WO2022097488A1 - Laminate for semi-additive construction method and printed wiring board - Google Patents

Laminate for semi-additive construction method and printed wiring board Download PDF

Info

Publication number
WO2022097488A1
WO2022097488A1 PCT/JP2021/038876 JP2021038876W WO2022097488A1 WO 2022097488 A1 WO2022097488 A1 WO 2022097488A1 JP 2021038876 W JP2021038876 W JP 2021038876W WO 2022097488 A1 WO2022097488 A1 WO 2022097488A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
forming
wiring board
printed wiring
Prior art date
Application number
PCT/JP2021/038876
Other languages
French (fr)
Japanese (ja)
Inventor
憲正 深澤
昭 村川
潤 白髪
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022540725A priority Critical patent/JPWO2022097488A1/ja
Publication of WO2022097488A1 publication Critical patent/WO2022097488A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present invention relates to a printed wiring board that electrically connects both sides of a base material.
  • the printed wiring board is a printed wiring board in which a metal layer of a circuit pattern is formed on the surface of an insulating base material.
  • a metal layer of a circuit pattern is formed on the surface of an insulating base material.
  • an etching resist having a circuit pattern shape is formed on the surface of a copper layer formed on an insulating base material, and the copper layer in a circuit-unnecessary part is etched to obtain the copper wiring.
  • the subtractive method of forming has been widely used.
  • the etching solution may wrap around the lower part of the resist, and as a result of the side etching, the wiring width direction may become narrower. It was a problem. In particular, when regions having different wiring densities coexist, there is a problem that the fine wiring existing in the region having a low wiring density disappears as the etching proceeds. Furthermore, the cross-sectional shape of the wiring obtained by the subtractive method is not rectangular, but has a trapezoidal shape or a triangular shape with a wide hem on the base material side. There was also a problem as a transmission line.
  • a semi-additive method has been proposed as a method for solving these problems and manufacturing a fine wiring circuit.
  • a conductive seed layer is formed on an insulating base material, and a plating resist is formed on a non-circuit forming portion on the seed layer.
  • the resist is peeled off and the seed layer of the non-circuit forming portion is removed to form the fine wiring.
  • the plating is deposited along the shape of the resist, the cross-sectional shape of the wiring can be made rectangular, and the wiring of the desired width can be deposited regardless of the density of the pattern. Since it can be formed, it is suitable for forming fine wiring.
  • a method of forming a conductive seed layer on an insulating base material by electroless copper plating using a palladium catalyst or electroless nickel plating is known.
  • the surface of the substrate is roughened using a strong chemical such as permanganic acid, which is called desmear roughening, in order to ensure the adhesion between the film substrate and the copper-plated film.
  • desmear roughening a strong chemical such as permanganic acid
  • a technique of forming electroless nickel plating on a polyimide film to form a conductive seed is also known.
  • the imide ring of the surface layer is opened to make the film surface hydrophilic, and at the same time, a modified layer in which water permeates is formed, and the modified layer is contained.
  • a palladium catalyst is impregnated into the film and electroless nickel plating is performed to form a nickel seed layer (see, for example, Patent Document 1).
  • the adhesion strength is obtained by forming nickel plating from the modified layer of the outermost polyimide layer, but since the modified layer is in a state where the imide ring is opened, the film surface layer. There was a problem that the structure was physically and chemically weak.
  • Patent Document 2 a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example).
  • Patent Document 2 a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example).
  • Patent Document 2 This method can form a seed layer without roughening the surface of the substrate, but it requires the use of expensive vacuum equipment, a large initial investment, and the size and shape of the substrate. The problems were that there were restrictions and that the process was complicated with low productivity.
  • a method for solving the problem of the sputtering method a method of using a coating layer of a conductive ink containing metal particles as a conductive seed layer has been proposed (see, for example, Patent Documents 3 and 4).
  • the above-mentioned coating is performed by applying a conductive ink in which metal particles having a particle diameter of 1 to 500 nm are dispersed on an insulating base material made of a film or a sheet, and performing a heat treatment.
  • Patent Documents 3 and 4 propose pattern formation by a semi-additive method.
  • a conductive ink in which copper particles are dispersed is applied and heat treatment is performed to form a copper conductive seed layer.
  • a base material in which an opening penetrating both sides is formed in the insulating base material is used, and the coating layer of the conductive ink containing the metal particles is also conductive in the opening.
  • a technique for connecting both sides of an insulating base material by forming it as a seed layer is disclosed.
  • a conductive seed layer made of copper particles is formed on an insulating base material, and a wiring metal layer is formed by plating on the conductive seed layer.
  • the conductive seed layer and the insulating base material are used.
  • the adhesiveness at the interface was not sufficient, and the stress of the plated metal could cause the wiring metal layer to peel off.
  • the problem of adhesion is important because the installation area of the conductive seed layer of the wiring portion on the base material becomes small.
  • the conductive seed layer and the conductive layer of the circuit pattern are formed of the same metal as in the combination of the conductive seed layer of copper and the circuit pattern of copper, the conductive seed layer of the non-pattern forming portion is removed. It is known that the conductive layer of the circuit pattern is also etched at the same time, so that the circuit pattern becomes thinner and thinner, and the surface roughness of the circuit conductive layer also increases. It was a problem to be solved in manufacturing the wiring.
  • the problem to be solved by the present invention is that it does not require surface roughening with chromium acid or permanganic acid, formation of a surface modification layer with alkali, etc., and high adhesion between the substrate and the conductor circuit without using a vacuum device. It is an object of the present invention to provide a method for manufacturing a printed wiring board capable of obtaining a wiring having a property (high peel strength), less undercut, and a good rectangular cross-sectional shape as a circuit wiring.
  • the present inventors have formed primer layers on both surfaces of the insulating base material and provided through holes penetrating both surfaces on the base material. Since the metal particle layer can be firmly fixed by forming the metal particle layer on the surface, a wiring pattern connected on both sides, which has excellent adhesion by the plating method, can be easily formed without using expensive equipment such as vacuum equipment. By being able to form and having different metal compositions for the metal particle layer and the metal layer of the wiring formed by the plating method, the design is reproduced without thinning or thinning of the circuit pattern in the seed layer etching process of the semi-additive method.
  • the present invention has been completed by finding a technique for forming a printed wiring board having a smooth circuit layer surface with good properties.
  • Step 6 in which the pattern resist is peeled off and the metal layer (M1) in the non-circuit forming portion is removed by an etching solution.
  • step 1 of forming the primer layer (B) the step 1a of forming the peelable cover layer (RC) on the primer layer is performed on the insulating substrate (A) on which the peelable cover layer is formed.
  • step 2a for removing the peelable cover layer is performed after the step 2 for forming a through hole penetrating both sides of the substrate. Manufacturing method.
  • a resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X].
  • the reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1
  • a printed wiring board having a circuit wiring having a good rectangular cross-sectional shape, which has high adhesion on both sides and is connected on both sides, is manufactured on various smooth substrates without using a vacuum device. It is possible to do. Therefore, by using the technique of the present invention, it is possible to provide high-density, high-performance printed wiring boards of various shapes and sizes at low cost, and it is industrially usable in the field of printed wiring. expensive. Further, the printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention can be used not only for a normal printed wiring board but also for various electronic members having a patterned metal layer on the surface of a base material. For example, it can be applied to a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor, and the like.
  • FIG. 1 is a process diagram of the printed wiring board manufacturing method according to claim 1.
  • FIG. 2 is a process diagram of the printed wiring board manufacturing method according to claim 2.
  • the method for manufacturing a printed wiring board of the present invention is a step 1 of forming a primer layer (B) on an insulating base material (A), on an insulating base material (A) on which a primer layer (B) is formed. , Step 2 of forming a through hole penetrating both sides of the substrate, step 3 of forming a metal layer (M1) containing metal particles on the primer layer (B) and on the surface of the through hole, the primer layer ( B) Step 4 of forming a pattern resist from which the resist of the circuit forming portion is removed on the metal layer (M1) on the top, step 5 of forming the conductor circuit layer (M2) on the metal layer (M1) by the plating method. It is characterized by having a step 6 of peeling off the pattern resist and removing the metal layer (M1) of the non-circuit forming portion with an etching solution.
  • the peelable cover layer is formed after the step 1 of forming the primer layer (B), the step 1a of forming the peelable cover layer (RC) on the primer layer. It is characterized by having a step 2a of removing a peelable cover layer after the step 2 of forming a through hole penetrating both sides of the base material on the insulating base material (A).
  • Examples of the material of the insulating base material (A) used in step 1 of the present invention include a polyimide resin, a polyamideimide resin, a polyamide resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene naphthalate resin, a polycarbonate resin, and an acrylonitrile.
  • ABS -Butadiene-styrene
  • polyarylate resin polyacetal resin
  • acrylic resin such as poly (meth) methyl acrylate, polyvinylidene fluoride resin, polytetrafluoroethylene resin, vinyl chloride resin, vinylidene chloride resin, acrylic Vinyl chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) , Polyphenylene sulfone (PPSU), cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
  • LCP liquid crystal polymer
  • PEEK polyether ether ketone
  • PPS polyphenylene sulfide
  • PPSU Polypheny
  • thermosetting resin examples include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin.
  • examples thereof include silicone resin, triazine resin, and melamine resin.
  • examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate.
  • the insulating base material (A) any of a flexible material, a rigid material, and a rigid flexible material can be used. More specifically, a film, a sheet, or a commercially available material formed into a plate may be used for the insulating base material (A), or any shape may be used from the above-mentioned resin solution, melt liquid, and dispersion liquid. You may use the material formed in. Further, the insulating base material (A) may be a base material obtained by forming the above-mentioned resin material on a conductive material such as metal.
  • Step 1 of the method for manufacturing a printed wiring board of the present invention is a step of forming a primer layer (B) on an insulating base material (A).
  • the primer layer (B) is coated with a primer on a part or the entire surface of the insulating base material (A) to remove solvents such as an aqueous medium and an organic solvent contained in the primer. Can be formed.
  • the primer is a metal layer (M1) containing metal particles on the insulating base material (A), which is firmly fixed on the insulating base material (A) to form a conductor circuit layer (M2). It is used for the purpose of improving the adhesion to a substrate, and is a liquid composition in which various resins described later are dissolved or dispersed in a solvent.
  • the method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and various coating methods can be used for the insulating base material (A). It may be appropriately selected according to the shape, size, degree of flexibility and the like. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method.
  • Blade coater method air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
  • the method of applying the primer to both surfaces of the film, the sheet, and the plate-shaped insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and the coating illustrated above is exemplified.
  • the construction method may be selected as appropriate.
  • the primer layer (B) may be simultaneously formed on both surfaces of the insulating base material (A), and may be formed on one side of the insulating base material (A) and then on the other side. You may.
  • the insulating base material (A) may be surface-treated before the primer coating for the purpose of improving the coatability of the primer and improving the adhesion of the conductor circuit layer (M2) to the base material. good.
  • the surface treatment method for the insulating base material (A) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem, and various methods are used. Should be selected as appropriate. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment, alkali treatment, acid treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
  • drying using a dryer As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used.
  • the method of volatilizing the solvent is common.
  • the drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying.
  • the specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C.
  • the drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
  • the above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
  • a substitution atmosphere such as nitrogen or argon
  • the insulating base material (A) When the insulating base material (A) is a single-leaf film, sheet, or board, it can be naturally dried at the coating site, blown air, or in a dryer such as a constant temperature dryer. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in the installed non-heated or heated space following the coating process. It can be performed.
  • the film thickness of the primer layer (B) may be appropriately selected depending on the specifications and applications of the printed wiring board manufactured using the present invention, but the insulating base material (A) and the conductor circuit layer (M2) are used.
  • the range of 10 nm to 30 ⁇ m is preferable, the range of 10 nm to 1 ⁇ m is more preferable, and the range of 10 nm to 500 nm is further preferable, because the adhesion of the material can be further improved.
  • the resin forming the primer layer (B) is a reactive functional group having a reactivity with the reactive functional group [Y].
  • a resin having [X] is preferable.
  • the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane.
  • Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group.
  • a silsesquioxane compound can also be used as the compound forming the primer layer (B).
  • the adhesion of the conductor circuit layer (M2) on the insulating base material (A) can be further improved.
  • the resin forming the primer layer (B) has, as the reactive functional group [X], a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group, and the like. Those having a vinyl group, a (meth) acryloyl group and an allyl group are preferable.
  • Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • the core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
  • a resin that produces a reducing compound by heating is preferable because the adhesion of the conductor circuit layer (M2) to the insulating substrate (A) can be further improved.
  • the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
  • a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B).
  • the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell.
  • Core-shell type composite resin with a polymer polymer resin as the core urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth)
  • examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like.
  • a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
  • (meth) acrylamide refers to one or both of “methacrylamide” and “acrylamide”
  • (meth) acrylic acid refers to "methacrylic acid” and "acrylic acid”. Refers to one or both.
  • the resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
  • Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
  • a monomer having a functional group that produces a reducing compound by heating when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used.
  • the monomers can also be copolymerized.
  • a uretdione bond is formed by self-reacting between the isocyanate groups, or an isocyanate group and a functional group possessed by another component are used.
  • the bond formed at this time may be formed before the silver particle dispersion liquid is applied, or is not formed before the silver particle dispersion liquid is applied, and the silver particle dispersion liquid is not formed. May be formed by heating after coating.
  • Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
  • the blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
  • the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
  • the number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
  • the blocked isocyanate one having an aromatic ring is preferable from the viewpoint of further improving the adhesion.
  • the aromatic ring include a phenyl group and a naphthyl group.
  • the blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
  • Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like.
  • Polyisocyanate compound having an aromatic ring an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure.
  • Examples include compounds.
  • those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
  • examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
  • polyisocyanate compound having an aromatic ring When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring.
  • polyisocyanate compounds having an aromatic ring 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
  • Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ⁇ -caprolactam, ⁇ -valerolactam and ⁇ -butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiour
  • a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable.
  • Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
  • Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
  • the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
  • the content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
  • the melamine resin examples include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
  • a method of adding a reducing compound to the resin can also be mentioned.
  • the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
  • the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
  • the primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
  • examples of the solvent that can be used for the primer include various organic solvents and aqueous media.
  • examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like
  • examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethylene glycol diethylene glycol and propylene.
  • alkylene glycol solvent such as glycol
  • a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol
  • lactam solvent such as N-methyl-2-pyrrol
  • the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary.
  • the crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the metal layer (M1) containing the metal particles in the subsequent step, or the metal particles.
  • the crosslinked structure may be formed after the step of forming the metal layer (M1) containing the above.
  • the crosslinked structure is formed on the primer layer (B) before the conductor circuit layer (M2) is formed.
  • a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the conductor circuit layer (M2).
  • a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
  • the cross-linking agent examples include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure.
  • thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents.
  • the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the conductor circuit layer (M2) on the substrate, it is 0.01 with respect to a total of 100 parts by mass of the resin contained in the primer.
  • the range of about 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
  • the cross-linked structure may already be formed before the step of forming the metal layer (M1) containing the metal particles in the subsequent step, or the metal layer (M1) containing the metal particles may be already formed. ) May be formed or later.
  • the crosslinked structure may be formed after the step of forming the metal layer (M1) containing the metal particles, the crosslinked structure may be formed on the primer layer (B) before the conductor circuit layer (M2) is formed. Often, a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the conductor circuit layer (M2).
  • a preferable uniform of the method for manufacturing a printed wiring board of the present invention includes the step 1a of forming a peelable cover layer (RC) on the primer layer after the step 1 of forming the primer layer (B). Is.
  • the material of the peelable cover layer (RC) As the material of the peelable cover layer (RC), as long as the purpose of protecting the primer layer (M1) at the time of forming the through hole and easily peeling off before forming the metal particle layer is achieved.
  • resin films there are no particular restrictions, and various commercially available resin films can be used, but polyethylene, polypropylene, and polyethylene terephthalate films can be preferably used.
  • peelable cover layer one having a silicone layer for improving the peelability on a film such as polyethylene, polypropylene, or polyethylene terephthalate may be used.
  • the film thickness of the peelable cover layer (RC) used in the present invention is determined from the viewpoint of the handleability of the film, the protection of the silver particle layer (M1), and the ease of forming through holes in the substrate. It is preferably 10 to 100 ⁇ m, more preferably 15 to 70 ⁇ m.
  • the peelable cover layer (RC) used in the present invention can be laminated on the primer layer (M1) after the primer layer (M1) is applied.
  • the primer layer (M1) when coated with a roll coater, it can be laminated by winding the peelable cover layer (RC) together at the time of winding.
  • step 2 of the method for manufacturing a printed wiring board of the present invention the substrate on which the primer layer (B) is formed on both surfaces of the insulating substrate (A) or the insulating substrate (A).
  • This is a step of forming through holes penetrating both sides of a substrate on which the primer layer (B) and the peelable cover layer (RC) are laminated on both surfaces.
  • step 2 as a method for forming the through hole in these substrates, a known and commonly used method may be appropriately selected, and for example, drilling, laser processing, laser processing and oxidizing agent, alkaline agent, acidity. Examples thereof include a processing method that combines chemical etching of an insulating base material using a chemical or the like.
  • the hole diameter (diameter) of the through hole formed by the drilling process is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.5 mm, and further in the range of 0.03 to 0.1 mm. preferable.
  • the number of through holes formed in step 2 is not particularly limited and may be appropriately selected depending on the intended use of the printed wiring board to be manufactured.
  • the hole diameter of the through holes is simply small. It may be one or may include those having different diameters.
  • Desmia methods include, for example, dry treatment such as plasma treatment and reverse sputtering treatment, cleaning treatment with an aqueous solution of an oxidizing agent such as potassium permanganate, cleaning treatment with an aqueous solution of alkali or acid, and wet treatment such as cleaning treatment with an organic solvent. And so on.
  • the peelable cover layer (RC) when the peelable cover layer (RC) is formed on the primer layer (B), the peelable cover layer is formed after the through hole forming step of step 2. It goes through the peeling step 2a.
  • the peelable cover layer (RC) may be peeled off mechanically in step 2a, or may be peeled off using an automatic device or the like.
  • Step 3 of the present invention is a step of forming a metal layer (M1) containing metal particles on a primer layer (B) formed on the insulating base material (A) having the through holes. ..
  • This metal layer (M1) serves as a plating base layer when the conductor circuit layer (M2) is formed by the plating method in step 5 described later.
  • the metal layer (M1) is a layer containing metal particles, and examples of the metal particles constituting the layer include silver, gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, and titanium. Examples include metal particles such as indium and iridium. These metal particles can be used alone or in combination of two or more. Further, in the plating step described later, when the metal layer (M1) is used as a plating base layer for electrolytic plating, the activity as a plating catalyst is high, and the metal layer (M1) is used as a plating base layer for electrolytic plating. Silver particles are preferable as the metal particles because the electric resistance value is sufficiently low when used, the surface is not easily oxidized even when stored in the atmosphere, and the metal particles are relatively inexpensive.
  • the metal layer (M1) and the conductor circuit layer (M2) are made of different metals so that the conductor circuit layer (M2) is not damaged during the seed layer etching. It is possible to obtain a wiring pattern that is rectangular and has good dimensional accuracy. As will be described later, from the viewpoint of wiring conductivity and economy, it is preferable to form the conductor circuit layer (M2) from copper, and the copper conductor circuit layer (M2) is not damaged during the seed layer etching. Silver particles are particularly preferable as the metal particles forming the metal layer because of their high etching removability.
  • the metal layer (M1) can be formed in the proportion of the metal particles contained in addition to the main metal particles, and the plating in step 5 described later can be performed without any problem.
  • the content of particles of other metal species is preferably 5 parts by mass or less with respect to 100 parts by mass of particles of the main metal species. More preferably, it is 2 parts by mass or less.
  • Examples of the method for forming the metal layer (M1) on the primer layer (B) include a method of applying a metal particle dispersion liquid on the primer layer (B).
  • the coating method of the metal particle dispersion liquid is not particularly limited as long as the metal layer (M1) can be formed satisfactorily, and various coating methods similar to those used in the primer layer (B) forming method can be used. , The shape, size, degree of flexibility and the like of the insulating base material (A) to be used may be appropriately selected.
  • Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method.
  • Blade coater method air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
  • the metal layer (M1) may be simultaneously formed on both sides of the insulating base material (A) having the primer layer (B) formed on both sides, or the primer layer (B) may be formed on both sides. After forming on one side of the insulating base material (A), it may be formed on the other side.
  • the formation of the metal layer (M1) on the surface of the through hole formed on the insulating base material (A) having the primer layer (B) formed on both sides thereof is the formation of the metal layer (M1) on the primer layer (B).
  • M1 It is performed at the same time as the formation.
  • the metal particle dispersion liquid is applied onto the primer layer (B)
  • the dispersion liquid permeates into the through hole, and a metal layer (M1) made of metal particles is formed on the surface of the through hole.
  • the primer layer (B) is coated with a metal particle dispersion for the purpose of improving the coatability of the metal particle dispersion and improving the adhesion of the conductor circuit layer (M2) formed in step 5 to the substrate.
  • surface treatment may be performed.
  • the surface treatment method for the primer layer (B) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem.
  • the various methods listed for forming the primer layer (B) on the substrate (A) may be appropriately selected. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment, alkali treatment, acid treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
  • the coating film After applying the metal particle dispersion liquid on the primer layer (B), the coating film is dried and fired to volatilize the solvent contained in the metal particle dispersion liquid, and the metal particles adhere to each other and are bonded to each other. By doing so, a metal layer (M1) is formed on the primer layer (B).
  • drying mainly means a process of volatilizing a solvent from the dispersion liquid of silver particles
  • firing mainly means a process of bonding silver particles to each other to develop conductivity.
  • the above drying and firing may be performed at the same time, or the coating film may be dried once and then fired if necessary before use.
  • the drying temperature and time may be appropriately selected depending on the type of solvent used in the silver particle dispersion liquid described later, but the temperature is preferably in the range of 20 ° C to 250 ° C and the time is preferably in the range of 1 to 200 minutes.
  • the firing temperature and time may be appropriately selected according to the desired conductivity, but the temperature is preferably in the range of 80 to 350 ° C. and the time is preferably in the range of 1 to 200 minutes. Further, in order to obtain a metal layer (M1) having excellent adhesion on the primer layer (B), it is more preferable to set the firing temperature in the range of 80 to 250 ° C.
  • the above drying / baking may be performed by blowing air, or may not be blown in particular. Further, the drying / firing may be performed in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
  • an inert gas such as nitrogen or argon
  • the coating film is naturally dried at the coating site, blown air, a constant temperature dryer, etc. It can be done in a dryer.
  • the insulating base material (A) is a roll film or a roll sheet
  • the roll material is dried by continuously moving the roll material in an installed non-heated or heated space following the coating process. -Can be fired. Examples of the heating method for drying / firing at this time include a method using an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, light irradiation (flash irradiation device), and the like. These heating methods can be used alone or in combination of two or more.
  • the metal layer (M1) preferably contains metal particles in the range of 80 to 99.9% by mass and a dispersant component described later in the range of 0.1 to 20% by mass.
  • the thickness of the metal layer (M1) is preferably in the range of 30 to 500 nm because the electric resistance value can be made lower and it can be a better plating base layer in step 3 described later. Further, the range of 40 to 200 nm is more preferable because the removability in the removal step of the step 4 can be further improved while providing an excellent plating base layer.
  • the thickness of the metal layer (M1) is preferably 60 to 200 nm.
  • the thickness of the metal layer (M1) can be estimated by various known and commonly used methods. For example, a cross-sectional observation method using an electron microscope or a method using fluorescent X-rays can be used, but fluorescent X-rays can be used. It is convenient and preferable to use the method.
  • the metal layer (M1) is used as a conductive seed for electrolytic plating in the plating method of step 5, the higher the conductivity, that is, the lower the electric resistance value, the better, but the electrolytic plating is It suffices as long as it has conductivity that can be carried out, and it may be appropriately selected according to the size of the printed wiring board to be produced according to the present invention, the power supply device to be used, the electrodes, and the plating chemical solution.
  • the metal layer (M1) When the metal layer (M1) is subjected to electrolytic plating in step 5 described later, it is preferable that the metal particles are in close contact with each other and are bonded to each other and have high conductivity. Further, the metal layer (M1) of the circuit forming portion may be one in which the voids between the metal particles are filled with the plated metal constituting the conductor circuit layer (M2).
  • the metal layer (M1) can be formed for the purpose of suppressing reflection of the active light from the conductive metal layer (M1), which will be described later.
  • a light-absorbing pigment such as a complex, a naphthoquinone compound, a diimmonium compound, or an azo compound, or a dye may be contained as a light absorber.
  • These pigments and dyes may be appropriately selected according to the wavelength of the active light to be used. Further, these pigments and dyes can be used alone or in combination of two or more. Further, in order to contain these pigments and dyes in the metal layer (M1), these pigments and dyes may be blended in the silver particle dispersion liquid described later.
  • the metal particle dispersion liquid used to form the metal layer (M1) is one in which metal particles are dispersed in a solvent.
  • the shape of the metal particles is not particularly limited as long as it can form the metal layer (M1) well, and silver having various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire. Particles can be used. These silver particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
  • the average particle diameter thereof is preferably in the range of 1 to 20,000 nm. Further, when a fine circuit pattern is formed, the homogeneity of the metal layer (M1) is further improved, and the removability by the etching solution in step 6 described later can be further improved, so that the average particle size is 1 to 1. Those in the range of 200 nm are more preferable, and those in the range of 1 to 50 nm are further preferable.
  • the "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the silver particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
  • the metal particles have a shape such as a lens shape, a rod shape, or a wire shape
  • those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor axis in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
  • the metal particle dispersion used to form the metal layer (M1) is one in which metal particles are dispersed in various solvents, and the particle size distribution of the metal particles in the dispersion is uniform in a single dispersion. It may also be a mixture of particles within the above average particle size range.
  • an aqueous medium or an organic solvent can be used as the solvent used for the dispersion liquid of the metal particles.
  • the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
  • Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
  • examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
  • Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol.
  • Tridecanol Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl
  • Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like.
  • Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like.
  • a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
  • hydrocarbon solvent having 8 or more carbon atoms examples include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
  • non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvent
  • the solvent is not particularly limited as long as the metal particles are stably dispersed and the metal layer (M1) is satisfactorily formed on the primer layer (B). Further, the solvent may be used alone or in combination of two or more.
  • the content of the metal particles in the metal particle dispersion is adjusted so as to have a viscosity having optimum coating suitability according to the above coating method, but is preferably in the range of 0.5 to 90% by mass.
  • the range of 1 to 60% by mass is more preferable, and the range of 2 to 10% by mass is more preferable.
  • the metal particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time, and the metal particles are dispersed in the various solvents.
  • a dispersant for causing the reaction a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, a thiosianato group, and a glycinato.
  • Dispersants having a functional group such as a group can be mentioned.
  • the dispersant a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating base material to which a solvent for dispersing metal particles or a dispersion liquid of metal particles is applied is applied. It may be appropriately selected according to the purpose such as the type of (A).
  • Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like.
  • the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the metal layer (M1) can be further improved.
  • Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
  • the basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the silver particles by interacting with the silver particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B), the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X] and the resin. It is preferable because a bond can be formed and the adhesion of the conductor circuit layer (M2) described later on the insulating base material (A) can be further improved.
  • the dispersant can form a metal layer (M1) that exhibits stability, coatability, and good adhesion on the insulating base material (A), the dispersant can be used as a dispersant.
  • a polymer dispersant is preferable, and as the polymer dispersant, polyalkyleneimines such as polyethyleneimine and polypropyleneimine, and compounds in which polyoxyalkylene is added to the polyalkyleneimine are preferable.
  • the compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain composed of the polyethyleneimine.
  • the chain may be grafted with polyoxyalkylene.
  • the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine.
  • examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
  • Examples of the commercially available product of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318” and “PAO718” of "Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
  • the number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
  • the amount of the dispersant required to disperse the metal particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the silver particles, and is on the insulating substrate (A).
  • a metal layer (M1) exhibiting good adhesion can be formed on the primer layer (B) described later, a range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the metal particles.
  • the metal layer (M1) is used as a conductive seed in step 5
  • the range of 0.1 to 5 parts by mass is more preferable because the conductivity of the metal layer (M1) can be improved.
  • the method for producing the dispersion liquid of the metal particles is not particularly limited and can be produced by using various methods.
  • the metal particles produced by a vapor phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the metal compound may be reduced in the liquid phase to directly prepare a dispersion of metal particles.
  • the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent.
  • the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process.
  • a liquid phase method for example, it can be produced by reducing metal ions in the presence of the polymer dispersant.
  • the dispersion liquid of the metal particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • surfactant examples include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates
  • Anionic surfactants such as salts
  • cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used.
  • examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
  • a general film-forming auxiliary can be used.
  • an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used.
  • a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
  • a pattern resist from which the resist of the circuit forming portion is removed is formed on the metal layer (M1).
  • the method for forming the pattern resist is not particularly limited and can be carried out by a known method.
  • a liquid photosensitive resist is applied and dried on the metal layer (M1), or a photosensitive dry film resist is used.
  • a resist layer is formed by heat-pressing the base material on which the metal layer (M1) is formed using a laminator.
  • the surface of the metal layer (M1) is subjected to cleaning treatment with an acidic or alkaline cleaning liquid, corona treatment, plasma treatment, UV treatment, vapor phase ozone treatment, liquid for the purpose of improving adhesion with the resist layer.
  • Surface treatment such as phase ozone treatment and treatment with a surface treatment agent may be performed. These surface treatments can be performed by one method or by using two or more methods in combination.
  • a method described in JP-A-7-258870 a method of treatment using a rust preventive agent composed of a triazole-based compound, a silane coupling agent and an organic acid, JP-A.
  • a method for treating with a silane compound having a triazole ring and an amino group described in Japanese Patent Application Laid-Open No. 2015-214743 a formyl imidazole compound described in Japanese Patent Application Laid-Open No. 2015-214743 is reacted with an aminopropylsilane compound.
  • a method of treating with a surface treatment agent containing a compound, or the like can be used.
  • the circuit pattern is exposed with active light by passing a photomask through the resist layer formed on the metal layer (M1) or using a direct exposure machine.
  • the exposure amount may be appropriately set as needed.
  • a pattern resist is formed by removing the latent image formed on the resist layer by exposure with a developing solution.
  • the developer examples include aqueous solutions such as sodium carbonate and potassium carbonate.
  • the substrate exposed above is immersed in a developing solution or developed by spraying the developing solution onto a resist, and by this development, a pattern resist from which the circuit forming portion is removed can be formed. ..
  • the resist residue such as may be removed.
  • the resist used for forming the pattern resist in the present invention various commercially available resist materials can be used, and a commercially available resist may be appropriately selected depending on the resolution of the target pattern, the type of the exposure machine to be used, and the like.
  • a resist ink, a liquid resist, or a dry film resist can be used, and may be appropriately selected depending on the resolution of the target pattern, the type of the exposure machine to be used, the type of the chemical solution used in the plating treatment in the subsequent step, the pH, and the like.
  • Examples of commercially available resist inks include “plating resist MA-830” and “etching resist X-87” manufactured by Taiyo Ink Mfg. Co., Ltd .; etching resist and plating resist manufactured by NAZDAR Co., Ltd .; “etching” manufactured by Mutual Chemical Industry Co., Ltd. Examples include the “resist PLAS FINE PER” series and the “plating resist PLAS FINE PPR” series. Examples of the electrodeposition resist include “Eagle series” and “Pepper series” manufactured by Dow Chemical Company.
  • dry film resist When using a neutral to acidic plating solution, it is convenient to use a dry film resist, and particularly when forming a fine circuit, a dry film for the semi-additive method may be used.
  • Commercially available dry films used for this purpose include, for example, "ALFO LDF500” and “NIT2700” manufactured by Nikko Materials Co., Ltd .; “Sunfort UFG-258” manufactured by Asahi Kasei Co., Ltd .; “RD” manufactured by Hitachi Kasei Co., Ltd. Examples include the series (RD-2015, 1225), the RY series (RY-5319, 5325), and the PlateMaster series manufactured by DuPont (PM200, 300).
  • an alkaline plating solution such as a non-electrolytic copper plating solution
  • a solvent-dissolving peeling type resist may be used, or an alkaline peeling type resist may be used in a pH and temperature range in which the resist does not peel off.
  • the conductor circuit layer (M2) is formed by performing a plating treatment on the conductive metal layer (M1) exposed by development as described above.
  • Examples of the treatment by the above plating method include electroless plating using the metal layer (M1) containing the metal particles as a plating catalyst, or a combination of electroless plating and electrolytic plating, and electrolytic plating.
  • the conductor circuit layer (M2) When the conductor circuit layer (M2) is formed by electroless plating, examples of the plating metal include copper, nickel, chromium, cobalt, cobalt-tungsten, cobalt-tungsten-boron, and tin. Among these metals, copper is preferable because of its low electrical resistance. Further, in the present invention, the conductor circuit layer (M2) can be formed by performing electrolytic plating after electroless plating. When electrolytic plating is used in combination, the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
  • the deposited metals of the electroless plating and the electrolytic plating may be the same or different.
  • a combination of electroless copper plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic nickel plating, electroless cobalt plating followed by electrolytic copper plating, and the like can be mentioned.
  • copper is preferable because the electric resistance value is low.
  • electroless copper plating with electroless nickel plating, electroless cobalt plating and the like because the diffusion of copper to the base material can be suppressed and the long-term reliability of the printed wiring board can be improved.
  • the thickness of the electrolytic plating layer may be appropriately selected as necessary, but electrolytic plating is appropriately performed. Therefore, 0.1 ⁇ m or more is preferable, and 0.15 ⁇ m or more is more preferable, because the conductivity for this can be secured.
  • Copper is preferable as the main metal for forming the conductor circuit layer (M2) when the conductor circuit layer (M2) is formed by electrolytic plating in the above step 5 because the electric resistance value is low.
  • the method in which the metal layer (M1) has conductivity and the conductor circuit layer (M2) is formed by using the electrolytic plating method is particularly preferable from the viewpoint of production efficiency.
  • annealing may be performed after plating for the purpose of stress relaxation and improvement of adhesion of the plating film. Annealing may be performed before the seed etching in step 6 described later, after the etching, or before or after the etching.
  • the annealing temperature may be appropriately selected in the temperature range of 40 to 300 ° C. depending on the heat resistance of the substrate to be used and the purpose of use, but is preferably in the range of 40 to 250 ° C. for the purpose of suppressing oxidative deterioration of the plating film.
  • the range of 40 to 200 ° C. is more preferable.
  • the annealing time is preferably 10 minutes to 10 days in the temperature range of 40 to 200 ° C., and 5 minutes to 10 hours in the case of a temperature exceeding 200 ° C. Further, when annealing the plating film, a rust preventive may be appropriately applied to the surface of the plating film.
  • the pattern resist is peeled off, and the metal layer (M1) of the non-circuit forming portion is removed by an etching solution.
  • the pattern resist may be peeled off under the recommended conditions described in the catalog, specifications, etc. of the resist to be used.
  • As the resist stripping solution used for stripping the pattern resist a commercially available resist stripping solution or a 1.5 to 3% by mass aqueous solution of sodium hydroxide or potassium hydroxide set at 45 to 60 ° C. may be used. can.
  • the resist can be peeled off by immersing the substrate on which the conductor circuit layer (M2) is formed in a stripping solution or by spraying the stripping solution with a spray or the like.
  • the etching solution used for removing the metal layer (M1) of the non-circuit forming portion selectively etches only the conductive metal layer (M1) and does not etch the conductor circuit layer (M2). preferable.
  • an etching solution having a high rate of dissolving silver is preferable.
  • the composition of such an etching solution includes, for example, dilute nitric acid, a mixture of carboxylic acid and hydrogen peroxide, a mixture of aqueous ammonia and hydrogen peroxide, hydrochloric acid, a mixture of hydrochloric acid and nitric acid, and a mixture of sulfuric acid and nitric acid.
  • a mixture of sulfuric acid, nitric acid and an organic acid for example, acetic acid
  • a mixture of phosphoric acid, nitric acid and an organic acid for example, acetic acid
  • the copper is not etched as much as possible when the conductive metal layer (M1) of the non-circuit forming portion is removed in step 6 of the present invention, and the metal is used.
  • An etching solution capable of efficiently removing only the layer (M1) is preferable.
  • the metal particles constituting the metal layer (M1) are silver particles, examples of the etching solution include a mixture of a carboxylic acid and hydrogen hydrogen.
  • carboxylic acid examples include acetic acid, formic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margalic acid and stearic acid.
  • Oleic acid Oleic acid, linoleic acid, linolenic acid, arachidonic acid, eikosapentaenoic acid, docosahexaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, salicylic acid, phthalic acid, isophthalic acid, terephthalic acid, gallic acid, melitonic acid, coconut skin
  • carboxylic acids can be used alone or in combination of two or more. Among these carboxylic acids, it is preferable to mainly use acetic acid because it is easy to manufacture and handle as an etching solution.
  • the mixing ratio of the mixture of the carboxylic acid and hydrogen peroxide is preferably in the range of 2 to 100 mol of hydrogen peroxide with respect to 1 mol of the carboxylic acid because the dissolution of the conductor circuit layer (M2) can be suppressed.
  • the range of 2 to 50 mol of hydrogen peroxide is more preferable.
  • the mixture of the carboxylic acid and hydrogen peroxide is preferably an aqueous solution diluted with water. Further, the content ratio of the mixture of the carboxylic acid and hydrogen peroxide in the aqueous solution is preferably in the range of 2 to 65% by mass and preferably in the range of 2 to 30% by mass because the influence of the temperature rise of the etching solution can be suppressed. Is more preferable.
  • water used for the above dilution it is preferable to use water from which ionic substances and impurities such as ion-exchanged water, pure water, and ultrapure water have been removed.
  • a protective agent for protecting the conductor circuit layer (M2) and suppressing dissolution may be further added to the etching solution.
  • the conductor circuit layer (M2) is an electrolytic copper plating layer, it is preferable to use an azole compound as a protective agent.
  • azole compound examples include, for example, 2-methylbenzimidazole, aminotriazole, 1,2,3-benzotriazole, 4-aminobenzotriazole, 1-bisaminomethylbenzotriazole, aminotetrazole, phenyltetrazole, 2 -Phenylthiazole, benzothiazole and the like can be mentioned. These azole compounds may be used alone or in combination of two or more.
  • the concentration of the azole compound in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 0.2% by mass.
  • the conductor circuit layer (M2) is a copper plating layer
  • polyalkylene glycol examples include water-soluble polymers such as polyethylene glycol, polypropylene glycol, and polyoxyethylene polyoxypropylene block copolymer. Among these, polyethylene glycol is preferable.
  • the number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 20,000.
  • the concentration of the polyalkylene glycol in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 1% by mass.
  • Additives such as sodium salt, potassium salt and ammonium salt of organic acid may be added to the etching solution as necessary in order to suppress fluctuations in pH.
  • the base material from which the resist has been peeled off is immersed in the etching solution, or the base material is used. This can be done by spraying the etching solution on the top with a spray or the like.
  • all the components of the etching solution may be prepared to have a predetermined composition and then supplied to the etching apparatus.
  • each component of the etching solution may be individually supplied to an etching apparatus, and the respective components may be mixed in the apparatus to prepare a predetermined composition.
  • the etching solution is preferably used in a temperature range of 10 to 35 ° C., and particularly when an etching solution containing hydrogen peroxide is used, decomposition of hydrogen peroxide can be suppressed, so that the temperature range is 30 ° C. or lower. It is preferable to use in.
  • the printed wiring board obtained by the manufacturing method of the present invention is plated with nickel / gold as necessary for forming a solder resist layer on a circuit pattern and for final surface treatment of the conductor circuit layer (M2). , Nickel / palladium / gold plating, palladium / gold plating, etc. may be applied.
  • the printed wiring board having a circuit pattern on the insulating base material of the present invention can be confirmed to have high or low adhesion by measuring the peel strength.
  • the peel strength was measured by performing a peel test in the 90 ° direction on a 5 mm wide stripe pattern of a 15 ⁇ m thick copper plating layer which is a conductor circuit layer.
  • a printed wiring board of the present invention According to the method for manufacturing a printed wiring board of the present invention described above, it is possible to have circuit wiring having a good rectangular cross-sectional shape, which is connected on both sides and has high adhesion, on various smooth substrates without using a vacuum device. It is possible to manufacture a wiring board. Therefore, by using the manufacturing method of the present invention, it is possible to provide a high-density, high-performance printed wiring board board and a printed wiring board of various shapes and sizes at low cost and satisfactorily. High industrial utility in the field.
  • a printed wiring board not only a printed wiring board but also various members having a patterned metal layer on the surface of a base material, such as a connector, an electromagnetic wave shield, an antenna such as RFID, and a film capacitor can be manufactured. ..
  • the mixture was cooled to 40 ° C., neutralized by adding 60 parts by mass of triethylamine, and then mixed with 4700 parts by mass of water to obtain a transparent reaction product.
  • Methyl ethyl ketone is removed from the reaction product under reduced pressure at 40-60 ° C. and then By mixing water, a primer with a non-volatile content of 10% by mass and a weight average molecular weight of 50,000 (B) -1) was obtained.
  • a primer composition (B-2) was obtained by diluting and mixing so that the non-volatile content was 2% by mass.
  • Preparation Example 1 Preparation of silver particle dispersion
  • a dispersion containing the agent was prepared.
  • ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
  • Example 1 On the surface of a PET film ("Lumirror # 100 U48" manufactured by Toray Industries, Inc .; thickness 100 ⁇ m), the primer (B-1) obtained in Production Example 1 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd.). Using a K-printing prober ”), coating was performed so that the average thickness after drying was 600 nm. Then, a primer layer was formed on the surface of the PET film by drying at 120 ° C. for 5 minutes using a hot air dryer. Next, the PET film was turned inside out, a primer (B-1) was applied in the same manner as above, and the film was dried to form primer layers on both sides of the PET film.
  • a through hole having a diameter of 100 ⁇ m was formed at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of the microstrip line having a wiring length of 100 mm and an impedance of 50 ⁇ .
  • the silver particle dispersion obtained in Preparation Example 1 was dried on the formed primer layer using a desktop compact coater (“K printing loafer” manufactured by RK Print Coat Instrument). The coating was applied so that the average thickness was 50 nm.
  • a metal layer composed of silver particles was formed on the primer layer by drying at 120 ° C. for 5 minutes using a hot air dryer. The film was turned inside out to form a metal layer made of silver particles in the same manner as above.
  • a dry film resist (“Fotech RD-1225” manufactured by Hitachi Chemical Co., Ltd .; resist film thickness 25 ⁇ m) is applied to a PET film having a primer layer and a metal layer composed of silver particles on both sides, as a roll laminator. Then, using a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec), a microstrip line pattern with a wiring length of 100 mm and an impedance of 50 ⁇ and a GND for a measurement probe were used on the resist. The terminal pad pattern of the through hole portion connected to the above and the stripe pattern having a width of 5 mm and a length of 10 mm for a peeling test were exposed.
  • the obtained film was immersed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. for 10 minutes to expose a metal layer composed of silver particles.
  • An electroless copper plating film (thickness 0.2 ⁇ m) was formed on the surface.
  • An electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion 50 mg / L, additive (rom)) is installed on the cathode with a copper-free copper-plated surface and has phosphorus-containing copper as an anode.
  • copper sulfate copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion 50 mg / L, additive (rom)
  • a conductive circuit layer (M2) having a circuit pattern with a thickness of 18 ⁇ m was formed on the stripe pattern by electrolytic copper plating.
  • the film on which the metal pattern was formed by copper was put into a 3% by mass sodium hydro
  • the film obtained above was immersed in the etching solution for silver obtained in Preparation Example 3 at 25 ° C. for 30 seconds to remove the silver particle layer other than the conductive layer pattern, and a printed wiring board was obtained.
  • the cross-sectional shape of the circuit forming part (microstrip line and probe terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a conductor circuit layer (M2) on the surface.
  • M2 conductor circuit layer
  • Example 2 On the surface of a polyimide film ("Apical 25NPI” manufactured by Kaneka Co., Ltd., thickness 25 ⁇ m), the primer (B-2) obtained in Production Example 2 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd. "K Printing”. The film was coated with a prober ”) to a thickness of 150 nm after drying, and then dried at 160 ° C. for 5 minutes using a hot air dryer. Further, the film was turned over and the same as above was performed. The primer (B-1) obtained in Production Example 1 was coated so that the thickness after drying was 160 nm, and dried at 160 ° C. for 5 minutes using a hot air dryer to obtain both polyimide films.
  • a desktop compact coater RK Print Coat Instrument Co., Ltd. "K Printing”.
  • the film was coated with a prober ”) to a thickness of 150 nm after drying, and then dried at 160 ° C. for 5 minutes using a hot air dryer. Further, the same as
  • a primer layer was formed on the surface.
  • a 38 ⁇ m-thick polyester removable adhesive tape (Panaprotect HP / CT, manufactured by Panac Co., Ltd.) is laminated on both sides of this film as a peelable cover layer (RC) to form an insulating base material (A).
  • a laminated body in which a primer layer (B) and a peelable cover layer (RC) were sequentially laminated on both surfaces of a polyimide film was produced.
  • a through hole having a diameter of 50 ⁇ m was formed on the surface of the obtained laminate at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of the microstrip line having a wiring length of 100 mm and an impedance of 50 ⁇ , and the peelability was achieved.
  • the cover layer (RC) was mechanically peeled off.
  • the silver particle dispersion obtained in Preparation Example 1 was dried on a primer layer having through holes formed by using a small desktop coater (“K Printing Loafer” manufactured by RK Print Coat Instrument). The coating was applied so that the average thickness was 80 nm. Then, by drying at 180 ° C. for 5 minutes using a hot air dryer, a conductive metal layer (M1) composed of silver particles was formed on the primer layer.
  • This film was turned inside out to form a conductive metal layer (M1) composed of silver particles in the same manner as described above.
  • a conductive metal layer (M1) composed of silver particles in the same manner as described above.
  • a polyimide film having a primer layer thus obtained and a conductive metal layer (M1) composed of silver particles on both sides and ensuring double-sided conduction is used as a dry film resist (Hitachi Kasei Co., Ltd. RD-1225 ”; resist film thickness 25 ⁇ m) was crimped at 100 ° C. using a roll laminator, followed by a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec) on the resist with a wiring length of 100 mm.
  • a microstrip line pattern having an impedance of 50 ⁇ , a terminal pad pattern of a through hole connected to the GND for a measurement probe, and a stripe pattern having a width of 5 mm and a length of 10 mm for a peeling test were exposed.
  • a microstrip line pattern, a probe terminal pad portion, and a pattern resist from which the stripe pattern has been removed are formed on a metal layer (M1) made of a silver particle layer. It was formed and a conductive metal layer (M1) composed of silver particles on a polyimide film was exposed.
  • An electrolytic plating solution (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion 50 mg / L, chlorine ion 50 mg / L, rom. Copper Grim ST-901 ”) manufactured by And Haas Electronic Materials Co., Ltd. was used to perform electrolytic plating at a current density of 2 A / dm2 for 41 minutes to remove the resist from the microstrip pattern, probe terminal pad, and stripe pattern.
  • a conductive circuit layer (M2) having a circuit pattern with a thickness of 18 ⁇ m was formed in the portion by electrolytic copper plating.
  • a film having a metal pattern formed of copper was immersed in a 3% by mass sodium hydroxide aqueous solution set at 50 ° C. By doing so, the pattern resist was peeled off.
  • the film obtained above was immersed in the etching solution for silver obtained in Preparation Example 3 at 25 ° C. for 30 seconds to remove the silver particle layer other than the conductive layer pattern, and a printed wiring board was obtained.
  • the cross-sectional shape of the circuit forming part (microstrip line and probe terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a conductor circuit layer (M2) on the surface.
  • M2 conductor circuit layer
  • Example 1 A printed wiring board of a PET substrate having a microstrip line pattern and a stripe pattern was produced in the same manner as in Example 1 except that a primer layer was not formed. As a result of the peeling test, the peeling strength was 0.4 kN / m.
  • Example 2 A printed wiring board of a polyimide base material having a microstrip line pattern and a stripe pattern was produced in the same manner as in Example 2 except that a primer layer was not formed. As a result of the peeling test, the peeling strength was 0.49 kN / m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Provided is a printed wiring board manufacturing method that makes it is possible to obtain wiring having a rectangular cross-sectional shape that is favorable as circuit wiring, the printed wiring board not requiring the formation of a surface-modifying layer by an alkali or surface roughening using chromic acid or permanganic acid, having high adhesion between a base material and a conductor circuit without using a vacuum device, and having a minimal undercut. The present invention was achieved as a result of discovering a technique that enables a double-sided connected wiring pattern to be simply formed without using an expensive device such as a vacuum device, said wiring pattern having excellent adhesion due to a plating method as a result of firmly fixing a metal particle layer by forming a primer layer on both surfaces of an insulating base material, and forming the metal particle layer on a substrate provided with a through-hole that passes through both surfaces.

Description

セミアディティブ工法用積層体及びそれを用いたプリント配線板Laminated material for semi-additive construction method and printed wiring board using it
 本発明は、基材両面を電気的に接続するプリント配線板に関する。 The present invention relates to a printed wiring board that electrically connects both sides of a base material.
 プリント配線板は、絶縁性基材の表面に回路パターンの金属層が形成されたものである。近年、電子機器製品の小型化、軽量化要求に伴い、プリント配線板(フィルム)の薄型化及び、回路配線の高精細化が求められている。従来、回路配線を製造する方法としては、絶縁性基材上に形成された銅層の表面に、回路パターン形状のエッチングレジストを形成し、回路不要部の銅層をエッチングすることによって銅配線を形成するサブトラクティブ法が広く用いられてきた。しかしながら、サブトラクティブ法においては、配線裾部分の銅が残りやすく、回路配線の高密度化によって配線間距離が短くなると、短絡や配線間の絶縁信頼性に乏しいなどの問題があった。また、短絡を防ぐ目的や、絶縁信頼性を向上させるために、エッチングをさらに進行させると、レジスト下部にエッチング液がまわり込んで、サイドエッチングが進む結果、配線幅方向が細くなってしまうことが問題であった。特に、配線密度の異なる領域が混在する場合、配線密度の低い領域に存在する微細配線は、エッチングを進行させると、消失してしまうなどの問題もあった。さらに、サブトラクティブ法で得られる配線の断面形状は矩形とならず、台形状や三角形状の基材側に裾の広がった形状となることから、厚さ方向に幅が異なった配線となり、電気伝送路としても課題があった。 The printed wiring board is a printed wiring board in which a metal layer of a circuit pattern is formed on the surface of an insulating base material. In recent years, with the demand for miniaturization and weight reduction of electronic device products, it is required to reduce the thickness of printed wiring boards (films) and to increase the definition of circuit wiring. Conventionally, as a method of manufacturing a circuit wiring, an etching resist having a circuit pattern shape is formed on the surface of a copper layer formed on an insulating base material, and the copper layer in a circuit-unnecessary part is etched to obtain the copper wiring. The subtractive method of forming has been widely used. However, in the subtractive method, copper at the hem of the wiring tends to remain, and when the distance between the wirings is shortened due to the high density of the circuit wiring, there are problems such as short circuit and poor insulation reliability between the wirings. In addition, if the etching is further advanced for the purpose of preventing a short circuit or improving the insulation reliability, the etching solution may wrap around the lower part of the resist, and as a result of the side etching, the wiring width direction may become narrower. It was a problem. In particular, when regions having different wiring densities coexist, there is a problem that the fine wiring existing in the region having a low wiring density disappears as the etching proceeds. Furthermore, the cross-sectional shape of the wiring obtained by the subtractive method is not rectangular, but has a trapezoidal shape or a triangular shape with a wide hem on the base material side. There was also a problem as a transmission line.
 これらの課題を解決し、微細配線回路を作製する方法として、セミアディティブ法が提案されている。セミアディティブ法においては、絶縁性基材上に導電性のシード層を形成しておき、当該シード層上の非回路形成部にめっきレジストを形成する。導電性のシード層を通じて電解めっきで配線部を形成した後、レジストを剥離し、非回路形成部のシード層を除去することによって微細配線を形成する。この方法によれば、レジストの形状に沿ってめっきを析出させるので、配線の断面形状を矩形にすることができ、また、パターンの疎密に関係なく、目的とする幅の配線を析出させることができるので、微細配線の形成に適している。 A semi-additive method has been proposed as a method for solving these problems and manufacturing a fine wiring circuit. In the semi-additive method, a conductive seed layer is formed on an insulating base material, and a plating resist is formed on a non-circuit forming portion on the seed layer. After forming the wiring portion by electrolytic plating through the conductive seed layer, the resist is peeled off and the seed layer of the non-circuit forming portion is removed to form the fine wiring. According to this method, since the plating is deposited along the shape of the resist, the cross-sectional shape of the wiring can be made rectangular, and the wiring of the desired width can be deposited regardless of the density of the pattern. Since it can be formed, it is suitable for forming fine wiring.
 セミアディティブ法においては、絶縁性基材上にパラジウム触媒を用いた無電解銅めっきや、無電解ニッケルめっきにより、導電性のシード層を形成する方法が知られている。これらの方法では、例えばビルドアップフィルムを用いる場合、フィルム基材と銅めっき膜の密着性を確保するために、デスミア粗化と呼ばれる過マンガン酸等の強い薬剤を用いた基材表面粗化が行われており、形成された空隙中からめっき膜を形成することによって、アンカー効果を利用し、絶縁性基材とめっき膜の密着性を確保している。しかしながら、基材表面を粗化すると、微細配線を形成することが難しくなり、また、高周波伝送特性が劣化するなどの課題がある。このため、粗化の程度を小さくすることが検討されているが、低粗化の場合には、形成された配線と基材間の必要な密着強度が得られないという問題があった。 In the semi-additive method, a method of forming a conductive seed layer on an insulating base material by electroless copper plating using a palladium catalyst or electroless nickel plating is known. In these methods, for example, when a build-up film is used, the surface of the substrate is roughened using a strong chemical such as permanganic acid, which is called desmear roughening, in order to ensure the adhesion between the film substrate and the copper-plated film. By forming a plating film from the formed voids, the anchor effect is utilized to ensure the adhesion between the insulating base material and the plating film. However, if the surface of the base material is roughened, it becomes difficult to form fine wiring, and there are problems such as deterioration of high frequency transmission characteristics. Therefore, it has been considered to reduce the degree of roughening, but in the case of low roughening, there is a problem that the required adhesion strength between the formed wiring and the base material cannot be obtained.
 一方、ポリイミドフィルム上に無電解ニッケルめっきを施して導電シードを形成する技術も知られている。この場合には、ポリイミドフィルムを強アルカリに浸漬することによって、表層のイミド環を開環させてフィルム表面を親水性化すると同時に、水の浸透する改質層を形成し、当該改質層中にパラジウム触媒を浸透させて、無電解ニッケルめっきを行うことによってニッケルのシード層を形成している(例えば、特許文献1参照。)。本技術においては、ポリイミド最表層の改質層中からニッケルめっきが形成されることによって密着強度を得ているが、当該改質層は、イミド環を開環させた状態であるため、フィルム表層が物理的、化学的に弱い構造になるという問題があった。 On the other hand, a technique of forming electroless nickel plating on a polyimide film to form a conductive seed is also known. In this case, by immersing the polyimide film in strong alkali, the imide ring of the surface layer is opened to make the film surface hydrophilic, and at the same time, a modified layer in which water permeates is formed, and the modified layer is contained. A palladium catalyst is impregnated into the film and electroless nickel plating is performed to form a nickel seed layer (see, for example, Patent Document 1). In this technique, the adhesion strength is obtained by forming nickel plating from the modified layer of the outermost polyimide layer, but since the modified layer is in a state where the imide ring is opened, the film surface layer. There was a problem that the structure was physically and chemically weak.
 これに対し、表面粗化、もしくは、表層に改質層を形成しない方法として、スパッタ法によって絶縁性基材上にニッケル、もしくはチタン等の導電性シードを形成する方法も知られている(例えば、特許文献2参照。)。この方法は、基材表面を粗化することなくシード層を形成することが可能であるが、高価な真空装置を用いる必要があり、大きな初期投資が必要であること、基材サイズや形状に制限があること、生産性が低い煩雑な工程であることなどが問題であった。 On the other hand, as a method of surface roughening or not forming a modified layer on the surface layer, a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example). , Patent Document 2). This method can form a seed layer without roughening the surface of the substrate, but it requires the use of expensive vacuum equipment, a large initial investment, and the size and shape of the substrate. The problems were that there were restrictions and that the process was complicated with low productivity.
 スパッタ法の課題を解決する方法として、金属粒子を含有する導電性インクの塗工層を導電性シード層として利用する方法が提案されている(例えば、特許文献3、4参照。)。これらの技術においては、フィルムもしくはシートからなる絶縁性基材上に、1~500nmの粒子径をもつ金属粒子を分散させた導電性インクを塗工し、熱処理を行うことにより、前記塗工された導電性インク中の金属粒子を金属層として絶縁性の基材上に固着させて導電シード層を形成し、さらに当該導電シード層上にめっきを行う技術が開示されている。 As a method for solving the problem of the sputtering method, a method of using a coating layer of a conductive ink containing metal particles as a conductive seed layer has been proposed (see, for example, Patent Documents 3 and 4). In these techniques, the above-mentioned coating is performed by applying a conductive ink in which metal particles having a particle diameter of 1 to 500 nm are dispersed on an insulating base material made of a film or a sheet, and performing a heat treatment. Disclosed is a technique of fixing metal particles in a conductive ink as a metal layer on an insulating base material to form a conductive seed layer, and further plating the conductive seed layer.
特許文献3、4には、セミアディティブ法によるパターン形成が提案されており、実施例において、銅の粒子を分散させた導電性インクを塗工し、熱処理を行って銅の導電シード層を形成した基材をセミアディティブ工法用の基材として用い、導電シード層上に、感光性レジストを形成し、露光、現像を経て、パターン形成部を電解銅めっきで厚膜化、レジストを剥離した後、銅の導電シード層をエッチング除去することが記載されている。また、特許文献4には、さらに、絶縁性基材に両面を貫通する開口が形成された基材を用い、開口部にも、前記金属粒子を含有する導電性インクの塗工層を導電性シード層として形成することにより、絶縁性基材の両面を接続する技術が開示されている。 Patent Documents 3 and 4 propose pattern formation by a semi-additive method. In an example, a conductive ink in which copper particles are dispersed is applied and heat treatment is performed to form a copper conductive seed layer. After forming a photosensitive resist on the conductive seed layer, thickening the pattern-forming part with electrolytic copper plating, and peeling off the resist, the substrate was exposed and developed. , It is described that the conductive seed layer of copper is removed by etching. Further, in Patent Document 4, a base material in which an opening penetrating both sides is formed in the insulating base material is used, and the coating layer of the conductive ink containing the metal particles is also conductive in the opening. A technique for connecting both sides of an insulating base material by forming it as a seed layer is disclosed.
これらの技術においては、絶縁性基材上に銅粒子からなる導電シード層を形成し、導電シード層上にめっきによる配線金属層を形成しているが、導電シード層と絶縁性基材との界面の接着性が十分でなく、めっき金属の応力によって、配線金属層が剥離してしまう可能性があった。特に、セミアディティブ工法を用いて形成する細線においては、配線部導電シード層の基材への設置面積が小さくなるために、密着性の課題は重要である。 In these techniques, a conductive seed layer made of copper particles is formed on an insulating base material, and a wiring metal layer is formed by plating on the conductive seed layer. However, the conductive seed layer and the insulating base material are used. The adhesiveness at the interface was not sufficient, and the stress of the plated metal could cause the wiring metal layer to peel off. In particular, in the thin wire formed by using the semi-additive method, the problem of adhesion is important because the installation area of the conductive seed layer of the wiring portion on the base material becomes small.
また、銅の導電性シード層と銅の回路パターンの組み合わせの様に、導電性シード層と回路パターンの導電層が同じ金属で形成されている場合、非パターン形成部の導電性シード層を除去する際、回路パターンの導電層も、同時にエッチングされてしまうため、回路パターンが細く、薄くなり、かつ、回路導電層の表面粗度も大きくなることが知られており、高密度配線、高周波伝送用配線を製造する上で解決すべき課題であった。 Further, when the conductive seed layer and the conductive layer of the circuit pattern are formed of the same metal as in the combination of the conductive seed layer of copper and the circuit pattern of copper, the conductive seed layer of the non-pattern forming portion is removed. It is known that the conductive layer of the circuit pattern is also etched at the same time, so that the circuit pattern becomes thinner and thinner, and the surface roughness of the circuit conductive layer also increases. It was a problem to be solved in manufacturing the wiring.
WO2009/004774号公報WO2009 / 004774 Gazette 特開平9-136378号公報Japanese Unexamined Patent Publication No. 9-136378 特開2010-272837号公報Japanese Unexamined Patent Publication No. 2010-272837 WO2015/147219号公報WO2015 / 147219A
 本発明が解決しようとする課題は、クロム酸や過マンガン酸による表面粗化、アルカリによる表面改質層形成などを必要とせず、真空装置を用いることなく、基材と導体回路との高い密着性(剥離強度が高い)を有し、アンダーカットの少ない、回路配線として良好な矩形の断面形状を有する配線を得ることのできるプリント配線板の製造方法を提供することである。 The problem to be solved by the present invention is that it does not require surface roughening with chromium acid or permanganic acid, formation of a surface modification layer with alkali, etc., and high adhesion between the substrate and the conductor circuit without using a vacuum device. It is an object of the present invention to provide a method for manufacturing a printed wiring board capable of obtaining a wiring having a property (high peel strength), less undercut, and a good rectangular cross-sectional shape as a circuit wiring.
本発明者らは、上記の課題を解決すべく鋭意研究した結果、絶縁性基材の両表面上に、プライマー層を形成し、かつ、両表面を貫通するスルーホールを設けた基材の上に金属粒子層を形成することによって、金属粒子層を強固に固定できるため、めっき法によって、密着性に優れる、両面接続された配線パターンを、真空設備など高価な装置を用いずに、簡便に形成できること、また、金属粒子層とめっき法で形成する配線の金属層を異なる金属組成とすることで、セミアディティブ工法のシード層エッチング工程において、回路パターンの細りや、薄膜化が起こらず設計再現性が良く、平滑な回路層表面を有するプリント配線板を形成する技術を見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors have formed primer layers on both surfaces of the insulating base material and provided through holes penetrating both surfaces on the base material. Since the metal particle layer can be firmly fixed by forming the metal particle layer on the surface, a wiring pattern connected on both sides, which has excellent adhesion by the plating method, can be easily formed without using expensive equipment such as vacuum equipment. By being able to form and having different metal compositions for the metal particle layer and the metal layer of the wiring formed by the plating method, the design is reproduced without thinning or thinning of the circuit pattern in the seed layer etching process of the semi-additive method. The present invention has been completed by finding a technique for forming a printed wiring board having a smooth circuit layer surface with good properties.
 すなわち、本発明は、
1.絶縁性基材(A)上に、プライマー層(B)を形成する工程1、
プライマー層(B)が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2、
プライマー層(B)上、及び、スルーホール表面上に金属粒子を含有する金属層(M1)を形成する工程3、
前記プライマー層(B)上の金属層(M1)上に回路形成部のレジストが除去されたパターンレジストを形成する工程4、
めっき法により、金属層(M1)上に導体回路層(M2)を形成する工程5、
パターンレジストを剥離し、非回路形成部の金属層(M1)をエッチング液により除去する工程6、
を有することを特徴とする絶縁性基材上に回路パターンを有するプリント配線板の製造方法。
That is, the present invention
1. 1. Step 1 of forming the primer layer (B) on the insulating base material (A),
Step 2, in which through holes penetrating both sides of the base material are formed on the insulating base material (A) on which the primer layer (B) is formed.
Step 3 of forming a metal layer (M1) containing metal particles on the primer layer (B) and on the surface of the through hole.
Step 4 of forming a pattern resist from which the resist of the circuit forming portion is removed on the metal layer (M1) on the primer layer (B).
Step 5 of forming the conductor circuit layer (M2) on the metal layer (M1) by the plating method, 5.
Step 6, in which the pattern resist is peeled off and the metal layer (M1) in the non-circuit forming portion is removed by an etching solution.
A method for manufacturing a printed wiring board having a circuit pattern on an insulating base material.
2.前記、プライマー層(B)を形成する工程1の後に、プライマー層に剥離性のカバー層(RC)を形成する工程1a、剥離性カバー層が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2の後に、剥離性カバー層を除去する工程2aを有することを特徴とする1に記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 2. 2. After the step 1 of forming the primer layer (B), the step 1a of forming the peelable cover layer (RC) on the primer layer is performed on the insulating substrate (A) on which the peelable cover layer is formed. 2. A printed wiring board having a circuit pattern on an insulating substrate according to 1, wherein the step 2a for removing the peelable cover layer is performed after the step 2 for forming a through hole penetrating both sides of the substrate. Manufacturing method.
3.前記金属層(M1)が導電性を有することを特徴とする1又は2記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 3. 3. The method for manufacturing a printed wiring board having a circuit pattern on an insulating base material according to 1 or 2, wherein the metal layer (M1) has conductivity.
4.前記めっき法が電解めっき法であることを特徴とする1~3のいずれか一項記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 4. The method for manufacturing a printed wiring board having a circuit pattern on an insulating substrate according to any one of 1 to 3, wherein the plating method is an electrolytic plating method.
5.前記金属層(M1)と、導体回路層(M2)を構成する金属が異なる金属組成であることを特徴とする1~4のいずれか一項記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 5. A printed circuit board having a circuit pattern on the insulating substrate according to any one of 1 to 4, wherein the metal layer (M1) and the metal constituting the conductor circuit layer (M2) have different metal compositions. How to manufacture a wiring board.
6.前記金属粒子が銀粒子であることを特徴とする1~5のいずれか一項記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 6. The method for manufacturing a printed wiring board having a circuit pattern on an insulating substrate according to any one of 1 to 5, wherein the metal particles are silver particles.
7.前記金属粒子が、高分子分散剤で被覆されたものである1~6のいずれか一項記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 7. The method for manufacturing a printed wiring board having a circuit pattern on an insulating substrate according to any one of 1 to 6, wherein the metal particles are coated with a polymer dispersant.
8.前記プライマー層(B)に反応性官能基[X]を有する樹脂を用い、前記高分子分散剤に反応性官能基[Y]を有するものを用い、前記反応性官能基[X]と前記反応性官能基[Y]との間で結合を形成させる7記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 8. A resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X]. 7. The method for producing a printed wiring board having a circuit pattern on an insulating substrate for forming a bond with a functional group [Y].
9.前記反応性官能基[Y]が、塩基性窒素原子含有基である8記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 9. 8. The method for producing a printed wiring board having a circuit pattern on the insulating substrate according to 8, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
10.前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である8記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 10. 8. The insulation according to 8. A method for manufacturing a printed wiring board having a circuit pattern on a sex substrate.
11.前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である8~10のいずれか一項記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 11. The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The method for manufacturing a printed wiring board having a circuit pattern on the insulating base material according to any one of 8 to 10 which is more than one species.
 本発明のプリント配線板の製造方法により、真空装置を用いることなく、種々の平滑基材上に密着性の高い、両面接続された、良好な矩形断面形状の回路配線を有するプリント配線板を製造することが可能である。従って、本発明の技術を用いることで、種々の形状、サイズの高密度、高性能のプリント配線板を、低コストで提供することができ、プリント配線の分野におけて産業上の利用性が高い。また、本発明のプリント配線板の製造方法により製造されたプリント配線板は、通常のプリント配線板のみならず、基材表面にパターン化された金属層を有する種々の電子部材に用いることができ、例えば、コネクター、電磁波シールド、RFID等のアンテナ、フィルムコンデンサーなどにも応用できる。 By the method for manufacturing a printed wiring board of the present invention, a printed wiring board having a circuit wiring having a good rectangular cross-sectional shape, which has high adhesion on both sides and is connected on both sides, is manufactured on various smooth substrates without using a vacuum device. It is possible to do. Therefore, by using the technique of the present invention, it is possible to provide high-density, high-performance printed wiring boards of various shapes and sizes at low cost, and it is industrially usable in the field of printed wiring. expensive. Further, the printed wiring board manufactured by the method for manufacturing a printed wiring board of the present invention can be used not only for a normal printed wiring board but also for various electronic members having a patterned metal layer on the surface of a base material. For example, it can be applied to a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor, and the like.
図1は、請求項1に記載のプリント配線板製造法の工程図である。FIG. 1 is a process diagram of the printed wiring board manufacturing method according to claim 1. 図2は、請求項2に記載のプリント配線板製造法の工程図である。FIG. 2 is a process diagram of the printed wiring board manufacturing method according to claim 2.
 本発明のプリント配線板の製造方法は、絶縁性基材(A)上に、プライマー層(B)を形成する工程1、プライマー層(B)が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2、プライマー層(B)上、及び、スルーホール表面上に金属粒子を含有する金属層(M1)を形成する工程3、前記プライマー層(B)上の金属層(M1)上に回路形成部のレジストが除去されたパターンレジストを形成する工程4、めっき法により、金属層(M1)上に導体回路層(M2)を形成する工程5、パターンレジストを剥離し、非回路形成部の金属層(M1)をエッチング液により除去する工程6を有することを特徴とするものである。 The method for manufacturing a printed wiring board of the present invention is a step 1 of forming a primer layer (B) on an insulating base material (A), on an insulating base material (A) on which a primer layer (B) is formed. , Step 2 of forming a through hole penetrating both sides of the substrate, step 3 of forming a metal layer (M1) containing metal particles on the primer layer (B) and on the surface of the through hole, the primer layer ( B) Step 4 of forming a pattern resist from which the resist of the circuit forming portion is removed on the metal layer (M1) on the top, step 5 of forming the conductor circuit layer (M2) on the metal layer (M1) by the plating method. It is characterized by having a step 6 of peeling off the pattern resist and removing the metal layer (M1) of the non-circuit forming portion with an etching solution.
 また、本発明のより好ましい態様は、前記、プライマー層(B)を形成する工程1の後に、プライマー層に剥離性のカバー層(RC)を形成する工程1a、剥離性カバー層が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2の後に、剥離性カバー層を除去する工程2aを有することを特徴とするものである。 Further, in a more preferable embodiment of the present invention, after the step 1 of forming the primer layer (B), the step 1a of forming the peelable cover layer (RC) on the primer layer, the peelable cover layer is formed. It is characterized by having a step 2a of removing a peelable cover layer after the step 2 of forming a through hole penetrating both sides of the base material on the insulating base material (A).
 本発明の工程1で用いる前記絶縁性基材(A)の材料としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、アクリル樹脂をグラフト共重合化した塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ウレタン樹脂、シクロオレフィン樹脂、ポリスチレン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、セルロースナノファイバー、シリコン、シリコンカーバイド、窒化ガリウム、サファイア、セラミックス、ガラス、ダイヤモンドライクカーボン(DLC)、アルミナ等が挙げられる。 Examples of the material of the insulating base material (A) used in step 1 of the present invention include a polyimide resin, a polyamideimide resin, a polyamide resin, a polyethylene terephthalate resin, a polybutylene terephthalate resin, a polyethylene naphthalate resin, a polycarbonate resin, and an acrylonitrile. -Butadiene-styrene (ABS) resin, polyarylate resin, polyacetal resin, acrylic resin such as poly (meth) methyl acrylate, polyvinylidene fluoride resin, polytetrafluoroethylene resin, vinyl chloride resin, vinylidene chloride resin, acrylic Vinyl chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS) , Polyphenylene sulfone (PPSU), cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
 また、前記絶縁性基材(A)として、熱硬化性樹脂及び無機充填材を含有する樹脂基材を好適に用いることもできる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。一方、前記無機充填材としては、例えば、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム、ホウ珪酸ガラス等が挙げられる。これらの熱硬化性樹脂と無機充填剤は、それぞれ1種で用いることも2種以上併用することもできる。 Further, as the insulating base material (A), a resin base material containing a thermosetting resin and an inorganic filler can be preferably used. Examples of the thermosetting resin include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin. Examples thereof include silicone resin, triazine resin, and melamine resin. On the other hand, examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate. These thermosetting resins and inorganic fillers can be used alone or in combination of two or more.
 前記絶縁性基材(A)の形態としては、フレキシブル材、リジッド材、リジッドフレキシブル材のいずれのものも用いることができる。より具体的には、前記絶縁性基材(A)にフィルム、シート、板状に成形された市販材料を用いてもよいし、上記した樹脂の溶液、溶融液、分散液から、任意の形状に成形した材料を用いてもよい。また、前記絶縁性基材(A)は、金属等の導電性材料の上に、上記した樹脂の材料を形成した基材であってもよい。 As the form of the insulating base material (A), any of a flexible material, a rigid material, and a rigid flexible material can be used. More specifically, a film, a sheet, or a commercially available material formed into a plate may be used for the insulating base material (A), or any shape may be used from the above-mentioned resin solution, melt liquid, and dispersion liquid. You may use the material formed in. Further, the insulating base material (A) may be a base material obtained by forming the above-mentioned resin material on a conductive material such as metal.
 本発明のプリント配線板の製造方法の工程1は、絶縁性基材(A)上に、プライマー層(B)を形成する工程である。 Step 1 of the method for manufacturing a printed wiring board of the present invention is a step of forming a primer layer (B) on an insulating base material (A).
 前記プライマー層(B)は、前記絶縁性基材(A)の表面の一部、又は全面にプライマーを塗工し、前記プライマー中に含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成できる。ここで、プライマーとは、絶縁性基材(A)への金属粒子を含有する金属層(M1)を、前記絶縁性基材(A)上に強固に固定し、導体回路層(M2)の基材への密着性を向上させる目的で用いるものであり、後述する各種の樹脂を溶剤中に溶解、もしくは分散させた液状組成物である。 The primer layer (B) is coated with a primer on a part or the entire surface of the insulating base material (A) to remove solvents such as an aqueous medium and an organic solvent contained in the primer. Can be formed. Here, the primer is a metal layer (M1) containing metal particles on the insulating base material (A), which is firmly fixed on the insulating base material (A) to form a conductor circuit layer (M2). It is used for the purpose of improving the adhesion to a substrate, and is a liquid composition in which various resins described later are dissolved or dispersed in a solvent.
 前記プライマーを前記絶縁性基材(A)に塗工する方法としては、プライマー層(B)が良好に形成できれば特に制限は無く、種々の塗工方法を、使用する絶縁性基材(A)の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的な塗工方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、凸版反転法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等が挙げられる。 The method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and various coating methods can be used for the insulating base material (A). It may be appropriately selected according to the shape, size, degree of flexibility and the like. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method. Blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
 また、フィルム、シート、板状の前記絶縁性基材(A)の両面に、前記プライマーを塗工する方法は、プライマー層(B)が良好に形成できれば特に制限はなく、上記で例示した塗工方法を適宜選択すればよい。この際、前記プライマー層(B)は、前記絶縁性基材(A)の両面に同時形成してもよく、前記絶縁性基材(A)の片面に形成した後、他方の面に形成してもよい。 Further, the method of applying the primer to both surfaces of the film, the sheet, and the plate-shaped insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and the coating illustrated above is exemplified. The construction method may be selected as appropriate. At this time, the primer layer (B) may be simultaneously formed on both surfaces of the insulating base material (A), and may be formed on one side of the insulating base material (A) and then on the other side. You may.
 前記絶縁性基材(A)は、プライマーの塗工性向上や、前記導体回路層(M2)の基材への密着性を向上させる目的で、プライマー塗工前に、表面処理を行ってもよい。 The insulating base material (A) may be surface-treated before the primer coating for the purpose of improving the coatability of the primer and improving the adhesion of the conductor circuit layer (M2) to the base material. good.
前記絶縁性基材(A)の表面処理方法としては、表面の粗度が大きくなって、ファインピッチパターン形成性や粗面による信号伝送ロスが問題とならない限りは特に制限はなく、種々の方法を適宜選択すればよい。このような表面処理方法としては、例えば、UV処理、気相オゾン処理、液層オゾン処理、コロナ処理、プラズマ処理、アルカリ処理、酸処理等が挙げられる。これらの表面処理方法は、1種の方法で行うことも2種以上の方法を併用することもできる。 The surface treatment method for the insulating base material (A) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem, and various methods are used. Should be selected as appropriate. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment, alkali treatment, acid treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
 前記プライマーを絶縁性基材(A)の表面に塗工した後、その塗工層に含まれる溶媒を除去してプライマー層(B)を形成する方法としては、例えば、乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ前記絶縁性基材(A)に悪影響を与えない範囲の温度に設定すればよく、室温乾燥でも加熱乾燥でもよい。具体的な乾燥温度は、20~350℃の範囲が好ましく、60~300℃の範囲がより好ましい。また、乾燥時間は、1~200分の範囲が好ましく、1~60分の範囲がより好ましい。 As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used. The method of volatilizing the solvent is common. The drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying. The specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C. The drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
 上記の乾燥は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥は、大気中で行ってもよいし、窒素、アルゴンなどの置換雰囲気、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
 前記絶縁性基材(A)が、枚葉のフィルム、シート、板の場合には、塗工場所での自然乾燥の他、送風、定温乾燥器などの乾燥器内で行うことができる。また、前記絶縁性基材(A)がロールフィルムやロールシートの場合には、塗工工程に続けて、設置された非加熱または加熱空間内でロール材を連続的に移動させることにより、乾燥を行うことができる。 When the insulating base material (A) is a single-leaf film, sheet, or board, it can be naturally dried at the coating site, blown air, or in a dryer such as a constant temperature dryer. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in the installed non-heated or heated space following the coating process. It can be performed.
 前記プライマー層(B)の膜厚は、本発明を用いて製造するプリント配線板の仕様、用途によって適宜選択すればよいが、前記絶縁性基材(A)と前記導体回路層(M2)との密着性を、より向上できることから、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。 The film thickness of the primer layer (B) may be appropriately selected depending on the specifications and applications of the printed wiring board manufactured using the present invention, but the insulating base material (A) and the conductor circuit layer (M2) are used. The range of 10 nm to 30 μm is preferable, the range of 10 nm to 1 μm is more preferable, and the range of 10 nm to 500 nm is further preferable, because the adhesion of the material can be further improved.
 プライマー層(B)を形成する樹脂は、前記銀粒子の分散剤に反応性官能基[Y]を有するものを用いる場合、反応性官能基[Y]に対して反応性を有する反応性官能基[X]を有する樹脂が好ましい。前記反応性官能基[X]としては、例えば、アミノ基、アミド基、アルキロールアミド基、ケト基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等が挙げられる。また、プライマー層(B)を形成する化合物として、シルセスキオキサン化合物を用いることもできる。 When a resin having a reactive functional group [Y] is used as the dispersant for the silver particles, the resin forming the primer layer (B) is a reactive functional group having a reactivity with the reactive functional group [Y]. A resin having [X] is preferable. Examples of the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane. Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group. Further, as the compound forming the primer layer (B), a silsesquioxane compound can also be used.
 特に、前記分散剤中の反応性官能基[Y]が、塩基性窒素原子含有基の場合、前記絶縁性基材(A)上での導体回路層(M2)の密着性をより向上できることから、プライマー層(B)を形成する樹脂は、反応性官能基[X]として、ケト基、カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、アルキロールアミド基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基を有するものが好ましい。 In particular, when the reactive functional group [Y] in the dispersant is a basic nitrogen atom-containing group, the adhesion of the conductor circuit layer (M2) on the insulating base material (A) can be further improved. The resin forming the primer layer (B) has, as the reactive functional group [X], a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group, and the like. Those having a vinyl group, a (meth) acryloyl group and an allyl group are preferable.
 前記プライマー層(B)を形成する樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネートポリビニルアルコール、ポリビニルピロリドン等が挙げられる。なお、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂は、例えば、ウレタン樹脂存在下でアクリル単量体を重合することにより得られる。また、これらの樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like. The core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
 上記のプライマー層(B)を形成する樹脂の中でも、絶縁性基材(A)上への導体回路層(M2)の密着性をより向上できることから、加熱により還元性化合物を生成する樹脂が好ましい。前記還元性化合物としては、例えば、フェノール化合物、芳香族アミン化合物、硫黄化合物、リン酸化合物、アルデヒド化合物等が挙げられる。これらの還元性化合物の中でも、フェノール化合物、アルデヒド化合物が好ましい。 Among the resins forming the primer layer (B), a resin that produces a reducing compound by heating is preferable because the adhesion of the conductor circuit layer (M2) to the insulating substrate (A) can be further improved. .. Examples of the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
 加熱により還元性化合物を生成する樹脂をプライマーに用いた場合、プライマー層(B)を形成する際の加熱乾燥工程でホルムアルデヒド、フェノール等の還元性化合物を生成する。加熱により還元性化合物を生成する樹脂の具体例としては、例えば、N-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、尿素―ホルムアルデヒド-メタノール縮合物、尿素-メラミン-ホルムアルデヒド-メタノール縮合物、ポリN-アルコキシメチロール(メタ)アクリルアミド、ポリ(メタ)アクリルアミドのホルムアルデヒド付加物、メラミン樹脂等の加熱によりホルムアルデヒドを生成する樹脂;フェノール樹脂、フェノールブロックイソシアネート等の加熱によりフェノール化合物を生成する樹脂などが挙げられる。これらの樹脂の中でも、密着性向上の観点から、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、メラミン樹脂、フェノールブロックイソシアネートが好ましい。 When a resin that produces a reducing compound by heating is used as a primer, a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B). Specific examples of the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell. Core-shell type composite resin with a polymer polymer resin as the core, urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth) Examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like. Among these resins, from the viewpoint of improving adhesion, a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
 なお、本発明において、「(メタ)アクリルアミド」とは、「メタクリルアミド」及び「アクリルアミド」の一方又は両方をいい、「(メタ)アクリル酸」とは、「メタクリル酸」及び「アクリル酸」の一方又は両方をいう。 In the present invention, "(meth) acrylamide" refers to one or both of "methacrylamide" and "acrylamide", and "(meth) acrylic acid" refers to "methacrylic acid" and "acrylic acid". Refers to one or both.
 加熱により還元性化合物を生成する樹脂は、加熱により還元性化合物を生成する官能基を有する単量体をラジカル重合、アニオン重合、カチオン重合等の重合方法により重合することによって得られる。 The resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
 加熱により還元性化合物を生成する官能基を有する単量体としては、例えば、N-アルキロールビニル単量体が挙げられ、具体的には、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-エタノール(メタ)アクリルアミド、N-プロパノール(メタ)アクリルアミド等が挙げられる。 Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
 また、上記の加熱により還元性化合物を生成する樹脂を製造する際には、加熱により還元性化合物を生成する官能基を有する単量体等とともに、(メタ)アクリル酸アルキルエステルなどのその他の各種単量体を共重合することもできる。 In addition, when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used. The monomers can also be copolymerized.
 前記ブロックイソシアネートを、前記プライマー層(B)を形成する樹脂として用いた場合は、イソシアネート基間で自己反応することでウレトジオン結合を形成し、又は、イソシアネート基と、他の成分が有する官能基とが結合を形成することによって、プライマー層(B)を形成する。この際形成される結合は、前記銀粒子分散液を塗工する前に形成されていてもよいし、前記銀粒子分散液を塗工する前には形成されておらず、前記銀粒子分散液を塗工した後に加熱によって形成されてもよい。 When the blocked isocyanate is used as a resin for forming the primer layer (B), a uretdione bond is formed by self-reacting between the isocyanate groups, or an isocyanate group and a functional group possessed by another component are used. Form a bond to form a primer layer (B). The bond formed at this time may be formed before the silver particle dispersion liquid is applied, or is not formed before the silver particle dispersion liquid is applied, and the silver particle dispersion liquid is not formed. May be formed by heating after coating.
 前記ブロックイソシアネートとしては、イソシアネート基がブロック剤によって封鎖され形成した官能基を有するものが挙げられる。 Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
 前記ブロックイソシアネートは、ブロックイソシアネート1モルあたり、前記官能基を350~600g/molの範囲で有するものが好ましい。 The blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
 前記官能基は、密着性向上の観点から、前記ブロックイソシアネートの1分子中に1~10個有するものが好ましく、2~5個有するものがより好ましい。 From the viewpoint of improving adhesion, the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
 また、前記ブロックイソシアネートの数平均分子量は、密着性向上の観点から、1,500~5,000の範囲が好ましく、1,500~3,000の範囲がより好ましい。 The number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
 さらに、前記ブロックイソシアネートとしては、密着性をさらに向上する観点から、芳香環を有するものが好ましい。前記芳香環としては、フェニル基、ナフチル基等が挙げられる。 Further, as the blocked isocyanate, one having an aromatic ring is preferable from the viewpoint of further improving the adhesion. Examples of the aromatic ring include a phenyl group and a naphthyl group.
 なお、前記ブロックイソシアネートは、イソシアネート化合物が有するイソシアネート基の一部又は全部と、ブロック剤とを反応させることによって製造することができる。 The blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
 前記ブロックイソシアネートの原料となるイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香環を有するポリイソシアネート化合物;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネート化合物又は脂環式構造を有するポリイソシアネート化合物などが挙げられる。また、前記したポリイソシアネート化合物のそれらのビュレット体、イソシアヌレート体、アダクト体等も挙げられる。 Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like. Polyisocyanate compound having an aromatic ring; an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure. Examples include compounds. Moreover, those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
 また、前記イソシアネート化合物としては、上記で例示したポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物等とを反応させて得られるものも挙げられる。 Further, examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
 前記ブロックイソシアネートに芳香環を導入する場合、芳香環を有するポリイソシアネート化合物を用いることが好ましい。また、芳香環を有するポリイソシアネート化合物の中でも、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートのイソシアヌレート体、トリレンジイソシアネートのイソシアヌレート体が好ましい。 When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring. Among the polyisocyanate compounds having an aromatic ring, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
 前記ブロックイソシアネートの製造に用いるブロック化剤としては、例えば、フェノール、クレゾール等のフェノール化合物;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム化合物;ホルムアミドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム等のオキシム化合物;2-ヒドロキシピリジン、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ベンジルアルコール、メタノール、エタノール、n-ブタノール、イソブタノール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、ブチルメルカプタン、ドデシルメルカプタン、アセトアニリド、酢酸アミド、コハク酸イミド、マレイン酸イミド、イミダゾール、2-メチルイミダゾール、尿素、チオ尿素、エチレン尿素、ジフェニルアニリン、アニリン、カルバゾール、エチレンイミン、ポリエチレンイミン、1H-ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等が挙げられる。これらの中でも、70~200℃の範囲で加熱することによって解離してイソシアネート基を生成可能なブロック化剤が好ましく、110~180℃の範囲で加熱することによって解離するイソシアネート基を生成可能なブロック化剤がより好ましい。具体的には、フェノール化合物、ラクタム化合物、オキシム化合物が好ましく、特に、フェノール化合物は、ブロック化剤が加熱により脱離する際に還元性化合物となることからより好ましい。 Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ε-caprolactam, δ-valerolactam and γ-butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiourea, ethylene urea, diphenylaniline, aniline, carbazole, Examples thereof include ethyleneimine, polyethyleneimine, 1H-pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole and the like. Among these, a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable. Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
 前記ブロックイソシアネートの製造方法としては、例えば、予め製造した前記イソシアネート化合物と前記ブロック化剤とを混合し反応させる方法、前記イソシアネート化合物の製造に用いる原料とともに前記ブロック化剤を混合し反応させる方法等が挙げられる。 Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
 より具体的には、前記ブロックイソシアネートは、前記ポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物とを反応させることによって末端にイソシアネート基を有するイソシアネート化合物を製造し、次いで、前記イソシアネート化合物と前記ブロック化剤とを混合し反応させることによって製造することができる。 More specifically, the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
 上記の方法で得られたブロックイソシアネートの前記プライマー層(B)を形成する樹脂中の含有比率は、50~100質量%の範囲が好ましく、70~100質量%の範囲がより好ましい。 The content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
 前記メラミン樹脂としては、例えば、メラミン1モルに対してホルムアルデヒドが1~6モル付加したモノ又はポリメチロールメラミン;トリメトキシメチロールメラミン、トリブトキシメチロールメラミン、ヘキサメトキシメチロールメラミン等の(ポリ)メチロールメラミンのエーテル化物(エーテル化度は任意);尿素-メラミン-ホルムアルデヒド-メタノール縮合物などが挙げられる。 Examples of the melamine resin include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
 また、上記のように加熱により還元性化合物を生成する樹脂を用いる方法の他に、樹脂に還元性化合物を添加する方法も挙げられる。この場合に、添加する還元性化合物としては、例えば、フェノール系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン酸系酸化防止剤、ビタミンC、ビタミンE、エチレンジアミン四酢酸ナトリウム、亜硫酸塩、次亜燐酸、次亜燐酸塩、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、ジメチルアミンボラン、フェノール等が挙げられる。 Further, in addition to the method using a resin that produces a reducing compound by heating as described above, a method of adding a reducing compound to the resin can also be mentioned. In this case, examples of the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
 本発明において、樹脂に還元性化合物を添加する方法は、最終的に低分子量成分やイオン性化合物が残留することで電気特性が低下する可能性があるため、加熱により還元性化合物を生成する樹脂を用いる方法がより好ましい。 In the present invention, the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
 前記プライマー層(B)を形成するために用いるプライマーは、塗工性、成膜性の観点から、プライマー中に前記樹脂を1~70質量%含有するものが好ましく、1~20質量%含有するものがより好ましい。 The primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
 また、前記プライマーに使用可能な溶媒としては、各種有機溶剤、水性媒体が挙げられる。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、シクロヘキサノン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Further, examples of the solvent that can be used for the primer include various organic solvents and aqueous media. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like, and examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。 Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
 また、前記プライマー層(B)を形成する樹脂は、必要に応じて、例えば、アルコキシシリル基、シラノール基、水酸基、アミノ基等、架橋反応に寄与する官能基を有していてもよい。これらの官能基を利用して形成される架橋構造は、後工程の金属粒子を含有する金属層(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、金属粒子を含有する金属層(M1)を形成する工程以降で架橋構造を形成してもよい。金属粒子を含有する金属層(M1)を形成する工程以降で架橋構造を形成する場合、前記導体回路層(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成しておいてもよく、前記導体回路層(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 Further, the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary. The crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the metal layer (M1) containing the metal particles in the subsequent step, or the metal particles. The crosslinked structure may be formed after the step of forming the metal layer (M1) containing the above. When the crosslinked structure is formed after the step of forming the metal layer (M1) containing the metal particles, the crosslinked structure is formed on the primer layer (B) before the conductor circuit layer (M2) is formed. Alternatively, a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the conductor circuit layer (M2).
 前記プライマー層(B)には、必要に応じて、架橋剤をはじめ、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知のものを適宜添加して使用してもよい。 If necessary, a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
 前記架橋剤としては、例えば、金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩化合物、イソシアネート化合物等が挙げられ、25~100℃程度の比較的低温で反応し架橋構造を形成する熱架橋剤、メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、ブロックイソシアネート化合物等の100℃以上の比較的高温で反応し架橋構造を形成する熱架橋剤や各種光架橋剤が挙げられる。 Examples of the cross-linking agent include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure. Examples thereof include thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents.
 前記架橋剤の使用量は、種類によって異なるものの、基材上への導体回路層(M2)の密着性向上の観点から、前記プライマーに含まれる樹脂の合計100質量部に対して、0.01~60質量部の範囲が好ましく、0.1~10質量部の範囲がより好ましく、0.1~5質量部の範囲がさらに好ましい。 Although the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the conductor circuit layer (M2) on the substrate, it is 0.01 with respect to a total of 100 parts by mass of the resin contained in the primer. The range of about 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
 前記架橋剤を用いた場合、後工程の金属粒子を含有する金属層(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、金属粒子を含有する金属層(M1)を形成する工程以降で架橋構造を形成してもよい。金属粒子を含有する金属層(M1)を形成する工程以降で架橋構造を形成する場合、前記導体回路層(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成してもよく、前記導体回路層(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 When the cross-linking agent is used, the cross-linked structure may already be formed before the step of forming the metal layer (M1) containing the metal particles in the subsequent step, or the metal layer (M1) containing the metal particles may be already formed. ) May be formed or later. When the crosslinked structure is formed after the step of forming the metal layer (M1) containing the metal particles, the crosslinked structure may be formed on the primer layer (B) before the conductor circuit layer (M2) is formed. Often, a crosslinked structure may be formed in the primer layer (B) by, for example, aging after forming the conductor circuit layer (M2).
本発明のプリント配線板の製造方法の好ましい一様体は、前記、プライマー層(B)を形成する工程1の後に、プライマー層に剥離性のカバー層(RC)を形成する工程1aを有するものである。 A preferable uniform of the method for manufacturing a printed wiring board of the present invention includes the step 1a of forming a peelable cover layer (RC) on the primer layer after the step 1 of forming the primer layer (B). Is.
 前記剥離性カバー層(RC)は、前記プライマー層(B)上に積層することで、基材の両面を貫通する貫通孔を形成する工程2において、発生する有機物や無機物のゴミ(スミア)が、プライマー層(B)の表面に付着することを防ぐことができる。これらゴミの付着を防止することによって、後工程において、金属粒子を含有する金属層(M1)を、より良好形成することが可能である。 By laminating the peelable cover layer (RC) on the primer layer (B), dust (smear) of organic substances and inorganic substances generated in step 2 of forming through holes penetrating both sides of the base material is generated. , It is possible to prevent the primer layer (B) from adhering to the surface. By preventing the adhesion of these dusts, it is possible to better form the metal layer (M1) containing the metal particles in the subsequent step.
前記剥離性カバー層(RC)の素材としては、貫通孔を形成する際に、プライマー層(M1)を保護し、金属粒子層を形成する前に、容易に剥離する目的が達成される限り、特に制限はなく、市販の種々の樹脂フィルムを用いることができるが、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのフィルムを好適に用いることができる。 As the material of the peelable cover layer (RC), as long as the purpose of protecting the primer layer (M1) at the time of forming the through hole and easily peeling off before forming the metal particle layer is achieved. There are no particular restrictions, and various commercially available resin films can be used, but polyethylene, polypropylene, and polyethylene terephthalate films can be preferably used.
前記剥離性カバー層(RC)は、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等のフィルム上に、剥離性を向上させるためのシリコーン層を有しているものを用いても良い。 As the peelable cover layer (RC), one having a silicone layer for improving the peelability on a film such as polyethylene, polypropylene, or polyethylene terephthalate may be used.
 本発明で用いる剥離性カバー層(RC)の膜厚は、フィルムのハンドリング性、及び、前記銀粒子層(M1)の保護性、及び、基材への貫通孔形成の簡便さの観点から、10~100μmであることが好ましく、15~70μmであることがより好ましい。 The film thickness of the peelable cover layer (RC) used in the present invention is determined from the viewpoint of the handleability of the film, the protection of the silver particle layer (M1), and the ease of forming through holes in the substrate. It is preferably 10 to 100 μm, more preferably 15 to 70 μm.
 本発明で用いる剥離性カバー層(RC)は、前記プライマー層(M1)の塗工後、プライマー層(M1)上に積層することができる。例えば、ロールコーターでプライマー層(M1)を塗工する場合には、巻き取り時に剥離性カバー層(RC)を一緒に巻き取ることで積層することができる。 The peelable cover layer (RC) used in the present invention can be laminated on the primer layer (M1) after the primer layer (M1) is applied. For example, when the primer layer (M1) is coated with a roll coater, it can be laminated by winding the peelable cover layer (RC) together at the time of winding.
 本発明のプリント配線板の製造方法の工程2は、絶縁性基材(A)の両表面上に、前記プライマー層(B)が形成された基材、もしくは、絶縁性基材(A)の両表面上に、前記プライマー層(B)、および、剥離性カバー層(RC)が積層された基材に、両面を貫通するスルーホールを形成する工程である。 In step 2 of the method for manufacturing a printed wiring board of the present invention, the substrate on which the primer layer (B) is formed on both surfaces of the insulating substrate (A) or the insulating substrate (A). This is a step of forming through holes penetrating both sides of a substrate on which the primer layer (B) and the peelable cover layer (RC) are laminated on both surfaces.
 工程2において、これらの基材に前記スルーホールを形成する方法としては、公知慣用の方法を、適宜選択すれば良いが、例えば、ドリル加工、レーザー加工、レーザー加工と酸化剤、アルカリ性薬剤、酸性薬剤等を用いた絶縁性基材の薬剤エッチングを組み合わせた加工法などの方法が挙げられる。 In step 2, as a method for forming the through hole in these substrates, a known and commonly used method may be appropriately selected, and for example, drilling, laser processing, laser processing and oxidizing agent, alkaline agent, acidity. Examples thereof include a processing method that combines chemical etching of an insulating base material using a chemical or the like.
 前記穴開け加工で形成するスルーホールの孔径(直径)は、0.01~1mmの範囲が好ましく、0.02~0.5mmの範囲がより好ましく、0.03~0.1mmの範囲がさらに好ましい。 The hole diameter (diameter) of the through hole formed by the drilling process is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.5 mm, and further in the range of 0.03 to 0.1 mm. preferable.
 工程2において形成されるスルーホールの数は、特に制限はなく、製造するプリント配線板の用途に応じて適宜選択すれば良く、複数のスルーホールを形成する場合、前記スルーホールの孔径は、単一であっても良く、異なる径のものを含んでいても良い。 The number of through holes formed in step 2 is not particularly limited and may be appropriately selected depending on the intended use of the printed wiring board to be manufactured. When forming a plurality of through holes, the hole diameter of the through holes is simply small. It may be one or may include those having different diameters.
 孔開け加工時に発生する有機物や無機物のゴミ(スミア)が、スルーホール内に付着して、後述する両面の電気的接続を形成するめっき工程でめっき析出性の不良や、めっき密着性の低下、めっき外観を損なう原因となる可能性があるため、ゴミを除去すること(デスミア)が好ましい。デスミアの方法としては、例えば、プラズマ処理、逆スパッタ処理等の乾式処理、過マンガン酸カリウム等の酸化剤水溶液による洗浄処理、アルカリや酸の水溶液による洗浄処理、有機溶剤による洗浄処理等の湿式処理などが挙げられる。 Organic and inorganic dust (smear) generated during drilling adheres to the inside of the through hole to form an electrical connection on both sides, which will be described later. It is preferable to remove dust (desmia) because it may cause a deterioration in the appearance of the plating. Desmia methods include, for example, dry treatment such as plasma treatment and reverse sputtering treatment, cleaning treatment with an aqueous solution of an oxidizing agent such as potassium permanganate, cleaning treatment with an aqueous solution of alkali or acid, and wet treatment such as cleaning treatment with an organic solvent. And so on.
本発明のプリント配線板の製造方法において、前記、プライマー層(B)上に剥離性のカバー層(RC)を形成した場合には、工程2のスルーホール形成工程の後に、剥離性カバー層を剥離する工程2aを経る。工程2aにおける前記剥離性カバー層(RC)の剥離は、機械的に引き剥がせば良く、自動装置などを用いて剥離しても良い。
In the method for manufacturing a printed wiring board of the present invention, when the peelable cover layer (RC) is formed on the primer layer (B), the peelable cover layer is formed after the through hole forming step of step 2. It goes through the peeling step 2a. The peelable cover layer (RC) may be peeled off mechanically in step 2a, or may be peeled off using an automatic device or the like.
 本発明の工程3は、前記スルーホールを有する、前記絶縁性基材(A)上に形成されたプライマー層(B)上に、金属粒子を含有する金属層(M1)を形成する工程である。この金属層(M1)は、後述する工程5において、めっき法により導体回路層(M2)を形成する際のめっき下地層となる。 Step 3 of the present invention is a step of forming a metal layer (M1) containing metal particles on a primer layer (B) formed on the insulating base material (A) having the through holes. .. This metal layer (M1) serves as a plating base layer when the conductor circuit layer (M2) is formed by the plating method in step 5 described later.
前記金属層(M1)は、金属粒子を含有する層であり、層を構成する金属粒子としては、例えば、銀、金、白金、パラジウム、ルテニウム、スズ、銅、ニッケル、鉄、コバルト、チタン、インジウム、イリジウム等の金属粒子が挙げられる。これらの金属粒子は、1種で用いることも2種以上併用することもできる。また、後述するめっき工程において、前記金属層(M1)を無電解めっきのめっき下地層として用いた場合にめっき触媒としての活性が高いこと、前記金属層(M1)を電解めっきのめっき下地層として用いた場合に電気抵抗値が十分に低いこと、大気下で保存しても表面が酸化されにくいこと、比較的安価であること等から、前記金属粒子として銀粒子が好ましい。 The metal layer (M1) is a layer containing metal particles, and examples of the metal particles constituting the layer include silver, gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, and titanium. Examples include metal particles such as indium and iridium. These metal particles can be used alone or in combination of two or more. Further, in the plating step described later, when the metal layer (M1) is used as a plating base layer for electrolytic plating, the activity as a plating catalyst is high, and the metal layer (M1) is used as a plating base layer for electrolytic plating. Silver particles are preferable as the metal particles because the electric resistance value is sufficiently low when used, the surface is not easily oxidized even when stored in the atmosphere, and the metal particles are relatively inexpensive.
セミアディティブ工法を実施する場合には、金属層(M1)と導体回路層(M2)を異なる金属で構成することで、シード層エッチングの際に、導体回路層(M2)を損傷させずに、矩形で寸法精度の良い配線パターンを得ることができる。後述する様に、配線の導電性と経済性の観点から、導体回路層(M2)を銅で形成することが好ましく、シード層エッチングの際に、銅の導体回路層(M2)を損傷せず、エッチング除去性が高いことから、金属層を形成する金属粒子としては、銀粒子が特に好ましい。 When the semi-additive method is carried out, the metal layer (M1) and the conductor circuit layer (M2) are made of different metals so that the conductor circuit layer (M2) is not damaged during the seed layer etching. It is possible to obtain a wiring pattern that is rectangular and has good dimensional accuracy. As will be described later, from the viewpoint of wiring conductivity and economy, it is preferable to form the conductor circuit layer (M2) from copper, and the copper conductor circuit layer (M2) is not damaged during the seed layer etching. Silver particles are particularly preferable as the metal particles forming the metal layer because of their high etching removability.
 前記金属粒子として、複数種の金属粒子を用いる場合、主たる金属粒子以外に含有される金属粒子の割合は、前記金属層(M1)を形成可能であり、後述する工程5におけるめっきが問題なく実施できる限りは、特に制限はないが、めっき析出の均一性安定性の観点から、主たる金属種の粒子100質量部に対して、その他の金属種の粒子の含有量は5質量部以下が好ましく、2質量部以下がより好ましい。 When a plurality of types of metal particles are used as the metal particles, the metal layer (M1) can be formed in the proportion of the metal particles contained in addition to the main metal particles, and the plating in step 5 described later can be performed without any problem. As long as possible, there is no particular limitation, but from the viewpoint of uniformity and stability of plating precipitation, the content of particles of other metal species is preferably 5 parts by mass or less with respect to 100 parts by mass of particles of the main metal species. More preferably, it is 2 parts by mass or less.
 前記金属層(M1)を、前記プライマー層(B)上に形成する方法としては、例えば、前記プライマー層(B)上に、金属粒子分散液を塗工する方法が挙げられる。前記金属粒子分散液の塗工方法は、前記金属層(M1)が良好に形成できれば特に制限はなく、前記のプライマー層(B)の形成方法で用いたモノと同様の種々の塗工方法を、用いる絶縁性基材(A)の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的な塗工方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、凸版反転法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等が挙げられる。 Examples of the method for forming the metal layer (M1) on the primer layer (B) include a method of applying a metal particle dispersion liquid on the primer layer (B). The coating method of the metal particle dispersion liquid is not particularly limited as long as the metal layer (M1) can be formed satisfactorily, and various coating methods similar to those used in the primer layer (B) forming method can be used. , The shape, size, degree of flexibility and the like of the insulating base material (A) to be used may be appropriately selected. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method. Blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
 この際、前記金属層(M1)は、前記プライマー層(B)を両面に形成した絶縁性基材(A)の両面に同時形成してもよいし、前記プライマー層(B)を両面に形成した絶縁性基材(A)の片面に形成した後、他方の面に形成してもよい。 At this time, the metal layer (M1) may be simultaneously formed on both sides of the insulating base material (A) having the primer layer (B) formed on both sides, or the primer layer (B) may be formed on both sides. After forming on one side of the insulating base material (A), it may be formed on the other side.
 前記プライマー層(B)を両面に形成した絶縁性基材(A)に形成されたスルーホールの表面への金属層(M1)の形成は、上記のプライマー層(B)上への金属層(M1)形成と同時に行われる。プライマー層(B)上に、前記金属粒子分散液を塗工すると、分散液がスルーホール内に浸透し、スルーホール表面に金属粒子からなる金属層(M1)が形成される。 The formation of the metal layer (M1) on the surface of the through hole formed on the insulating base material (A) having the primer layer (B) formed on both sides thereof is the formation of the metal layer (M1) on the primer layer (B). M1) It is performed at the same time as the formation. When the metal particle dispersion liquid is applied onto the primer layer (B), the dispersion liquid permeates into the through hole, and a metal layer (M1) made of metal particles is formed on the surface of the through hole.
 前記プライマー層(B)は、金属粒子分散液の塗工性向上、工程5で形成する導体回路層(M2)の基材への密着性を向上させる目的で、金属粒子分散液を塗工する前に、表面処理を行ってもよい。前記プライマー層(B)の表面処理方法としては、表面の粗度が大きくなって、ファインピッチパターン形成性や粗面による信号伝送ロスが問題とならない限りは特に制限はなく、上述した、絶縁性基材(A)上にプライマー層(B)を形成するために挙げた種々の方法を適宜選択すればよい。このような表面処理方法としては、例えば、UV処理、気相オゾン処理、液層オゾン処理、コロナ処理、プラズマ処理、アルカリ処理、酸処理等が挙げられる。これらの表面処理方法は、1種の方法で行うことも2種以上の方法を併用することもできる。 The primer layer (B) is coated with a metal particle dispersion for the purpose of improving the coatability of the metal particle dispersion and improving the adhesion of the conductor circuit layer (M2) formed in step 5 to the substrate. Before that, surface treatment may be performed. The surface treatment method for the primer layer (B) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem. The various methods listed for forming the primer layer (B) on the substrate (A) may be appropriately selected. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment, alkali treatment, acid treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
 前記金属粒子分散液を前記プライマー層(B)上に塗工した後、塗工膜を乾燥・焼成することにより、金属粒子分散液に含まれる溶媒が揮発し、金属粒子同士が密着して接合することで、前記プライマー層(B)上に金属層(M1)が形成される。ここで、乾燥とは、主として、前記銀粒子の分散液から溶媒を揮発させるプロセスであり、焼成とは、主として銀粒子同士を接合させて導電性を発現させるプロセスを意味する。 After applying the metal particle dispersion liquid on the primer layer (B), the coating film is dried and fired to volatilize the solvent contained in the metal particle dispersion liquid, and the metal particles adhere to each other and are bonded to each other. By doing so, a metal layer (M1) is formed on the primer layer (B). Here, drying mainly means a process of volatilizing a solvent from the dispersion liquid of silver particles, and firing mainly means a process of bonding silver particles to each other to develop conductivity.
 上記の乾燥と焼成は、同時に行ってもよいし、塗工膜を一旦乾燥しておき、使用前に必要に応じて焼成を行ってもよい。乾燥の温度及び時間は、後述する前記銀粒子分散液に使用する溶媒の種類に応じて適宜選択すればよいが、20℃~250℃の範囲で、時間は1~200分の範囲が好ましい。また、焼成の温度及び時間は、所望とする導電性に応じて適宜選択すればよいが、温度は80~350℃の範囲で、時間は1~200分の範囲が好ましい。また、プライマー層(B)上に、密着性に優れた金属層(M1)を得るためには、前記焼成の温度を80~250℃の範囲にすることがより好ましい。 The above drying and firing may be performed at the same time, or the coating film may be dried once and then fired if necessary before use. The drying temperature and time may be appropriately selected depending on the type of solvent used in the silver particle dispersion liquid described later, but the temperature is preferably in the range of 20 ° C to 250 ° C and the time is preferably in the range of 1 to 200 minutes. The firing temperature and time may be appropriately selected according to the desired conductivity, but the temperature is preferably in the range of 80 to 350 ° C. and the time is preferably in the range of 1 to 200 minutes. Further, in order to obtain a metal layer (M1) having excellent adhesion on the primer layer (B), it is more preferable to set the firing temperature in the range of 80 to 250 ° C.
 上記の乾燥・焼成は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥・焼成は、大気中で行ってもよいし、窒素、アルゴン等の不活性ガスの置換雰囲気下、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying / baking may be performed by blowing air, or may not be blown in particular. Further, the drying / firing may be performed in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
 塗工膜の乾燥・焼成は、前記絶縁性基材(A)が、枚葉のフィルム、シート、板などの場合には、塗工場所での自然乾燥の他、送風、定温乾燥器などの乾燥器内で行うことができる。また、前記絶縁性基材(A)がロールフィルムやロールシートの場合には、塗工工程に続けて、設置された非加熱または加熱空間内でロール材を連続的に移動させることにより、乾燥・焼成を行うことができる。この際の乾燥・焼成の加熱方法としては、例えば、オーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ、光照射(フラッシュ照射装置)等を用いる方法が挙げられる。これらの加熱方法は、1種で用いることも2種以上併用することもできる。 When the insulating base material (A) is a single-leaf film, sheet, board, etc., the coating film is naturally dried at the coating site, blown air, a constant temperature dryer, etc. It can be done in a dryer. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in an installed non-heated or heated space following the coating process. -Can be fired. Examples of the heating method for drying / firing at this time include a method using an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, light irradiation (flash irradiation device), and the like. These heating methods can be used alone or in combination of two or more.
 前記金属層(M1)は、層中に80~99.9質量%の範囲で金属粒子を含有し、0.1~20質量%の範囲で、後述する分散剤成分を含有するものが好ましい。 The metal layer (M1) preferably contains metal particles in the range of 80 to 99.9% by mass and a dispersant component described later in the range of 0.1 to 20% by mass.
 前記金属層(M1)の厚さは、電気抵抗値をより低くでき、後述する工程3におけるより優れためっき下地層とすることができることから、30~500nmの範囲が好ましい。さらに、優れためっき下地層としつつ、工程4の除去工程における除去性をより向上できることから、40~200nmの範囲がより好ましい。後述する工程5のめっき法において、導電性のシード層として用いる場合には、前記金属層(M1)の厚さは、60~200nmであるこが好ましい The thickness of the metal layer (M1) is preferably in the range of 30 to 500 nm because the electric resistance value can be made lower and it can be a better plating base layer in step 3 described later. Further, the range of 40 to 200 nm is more preferable because the removability in the removal step of the step 4 can be further improved while providing an excellent plating base layer. When used as a conductive seed layer in the plating method of step 5 described later, the thickness of the metal layer (M1) is preferably 60 to 200 nm.
 前記金属層(M1)の厚さは、公知慣用の種々の方法によって見積もることができ、例えば、電子顕微鏡を用いた断面観察法や、蛍光X線による方法を用いることができるが、蛍光X線法を用いることが、簡便で好ましい。 The thickness of the metal layer (M1) can be estimated by various known and commonly used methods. For example, a cross-sectional observation method using an electron microscope or a method using fluorescent X-rays can be used, but fluorescent X-rays can be used. It is convenient and preferable to use the method.
 また、前記金属層(M1)を、工程5のめっき法において、電解めっきの導電性シードとして用いる場合の導電性としては、導電性が高い、すなわち電気抵抗値が低いほどよいが、電解めっきが実施できる導電性があればよく、本発明によって作製しようとするプリント配線板のサイズ、使用する電源装置、電極、めっき薬液に応じて適宜、選択すればよい。 Further, when the metal layer (M1) is used as a conductive seed for electrolytic plating in the plating method of step 5, the higher the conductivity, that is, the lower the electric resistance value, the better, but the electrolytic plating is It suffices as long as it has conductivity that can be carried out, and it may be appropriately selected according to the size of the printed wiring board to be produced according to the present invention, the power supply device to be used, the electrodes, and the plating chemical solution.
 前記金属層(M1)は、後述する工程5において電解めっきを実施する場合には、金属粒子同士が密着、接合しており導電性が高いものが好ましい。また、回路形成部の金属層(M1)は、金属粒子間の空隙が、導体回路層(M2)を構成するめっき金属によって充填されているものであってもよい。 When the metal layer (M1) is subjected to electrolytic plating in step 5 described later, it is preferable that the metal particles are in close contact with each other and are bonded to each other and have high conductivity. Further, the metal layer (M1) of the circuit forming portion may be one in which the voids between the metal particles are filled with the plated metal constituting the conductor circuit layer (M2).
 また、後述するレジスト層に活性光で回路パターンを露光する工程において、前記導電性金属層(M1)からの活性光の反射を抑制する目的で、前記金属層(M1)を形成でき、後述する工程5におけるめっきが問題なく実施でき、後述する工程6におけるエッチング除去性を確保できる範囲で、前記金属層(M1)中に前記活性光を吸収するグラファイトやカーボン、シアニン化合物、フタロシアニン化合物、ジチオール金属錯体、ナフトキノン化合物、ジインモニウム化合物、アゾ化合物等の光を吸収する顔料、又は色素を光吸収剤として含有させてもよい。これらの顔料や色素は、使用する前記活性光の波長に合わせて適宜選択すればよい。また、これらの顔料や色素は、1種で用いることも2種以上併用することもできる。さらに、前記金属層(M1)中にこれらの顔料や色素を含有されるためには、後述する銀粒子分散液にこれらの顔料や色素を配合すればよい。 Further, in the step of exposing the circuit pattern to the resist layer described later with active light, the metal layer (M1) can be formed for the purpose of suppressing reflection of the active light from the conductive metal layer (M1), which will be described later. Graphite, carbon, cyanine compound, phthalocyanine compound, dithiol metal that absorbs the active light in the metal layer (M1) as long as the plating in step 5 can be carried out without any problem and the etching removability in step 6 described later can be ensured. A light-absorbing pigment such as a complex, a naphthoquinone compound, a diimmonium compound, or an azo compound, or a dye may be contained as a light absorber. These pigments and dyes may be appropriately selected according to the wavelength of the active light to be used. Further, these pigments and dyes can be used alone or in combination of two or more. Further, in order to contain these pigments and dyes in the metal layer (M1), these pigments and dyes may be blended in the silver particle dispersion liquid described later.
 前記金属層(M1)を形成するために用いる金属粒子分散液は、金属粒子が溶媒中に分散したものである。前記金属粒子の形状としては、金属層(M1)を良好に形成するものであれば特に制限はなく、球状、レンズ状、多面体状、平板状、ロッド状、ワイヤー状など、種々の形状の銀粒子を用いることができる。これらの銀粒子は、単一形状の1種で用いることも、形状が異なる2種以上を併用することもできる。 The metal particle dispersion liquid used to form the metal layer (M1) is one in which metal particles are dispersed in a solvent. The shape of the metal particles is not particularly limited as long as it can form the metal layer (M1) well, and silver having various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire. Particles can be used. These silver particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
 前記金属粒子の形状が球状や多面体状である場合には、その平均粒子径が1~20,000nmの範囲のものが好ましい。また、微細な回路パターンを形成する場合には、金属層(M1)の均質性がより向上し、後述する工程6でのエッチング液による除去性もより向上できることから、その平均粒子径が1~200nmの範囲のものがより好ましく、1~50nmの範囲のものがさらに好ましい。なお、ナノメートルサイズの粒子に関する「平均粒子径」は、前記銀粒子を分散良溶媒で希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 When the shape of the metal particles is spherical or polyhedral, the average particle diameter thereof is preferably in the range of 1 to 20,000 nm. Further, when a fine circuit pattern is formed, the homogeneity of the metal layer (M1) is further improved, and the removability by the etching solution in step 6 described later can be further improved, so that the average particle size is 1 to 1. Those in the range of 200 nm are more preferable, and those in the range of 1 to 50 nm are further preferable. The "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the silver particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
 一方、金属粒子がレンズ状、ロッド状、ワイヤー状などの形状を有する場合には、その短径が1~200nmの範囲のものが好ましく、2~100nmの範囲のものがより好ましく、5~50nmの範囲のものがさらに好ましい。 On the other hand, when the metal particles have a shape such as a lens shape, a rod shape, or a wire shape, those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor axis in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
 前記金属層(M1)を形成するために用いる金属粒子分散液は、金属粒子を各種溶媒中に分散したものであり、その分散液中の金属粒子の粒径分布は、単分散で揃っていてもよく、また、上記の平均粒子径の範囲である粒子の混合物であってもよい。 The metal particle dispersion used to form the metal layer (M1) is one in which metal particles are dispersed in various solvents, and the particle size distribution of the metal particles in the dispersion is uniform in a single dispersion. It may also be a mixture of particles within the above average particle size range.
 前記金属粒子の分散液に用いる溶媒としては、水性媒体や有機溶剤を使用することができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水、及び、前記水と混和する有機溶剤との混合物が挙げられる。 As the solvent used for the dispersion liquid of the metal particles, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。
 また、有機溶剤単独で使用する場合の有機溶媒としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。
Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
In addition, examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
 前記アルコール溶剤又はエーテル溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol. , Tridecanol, Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Tripropylene Glycol Monomethyl Ether, Propylene Glycol Monopropyl Ether, Dipropylene Glycol Monopropyl Examples thereof include ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and tripropylene glycol monobutyl ether.
 前記ケトン溶剤としては、例えば、アセトン、シクロヘキサノン、メチルエチルケトン等が挙げられる。また、前記エステル溶剤としては、例えば、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等が挙げられる。さらに、その他の有機溶剤として、トルエン等の炭化水素溶剤、特に炭素原子数8以上の炭化水素溶剤が挙げられる。 Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like. Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like. Further, as another organic solvent, a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
 前記炭素原子数8以上の炭化水素溶剤としては、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤が挙げられ、他の溶媒と必要に応じて組み合わせて用いることができる。さらに、混合溶剤であるミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。 Examples of the hydrocarbon solvent having 8 or more carbon atoms include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
 前記溶媒は、金属粒子が安定に分散し、前記プライマー層(B)上に、前記金属層(M1)を良好に形成するものであれば特に制限はない。また、前記溶媒は、1種で用いることも2種以上併用することもできる。 The solvent is not particularly limited as long as the metal particles are stably dispersed and the metal layer (M1) is satisfactorily formed on the primer layer (B). Further, the solvent may be used alone or in combination of two or more.
 前記金属粒子分散液中の金属粒子の含有率は、上記の塗工方法に応じて最適な塗工適性を有する粘度になるように調整するが、0.5~90質量%の範囲が好ましく、1~60質量%の範囲がより好ましく、さらに2~10質量%の範囲がより好ましい。 The content of the metal particles in the metal particle dispersion is adjusted so as to have a viscosity having optimum coating suitability according to the above coating method, but is preferably in the range of 0.5 to 90% by mass. The range of 1 to 60% by mass is more preferable, and the range of 2 to 10% by mass is more preferable.
 前記金属粒子分散液は、前記金属粒子が、前記の各種溶媒媒中で凝集、融合、沈殿することなく、長期間の分散安定性を保つことが好ましく、金属粒子を前記の各種溶媒中に分散させるための分散剤を含有することが好ましい。このような分散剤としては、金属粒子に配位する官能基を有する分散剤が好ましく、例えば、カルボキシル基、アミノ基、シアノ基、アセトアセチル基、リン原子含有基、チオール基、チオシアナト基、グリシナト基等の官能基を有する分散剤が挙げられる。 In the metal particle dispersion liquid, it is preferable that the metal particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time, and the metal particles are dispersed in the various solvents. It is preferable to contain a dispersant for causing the reaction. As such a dispersant, a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, a thiosianato group, and a glycinato. Dispersants having a functional group such as a group can be mentioned.
 前記分散剤としては、市販、もしくは独自に合成した低分子量、又は高分子量の分散剤を用いることができ、金属粒子を分散する溶媒や、金属粒子の分散液を塗工する前記絶縁性基材(A)の種類など、目的に応じて適宜選択すればよい。例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが好適に用いられる。前記プライマー層(B)上での金属層(M1)の密着性が良好になることから、前記プライマー層(B)に用いる樹脂が有する反応性官能基[X]と結合を形成しうる反応性官能基[Y]を有する化合物を用いること特に好ましい。 As the dispersant, a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating base material to which a solvent for dispersing metal particles or a dispersion liquid of metal particles is applied is applied. It may be appropriately selected according to the purpose such as the type of (A). For example, dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; A polycyclic hydrocarbon compound having a carboxyl group of the above is preferably used. Since the adhesion of the metal layer (M1) on the primer layer (B) is improved, the reactivity capable of forming a bond with the reactive functional group [X] of the resin used for the primer layer (B). It is particularly preferable to use a compound having a functional group [Y].
 反応性官能基[Y]を有する化合物としては、例えば、アミノ基、アミド基、アルキロールアミド基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等を有する化合物、シルセスキオキサン化合物等が挙げられる。特に、プライマー層(B)と金属層(M1)との密着性をより向上できることから、前記反応性官能基[Y]は塩基性窒素原子含有基が好ましい。前記塩基性窒素原子含有基としては、例えば、イミノ基、1級アミノ基、2級アミノ基等が挙げられる。 Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like. In particular, the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the metal layer (M1) can be further improved. Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
 前記塩基性窒素原子含有基は、分散剤1分子中に単数、もしくは複数存在してもよい。分散剤中に複数の塩基性窒素原子を含有することで、塩基性窒素原子含有基の一部は、銀粒子との相互作用により、銀粒子の分散安定性に寄与し、残りの塩基性窒素原子含有基は、前記絶縁性基材(A)との密着性向上に寄与する。また、前記プライマー層(B)に反応性官能基[X]を有する樹脂を用いた場合には、分散剤中の塩基性窒素原子含有基は、この反応性官能基[X]との間で結合が形成でき、前記絶縁性基材(A)上への後述する導体回路層(M2)の密着性をより一層向上できるため好ましい。 The basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the silver particles by interacting with the silver particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B), the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X] and the resin. It is preferable because a bond can be formed and the adhesion of the conductor circuit layer (M2) described later on the insulating base material (A) can be further improved.
 前記分散剤は、金属粒子の分散液の安定性、塗工性、及び、前記絶縁性基材(A)上に良好な密着性を示す金属層(M1)を形成できることから、分散剤は、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物などが好ましい。 Since the dispersant can form a metal layer (M1) that exhibits stability, coatability, and good adhesion on the insulating base material (A), the dispersant can be used as a dispersant. A polymer dispersant is preferable, and as the polymer dispersant, polyalkyleneimines such as polyethyleneimine and polypropyleneimine, and compounds in which polyoxyalkylene is added to the polyalkyleneimine are preferable.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、ポリエチレンイミンとポリオキシアルキレンとが、直鎖状で結合したものであってもよく、前記ポリエチレンイミンからなる主鎖に対して、その側鎖にポリオキシアルキレンがグラフトしたものであってもよい。 The compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain composed of the polyethyleneimine. The chain may be grafted with polyoxyalkylene.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物の具体例としては、例えば、ポリエチレンイミンとポリオキシエチレンとのブロック共重合体、ポリエチレンイミンの主鎖中に存在するイミノ基の一部にエチレンオキサイドを付加反応させてポリオキシエチレン構造を導入したもの、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させたもの等が挙げられる。 Specific examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine. Examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
 前記ポリアルキレンイミンの市販品としては、株式会社日本触媒製の「エポミン(登録商標)PAOシリーズ」の「PAO2006W」、「PAO306」、「PAO318」、「PAO718」等が挙げられる。 Examples of the commercially available product of the polyalkyleneimine include "PAO2006W", "PAO306", "PAO318" and "PAO718" of "Epomin (registered trademark) PAO series" manufactured by Nippon Shokubai Co., Ltd.
 前記ポリアルキレンイミンの数平均分子量は、3,000~30,000の範囲が好ましい。 The number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
 前記金属粒子を分散させるために必要な前記分散剤の使用量は、前記銀粒子100質量部に対し、0.01~50質量部の範囲が好ましく、また、前記絶縁性基材(A)上、もしくは、後述するプライマー層(B)上に、良好な密着性を示す金属層(M1)を形成できることから、前記金属粒子100質量部に対し、0.1~10質量部の範囲が好ましく、さらに、工程5において、前記金属層(M1)を導電性シードとして使用する場合には、前記金属層(M1)の導電性を向上できることから、0.1~5質量部の範囲がより好ましい。 The amount of the dispersant required to disperse the metal particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the silver particles, and is on the insulating substrate (A). Alternatively, since a metal layer (M1) exhibiting good adhesion can be formed on the primer layer (B) described later, a range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the metal particles. Further, when the metal layer (M1) is used as a conductive seed in step 5, the range of 0.1 to 5 parts by mass is more preferable because the conductivity of the metal layer (M1) can be improved.
 前記金属粒子の分散液の製造方法としては、特に制限はなく、種々の方法を用いて製造できるが、例えば、低真空ガス中蒸発法などの気相法を用いて製造した金属粒子を、溶媒中に分散させてもよいし、液相で金属化合物を還元して直接金属粒子の分散液を調製してもよい。気相、液相法とも、適宜、必要に応じて、溶媒交換や溶媒添加により、製造時の分散液と塗工時の分散液の溶剤組成を変更することが可能である。気相、液相法のうち、分散液の安定性や製造工程の簡便さから、液相法を特に好適に用いることができる。液相法としては、例えば、前記高分子分散剤の存在下で金属イオンを還元することによって製造することができる。 The method for producing the dispersion liquid of the metal particles is not particularly limited and can be produced by using various methods. For example, the metal particles produced by a vapor phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the metal compound may be reduced in the liquid phase to directly prepare a dispersion of metal particles. In both the gas phase and the liquid phase methods, the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent. Of the gas phase and liquid phase methods, the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process. As a liquid phase method, for example, it can be produced by reducing metal ions in the presence of the polymer dispersant.
 前記金属粒子の分散液には、さらに必要に応じて、界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤などの有機化合物を配合してもよい。 If necessary, the dispersion liquid of the metal particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
 前記界面活性剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等のノニオン系界面活性剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルホン酸ナトリウム塩等のアニオン系界面活性剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系界面活性剤などが挙げられる。 Examples of the surfactant include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer. Surfactants; fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates Anionic surfactants such as salts; cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
 前記レベリング剤としては、一般的なレベリング剤を使用することができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
 前記粘度調整剤としては、一般的な増粘剤を使用することができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体、合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトール等が挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used. Examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
 前記成膜助剤としては、一般的な成膜助剤を使用することができ、例えば、ジオクチルスルホコハク酸エステルソーダ塩等アニオン系界面活性剤、ソルビタンモノオレエート等の疎水性ノニオン系界面活性剤、ポリエーテル変性シロキサン、シリコーンオイルなどが挙げられる。 As the film-forming auxiliary, a general film-forming auxiliary can be used. For example, an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used. , Polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を使用することができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the defoaming agent, a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
 前記防腐剤としては、一般的な防腐剤を使用することができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
 本発明の工程4においては、前記金属層(M1)上に回路形成部のレジストが除去されたパターンレジストを形成する。パターンレジストの形成方法としては、特に制限はなく、公知の方法で行うことができ、前記金属層(M1)上に液体の感光性レジストを塗工、乾燥するか、感光性ドライフィルムレジストを、ラミネーターを用いて、前記金属層(M1)が形成された基材に加熱圧着することによって、レジスト層を形成する。前記金属層(M1)の表面は、レジスト形成前に、レジスト層との密着性向上を目的として、酸性又はアルカリ性の洗浄液による洗浄処理、コロナ処理、プラズマ処理、UV処理、気相オゾン処理、液相オゾン処理、表面処理剤による処理等の表面処理を行ってもよい。これらの表面処理は、1種の方法で行うことも2種以上の方法を併用することもできる。 In step 4 of the present invention, a pattern resist from which the resist of the circuit forming portion is removed is formed on the metal layer (M1). The method for forming the pattern resist is not particularly limited and can be carried out by a known method. A liquid photosensitive resist is applied and dried on the metal layer (M1), or a photosensitive dry film resist is used. A resist layer is formed by heat-pressing the base material on which the metal layer (M1) is formed using a laminator. Before forming the resist, the surface of the metal layer (M1) is subjected to cleaning treatment with an acidic or alkaline cleaning liquid, corona treatment, plasma treatment, UV treatment, vapor phase ozone treatment, liquid for the purpose of improving adhesion with the resist layer. Surface treatment such as phase ozone treatment and treatment with a surface treatment agent may be performed. These surface treatments can be performed by one method or by using two or more methods in combination.
 前記の表面処理剤による処理としては、例えば、特開平7-258870号公報に記載されている、トリアゾール系化合物、シランカップリング剤および有機酸からなる防錆剤を用いて処理する方法、特開2000-286546号公報に記載されている、有機酸、ベンゾトリアゾール系防錆剤およびシランカップリング剤を用いて処理する方法、特開2002-363189号公報に記載されている、トリアゾールやチアジアゾール等の含窒素複素環と、トリメトキシシリル基やトリエトキシシリル基等のシリル基が、チオエーテル(スルフィド)結合等を有する有機基を介して結合された構造の物質を用いて処理する方法、WO2013/186941号公報に記載されている、トリアジン環とアミノ基を有するシラン化合物を用いて処理する方法、特開2015-214743号公報に記載されている、ホルミルイミダゾール化合物と、アミノプロピルシラン化合物とを反応させて得られるイミダゾールシラン化合物を用いて処理する方法、特開2016-134454号公報に記載されているアゾールシラン化合物を用いて処理する方法、特開2017-203073号公報に記載されている、一分子中にアミノ基および芳香環を有する芳香族化合物と2以上のカルボキシル基を有する多塩基酸、ならびにハロゲン化物イオンを含む溶液で処理する方法、特開2018-16865号公報に記載されているトリアゾールシラン化合物を含有する表面処理剤で処理する方法、などを用いることができる。 As the treatment with the above-mentioned surface treatment agent, for example, a method described in JP-A-7-258870, a method of treatment using a rust preventive agent composed of a triazole-based compound, a silane coupling agent and an organic acid, JP-A. A method for treating with an organic acid, a benzotriazole-based rust preventive agent and a silane coupling agent described in Japanese Patent Application Laid-Open No. 2000-286546, and triazole, thiadiazol and the like described in JP-A-2002-363189. A method for treating a nitrogen-containing heterocycle and a silyl group such as a trimethoxysilyl group or a triethoxysilyl group using a substance having a structure bonded via an organic group having a thioether (sulfide) bond or the like, WO2013 / 186941. A method for treating with a silane compound having a triazole ring and an amino group described in Japanese Patent Application Laid-Open No. 2015-214743, a formyl imidazole compound described in Japanese Patent Application Laid-Open No. 2015-214743 is reacted with an aminopropylsilane compound. The method for treating with the imidazole silane compound obtained in the above, the method for treating with the azole silane compound described in JP-A-2016-134454, the single molecule described in JP-A-2017-203073. A method for treating with a solution containing an aromatic compound having an amino group and an aromatic ring, a polybasic acid having two or more carboxyl groups, and a halide ion, triazolesilane described in JP-A-2018-16865. A method of treating with a surface treatment agent containing a compound, or the like can be used.
 次に、前記金属層(M1)上に形成されたレジスト層にフォトマスクを通すか、ダイレクト露光機を用いて、活性光で回路パターンを露光する。露光量は、必要に応じて適宜設定すればよい。露光によりレジスト層に形成された潜像を、現像液を用いて除去することによって、パターンレジストを形成する。 Next, the circuit pattern is exposed with active light by passing a photomask through the resist layer formed on the metal layer (M1) or using a direct exposure machine. The exposure amount may be appropriately set as needed. A pattern resist is formed by removing the latent image formed on the resist layer by exposure with a developing solution.
 前記現像液としては、炭酸ナトリウム、炭酸カリウム等の水溶液が挙げられる。また、上記で露光した基材を、現像液に浸漬するか、現像液をスプレー等でレジスト上に噴霧することにより現像を行ない、この現像によって、回路形成部が除去されたパターンレジストを形成できる。 Examples of the developer include aqueous solutions such as sodium carbonate and potassium carbonate. Further, the substrate exposed above is immersed in a developing solution or developed by spraying the developing solution onto a resist, and by this development, a pattern resist from which the circuit forming portion is removed can be formed. ..
 パターンレジストを形成する際には、さらに、プラズマによるデスカム処理や、市販のレジスト残渣除去剤を用いて、硬化レジストと基板との境界部分に生じた裾引き部分や基板表面に残存したレジスト付着物などのレジスト残渣を除去してもよい。 When forming the pattern resist, further, using plasma descam treatment or a commercially available resist residue removing agent, a resist deposit remaining on the hemming portion formed at the boundary portion between the cured resist and the substrate and the surface of the substrate. The resist residue such as may be removed.
 本発明でパターンレジストを形成するために用いるレジストとしては、市販の種々のレジスト材料を用いることができ、目的とするパターンの解像度、使用する露光機の種類等によって適宜選択すればよく、市販のレジストインキ、液体レジスト、ドライフィルムレジストを用いることができ、目的とするパターンの解像度、使用する露光機の種類、後工程のめっき処理で用いる薬液の種類、pH等によって適宜選択すればよい。 As the resist used for forming the pattern resist in the present invention, various commercially available resist materials can be used, and a commercially available resist may be appropriately selected depending on the resolution of the target pattern, the type of the exposure machine to be used, and the like. A resist ink, a liquid resist, or a dry film resist can be used, and may be appropriately selected depending on the resolution of the target pattern, the type of the exposure machine to be used, the type of the chemical solution used in the plating treatment in the subsequent step, the pH, and the like.
 市販のレジストインキとしては、例えば、太陽インキ製造株式会社製の「めっきレジストMA-830」、「エッチングレジストX-87」;NAZDAR社のエッチングレジスト、めっきレジスト;互応化学工業株式会社製の「エッチングレジスト PLAS FINE PER」シリーズ、「めっきレジスト PLAS FINE PPR」シリーズ等が挙げられる。また、電着レジストとしては、例えば、ダウ・ケミカル・カンパニー社の「イーグルシリーズ」、「ペパーシリーズ」等が挙げられる。さらに、市販のドライフィルムとしては、例えば、日立化成株式会社製の「フォテック」シリーズ;ニッコーマテリアルズ株式会社製の「ALPHO」シリーズ;旭化成株式会社製の「サンフォート」シリーズ、デュポン社製の「リストン」シリーズ等が挙げられる。 Examples of commercially available resist inks include "plating resist MA-830" and "etching resist X-87" manufactured by Taiyo Ink Mfg. Co., Ltd .; etching resist and plating resist manufactured by NAZDAR Co., Ltd .; "etching" manufactured by Mutual Chemical Industry Co., Ltd. Examples include the "resist PLAS FINE PER" series and the "plating resist PLAS FINE PPR" series. Examples of the electrodeposition resist include "Eagle series" and "Pepper series" manufactured by Dow Chemical Company. Further, as commercially available dry films, for example, "Fotech" series manufactured by Hitachi Kasei Co., Ltd .; "ALPHO" series manufactured by Nikko Materials Co., Ltd .; "Sunfort" series manufactured by Asahi Kasei Co., Ltd., and "Sunfort" series manufactured by DuPont Co., Ltd. Liston "series and the like.
 中性~酸性のめっき液を用いる場合には、ドライフィルムレジストを用いることが簡便で、特に微細回路を形成する場合には、セミアディティブ工法用のドライフィルムを用いればよい。この目的に用いる市販のドライフィルムとしては、例えば、ニッコーマテリアルズ株式会社製の「ALFO LDF500」、「NIT2700」;旭化成株式会社製の「サンフォート UFG―258」;日立化成株式会社製の「RDシリーズ(RD-2015、1225)」、「RYシリーズ(RY-5319、5325)」、デュポン社製の「PlateMasterシリーズ(PM200、300)」等が挙げられる。 When using a neutral to acidic plating solution, it is convenient to use a dry film resist, and particularly when forming a fine circuit, a dry film for the semi-additive method may be used. Commercially available dry films used for this purpose include, for example, "ALFO LDF500" and "NIT2700" manufactured by Nikko Materials Co., Ltd .; "Sunfort UFG-258" manufactured by Asahi Kasei Co., Ltd .; "RD" manufactured by Hitachi Kasei Co., Ltd. Examples include the series (RD-2015, 1225), the RY series (RY-5319, 5325), and the PlateMaster series manufactured by DuPont (PM200, 300).
 また、無電解銅めっき液等のアルカリ性のめっき液を用いる場合には、溶剤溶解剥離タイプのレジストを用いるか、アルカリ剥離タイプのレジストを、レジストが剥離しないpH、温度領域で用いてもよい。 When an alkaline plating solution such as a non-electrolytic copper plating solution is used, a solvent-dissolving peeling type resist may be used, or an alkaline peeling type resist may be used in a pH and temperature range in which the resist does not peel off.
 本発明の工程5においては、上記のようにして、現像により露出した導電性金属層(M1)の上に、めっき処理を行うことにより、導体回路層(M2)を形成する。 In step 5 of the present invention, the conductor circuit layer (M2) is formed by performing a plating treatment on the conductive metal layer (M1) exposed by development as described above.
 上記のめっき法による処理としては、前記金属粒子を含有する金属層(M1)をめっき触媒とした無電解めっき、もしくは、無電解めっきと電解めっきの組み合わせ、電解めっきが挙げられる。 Examples of the treatment by the above plating method include electroless plating using the metal layer (M1) containing the metal particles as a plating catalyst, or a combination of electroless plating and electrolytic plating, and electrolytic plating.
 前記導体回路層(M2)を無電解めっきで形成する場合、めっき金属としては、例えば、銅、ニッケル、クロム、コバルト、コバルト-タングステン、コバルトータングステン-ホウ素、スズ等が挙げられる。これらの金属の中でも、電気抵抗値が低いことから、銅が好ましい。また、本発明においては、無電解めっきの後に電解めっきを行うことで前記導体回路層(M2)を形成することもできる。電解めっきを併用すると、めっき析出速度を大きくすることができるため、製造効率が高くなり有利である。 When the conductor circuit layer (M2) is formed by electroless plating, examples of the plating metal include copper, nickel, chromium, cobalt, cobalt-tungsten, cobalt-tungsten-boron, and tin. Among these metals, copper is preferable because of its low electrical resistance. Further, in the present invention, the conductor circuit layer (M2) can be formed by performing electrolytic plating after electroless plating. When electrolytic plating is used in combination, the plating precipitation rate can be increased, which is advantageous because the production efficiency is high.
 上記工程5において、無電解めっきと電解めっきを併用して前記導体回路層(M2)を形成する場合、無電解めっきと電解めっきの析出金属は、同じであっても、異なっていてもよい。例えば、無電解銅めっき後に電解銅めっき、無電解ニッケルめっき後に電解銅めっき、無電解ニッケルめっき後に電解ニッケルめっき、無電解コバルトめっき後に電解銅めっき等の組み合わせが挙げられる。前記導体回路層(M2)を形成する主金属としては、電気抵抗値が低いことから、銅が好ましい。また、無電解銅めっきに無電解ニッケルめっき、無電解コバルトめっき等を組み合わせると、銅の基材への拡散を抑制できることから、プリント配線板の長期信頼性を向上でき好ましい。 When the conductor circuit layer (M2) is formed by using electroless plating and electrolytic plating in combination in the above step 5, the deposited metals of the electroless plating and the electrolytic plating may be the same or different. For example, a combination of electroless copper plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic copper plating, electroless nickel plating followed by electrolytic nickel plating, electroless cobalt plating followed by electrolytic copper plating, and the like can be mentioned. As the main metal forming the conductor circuit layer (M2), copper is preferable because the electric resistance value is low. Further, it is preferable to combine electroless copper plating with electroless nickel plating, electroless cobalt plating and the like because the diffusion of copper to the base material can be suppressed and the long-term reliability of the printed wiring board can be improved.
 また、無電解めっきと電解めっきを併用して前記導体回路層(M2)を形成する場合、無電解めっき層の厚さは、必要に応じて適宜選択すればよいが、電解めっきを適切に行うための導電性を確保できることから、0.1μm以上が好ましく、0.15μm以上がより好ましい。
Further, when the conductor circuit layer (M2) is formed by using electrolytic plating and electrolytic plating in combination, the thickness of the electrolytic plating layer may be appropriately selected as necessary, but electrolytic plating is appropriately performed. Therefore, 0.1 μm or more is preferable, and 0.15 μm or more is more preferable, because the conductivity for this can be secured.
 上記工程5において、電解めっきにより導体回路層(M2)を形成する際に、前記導体回路層(M2)を形成する主金属としては、電気抵抗値が低いことから、銅が好ましい。 Copper is preferable as the main metal for forming the conductor circuit layer (M2) when the conductor circuit layer (M2) is formed by electrolytic plating in the above step 5 because the electric resistance value is low.
 また、工程5において用いるめっき法のうち、金属層(M1)が導電性を有し、電解めっき法を用いて導体回路層(M2)を形成する方法が、生産効率の観点から特に好ましい。 Further, among the plating methods used in step 5, the method in which the metal layer (M1) has conductivity and the conductor circuit layer (M2) is formed by using the electrolytic plating method is particularly preferable from the viewpoint of production efficiency.
 本発明のプリント配線板の製造方法においては、めっき膜の応力緩和や密着力向上を目的として、めっき後にアニーリングを行ってもよい。アニーリングは、後述する工程6のシードエッチングの前に行ってもよいし、エッチングの後に行ってもよく、エッチングの前後で行ってもよい。 In the method for manufacturing a printed wiring board of the present invention, annealing may be performed after plating for the purpose of stress relaxation and improvement of adhesion of the plating film. Annealing may be performed before the seed etching in step 6 described later, after the etching, or before or after the etching.
 アニーリングの温度は、用いる基材の耐熱性や使用目的によって40~300℃の温度範囲で適宜選択すればよいが、40~250℃の範囲が好ましく、めっき膜の酸化劣化を抑制する目的から、40~200℃の範囲がより好ましい。また、アニーリングの時間は、40~200℃の温度範囲の場合には、10分~10日間、200℃を超える温度でのアニーリングは、5分~10時間程度がよい。また、めっき膜をアニーリングする際には、適宜、めっき膜表面に防錆剤を付与してもよい。 The annealing temperature may be appropriately selected in the temperature range of 40 to 300 ° C. depending on the heat resistance of the substrate to be used and the purpose of use, but is preferably in the range of 40 to 250 ° C. for the purpose of suppressing oxidative deterioration of the plating film. The range of 40 to 200 ° C. is more preferable. The annealing time is preferably 10 minutes to 10 days in the temperature range of 40 to 200 ° C., and 5 minutes to 10 hours in the case of a temperature exceeding 200 ° C. Further, when annealing the plating film, a rust preventive may be appropriately applied to the surface of the plating film.
 本発明の工程6においては、パターンレジストを剥離し、非回路形成部の金属層(M1)をエッチング液により除去する。パターンレジストの剥離は、使用するレジストのカタログ、仕様書等に記載されている推奨条件で行えばよい。また、パターンレジストの剥離の際に用いるレジスト剥離液としては、市販のレジスト剥離液や、45~60℃に設定した水酸化ナトリウムもしくは水酸化カリウムの1.5~3質量%水溶液を用いることができる。レジストの剥離は、前記導体回路層(M2)を形成した基材を、剥離液に浸漬するか、剥離液をスプレー等で噴霧することによって行うことができる。 In step 6 of the present invention, the pattern resist is peeled off, and the metal layer (M1) of the non-circuit forming portion is removed by an etching solution. The pattern resist may be peeled off under the recommended conditions described in the catalog, specifications, etc. of the resist to be used. As the resist stripping solution used for stripping the pattern resist, a commercially available resist stripping solution or a 1.5 to 3% by mass aqueous solution of sodium hydroxide or potassium hydroxide set at 45 to 60 ° C. may be used. can. The resist can be peeled off by immersing the substrate on which the conductor circuit layer (M2) is formed in a stripping solution or by spraying the stripping solution with a spray or the like.
 また、非回路形成部の金属層(M1)を除去する際に用いるエッチング液は、前記導電性金属層(M1)のみを選択的にエッチングし、前記導体回路層(M2)はエッチングしないものが好ましい。ここで、前記金属層(M1)として、銀粒子を含有する金属層(M1)を用いた場合には、銀を溶解する速度の高いエッチング液が好ましい。このようなエッチング液の組成としては、例えば、希硝酸、カルボン酸と過酸化水素との混合物、アンモニア水と過酸化水素との混合物、塩酸、塩酸と硝酸との混合物、硫酸と硝酸との混合物、硫酸と硝酸と有機酸(例えば酢酸等)との混合物、リン酸と硝酸と有機酸(例えば酢酸等)との混合物等が挙げられる。 Further, the etching solution used for removing the metal layer (M1) of the non-circuit forming portion selectively etches only the conductive metal layer (M1) and does not etch the conductor circuit layer (M2). preferable. Here, when a metal layer (M1) containing silver particles is used as the metal layer (M1), an etching solution having a high rate of dissolving silver is preferable. The composition of such an etching solution includes, for example, dilute nitric acid, a mixture of carboxylic acid and hydrogen peroxide, a mixture of aqueous ammonia and hydrogen peroxide, hydrochloric acid, a mixture of hydrochloric acid and nitric acid, and a mixture of sulfuric acid and nitric acid. , A mixture of sulfuric acid, nitric acid and an organic acid (for example, acetic acid), a mixture of phosphoric acid, nitric acid and an organic acid (for example, acetic acid), and the like.
 前記導体回路層(M2)を構成する金属として銅を用いる場合は、本発明の工程6において、非回路形成部の導電性金属層(M1)を除去する際、銅はできるだけエッチングせず、金属層(M1)のみを効率よく除去することができるエッチング液が好ましい。金属層(M1)を構成する金属粒子が銀粒子である場合、エッチング液としては、カルボン酸と過酸化水素との混合物が挙げられる。 When copper is used as the metal constituting the conductor circuit layer (M2), the copper is not etched as much as possible when the conductive metal layer (M1) of the non-circuit forming portion is removed in step 6 of the present invention, and the metal is used. An etching solution capable of efficiently removing only the layer (M1) is preferable. When the metal particles constituting the metal layer (M1) are silver particles, examples of the etching solution include a mixture of a carboxylic acid and hydrogen hydrogen.
 前記カルボン酸としては、例えば、酢酸、蟻酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、シュウ酸、マロン酸、コハク酸、安息香酸、サリチル酸、フタル酸、イソフタル酸、テレフタル酸、没食子酸、メリト酸、ケイ皮酸、ピルビン酸、乳酸、リンゴ酸、クエン酸、フマル酸、マレイン酸、アコニット酸、グルタル酸、アジピン酸、アミノ酸等が挙げられる。これらのカルボン酸は、1種で用いることも2種以上併用することもできる。これらのカルボン酸の中でも、エッチング液としての製造、取り扱いが容易であることから、主として酢酸を用いることが好ましい。 Examples of the carboxylic acid include acetic acid, formic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margalic acid and stearic acid. Oleic acid, linoleic acid, linolenic acid, arachidonic acid, eikosapentaenoic acid, docosahexaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, salicylic acid, phthalic acid, isophthalic acid, terephthalic acid, gallic acid, melitonic acid, coconut skin Examples thereof include acids, pyruvate, lactic acid, malic acid, citric acid, fumaric acid, maleic acid, aconitic acid, glutaric acid, adipic acid, amino acids and the like. These carboxylic acids can be used alone or in combination of two or more. Among these carboxylic acids, it is preferable to mainly use acetic acid because it is easy to manufacture and handle as an etching solution.
 エッチング液として、カルボン酸と過酸化水素との混合物を用いると、過酸化水素がカルボン酸と反応することによって、過カルボン酸(ぺルオキシカルボン酸)が生成すると考えられる。生成した過カルボン酸は、導体回路層(M2)を構成する銅の溶解を抑制しながら、導電性金属層(M1)を構成する銀を優先的に溶解するものと推測される。 When a mixture of carboxylic acid and hydrogen peroxide is used as the etching solution, it is considered that a percarboxylic acid (peroxycarboxylic acid) is produced by the reaction of hydrogen peroxide with the carboxylic acid. It is presumed that the generated percarboxylic acid preferentially dissolves silver constituting the conductive metal layer (M1) while suppressing dissolution of copper constituting the conductor circuit layer (M2).
 前記カルボン酸と過酸化水素との混合物の混合割合としては、導体回路層(M2)の溶解を抑制できることから、カルボン酸1モルに対して、過酸化水素を2~100モルの範囲が好ましく、過酸化水素2~50モルの範囲がより好ましい。 The mixing ratio of the mixture of the carboxylic acid and hydrogen peroxide is preferably in the range of 2 to 100 mol of hydrogen peroxide with respect to 1 mol of the carboxylic acid because the dissolution of the conductor circuit layer (M2) can be suppressed. The range of 2 to 50 mol of hydrogen peroxide is more preferable.
 前記カルボン酸と過酸化水素との混合物は、水で希釈された水溶液が好ましい。また、前記水溶液中の前記カルボン酸と過酸化水素との混合物の含有比率は、エッチング液の温度上昇の影響を抑制できることから、2~65質量%の範囲が好ましく、2~30質量%の範囲がより好ましい。 The mixture of the carboxylic acid and hydrogen peroxide is preferably an aqueous solution diluted with water. Further, the content ratio of the mixture of the carboxylic acid and hydrogen peroxide in the aqueous solution is preferably in the range of 2 to 65% by mass and preferably in the range of 2 to 30% by mass because the influence of the temperature rise of the etching solution can be suppressed. Is more preferable.
 上記の希釈に用いる水としては、イオン交換水、純水、超純水等のイオン性物質や不純物を除去した水を用いることが好ましい。 As the water used for the above dilution, it is preferable to use water from which ionic substances and impurities such as ion-exchanged water, pure water, and ultrapure water have been removed.
 前記エッチング液には、前記導体回路層(M2)を保護して、溶解を抑制するための保護剤をさらに添加してもよい。前記導体回路層(M2)を電解銅めっき層とする場合、保護剤として、アゾール化合物を用いることが好ましい。 A protective agent for protecting the conductor circuit layer (M2) and suppressing dissolution may be further added to the etching solution. When the conductor circuit layer (M2) is an electrolytic copper plating layer, it is preferable to use an azole compound as a protective agent.
 前記アゾール化合物としては、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキソゾール、チアゾール、セレナゾール、オキサジアゾール、チアジアゾール、オキサトリアゾール、チアトリアゾール等が挙げられる。 Examples of the azole compound include imidazole, pyrazole, triazole, tetrazole, oxozole, thiazole, selenazole, oxadiazole, thiadiazole, oxatriazole, and thiatriazole.
 前記アゾール化合物の具体例としては、例えば、2-メチルベンゾイミダゾール、アミノトリアゾール、1,2,3-ベンゾトリアゾール、4-アミノベンゾトリアゾール、1-ビスアミノメチルベンゾトリアゾール、アミノテトラゾール、フェニルテトラゾール、2-フェニルチアゾール、ベンゾチアゾール等が挙げられる。これらのアゾール化合物は、1種で用いることも2種以上併用することもできる。 Specific examples of the azole compound include, for example, 2-methylbenzimidazole, aminotriazole, 1,2,3-benzotriazole, 4-aminobenzotriazole, 1-bisaminomethylbenzotriazole, aminotetrazole, phenyltetrazole, 2 -Phenylthiazole, benzothiazole and the like can be mentioned. These azole compounds may be used alone or in combination of two or more.
 前記アゾール化合物のエッチング液中の濃度は、0.001~2質量%の範囲が好ましく、0.01~0.2質量%の範囲がより好ましい。 The concentration of the azole compound in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 0.2% by mass.
 また、前記エッチング液には、前記導体回路層(M2)が銅めっき層である場合、電解銅めっき層の溶解を抑制できることから、保護剤として、ポリアルキレングリコールを添加することが好ましい。 Further, when the conductor circuit layer (M2) is a copper plating layer, it is preferable to add polyalkylene glycol as a protective agent to the etching solution because the dissolution of the electrolytic copper plating layer can be suppressed.
 前記ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレンブロックコポリマー等の水溶性ポリマーなどが挙げられる。これらの中でも、ポリエチレングリコールが好ましい。また、ポリアルキレングリコールの数平均分子量としては、200~20,000の範囲が好ましい。 Examples of the polyalkylene glycol include water-soluble polymers such as polyethylene glycol, polypropylene glycol, and polyoxyethylene polyoxypropylene block copolymer. Among these, polyethylene glycol is preferable. The number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 20,000.
 前記ポリアルキレングリコールのエッチング液中の濃度は、0.001~2質量%の範囲が好ましく、0.01~1質量%の範囲がより好ましい。 The concentration of the polyalkylene glycol in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 1% by mass.
 前記エッチング液には、pHの変動を抑制するため、有機酸のナトリウム塩、カリウム塩、アンモニウム塩等の添加剤を必要に応じて配合してもよい。 Additives such as sodium salt, potassium salt and ammonium salt of organic acid may be added to the etching solution as necessary in order to suppress fluctuations in pH.
 本発明の工程6における非回路形成部の金属層(M1)の除去は、前記導体回路層(M2)を形成した後、レジストを剥離した基材を前記エッチング液に浸漬するか、前記基材上にエッチング液をスプレー等で噴霧することによって行うことができる。 To remove the metal layer (M1) of the non-circuit forming portion in step 6 of the present invention, after forming the conductor circuit layer (M2), the base material from which the resist has been peeled off is immersed in the etching solution, or the base material is used. This can be done by spraying the etching solution on the top with a spray or the like.
 エッチング装置を用いて、非回路形成部の金属層(M1)を除去する場合には、例えば、前記エッチング液の全成分を所定の組成になるように調製した後、エッチング装置に供給してもよく、前記エッチング液の各成分を個別にエッチング装置に供給し、装置内で、前記各成分を混合して、所定の組成になるように調製してもよい。 When the metal layer (M1) of the non-circuit forming portion is removed by using an etching apparatus, for example, all the components of the etching solution may be prepared to have a predetermined composition and then supplied to the etching apparatus. Often, each component of the etching solution may be individually supplied to an etching apparatus, and the respective components may be mixed in the apparatus to prepare a predetermined composition.
 前記エッチング液は、10~35℃の温度範囲で用いることが好ましく、特に過酸化水素を含有するエッチング液を使用する場合には、過酸化水素の分解を抑制できることから、30℃以下の温度範囲で用いることが好ましい。 The etching solution is preferably used in a temperature range of 10 to 35 ° C., and particularly when an etching solution containing hydrogen peroxide is used, decomposition of hydrogen peroxide can be suppressed, so that the temperature range is 30 ° C. or lower. It is preferable to use in.
 本発明の製造方法で得られたプリント配線板は、適宜、必要に応じて、回路パターン上へのソルダーレジスト層の形成、及び、導体回路層(M2)の最終表面処理として、ニッケル/金めっき、ニッケル/パラジウム/金めっき、パラジウム/金めっきなどを施してもよい。 The printed wiring board obtained by the manufacturing method of the present invention is plated with nickel / gold as necessary for forming a solder resist layer on a circuit pattern and for final surface treatment of the conductor circuit layer (M2). , Nickel / palladium / gold plating, palladium / gold plating, etc. may be applied.
 本発明の絶縁性基材上に回路パターンを有するプリント配線板は、剥離強度を測定することにより密着性の高低を確認することができる。剥離強度は、導体回路層である15μm厚の銅めっき層の5mm幅のストライプパターンについて、90°方向の剥離試験を行って剥離強度を測定した。 The printed wiring board having a circuit pattern on the insulating base material of the present invention can be confirmed to have high or low adhesion by measuring the peel strength. The peel strength was measured by performing a peel test in the 90 ° direction on a 5 mm wide stripe pattern of a 15 μm thick copper plating layer which is a conductor circuit layer.
 以上に述べた本発明のプリント配線板の製造方法により、真空装置を用いることなく、種々の平滑基材上に、両面接続された、密着性の高い、良好な矩形断面形状の回路配線を有する配線板を製造することが可能である。したがって、本発明の製造方法を用いることで、種々の形状、サイズの高密度、高性能のプリント配線板用基板、プリント配線板を、低コストで、良好に提供することができ、プリント配線板分野における産業上の利用性が高い。また、本発明の製造方法により、プリント配線板のみならず、基材表面にパターン化された金属層を有する種々の部材、例えば、コネクター、電磁波シールド、RFIDなどのアンテナ、フィルムコンデンサーなども製造できる。 According to the method for manufacturing a printed wiring board of the present invention described above, it is possible to have circuit wiring having a good rectangular cross-sectional shape, which is connected on both sides and has high adhesion, on various smooth substrates without using a vacuum device. It is possible to manufacture a wiring board. Therefore, by using the manufacturing method of the present invention, it is possible to provide a high-density, high-performance printed wiring board board and a printed wiring board of various shapes and sizes at low cost and satisfactorily. High industrial utility in the field. Further, according to the manufacturing method of the present invention, not only a printed wiring board but also various members having a patterned metal layer on the surface of a base material, such as a connector, an electromagnetic wave shield, an antenna such as RFID, and a film capacitor can be manufactured. ..
 以下、実施例により本発明を詳細に説明する。以下の実施例および比較例において、「部」および「%」は、いずれも質量基準である。 Hereinafter, the present invention will be described in detail by way of examples. In the following examples and comparative examples, "part" and "%" are both based on mass.
[製造例1:プライマー(B-1)の製造]
 温度計、窒素ガス導入管、撹拌機を備えた反応容器中で窒素ガスを導入しながら、テレフタル酸830質量部、イソフタル酸830質量部、1,6-ヘキサンジオール685質量部、ネオペンチルグリコール604質量部及びジブチル錫オキサイド0.5質量部を仕込み、180~230℃で酸価が1以下になるまで230℃で15時間重縮合反応を行い、水酸基価55.9、酸価0.2のポリエステルポリオールを得た。
[Production Example 1: Production of Primer (B-1)]
While introducing nitrogen gas in a reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 685 parts by mass of 1,6-hexanediol, and neopentyl glycol 604. A part by mass and 0.5 part by mass of dibutyltin oxide were charged, and a polycondensation reaction was carried out at 230 ° C. for 15 hours until the acid value became 1 or less at 180 to 230 ° C., and the hydroxyl value was 55.9 and the acid value was 0.2. A polyester polyol was obtained.
 上記のポリエステルポリオール1000質量部を減圧下100℃で脱水し、80℃まで冷却した後、メチルエチルケトン883質量部を加え十分撹拌、溶解し、2,2-ジメチロールプロピオン酸80質量部を加え、次いでイソホロンジイソシアネート244質量部を加えて70℃で8時間反応させた。 After dehydrating 1000 parts by mass of the above polyester polyol at 100 ° C. under reduced pressure and cooling to 80 ° C., 883 parts by mass of methyl ethyl ketone is added, and the mixture is sufficiently stirred and dissolved. 244 parts by mass of isophorone diisocyanate was added and reacted at 70 ° C. for 8 hours.
 前記反応終了後、40℃まで冷却し、トリエチルアミン60質量部加えて中和した後、水4700質量部と混合し透明な反応生成物を得た。 After completion of the reaction, the mixture was cooled to 40 ° C., neutralized by adding 60 parts by mass of triethylamine, and then mixed with 4700 parts by mass of water to obtain a transparent reaction product.
 前記反応生成物から、40~60℃の減圧下でメチルエチルケトンを除去し、次いで、
水を混合することで、不揮発分10質量%、重量平均分子量50000のプライマー(B
-1)を得た。
Methyl ethyl ketone is removed from the reaction product under reduced pressure at 40-60 ° C. and then
By mixing water, a primer with a non-volatile content of 10% by mass and a weight average molecular weight of 50,000 (B)
-1) was obtained.
[製造例2:プライマー(B-2)の製造]
 温度計、冷却管、分留管、攪拌器を取り付けたフラスコに、フェノール750質量部、メラミン75質量部、41.5質量%ホルマリン346質量部、及びトリエチルアミン1.5質量部を加え、発熱に注意しながら100℃まで昇温した。還流下100℃にて2時間反応させた後、常圧下にて水を除去しながら180℃まで2時間かけて昇温した。次いで、減圧下で未反応のフェノールを除去し、アミノトリアジン変性ノボラック樹脂を得た。水酸基当量は120g/当量であった。
 上記で得られたアミノトリアジンノボラック樹脂65質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)35質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー組成物(B-2)を得た。
[Production Example 2: Production of Primer (B-2)]
Add 750 parts by mass of phenol, 75 parts by mass of melamine, 346 parts by mass of 41.5% by mass of formalin, and 1.5 parts by mass of triethylamine to a flask equipped with a thermometer, a cooling tube, a fractionation tube, and a stirrer to generate heat. The temperature was raised to 100 ° C. with caution. After reacting at 100 ° C. under reflux for 2 hours, the temperature was raised to 180 ° C. over 2 hours while removing water under normal pressure. Then, the unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin. The hydroxyl group equivalent was 120 g / equivalent.
After mixing 65 parts by mass of the aminotriazine novolak resin obtained above and 35 parts by mass of an epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent), with methyl ethyl ketone. A primer composition (B-2) was obtained by diluting and mixing so that the non-volatile content was 2% by mass.
[調製例1:銀粒子分散液の調製]
 エチレングリコール45質量部及びイオン交換水55質量部の混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径30nmの銀粒子を分散させることによって、銀粒子及び分散剤を含有する分散体を調製した。次いで、得られた分散体に、イオン交換水、エタノール及び界面活性剤を添加して、5質量%の銀粒子分散液を調製した。
[Preparation Example 1: Preparation of silver particle dispersion]
Silver particles and dispersion by dispersing silver particles having an average particle size of 30 nm in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water using a compound obtained by adding polyoxyethylene to polyethyleneimine as a dispersant. A dispersion containing the agent was prepared. Next, ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
[調製例2:銀用エッチング液(1)の調製]
 水47.4質量部に、酢酸2.6質量部を加え、さらに、35質量%過酸化水素水50質量部を加えて、銀用エッチング液(1)を調製した。この銀用エッチング液(1)の過酸化水素とカルボン酸とのモル比(過酸化水素/カルボン酸)は13.6であり、銀用エッチング液(1)中の過酸化水素及びカルボン酸の混合物の含有比率は22.4質量%であった。
[Preparation Example 2: Preparation of Etching Solution for Silver (1)]
2.6 parts by mass of acetic acid was added to 47.4 parts by mass of water, and 50 parts by mass of 35% by mass hydrogen peroxide solution was further added to prepare an etching solution for silver (1). The molar ratio (hydrogen / carboxylic acid) of hydrogen hydrogen and carboxylic acid in this etching solution for silver (1) is 13.6, and the hydrogen peroxide and carboxylic acid in the etching solution for silver (1) The content ratio of the mixture was 22.4% by mass.
[剥離強度の測定]
 下記実施例1、2及び比較例1、2において、導体回路層である15μm厚の銅めっき層の5mm幅のストライプパターンについて、西進商事株式会社製「マルチボンドテスター SS-30WD」を用いて、90°方向の剥離試験を行って剥離強度を測定した。
[Measurement of peel strength]
In Examples 1 and 2 and Comparative Examples 1 and 2 below, a 5 mm wide stripe pattern of a 15 μm thick copper plating layer, which is a conductor circuit layer, was used with a “multi-bond tester SS-30WD” manufactured by Seishin Shoji Co., Ltd. A peeling test in the 90 ° direction was performed to measure the peeling strength.
(実施例1)
 PETフィルム(東レ株式会社製「ルミラー#100 U48」;厚さ100μm)の表面に、製造例1で得られたプライマー(B-1)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の平均厚さが600nmとなるように塗工した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、PETフィルムの表面にプライマー層を形成した。次に、PETフィルムを裏返し、上記と同様にして、プライマー(B-1)を塗工し、乾燥することによって、PETフィルムの両面にプライマー層を形成した。
(Example 1)
On the surface of a PET film ("Lumirror # 100 U48" manufactured by Toray Industries, Inc .; thickness 100 μm), the primer (B-1) obtained in Production Example 1 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd.). Using a K-printing prober ”), coating was performed so that the average thickness after drying was 600 nm. Then, a primer layer was formed on the surface of the PET film by drying at 120 ° C. for 5 minutes using a hot air dryer. Next, the PET film was turned inside out, a primer (B-1) was applied in the same manner as above, and the film was dried to form primer layers on both sides of the PET film.
 次に、配線長100mm、インピーダンス50Ωのマイクロストリップラインの伝送特性評価端子における裏面ベタGNDへの接続位置に、ドリルを用いて100μm径のスルーホールを形成した。次いで、この形成されたプライマー層の上に調製例1で得られた銀粒子分散体を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の平均厚さが50nmとなる様に塗工した。次いで、熱風乾燥機を用いて120℃で5分間乾燥することによって、プライマー層上に銀粒子からなる金属層を形成した。このフィルムを裏返し、上記と同様にして、銀粒子からなる金属層を形成した。 Next, a through hole having a diameter of 100 μm was formed at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of the microstrip line having a wiring length of 100 mm and an impedance of 50 Ω. Next, the silver particle dispersion obtained in Preparation Example 1 was dried on the formed primer layer using a desktop compact coater (“K printing loafer” manufactured by RK Print Coat Instrument). The coating was applied so that the average thickness was 50 nm. Then, a metal layer composed of silver particles was formed on the primer layer by drying at 120 ° C. for 5 minutes using a hot air dryer. The film was turned inside out to form a metal layer made of silver particles in the same manner as above.
 この様にして得られたプライマー層、及び銀粒子からなる金属層を両面に有するPETフィルムに、ドライフィルムレジスト(日立化成株式会社製「フォテックRD-1225」;レジスト膜厚25μm)を、ロールラミネーターを用いて100℃で圧着し、続いて、ダイレクト露光デジタルイメージング装置(オルボッテク社製「Nuvogo1000R」)を用いて、レジスト上に配線長100mm、インピーダンス50Ωのマイクロストリップラインパターン及び、測定プローブ用のGNDに接続するスルーホール部の端子パッドパターン、及び、剥離試験用の5mm幅、10mm長さのストライプパターンを露光した。次いで、1質量%炭酸ナトリウム水溶液を用いて現像を行うことによって、銀粒子層からなる金属層(M1)上にマイクロストリップラインパターン、及びプローブ端子パッド部、さらにストライプパターンが除去されたパターンレジストを形成し、PETフィルム上の銀粒子層(M1)を露出させた。 A dry film resist (“Fotech RD-1225” manufactured by Hitachi Chemical Co., Ltd .; resist film thickness 25 μm) is applied to a PET film having a primer layer and a metal layer composed of silver particles on both sides, as a roll laminator. Then, using a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec), a microstrip line pattern with a wiring length of 100 mm and an impedance of 50 Ω and a GND for a measurement probe were used on the resist. The terminal pad pattern of the through hole portion connected to the above and the stripe pattern having a width of 5 mm and a length of 10 mm for a peeling test were exposed. Next, by developing with a 1 mass% sodium carbonate aqueous solution, a microstrip line pattern, a probe terminal pad portion, and a pattern resist from which the stripe pattern has been removed are formed on a metal layer (M1) made of a silver particle layer. It was formed and the silver particle layer (M1) on the PET film was exposed.
 続いて、得られたフィルムを、無電解銅めっき液(ローム・アンド・ハース電子材料株式会社製「サーキュポジット6550」)中に35℃で、10分間浸漬し、露出した銀粒子からなる金属層表面に無電解銅めっき膜(厚さ0.2μm)を形成した。無電解銅めっき処理された両面にテスターのプローブを接触させて導通を確認することで、スルーホールを通じて両面が電気的に接続されていることを確認した。 Subsequently, the obtained film was immersed in an electroless copper plating solution (“Circuposit 6550” manufactured by Roam & Haas Electronic Materials Co., Ltd.) at 35 ° C. for 10 minutes to expose a metal layer composed of silver particles. An electroless copper plating film (thickness 0.2 μm) was formed on the surface. By contacting the probe of the tester on both sides treated with electroless copper plating and checking the continuity, it was confirmed that both sides were electrically connected through the through holes.
無電解銅めっきされた表面をカソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dm2で41分間電解めっきを行うことによって、レジストの除去されたマイクロストリップパターン及びプローブ端子パッド部、及びストライプパターンに電解銅めっきによる18μm厚の回路パターンの導電回路層(M2)を形成した。次いで、銅による金属パターンの形成されたフィルムを、50℃に設定した3質量%の水酸化ナトリウム水溶液に浸漬することによって、パターンレジストを剥離した。 An electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion 50 mg / L, additive (rom)) is installed on the cathode with a copper-free copper-plated surface and has phosphorus-containing copper as an anode. -The microstrip pattern and probe terminal pad from which the resist was removed by electrolytic plating for 41 minutes at a current density of 2 A / dm2 using Copper Grim ST-901 ") manufactured by And Haas Electronics Co., Ltd. A conductive circuit layer (M2) having a circuit pattern with a thickness of 18 μm was formed on the stripe pattern by electrolytic copper plating. Next, the film on which the metal pattern was formed by copper was put into a 3% by mass sodium hydroxide aqueous solution set at 50 ° C. The pattern resist was peeled off by immersion.
 次いで、調製例3で得られた銀用エッチング液に、上記で得られたフィルムを、25℃で30秒間浸漬することで、導電層パターン以外の銀粒子層を除去し、プリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブ端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の導体回路層(M2)であった。
 ストライプパターンを用いた剥離強度試験の結果、剥離強度は、0.67kN/mであった。
Next, the film obtained above was immersed in the etching solution for silver obtained in Preparation Example 3 at 25 ° C. for 30 seconds to remove the silver particle layer other than the conductive layer pattern, and a printed wiring board was obtained. rice field. The cross-sectional shape of the circuit forming part (microstrip line and probe terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a conductor circuit layer (M2) on the surface.
As a result of the peel strength test using the stripe pattern, the peel strength was 0.67 kN / m.
(実施例2)
ポリイミドフィルム(株式会社 カネカ製「アピカル 25NPI」、厚さ25μm)の表面に、製造例2で得られたプライマー(B-2)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の厚さが150nmとなるように塗工し、次いで、熱風乾燥機を用いて160℃で5分間乾燥した、さらに、フィルムを裏返して、上記と同様にして製造例1で得られたプライマー(B-1)を乾燥後の厚さが160nmとなるように塗工し、熱風乾燥機を用いて160℃で5分間乾燥することによって、ポリイミドフィルムの両表面にプライマー層を形成した。このフィルムの両面に、剥離性カバー層(RC)として、38μm厚のポリエステル製再剥離性粘着テープ(パナック株式会社製、パナプロテクトHP/CT)をラミネートし、絶縁性基材(A)であるポリイミドフィルムの両表面上に、プライマー層(B)、及び、剥離性カバー層(RC)が順次積層された積層体を作製した。
(Example 2)
On the surface of a polyimide film ("Apical 25NPI" manufactured by Kaneka Co., Ltd., thickness 25 μm), the primer (B-2) obtained in Production Example 2 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd. "K Printing". The film was coated with a prober ”) to a thickness of 150 nm after drying, and then dried at 160 ° C. for 5 minutes using a hot air dryer. Further, the film was turned over and the same as above was performed. The primer (B-1) obtained in Production Example 1 was coated so that the thickness after drying was 160 nm, and dried at 160 ° C. for 5 minutes using a hot air dryer to obtain both polyimide films. A primer layer was formed on the surface. A 38 μm-thick polyester removable adhesive tape (Panaprotect HP / CT, manufactured by Panac Co., Ltd.) is laminated on both sides of this film as a peelable cover layer (RC) to form an insulating base material (A). A laminated body in which a primer layer (B) and a peelable cover layer (RC) were sequentially laminated on both surfaces of a polyimide film was produced.
 次いで、得られた積層体表面に、配線長100mm、インピーダンス50Ωのマイクロストリップラインの伝送特性評価端子における裏面ベタGNDへの接続位置に、レーザーを用いて50μm径のスルーホールを形成し、剥離性カバー層(RC)を機械的に剥離した。
 スルーホールの形成されたプライマー層の上に調製例1で得られた銀粒子分散体を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の平均厚さが80nmとなる様に塗工した。次いで、熱風乾燥機を用いて180℃で5分間乾燥することによって、プライマー層上に銀粒子からなる導電性の金属層(M1)を形成した。このフィルムを裏返し、上記と同様にして、銀粒子からなる導電性の金属層(M1)を形成した。このフィルムの両表面にテスターのプローブを接触させることで、両面の導通を確認し、基材に形成されたスルーホールを通じ、銀粒子からなる導電性の金属層(M1)により、両面の電気的接続が確保されていることを確認した。
Next, a through hole having a diameter of 50 μm was formed on the surface of the obtained laminate at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of the microstrip line having a wiring length of 100 mm and an impedance of 50 Ω, and the peelability was achieved. The cover layer (RC) was mechanically peeled off.
The silver particle dispersion obtained in Preparation Example 1 was dried on a primer layer having through holes formed by using a small desktop coater (“K Printing Loafer” manufactured by RK Print Coat Instrument). The coating was applied so that the average thickness was 80 nm. Then, by drying at 180 ° C. for 5 minutes using a hot air dryer, a conductive metal layer (M1) composed of silver particles was formed on the primer layer. This film was turned inside out to form a conductive metal layer (M1) composed of silver particles in the same manner as described above. By contacting the probes of the tester on both surfaces of this film, continuity on both sides is confirmed, and through the through holes formed in the base material, the conductive metal layer (M1) made of silver particles makes both sides electrical. Confirmed that the connection is secured.
 この様にして得られたプライマー層、及び、銀粒子からなる導電性金属層(M1)を両面に有し、両面導通が確保されたポリイミドフィルムに、ドライフィルムレジスト(日立化成株式会社製「フォテックRD-1225」;レジスト膜厚25μm)を、ロールラミネーターを用いて100℃で圧着し、続いて、ダイレクト露光デジタルイメージング装置(オルボッテク社製「Nuvogo1000R」)を用いて、レジスト上に配線長100mm、インピーダンス50Ωのマイクロストリップラインパターン及び、測定プローブ用のGNDに接続するスルーホール部の端子パッドパターン及び、剥離試験用の5mm幅、10mm長さのストライプパターンを露光した。次いで、1質量%炭酸ナトリウム水溶液を用いて現像を行うことによって、銀粒子層からなる金属層(M1)上にマイクロストリップラインパターン、及びプローブ端子パッド部、さらにストライプパターンが除去されたパターンレジストを形成し、ポリイミドフィルム上の銀粒子からなる導電性の金属層(M1)を露出させた。 A polyimide film having a primer layer thus obtained and a conductive metal layer (M1) composed of silver particles on both sides and ensuring double-sided conduction is used as a dry film resist (Hitachi Kasei Co., Ltd. RD-1225 ”; resist film thickness 25 μm) was crimped at 100 ° C. using a roll laminator, followed by a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec) on the resist with a wiring length of 100 mm. A microstrip line pattern having an impedance of 50 Ω, a terminal pad pattern of a through hole connected to the GND for a measurement probe, and a stripe pattern having a width of 5 mm and a length of 10 mm for a peeling test were exposed. Next, by developing with a 1 mass% sodium carbonate aqueous solution, a microstrip line pattern, a probe terminal pad portion, and a pattern resist from which the stripe pattern has been removed are formed on a metal layer (M1) made of a silver particle layer. It was formed and a conductive metal layer (M1) composed of silver particles on a polyimide film was exposed.
 金属層(M1)表面をカソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dm2で41分間電解めっきを行うことによって、レジストの除去されたマイクロストリップパターン及びプローブ端子パッド部、ストライプパターン部に電解銅めっきによる18μm厚の回路パターンの導電回路層(M2)を形成した。次いで、銅による金属パターンの形成されたフィルムを、50℃に設定した3質量%の水酸化ナトリウム水溶液に浸漬することによって、パターンレジストを剥離した。 An electrolytic plating solution (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion 50 mg / L, chlorine ion 50 mg / L, rom. Copper Grim ST-901 ") manufactured by And Haas Electronic Materials Co., Ltd. was used to perform electrolytic plating at a current density of 2 A / dm2 for 41 minutes to remove the resist from the microstrip pattern, probe terminal pad, and stripe pattern. A conductive circuit layer (M2) having a circuit pattern with a thickness of 18 μm was formed in the portion by electrolytic copper plating. Next, a film having a metal pattern formed of copper was immersed in a 3% by mass sodium hydroxide aqueous solution set at 50 ° C. By doing so, the pattern resist was peeled off.
 次いで、調製例3で得られた銀用エッチング液に、上記で得られたフィルムを、25℃で30秒間浸漬することで、導電層パターン以外の銀粒子層を除去し、プリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブ端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の導体回路層(M2)であった。
 ストライプパターンを用いた剥離強度測定の結果、剥離強度は、0.85kN/mであった。
Next, the film obtained above was immersed in the etching solution for silver obtained in Preparation Example 3 at 25 ° C. for 30 seconds to remove the silver particle layer other than the conductive layer pattern, and a printed wiring board was obtained. rice field. The cross-sectional shape of the circuit forming part (microstrip line and probe terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a conductor circuit layer (M2) on the surface.
As a result of the peel strength measurement using the stripe pattern, the peel strength was 0.85 kN / m.
(比較例1)
 プライマー層を形成しない以外は、実施例1と同様にして、マイクロストリップラインパターン、及び、ストライプパターンを有するPET基材のプリント配線板を作製した。
剥離試験の結果、剥離強度は、0.4kN/mであった。
(Comparative Example 1)
A printed wiring board of a PET substrate having a microstrip line pattern and a stripe pattern was produced in the same manner as in Example 1 except that a primer layer was not formed.
As a result of the peeling test, the peeling strength was 0.4 kN / m.
(比較例2)
 プライマー層を形成しない以外は、実施例2と同様にして、マイクロストリップラインパターン、及び、ストライプパターンを有するポリイミド基材のプリント配線板を作製した。剥離試験の結果、剥離強度は、0.49kN/mであった。
(Comparative Example 2)
A printed wiring board of a polyimide base material having a microstrip line pattern and a stripe pattern was produced in the same manner as in Example 2 except that a primer layer was not formed. As a result of the peeling test, the peeling strength was 0.49 kN / m.
1:絶縁性基材
2:プライマー層
3:貫通孔(スルーホール)
4:金属層(M1)
5:パターンレジスト
6:導電層(電解銅めっき層)
7:剥離性カバー層
1: Insulating base material 2: Primer layer 3: Through hole (through hole)
4: Metal layer (M1)
5: Pattern resist 6: Conductive layer (electrolytic copper plating layer)
7: Detachable cover layer

Claims (11)

  1.  絶縁性基材(A)上に、プライマー層(B)を形成する工程1、プライマー層(B)が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2、プライマー層(B)上、及び、スルーホール表面上に金属粒子を含有する金属層(M1)を形成する工程3、
     前記プライマー層(B)上の金属層(M1)上に回路形成部のレジストが除去されたパターンレジストを形成する工程4、
     めっき法により、金属層(M1)上に導体回路層(M2)を形成する工程5、
     パターンレジストを剥離し、非回路形成部の金属層(M1)をエッチング液により除去する工程6
    を有することを特徴とする絶縁性基材上に回路パターンを有するプリント配線板の製造方法。
    Step 1 of forming the primer layer (B) on the insulating base material (A), through holes penetrating both sides of the base material on the insulating base material (A) on which the primer layer (B) is formed. Step 2 of forming, step 3 of forming a metal layer (M1) containing metal particles on the primer layer (B) and on the surface of the through hole, 3.
    Step 4 of forming a pattern resist from which the resist of the circuit forming portion is removed on the metal layer (M1) on the primer layer (B).
    Step 5 of forming the conductor circuit layer (M2) on the metal layer (M1) by the plating method, 5.
    Step 6 of peeling off the pattern resist and removing the metal layer (M1) of the non-circuit forming portion with an etching solution.
    A method for manufacturing a printed wiring board having a circuit pattern on an insulating base material.
  2.  前記、プライマー層(B)を形成する工程1の後に、プライマー層に剥離性のカバー層(RC)を形成する工程1a、剥離性カバー層が形成された絶縁性基材(A)上に、基材の両面を貫通するスルーホールを形成する工程2の後に、剥離性カバー層を除去する工程2aを有することを特徴とする請求項1に記載の絶縁性基材上に回路パターンを有するプリント配線板の製造方法。 After the step 1 of forming the primer layer (B), the step 1a of forming the peelable cover layer (RC) on the primer layer is performed on the insulating substrate (A) on which the peelable cover layer is formed. The print having a circuit pattern on the insulating substrate according to claim 1, further comprising a step 2a of removing the peelable cover layer after the step 2 of forming a through hole penetrating both sides of the substrate. Manufacturing method of wiring board.
  3.  前記金属層(M1)が導電性を有することを特徴とする請求項1又は2のいずれか一項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 or 2, wherein the metal layer (M1) has conductivity.
  4.  前記めっき法が電解めっき法であることを特徴とする請求項3のいずれか一項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 3, wherein the plating method is an electrolytic plating method.
  5.  前記金属層(M1)と、導体回路層(M2)を構成する金属が異なる金属組成であることを特徴とする請求項1~4のいずれか一項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 4, wherein the metal constituting the metal layer (M1) and the metal constituting the conductor circuit layer (M2) have different metal compositions.
  6.  前記金属粒子が銀粒子であることを特徴とする請求項1~5のいずれか一項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 5, wherein the metal particles are silver particles.
  7.  前記金属粒子が、高分子分散剤で被覆されたものである請求項1~6のいずれか1項記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 1 to 6, wherein the metal particles are coated with a polymer dispersant.
  8.  前記プライマー層(B)に反応性官能基[X]を有する樹脂を用い、前記高分子分散剤に反応性官能基[Y]を有するものを用い、前記反応性官能基[X]と前記反応性官能基[Y]との間で結合を形成させる請求項7記載のプリント配線板の製造方法。 A resin having a reactive functional group [X] is used for the primer layer (B), a resin having a reactive functional group [Y] is used for the polymer dispersant, and the reaction with the reactive functional group [X]. The method for manufacturing a printed wiring board according to claim 7, wherein a bond is formed with the sex functional group [Y].
  9.  前記反応性官能基[Y]が、塩基性窒素原子含有基である請求項8記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 8, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
  10.  前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である請求項8記載のプリント配線板の製造方法。 The eighth aspect of claim 8, wherein the polymer dispersant having the reactive functional group [Y] is one or more selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. How to manufacture printed wiring boards.
  11.  前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である請求項8~10のいずれか1項記載のプリント配線板の製造方法。 The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The method for manufacturing a printed wiring board according to any one of claims 8 to 10, which is more than one kind.
PCT/JP2021/038876 2020-11-05 2021-10-21 Laminate for semi-additive construction method and printed wiring board WO2022097488A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022540725A JPWO2022097488A1 (en) 2020-11-05 2021-10-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-184981 2020-11-05
JP2020184981 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097488A1 true WO2022097488A1 (en) 2022-05-12

Family

ID=81457878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038876 WO2022097488A1 (en) 2020-11-05 2021-10-21 Laminate for semi-additive construction method and printed wiring board

Country Status (3)

Country Link
JP (1) JPWO2022097488A1 (en)
TW (1) TW202234954A (en)
WO (1) WO2022097488A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099831A (en) * 2007-10-18 2009-05-07 Nippon Circuit Kogyo Kk Method of manufacturing wiring board
WO2020003877A1 (en) * 2018-06-26 2020-01-02 Dic株式会社 Method of manufacturing printed wiring board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099831A (en) * 2007-10-18 2009-05-07 Nippon Circuit Kogyo Kk Method of manufacturing wiring board
WO2020003877A1 (en) * 2018-06-26 2020-01-02 Dic株式会社 Method of manufacturing printed wiring board

Also Published As

Publication number Publication date
JPWO2022097488A1 (en) 2022-05-12
TW202234954A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
JP6766983B2 (en) Manufacturing method of printed wiring board
JP6750766B2 (en) Method for manufacturing printed wiring board
JP6667119B1 (en) Laminated body for printed wiring board and printed wiring board using the same
WO2020130071A1 (en) Method for manufacturing printed wiring board
WO2022097488A1 (en) Laminate for semi-additive construction method and printed wiring board
WO2022097482A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097480A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097479A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097484A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
WO2022097481A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097485A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022540725

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889041

Country of ref document: EP

Kind code of ref document: A1