode region coincides with the opening edge of the shield layer in a direction perpendicular to the substrate surface.
  • the insulating layer between the ground layer and the signal wiring and the insulating coating layer between the signal wiring and the shielding layer are each made of a thin circuit board having a thickness of 100 ⁇ m or less. The effect can be exhibited remarkably.
  • a linear guard pattern having the same potential as that of the ground layer is disposed on the insulator layer along both outer sides of the signal wiring for which characteristic impedance is controlled, and the linear guard is provided.
  • a circuit board configured so that the central portion in the width direction of the pattern is positioned at the opening edge of the shield layer can also be suitably employed.
  • the ground layer and the guard pattern are connected via a via hole, and the guard pattern and the shield layer are connected via an opening formed in the insulating coating layer.
  • the insulating coating layer facing the signal wiring that needs to be controlled by Zo is formed in the opening portion of the shield layer where the shield layer is not laid.
  • the degree of capacitance coupling between the two can be greatly reduced. Thereby, appropriate control of the characteristic impedance of the signal wiring can be achieved.
  • the signal wiring is provided with a circuit board capable of exhibiting a sufficient effect for the above-mentioned EMI countermeasures although the shield effect is slightly lowered by forming the opening of the shield layer. can do.
  • FIG. 1A shows the laminated structure of the first embodiment of the circuit board provided with the signal wiring for performing the above-mentioned single-end transmission
  • FIG. 1B shows the signal wiring on the insulator layer shown in FIG. 1A. It is the top view which showed the part at the substantially same scale.
  • the circuit board shown in FIGS. 1A and 1B is provided with a ground layer and a signal wiring for performing single-ended transmission with respect to the ground layer through an insulator layer, and a signal wiring that requires control of characteristic impedance.
  • a film-like base substrate is employed as the insulator layer 2, and the signal wirings 3A and 3B are provided on one surface (the upper side in FIG. 1A) of the base substrate 2.
  • the insulating coating layer 4 is laminated on the upper surface (the upper side in FIG. 1A) of the signal wirings 3A and 3B through an adhesive layer (not shown).
  • a ground layer 5 is formed on the other surface (lower side in FIG. 1A) of the base substrate 2, and a second insulating coating layer is formed on the lower surface of the ground layer 5 via an adhesive layer (not shown). 6 are stacked.
  • a shield layer 7 made of a conductive material is formed on the insulating coating layer 4 covering the signal wirings 3A and 3B on the surface opposite to the ground layer 5 through the base substrate 2, and has a characteristic impedance.
  • an opening 7a of the shield layer where the shield layer is not laid is formed on the insulating coating layer 4 facing the signal wiring 3A that needs to be controlled.
  • the base substrate 2 that functions as a central insulator layer in which the signal wiring is disposed has a function as a core of the circuit board 1.
  • the material of the base substrate 2 includes a resin film, a fiber substrate, and the like. Materials etc. can be mentioned.
  • the material constituting the resin film examples include polyimide resins such as polyimide resins, polyamide resins, and polyamideimide resins, thermosetting resins such as epoxy resins, and thermoplastic resins such as liquid crystal polymers.
  • a polyimide resin or a liquid crystal polymer is preferable.
  • a polyimide resin it is excellent in heat resistance and mechanical properties and is easy to obtain.
  • a liquid crystal polymer it is suitable for high-speed signal transmission due to its low relative dielectric constant, and it has excellent dimensional stability due to its low hygroscopicity.
  • the fiber base material used for the insulating layer examples include glass fiber base materials such as glass fiber cloth and glass non-fiber cloth, or inorganic fiber base materials such as fiber cloth and non-fiber cloth containing inorganic compounds other than glass, aromatic And organic fiber base materials composed of organic fibers such as aromatic polyamide resins, polyamide resins, aromatic polyester resins, polyester resins, polyimide resins, and fluororesins.
  • glass fiber base materials represented by glass fiber fabric are preferable in terms of strength and water absorption.
  • a fiber base material When a fiber base material is used for the insulator layer, it is preferably used in a state where the fiber base material is impregnated with a resin.
  • a resin impregnated in the fiber base material a thermosetting resin such as an epoxy resin or an acrylic resin is preferably used, and among these, an epoxy resin is preferable from the viewpoint of heat resistance.
  • the thickness t1 of the base substrate 2 is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 5 to 50 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m.
  • the thickness of the base substrate 2 is preferably in the range of 1 to 100 ⁇ m, more preferably in the range of 5 to 50 ⁇ m, and more preferably in the range of 10 to 30 ⁇ m.
  • the signal wirings 3A and 3B arranged on one surface of the base substrate 2 may be provided directly on the base substrate 2, or may be provided via an adhesive. Then, at the end portion of each signal wiring or an appropriate intermediate portion, it is bonded to a mounting pad such as a semiconductor device (not shown) and functions as the circuit board 1.
  • the insulating coating layer 4 covering the signal wirings 3A and 3B via an adhesive layer is made of a resin material.
  • the resin material include polyester resins, polyimides, and liquid crystal polymers. Among these, polyimide is preferable. Thereby, heat resistance and flexibility can be improved.
  • the thickness t2 of the insulating coating layer 4 is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m.
  • an acrylic resin for example, an acrylic resin, an epoxy resin, a polyimide resin, or the like may be used. It can. Among these, an epoxy resin is preferable, and thereby heat resistance and flexibility can be improved.
  • the conductive portion as the ground layer 5 disposed on the other surface (back surface) of the base substrate 2 is made of a conductor made of a copper material.
  • a large number of holes formed in a parallelogram opening are formed in a portion facing the signal wiring 3A that requires impedance control.
  • a specific configuration of the ground layer 5 will be described later in detail with reference to FIG.
  • the second insulating coating layer 6 laminated on the lower surface of the ground layer 5 (the lower side in FIG. 1A) via an adhesive layer (not shown) is preferably made of a resin material.
  • the resin material include polyester resin, polyimide, liquid crystal polymer, and the like. Among these, polyimide is preferable. Thereby, heat resistance and flexibility can be improved.
  • the thickness of the second insulating coating layer 6 is not particularly limited, but is preferably 5 to 50 ⁇ m, and particularly preferably 10 to 30 ⁇ m. This makes it easy to maintain the strength of the resin layer within a practical range by setting the thickness of the insulating coating layer 6 to be equal to or greater than the lower limit, and maximizing slidability and flexibility by reducing the thickness to the upper limit or less. It is easy to make it to the limit.
  • the material constituting the adhesive layer (not shown) interposed between the ground layer 5 and the second insulating coating layer 6 is interposed between the base substrate 2 and the insulating coating layer 4.
  • an acrylic resin, an epoxy resin, a polyimide resin, or the like can be used in the same manner as the material constituting the adhesive layer (not shown).
  • an epoxy resin is preferable, and thereby heat resistance and flexibility can be improved.
  • the shield layer 7 made of a conductive material formed on the insulating coating layer 4 is formed by printing with a conductive paste (silver paste) or by sticking a conductive shield film, and the characteristic impedance can be controlled.
  • the portion facing the required signal wiring 3A is formed in the opening 7a of the shield layer where the shield layer 7 is not laid as described above.
  • FIG. 2 is a partially enlarged view of one preferred configuration of the ground layer 5 described above.
  • a state in which the signal wiring 3A that requires control of characteristic impedance is superimposed on the ground layer 5 is shown as seen through from a direction perpendicular to the surface.
  • the ground layer 5 is made of a conductor made of a copper material, and the position of the conductor facing the signal wiring 3A constitutes a mesh-like conductor portion 5B in which a large number of holes are formed. .
  • the hole in this embodiment is formed as a parallelogram (rhombus) opening by intersecting a plurality of lines in two directions.
  • Each of the plurality of lines in the two directions is preferably inclined with respect to the signal wiring 3A within a range of 5 to 40 degrees.
  • the longer diagonal line of the rhomboid opening has a mesh pattern that matches the wiring direction of the signal wiring 3A.
  • each above-mentioned opening may have a mutually different magnitude
  • it is made into the opening area of the same magnitude
  • the characteristic impedance of the signal wiring 3A can be controlled with high accuracy.
  • the outside of the mesh-like conductor portion 5B is a solid electrode region 5A made of a copper material in which no hole is formed.
  • the signal wiring 3B that does not require the characteristic impedance control is arranged opposite to the solid electrode region 5A.
  • the mesh-like conductor portion 5B is configured only in the portion where the characteristic impedance needs to be controlled, and the rest is the solid electrode region 5A, thereby avoiding an increase in the overall impedance of the ground layer 6. be able to.
  • the boundary between the mesh-like conductor portion 5B and the solid electrode region 5A is configured to substantially coincide with an opening edge 7b in the opening 7a of the shield layer described later in a direction orthogonal to the substrate surface.
  • the characteristic impedance of the signal wiring In order to control the characteristic impedance of the signal wiring, it is effective to provide the mesh conductor portion 5B in the ground layer 5 as described above.
  • the characteristic impedance of the signal wiring is determined by the line width and the insulating layer. It is also possible to control the thickness and further by selecting the dielectric constant of the insulating layer. In the present invention, it is not essential to provide the mesh-like conductor portion 5B.
  • the thickness t1 of the base substrate 2 and the thickness t2 of the insulating coating layer 4 are both 100 ⁇ m or less, and the entire laminated structure is applied to a very thin circuit board. Therefore, the distance U between the signal wiring 3A that needs to control the characteristic impedance and the opening edge 7b of the opening 7a formed in the shield layer dominates the degree of capacitive coupling between them.
  • the signal wiring 3A whose characteristic impedance is controlled has the function of single-end transmission as described above, and when the thickness of the insulator layer 2 is t1, It is desirable that the distance U from the opening edge of the shield layer is set in the range of 3t1 ⁇ U ⁇ 20t1, more preferably 3t1 ⁇ U ⁇ 10t1.
  • FIG. 3 shows the ratio between the outer side of the signal wiring 3A and the opening edge 7b of the shield layer 7 as U, and the ratio of both when the thickness of the insulator layer 2 is t1, that is, U / t1.
  • the characteristic example shown in FIG. 3 is obtained when the line width L of the signal wiring 3A is 100 ⁇ m, the interlayer thickness t1 of the insulator layer 2 is 25 ⁇ m, and the copper (conductor) residual ratio of the mesh-like conductor portion 5B is 30%. Is. In addition, this is because the boundary between the mesh-like conductor portion 5B and the solid electrode region 5A is configured to coincide with the opening edge 7b of the opening 7a of the shield layer in a direction perpendicular to the substrate surface. .
  • the thickness (interlayer thickness) t1 of the insulator layer 2 separating the signal wiring 3A and the ground layer 5 dominates the degree of capacitive coupling between them. Therefore, it is desirable to manage the control of the characteristic impedance using the thickness t1 of the insulator layer 2 as a parameter.
  • the value of U is desirably set to 20 t1 or less, preferably 10 t1 or less.
  • the relationship between the distance U between the outer sides of the signal wiring 3A having the function of single-end transmission and the opening edge 7b of the shield layer and the thickness t1 of the insulator layer 2 is set within the above range.
  • FIG. 4A shows a laminated structure of a circuit board according to the second embodiment of the present invention in which single-ended transmission is performed
  • FIG. 4B shows signal wiring portions on the insulator layer shown in FIG. 4A at substantially the same scale. It is the top view shown by.
  • FIG. 4A and FIG. 4B parts that perform the same functions as the parts shown in FIG. 1A and FIG. 1B already described are denoted by the same reference numerals, and thus detailed description thereof is omitted.
  • the relationship between the distance U between the outer sides of the signal wiring 3A and the opening edge 7b of the shield layer and the thickness t1 of the insulator layer 2 is also the same as described above based on FIG. 1A. Yes.
  • linear guard patterns 8 having the same potential as that of the ground layer 5 are arranged on the base substrate 2 along both outer sides of the signal wiring 3A whose characteristic impedance is controlled. It is installed. And the center part of the width direction of the linear guard pattern 8 is comprised so that it may be located in the opening edge 7b of the said shield layer 7.
  • the upper surface of the signal wiring 3A requiring control of the characteristic impedance is opened by the opening 7a of the shield layer, but below the signal wiring 3A as viewed in cross section as shown in FIG. 4A. Since both sides and the upper sides are surrounded by a sufficiently close ground, attenuation of the EMI shield characteristic can be minimized.
  • FIG. 5A shows a laminated structure of the circuit board according to the third embodiment of the present invention in which single-ended transmission is performed
  • FIG. 5B shows almost the same signal wiring portion on the insulator layer shown in FIG. 5A. It is the top view shown on a reduced scale.
  • the configuration shown in FIGS. 5A and 5B is obtained by further adding the configuration requirements to the above-described second embodiment shown in FIGS. 4A and 4B.
  • the ground layer 5 and the guard pattern 8 include: The guard pattern 8 and the shield layer 7 are connected through an opening 4 a formed in the insulating coating layer 4. The guard pattern 8 and the shield layer 7 are connected through a via hole 2 a formed in the insulating base 2.
  • Via holes 2a connecting the ground layer 5 and the guard pattern 8 are formed at a plurality of locations along the longitudinal direction of the guard pattern 8 as shown in FIG. 5B, and both are connected via the via holes 2a.
  • the openings 4a formed in the insulating coating layer 4 are also formed at a plurality of locations along the longitudinal direction of the guard pattern 8, and the guard pattern 8 and the shield layer 7 are formed through the openings 4a. And are connected.
  • the above-described configuration can be suitably employed in a portion where the circuit board is not bent. According to this configuration, the gap between the grounds on both outer sides of the signal wiring 3A is filled, and the ground layer 5 functions as a ground potential. Further, the mechanical coupling of the guard pattern 8 and the shield layer 7 is strengthened, and it can contribute to further improving the EMI shield characteristics.
  • FIG. 6A shows the laminated structure of the first embodiment of the circuit board provided with the pair signal wiring for differential transmission as described above
  • FIG. 6B shows the signal wiring on the insulator layer shown in FIG. 6A. It is the top view which showed the part at the substantially same scale.
  • a signal wiring is disposed via a ground layer and an insulator layer with respect to the ground layer, and the signal wiring that requires control of characteristic impedance (see FIG. 6B).
  • a microstrip structure is formed for the part (pair wiring indicated by symbol A), and a shield layer is added to the part of the signal wiring (pair wiring indicated by symbol B in FIG. 6B) that does not require control of the characteristic impedance. is doing.
  • a film-like base substrate is employed as the insulator layer 2, and signal wiring that is differentially transmitted is provided on one surface (the upper side in FIG. 6A) of the base substrate 2.
  • 3a and 3b are formed, and an insulating coating layer 4 is laminated on the upper surface (the upper side in FIG. 6A) of the signal wirings 3a and 3b via an adhesive layer (not shown).
  • a ground layer 5 is formed on the other surface of the base substrate 2 (lower side in FIG. 6A), and a second insulating coating layer is formed on the lower surface of the ground layer 6 via an adhesive layer (not shown). 6 is formed.
  • a shield layer 7 made of a conductive material is formed on the insulating coating layer 4 that covers the signal wiring on the opposite side of the ground layer 5 through the base substrate 2, and the characteristic impedance needs to be controlled.
  • the circuit board 1 provided with the differential signal transmission pair signal wiring is the same as the circuit board provided with the signal wiring shown in FIG. 1A and FIG.
  • Each layer having the same structure as that of the laminated structure and performing the same function is indicated by the same reference numeral. Therefore, the details of each layer and an adhesive layer (not shown) will not be described.
  • FIG. 7 is an enlarged view of a part of one preferred configuration of the ground layer 5 shown in FIG. 6A.
  • FIG. 7 shows a state in which the signal wirings 3a and 3b that need to control the characteristic impedance described above are superimposed on the ground layer 5 as seen through from a direction orthogonal to the surface.
  • the ground layer 5 shown in FIG. 7 has the same configuration as that of the ground layer 5 shown in FIG. 2, and portions that perform the same function are indicated by the same reference numerals. Therefore, the detailed description of the ground layer 5 is also omitted.
  • the thickness t1 of the base substrate 2 and the thickness t2 of the insulating coating layer 4 are both 100 ⁇ m or less, and the entire laminated structure is extremely thin. Therefore, the distance U between the signal wirings 3a and 3b that need to be controlled in the characteristic impedance and the opening edge 7b of the opening 7a formed in the shield layer is a capacitive coupling between them. Will dominate the degree.
  • the signal wiring for which the characteristic impedance is controlled is a pair wiring that is differentially transmitted.
  • the signal wiring The distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer at the position of the line distance S may be set in the range of 3S ⁇ U ⁇ 20S, more preferably 3S ⁇ U ⁇ 10S. desirable.
  • FIG. 8 shows a characteristic example in which the ratio of the distance U to the line-to-line distance S, that is, the value of U / S is shown on the horizontal axis, and the characteristic impedance Zo of the signal wirings 3a and 3b is shown on the vertical axis. is there.
  • the value of U is desirably set to 20S or less, preferably 10S or less.
  • the characteristic impedance of the signal wiring can be reduced by setting the relationship between the line spacing S of the paired signal wirings and the distance U between the outer sides of the pair wirings and the opening edge 7b of the shield layer within the above range. It is possible to provide a circuit board capable of achieving both adjustment and EMI countermeasures.
  • the distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer is set using the line spacing S of the pair wiring as a parameter. It is appropriate to set and manage the above-mentioned range.
  • the distance between the pair wirings affects the characteristic impedance of the signal wiring next to the shield layer. Therefore, the distance from the signal wiring to the opening edge of the shield layer with respect to the distance between the lines is reduced to the characteristic impedance. This is because the magnitude of the impact is determined.
  • FIG. 9A shows the laminated structure of the second embodiment of the circuit board provided with the differential signal transmission pair signal wiring
  • FIG. 9B shows almost the same signal wiring portion on the insulator layer shown in FIG. 9A. It is the top view shown on a reduced scale.
  • the configuration shown in FIGS. 9A and 9B shows an example in which the signal wiring that needs to control the characteristic impedance is a pair wiring that is differentially transmitted, similarly to the example shown in FIGS. 6A and 6B. .
  • FIGS. 9A and 9B parts that perform the same functions as those shown in FIGS. 6A and 6B described above are denoted by the same reference numerals, and therefore detailed description thereof is omitted.
  • the distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer has the above-described relationship using the line spacing S of the pair wiring as a parameter.
  • a linear guard pattern 8 having the same potential as the ground layer 5 is formed along the outer sides of the signal wirings 3a and 3b whose characteristic impedance is controlled. It is arranged on the top. And the center part of the width direction of the linear guard pattern 8 is comprised so that it may be located in the opening edge 7b of the said shield layer 7.
  • the upper surfaces of the signal wirings 3a and 3b that require control of the characteristic impedance are opened by the opening 7a of the shield layer, but the signal wiring 3a viewed in a cross section as shown in FIG. 9A. , 3b, and the upper and lower sides are surrounded by a sufficiently close ground, so that the attenuation of the EMI shield characteristic can be minimized.
  • FIG. 10A shows a laminated structure according to the third embodiment of a circuit board having a pair signal wiring for differential transmission
  • FIG. 10B shows a signal wiring portion on the insulator layer shown in FIG. 10A. It is the top view shown on substantially the same scale.
  • the configuration shown in FIGS. 10A and 10B is obtained by further adding the configuration requirements to the second embodiment shown in FIGS. 9A and 9B.
  • the ground layer 5 and the guard pattern 8 are
  • the guard pattern 8 and the shield layer 7 are connected through an opening 4 a formed in the insulating coating layer 4.
  • the guard pattern 8 and the shield layer 7 are connected through a via hole 2 a formed in the insulating base 2.
  • the via holes 2a connecting the ground layer 5 and the guard pattern 8 are formed at a plurality of locations along the longitudinal direction of the guard pattern 8 as shown in FIG. 10B, and both are connected via the via holes 2a.
  • the openings 4a formed in the insulating coating layer 4 are also formed at a plurality of locations along the longitudinal direction of the guard pattern 8, and the guard pattern 8 and the shield layer 7 are formed through the openings 4a. And are connected.
  • the above-described configuration can be suitably employed in a portion where the circuit board is not bent or the like. According to this configuration, a gap between the grounds on both outer sides of the signal wiring is filled, and the ground layer 5 functions as a ground potential. The mechanical coupling between the guard pattern 8 and the shield layer 7 is strengthened, and it can contribute to further improving the EMI shield characteristics.
  • the ground layer in the circuit board provided with the signal wiring that performs single-ended transmission and the pair signal wiring that is differentially transmitted as described above is configured to be applied with a reference potential of the circuit. In some cases, the operating power supply of each device may be superimposed. Therefore, the potential applied to the ground layer is not particularly limited.
  • the circuit board according to the present invention can be used for a printed wiring board, a flexible printed wiring board, a multilayer flexible printed wiring board, and the like, and can be suitably used particularly for a circuit board on which a device operating in a high frequency band is mounted.
  • Circuit board 2 Insulator layer (base material) 2a Via hole 3A, 3B Signal wiring 3a, 3b Signal wiring (pair wiring) DESCRIPTION OF SYMBOLS 4 Insulation coating layer 4a Insulation coating layer opening 5 Ground layer 5A Solid electrode area 5B Mesh-like conductor part 6 Insulation coating layer 7 Shield layer 7a Shield layer opening part 7b Opening edge 8 Guard pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

In a circuit board (1) having the ground layer (5) and the signal wiring (3A, 3B) arranged on the ground layer with an insulator layer (2) interposed therebetween, a shield layer (7) composed of a conductive material is formed on an insulation coating layer (4) covering the signal wiring on the side opposite to the ground layer (5). The portion which is above the insulator layer and faces the singnal wiring (3A) requiring a control of a characteristic impedance is configured as an opening (7a) in the shield layer where there is no shield layer arranged. When the signal wiring fulfils the function of single end transmission, the distance U between the opposite outsides of the signal wiring (3A) and the opening edge (7b) of the shield layer is set in the range of 3t1≤U≤20t1, where the thickness of the insulator layer (2) is t1. With such structure, a circuit board which can control the characteristic impedance of the signal wiring (3A) and can exhibit the effect also in EMI countermeasure is provided.

Description

回路基板Circuit board
 この発明は、グランド層と前記グランド層に対して絶縁体層を介して信号配線を配設した回路基板に関する。 The present invention relates to a ground layer and a circuit board in which signal wirings are arranged with respect to the ground layer via an insulator layer.
 例えば高周波帯で動作するディバイスを実装する回路基板は、信号の反射や波形歪みの発生を抑えるために信号伝送路(以下、信号配線とも言う。)の特性インピーダンス(以下、Zoとも言う。)を、前記ディバイスの入出力インピーダンスに整合させる必要がある。
 前記した信号伝送路の特性インピーダンスを整合させるためには、適切なパターン幅の信号伝送路(ストリップライン)に適切な厚さの絶縁層を挟んでグランド層を対峙させるマイクロストリップ構造が採用されている。
For example, a circuit board on which a device operating in a high frequency band is mounted has a characteristic impedance (hereinafter also referred to as Zo) of a signal transmission path (hereinafter also referred to as signal wiring) in order to suppress signal reflection and waveform distortion. It is necessary to match the input / output impedance of the device.
In order to match the characteristic impedance of the signal transmission path described above, a microstrip structure in which a ground layer is opposed to a signal transmission path (strip line) having an appropriate pattern width with an insulating layer having an appropriate thickness interposed therebetween is employed. Yes.
 前記した回路基板構造における前記グランド層は、信号伝送路の特性インピーダンスを規定する電気的な基準面となる。そして、一般に特性インピーダンスはシングルエンド伝送で50Ω前後に、差動伝送で100Ω前後に選択される場合が多い。なお、前記した回路基板におけるZoは、信号伝送路の単位長さあたりのリアクタンスLと、前記信号伝送路とグランド層との間における単位面積あたりの静電容量Cの比(リアクタンスL/静電容量C)の平方根で近似される値となる。 The ground layer in the circuit board structure described above serves as an electrical reference plane that defines the characteristic impedance of the signal transmission path. In general, the characteristic impedance is often selected to be around 50Ω for single-ended transmission and around 100Ω for differential transmission. Note that Zo in the circuit board described above is a ratio of reactance L per unit length of the signal transmission path and capacitance C per unit area between the signal transmission path and the ground layer (reactance L / electrostatic capacity). It is a value approximated by the square root of the capacitance C).
 ところで、近年においては前記したディバイスを実装する回路基板として、薄いリジッド基板やフレキシブル回路基板が多用されており、このような回路基板を採用した場合においては、当然ながら前記グランド層に対する信号伝送路の層間が狭く(薄く)、両者間における静電容量Cの値が前記層間の寸法にほぼ反比例して上昇する。
 したがって、前記した薄い多層構造の回路基板において、所望の前記Zoを得ようとするには、従来の層間が厚い回路基板に比べて前記信号伝送路の幅を狭く(細く)形成することで、前記容量Cの上昇を抑える手段を採用せざるを得ない。
By the way, in recent years, thin rigid boards and flexible circuit boards are frequently used as circuit boards for mounting the above-described devices. When such circuit boards are adopted, of course, the signal transmission path for the ground layer is naturally used. The interlayer is narrow (thin), and the value of the capacitance C between them increases almost in inverse proportion to the dimension between the layers.
Therefore, in the above-described thin multilayer circuit board, in order to obtain the desired Zo, the width of the signal transmission path is narrower (thinner) than that of a conventional circuit board with a thick interlayer, A means for suppressing the increase in the capacitance C must be employed.
 このように所望のZoを得るために、信号配線を細く形成しようとする場合においては、信号配線の加工が困難なほどに細くせざるを得ない場合が発生する。また、たとえ信号配線の加工が可能であっても、信号配線が細いほど回路加工精度および線幅ばらつきの比率が高まり、これに伴ってZoのばらつきが増大する。 In this way, in order to obtain a desired Zo, when the signal wiring is to be formed thin, there is a case where the signal wiring has to be made so thin that it is difficult to process. Even if signal wiring can be processed, the thinner the signal wiring, the higher the ratio of circuit processing accuracy and line width variation, and the Zo variation increases accordingly.
 このために、前記Zoの変化が大きな信号配線部分において、信号の反射や波形歪みを発生させるという問題を招来させる。さらに、信号配線の配線抵抗値が高くなるために、これに供給される信号周波数が高いほど、伝送特性の悪化の要因になる等の問題を抱えることになる。 For this reason, there arises a problem that signal reflection and waveform distortion occur in the signal wiring portion where the change of Zo is large. Furthermore, since the wiring resistance value of the signal wiring is increased, there is a problem that the higher the signal frequency supplied to the signal wiring, the worse the transmission characteristics.
 そこで、前記した技術的な課題を解決するために、いわゆるベタ電極層として形成される前記グランド層をメッシュ状に銅抜きして、単位面積あたりのグランド層と信号配線との対向面積を実質的に小さくさせることで、前記信号配線の幅を確保する提案がなされている。これは次に示す先行技術文献に開示されている。 Therefore, in order to solve the above-described technical problem, the ground layer formed as a so-called solid electrode layer is removed in a mesh shape so that the opposing area between the ground layer and the signal wiring per unit area is substantially reduced. Proposals have been made to ensure the width of the signal wiring by making it smaller. This is disclosed in the following prior art documents.
特開平7-321463号公報JP 7-32463 A
 ところで、前記した先行技術文献に開示されているマイクロストリップ構造の回路基板においては、前記したグランド層側はEMI(電磁波障害)対策として有効に作用するものの、その反対面の信号配線側においては、その効果を期待することはできない。
 そこで、EMI対策が必要な信号配線の外側の表層(絶縁被覆層)上を、例えば銀ペーストなどによる導電性シールド層で覆い、実質的にストリップ構造とすることが考えられる。
By the way, in the circuit board of the microstrip structure disclosed in the above-described prior art document, although the above-described ground layer side effectively acts as an EMI (electromagnetic wave interference) countermeasure, on the signal wiring side on the opposite side, The effect cannot be expected.
Therefore, it is conceivable that the outer surface layer (insulating coating layer) of the signal wiring that requires EMI countermeasures is covered with a conductive shield layer made of, for example, silver paste to substantially form a strip structure.
 しかしながら、信号配線の表層側に前記したシールド層を配置した場合には、信号配線と前記絶縁被覆層上のシールド層との間における容量結合が新たに発生する。すなわち、信号配線はグランド層との間おける静電容量に、シールド層との間における静電容量が加わることになり、信号伝送路のZoの適正な制御が困難になる。 However, when the shield layer described above is disposed on the surface layer side of the signal wiring, a capacitive coupling newly occurs between the signal wiring and the shield layer on the insulating coating layer. That is, the capacitance between the signal wiring and the ground layer is added to the capacitance between the signal wiring and the shield layer, making it difficult to properly control Zo of the signal transmission path.
 この発明は、前記した技術的な問題点に着目してなされたものであり、信号伝送路の特性インピーダンスの制御を十分に果たすことができると共に、前記したEMI対策にもその効果を発揮することができるシングルエンド伝送がなされる信号配線を備えた回路基板、および差動伝送がなされるペアの信号配線を備えた回路基板を提供することを課題とするものである。 The present invention has been made by paying attention to the technical problems described above, and can sufficiently control the characteristic impedance of the signal transmission path, and also exhibits the effect in the above-mentioned EMI countermeasures. It is an object of the present invention to provide a circuit board having a signal wiring capable of performing single-ended transmission and a circuit board having a pair of signal wirings capable of performing differential transmission.
 前記した課題を解決するためになされたこの発明にかかる回路基板は、グランド層と前記グランド層に対して絶縁体層を介して信号配線を配設し、前記グランド層と信号配線間の容量結合を制御することで、前記信号配線の特性インピーダンス制御がなされる回路基板であって、前記絶縁体層に配設された信号配線上には絶縁被覆層が形成され、当該絶縁被覆層を介してさらに導電性素材によるシールド層が形成されると共に、前記信号配線に対峙する前記絶縁被覆層上は、前記シールド層が敷設されないシールド層の開口部になされていることを特徴とする。 The circuit board according to the present invention, which has been made to solve the above-described problems, includes a ground layer and a signal wiring disposed through an insulator layer with respect to the ground layer, and capacitive coupling between the ground layer and the signal wiring. By controlling the characteristic impedance of the signal wiring, an insulating coating layer is formed on the signal wiring disposed on the insulator layer, Further, a shield layer made of a conductive material is formed, and an opening of the shield layer where the shield layer is not laid is formed on the insulating coating layer facing the signal wiring.
 そして、特性インピーダンスの制御が成される前記信号配線がシングルエンド伝送がなされる信号配線の場合には、前記絶縁体層の厚さをt1としたとき、特性インピーダンスの制御がなされる前記信号配線の両外側と前記シールド層の開口縁との距離Uが、3t1≦U≦20t1の範囲に設定されていることが望ましい。 In the case where the signal wiring on which the characteristic impedance is controlled is a signal wiring on which single-ended transmission is performed, the signal wiring on which the characteristic impedance is controlled when the thickness of the insulator layer is t1. It is preferable that the distance U between both outer sides of the shield layer and the opening edge of the shield layer is set in a range of 3t1 ≦ U ≦ 20t1.
 また、特性インピーダンスの制御が成される前記信号配線が差動伝送されるペア配線である場合には、前記ペア配線間の線間距離をSとしたとき、前記ペア配線の両外側と前記シールド層の開口縁との距離Uが、3S≦U≦20Sの範囲に設定されていることが望ましい。 Further, when the signal wiring for which characteristic impedance control is performed is a pair wiring that is differentially transmitted, when the distance between the pair wirings is S, both outer sides of the pair wiring and the shield It is desirable that the distance U from the opening edge of the layer is set in a range of 3S ≦ U ≦ 20S.
 この場合、特性インピーダンスの制御がなされる前記信号配線に対峙する前記グランド層は、多数の抜き孔を施したメッシュ状導体部になされ、当該メッシュ状導体部の外側は抜き孔が施されないベタ電極領域になされ、好ましくは前記メッシュ状導体部とベタ電極領域との境界が、前記シールド層の開口縁に、基板面に直交する方向で一致するように構成される。 In this case, the ground layer facing the signal wiring whose characteristic impedance is controlled is formed in a mesh-shaped conductor portion provided with a number of holes, and a solid electrode that is not provided with holes outside the mesh-shaped conductor portion. Preferably, the boundary between the mesh-like conductor portion and the solid electrode region coincides with the opening edge of the shield layer in a direction perpendicular to the substrate surface.
 これは、前記グランド層と信号配線との間の絶縁体層、および前記信号配線と前記シールド層との間の絶縁被覆層が、それぞれ100μm以下の厚さになされる薄物の回路基板において、その効果が顕著に発揮し得る。 This is because the insulating layer between the ground layer and the signal wiring and the insulating coating layer between the signal wiring and the shielding layer are each made of a thin circuit board having a thickness of 100 μm or less. The effect can be exhibited remarkably.
 加えて、特性インピーダンスの制御がなされる前記信号配線の両外側に沿って、前記グランド層と同電位になされた線状のガードパターンが前記絶縁体層上に配設され、前記線状のガードパターンの幅方向の中央部が、前記シールド層の開口縁に位置するように構成された回路基板も好適に採用し得る。 In addition, a linear guard pattern having the same potential as that of the ground layer is disposed on the insulator layer along both outer sides of the signal wiring for which characteristic impedance is controlled, and the linear guard is provided. A circuit board configured so that the central portion in the width direction of the pattern is positioned at the opening edge of the shield layer can also be suitably employed.
 この場合、好ましい形態においては前記グランド層とガードパターンとがビアホールを介して接続され、前記ガードパターンと前記シールド層とが前記絶縁被覆層に形成された開口を介して接続された構成にされる。 In this case, in a preferred embodiment, the ground layer and the guard pattern are connected via a via hole, and the guard pattern and the shield layer are connected via an opening formed in the insulating coating layer. .
 前記した回路基板によれば、Zoの制御が必要な信号配線に対峙する絶縁被覆層上は、シールド層が敷設されないシールド層の開口部になされているので、前記信号配線においてはシールド層との間における静電容量の結合度合いを大幅に下げることができる。これにより、信号配線の特性インピーダンスの適正な制御を果たすことができる。 According to the circuit board described above, the insulating coating layer facing the signal wiring that needs to be controlled by Zo is formed in the opening portion of the shield layer where the shield layer is not laid. The degree of capacitance coupling between the two can be greatly reduced. Thereby, appropriate control of the characteristic impedance of the signal wiring can be achieved.
 一方、前記信号配線は、前記したシールド層の開口部が形成されることで、シールド効果が若干下がることになるものの、前記したEMI対策には十分な効果を発揮することができる回路基板を提供することができる。 On the other hand, the signal wiring is provided with a circuit board capable of exhibiting a sufficient effect for the above-mentioned EMI countermeasures although the shield effect is slightly lowered by forming the opening of the shield layer. can do.
シングルエンド伝送がなされる信号配線を備えた回路基板の第1の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 1st Embodiment of the circuit board provided with the signal wiring by which single end transmission is made with sectional drawing. 図1Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 1A. シングルエンド伝送がなされる信号配線を備えた回路基板におけるグランド層の好ましい一例を示した平面図である。It is the top view which showed a preferable example of the ground layer in the circuit board provided with the signal wiring by which single end transmission is made. シングルエンド伝送がなされる信号配線とシールド層開口縁との距離Uと層間厚t1との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the distance U of the signal wiring and shield layer opening edge in which single end transmission is made, and interlayer thickness t1. シングルエンド伝送がなされる信号配線を備えた回路基板の第2の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 2nd Embodiment of the circuit board provided with the signal wiring by which single-ended transmission is made with sectional drawing. 図4Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 4A. シングルエンド伝送がなされる信号配線を備えた回路基板の第3の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 3rd Embodiment of the circuit board provided with the signal wiring by which single end transmission is made with sectional drawing. 図5Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 5A. 差動伝送されるペア信号配線を備えた回路基板の第1の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 1st Embodiment of the circuit board provided with the pair signal wiring transmitted differentially with sectional drawing. 図6Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 6A. 差動伝送されるペア信号配線を備えた回路基板におけるグランド層の好ましい一例を示した平面図である。It is the top view which showed a preferable example of the ground layer in the circuit board provided with the pair signal wiring transmitted differentially. 差動伝送されるペア信号配線とシールド層開口縁との距離Uと線間距離Sととの関係を示す特性線図である。It is a characteristic diagram which shows the relationship between the distance U of the pair signal wiring and shield layer opening edge which are differentially transmitted, and the distance S between lines. 差動伝送されるペア信号配線を備えた回路基板の第2の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 2nd Embodiment of the circuit board provided with the pair signal wiring transmitted differentially with sectional drawing. 図9Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 9A. 差動伝送されるペア信号配線を備えた回路基板の第3の実施の形態を断面図で示した積層構造図である。It is the laminated structure figure which showed 3rd Embodiment of the circuit board provided with the pair signal wiring transmitted differentially with sectional drawing. 図10Aに示す絶縁体層上の信号配線部分を示した平面図である。It is the top view which showed the signal wiring part on the insulator layer shown to FIG. 10A.
 以下、この発明にかかるシングルエンド伝送がなされる信号配線を備えた回路基板について、図1~図5に基づいて先に説明し、この発明にかかる差動伝送されるペア信号配線を備えた回路基板について、図6~図10に基づいて後で説明する。  Hereinafter, a circuit board provided with signal wiring for single-end transmission according to the present invention will be described with reference to FIGS. 1 to 5, and a circuit with pair signal wiring for differential transmission according to the present invention will be described below. The substrate will be described later with reference to FIGS. *
 図1Aは、前記したシングルエンド伝送がなされる信号配線を備えた回路基板の第1の実施の形態の積層構造を示したものであり、図1Bは図1Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。 FIG. 1A shows the laminated structure of the first embodiment of the circuit board provided with the signal wiring for performing the above-mentioned single-end transmission, and FIG. 1B shows the signal wiring on the insulator layer shown in FIG. 1A. It is the top view which showed the part at the substantially same scale.
 図1Aおよび図1Bに示す回路基板は、グランド層とこのグランド層に対して絶縁体層を介してシングルエンド伝送がなされる信号配線が配設されており、特性インピーダンスの制御が必要な信号配線についてはマイクロストリップ構造を構成し、特性インピーダンスの制御が不要な信号配線についてはシールド層が付加されてストリップ構造を構成している。 The circuit board shown in FIGS. 1A and 1B is provided with a ground layer and a signal wiring for performing single-ended transmission with respect to the ground layer through an insulator layer, and a signal wiring that requires control of characteristic impedance. Is configured with a microstrip structure, and a signal wiring that does not require control of characteristic impedance is provided with a shield layer to form a strip structure.
 この実施の形態においては前記絶縁体層2として、フィルム状のベース基材が採用されており、前記ベース基材2の一方の面(図1Aにおける上側)には、前記信号配線3A,3Bが形成され、この信号配線3A,3Bの上面(図1Aにおける上側)には、図示せぬ接着層を介して絶縁被覆層4が積層されている。
 一方、前記ベース基材2の他方の面(図1Aにおける下側)にはグランド層5が形成され、このグランド層5のさらに下面には図示せぬ接着層を介して第2の絶縁被覆層6が積層されている。
In this embodiment, a film-like base substrate is employed as the insulator layer 2, and the signal wirings 3A and 3B are provided on one surface (the upper side in FIG. 1A) of the base substrate 2. The insulating coating layer 4 is laminated on the upper surface (the upper side in FIG. 1A) of the signal wirings 3A and 3B through an adhesive layer (not shown).
On the other hand, a ground layer 5 is formed on the other surface (lower side in FIG. 1A) of the base substrate 2, and a second insulating coating layer is formed on the lower surface of the ground layer 5 via an adhesive layer (not shown). 6 are stacked.
 そして、前記ベース基材2を介したグランド層5とは反対面の前記信号配線3A,3Bを覆う絶縁被覆層4上には、導電性素材によるシールド層7が形成されると共に、特性インピーダンスの制御が必要な前記信号配線3Aに対峙する絶縁被覆層4上は、前記シールド層が敷設されないシールド層の開口部7aになされている。  A shield layer 7 made of a conductive material is formed on the insulating coating layer 4 covering the signal wirings 3A and 3B on the surface opposite to the ground layer 5 through the base substrate 2, and has a characteristic impedance. On the insulating coating layer 4 facing the signal wiring 3A that needs to be controlled, an opening 7a of the shield layer where the shield layer is not laid is formed. *
 前記信号配線が配置される中央の絶縁体層として機能するベース基材2は、回路基板1のコアとなる機能を有しており、前記ベース基材2の素材としては、樹脂フィルム、繊維基材等を挙げることができる。 The base substrate 2 that functions as a central insulator layer in which the signal wiring is disposed has a function as a core of the circuit board 1. The material of the base substrate 2 includes a resin film, a fiber substrate, and the like. Materials etc. can be mentioned.
 前記樹脂フィルムを構成する素材としては、例えばポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂等のポリイミド樹脂、エポキシ樹脂等の熱硬化性樹脂や液晶ポリマーなどの熱可塑性樹脂等が挙げられる。
 これらの中でもポリイミド樹脂または液晶ポリマーが好ましい。例えばポリイミド樹脂の場合は、耐熱性や機械特性に優れ、かつ入手するのが容易である。また、液晶ポリマーの場合は、その比誘電率の低さにより高速信号伝送用途に好適であり、かつ吸湿性の低さにより寸法安定性等にも優れる。
Examples of the material constituting the resin film include polyimide resins such as polyimide resins, polyamide resins, and polyamideimide resins, thermosetting resins such as epoxy resins, and thermoplastic resins such as liquid crystal polymers.
Among these, a polyimide resin or a liquid crystal polymer is preferable. For example, in the case of a polyimide resin, it is excellent in heat resistance and mechanical properties and is easy to obtain. In the case of a liquid crystal polymer, it is suitable for high-speed signal transmission due to its low relative dielectric constant, and it has excellent dimensional stability due to its low hygroscopicity.
 また、絶縁体層に用いられる繊維基材としては、例えばガラス繊布、ガラス不繊布等のガラス繊維基材、あるいはガラス以外の無機化合物を成分とする繊布又は不繊布等の無機繊維基材、芳香族ポリアミド樹脂、ポリアミド樹脂、芳香族ポリエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、フッ素樹脂等の有機繊維で構成される有機繊維基材等が挙げられる。これら基材の中でも強度、吸水率の点でガラス繊布に代表されるガラス繊維基材が好ましい。 Examples of the fiber base material used for the insulating layer include glass fiber base materials such as glass fiber cloth and glass non-fiber cloth, or inorganic fiber base materials such as fiber cloth and non-fiber cloth containing inorganic compounds other than glass, aromatic And organic fiber base materials composed of organic fibers such as aromatic polyamide resins, polyamide resins, aromatic polyester resins, polyester resins, polyimide resins, and fluororesins. Among these base materials, glass fiber base materials represented by glass fiber fabric are preferable in terms of strength and water absorption.
 前記絶縁体層に繊維基材を用いる場合においては、好ましくは前記繊維基材に樹脂を含浸させた状態で利用される。前記繊維基材に含浸される樹脂としては、好ましくはエポキシ樹脂系、アクリル樹脂系などの熱硬化性樹脂が用いられ、これらの中でも耐熱性の面からエポキシ樹脂系が好ましい。 When a fiber base material is used for the insulator layer, it is preferably used in a state where the fiber base material is impregnated with a resin. As the resin impregnated in the fiber base material, a thermosetting resin such as an epoxy resin or an acrylic resin is preferably used, and among these, an epoxy resin is preferable from the viewpoint of heat resistance.
 前記ベース基材2の厚さt1は、好ましくは1~100μmの範囲になされ、さらに好ましくは5~50μmの範囲、より好ましくは10~30μmの範囲になされる。
 前記ベース基材2の厚さを前記下限値以上にすることで、信号線の線幅を加工限界以上にすることが容易となり、一方、前記厚さを上限値以下にすることで剛性が高くなり過ぎることを抑え、柔軟さというフレキシブル回路基板など薄物基板の特徴を保持できる。
The thickness t1 of the base substrate 2 is preferably in the range of 1 to 100 μm, more preferably in the range of 5 to 50 μm, and more preferably in the range of 10 to 30 μm.
By setting the thickness of the base substrate 2 to be equal to or greater than the lower limit value, it becomes easy to make the signal line width equal to or greater than the processing limit. On the other hand, by setting the thickness to be equal to or less than the upper limit value, rigidity is high. It is possible to suppress the occurrence of excessive thickness and retain the characteristics of a thin substrate such as a flexible circuit board that is flexible.
 前記ベース基材2の一方の面に配列された信号配線3A,3Bはベース基材2に直接設けられても良いが、接着剤を介して設けられていてもよい。そして、各信号配線の端部もしくは適宜の中間部において、図示しない半導体ディバイス等の実装パッドに接合され、回路基板1として機能する。 The signal wirings 3A and 3B arranged on one surface of the base substrate 2 may be provided directly on the base substrate 2, or may be provided via an adhesive. Then, at the end portion of each signal wiring or an appropriate intermediate portion, it is bonded to a mounting pad such as a semiconductor device (not shown) and functions as the circuit board 1.
 図示せぬ接着層を介して前記信号配線3A,3Bを覆う絶縁被覆層4は、樹脂材料で構成されていることが好ましい。この樹脂材料としては、例えばポリエステル系樹脂、ポリイミド、液晶ポリマー等が挙げられる。これらの中でもポリイミドが好ましい。これにより、耐熱性と屈曲性を向上させることができる。 It is preferable that the insulating coating layer 4 covering the signal wirings 3A and 3B via an adhesive layer (not shown) is made of a resin material. Examples of the resin material include polyester resins, polyimides, and liquid crystal polymers. Among these, polyimide is preferable. Thereby, heat resistance and flexibility can be improved.
 前記絶縁被覆層4の厚さt2は、1~100μmであることが好ましく、さらに好ましくは5~50μmの範囲、より好ましくは10~30μmの範囲になされる。
 絶縁被覆層4の厚さt2を前記下限値以上にすることで、樹脂層の強度を実用範囲に維持することが容易となり、前記上限値以下にすることで摺動性や屈曲性を最大限に発揮させることが容易となる。
The thickness t2 of the insulating coating layer 4 is preferably 1 to 100 μm, more preferably 5 to 50 μm, more preferably 10 to 30 μm.
By setting the thickness t2 of the insulating coating layer 4 to be equal to or greater than the lower limit value, it becomes easy to maintain the strength of the resin layer within a practical range, and by setting the thickness t2 or less to the upper limit value, the slidability and the flexibility are maximized. It becomes easy to make it exhibit.
 なお、前記ベース基材2と前記絶縁被覆層4との間に介在される図示せぬ接着層を構成する材料としては、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂等を使用することができる。これらの中でもエポキシ系樹脂が好ましく、これにより耐熱性と屈曲性を向上させることができる。 In addition, as a material constituting an adhesive layer (not shown) interposed between the base substrate 2 and the insulating coating layer 4, for example, an acrylic resin, an epoxy resin, a polyimide resin, or the like may be used. it can. Among these, an epoxy resin is preferable, and thereby heat resistance and flexibility can be improved.
 前記ベース基材2の他方の面(裏面)に配置されたグランド層5としての導電部は、銅素材による導電体により構成されている。この導電体はインピーダンス制御が必要な前記信号配線3Aに対峙する部分については、平行四辺形の開口になされた多数の抜き孔が形成されている。なお、このグランド層5の具体的な構成については、図2に基づいて後で詳細に説明する。 The conductive portion as the ground layer 5 disposed on the other surface (back surface) of the base substrate 2 is made of a conductor made of a copper material. In this conductor, a large number of holes formed in a parallelogram opening are formed in a portion facing the signal wiring 3A that requires impedance control. A specific configuration of the ground layer 5 will be described later in detail with reference to FIG.
 前記グランド層5の下側面(図1Aにおける下側)に、図示せぬ接着層を介して積層された第2の絶縁被覆層6は、樹脂材料で構成されていることが好ましい。この樹脂材料をとしては、例えばポリエステル系樹脂、ポリイミド、液晶ポリマー等が挙げられる。
 これらの中でもポリイミドが好ましい。これにより、耐熱性と屈曲性を向上することができる。
The second insulating coating layer 6 laminated on the lower surface of the ground layer 5 (the lower side in FIG. 1A) via an adhesive layer (not shown) is preferably made of a resin material. Examples of the resin material include polyester resin, polyimide, liquid crystal polymer, and the like.
Among these, polyimide is preferable. Thereby, heat resistance and flexibility can be improved.
 前記第2の絶縁被覆層6の厚さは、特に限定されないが、5~50μmであることが好ましく、特に10~30μmが好ましい。これは絶縁被覆層6の厚さを前記下限値以上にすることで、樹脂層の強度を実用範囲に維持することが容易となり、前記上限値以下にすることで摺動性や屈曲性を最大限に発揮させることが容易となる。 The thickness of the second insulating coating layer 6 is not particularly limited, but is preferably 5 to 50 μm, and particularly preferably 10 to 30 μm. This makes it easy to maintain the strength of the resin layer within a practical range by setting the thickness of the insulating coating layer 6 to be equal to or greater than the lower limit, and maximizing slidability and flexibility by reducing the thickness to the upper limit or less. It is easy to make it to the limit.
 なお、前記グランド層5と前記第2の絶縁被覆層6との間に介在される図示せぬ接着層を構成する材料としては、前記ベース基材2と前記絶縁被覆層4との間に介在される図示せぬ接着層を構成する材料と同様に、例えばアクリル系樹脂、エポキシ系樹脂、ポリイミド系樹脂等を使用することができる。これらの中でもエポキシ系樹脂が好ましく、これにより耐熱性と屈曲性を向上させることができる。 The material constituting the adhesive layer (not shown) interposed between the ground layer 5 and the second insulating coating layer 6 is interposed between the base substrate 2 and the insulating coating layer 4. For example, an acrylic resin, an epoxy resin, a polyimide resin, or the like can be used in the same manner as the material constituting the adhesive layer (not shown). Among these, an epoxy resin is preferable, and thereby heat resistance and flexibility can be improved.
 また、前記絶縁被覆層4上に形成された導電性素材によるシールド層7は、導電性ペースト(銀ペースト)による印刷、もしくは導電性シールドフィルムを貼着することにより形成され、特性インピーダンスの制御が必要な前記信号配線3Aに対峙する部分は、前記したとおりシールド層7が敷設されないシールド層の開口部7aになされている。 The shield layer 7 made of a conductive material formed on the insulating coating layer 4 is formed by printing with a conductive paste (silver paste) or by sticking a conductive shield film, and the characteristic impedance can be controlled. The portion facing the required signal wiring 3A is formed in the opening 7a of the shield layer where the shield layer 7 is not laid as described above.
 図2は前記したグランド層5の一つの好ましい構成を、その一部を拡大して示したものである。なお、図2においては特性インピーダンスの制御が必要な前記信号配線3Aがグランド層5の上に重畳された状態を、面に直交する方向から透視した状態で示している。このグランド層5は前記したとおり銅素材による導電体により構成され、この導電体における前記した信号配線3Aに対峙する位置は、多数の抜き孔が形成されたメッシュ状導体部5Bを構成している。 FIG. 2 is a partially enlarged view of one preferred configuration of the ground layer 5 described above. In FIG. 2, a state in which the signal wiring 3A that requires control of characteristic impedance is superimposed on the ground layer 5 is shown as seen through from a direction perpendicular to the surface. As described above, the ground layer 5 is made of a conductor made of a copper material, and the position of the conductor facing the signal wiring 3A constitutes a mesh-like conductor portion 5B in which a large number of holes are formed. .
 すなわち、この実施の形態における前記抜き孔は、二方向の複数の各線が交差して平行四辺形(菱形)の開口になされている。この二方向の複数の各線は、信号配線3Aに対して5~40度の範囲でそれぞれ傾斜されていることが望ましい。加えて、前記菱形開口の長い方の対角線が、前記信号配線3Aの配線方向と一致するようなメッシュパターンになされている。 That is, the hole in this embodiment is formed as a parallelogram (rhombus) opening by intersecting a plurality of lines in two directions. Each of the plurality of lines in the two directions is preferably inclined with respect to the signal wiring 3A within a range of 5 to 40 degrees. In addition, the longer diagonal line of the rhomboid opening has a mesh pattern that matches the wiring direction of the signal wiring 3A.
 なお、前記した各開口は、その大きさ(開口面積)が互いに異なるものであってもよいが、好ましくは、同じ大きさの開口面積になされる。これにより、信号配線3Aの特性インピーダンスを高精度に制御することができる。 In addition, although each above-mentioned opening may have a mutually different magnitude | size (opening area), Preferably, it is made into the opening area of the same magnitude | size. Thereby, the characteristic impedance of the signal wiring 3A can be controlled with high accuracy.
 一方、前記メッシュ状導体部5Bの外側は、抜き孔が形成されない銅素材によるベタ電極領域5Aになされている。このベタ電極領域5Aに対峙して特性インピーダンス制御が特に必要ではない信号配線3Bが配列されることになる。
 図2に示す構成によると、特性インピーダンスの制御が必要な部分のみメッシュ状導体部5Bを構成し、他はベタ電極領域5Aとすることで、グランド層6の全体のインピーダンスが上昇するのを避けることができる。
On the other hand, the outside of the mesh-like conductor portion 5B is a solid electrode region 5A made of a copper material in which no hole is formed. The signal wiring 3B that does not require the characteristic impedance control is arranged opposite to the solid electrode region 5A.
According to the configuration shown in FIG. 2, the mesh-like conductor portion 5B is configured only in the portion where the characteristic impedance needs to be controlled, and the rest is the solid electrode region 5A, thereby avoiding an increase in the overall impedance of the ground layer 6. be able to.
 この場合、前記メッシュ状導体部5Bとベタ電極領域5Aとの境界は、後述するシールド層の開口部7aにおける開口縁7bに、基板面に直交する方向でほぼ一致するように構成されている。 In this case, the boundary between the mesh-like conductor portion 5B and the solid electrode region 5A is configured to substantially coincide with an opening edge 7b in the opening 7a of the shield layer described later in a direction orthogonal to the substrate surface.
 なお、信号配線の特性インピーダンスの制御を行うには、前記したようにグランド層5にメッシュ状導体部5Bを備えることは効果的であるが、信号配線の特性インピーダンスは、線幅や絶縁層の厚さ、さらには絶縁層の誘電率の選択などで制御することも可能であり、この発明においては、メッシュ状導体部5Bを備えることは必須要件ではない。 In order to control the characteristic impedance of the signal wiring, it is effective to provide the mesh conductor portion 5B in the ground layer 5 as described above. However, the characteristic impedance of the signal wiring is determined by the line width and the insulating layer. It is also possible to control the thickness and further by selecting the dielectric constant of the insulating layer. In the present invention, it is not essential to provide the mesh-like conductor portion 5B.
 この実施の形態においては、前記したベース基材2の厚さt1および絶縁被覆層4の厚さt2等がいずれも100μm以下になされ、積層構造の全体がきわめて薄い回路基板に適用されるものであり、したがって、特性インピーダンスの制御が必要な信号配線3Aと、シールド層に形成された開口部7aの開口縁7bとの間の距離Uが、両者の容量結合の度合いを支配することになる。 In this embodiment, the thickness t1 of the base substrate 2 and the thickness t2 of the insulating coating layer 4 are both 100 μm or less, and the entire laminated structure is applied to a very thin circuit board. Therefore, the distance U between the signal wiring 3A that needs to control the characteristic impedance and the opening edge 7b of the opening 7a formed in the shield layer dominates the degree of capacitive coupling between them.
 この場合、特性インピーダンスの制御がなされる前記信号配線3Aが前記したようにシングルエンド伝送の機能を有し、前記絶縁体層2の厚さをt1としたとき、前記信号配線3Aの両外側と前記シールド層の開口縁との距離Uが、3t1≦U≦20t1の範囲に、より好ましくは3t1≦U≦10t1に設定されることが望ましい。 In this case, the signal wiring 3A whose characteristic impedance is controlled has the function of single-end transmission as described above, and when the thickness of the insulator layer 2 is t1, It is desirable that the distance U from the opening edge of the shield layer is set in the range of 3t1 ≦ U ≦ 20t1, more preferably 3t1 ≦ U ≦ 10t1.
 図3は、前記した信号配線3Aの両外側と前記シールド層7の開口縁7bとの距離をU、前記絶縁体層2の厚さをt1としたときの両者の比、すなわち、U/t1を横軸にし、信号配線3Aの特性インピーダンスZoを縦軸で示した特性例を示したものである。
 この図3に示す特性例は、信号配線3Aの線幅Lが100μmになされ、絶縁体層2の層間厚みt1=25μm、メッシュ状導体部5Bの銅(導体)残存率=30%の場合におけるものである。加えて、前記メッシュ状導体部5Bとベタ電極領域5Aとの境界が、シールド層の開口部7aにおける開口縁7bに、基板面に直交する方向で一致するように構成された場合によるものである。
FIG. 3 shows the ratio between the outer side of the signal wiring 3A and the opening edge 7b of the shield layer 7 as U, and the ratio of both when the thickness of the insulator layer 2 is t1, that is, U / t1. Is a horizontal axis and the characteristic impedance Zo of the signal wiring 3A is shown by a vertical axis.
The characteristic example shown in FIG. 3 is obtained when the line width L of the signal wiring 3A is 100 μm, the interlayer thickness t1 of the insulator layer 2 is 25 μm, and the copper (conductor) residual ratio of the mesh-like conductor portion 5B is 30%. Is. In addition, this is because the boundary between the mesh-like conductor portion 5B and the solid electrode region 5A is configured to coincide with the opening edge 7b of the opening 7a of the shield layer in a direction perpendicular to the substrate surface. .
 この場合、信号配線3Aとグランド層5とを隔てる絶縁体層2の厚さ(層間厚)t1が両者の容量結合の度合いを支配することになる。したがって前記絶縁体層2の厚さt1をパラメータとして、特性インピーダンスの制御を管理することが望ましい。 In this case, the thickness (interlayer thickness) t1 of the insulator layer 2 separating the signal wiring 3A and the ground layer 5 dominates the degree of capacitive coupling between them. Therefore, it is desirable to manage the control of the characteristic impedance using the thickness t1 of the insulator layer 2 as a parameter.
 また、前記信号配線3Aと前記シールド層7の開口縁7bとの距離Uが、ある程度以下になる場合には、信号配線3Aとシールド層7との間の容量結合が大きくなり、信号配線の特性インピーダンスの制御が難しくなる。すなわち、図3の特性線図に現れているように、前記Uの値が3t1未満の場合には、前記容量結合が急激に大きくなるために、これを避ける必要がある。 When the distance U between the signal wiring 3A and the opening edge 7b of the shield layer 7 is less than a certain level, capacitive coupling between the signal wiring 3A and the shield layer 7 is increased, and the characteristics of the signal wiring are increased. Impedance control becomes difficult. That is, as shown in the characteristic diagram of FIG. 3, when the value of U is less than 3t1, the capacitive coupling increases rapidly, and this must be avoided.
 逆に、前記Uの値が3t1を超える場合には、特性インピーダンスの制御が必要な信号配線3Aに対する前記シールド層7の容量結合は急激に減少し、メッシュ状導体部5Bによる信号配線のインピーダンス制御の精度を向上させることができる。 On the contrary, when the value of U exceeds 3t1, the capacitive coupling of the shield layer 7 with respect to the signal wiring 3A that needs to control the characteristic impedance decreases rapidly, and the impedance control of the signal wiring by the mesh-like conductor portion 5B. Accuracy can be improved.
 なお、前記した絶縁被覆層4の厚みt2=100μm以下の条件下において、同様の測定を試みたが、前記Uの値が3t1未満になる場合において信号配線3Aに対するシールド層7の容量結合が急激に増大し、信号配線の特性インピーダンスが低下することが検証されており、いずれにおいても図3に示す特性とほぼ同様の結果となることが認められている。 Although the same measurement was attempted under the condition that the thickness t2 of the insulating coating layer 4 was 100 μm or less, the capacitive coupling of the shield layer 7 to the signal wiring 3A was abrupt when the value of U was less than 3t1. It has been verified that the characteristic impedance of the signal wiring is lowered, and in all cases, it is recognized that the result is almost the same as the characteristic shown in FIG.
 一方、前記Uの値は、これを大きく設定すれば信号配線の特性インピーダンスの設定に影響を与える度合いは少なくなるものの、その反面シールド効果が減退してEMI対策上において見過ごすことができなくなる。
 したがって、信号配線に対するシールド効果を確保するには、前記Uの値は20t1以下、好ましくは10t1以下に設定することが望ましい。
On the other hand, if the value of U is set large, the degree of influence on the setting of the characteristic impedance of the signal wiring is reduced, but on the other hand, the shield effect is reduced and cannot be overlooked in the EMI countermeasure.
Therefore, in order to ensure the shielding effect for the signal wiring, the value of U is desirably set to 20 t1 or less, preferably 10 t1 or less.
 それ故、シングルエンド伝送の機能を有する信号配線3Aの両外側と前記シールド層の開口縁7bとの距離Uと、前記絶縁体層2の厚さt1との関係を前記の範囲に設定することで、信号配線の特性インピーダンスの調整、ならびにEMI対策について両立させることができる回路基板を提供できる。 Therefore, the relationship between the distance U between the outer sides of the signal wiring 3A having the function of single-end transmission and the opening edge 7b of the shield layer and the thickness t1 of the insulator layer 2 is set within the above range. Thus, it is possible to provide a circuit board capable of achieving both adjustment of the characteristic impedance of the signal wiring and measures against EMI.
 図4Aは、シングルエンド伝送が行われるこの発明の第2の実施形態にかかる回路基板の積層構造を示すものであり、図4Bは図4Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。 FIG. 4A shows a laminated structure of a circuit board according to the second embodiment of the present invention in which single-ended transmission is performed, and FIG. 4B shows signal wiring portions on the insulator layer shown in FIG. 4A at substantially the same scale. It is the top view shown by.
 なお、この図4Aおよび図4Bにおいては、すでに説明した図1Aおよび図1Bに示した各部と同一機能を果たす部分を同一符号で示しており、したがって、その詳細な説明は省略する。そして、信号配線3Aの両外側と前記シールド層の開口縁7bとの距離Uと、前記絶縁体層2の厚さt1との関係についても、図1Aに基づいて説明した前記した関係になされている。 In FIG. 4A and FIG. 4B, parts that perform the same functions as the parts shown in FIG. 1A and FIG. 1B already described are denoted by the same reference numerals, and thus detailed description thereof is omitted. The relationship between the distance U between the outer sides of the signal wiring 3A and the opening edge 7b of the shield layer and the thickness t1 of the insulator layer 2 is also the same as described above based on FIG. 1A. Yes.
 この実施の形態においては、特性インピーダンスの制御がなされる信号配線3Aの両外側に沿って、前記グランド層5と同電位になされた線状のガードパターン8が、前記ベース基材2上に配設されている。そして、線状のガードパターン8の幅方向の中央部が、前記シールド層7の開口縁7bに位置するように構成されている。 In this embodiment, linear guard patterns 8 having the same potential as that of the ground layer 5 are arranged on the base substrate 2 along both outer sides of the signal wiring 3A whose characteristic impedance is controlled. It is installed. And the center part of the width direction of the linear guard pattern 8 is comprised so that it may be located in the opening edge 7b of the said shield layer 7. FIG.
 前記した構成によると、特性インピーダンスの制御を必要とする信号配線3Aの上面は、シールド層の開口部7aによって開放状態になされるものの、図4Aに示すように断面で見た信号配線3Aの下方および両サイド、さらに上方両サイドが、十分に近接したグランドで取り囲まれた構成になされるので、EMIシールド特性の減衰を最小限に留めることができる。 According to the configuration described above, the upper surface of the signal wiring 3A requiring control of the characteristic impedance is opened by the opening 7a of the shield layer, but below the signal wiring 3A as viewed in cross section as shown in FIG. 4A. Since both sides and the upper sides are surrounded by a sufficiently close ground, attenuation of the EMI shield characteristic can be minimized.
 さらに図5Aは、シングルエンド伝送が行われるこの発明の第3の実施形態にかかる回路基板の積層構造を示すものであり、図5Bは図5Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。
 この図5Aおよび図5Bに示す構成は、前記した図4Aおよび図4Bに示した第2の実施の形態に、さらに構成要件を加えたものであり、前記グランド層5とガードパターン8とが、絶縁基材2に形成されたビアホール2aを介して接続され、前記ガードパターン8と前記シールド層7とが、前記絶縁被覆層4に形成された開口4aを介して接続されている。
Further, FIG. 5A shows a laminated structure of the circuit board according to the third embodiment of the present invention in which single-ended transmission is performed, and FIG. 5B shows almost the same signal wiring portion on the insulator layer shown in FIG. 5A. It is the top view shown on a reduced scale.
The configuration shown in FIGS. 5A and 5B is obtained by further adding the configuration requirements to the above-described second embodiment shown in FIGS. 4A and 4B. The ground layer 5 and the guard pattern 8 include: The guard pattern 8 and the shield layer 7 are connected through an opening 4 a formed in the insulating coating layer 4. The guard pattern 8 and the shield layer 7 are connected through a via hole 2 a formed in the insulating base 2.
 前記グランド層5とガードパターン8とを接続するビアホール2aは、図5Bに示すようにガードパターン8の長手方向に沿って複数か所に形成されており、各ビアホール2aを介してそれぞれ両者が接続されている。
 また、前記絶縁被覆層4に形成された開口4aも、ガードパターン8の長手方向に沿って複数か所にそれぞれ形成されており、この各開口4aを介して前記ガードパターン8と前記シールド層7とが接続されている。
Via holes 2a connecting the ground layer 5 and the guard pattern 8 are formed at a plurality of locations along the longitudinal direction of the guard pattern 8 as shown in FIG. 5B, and both are connected via the via holes 2a. Has been.
The openings 4a formed in the insulating coating layer 4 are also formed at a plurality of locations along the longitudinal direction of the guard pattern 8, and the guard pattern 8 and the shield layer 7 are formed through the openings 4a. And are connected.
 前記した構成は、回路基板の屈曲等がなされない部分において好適に採用することができ、この構成によると信号配線3Aの両外側のグランド間の隙間が補填され、グランド電位として機能するグランド層5、ガードパターン8、シールド層7の機械的な結合も強くなり、またEMIシールド特性をさらに向上させることにも寄与できる。 The above-described configuration can be suitably employed in a portion where the circuit board is not bent. According to this configuration, the gap between the grounds on both outer sides of the signal wiring 3A is filled, and the ground layer 5 functions as a ground potential. Further, the mechanical coupling of the guard pattern 8 and the shield layer 7 is strengthened, and it can contribute to further improving the EMI shield characteristics.
 次に、この発明にかかる差動伝送されるペア信号配線を備えた回路基板について、図6~図10に基づいて説明する。
 図6Aは、前記した差動伝送されるペア信号配線を備えた回路基板の第1の実施の形態の積層構造を示したものであり、図6Bは図6Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。
Next, a circuit board provided with differential signal transmission pair signal wiring according to the present invention will be described with reference to FIGS.
FIG. 6A shows the laminated structure of the first embodiment of the circuit board provided with the pair signal wiring for differential transmission as described above, and FIG. 6B shows the signal wiring on the insulator layer shown in FIG. 6A. It is the top view which showed the part at the substantially same scale.
 図6Aおよび図6Bに示す回路基板1は、グランド層とこのグランド層に対して絶縁体層を介して信号配線が配設されており、特性インピーダンスの制御が必要な前記信号配線(図6Bに符号Aで示すペア配線)部分についてはマイクロストリップ構造を構成し、特性インピーダンスの制御が不要な信号配線(図6Bに符号Bで示すペア配線)部分についてはシールド層が付加されてストリップ構造を構成している。 In the circuit board 1 shown in FIGS. 6A and 6B, a signal wiring is disposed via a ground layer and an insulator layer with respect to the ground layer, and the signal wiring that requires control of characteristic impedance (see FIG. 6B). A microstrip structure is formed for the part (pair wiring indicated by symbol A), and a shield layer is added to the part of the signal wiring (pair wiring indicated by symbol B in FIG. 6B) that does not require control of the characteristic impedance. is doing.
 この実施の形態においては前記絶縁体層2として、フィルム状のベース基材が採用されており、前記ベース基材2の一方の面(図6Aにおける上側)には、差動伝送される信号配線3a,3bが形成され、この信号配線3a,3bの上面(図6Aにおける上側)には、図示せぬ接着層を介して絶縁被覆層4が積層されている。
 一方、前記ベース基材2の他方の面(図6Aにおける下側)にはグランド層5が形成され、このグランド層6のさらに下面には図示せぬ接着層を介して第2の絶縁被覆層6が形成されている。
In this embodiment, a film-like base substrate is employed as the insulator layer 2, and signal wiring that is differentially transmitted is provided on one surface (the upper side in FIG. 6A) of the base substrate 2. 3a and 3b are formed, and an insulating coating layer 4 is laminated on the upper surface (the upper side in FIG. 6A) of the signal wirings 3a and 3b via an adhesive layer (not shown).
On the other hand, a ground layer 5 is formed on the other surface of the base substrate 2 (lower side in FIG. 6A), and a second insulating coating layer is formed on the lower surface of the ground layer 6 via an adhesive layer (not shown). 6 is formed.
 そして、前記ベース基材2を介したグランド層5とは反対面の前記信号配線を覆う絶縁被覆層4上には、導電性素材によるシールド層7が形成されると共に、特性インピーダンスの制御が必要な前記信号配線3a,3b(図6Bに符号Aで示すペア配線)に対峙する絶縁被覆層7上は、前記シールド層が敷設されないシールド層の開口部7aになされている。 A shield layer 7 made of a conductive material is formed on the insulating coating layer 4 that covers the signal wiring on the opposite side of the ground layer 5 through the base substrate 2, and the characteristic impedance needs to be controlled. On the insulating coating layer 7 facing the signal wirings 3a and 3b (a pair wiring indicated by a symbol A in FIG. 6B), an opening 7a of the shield layer where the shield layer is not laid is formed.
 なお、図6Aおよび図6Bに示す差動伝送されるペア信号配線を備えた回路基板1においては、すでに説明した図1Aおよび図1Bに示すシングルエンド伝送がなされる信号配線を備えた回路基板の積層構造と同一になされており、同一の機能を果たす各層については同一の符号で示している。したがって各層並びに図示せぬ接着層等の詳細については、その説明を省略する。 6A and 6B, the circuit board 1 provided with the differential signal transmission pair signal wiring is the same as the circuit board provided with the signal wiring shown in FIG. 1A and FIG. Each layer having the same structure as that of the laminated structure and performing the same function is indicated by the same reference numeral. Therefore, the details of each layer and an adhesive layer (not shown) will not be described.
 図7は図6Aに示されたグランド層5の一つの好ましい構成を、その一部を拡大して示したものである。なお、図7は前記した特性インピーダンスの制御が必要な信号配線3a,3bがグランド層5の上に重畳された状態を、面に直交する方向から透視した状態で示している。この図7に示すグランド層5は、すでに図2に示したグランド層5と同一の構成になされており、同一の機能を果たす部分については同一の符号で示している。したがってグランド層5の詳細な構成についても、その説明を省略する。 FIG. 7 is an enlarged view of a part of one preferred configuration of the ground layer 5 shown in FIG. 6A. FIG. 7 shows a state in which the signal wirings 3a and 3b that need to control the characteristic impedance described above are superimposed on the ground layer 5 as seen through from a direction orthogonal to the surface. The ground layer 5 shown in FIG. 7 has the same configuration as that of the ground layer 5 shown in FIG. 2, and portions that perform the same function are indicated by the same reference numerals. Therefore, the detailed description of the ground layer 5 is also omitted.
 この図6および図7に示す実施の形態においては、前記したベース基材2の厚さt1および絶縁被覆層4の厚さt2等がいずれも100μm以下になされ、積層構造の全体がきわめて薄い回路基板に適用されるものであり、したがって、特性インピーダンスの制御が必要な信号配線3a,3bと、シールド層に形成された開口部7aの開口縁7bとの間の距離Uが、両者の容量結合の度合いを支配することになる。 In the embodiment shown in FIGS. 6 and 7, the thickness t1 of the base substrate 2 and the thickness t2 of the insulating coating layer 4 are both 100 μm or less, and the entire laminated structure is extremely thin. Therefore, the distance U between the signal wirings 3a and 3b that need to be controlled in the characteristic impedance and the opening edge 7b of the opening 7a formed in the shield layer is a capacitive coupling between them. Will dominate the degree.
 この場合、特性インピーダンスの制御が成される前記信号配線が差動伝送されるペア配線であり、図6Aに示すように、前記ペア配線3a,3b間の線間距離をSとしたとき、当該線間距離Sの位置における前記ペア配線の両外側と前記シールド層の開口縁7bとの距離Uが、3S≦U≦20Sの範囲に、より好ましくは3S≦U≦10Sに設定されることが望ましい。 In this case, the signal wiring for which the characteristic impedance is controlled is a pair wiring that is differentially transmitted. As shown in FIG. 6A, when the distance between the pair wirings 3a and 3b is S, the signal wiring The distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer at the position of the line distance S may be set in the range of 3S ≦ U ≦ 20S, more preferably 3S ≦ U ≦ 10S. desirable.
 図8は、前記距離Uと線間距離Sとの比、すなわち、U/Sの値を横軸にし、信号配線3a,3bの特性インピーダンスZoを縦軸で示した特性例を示したものである。
 この図8に示す特性例は、差動信号線3a,3bの線幅L/線間距離S=100μm/100μmになされ、絶縁体層2の層間厚みt1=25μm、メッシュ状導体部5Bの銅(導体)残存率=30%の場合におけるものである。
FIG. 8 shows a characteristic example in which the ratio of the distance U to the line-to-line distance S, that is, the value of U / S is shown on the horizontal axis, and the characteristic impedance Zo of the signal wirings 3a and 3b is shown on the vertical axis. is there.
The characteristic example shown in FIG. 8 is such that the differential signal lines 3a and 3b have a line width L / interline distance S = 100 μm / 100 μm, an interlayer thickness t1 of the insulator layer 2 = 25 μm, and the copper of the mesh conductor portion 5B. (Conductor) Residual rate = 30%.
 前記信号配線3a,3bと前記シールド層7の開口縁7bとの距離Uが、ある程度以下になる場合には、信号配線とシールド層との間の容量結合が大きくなり、信号配線の特性インピーダンスの制御が難しくなる。すなわち、図8の特性線図に現れているように、前記Uの値が3S未満の場合には、前記容量結合が急激に大きくなるために、これを避ける必要がある。 When the distance U between the signal wirings 3a and 3b and the opening edge 7b of the shield layer 7 is below a certain level, the capacitive coupling between the signal wiring and the shield layer is increased, and the characteristic impedance of the signal wiring is reduced. It becomes difficult to control. That is, as shown in the characteristic diagram of FIG. 8, when the value of U is less than 3S, the capacitive coupling increases rapidly, and this must be avoided.
 逆に、前記Uの値が3Sを超える場合には、特性インピーダンスの制御が必要な信号配線3a,3bに対する前記シールド層7の容量結合は急激に減少し、メッシュ状導体部5Bによる信号配線のインピーダンス制御の精度を向上させることができる。 On the contrary, when the value of U exceeds 3S, the capacitive coupling of the shield layer 7 to the signal wirings 3a and 3b that need to control the characteristic impedance decreases rapidly, and the signal wiring of the mesh-like conductor portion 5B is reduced. Impedance control accuracy can be improved.
 なお、前記した絶縁被覆層4の厚みt2=100μm以下の条件下において、同様の測定を試みたが、前記Uの値が3S未満になる場合において信号配線に対するシールド層7の容量結合が急激に増大し、信号配線の特性インピーダンスが低下することが検証されており、いずれにおいても図8に示す特性とほぼ同様の結果となることが認められている。 The same measurement was attempted under the condition that the thickness t2 of the insulating coating layer 4 was 100 μm or less. However, when the value of U was less than 3S, the capacitive coupling of the shield layer 7 to the signal wiring was abrupt. It has been verified that the characteristic impedance of the signal wiring increases and the characteristic impedance of the signal wiring decreases, and it is recognized that the results are almost the same as the characteristics shown in FIG.
 一方、前記Uの値は、これを大きく設定すれば信号配線の特性インピーダンスの設定に影響を与える度合いは少なくなるものの、その反面シールド効果が減退してEMI対策上において見過ごすことができなくなる。
 したがって、信号配線に対するシールド効果を確保するには、前記Uの値は20S以下、好ましくは10S以下に設定することが望ましい。
On the other hand, if the value of U is set large, the degree of influence on the setting of the characteristic impedance of the signal wiring is reduced.
Therefore, in order to ensure the shielding effect on the signal wiring, the value of U is desirably set to 20S or less, preferably 10S or less.
 それ故、前記したペアの信号配線の線間Sと、ペア配線の両外側と前記シールド層の開口縁7bとの距離Uの関係を前記の範囲に設定することで、信号配線の特性インピーダンスの調整、ならびにEMI対策について両立させることができる回路基板を提供することができる。 Therefore, the characteristic impedance of the signal wiring can be reduced by setting the relationship between the line spacing S of the paired signal wirings and the distance U between the outer sides of the pair wirings and the opening edge 7b of the shield layer within the above range. It is possible to provide a circuit board capable of achieving both adjustment and EMI countermeasures.
 前記したように、前記信号配線が差動伝送されるペア配線である場合には、ペア配線の線間Sをパラメータとし、ペア配線の両外側と前記シールド層の開口縁7bとの距離Uを前記した範囲に設定し、管理することが妥当である。 As described above, in the case where the signal wiring is a pair wiring that is differentially transmitted, the distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer is set using the line spacing S of the pair wiring as a parameter. It is appropriate to set and manage the above-mentioned range.
 その理由は、前記ペア配線の線間距離が前記シールド層に次いで信号配線の特性インピーダンスに影響を与えるため、その線間距離に対する前記信号配線とシールド層の開口縁までの距離で特性インピーダンスへの影響の大小が決まるからである。 The reason is that the distance between the pair wirings affects the characteristic impedance of the signal wiring next to the shield layer. Therefore, the distance from the signal wiring to the opening edge of the shield layer with respect to the distance between the lines is reduced to the characteristic impedance. This is because the magnitude of the impact is determined.
 これは、ペア配線の線間の中央部に仮想的なグランド(GND)面が存在すると考える事が可能であり、かつ信号線の側面の面積も考慮すると、その距離が前記シールド層に次いで信号配線の特性インピーダンスに影響を与える事が容易に判断される。このため、信号線の特性インピーダンスが前記配線間の結合で決定され、前記開口縁より先のシールド層が特性インピーダンスに影響を殆ど与えないほど離れる距離を前記信号線間距離との関係で記述出来ることによる。 This can be considered that there is a virtual ground (GND) plane in the center between the lines of the pair wiring, and considering the area of the side surface of the signal line, the distance is the signal next to the shield layer. It is easily determined that the characteristic impedance of the wiring is affected. Therefore, the characteristic impedance of the signal line is determined by the coupling between the wirings, and the distance that the shield layer beyond the opening edge is separated so as not to affect the characteristic impedance can be described in relation to the distance between the signal lines. It depends.
 図9Aは、差動伝送されるペア信号配線を備えた回路基板の第2の実施形態の積層構造を示すものであり、図9Bは図9Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。この図9Aおよび図9Bに示す構成は、図6Aおよび図6Bに示した例と同様に、特性インピーダンスの制御が必要な信号配線が、差動伝送されるペア配線になされた例について示している。 FIG. 9A shows the laminated structure of the second embodiment of the circuit board provided with the differential signal transmission pair signal wiring, and FIG. 9B shows almost the same signal wiring portion on the insulator layer shown in FIG. 9A. It is the top view shown on a reduced scale. The configuration shown in FIGS. 9A and 9B shows an example in which the signal wiring that needs to control the characteristic impedance is a pair wiring that is differentially transmitted, similarly to the example shown in FIGS. 6A and 6B. .
 なお、この図9Aおよび図9Bにおいては、すでに説明した図6Aおよび図6Bに示した各部と同一機能を果たす部分を同一符号で示しており、したがって、その詳細な説明は省略する。そして、ペア配線の両外側と前記シールド層の開口縁7bとの距離Uが、ペア配線の線間Sをパラメータとした前記した関係になされている。 In FIGS. 9A and 9B, parts that perform the same functions as those shown in FIGS. 6A and 6B described above are denoted by the same reference numerals, and therefore detailed description thereof is omitted. The distance U between the outer sides of the pair wiring and the opening edge 7b of the shield layer has the above-described relationship using the line spacing S of the pair wiring as a parameter.
 この実施の形態においては、特性インピーダンスの制御が成される信号配線3a,3bの両外側に沿って、前記グランド層5と同電位になされた線状のガードパターン8が、前記ベース基材2上に配設されている。そして、線状のガードパターン8の幅方向の中央部が、前記シールド層7の開口縁7bに位置するように構成されている。 In this embodiment, a linear guard pattern 8 having the same potential as the ground layer 5 is formed along the outer sides of the signal wirings 3a and 3b whose characteristic impedance is controlled. It is arranged on the top. And the center part of the width direction of the linear guard pattern 8 is comprised so that it may be located in the opening edge 7b of the said shield layer 7. FIG.
 前記した構成によると、特性インピーダンスの制御を必要とする信号配線3a,3bの上面は、シールド層の開口部7aによって開放状態になされるものの、図9Aに示すように断面で見た信号配線3a,3bの下方および両サイド、さらに上方両サイドが、十分に近接したグランドで取り囲まれた構成になされるので、EMIシールド特性の減衰を最小限に留めることができる。 According to the configuration described above, the upper surfaces of the signal wirings 3a and 3b that require control of the characteristic impedance are opened by the opening 7a of the shield layer, but the signal wiring 3a viewed in a cross section as shown in FIG. 9A. , 3b, and the upper and lower sides are surrounded by a sufficiently close ground, so that the attenuation of the EMI shield characteristic can be minimized.
 さらに図10Aは、差動伝送されるペア信号配線を備えた回路基板の第3の実施形態にかかる積層構造を示すものであり、図10Bは図10Aに示す絶縁体層上の信号配線部分をほぼ同一縮尺で示した平面図である。
 この図10Aおよび図10Bに示す構成は、前記した図9Aおよび図9Bに示した第2の実施の形態に、さらに構成要件を加えたものであり、前記グランド層5とガードパターン8とが、絶縁基材2に形成されたビアホール2aを介して接続され、前記ガードパターン8と前記シールド層7とが、前記絶縁被覆層4に形成された開口4aを介して接続されている。
Further, FIG. 10A shows a laminated structure according to the third embodiment of a circuit board having a pair signal wiring for differential transmission, and FIG. 10B shows a signal wiring portion on the insulator layer shown in FIG. 10A. It is the top view shown on substantially the same scale.
The configuration shown in FIGS. 10A and 10B is obtained by further adding the configuration requirements to the second embodiment shown in FIGS. 9A and 9B. The ground layer 5 and the guard pattern 8 are The guard pattern 8 and the shield layer 7 are connected through an opening 4 a formed in the insulating coating layer 4. The guard pattern 8 and the shield layer 7 are connected through a via hole 2 a formed in the insulating base 2.
 前記グランド層5とガードパターン8とを接続するビアホール2aは、図10Bに示すようにガードパターン8の長手方向に沿って複数か所に形成されており、各ビアホール2aを介してそれぞれ両者が接続されている。
 また、前記絶縁被覆層4に形成された開口4aも、ガードパターン8の長手方向に沿って複数か所にそれぞれ形成されており、この各開口4aを介して前記ガードパターン8と前記シールド層7とが接続されている。
The via holes 2a connecting the ground layer 5 and the guard pattern 8 are formed at a plurality of locations along the longitudinal direction of the guard pattern 8 as shown in FIG. 10B, and both are connected via the via holes 2a. Has been.
The openings 4a formed in the insulating coating layer 4 are also formed at a plurality of locations along the longitudinal direction of the guard pattern 8, and the guard pattern 8 and the shield layer 7 are formed through the openings 4a. And are connected.
 前記した構成は、回路基板の屈曲等がなされない部分において好適に採用することができ、この構成によると信号配線の両外側のグランド間の隙間が補填され、グランド電位として機能するグランド層5、ガードパターン8、シールド層7の機械的な結合も強くなり、またEMIシールド特性をさらに向上させることにも寄与できる。 The above-described configuration can be suitably employed in a portion where the circuit board is not bent or the like. According to this configuration, a gap between the grounds on both outer sides of the signal wiring is filled, and the ground layer 5 functions as a ground potential. The mechanical coupling between the guard pattern 8 and the shield layer 7 is strengthened, and it can contribute to further improving the EMI shield characteristics.
 なお、以上説明したシングルエンド伝送がなされる信号配線を備えた回路基板、ならびに差動伝送されるペア信号配線を備えた回路基板における前記グランド層は、回路の基準電位が印加される構成にされる場合もあり、また各ディバイスの動作電源が重畳される場合もある。したがって、グランド層に印加される電位は特に限定されるものではない。 The ground layer in the circuit board provided with the signal wiring that performs single-ended transmission and the pair signal wiring that is differentially transmitted as described above is configured to be applied with a reference potential of the circuit. In some cases, the operating power supply of each device may be superimposed. Therefore, the potential applied to the ground layer is not particularly limited.
 この発明による回路基板は、プリント配線板、フレキシブルプリント配線板、多層フレキシブルプリント配線板等に用いることができ、特に高周波帯で動作するディバイスを実装する回路基板に好適に採用することができる。 The circuit board according to the present invention can be used for a printed wiring board, a flexible printed wiring board, a multilayer flexible printed wiring board, and the like, and can be suitably used particularly for a circuit board on which a device operating in a high frequency band is mounted.
 1      回路基板
 2      絶縁体層(ベース基材)
 2a     ビアホール
 3A,3B  信号配線
 3a,3b  信号配線(ペア配線)
 4      絶縁被覆層
 4a     絶縁被覆層の開口
 5      グランド層
 5A     ベタ電極領域
 5B     メッシュ状導体部
 6      絶縁被覆層
 7      シールド層
 7a     シールド層の開口部
 7b     開口縁
 8      ガードパターン
 
1 Circuit board 2 Insulator layer (base material)
2a Via hole 3A, 3B Signal wiring 3a, 3b Signal wiring (pair wiring)
DESCRIPTION OF SYMBOLS 4 Insulation coating layer 4a Insulation coating layer opening 5 Ground layer 5A Solid electrode area 5B Mesh-like conductor part 6 Insulation coating layer 7 Shield layer 7a Shield layer opening part 7b Opening edge 8 Guard pattern

Claims (10)

  1.  グランド層と前記グランド層に対して絶縁体層を介して信号配線を配設し、前記グランド層と信号配線間の容量結合を制御することで、前記信号配線の特性インピーダンス制御がなされる回路基板であって、
     前記絶縁体層に配設された信号配線上には絶縁被覆層が形成され、当該絶縁被覆層を介してさらに導電性素材によるシールド層が形成されると共に、前記信号配線に対峙する前記絶縁被覆層上は、前記シールド層が敷設されないシールド層の開口部になされていることを特徴とする回路基板。
    A circuit board for controlling characteristic impedance of the signal wiring by arranging a signal wiring through an insulator layer with respect to the ground layer and the ground layer and controlling capacitive coupling between the ground layer and the signal wiring. Because
    An insulating coating layer is formed on the signal wiring disposed in the insulator layer, and a shield layer made of a conductive material is further formed through the insulating coating layer, and the insulating coating facing the signal wiring is formed. The circuit board is characterized in that the layer is formed in an opening of the shield layer on which the shield layer is not laid.
  2.  特性インピーダンスの制御が成される前記信号配線がシングルエンド伝送がなされる信号配線であって、前記絶縁体層の厚さをt1としたとき、特性インピーダンスの制御がなされる前記信号配線の両外側と前記シールド層の開口縁との距離Uが、3t1≦U≦20t1の範囲に設定されていることを特徴とする請求項1に記載された回路基板。 The signal wiring on which the characteristic impedance is controlled is a signal wiring on which single-ended transmission is performed, and when the thickness of the insulator layer is t1, both outer sides of the signal wiring on which the characteristic impedance is controlled 2. The circuit board according to claim 1, wherein a distance U between the opening edge of the shield layer and the shield layer is set in a range of 3t1 ≦ U ≦ 20t1.
  3.  特性インピーダンスの制御が成される前記信号配線が差動伝送されるペア配線であって、前記ペア配線間の線間距離をSとしたとき、前記ペア配線の両外側と前記シールド層の開口縁との距離Uが、3S≦U≦20Sの範囲に設定されていることを特徴とする請求項1に記載された回路基板。 The signal wiring for which characteristic impedance control is performed is a pair wiring for differential transmission, and when the distance between the pair wirings is S, both outer sides of the pair wiring and the opening edge of the shield layer The circuit board according to claim 1, wherein the distance U is set in a range of 3S ≦ U ≦ 20S.
  4.  特性インピーダンスの制御がなされる前記信号配線に対峙する前記グランド層は、多数の抜き孔を施したメッシュ状導体部になされ、当該メッシュ状導体部の外側は抜き孔が施されないベタ電極領域になされ、前記メッシュ状導体部とベタ電極領域との境界が、前記シールド層の開口縁に、基板面に直交する方向で一致するように構成されていることを特徴とする請求項1に記載された回路基板。 The ground layer facing the signal wiring, whose characteristic impedance is controlled, is formed in a mesh-shaped conductor portion having a large number of holes, and the outside of the mesh-shaped conductor portion is a solid electrode region where no holes are formed. The boundary between the mesh-shaped conductor portion and the solid electrode region is configured to coincide with the opening edge of the shield layer in a direction orthogonal to the substrate surface. Circuit board.
  5.  前記グランド層と信号配線との間の絶縁体層は、100μm以下の厚さを有することを特徴とする請求項1に記載された回路基板。 2. The circuit board according to claim 1, wherein the insulator layer between the ground layer and the signal wiring has a thickness of 100 μm or less.
  6.  前記信号配線と前記シールド層との間の絶縁被覆層は、100μm以下の厚さを有することを特徴とする請求項1に記載された回路基板。 2. The circuit board according to claim 1, wherein the insulating coating layer between the signal wiring and the shield layer has a thickness of 100 μm or less.
  7.  前記シングル伝送がなされる信号配線の両外側に沿って、前記グランド層と同電位になされた線状のガードパターンが前記絶縁体層上に配設され、前記線状のガードパターンの幅方向の中央部が、前記シールド層の開口縁に位置するように構成されていることを特徴とする請求項1、請求項3ないし請求項6のいずれか1項に記載された回路基板。 A linear guard pattern having the same potential as that of the ground layer is disposed on the insulator layer along both outer sides of the signal wiring through which the single transmission is performed, and the width direction of the linear guard pattern is 7. The circuit board according to claim 1, wherein a central portion is configured to be positioned at an opening edge of the shield layer. 8.
  8.  前記グランド層とガードパターンとがビアホールを介して接続され、前記ガードパターンと前記シールド層とが前記絶縁被覆層に形成された開口を介して接続されていることを特徴とする請求項7に記載された回路基板。 The ground layer and the guard pattern are connected through a via hole, and the guard pattern and the shield layer are connected through an opening formed in the insulating coating layer. Circuit board.
  9.  前記差動伝送がなされるペア配線の両外側に沿って、前記グランド層と同電位になされた線状のガードパターンが前記絶縁体層上に配設され、前記線状のガードパターンの幅方向の中央部が、前記シールド層の開口縁に位置するように構成されていることを特徴とする請求項2ないし請求項6のいずれか1項に記載された回路基板。 A linear guard pattern having the same potential as that of the ground layer is disposed on the insulator layer along both outer sides of the pair wiring to which the differential transmission is performed, and the width direction of the linear guard pattern 7. The circuit board according to claim 2, wherein a central portion of the shield layer is positioned at an opening edge of the shield layer. 8.
  10.  前記グランド層とガードパターンとがビアホールを介して接続され、前記ガードパターンと前記シールド層とが前記絶縁被覆層に形成された開口を介して接続されていることを特徴とする請求項9に記載された回路基板。 The ground layer and the guard pattern are connected through a via hole, and the guard pattern and the shield layer are connected through an opening formed in the insulating coating layer. Circuit board.
PCT/JP2010/000659 2009-03-10 2010-02-04 Circuit board WO2010103722A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-056697 2009-03-10
JP2009056697A JP2010212439A (en) 2009-03-10 2009-03-10 Circuit board
JP2009211526A JP2011061126A (en) 2009-09-14 2009-09-14 Circuit board
JP2009-211526 2009-09-14

Publications (1)

Publication Number Publication Date
WO2010103722A1 true WO2010103722A1 (en) 2010-09-16

Family

ID=42728022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000659 WO2010103722A1 (en) 2009-03-10 2010-02-04 Circuit board

Country Status (2)

Country Link
TW (1) TWI492674B (en)
WO (1) WO2010103722A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119530A1 (en) 2011-03-10 2012-09-13 Mediatek Inc. Printed circuit board design for high speed application
JP5310949B2 (en) * 2010-12-03 2013-10-09 株式会社村田製作所 High frequency signal line
WO2016052225A1 (en) * 2014-10-03 2016-04-07 Dic株式会社 Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board
WO2017169546A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Front-end circuit and high frequency module
CN107360663A (en) * 2016-05-09 2017-11-17 易鼎股份有限公司 Circuit board structure capable of selecting corresponding grounding layer
JP2019197785A (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Printed wiring board
CN115023026A (en) * 2021-10-27 2022-09-06 荣耀终端有限公司 Circuit board and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11696390B2 (en) * 2020-06-24 2023-07-04 Qualcomm Incorporated Systems for shielding bent signal lines

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612744A (en) * 1969-02-27 1971-10-12 Hughes Aircraft Co Flexible flat conductor cable of variable electrical characteristics
US4644092A (en) * 1985-07-18 1987-02-17 Amp Incorporated Shielded flexible cable
JPS62145400U (en) * 1986-03-06 1987-09-12
JPH03126099U (en) * 1990-04-02 1991-12-19
JPH05235495A (en) * 1992-02-21 1993-09-10 Sumitomo Electric Ind Ltd Flexible printed wiring board with shield
JPH08506696A (en) * 1993-02-02 1996-07-16 エイ・エス・ティー・リサーチ・インコーポレイテッド Circuit board array including shield grid and structure thereof
JP2004079818A (en) * 2002-08-20 2004-03-11 Fujitsu Ltd Wiring board and its manufacturing method
JP2006173310A (en) * 2004-12-15 2006-06-29 Sumitomo Bakelite Co Ltd Circuit board
JP2007035787A (en) * 2005-07-25 2007-02-08 Sony Chemical & Information Device Corp Wiring board with shield and its manufacturing method
JP2007116010A (en) * 2005-10-24 2007-05-10 Sumitomo Bakelite Co Ltd Circuit board
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
JP2009105207A (en) * 2007-10-23 2009-05-14 Nitto Denko Corp Wiring circuit board
JP2009212329A (en) * 2008-03-05 2009-09-17 Epson Imaging Devices Corp Circuit board, electro-optic device, and electronic equipment

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612744A (en) * 1969-02-27 1971-10-12 Hughes Aircraft Co Flexible flat conductor cable of variable electrical characteristics
US4644092A (en) * 1985-07-18 1987-02-17 Amp Incorporated Shielded flexible cable
JPS62145400U (en) * 1986-03-06 1987-09-12
JPH03126099U (en) * 1990-04-02 1991-12-19
JPH05235495A (en) * 1992-02-21 1993-09-10 Sumitomo Electric Ind Ltd Flexible printed wiring board with shield
JPH08506696A (en) * 1993-02-02 1996-07-16 エイ・エス・ティー・リサーチ・インコーポレイテッド Circuit board array including shield grid and structure thereof
JP2004079818A (en) * 2002-08-20 2004-03-11 Fujitsu Ltd Wiring board and its manufacturing method
JP2006173310A (en) * 2004-12-15 2006-06-29 Sumitomo Bakelite Co Ltd Circuit board
JP2007035787A (en) * 2005-07-25 2007-02-08 Sony Chemical & Information Device Corp Wiring board with shield and its manufacturing method
JP2007116010A (en) * 2005-10-24 2007-05-10 Sumitomo Bakelite Co Ltd Circuit board
JP2007123740A (en) * 2005-10-31 2007-05-17 Sony Corp Flexible board, optical transmission/reception module and optical transmission/reception device
JP2009105207A (en) * 2007-10-23 2009-05-14 Nitto Denko Corp Wiring circuit board
JP2009212329A (en) * 2008-03-05 2009-09-17 Epson Imaging Devices Corp Circuit board, electro-optic device, and electronic equipment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310949B2 (en) * 2010-12-03 2013-10-09 株式会社村田製作所 High frequency signal line
US8624692B2 (en) 2010-12-03 2014-01-07 Murata Manufacturing Co., Ltd. High-frequency signal transmission line
US9949360B2 (en) 2011-03-10 2018-04-17 Mediatek Inc. Printed circuit board design for high speed application
WO2012119530A1 (en) 2011-03-10 2012-09-13 Mediatek Inc. Printed circuit board design for high speed application
WO2016052225A1 (en) * 2014-10-03 2016-04-07 Dic株式会社 Shield film, shield printed wiring board, and methods for manufacturing shield film and shield printed wiring board
WO2017169546A1 (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Front-end circuit and high frequency module
CN108886378A (en) * 2016-03-31 2018-11-23 株式会社村田制作所 Front end circuit and high-frequency model
JPWO2017169546A1 (en) * 2016-03-31 2018-12-13 株式会社村田製作所 Front-end circuit and high-frequency module
US10383211B2 (en) 2016-03-31 2019-08-13 Murata Manufacturing Co., Ltd. Front-end circuit and high-frequency module
CN108886378B (en) * 2016-03-31 2020-10-09 株式会社村田制作所 Front-end circuit and high-frequency module
CN107360663A (en) * 2016-05-09 2017-11-17 易鼎股份有限公司 Circuit board structure capable of selecting corresponding grounding layer
CN107360663B (en) * 2016-05-09 2020-01-31 易鼎股份有限公司 Circuit board structure capable of selecting corresponding grounding layer
JP2019197785A (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Printed wiring board
CN115023026A (en) * 2021-10-27 2022-09-06 荣耀终端有限公司 Circuit board and electronic device

Also Published As

Publication number Publication date
TWI492674B (en) 2015-07-11
TW201038149A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
WO2010103722A1 (en) Circuit board
JP2010212439A (en) Circuit board
KR100283508B1 (en) Non-solid reference plane with bidirectional impedance control
WO2010103721A1 (en) Circuit board
JP5352019B1 (en) Multilayer circuit board and high frequency circuit module
JP6732723B2 (en) Printed wiring board for high frequency transmission
US8476533B2 (en) Printed circuit board
US8648668B2 (en) Electrical impedance precision control of signal transmission line for circuit board
JP2011061126A (en) Circuit board
JP5445011B2 (en) Circuit board
JP4798483B2 (en) Circuit board
JP4683381B2 (en) Circuit board
JP2011023547A (en) Circuit board
JP4697591B2 (en) Circuit board
JP2013004728A (en) Wiring circuit board and manufacturing method therefor
JP2007141990A (en) Circuit board
JP2012009573A (en) Circuit board
JP5051836B2 (en) Semiconductor device and design method thereof
JP2013153041A (en) Noise suppression structure
JP5194722B2 (en) Wiring substrate and semiconductor device
JP2015035468A (en) Printed circuit board
US9526165B2 (en) Multilayer circuit substrate
JP6733911B2 (en) Printed wiring board, printed wiring board with electronic components
CN112770493A (en) Flexible circuit board and electronic equipment
US9560743B2 (en) Multilayer circuit substrate having core layer with through-hole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750482

Country of ref document: EP

Kind code of ref document: A1