WO2022097481A1 - Laminate for semi-additive manufacturing and printed wiring board using same - Google Patents

Laminate for semi-additive manufacturing and printed wiring board using same Download PDF

Info

Publication number
WO2022097481A1
WO2022097481A1 PCT/JP2021/038869 JP2021038869W WO2022097481A1 WO 2022097481 A1 WO2022097481 A1 WO 2022097481A1 JP 2021038869 W JP2021038869 W JP 2021038869W WO 2022097481 A1 WO2022097481 A1 WO 2022097481A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
silver particle
printed wiring
resin
Prior art date
Application number
PCT/JP2021/038869
Other languages
French (fr)
Japanese (ja)
Inventor
憲正 深澤
昭 村川
潤 白髪
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022527760A priority Critical patent/JPWO2022097481A1/ja
Publication of WO2022097481A1 publication Critical patent/WO2022097481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern

Definitions

  • the present invention relates to a planar semi-additive method laminate used for electrically connecting both sides of a base material and a printed wiring board using the same.
  • the printed wiring board is a printed wiring board in which a metal layer of a circuit pattern is formed on the surface of an insulating base material.
  • a metal layer of a circuit pattern is formed on the surface of an insulating base material.
  • an etching resist having a circuit pattern shape is formed on the surface of a copper layer formed on an insulating base material, and the copper layer in a circuit-unnecessary part is etched to obtain the copper wiring.
  • the subtractive method of forming has been widely used.
  • the etching solution may wrap around the lower part of the resist, and as a result of the side etching, the wiring width direction may become narrower. It was a problem. In particular, when regions having different wiring densities coexist, there is a problem that the fine wiring existing in the region having a low wiring density disappears as the etching proceeds. Furthermore, the cross-sectional shape of the wiring obtained by the subtractive method is not rectangular, but has a trapezoidal shape or a triangular shape with a wide hem on the base material side. There was also a problem as a transmission line.
  • a semi-additive method has been proposed as a method for solving these problems and manufacturing a fine wiring circuit.
  • a conductive seed layer is formed on an insulating base material, and a plating resist is formed on a non-circuit forming portion on the seed layer.
  • the resist is peeled off and the seed layer of the non-circuit forming portion is removed to form the fine wiring.
  • the plating is deposited along the shape of the resist, the cross-sectional shape of the wiring can be made rectangular, and the wiring of the desired width can be deposited regardless of the density of the pattern. Since it can be formed, it is suitable for forming fine wiring.
  • a method of forming a conductive seed layer on an insulating base material by electroless copper plating using a palladium catalyst or electroless nickel plating is known.
  • the surface of the substrate is roughened using a strong chemical such as permanganic acid, which is called desmear roughening, in order to ensure the adhesion between the film substrate and the copper-plated film.
  • desmear roughening a strong chemical such as permanganic acid
  • a technique of forming electroless nickel plating on a polyimide film to form a conductive seed is also known.
  • the imide ring of the surface layer is opened to make the film surface hydrophilic, and at the same time, a modified layer in which water permeates is formed, and the modified layer is contained.
  • a palladium catalyst is impregnated into the film and electroless nickel plating is performed to form a nickel seed layer (see, for example, Patent Document 1).
  • the adhesion strength is obtained by forming nickel plating from the modified layer of the outermost polyimide layer, but since the modified layer is in a state where the imide ring is opened, the film surface layer. There was a problem that the structure was physically and chemically weak.
  • Patent Document 2 a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example).
  • Patent Document 2 a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example).
  • Patent Document 2 This method can form a seed layer without roughening the surface of the substrate, but it requires the use of expensive vacuum equipment, a large initial investment, and the size and shape of the substrate. The problems were that there were restrictions and that the process was complicated with low productivity.
  • a method for solving the problem of the sputtering method a method of using a coating layer of a conductive ink containing metal particles as a conductive seed layer has been proposed (see, for example, Patent Document 3).
  • the above-mentioned coating is performed by applying a conductive ink in which metal particles having a particle diameter of 1 to 500 nm are dispersed on an insulating base material made of a film or a sheet, and performing a heat treatment.
  • a technique is disclosed in which metal particles in a conductive ink are fixed as a metal layer on an insulating base material to form a conductive seed layer, and further, plating is performed on the conductive seed layer.
  • Patent Document 3 pattern formation by a semi-additive method is proposed, and in an embodiment, a conductive ink in which copper particles are dispersed is applied and heat-treated to form a copper conductive seed layer.
  • a photosensitive resist is formed on the conductive seed layer, exposed and developed, the pattern-forming part is thickened by electrolytic copper plating, the resist is peeled off, and then copper is used. It is described that the conductive seed layer of the above is removed by etching.
  • a thin copper foil or a base material provided with a copper plating film as a conductive seed on an insulating base material is semi-additive. It is used as a base material for construction methods.
  • the conductive seed layer and the conductive layer of the circuit pattern are formed of the same metal as in the combination of the conductive seed layer of copper and the circuit pattern of copper, the conductive seed layer of the non-pattern forming portion is formed.
  • the conductive layer of the circuit pattern is also etched at the same time when the circuit pattern is removed, so that the circuit pattern becomes thinner and thinner, and the surface roughness of the circuit conductive layer also increases.
  • Non-Patent Documents 1 and 2 The technique can form circuits on both sides as well as on one side, but has conductive silver particle layers on both sides of the insulating substrate to connect the circuits on both sides.
  • the double-sided electrical connection process by the conventional electrolytic copper plating method when holes are formed in the base material for the semi-additive method and double-sided connection is performed, copper plating is performed on the silver particle layer (M1). As the film is formed, the conductive seed layer for forming the circuit pattern becomes a copper layer, which causes problems such as thinning of the circuit pattern and thinning of the circuit pattern in the seed layer etching step as described above. ..
  • the problem to be solved by the present invention is that it does not require surface roughening with chromium acid or permanganic acid, formation of a surface modification layer with alkali, etc., and high adhesion between the substrate and the conductor circuit without using a vacuum device.
  • a planar semi-additive method laminate for double-sided connection that can form wiring with good properties, less undercut, good design reproducibility, and a good rectangular cross-sectional shape as circuit wiring, and printing using it. It is to provide a wiring board.
  • the present inventors connect both sides of a laminated body in which a conductive silver particle layer (M1) is laminated on both surfaces of an insulating base material (A).
  • a method of imparting either palladium, a conductive polymer, or carbon to make the through hole conductive complicated surface roughening and formation of a surface-modified layer are not required, and a vacuum device is not used.
  • a printed wiring board connected on both sides which has high adhesion between the base material and the conductor circuit, has less undercut, has good design reproducibility, and has a good rectangular cross-sectional shape for circuit wiring. , The present invention has been completed.
  • Step 1 in which through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of the insulating base material (A).
  • Step 2 in which either palladium, a conductive polymer, or carbon is applied onto the surface of the silver particle layer (M1) and the base material having through holes to make the through hole surface conductive.
  • Step 3 in which any one of palladium, the conductive polymer, and carbon applied on the silver particle layer (M1) is removed to expose only the conductive silver particle layer (M1').
  • Step 5 in which both sides of the base material and the surface of the through hole are electrically connected by electrolytic copper plating and a circuit pattern layer (M2) is formed.
  • a method for manufacturing a printed wiring board which comprises.
  • the primer layer (B) is a layer composed of a resin having a reactive functional group [X], and the polymer dispersant is a reactive functional group [Y]. ], And the reactive functional group [X] and the reactive functional group [Y] can form a bond with each other by a reaction.
  • the primer layer (B) is a layer composed of a resin having a reactive functional group [X]
  • the polymer dispersant is a reactive functional group [Y].
  • the reactive functional group [X] and the reactive functional group [Y] can form a bond with each other by a reaction.
  • the reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1
  • the present invention provides the method for manufacturing a printed wiring board according to any one of 4 to 6 which is more than a seed.
  • the printed wiring board manufactured by using the laminate for the semi-additive method of the present invention is used not only for a normal printed wiring board but also for various electronic members having a patterned metal layer on the surface of the base material. For example, it can be applied to connectors, electromagnetic wave shields, antennas such as RFID, film capacitors, and the like.
  • FIG. 1 is a process diagram for manufacturing a printed wiring board using a laminate for a semi-additive method.
  • a printed wiring board of the present invention through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of an insulating base material (A), and palladium is used. , Conductive polymer or carbon is applied to make it conductive, and then electrolytic copper plating is used to electrically connect both sides of the substrate and the surface of the through holes, and to form a circuit pattern. be.
  • a primer layer (B) is further provided between the insulating base material layer (A) and the conductive silver particle layer (M1). It is characterized by.
  • Examples of the material of the insulating base material (A) include polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, and acrylonitrile-butadiene-styrene (ABS).
  • Acrylic resin such as resin, polyarylate resin, polyacetal resin, poly (meth) methyl acrylate, polyfluorovinylidene resin, polytetrafluoroethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, and acrylic resin were graft-copolymerized.
  • Vinyl chloride resin polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), Examples thereof include cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
  • LCP liquid crystal polymer
  • PEEK polyether ether ketone
  • PPS polyphenylene sulfide
  • PPSU polyphenylene sulfone
  • Examples thereof include cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
  • thermosetting resin examples include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin.
  • examples thereof include silicone resin, triazine resin, and melamine resin.
  • examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate.
  • the insulating base material (A) any of a flat flexible material, a rigid material, and a rigid flexible material can be used. More specifically, a film, a sheet, or a commercially available material molded into a plate may be used for the insulating base material (A), or the above-mentioned resin solution, melt liquid, or dispersion liquid may be made flat. A molded material may be used. Further, the insulating base material (A) may be a base material having the above-mentioned resin material formed on a conductive material such as metal, and may be placed on a printed wiring board on which a circuit pattern is formed. , A base material obtained by laminating and forming the above-mentioned resin material may be used.
  • the silver particle layer (M1) is a plating base layer when a circuit pattern layer (M2) described later is formed by a plating step when a printed wiring board is manufactured by using the laminated body for a printed wiring board of the present invention. Will be.
  • the silver particles constituting the silver particle layer (M1) can contain metal particles other than silver as long as the plating step described later can be carried out without any problem, but the proportion of the metal particles other than silver will be described later. 5 parts by mass or less is preferable with respect to 100 parts by mass of silver, and 2 parts by mass or less is more preferable, because the etching removability of the non-circuit forming portion can be further improved.
  • a silver particle dispersion liquid is applied to both sides of the insulating base material (A).
  • the coating method of the silver particle dispersion liquid is not particularly limited as long as the silver particle layer (M1) can be formed satisfactorily, and various coating methods can be used depending on the shape, size, and rigidity of the insulating base material (A). It may be selected appropriately depending on the degree and the like.
  • Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method.
  • the silver particle layer (M1) may be simultaneously formed on both surfaces of the insulating base material (A), or may be formed on one side of the insulating base material (A) and then on the other side. It may be formed.
  • the insulating base material (A) and the primer layer (B) formed on the insulating base material (A) are used to improve the coatability of the silver particle dispersion liquid and to form a circuit pattern layer (a circuit pattern layer) formed in the plating step.
  • surface treatment may be performed before applying the silver particle dispersion liquid.
  • the surface treatment method for the insulating base material (A) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem, and various methods are used. Should be selected as appropriate. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
  • the coating film is dried to volatilize the solvent contained in the silver particle dispersion liquid.
  • the silver particle layer (M1) is formed on the insulating base material (A) or on the primer layer (B).
  • the above-mentioned drying temperature and time may be appropriately selected depending on the heat-resistant temperature of the base material to be used and the type of the solvent used for the metal particle dispersion liquid described later, but the time may be in the range of 20 to 350 ° C. The range of 1 to 200 minutes is preferable. Further, in order to form the silver particle layer (M1) having excellent adhesion on the substrate, the drying temperature is more preferably in the range of 0 to 250 ° C.
  • the insulating base material (A) on which the silver particle layer (M1) is formed or the insulating base material (A) on which the primer layer (B) is formed is, if necessary, after the above-mentioned drying, the silver particles. Further annealing is performed for the purpose of reducing the electrical resistance of the layer and for the purpose of improving the adhesion between the insulating base material (A) or the primer layer (B) and the silver particle layer (M1). May be good.
  • the annealing temperature and time may be appropriately selected according to the heat resistant temperature of the substrate to be used, the required electrical resistance, productivity, etc., and may be performed in the range of 60 to 350 ° C. for 1 minute to 2 weeks. .. Further, in the temperature range of 60 to 180 ° C., the time is preferably 1 minute to 2 weeks, and in the range of 180 to 350 ° C., it is preferably about 1 minute to 5 hours.
  • the above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
  • an inert gas such as nitrogen or argon
  • Drying of the coating film can be performed in a dryer such as a blower or a constant temperature dryer, in addition to natural drying at the coating site.
  • a dryer such as a blower or a constant temperature dryer
  • the roll material is dried by continuously moving the roll material in an installed non-heated or heated space following the coating process.
  • the heating method for drying / firing at this time include a method using an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, light irradiation (flash irradiation device), and the like. These heating methods can be used alone or in combination of two or more.
  • the amount of the metal particle layer (M1) formed on the insulating base material (A) or the primer layer (B) is preferably in the range of 0.01 to 30 g / m 2 , preferably 0.01.
  • the range of ⁇ 10 g / m 2 is more preferable.
  • the range of 0.05 to 5 g / m 2 is more preferable because the formation of the conductive layer (M3) by the plating step described later becomes easy and the seed layer removal step by etching described later becomes easy.
  • the amount of the silver particle layer (M1) formed can be confirmed by using a known and commonly used analytical method such as a fluorescent X-ray method, an atomic absorption method, and an ICP method.
  • the silver particle layer (M1) can be formed for the purpose of suppressing reflection of the active light from the silver particle layer (M1), which will be described later.
  • Diimmonium compound, azo compound and other light-absorbing pigments, or dyes may be contained as a light absorber. These pigments and dyes may be appropriately selected according to the wavelength of the active light to be used. Further, these pigments and dyes can be used alone or in combination of two or more. Further, in order to contain these pigments and dyes in the silver particle layer (M1), these pigments and dyes may be blended in the silver particle dispersion liquid described later.
  • the silver particle dispersion liquid used to form the silver particle layer (M1) is one in which silver particles are dispersed in a solvent.
  • the shape of the silver particles is not particularly limited as long as it can form the silver particle layer (M1) satisfactorily, and has various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire.
  • Silver particles can be used. These silver particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
  • the average particle diameter is in the range of 1 to 20,000 nm. Further, when a fine circuit pattern is formed, the homogeneity of the silver particle layer (M1) is further improved, and the removability by an etching solution described later can be further improved, so that the average particle diameter is in the range of 1 to 200 nm. Those in the range of 1 to 50 nm are more preferable, and those in the range of 1 to 50 nm are further preferable.
  • the "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the metal particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
  • the silver particles have a shape such as a lens shape, a rod shape, or a wire shape
  • those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor diameter in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
  • the silver particles preferably contain silver particles as a main component, but the silver particles are described above as long as they do not interfere with the plating step described later or impair the removability of the silver particle layer (M1) described later by the etching solution.
  • a part of silver constituting the silver particles may be replaced with another metal, or a metal component other than silver may be mixed.
  • Examples of the metal to be substituted or mixed include one or more metal elements selected from the group consisting of gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, titanium, indium and iridium.
  • the ratio of the metal to be substituted or mixed with respect to the silver particles is preferably 5% by mass or less in the silver particles, and is 2% by mass from the viewpoint of the plating property of the silver particle layer (M1) and the removability by the etching solution. % Or less is more preferable.
  • the silver particle dispersion used to form the silver particle layer (M1) is one in which silver particles are dispersed in various solvents, and the particle size distribution of the silver particles in the dispersion is uniform in a single dispersion. It may be a mixture of particles within the above average particle size range.
  • an aqueous medium or an organic solvent can be used as the solvent used for the dispersion liquid of the silver particles.
  • the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
  • Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
  • examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
  • Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol.
  • Tridecanol Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl
  • Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like.
  • Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like.
  • a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
  • hydrocarbon solvent having 8 or more carbon atoms examples include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
  • non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvent
  • the silver particles are stably dispersed, and the silver particle layer is placed on the insulating base material (A) or the primer layer (B) formed on the insulating base material (A) described later.
  • the solvent may be used alone or in combination of two or more.
  • the content of silver particles in the silver particle dispersion is such that the amount of the silver particle layer (M1) formed on the insulating substrate (A) is 0.01 to 30 g by using the various coating methods described above. It may be adjusted appropriately so as to be in the range of / m 2 , and adjusted so as to have a viscosity having optimum coating suitability according to the above-mentioned various coating methods, but in the range of 0.1 to 50% by mass. Is preferable, and the range of 0.5 to 20% by mass is more preferable.
  • the silver particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time, and the silver particles are dispersed in the various solvents.
  • a dispersant for causing the reaction a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, a thiosianato group, and a glycinato.
  • Dispersants having a functional group such as a group can be mentioned.
  • the dispersant a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating base material to which a solvent for dispersing metal particles or a dispersion liquid of metal particles is applied is applied. It may be appropriately selected according to the purpose such as the type of (A).
  • the adhesion between these two layers becomes good, so that the reaction of the resin used for the primer layer (B) described later. It is preferable to use a compound having a reactive functional group [Y] capable of forming a bond with the sex functional group [X].
  • Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like.
  • the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the metal particle layer (M1) can be further improved.
  • Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
  • the basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the metal particles by interacting with the metal particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B) described later, the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X]. It is preferable because a bond can be formed with the above and the adhesion of the metal pattern layer (M2) described later on the insulating base material (A) can be further improved.
  • the dispersant can form a silver particle layer (M1) that exhibits stability, coatability, and good adhesion on the insulating base material (A), the dispersant is a dispersant.
  • the polymer dispersant is preferable, and as the polymer dispersant, polyalkyleneimine such as polyethyleneimine and polypropyleneimine, and a compound in which polyoxyalkylene is added to the polyalkyleneimine are preferable.
  • the compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain made of polyethyleneimine is the side thereof.
  • the chain may be grafted with polyoxyalkylene.
  • the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine.
  • examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
  • Examples of the commercially available product of the polyalkyleneimine include “PAO2006W”, “PAO306”, “PAO318” and “PAO718” of "Epomin (registered trademark) PAO series” manufactured by Nippon Shokubai Co., Ltd.
  • the number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
  • the amount of the dispersant required to disperse the silver particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the silver particles, and is on the insulating substrate (A).
  • a silver particle layer (M1) showing good adhesion can be formed on the primer layer (B) described later, the range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the silver particles. Further, since the plating property of the silver particle layer (M1) can be improved, the range of 0.1 to 5 parts by mass is more preferable.
  • the method for producing the dispersion liquid of silver particles is not particularly limited and can be produced by using various methods.
  • silver particles produced by a gas phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the silver compound may be reduced in the liquid phase to directly prepare a dispersion of silver particles.
  • the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent.
  • the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process.
  • a liquid phase method for example, it can be produced by reducing silver ions in the presence of the polymer dispersant.
  • the dispersion liquid of silver particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
  • surfactant examples include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer.
  • fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates
  • Anionic surfactants such as salts
  • cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
  • a general thickener can be used as the viscosity modifier.
  • an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used.
  • examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
  • a general film-forming auxiliary can be used.
  • an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used.
  • a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
  • a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
  • the laminate for the semi-additive method provided with this primer layer is preferable because the adhesion of the conductive layer (M3) to the insulating base material (A) can be further improved.
  • the primer layer (B) is coated with a primer on a part or the entire surface of the insulating base material (A) to remove solvents such as an aqueous medium and an organic solvent contained in the primer. Can be formed.
  • the primer is used for the purpose of improving the adhesion of the conductive layer (M3) to the insulating base material (A), and is a liquid in which various resins described later are dissolved or dispersed in a solvent. It is a composition.
  • the method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and various coating methods can be used for the insulating base material (A). It may be appropriately selected according to the shape, size, degree of flexibility and the like. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method.
  • Blade coater method air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
  • the method of applying the primer to both surfaces of the film, the sheet, and the plate-shaped insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and the coating illustrated above is exemplified.
  • the construction method may be selected as appropriate.
  • the primer layer (B) may be simultaneously formed on both surfaces of the insulating base material (A), and may be formed on one side of the insulating base material (A) and then on the other side. You may.
  • the insulating base material (A) may be surface-treated before the primer coating for the purpose of improving the coatability of the primer and improving the adhesion of the circuit pattern layer (M2) to the base material. good.
  • the surface treatment method for the insulating base material (A) the same method as the surface treatment method for forming the silver particle layer (M1) on the insulating base material (A) described above can be used. ..
  • drying using a dryer As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used.
  • the method of volatilizing the solvent is common.
  • the drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying.
  • the specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C.
  • the drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
  • the above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
  • a substitution atmosphere such as nitrogen or argon
  • the insulating base material (A) When the insulating base material (A) is a single-leaf film, sheet, or board, it can be naturally dried at the coating site, blown air, or in a dryer such as a constant temperature dryer. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in the installed non-heated or heated space following the coating process. It can be performed.
  • the film thickness of the primer layer (B) may be appropriately selected depending on the specifications and applications of the printed wiring board manufactured using the present invention, but the insulating base material (A) and the metal pattern layer (M2) are used.
  • the range of 10 nm to 30 ⁇ m is preferable, the range of 10 nm to 1 ⁇ m is more preferable, and the range of 10 nm to 500 nm is further preferable, because the adhesion of the material can be further improved.
  • the resin forming the primer layer (B) is a reactive functional group having a reactivity with the reactive functional group [Y].
  • a resin having [X] is preferable.
  • the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane.
  • Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group.
  • a silsesquioxane compound can also be used as the compound forming the primer layer (B).
  • the adhesion of the circuit pattern layer (M2) on the insulating substrate (A) can be further improved.
  • the resin forming the primer layer (B) has, as the reactive functional group [X], a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group, and the like. Those having a vinyl group, a (meth) acryloyl group and an allyl group are preferable.
  • Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like.
  • the core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
  • a resin that produces a reducing compound by heating is preferable because the adhesion of the conductive layer (M3) to the insulating substrate (A) can be further improved.
  • the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
  • a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B).
  • the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell.
  • Core-shell type composite resin with a polymer polymer resin as the core urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth)
  • examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like.
  • a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
  • (meth) acrylamide refers to one or both of “methacrylamide” and “acrylamide”
  • (meth) acrylic acid refers to "methacrylic acid” and "acrylic acid”. Refers to one or both.
  • the resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
  • Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
  • a monomer having a functional group that produces a reducing compound by heating when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used.
  • the monomers can also be copolymerized.
  • a uretdione bond is formed by self-reacting between the isocyanate groups, or the isocyanate group and the functional group of other components are used.
  • the bond formed at this time may be formed before the metal particle dispersion liquid is applied, or is not formed before the metal particle dispersion liquid is applied, and the metal particle dispersion liquid is not formed. May be formed by heating after coating.
  • Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
  • the blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
  • the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
  • the number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
  • the blocked isocyanate one having an aromatic ring is preferable from the viewpoint of further improving the adhesion.
  • the aromatic ring include a phenyl group and a naphthyl group.
  • the blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
  • Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like.
  • Polyisocyanate compound having an aromatic ring an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure.
  • Examples include compounds.
  • those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
  • examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
  • polyisocyanate compound having an aromatic ring When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring.
  • polyisocyanate compounds having an aromatic ring 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
  • Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ⁇ -caprolactam, ⁇ -valerolactam and ⁇ -butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiour
  • a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable.
  • Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
  • Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
  • the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
  • the content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
  • the melamine resin examples include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
  • a method of adding a reducing compound to the resin can also be mentioned.
  • the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
  • the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
  • a resin containing a compound having an aminotriazine ring can be mentioned.
  • the compound having an aminotriazine ring may be a compound having a low molecular weight or a resin having a higher molecular weight.
  • various additives having an aminotriazine ring can be used.
  • Commercially available products include 2,4-diamino-6-vinyl-s-triazine (“VT” manufactured by Shikoku Kasei Co., Ltd.), “VD-3” and “VD-4” manufactured by Shikoku Kasei Co., Ltd. (with aminotriazine ring).
  • VT 2,4-diamino-6-vinyl-s-triazine
  • VD-3 and “VD-4” manufactured by Shikoku Kasei Co., Ltd. (with aminotriazine ring).
  • VD-5" manufactured by Shikoku Kasei Co., Ltd.
  • compound having an aminotriazine ring and an ethoxysilyl group and the like can be mentioned.
  • These can be used by adding one kind or two or more kinds to the resin forming the primer layer (B) as an additive.
  • the amount of the low molecular weight compound having an aminotriazine ring is preferably 0.1 parts by mass or more and 50 parts by mass or less, and more preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin. ..
  • a resin in which an aminotriazine ring is introduced by a covalent bond in the polymer chain of the resin can also be preferably used.
  • Specific examples thereof include aminotriazine-modified novolak resins.
  • the aminotriazine-modified novolak resin is a novolak resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group.
  • the aminotriazine-modified novolak resin contains, for example, an aminotriazine compound such as melamine, benzoguanamine, and acetoguanamine, a phenol compound such as phenol, cresol, butylphenol, bisphenol A, phenylphenol, naphthol, and resorcin, and formaldehyde as an alkylamine.
  • the aminotriazine-modified novolak resin preferably has substantially no methylol group. Further, the aminotriazine-modified novolak resin may contain a molecule in which only the aminotriazine structure generated as a by-product during its production is methylene-bonded, a molecule in which only the phenol structure is methylene-bonded, and the like. Further, a small amount of unreacted raw material may be contained.
  • phenol structure examples include phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues and the like.
  • residue here means a structure in which at least one hydrogen atom bonded to the carbon of the aromatic ring is removed.
  • phenol it means a hydroxyphenyl group.
  • triazine structure examples include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
  • the phenol structure and the triazine structure can be used alone or in combination of two or more. Further, since the adhesion can be further improved, a phenol residue is preferable as the phenol structure, and a melamine-derived structure is preferable as the triazine structure.
  • the hydroxyl value of the aminotriazine-modified novolak resin is preferably 50 mgKOH / g or more and 200 mgKOH / g or less, more preferably 80 mgKOH / g or more and 180 mgKOH / g or less, and 100 mgKOH / g or more and 150 mgKOH / g because the adhesion can be further improved. It is more preferably g or less.
  • the aminotriazine-modified novolak resin can be used alone or in combination of two or more.
  • an aminotriazine-modified novolak resin is used as the compound having an aminotriazine ring, it is preferable to use an epoxy resin in combination.
  • the epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, alcohol ether type epoxy resin, and tetrabrom. It has a structure derived from a bisphenol A type epoxy resin, a naphthalene type epoxy resin, a phosphorus-containing epoxy compound having a structure derived from a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, and a structure derived from a dicyclopentadiene derivative. Examples thereof include epoxies of fats and oils such as epoxy resin and epoxidized soybean oil. These epoxy resins can be used alone or in combination of two or more.
  • epoxy resins bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and bisphenol A novolak type epoxy resin are selected because the adhesion can be further improved. It is preferable, and in particular, a bisphenol A type epoxy resin is preferable.
  • the epoxy equivalent of the epoxy resin is preferably 100 g / equivalent or more and 300 g / equivalent or less, more preferably 120 g / equivalent or more and 250 g / equivalent or less, and 150 g / equivalent or more and 200 g / equivalent or less because the adhesiveness can be further improved. More preferred.
  • the primer layer (B) is a layer containing an aminotriazine-modified novolak resin and an epoxy resin
  • the adhesion can be further improved. Therefore, the phenolic hydroxyl group (x) in the aminotriazine-modified novolak resin and the epoxy resin are contained.
  • the molar ratio [(x) / (y)] with the epoxy group (y) is preferably 0.1 or more and 5 or less, more preferably 0.2 or more and 3 or less, and further preferably 0.3 or more and 2 or less.
  • a primer resin composition containing the compound having an aminotriazine ring or an epoxy resin is used.
  • the primer resin composition used for forming the primer layer (B) containing the aminotriazine-modified novolak resin and the epoxy resin may contain, for example, a urethane resin, an acrylic resin, a blocked isocyanate resin, or a melamine resin, if necessary.
  • Other resins such as phenol resin may be blended. These other resins may be used alone or in combination of two or more.
  • the primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
  • examples of the solvent that can be used for the primer include various organic solvents and aqueous media.
  • examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like
  • examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent to be mixed with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethylene glycol diethylene glycol and propylene.
  • alkylene glycol solvent such as glycol
  • a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol
  • lactam solvent such as N-methyl-2-pyrrol
  • the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary.
  • the crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the silver particle layer (M1) in the subsequent step, or the silver particle layer (M1).
  • the crosslinked structure may be formed after the step of forming the above.
  • the crosslinked structure may be formed on the primer layer (B) before forming the circuit pattern layer (M2).
  • a crosslinked structure may be formed in the primer layer (B) by, for example, aging.
  • a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
  • the cross-linking agent examples include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure.
  • thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents.
  • the aminotriazine-modified novolak resin and the epoxy resin are used as the primer layer (B), it is preferable to use a polyvalent carboxylic acid as the cross-linking agent in the primer resin composition.
  • the polyvalent carboxylic acid include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, succinic acid and the like. These cross-linking agents may be used alone or in combination of two or more. Further, among these cross-linking agents, trimellitic anhydride is preferable because the adhesion can be further improved.
  • the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the circuit pattern layer (M2) on the substrate, it is 0.01 with respect to a total of 100 parts by mass of the resin contained in the primer.
  • the range of about 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
  • the cross-linked structure may already be formed before the step of forming the silver particle layer (M1) in the subsequent step, and the cross-linking may be performed after the step of forming the silver particle layer (M1).
  • the structure may be formed.
  • the crosslinked structure may be formed after the step of forming the silver particle layer (M1), the crosslinked structure may be formed on the primer layer (B) before the circuit pattern layer (M2) is formed. After forming the pattern guide (M2), a crosslinked structure may be formed in the primer layer (B) by, for example, aging.
  • the method of forming the silver particle layer (M1) on the primer layer (B) is the same as the method of forming the silver particle layer (M1) on the insulating base material (A). be.
  • the primer layer (B) improves the coatability of the silver particle dispersion liquid and improves the adhesion of the circuit pattern layer (M2) to the base material, similarly to the insulating base material (A).
  • surface treatment may be performed before applying the silver particle dispersion.
  • step 1 of the method for manufacturing a printed wiring board of the present invention through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of an insulating base material (A). It is a process to do.
  • a known and commonly used method may be appropriately selected as a method for forming through holes penetrating both sides of the laminate. For example, drilling, laser processing, or laser processing is used to drill holes in the copper layer.
  • a processing method that combines chemical etching of an insulating substrate using an oxidizing agent, an alkaline agent, an acidic agent, etc., hole pattern etching of a copper foil using a resist, and an oxidizing agent, an alkaline agent, an acidic agent, etc. Examples thereof include a processing method that combines chemical etching of an insulating base material.
  • the hole diameter (diameter) formed by the drilling process is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.5 mm, and even more preferably in the range of 0.03 to 0.1 mm. ..
  • Desmia methods include, for example, dry treatment such as plasma treatment and reverse sputtering treatment, cleaning treatment with an aqueous solution of an oxidizing agent such as potassium permanganate, cleaning treatment with an aqueous solution of alkali or acid, and wet treatment such as cleaning treatment with an organic solvent. And so on.
  • step 2 of the method for manufacturing a printed wiring board of the present invention either palladium, a conductive polymer, or carbon is applied to the surface of the laminate having through holes formed in step 1, and the surface of the through holes is formed. Is a process of making the material conductive.
  • the method for making the surface of the through hole conductive is, for example, Minoru Toyonaga, Circuit Technology, vol.8, No. 1 (1993) pp. This can be done with reference to the method described as "Direct Plating" in 47-59.
  • the surface of the through hole conductive using palladium-tin colloid
  • the surface of the laminate on which the through hole is formed is treated with a cleaner-conditioner, and then the tin-palladium colloid is adsorbed on the surface and treated with an accelerator. It is carried out by removing tin. Further, a method of further converting palladium to palladium sulfide to increase conductivity can also be used.
  • a method for making the surface of the through hole conductive with a conductive polymer a method of oxidatively polymerizing a monomer of a pyrrole derivative can be used.
  • the surface of the laminated body in which the through holes are formed is treated with a conditioner and then treated with an aqueous solution of permanganate to form MnO 2 on the surface of the through holes formed in the insulating base material (A).
  • a monomer aqueous solution in which a high boiling point alcohol is dissolved is immersed in the surface of the substrate and then immersed in a dilute sulfuric acid aqueous solution, polymerization proceeds on the surface coated with MnO 2 , and conductivity is achieved by forming a conductive polymer.
  • the surface of the base material for the semi-additive process method in which the through hole is formed is treated with a suspended carbon black solution, and carbon is adsorbed on the entire surface of the substrate. It can be done by letting it do.
  • the surface of the base material is positively charged, and then carbon black having a negative charge is adsorbed on the surface to ensure conductivity.
  • any of the above-mentioned methods using palladium, a conductive polymer, and carbon can be used, and a commercially available known and conventional process can be used.
  • a method known as the Crimson process can be used, and in the graphite system, for example, a process known as the black hole process can be utilized.
  • step 3 of the method for manufacturing a printed wiring board of the present invention on the silver particle layer (M1) among any of palladium, a conductive polymer, and carbon used for making the through-hole surface conductive in step 2.
  • This is a step of removing the adsorbed material to expose the conductive silver particle layer (M1).
  • step 3 the chemical used for removing any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) etches only the surface layer of the silver particle layer (M1). Is preferable.
  • an aqueous solution of persulfate such as ammonium persulfate, sodium persulfate, potassium persulfate, or a sulfuric acid / hydrogen peroxide aqueous solution can be used.
  • the concentration of the aqueous solution of persulfate or the aqueous solution of sulfuric acid / hydrogen peroxide may be used as long as it can maintain the conductivity that functions as the conductive seed layer (M1') after etching the surface layer of the silver particle layer (M1). It may be adjusted as appropriate according to the design of the etching apparatus.
  • the laminate from which any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) has been removed through step 3 of the method for manufacturing a printed wiring board of the present invention is subjected to a drying step.
  • step 4 of the method for manufacturing a printed wiring board of the present invention in step 3, the silver particle layer from which any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) is removed. A pattern resist of a circuit pattern is formed on (M1').
  • a method described in JP-A-7-258870 a method of treatment using a rust preventive agent composed of a triazole-based compound, a silane coupling agent and an organic acid, JP-A.
  • a method of treating with a surface treatment agent containing a compound, or the like can be used.
  • a photomask is passed through a photosensitive resist or a direct exposure machine is used to expose the pattern with active light.
  • the exposure amount may be appropriately set as needed.
  • a pattern resist is formed by removing the latent image formed on the photosensitive resist by exposure using a developing solution.
  • the developer examples include a dilute alkaline aqueous solution such as 0.3 to 2% by mass of sodium carbonate and potassium carbonate.
  • a surfactant, a defoaming agent, a small amount of an organic solvent, or the like may be added to the dilute alkaline aqueous solution in order to accelerate development.
  • the substrate exposed above is immersed in a developing solution or developed by spraying the developing solution onto a resist, and by this development, a pattern resist from which the pattern forming portion is removed can be formed. ..
  • the resist residue such as may be removed.
  • the photosensitive resist used in the present invention a commercially available resist ink, liquid resist, or dry film resist can be used, and the resolution of the target pattern, the type of the exposure machine used, and the chemical solution used in the plating treatment in the subsequent step can be used. It may be appropriately selected depending on the type, pH and the like.
  • Examples of commercially available resist inks include “plating resist MA-830” and “etching resist X-87” manufactured by Taiyo Ink Mfg. Co., Ltd .; etching resist and plating resist manufactured by NAZDAR Co., Ltd .; “etching” manufactured by Mutual Chemical Industry Co., Ltd. Examples include the “resist PLAS FINE PER” series and the “plating resist PLAS FINE PPR” series. Examples of the electrodeposition resist include “Eagle series” and “Pepper series” manufactured by Dow Chemical Company.
  • a dry film for the semi-additive method may be used.
  • Commercially available dry films used for this purpose include, for example, "ALFO LDF500” and "NIT2700” manufactured by Nikko Materials Co., Ltd., “Sunfort UFG-258” manufactured by Asahi Kasei Corporation, and “RD” manufactured by Hitachi Kasei Co., Ltd. Series (RD-2015, 1225) “,” RY series (RY-5319, 5325) “,” PlateMaster series (PM200, 300) “manufactured by DuPont, and the like can be used.
  • step 6 of the method for manufacturing a printed wiring board of the present invention in order to form a circuit pattern layer (M2) on a substrate, the conductive silver particle layer (M1') is used as a cathode electrode for electrolytic copper plating. Then, by performing the treatment by the electrolytic copper plating method on the silver particle layer (M1') exposed by the development as described above, the through holes of the laminated body are connected by the copper plating, and at the same time, the circuit pattern layer is formed. (M2) can be formed.
  • the surface of the silver particle layer (M1') may be surface-treated, if necessary.
  • the surface treatment includes cleaning treatment with an acidic or alkaline cleaning liquid, corona treatment, plasma treatment, UV treatment, vapor phase ozone treatment, under the condition that the surface of the silver particle layer (M1') and the formed resist pattern are not damaged. Examples include liquid phase ozone treatment and treatment with a surface treatment agent. These surface treatments can be performed by one method or by using two or more methods in combination.
  • annealing is performed after plating for the purpose of stress relaxation and improvement of adhesion of the plating film. May be. Annealing may be performed before the etching step described later, after the etching step, or before and after the etching.
  • the annealing temperature may be appropriately selected in the temperature range of 40 to 300 ° C. depending on the heat resistance of the substrate to be used and the purpose of use, but is preferably in the range of 40 to 250 ° C. for the purpose of suppressing oxidative deterioration of the plating film.
  • the range of 40 to 200 ° C. is more preferable.
  • the annealing time is preferably 10 minutes to 10 days in the temperature range of 40 to 200 ° C., and 5 minutes to 10 hours in the case of a temperature exceeding 200 ° C. Further, when annealing the plating film, a rust preventive may be appropriately applied to the surface of the plating film.
  • step 7 of the method for manufacturing a printed wiring board of the present invention in step 6, after forming the circuit pattern layer (M2) by plating, the pattern resist formed by using the photosensitive resist is peeled off to form a non-pattern.
  • the silver particle layer (M1') of the formed portion is removed by an etching solution.
  • the pattern resist may be peeled off under the recommended conditions described in the catalog, specifications, etc. of the photosensitive resist used.
  • As the resist stripping solution used for stripping the pattern resist a commercially available resist stripping solution or a 1.5 to 3% by mass aqueous solution of sodium hydroxide or potassium hydroxide set at 45 to 60 ° C. may be used. can.
  • the resist can be peeled off by immersing the substrate on which the conductive layer (M2) of the circuit pattern is formed in a stripping solution or by spraying the stripping solution with a spray or the like.
  • the etching solution used for removing the silver particle layer (M1') in the non-pattern forming portion selectively etches only the silver particle layer (M1') to form the circuit pattern layer (M2). Copper is preferably non-etched.
  • Examples of such an etching solution include a mixture of a carboxylic acid and hydrogen peroxide.
  • carboxylic acid examples include acetic acid, formic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margalic acid and stearic acid.
  • Oleic acid Oleic acid, linoleic acid, linolenic acid, arachidonic acid, eikosapentaenoic acid, docosahexaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, salicylic acid, phthalic acid, isophthalic acid, terephthalic acid, gallic acid, melitonic acid, coconut skin
  • carboxylic acids can be used alone or in combination of two or more. Among these carboxylic acids, it is preferable to mainly use acetic acid because it is easy to manufacture and handle as an etching solution.
  • percarboxylic acid peroxycarboxylic acid
  • the generated percarboxylic acid preferentially dissolves the silver constituting the silver particle layer (M1') while suppressing the dissolution of the copper constituting the circuit pattern layer (M2).
  • the mixing ratio of the mixture of the carboxylic acid and hydrogen peroxide is in the range of 2 to 100 mol of hydrogen peroxide with respect to 1 mol of the carboxylic acid because the dissolution of the copper circuit pattern layer (M2) can be suppressed.
  • the range of 2 to 50 mol of hydrogen peroxide is more preferable.
  • the mixture of the carboxylic acid and hydrogen peroxide is preferably an aqueous solution diluted with water. Further, the content ratio of the mixture of the carboxylic acid and hydrogen peroxide in the aqueous solution is preferably in the range of 2 to 65% by mass and preferably in the range of 2 to 30% by mass because the influence of the temperature rise of the etching solution can be suppressed. Is more preferable.
  • water used for the above dilution it is preferable to use water from which ionic substances and impurities such as ion-exchanged water, pure water, and ultrapure water have been removed.
  • a protective agent for protecting the copper circuit pattern layer (M2) and suppressing dissolution may be further added to the etching solution.
  • the protective agent it is preferable to use an azole compound.
  • azole compound examples include imidazole, pyrazole, triazole, tetrazole, oxozole, thiazole, selenazole, oxadiazole, thiadiazole, oxatriazole, and thiatriazole.
  • azole compound examples include, for example, 2-methylbenzimidazole, aminotriazole, 1,2,3-benzotriazole, 4-aminobenzotriazole, 1-bisaminomethylbenzotriazole, aminotetrazole, phenyltetrazole, 2 -Phenylthiazole, benzothiazole and the like can be mentioned. These azole compounds may be used alone or in combination of two or more.
  • the concentration of the azole compound in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 0.2% by mass.
  • the dissolution of the copper circuit pattern layer (M2) can be suppressed in the etching solution, it is preferable to add polyalkylene glycol as a protective agent.
  • polyalkylene glycol examples include water-soluble polymers such as polyethylene glycol, polypropylene glycol, and polyoxyethylene polyoxypropylene block copolymer. Among these, polyethylene glycol is preferable.
  • the number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 20,000.
  • the concentration of the polyalkylene glycol in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 1% by mass.
  • Additives such as sodium salt, potassium salt and ammonium salt of organic acid may be added to the etching solution as necessary in order to suppress fluctuations in pH.
  • the silver particle layer (M1') in the non-pattern forming portion is removed by forming the circuit pattern layer (M2) and then using the photosensitive resist to form a pattern resist. This can be done by immersing the peeled substrate in the etching solution or by spraying the etching solution onto the substrate by spraying or the like.
  • each component of the etching solution may be individually supplied to an etching apparatus, and the respective components may be mixed in the apparatus to prepare a predetermined composition.
  • the etching solution is preferably used in a temperature range of 10 to 35 ° C., and particularly when an etching solution containing hydrogen peroxide is used, decomposition of hydrogen peroxide can be suppressed, so that the temperature range is 30 ° C. or lower. It is preferable to use in.
  • a further cleaning operation other than washing with water is performed for the purpose of preventing the silver component dissolved in the etching solution from adhering to and remaining on the printed wiring board. May be done.
  • a cleaning solution that dissolves silver oxide, silver sulfide, and silver chloride, but hardly dissolves silver.
  • an aqueous solution containing thiosulfate or tris (3-hydroxyalkyl) phosphine, or an aqueous solution containing mercaptocarboxylic acid or a salt thereof as a cleaning chemical solution.
  • Examples of the thiosulfate include ammonium thiosulfate, sodium thiosulfate, potassium thiosulfate and the like.
  • Examples of the tris (3-hydroxyalkyl) phosphine include tris (3-hydroxymethyl) phosphine, tris (3-hydroxyethyl) phosphine, and tris (3-hydroxypropyl) phosphine. These thiosulfates or tris (3-hydroxyalkyl) phosphines can be used alone or in combination of two or more.
  • the concentration when using an aqueous solution containing a thiosulfate may be appropriately set depending on the process time, the characteristics of the cleaning device to be used, etc., but is preferably in the range of 0.1 to 40% by mass, and during cleaning efficiency and continuous use. From the viewpoint of the stability of the chemical solution, the range of 1 to 30% by mass is more preferable.
  • the concentration of the aqueous solution containing tris (3-hydroxyalkyl) phosphine may be appropriately set depending on the process time, the characteristics of the cleaning device used, and the like, but is in the range of 0.1 to 50% by mass. Preferably, the range of 1 to 40% by mass is more preferable from the viewpoint of cleaning efficiency and stability of the chemical solution during continuous use.
  • Examples of the mercaptocarboxylic acid include thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioapple acid, cysteine, N-acetylcysteine and the like.
  • Examples of the salt of the mercaptocarboxylic acid include alkali metal salts, ammonium salts, amine salts and the like.
  • the concentration is preferably in the range of 0.1 to 20% by mass, and from the viewpoint of cleaning efficiency and process cost when processing a large amount, 0.5 to 15% by mass.
  • the range of is more preferable.
  • Examples of the method for performing the above cleaning operation include a method of immersing a printed wiring board obtained by etching and removing the silver particle layer (M1) of the non-pattern forming portion in the cleaning chemical solution, and spraying the printed wiring board.
  • a method of spraying a cleaning chemical solution with or the like can be mentioned.
  • the temperature of the cleaning chemical solution can be used at room temperature (25 ° C.), but since the cleaning process can be performed stably without being affected by the outside air temperature, the temperature may be set to 30 ° C. for use.
  • the step of removing the silver particle layer (M1') of the non-pattern forming portion with an etching solution and the cleaning operation can be repeated as necessary.
  • the printed wiring board of the present invention has the purpose of further improving the insulating property of the non-pattern forming portion after removing the silver particle layer (M1') of the non-pattern forming portion with the etching solution. If necessary, a further cleaning operation may be performed.
  • a further cleaning operation for example, an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of potassium hydroxide or sodium hydroxide can be used.
  • Cleaning using the alkaline permanganate solution is a method of immersing the printed wiring board obtained by the above method in an alkaline permanganate solution set at 20 to 60 ° C., or the printed wiring board is alkaline by spraying or the like. Examples thereof include a method of spraying a permanganate solution.
  • the printed wiring board is treated with a water-soluble organic solvent having an alcoholic hydroxyl group before cleaning for the purpose of improving the wettability of the alkaline permanganate solution to the surface of the substrate and improving the cleaning efficiency. You may go.
  • the organic solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and the like. These organic solvents may be used alone or in combination of two or more.
  • the concentration of the alkaline permanganate solution may be appropriately selected as needed, but potassium permanganate or permanganate is added to 100 parts by mass of 0.1 to 10% by mass of potassium hydroxide or sodium hydroxide aqueous solution. It is preferable that 0.1 to 10 parts by mass of sodium is dissolved, and from the viewpoint of cleaning efficiency, potassium permanganate or sodium permanganate is added to 100 parts by mass of 1 to 6% by mass of potassium hydroxide or sodium hydroxide aqueous solution. Is more preferably dissolved in 1 to 6 parts by mass.
  • the washed printed wiring board When cleaning with the above alkaline permanganic acid solution, it is preferable to treat the washed printed wiring board with a solution having a neutralizing / reducing action after cleaning with the alkaline permanganic acid solution.
  • the liquid having a neutralizing / reducing action include an aqueous solution containing 0.5 to 15% by mass of dilute sulfuric acid or an organic acid.
  • the organic acid include formic acid, acetic acid, oxalic acid, citric acid, ascorbic acid, and methionine.
  • the cleaning with the alkaline permanganic acid solution may be performed after the cleaning for the purpose of preventing the silver component dissolved in the etching solution from adhering to and remaining on the printed wiring board, or may be performed in the etching solution. In order to prevent the dissolved silver component from adhering to and remaining on the printed wiring board, instead of cleaning, only cleaning with an alkaline permanganic acid solution may be performed.
  • the printed wiring board manufactured by using the method for manufacturing the printed wiring board of the present invention can be used for covering the coverlay film on the circuit pattern, forming the solder resist layer, and the circuit pattern, if necessary.
  • the final surface treatment nickel / gold plating, nickel / palladium / gold plating, and palladium / gold plating may be performed.
  • the laminated body not only the printed wiring board but also various members having a metal layer patterned on the surface of the base material on a plane, for example, a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor, etc. can be used. Can be manufactured.
  • Polyester polyol (polyolpolyol obtained by reacting 1,4-cyclohexanedimethanol, neopentylglycol, and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer) 100 By mass, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, 106.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, and 178 parts by mass of methylethylketone. By reacting in the mixed solvent of the above, a urethane prepolymer solution having an isocyanate group at the terminal was obtained.
  • a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide, and 20 parts by mass of a 0.5% by mass ammonium persulfate aqueous solution were added.
  • the parts were dropped from a separate dropping funnel over 120 minutes while keeping the temperature inside the reaction vessel at 80 ° C.
  • aqueous dispersion of a resin composition for a primer layer which is a core-shell type composite resin having the urethane resin as a shell layer and an acrylic resin made of methyl methacrylate or the like as a core layer, was obtained. ..
  • a primer composition (B-6) was obtained by diluting and mixing so that the non-volatile content was 2% by mass.
  • a vinyl monomer mixture consisting of 47.0 parts by mass of methyl methacrylate, 5.0 parts by mass of glycidyl methacrylate, 45.0 parts by mass of n-butyl acrylate, and 3.0 parts by mass of methacrylic acid in a reaction vessel under stirring.
  • a part of the monomer pre-emulsion obtained by mixing 4 parts by mass of a surfactant (“Aqualon KH-1025” manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: 25% by mass of the active ingredient) and 15 parts by mass of deionized water. 5 parts by mass) was added, and then 0.1 part by mass of potassium persulfate was added, and the mixture was polymerized in 60 minutes while keeping the temperature inside the reaction vessel at 70 ° C.
  • the remaining monomer preemulsion 114 parts by mass
  • 30 parts by mass of an aqueous solution of potassium persulfate (1.0% by mass of the active ingredient) were separately added dropwise. Dropped over 180 minutes using a funnel. After completion of the dropping, the mixture was stirred at the same temperature for 60 minutes.
  • Preparation Example 1 Preparation of silver particle dispersion
  • a dispersion containing the agent was prepared.
  • ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
  • Preparation Example 2 Preparation of an etching solution for removing any of palladium, a conductive polymer, and carbon applied on the silver particle layer (M1)] 3.75 g of sulfuric acid and 13.5 g of hydrogen peroxide were added to 1 L of water to prepare an etching solution for removing any of palladium, a conductive polymer, and carbon applied on the silver particle layer (M1). ..
  • PVP polyvinylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., special grade
  • Example 1 The silver particle dispersion obtained in Preparation Example 1 is placed on the surface of a polyimide film (“Kapton 100EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 25 ⁇ m), which is an insulating base material, on a desktop compact coater (RK print). Using a "K printing prober” manufactured by Coat Instrument Co., Ltd., the silver particle layer after drying was coated to be 0.5 g / m 2 . Then, it was dried at 160 ° C. for 5 minutes using a hot air dryer.
  • a polyimide film (“Kapton 100EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 25 ⁇ m)
  • RK print desktop compact coater
  • the film was turned over, and the silver particle dispersion obtained in Preparation Example 1 was coated in the same manner as above so that the silver particle layer was 0.5 g / m 2 , and the temperature was 160 ° C. using a hot air dryer. A silver particle layer was formed on both surfaces of the polyimide film by drying in. The film substrate thus obtained was fired at 250 ° C. for 5 minutes, and the continuity of the silver particle layer was confirmed with a tester.
  • a film was used at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of a microstrip line with a wiring length of 100 mm and an impedance of 50 ⁇ .
  • a through hole having a diameter of 100 ⁇ m was formed in the hole.
  • the substrate with through holes thus obtained is passed through a black hole process (conditioning-carbon adsorption treatment-etching) of McDermid to attach carbon to the surface of the through holes, and a silver particle layer to which carbon is attached.
  • a dry film resist (“Fotech RD-1225” manufactured by Hitachi Chemical Co., Ltd .; resist film thickness 25 ⁇ m) was pressure-bonded onto the silver particle layer (M1) thus obtained at 100 ° C. using a roll laminator. Then, using a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec), a microstrip line pattern with a wiring length of 100 mm and an impedance of 50 ⁇ on the resist, and a through-hole terminal connected to the GND for the measurement probe. The pad pattern was exposed.
  • the surface of the silver particle layer of the base material on which the pattern resist was formed was placed on the cathode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion) with phosphorus-containing copper as an anode.
  • an electrolytic plating solution containing copper sulfate copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion
  • a circuit pattern layer (M2) having a thickness of 18 ⁇ m was formed on the pattern and the probe terminal pad portion by electrolytic copper plating.
  • a film on which a metal pattern made of copper was formed was subjected to a
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 2 The circuit pattern layer (M2) of the microstrip line pattern was formed in the same manner as in Example 1 except that the silver particle layer after drying was changed from 0.5 g / m 2 to 0.8 g / m 2 . A printed wiring board to have was obtained.
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 3 A printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 2 except that the diameter of the through hole was changed from 100 ⁇ m by a drill to 70 ⁇ m by a laser. ..
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 4 The circuit pattern layer (M2) of the microstrip line pattern was formed in the same manner as in Example 1 except that the silver particle layer after drying was changed from 0.5 g / m 2 to 1.5 g / m 2 . A printed wiring board to have was obtained.
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 5 On the surface of a polyimide film (“Capton 100EN-C” manufactured by Toray DuPont Co., Ltd., thickness 25 ⁇ m), the primer (B-1) obtained in Production Example 1 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd.). The film was coated to a thickness of 120 nm after drying using a “K printing prober”), and then dried at 80 ° C. for 5 minutes using a hot air dryer. Further, the film was turned inside out. In the same manner as above, the primer (B-1) obtained in Production Example 1 was coated so that the thickness after drying was 120 nm, and dried at 80 ° C. for 5 minutes using a hot air dryer. Primer layers were formed on both surfaces of the polyimide film.
  • a desktop compact coater RK Print Coat Instrument Co., Ltd.
  • the insulating base material (A) was applied to both surfaces of the polyimide film in the same manner as in Example 2 except that the polyimide film was changed to a polyimide having primer layers formed on both surfaces of the polyimide film obtained above.
  • a conductive silver particle layer (M1) is formed on the formed primer layer (B) so that the dried silver particle layer becomes 0.8 g / m 2 , and thereafter, the same as in Example 2. And obtained a printed wiring board.
  • the cross-sectional shape of the circuit pattern part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 6 A printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 5 except that the diameter of the through hole was changed from 100 ⁇ m by a drill to 70 ⁇ m by a laser. ..
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • the microstrip line pattern is the same as in Example 6 except that the type of primer used for the primer layer, its drying conditions, the amount of silver in the silver particle layer, and the through-hole formation method are changed to those shown in Table 1 or 2.
  • a printed wiring board having the circuit pattern layer (M2) of the above was obtained.
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 7 In Example 7, instead of passing the substrate with through holes through a MacDermid black hole process (conditioning-carbon adsorption treatment-etching), it contains 1 g / l of palladium chloride, 1 ml / l of hydrochloric acid and 1 g / l of dimethylthiourea. It was immersed in the catalyst solution at 25 ° C. for 3 minutes. Then, the substrate was washed with water and treated with a reducing solution containing 10 g / l of dimethylamine borane and 5 g / l of sodium hydroxide at 50 ° C. for 2 minutes, and the surface of the through hole was made conductive with palladium.
  • a MacDermid black hole process condition-carbon adsorption treatment-etching
  • the conductive silver particle layer (M1) on the polyimide film was exposed by removing it by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2.
  • a printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 7.
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Example 24 (Example 24) In Example 7, instead of passing the substrate with through holes through the black hole process (conditioning-carbon adsorption treatment - etching) of MacDermid, the aqueous solution prepared in Preparation Example 4 (PPy / PVP (SO 4-2)). The colloidal liquid was immersed in the colloidal liquid at room temperature for 2 minutes to attach colloidal particles to the surface of the through hole, and the surface of the through hole was made conductive by a conductive polymer. After washing this substrate with water, the conductive silver particle layer (M1) on the polyimide film was exposed by removing it by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2.
  • a printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 7.
  • the cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
  • Comparative Example 1 instead of using a polyimide film having silver particle layers formed on both sides, a commercially available 25 ⁇ m-thick polyimide-based FCCL (“Yupicel N-BE1310YSB” manufactured by Ube Eximo Co., Ltd.) having a roughened copper foil with a thickness of 3 ⁇ m as a plating base layer on both sides.
  • a through hole penetrating both sides is formed and passed through a black hole process (conditioning-carbon adsorption treatment-etching) of McDermid, and carbon is applied to the surface of the through hole.
  • the surface of the copper foil to which carbon was attached was removed by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2, so that copper was applied to both surfaces of the insulating base material (A).
  • a base material having a foil and further having through holes connecting both sides of the insulating base material and having a through hole surface whose conductivity was ensured by carbon was obtained.
  • a pattern resist is formed on the surface of the copper foil instead of the surface of the silver particle layer (M1), a microstrip having a thickness of 18 ⁇ m made of copper is placed on the plating base layer of the copper foil.
  • a conductor circuit layer of a line and a probe terminal pad pattern was formed.
  • the conductive layer (M3) of the microstrip line was etched and the film thickness was about 3 ⁇ m. As it became thinner, the wiring width decreased by about 6 ⁇ m, and the cross-sectional shape became "trapezoidal" because it could not hold a rectangle. Further, the surface of the conductive layer of copper was roughened by etching to reduce the smoothness.
  • the electrolytic copper-plated polyimide film (“Capton 100EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 25 ⁇ m) was used.
  • a 18 ⁇ m thick microstrip line made of copper and a conductor circuit layer of a probe terminal pad pattern were formed.
  • the conductive layer (M3) of the microstrip line was etched and the film thickness was about 1 ⁇ m. As it became thinner, the wiring width decreased by about 2 ⁇ m, and the cross-sectional shape became "trapezoidal" because it could not hold a rectangle. Further, the surface of the conductive layer of copper was roughened by etching to reduce the smoothness. Further, in the region other than the conductive layer (M3) pattern, only the copper layer was removed, and the nickel / chromium layer remained without being removed.
  • Step 1 Insulating base material 2: Silver particle layer 3: Through hole (through hole) 4: Palladium, conductive polymer, carbon 5: Pattern resist 6: Conductive layer (electrolytic copper plating layer)
  • A Laminated body for semi-additive construction method (configuration of claim 1)
  • B Step 1: Through hole (through hole) formation
  • Step 2 Through hole conductivity
  • Step 3 Exposure of conductive silver particle layer
  • Step 4 Pattern resist formation
  • Step 5 Conductive layer formation by electrolytic copper plating
  • Step 6 Pattern resist peeling
  • Step 6 Silver seed removal (configuration of claim 11)

Abstract

The purpose of the present invention is to provide: a flat laminate for semi-additive manufacturing which is used for interfacial connection and exhibits a high degree of adhesion between a substrate and a conductor circuit without the use of a vacuum device and without requiring surface roughening by means of chromic acid or permanganic acid or requiring the formation of a surface modification layer by means of an alkali, said laminate making it possible to form wiring having a rectangular cross-sectional shape that is suitable for circuit wiring with little undercutting and good design reproducibility; and a printed wiring board using the same. The present invention is the result of the discovery that by using a method in which a through hole connecting the faces of a laminate obtained by laminating a conductive silver particle layer (M1) on both surfaces of an insulating substrate (A) is made conductive via the application of one of palladium, a conductive polymer and carbon, it is possible to form a printed wiring board having connected faces which exhibits a high degree of adhesion between a substrate and a conductor circuit, and has a rectangular cross-sectional shape that is suitable for circuit wiring with little undercutting and good design reproducibility.

Description

セミアディティブ工法用積層体及びそれを用いたプリント配線板Laminated material for semi-additive construction method and printed wiring board using it
 本発明は、基材両面を電気的に接続するために用いられる平面状のセミアディティブ工法用積層体及びそれを用いたプリント配線板に関する。 The present invention relates to a planar semi-additive method laminate used for electrically connecting both sides of a base material and a printed wiring board using the same.
 プリント配線板は、絶縁性基材の表面に回路パターンの金属層が形成されたものである。近年、電子機器製品の小型化、軽量化要求に伴い、プリント配線板(フィルム)の薄型化及び、回路配線の高精細化が求められている。従来、回路配線を製造する方法としては、絶縁性基材上に形成された銅層の表面に、回路パターン形状のエッチングレジストを形成し、回路不要部の銅層をエッチングすることによって銅配線を形成するサブトラクティブ法が広く用いられてきた。しかしながら、サブトラクティブ法においては、配線裾部分の銅が残りやすく、回路配線の高密度化によって配線間距離が短くなると、短絡や配線間の絶縁信頼性に乏しいなどの問題があった。また、短絡を防ぐ目的や、絶縁信頼性を向上させるために、エッチングをさらに進行させると、レジスト下部にエッチング液がまわり込んで、サイドエッチングが進む結果、配線幅方向が細くなってしまうことが問題であった。特に、配線密度の異なる領域が混在する場合、配線密度の低い領域に存在する微細配線は、エッチングを進行させると、消失してしまうなどの問題もあった。さらに、サブトラクティブ法で得られる配線の断面形状は矩形とならず、台形状や三角形状の基材側に裾の広がった形状となることから、厚さ方向に幅が異なった配線となり、電気伝送路としても課題があった。 The printed wiring board is a printed wiring board in which a metal layer of a circuit pattern is formed on the surface of an insulating base material. In recent years, with the demand for miniaturization and weight reduction of electronic device products, it is required to reduce the thickness of printed wiring boards (films) and to increase the definition of circuit wiring. Conventionally, as a method of manufacturing a circuit wiring, an etching resist having a circuit pattern shape is formed on the surface of a copper layer formed on an insulating base material, and the copper layer in a circuit-unnecessary part is etched to obtain the copper wiring. The subtractive method of forming has been widely used. However, in the subtractive method, copper at the hem of the wiring tends to remain, and when the distance between the wirings is shortened due to the high density of the circuit wiring, there are problems such as short circuit and poor insulation reliability between the wirings. In addition, if the etching is further advanced for the purpose of preventing a short circuit or improving the insulation reliability, the etching solution may wrap around the lower part of the resist, and as a result of the side etching, the wiring width direction may become narrower. It was a problem. In particular, when regions having different wiring densities coexist, there is a problem that the fine wiring existing in the region having a low wiring density disappears as the etching proceeds. Furthermore, the cross-sectional shape of the wiring obtained by the subtractive method is not rectangular, but has a trapezoidal shape or a triangular shape with a wide hem on the base material side. There was also a problem as a transmission line.
 これらの課題を解決し、微細配線回路を作製する方法として、セミアディティブ法が提案されている。セミアディティブ法においては、絶縁性基材上に導電性のシード層を形成しておき、当該シード層上の非回路形成部にめっきレジストを形成する。導電性のシード層を通じて電解めっきで配線部を形成した後、レジストを剥離し、非回路形成部のシード層を除去することによって微細配線を形成する。この方法によれば、レジストの形状に沿ってめっきを析出させるので、配線の断面形状を矩形にすることができ、また、パターンの疎密に関係なく、目的とする幅の配線を析出させることができるので、微細配線の形成に適している。 A semi-additive method has been proposed as a method for solving these problems and manufacturing a fine wiring circuit. In the semi-additive method, a conductive seed layer is formed on an insulating base material, and a plating resist is formed on a non-circuit forming portion on the seed layer. After forming the wiring portion by electrolytic plating through the conductive seed layer, the resist is peeled off and the seed layer of the non-circuit forming portion is removed to form the fine wiring. According to this method, since the plating is deposited along the shape of the resist, the cross-sectional shape of the wiring can be made rectangular, and the wiring of the desired width can be deposited regardless of the density of the pattern. Since it can be formed, it is suitable for forming fine wiring.
 セミアディティブ法においては、絶縁性基材上にパラジウム触媒を用いた無電解銅めっきや、無電解ニッケルめっきにより、導電性のシード層を形成する方法が知られている。これらの方法では、例えばビルドアップフィルムを用いる場合、フィルム基材と銅めっき膜の密着性を確保するために、デスミア粗化と呼ばれる過マンガン酸等の強い薬剤を用いた基材表面粗化が行われており、形成された空隙中からめっき膜を形成することによって、アンカー効果を利用し、絶縁性基材とめっき膜の密着性を確保している。しかしながら、基材表面を粗化すると、微細配線を形成することが難しくなり、また、高周波伝送特性が劣化するなどの課題がある。このため、粗化の程度を小さくすることが検討されているが、低粗化の場合には、形成された配線と基材間の必要な密着強度が得られないという問題があった。 In the semi-additive method, a method of forming a conductive seed layer on an insulating base material by electroless copper plating using a palladium catalyst or electroless nickel plating is known. In these methods, for example, when a build-up film is used, the surface of the substrate is roughened using a strong chemical such as permanganic acid, which is called desmear roughening, in order to ensure the adhesion between the film substrate and the copper-plated film. By forming a plating film from the formed voids, the anchor effect is utilized to ensure the adhesion between the insulating base material and the plating film. However, if the surface of the base material is roughened, it becomes difficult to form fine wiring, and there are problems such as deterioration of high frequency transmission characteristics. Therefore, it has been considered to reduce the degree of roughening, but in the case of low roughening, there is a problem that the required adhesion strength between the formed wiring and the base material cannot be obtained.
 一方、ポリイミドフィルム上に無電解ニッケルめっきを施して導電シードを形成する技術も知られている。この場合には、ポリイミドフィルムを強アルカリに浸漬することによって、表層のイミド環を開環させてフィルム表面を親水性化すると同時に、水の浸透する改質層を形成し、当該改質層中にパラジウム触媒を浸透させて、無電解ニッケルめっきを行うことによってニッケルのシード層を形成している(例えば、特許文献1参照。)。本技術においては、ポリイミド最表層の改質層中からニッケルめっきが形成されることによって密着強度を得ているが、当該改質層は、イミド環を開環させた状態であるため、フィルム表層が物理的、化学的に弱い構造になるという問題があった。 On the other hand, a technique of forming electroless nickel plating on a polyimide film to form a conductive seed is also known. In this case, by immersing the polyimide film in strong alkali, the imide ring of the surface layer is opened to make the film surface hydrophilic, and at the same time, a modified layer in which water permeates is formed, and the modified layer is contained. A palladium catalyst is impregnated into the film and electroless nickel plating is performed to form a nickel seed layer (see, for example, Patent Document 1). In this technique, the adhesion strength is obtained by forming nickel plating from the modified layer of the outermost polyimide layer, but since the modified layer is in a state where the imide ring is opened, the film surface layer. There was a problem that the structure was physically and chemically weak.
 これに対し、表面粗化、もしくは、表層に改質層を形成しない方法として、スパッタ法によって絶縁性基材上にニッケル、もしくはチタン等の導電性シードを形成する方法も知られている(例えば、特許文献2参照。)。この方法は、基材表面を粗化することなくシード層を形成することが可能であるが、高価な真空装置を用いる必要があり、大きな初期投資が必要であること、基材サイズや形状に制限があること、生産性が低い煩雑な工程であることなどが問題であった。 On the other hand, as a method of surface roughening or not forming a modified layer on the surface layer, a method of forming a conductive seed such as nickel or titanium on an insulating base material by a sputtering method is also known (for example). , Patent Document 2). This method can form a seed layer without roughening the surface of the substrate, but it requires the use of expensive vacuum equipment, a large initial investment, and the size and shape of the substrate. The problems were that there were restrictions and that the process was complicated with low productivity.
 スパッタ法の課題を解決する方法として、金属粒子を含有する導電性インクの塗工層を導電性シード層として利用する方法が提案されている(例えば、特許文献3参照。)。この技術においては、フィルムもしくはシートからなる絶縁性基材上に、1~500nmの粒子径をもつ金属粒子を分散させた導電性インクを塗工し、熱処理を行うことにより、前記塗工された導電性インク中の金属粒子を金属層として絶縁性の基材上に固着させて導電シード層を形成し、さらに当該導電シード層上にめっきを行う技術が開示されている。 As a method for solving the problem of the sputtering method, a method of using a coating layer of a conductive ink containing metal particles as a conductive seed layer has been proposed (see, for example, Patent Document 3). In this technique, the above-mentioned coating is performed by applying a conductive ink in which metal particles having a particle diameter of 1 to 500 nm are dispersed on an insulating base material made of a film or a sheet, and performing a heat treatment. A technique is disclosed in which metal particles in a conductive ink are fixed as a metal layer on an insulating base material to form a conductive seed layer, and further, plating is performed on the conductive seed layer.
 特許文献3においては、セミアディティブ法によるパターン形成が提案されており、実施例において、銅の粒子を分散させた導電性インクを塗工し、熱処理を行って銅の導電シード層を形成した基材をセミアディティブ工法用の基材として用い、導電シード層上に、感光性レジストを形成し、露光、現像を経て、パターン形成部を電解銅めっきで厚膜化、レジストを剥離した後、銅の導電シード層をエッチング除去することが記載されている。また、従来から検討されてきたセミアディティブ工法によるプリント配線板形成の場合には、絶縁性基材上に、薄い銅箔、もしくは、銅めっき膜を導電性シードとして設けた基材が、セミアディティブ工法用の基材として用いられている。
  この様に、銅の導電性シード層と銅の回路パターンの組み合わせの様に、導電性シード層と回路パターンの導電層が同じ金属で形成されている場合、非パターン形成部の導電性シード層を除去する際、回路パターンの導電層も、同時にエッチングされてしまうため、回路パターンが細く、薄くなり、かつ、回路導電層の表面粗度も大きくなることが知られており、高密度配線、高周波伝送用配線を製造する上で解決すべき課題であった。
 これらの課題に対し、本発明者らは、絶縁性基材の表面上に、導電性の銀粒子層を形成した基材をセミアディティブ工法用の基材として用いることによって、シード層エッチング工程において、回路パターンの細りや、薄膜化が起こらず設計再現性が良く、平滑な回路層表面を有するプリント配線板を形成する技術を発明している。(非特許文献1、2)
 当該技術は、片面での回路形成だけでなく、両面で回路を形成することが可能であるが、両面の回路を接続するために、導電性の銀粒子層を絶縁性基材の両面に有するセミアディティブ工法用基材にホールを形成して両面接続を行う場合、従来用いられている、無電解銅めっき法による両面の電気的接続工程を行うと、銀粒子層(M1)上に銅めっき膜が形成されることによって、回路パターン形成用の導電性シード層が銅層となってしまうことにより、前記の様に、シード層エッチング工程における、回路パターンの細りや、薄膜化が問題となる。
In Patent Document 3, pattern formation by a semi-additive method is proposed, and in an embodiment, a conductive ink in which copper particles are dispersed is applied and heat-treated to form a copper conductive seed layer. Using the material as a base material for the semi-additive method, a photosensitive resist is formed on the conductive seed layer, exposed and developed, the pattern-forming part is thickened by electrolytic copper plating, the resist is peeled off, and then copper is used. It is described that the conductive seed layer of the above is removed by etching. Further, in the case of forming a printed wiring board by the semi-additive method, which has been studied conventionally, a thin copper foil or a base material provided with a copper plating film as a conductive seed on an insulating base material is semi-additive. It is used as a base material for construction methods.
In this way, when the conductive seed layer and the conductive layer of the circuit pattern are formed of the same metal as in the combination of the conductive seed layer of copper and the circuit pattern of copper, the conductive seed layer of the non-pattern forming portion is formed. It is known that the conductive layer of the circuit pattern is also etched at the same time when the circuit pattern is removed, so that the circuit pattern becomes thinner and thinner, and the surface roughness of the circuit conductive layer also increases. It was a problem to be solved in manufacturing wiring for high frequency transmission.
To solve these problems, the present inventors have used a substrate in which a conductive silver particle layer is formed on the surface of an insulating substrate as a substrate for a semi-additive method in a seed layer etching step. Invented a technique for forming a printed wiring board having a smooth circuit layer surface with good design reproducibility without thinning of the circuit pattern or thinning. (Non-Patent Documents 1 and 2)
The technique can form circuits on both sides as well as on one side, but has conductive silver particle layers on both sides of the insulating substrate to connect the circuits on both sides. When holes are formed in the base material for the semi-additive method and double-sided connection is performed, when the double-sided electrical connection process by the conventional electrolytic copper plating method is performed, copper plating is performed on the silver particle layer (M1). As the film is formed, the conductive seed layer for forming the circuit pattern becomes a copper layer, which causes problems such as thinning of the circuit pattern and thinning of the circuit pattern in the seed layer etching step as described above. ..
国際公開第2009/004774号International Publication No. 2009/004774 特開平9-136378号公報Japanese Unexamined Patent Publication No. 9-136378 特開2010-272837号公報Japanese Unexamined Patent Publication No. 2010-272837
 本発明が解決しようとする課題は、クロム酸や過マンガン酸による表面粗化、アルカリによる表面改質層形成などを必要とせず、真空装置を用いることなく、基材と導体回路との高い密着性を有し、アンダーカットが少なく、設計再現性の良い、回路配線として良好な矩形の断面形状を有する配線を形成できる両面接続用の平面状セミアディティブ工法用積層体、及びそれを用いたプリント配線板を提供することである。 The problem to be solved by the present invention is that it does not require surface roughening with chromium acid or permanganic acid, formation of a surface modification layer with alkali, etc., and high adhesion between the substrate and the conductor circuit without using a vacuum device. A planar semi-additive method laminate for double-sided connection that can form wiring with good properties, less undercut, good design reproducibility, and a good rectangular cross-sectional shape as circuit wiring, and printing using it. It is to provide a wiring board.
 本発明者らは、上記の課題を解決すべく鋭意研究した結果、絶縁性基材(A)の両表面上に、導電性の銀粒子層(M1)が積層された積層体の両面を接続する貫通孔を、パラジウム、導電性ポリマー、カーボンのいずれかを付与して導電化する方法を用いることにより、複雑な表面粗化や表面改質層形成を必要とせず、真空装置を用いることなく、基材と導体回路との高い密着性を有し、アンダーカットが少なく、設計再現性の良い、回路配線として良好な矩形の断面形状を有する、両面接続されたプリント配線板を形成できることを見出し、本発明を完成した。 As a result of diligent research to solve the above problems, the present inventors connect both sides of a laminated body in which a conductive silver particle layer (M1) is laminated on both surfaces of an insulating base material (A). By using a method of imparting either palladium, a conductive polymer, or carbon to make the through hole conductive, complicated surface roughening and formation of a surface-modified layer are not required, and a vacuum device is not used. Found that it is possible to form a printed wiring board connected on both sides, which has high adhesion between the base material and the conductor circuit, has less undercut, has good design reproducibility, and has a good rectangular cross-sectional shape for circuit wiring. , The present invention has been completed.
 すなわち、本発明は、
1. 絶縁性基材(A)の両表面上に、導電性の銀粒子層(M1)を有する積層体に、両面を貫通する貫通孔を形成する工程1、
 前記銀粒子層(M1)および貫通孔を有する基材の表面上に、パラジウム、導電性ポリマー、カーボンのいずれかを付与して、貫通孔表面を導電化する工程2、
 銀粒子層(M1)上に付与された、パラジウム、導電性ポリマー、カーボンのいずれかを除去して、導電性の銀粒子層(M1‘)のみを露出させる工程3、
前記導電性の銀粒子層(M1‘)上に、パターンレジストを形成する工程4、
 電解銅めっきにより、基材両面および貫通孔表面を電気的に接続するとともに、回路パターン層(M2)形成を行う工程5、
を有することを特徴とするプリント配線板の製造方法。
That is, the present invention
1. 1. Step 1, in which through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of the insulating base material (A).
Step 2, in which either palladium, a conductive polymer, or carbon is applied onto the surface of the silver particle layer (M1) and the base material having through holes to make the through hole surface conductive.
Step 3, in which any one of palladium, the conductive polymer, and carbon applied on the silver particle layer (M1) is removed to expose only the conductive silver particle layer (M1').
Step 4 of forming a pattern resist on the conductive silver particle layer (M1').
Step 5, in which both sides of the base material and the surface of the through hole are electrically connected by electrolytic copper plating and a circuit pattern layer (M2) is formed.
A method for manufacturing a printed wiring board, which comprises.
2.絶縁性基材(A)と、銀粒子層(M1)の間に、さらにプライマー層(B)を有する積層体を使用することを特徴とする1記載のプリント配線板の製造方法。 2. 2. 1. The method for manufacturing a printed wiring board according to 1, wherein a laminate having a primer layer (B) is used between the insulating base material (A) and the silver particle layer (M1).
3.前記銀粒子層(M1)を構成する銀粒子が、高分子分散剤で被覆されたものである1または2記載のプリント配線板の製造方法。 3. 3. The method for manufacturing a printed wiring board according to 1 or 2, wherein the silver particles constituting the silver particle layer (M1) are coated with a polymer dispersant.
4.請求項2記載のセミアディティブ工法用積層体において、前記プライマー層(B)が反応性官能基[X]を有する樹脂で構成される層であり、前記高分子分散剤が反応性官能基[Y]を有するものであり、前記反応性官能基[X]と前記反応性官能基[Y]とは反応により互いに結合を形成できるものである3記載のプリント配線板の製造方法。 4. In the laminate for the semi-additive method according to claim 2, the primer layer (B) is a layer composed of a resin having a reactive functional group [X], and the polymer dispersant is a reactive functional group [Y]. ], And the reactive functional group [X] and the reactive functional group [Y] can form a bond with each other by a reaction. 3. The method for producing a printed wiring board according to 3.
5.前記反応性官能基[Y]が、塩基性窒素原子含有基である4記載のプリント配線板の製造方法。 5. 4. The method for producing a printed wiring board according to 4, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
6. 前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である5記載のプリント配線板の製造方法。 6. 5. The print according to 5 in which the polymer dispersant having the reactive functional group [Y] is at least one selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. Manufacturing method of wiring board.
7.前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である4~6のいずれか1記載のプリント配線板の製造方法を提供するものである。 7. The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The present invention provides the method for manufacturing a printed wiring board according to any one of 4 to 6 which is more than a seed.
 本発明のプリント配線板の製造方法を用いることにより、真空装置を用いることなく、種々の平滑基材上に密着性の高い、平滑な表面を有する、良好な矩形断面形状の回路配線を有する両面接続したプリント配線板を、設計再現性良く製造することが可能である。従って、本発明の技術を用いることで、多層化された高密度、高性能、高周波伝送対応のプリント配線板を、低コストで提供することができ、プリント配線の分野におけて産業上の利用性が高い。また、本発明のセミアディティブ工法用積層体を用いて製造されたプリント配線板は、通常のプリント配線板のみならず、基材表面にパターン化された金属層を有する種々の電子部材に用いることができ、例えば、コネクター、電磁波シールド、RFID等のアンテナ、フィルムコンデンサーなどにも応用できる。 By using the method for manufacturing a printed wiring board of the present invention, both sides having a circuit wiring having a good rectangular cross-sectional shape having a smooth surface with high adhesion on various smooth substrates without using a vacuum device. It is possible to manufacture the connected printed wiring board with good design reproducibility. Therefore, by using the technique of the present invention, it is possible to provide a multi-layered high-density, high-performance, high-frequency transmission compatible printed wiring board at low cost, and it can be used industrially in the field of printed wiring. High quality. Further, the printed wiring board manufactured by using the laminate for the semi-additive method of the present invention is used not only for a normal printed wiring board but also for various electronic members having a patterned metal layer on the surface of the base material. For example, it can be applied to connectors, electromagnetic wave shields, antennas such as RFID, film capacitors, and the like.
図1は、セミアディティブ工法用積層体を用いたプリント配線板作製の工程図である。FIG. 1 is a process diagram for manufacturing a printed wiring board using a laminate for a semi-additive method.
 本発明のプリント配線板の製造方法は、絶縁性基材(A)の両表面上に、導電性の銀粒子層(M1)を有する積層体に、両面を貫通する貫通孔を形成し、パラジウム、導電性ポリマー、カーボンのいずれかを付与して導電化した後、電解銅めっきにより、基材両面および貫通孔表面を電気的に接続するとともに、回路パターン形成を行うことを特徴とするものである。 In the method for manufacturing a printed wiring board of the present invention, through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of an insulating base material (A), and palladium is used. , Conductive polymer or carbon is applied to make it conductive, and then electrolytic copper plating is used to electrically connect both sides of the substrate and the surface of the through holes, and to form a circuit pattern. be.
 また、本発明のより好ましい態様のプリント配線板の製造方法は、前記絶縁性基材層(A)と、導電性の銀粒子層(M1)の間に、さらにプライマー層(B)を有することを特徴とするものである。 Further, in the method for producing a printed wiring board according to a more preferable aspect of the present invention, a primer layer (B) is further provided between the insulating base material layer (A) and the conductive silver particle layer (M1). It is characterized by.
 前記絶縁性基材(A)の材料としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリ(メタ)アクリル酸メチル等のアクリル樹脂、ポリフッ化ビニリデン樹脂、ポリテトラフルオロエチレン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、アクリル樹脂をグラフト共重合化した塩化ビニル樹脂、ポリビニルアルコール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ウレタン樹脂、シクロオレフィン樹脂、ポリスチレン、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)樹脂、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルホン(PPSU)、セルロースナノファイバー、シリコン、シリコンカーバイド、窒化ガリウム、サファイア、セラミックス、ガラス、ダイヤモンドライクカーボン(DLC)、アルミナ等が挙げられる。 Examples of the material of the insulating base material (A) include polyimide resin, polyamideimide resin, polyamide resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, polycarbonate resin, and acrylonitrile-butadiene-styrene (ABS). Acrylic resin such as resin, polyarylate resin, polyacetal resin, poly (meth) methyl acrylate, polyfluorovinylidene resin, polytetrafluoroethylene resin, polyvinyl chloride resin, polyvinylidene chloride resin, and acrylic resin were graft-copolymerized. Vinyl chloride resin, polyvinyl alcohol resin, polyethylene resin, polypropylene resin, urethane resin, cycloolefin resin, polystyrene, liquid crystal polymer (LCP), polyether ether ketone (PEEK) resin, polyphenylene sulfide (PPS), polyphenylene sulfone (PPSU), Examples thereof include cellulose nanofibers, silicon, silicon carbide, gallium nitride, sapphire, ceramics, glass, diamond-like carbon (DLC), alumina and the like.
 また、前記絶縁性基材(A)として、熱硬化性樹脂及び無機充填材を含有する樹脂基材を好適に用いることもできる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。一方、前記無機充填材としては、例えば、シリカ、アルミナ、タルク、マイカ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ホウ酸アルミニウム、ホウ珪酸ガラス等が挙げられる。これらの熱硬化性樹脂と無機充填剤は、それぞれ1種で用いることも2種以上併用することもできる。 Further, as the insulating base material (A), a resin base material containing a thermosetting resin and an inorganic filler can be preferably used. Examples of the thermosetting resin include epoxy resin, phenol resin, unsaturated imide resin, cyanate resin, isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, and dicyclopentadiene resin. Examples thereof include silicone resin, triazine resin, and melamine resin. On the other hand, examples of the inorganic filler include silica, alumina, talc, mica, aluminum hydroxide, magnesium hydroxide, calcium carbonate, aluminum borate, and glass borate. These thermosetting resins and inorganic fillers can be used alone or in combination of two or more.
 前記絶縁性基材(A)の形態としては、平面状のフレキシブル材、リジッド材、リジッドフレキシブル材のいずれのものも用いることができる。より具体的には、前記絶縁性基材(A)にフィルム、シート、板状に成形された市販材料を用いてもよいし、上記した樹脂の溶液、溶融液、分散液から、平面状に成形した材料を用いてもよい。また、前記絶縁性基材(A)は、金属等の導電性材料の上に、上記した樹脂の材料を形成した基材であってもよく、回路パターンが形成されたプリント配線板の上に、上記した樹脂の材料を積層形成した基材であっても良い。 As the form of the insulating base material (A), any of a flat flexible material, a rigid material, and a rigid flexible material can be used. More specifically, a film, a sheet, or a commercially available material molded into a plate may be used for the insulating base material (A), or the above-mentioned resin solution, melt liquid, or dispersion liquid may be made flat. A molded material may be used. Further, the insulating base material (A) may be a base material having the above-mentioned resin material formed on a conductive material such as metal, and may be placed on a printed wiring board on which a circuit pattern is formed. , A base material obtained by laminating and forming the above-mentioned resin material may be used.
 前記銀粒子層(M1)は、本発明のプリント配線板用積層体を用いて、プリント配線板を製造する際に、後述する回路パターン層(M2)をめっき工程により形成する際のめっき下地層となる。 The silver particle layer (M1) is a plating base layer when a circuit pattern layer (M2) described later is formed by a plating step when a printed wiring board is manufactured by using the laminated body for a printed wiring board of the present invention. Will be.
 前記銀粒子層(M1)を構成する銀粒子には、後述するめっき工程が問題なく実施できる範囲で、銀以外の金属粒子を含有することができるが、銀以外の金属粒子の割合は、後述する非回路形成部のエッチング除去性をより向上できることから、銀100質量部に対して5質量部以下が好ましく、2質量部以下がより好ましい。 The silver particles constituting the silver particle layer (M1) can contain metal particles other than silver as long as the plating step described later can be carried out without any problem, but the proportion of the metal particles other than silver will be described later. 5 parts by mass or less is preferable with respect to 100 parts by mass of silver, and 2 parts by mass or less is more preferable, because the etching removability of the non-circuit forming portion can be further improved.
 前記銀粒子層(M1)を、平面状の前記絶縁性基材(A)の両面に形成する方法としては、例えば、前記絶縁性基材(A)上の両面に、銀粒子分散液を塗工する方法が挙げられる。前記銀粒子分散液の塗工方法は、銀粒子層(M1)が良好に形成できれば特に制限はなく、種々の塗工方法を、用いる絶縁性基材(A)の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的な塗工方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、凸版反転法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等が挙げられる。この際、前記銀粒子層(M1)は、前記絶縁性基材(A)の両面に同時形成してもよいし、前記絶縁性基材(A)の片面に形成した後、他方の面に形成してもよい。 As a method of forming the silver particle layer (M1) on both sides of the planar insulating base material (A), for example, a silver particle dispersion liquid is applied to both sides of the insulating base material (A). There is a method of construction. The coating method of the silver particle dispersion liquid is not particularly limited as long as the silver particle layer (M1) can be formed satisfactorily, and various coating methods can be used depending on the shape, size, and rigidity of the insulating base material (A). It may be selected appropriately depending on the degree and the like. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method. Blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on. At this time, the silver particle layer (M1) may be simultaneously formed on both surfaces of the insulating base material (A), or may be formed on one side of the insulating base material (A) and then on the other side. It may be formed.
 前記絶縁性基材(A)、及び、前記絶縁性基材(A)上に形成されたプライマー層(B)は、銀粒子分散液の塗工性向上、めっき工程で形成する回路パターン層(M2)の基材への密着性を向上させる目的で、銀粒子分散液を塗工する前に、表面処理を行ってもよい。前記絶縁性基材(A)の表面処理方法としては、表面の粗度が大きくなって、ファインピッチパターン形成性や粗面による信号伝送ロスが問題とならない限りは特に制限はなく、種々の方法を適宜選択すればよい。このような表面処理方法としては、例えば、UV処理、気相オゾン処理、液層オゾン処理、コロナ処理、プラズマ処理等が挙げられる。これらの表面処理方法は、1種の方法で行うことも2種以上の方法を併用することもできる。 The insulating base material (A) and the primer layer (B) formed on the insulating base material (A) are used to improve the coatability of the silver particle dispersion liquid and to form a circuit pattern layer (a circuit pattern layer) formed in the plating step. For the purpose of improving the adhesion of M2) to the substrate, surface treatment may be performed before applying the silver particle dispersion liquid. The surface treatment method for the insulating base material (A) is not particularly limited as long as the surface roughness becomes large and the fine pitch pattern formability and the signal transmission loss due to the rough surface do not become a problem, and various methods are used. Should be selected as appropriate. Examples of such a surface treatment method include UV treatment, vapor phase ozone treatment, liquid layer ozone treatment, corona treatment, plasma treatment and the like. These surface treatment methods may be carried out by one kind of method or a combination of two or more kinds of methods.
 前記銀粒子分散液を前記絶縁性基材(A)上、もしくは前記プライマー層(B)上に塗工した後、塗工膜を乾燥することにより、銀粒子分散液に含まれる溶媒が揮発し、前記絶縁性基材(A)上、もしくは前記プライマー層(B)上に前記銀粒子層(M1)が形成される。 After applying the silver particle dispersion liquid on the insulating base material (A) or the primer layer (B), the coating film is dried to volatilize the solvent contained in the silver particle dispersion liquid. The silver particle layer (M1) is formed on the insulating base material (A) or on the primer layer (B).
 上記の乾燥の温度及び時間は、使用する基材の耐熱温度、後述する前記金属粒子分散液に使用する溶媒の種類に応じて適宜選択すればよいが、20~350℃の範囲で、時間は1~200分の範囲が好ましい。また、基材上に密着性に優れた銀粒子層(M1)を形成するために、前記乾燥の温度は0~250℃の範囲がより好ましい。 The above-mentioned drying temperature and time may be appropriately selected depending on the heat-resistant temperature of the base material to be used and the type of the solvent used for the metal particle dispersion liquid described later, but the time may be in the range of 20 to 350 ° C. The range of 1 to 200 minutes is preferable. Further, in order to form the silver particle layer (M1) having excellent adhesion on the substrate, the drying temperature is more preferably in the range of 0 to 250 ° C.
 前記銀粒子層(M1)を形成した前記絶縁性基材(A)、もしくは前記プライマー層(B)を形成した前記絶縁性基材(A)は、必要に応じ、上記の乾燥後、銀粒子層の電気抵抗を低下させる目的や、前記絶縁性基材(A)、もしくは、前記プライマー層(B)と前記銀粒子層(M1)との密着性を向上させる目的で、さらにアニーリングを行ってもよい。アニーリングの温度と時間は、使用する基材の耐熱温度、必要とする電気抵抗、生産性等に応じて適宜選択すればよく、60~350℃の範囲で1分~2週間の時間行えばよい。また、60~180℃の温度範囲では、1分~2週間の時間が好ましく、180~350℃の範囲では、1分~5時間程度とするのが好ましい。 The insulating base material (A) on which the silver particle layer (M1) is formed or the insulating base material (A) on which the primer layer (B) is formed is, if necessary, after the above-mentioned drying, the silver particles. Further annealing is performed for the purpose of reducing the electrical resistance of the layer and for the purpose of improving the adhesion between the insulating base material (A) or the primer layer (B) and the silver particle layer (M1). May be good. The annealing temperature and time may be appropriately selected according to the heat resistant temperature of the substrate to be used, the required electrical resistance, productivity, etc., and may be performed in the range of 60 to 350 ° C. for 1 minute to 2 weeks. .. Further, in the temperature range of 60 to 180 ° C., the time is preferably 1 minute to 2 weeks, and in the range of 180 to 350 ° C., it is preferably about 1 minute to 5 hours.
 上記の乾燥は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥は、大気中で行ってもよいし、窒素、アルゴン等の不活性ガスの置換雰囲気下、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, under a substitution atmosphere of an inert gas such as nitrogen or argon, under an air flow, or under a vacuum.
 塗工膜の乾燥は、塗工場所での自然乾燥の他、送風、定温乾燥器などの乾燥器内で行うことができる。また、前記絶縁性基材(A)がロールフィルムやロールシートの場合には、塗工工程に続けて、設置された非加熱または加熱空間内でロール材を連続的に移動させることにより、乾燥・焼成を行うことができる。この際の乾燥・焼成の加熱方法としては、例えば、オーブン、熱風式乾燥炉、赤外線乾燥炉、レーザー照射、マイクロウェーブ、光照射(フラッシュ照射装置)等を用いる方法が挙げられる。これらの加熱方法は、1種で用いることも2種以上併用することもできる。 Drying of the coating film can be performed in a dryer such as a blower or a constant temperature dryer, in addition to natural drying at the coating site. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in an installed non-heated or heated space following the coating process. -Can be fired. Examples of the heating method for drying / firing at this time include a method using an oven, a hot air drying furnace, an infrared drying furnace, laser irradiation, microwaves, light irradiation (flash irradiation device), and the like. These heating methods can be used alone or in combination of two or more.
 前記絶縁性基材(A)上、もしくは前記プライマー層(B)上に形成される前記金属粒子層(M1)の形成量は、0.01~30g/mの範囲が好ましく、0.01~10g/mの範囲がより好ましい。また、後述するめっき工程による導電層(M3)の形成が容易となり、後述するエッチングによるシード層除去工程が容易となることから、0.05~5g/mの範囲がさらに好ましい。 The amount of the metal particle layer (M1) formed on the insulating base material (A) or the primer layer (B) is preferably in the range of 0.01 to 30 g / m 2 , preferably 0.01. The range of ~ 10 g / m 2 is more preferable. Further, the range of 0.05 to 5 g / m 2 is more preferable because the formation of the conductive layer (M3) by the plating step described later becomes easy and the seed layer removal step by etching described later becomes easy.
 前記銀粒子層(M1)の形成量は、蛍光X線法、原子吸光法、ICP法等、公知慣用の分析手法を用いて確認することができる。 The amount of the silver particle layer (M1) formed can be confirmed by using a known and commonly used analytical method such as a fluorescent X-ray method, an atomic absorption method, and an ICP method.
 また、後述するレジスト層に活性光で回路パターンを露光する工程において、前記銀粒子層(M1)からの活性光の反射を抑制する目的で、前記銀粒子層(M1)を形成でき、後述する電解めっきが問題なく実施でき、後述するエッチング除去性を確保できる範囲で、前記銀粒子層(M1)中に前記活性光を吸収するグラファイトやカーボン、シアニン化合物、フタロシアニン化合物、ジチオール金属錯体、ナフトキノン化合物、ジインモニウム化合物、アゾ化合物等の光を吸収する顔料、又は色素を光吸収剤として含有させてもよい。これらの顔料や色素は、使用する前記活性光の波長に合わせて適宜選択すればよい。また、これらの顔料や色素は、1種で用いることも2種以上併用することもできる。さらに、前記銀粒子層(M1)中にこれらの顔料や色素を含有されるためには、後述する銀粒子分散液にこれらの顔料や色素を配合すればよい。 Further, in the step of exposing the circuit pattern to the resist layer described later with active light, the silver particle layer (M1) can be formed for the purpose of suppressing reflection of the active light from the silver particle layer (M1), which will be described later. Graphite, carbon, cyanine compound, phthalocyanine compound, dithiol metal complex, naphthoquinone compound that absorbs the active light in the silver particle layer (M1) to the extent that electrolytic plating can be performed without problems and the etching removability described later can be ensured. , Diimmonium compound, azo compound and other light-absorbing pigments, or dyes may be contained as a light absorber. These pigments and dyes may be appropriately selected according to the wavelength of the active light to be used. Further, these pigments and dyes can be used alone or in combination of two or more. Further, in order to contain these pigments and dyes in the silver particle layer (M1), these pigments and dyes may be blended in the silver particle dispersion liquid described later.
 前記銀粒子層(M1)を形成するために用いる銀粒子分散液は、銀粒子が溶媒中に分散したものである。前記銀粒子の形状としては、銀粒子層(M1)を良好に形成するものであれば特に制限はなく、球状、レンズ状、多面体状、平板状、ロッド状、ワイヤー状など、種々の形状の銀粒子を用いることができる。これらの銀粒子は、単一形状の1種で用いることも、形状が異なる2種以上を併用することもできる。 The silver particle dispersion liquid used to form the silver particle layer (M1) is one in which silver particles are dispersed in a solvent. The shape of the silver particles is not particularly limited as long as it can form the silver particle layer (M1) satisfactorily, and has various shapes such as spherical, lenticular, polyhedral, flat plate, rod, and wire. Silver particles can be used. These silver particles may be used as one type having a single shape, or may be used in combination with two or more types having different shapes.
 前記銀粒子の形状が球状や多面体状である場合には、その平均粒子径が1~20,000nmの範囲のものが好ましい。また、微細な回路パターンを形成する場合には、銀粒子層(M1)の均質性がより向上し、後述するエッチング液による除去性もより向上できることから、その平均粒子径が1~200nmの範囲のものがより好ましく、1~50nmの範囲のものがさらに好ましい。なお、ナノメートルサイズの粒子に関する「平均粒子径」は、前記金属粒子を分散良溶媒で希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 When the shape of the silver particles is spherical or polyhedral, it is preferable that the average particle diameter is in the range of 1 to 20,000 nm. Further, when a fine circuit pattern is formed, the homogeneity of the silver particle layer (M1) is further improved, and the removability by an etching solution described later can be further improved, so that the average particle diameter is in the range of 1 to 200 nm. Those in the range of 1 to 50 nm are more preferable, and those in the range of 1 to 50 nm are further preferable. The "average particle size" of the nanometer-sized particles is a volume average value measured by a dynamic light scattering method obtained by diluting the metal particles with a good dispersion solvent. "Nanotrack UPA-150" manufactured by Microtrack Co., Ltd. can be used for this measurement.
 一方、銀粒子がレンズ状、ロッド状、ワイヤー状などの形状を有する場合には、その短径が1~200nmの範囲のものが好ましく、2~100nmの範囲のものがより好ましく、5~50nmの範囲のものがさらに好ましい。 On the other hand, when the silver particles have a shape such as a lens shape, a rod shape, or a wire shape, those having a minor axis in the range of 1 to 200 nm are preferable, those having a minor axis in the range of 2 to 100 nm are more preferable, and those having a minor diameter in the range of 5 to 50 nm are more preferable. Those in the range of are more preferable.
 前記銀粒子は、銀粒子を主成分とするものが好ましいが、後述するめっき工程を阻害したり、後述する前記銀粒子層(M1)のエッチング液による除去性が損なわれたりしない限りは、前記銀粒子を構成する銀の一部が他の金属で置換されたり、銀以外の金属成分が混合されていてもよい。 The silver particles preferably contain silver particles as a main component, but the silver particles are described above as long as they do not interfere with the plating step described later or impair the removability of the silver particle layer (M1) described later by the etching solution. A part of silver constituting the silver particles may be replaced with another metal, or a metal component other than silver may be mixed.
 置換又は混合される金属としては、金、白金、パラジウム、ルテニウム、スズ、銅、ニッケル、鉄、コバルト、チタン、インジウム及びイリジウムからなる群より選ばれる1種以上の金属元素が挙げられる。 Examples of the metal to be substituted or mixed include one or more metal elements selected from the group consisting of gold, platinum, palladium, ruthenium, tin, copper, nickel, iron, cobalt, titanium, indium and iridium.
 前記銀粒子に対して、置換又は混合される金属の比率は、前記銀粒子中に5質量%以下が好ましく、前記銀粒子層(M1)のめっき性、エッチング液による除去性の観点から2質量%以下がより好ましい。 The ratio of the metal to be substituted or mixed with respect to the silver particles is preferably 5% by mass or less in the silver particles, and is 2% by mass from the viewpoint of the plating property of the silver particle layer (M1) and the removability by the etching solution. % Or less is more preferable.
 前記銀粒子層(M1)を形成するために用いる銀粒子分散液は、銀粒子を各種溶媒中に分散したものであり、その分散液中の銀粒子の粒径分布は、単分散で揃っていてもよく、また、上記の平均粒子径の範囲である粒子の混合物であってもよい。 The silver particle dispersion used to form the silver particle layer (M1) is one in which silver particles are dispersed in various solvents, and the particle size distribution of the silver particles in the dispersion is uniform in a single dispersion. It may be a mixture of particles within the above average particle size range.
 前記銀粒子の分散液に用いる溶媒としては、水性媒体や有機溶剤を使用することができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水、及び、前記水と混和する有機溶剤との混合物が挙げられる。 As the solvent used for the dispersion liquid of the silver particles, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion-exchanged water, pure water, ultrapure water, and a mixture of the water and an organic solvent to be mixed with the water.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。
 また、有機溶剤単独で使用する場合の有機溶媒としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。
Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
In addition, examples of the organic solvent when the organic solvent is used alone include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
 前記アルコール溶剤又はエーテル溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、2-エチル-1,3-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、グリセリン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol solvent or ether solvent include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, and dodecanol. , Tridecanol, Tetradecanol, Pentadecanol, Stearyl Alcohol, Allyl Alcohol, Cyclohexanol, Terpineol, Tarpineol, Dihydroterpineol, 2-Ethyl-1,3-hexanediol, Ethylene Glycol, Diethylene Glycol, Triethylene Glycol, Polyethylene Glycol, Propylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, glycerin, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol Monobutyl Ether, Diethylene Glycol Monoethyl Ether, Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monobutyl Ether, Tetraethylene Glycol Monobutyl Ether, Propylene Glycol Monomethyl Ether, Dipropylene Glycol Monomethyl Ether, Tripropylene Glycol Monomethyl Ether, Propylene Glycol Monopropyl Ether, Dipropylene Glycol Monopropyl Examples thereof include ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, and tripropylene glycol monobutyl ether.
 前記ケトン溶剤としては、例えば、アセトン、シクロヘキサノン、メチルエチルケトン等が挙げられる。また、前記エステル溶剤としては、例えば、酢酸エチル、酢酸ブチル、3―メトキシブチルアセテート、3-メトキシ-3-メチル-ブチルアセテート等が挙げられる。さらに、その他の有機溶剤として、トルエン等の炭化水素溶剤、特に炭素原子数8以上の炭化水素溶剤が挙げられる。 Examples of the ketone solvent include acetone, cyclohexanone, methyl ethyl ketone and the like. Examples of the ester solvent include ethyl acetate, butyl acetate, 3-methoxybutyl acetate, 3-methoxy-3-methyl-butyl acetate and the like. Further, as another organic solvent, a hydrocarbon solvent such as toluene, particularly a hydrocarbon solvent having 8 or more carbon atoms can be mentioned.
 前記炭素原子数8以上の炭化水素溶剤としては、例えば、オクタン、ノナン、デカン、ドデカン、トリデカン、テトラデカン、シクロオクタン、キシレン、メシチレン、エチルベンゼン、ドデシルベンゼン、テトラリン、トリメチルベンゼンシクロヘキサン等の非極性溶剤が挙げられ、他の溶媒と必要に応じて組み合わせて用いることができる。さらに、混合溶剤であるミネラルスピリット、ソルベントナフサ等の溶媒を併用することもできる。 Examples of the hydrocarbon solvent having 8 or more carbon atoms include non-polar solvents such as octane, nonane, decane, dodecane, tridecane, tetradecane, cyclooctane, xylene, mesitylene, ethylbenzene, dodecylbenzene, tetraline, and trimethylbenzenecyclohexane. It can be used in combination with other solvents as needed. Further, a solvent such as mineral spirit or solvent naphtha which is a mixed solvent can be used in combination.
 前記溶媒は、銀粒子が安定に分散し、前記絶縁性基材(A)、もしくは、後述する前記絶縁性基材(A)上に形成されたプライマー層(B)上に、前記銀粒子層(M1)を良好に形成するものであれば特に制限はない。また、前記溶媒は、1種で用いることも2種以上併用することもできる。 In the solvent, the silver particles are stably dispersed, and the silver particle layer is placed on the insulating base material (A) or the primer layer (B) formed on the insulating base material (A) described later. There is no particular limitation as long as it forms (M1) well. Further, the solvent may be used alone or in combination of two or more.
 前記銀粒子分散液中の銀粒子の含有率は、上記の種々の塗工方法を用いて前記絶縁性基材(A)上の前記銀粒子層(M1)の形成量が0.01~30g/mの範囲になるように適宜調整し、上記の種々の塗工方法に応じて最適な塗工適性を有する粘度になるように調整すればよいが、0.1~50質量%の範囲が好ましく、0.5~20質量%の範囲がより好ましい。 The content of silver particles in the silver particle dispersion is such that the amount of the silver particle layer (M1) formed on the insulating substrate (A) is 0.01 to 30 g by using the various coating methods described above. It may be adjusted appropriately so as to be in the range of / m 2 , and adjusted so as to have a viscosity having optimum coating suitability according to the above-mentioned various coating methods, but in the range of 0.1 to 50% by mass. Is preferable, and the range of 0.5 to 20% by mass is more preferable.
 前記銀粒子分散液は、前記銀粒子が、前記の各種溶媒媒中で凝集、融合、沈殿することなく、長期間の分散安定性を保つことが好ましく、銀粒子を前記の各種溶媒中に分散させるための分散剤を含有することが好ましい。このような分散剤としては、金属粒子に配位する官能基を有する分散剤が好ましく、例えば、カルボキシル基、アミノ基、シアノ基、アセトアセチル基、リン原子含有基、チオール基、チオシアナト基、グリシナト基等の官能基を有する分散剤が挙げられる。 In the silver particle dispersion liquid, it is preferable that the silver particles do not aggregate, fuse, or precipitate in the various solvent media, and the dispersion stability is maintained for a long period of time, and the silver particles are dispersed in the various solvents. It is preferable to contain a dispersant for causing the reaction. As such a dispersant, a dispersant having a functional group that coordinates with the metal particles is preferable, and for example, a carboxyl group, an amino group, a cyano group, an acetoacetyl group, a phosphorus atom-containing group, a thiol group, a thiosianato group, and a glycinato. Dispersants having a functional group such as a group can be mentioned.
 前記分散剤としては、市販、もしくは独自に合成した低分子量、又は高分子量の分散剤を用いることができ、金属粒子を分散する溶媒や、金属粒子の分散液を塗工する前記絶縁性基材(A)の種類など、目的に応じて適宜選択すればよい。例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが好適に用いられる。ここで、後述するプライマー層(B)上に銀粒子層(M1)を形成する場合は、これら2層の密着性が良好になることから、後述するプライマー層(B)に用いる樹脂が有する反応性官能基[X]と結合を形成しうる反応性官能基[Y]を有する化合物を用いることが好ましい。 As the dispersant, a commercially available or independently synthesized low molecular weight or high molecular weight dispersant can be used, and the insulating base material to which a solvent for dispersing metal particles or a dispersion liquid of metal particles is applied is applied. It may be appropriately selected according to the purpose such as the type of (A). For example, dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid and stearic acid; A polycyclic hydrocarbon compound having a carboxyl group of the above is preferably used. Here, when the silver particle layer (M1) is formed on the primer layer (B) described later, the adhesion between these two layers becomes good, so that the reaction of the resin used for the primer layer (B) described later It is preferable to use a compound having a reactive functional group [Y] capable of forming a bond with the sex functional group [X].
 反応性官能基[Y]を有する化合物としては、例えば、アミノ基、アミド基、アルキロールアミド基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等を有する化合物、シルセスキオキサン化合物等が挙げられる。特に、プライマー層(B)と金属粒子層(M1)との密着性をより向上できることから、前記反応性官能基[Y]は塩基性窒素原子含有基が好ましい。前記塩基性窒素原子含有基としては、例えば、イミノ基、1級アミノ基、2級アミノ基等が挙げられる。 Examples of the compound having a reactive functional group [Y] include an amino group, an amide group, an alkyrole amide group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetan ring. , Vinyl group, allyl group, (meth) acryloyl group, (blocked) isocyanate group, (alkoxy) silyl group and the like, silsesquioxane compound and the like. In particular, the reactive functional group [Y] is preferably a basic nitrogen atom-containing group because the adhesion between the primer layer (B) and the metal particle layer (M1) can be further improved. Examples of the basic nitrogen atom-containing group include an imino group, a primary amino group, a secondary amino group and the like.
 前記塩基性窒素原子含有基は、分散剤1分子中に単数、もしくは複数存在してもよい。分散剤中に複数の塩基性窒素原子を含有することで、塩基性窒素原子含有基の一部は、金属粒子との相互作用により、金属粒子の分散安定性に寄与し、残りの塩基性窒素原子含有基は、前記絶縁性基材(A)との密着性向上に寄与する。また、後述するプライマー層(B)に反応性官能基[X]を有する樹脂を用いた場合には、分散剤中の塩基性窒素原子含有基は、この反応性官能基[X]との間で結合が形成でき、前記絶縁性基材(A)上への後述する金属パターン層(M2)の密着性をより一層向上できるため好ましい。 The basic nitrogen atom-containing group may be singular or plural in one molecule of the dispersant. By containing a plurality of basic nitrogen atoms in the dispersant, some of the basic nitrogen atom-containing groups contribute to the dispersion stability of the metal particles by interacting with the metal particles, and the remaining basic nitrogen. The atom-containing group contributes to improving the adhesion to the insulating base material (A). Further, when a resin having a reactive functional group [X] is used for the primer layer (B) described later, the basic nitrogen atom-containing group in the dispersant is between the reactive functional group [X]. It is preferable because a bond can be formed with the above and the adhesion of the metal pattern layer (M2) described later on the insulating base material (A) can be further improved.
 前記分散剤は、銀粒子の分散液の安定性、塗工性、及び、前記絶縁性基材(A)上に良好な密着性を示す銀粒子層(M1)を形成できることから、分散剤は、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物などが好ましい。 Since the dispersant can form a silver particle layer (M1) that exhibits stability, coatability, and good adhesion on the insulating base material (A), the dispersant is a dispersant. , The polymer dispersant is preferable, and as the polymer dispersant, polyalkyleneimine such as polyethyleneimine and polypropyleneimine, and a compound in which polyoxyalkylene is added to the polyalkyleneimine are preferable.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物としては、ポリエチレンイミンとポリオキシアルキレンとが、直鎖状で結合したものであってもよく、前記ポリエチレンイミンからなる主鎖に対して、その側鎖にポリオキシアルキレンがグラフトしたものであってもよい。 The compound to which polyoxyalkylene is added to the polyalkyleneimine may be a compound in which polyethyleneimine and polyoxyalkylene are bonded in a linear manner, and the side of the main chain made of polyethyleneimine is the side thereof. The chain may be grafted with polyoxyalkylene.
 前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物の具体例としては、例えば、ポリエチレンイミンとポリオキシエチレンとのブロック共重合体、ポリエチレンイミンの主鎖中に存在するイミノ基の一部にエチレンオキサイドを付加反応させてポリオキシエチレン構造を導入したもの、ポリアルキレンイミンが有するアミノ基と、ポリオキシエチレングリコールが有する水酸基と、エポキシ樹脂が有するエポキシ基とを反応させたもの等が挙げられる。 Specific examples of the compound in which polyoxyalkylene is added to the polyalkyleneimine include a block copolymer of polyethyleneimine and polyoxyethylene, and ethylene oxide in a part of the imino group present in the main chain of polyethyleneimine. Examples thereof include those in which a polyoxyethylene structure is introduced by an addition reaction, and those in which an amino group possessed by polyalkyleneimine, a hydroxyl group possessed by polyoxyethylene glycol, and an epoxy group possessed by an epoxy resin are reacted.
 前記ポリアルキレンイミンの市販品としては、株式会社日本触媒製の「エポミン(登録商標)PAOシリーズ」の「PAO2006W」、「PAO306」、「PAO318」、「PAO718」等が挙げられる。 Examples of the commercially available product of the polyalkyleneimine include "PAO2006W", "PAO306", "PAO318" and "PAO718" of "Epomin (registered trademark) PAO series" manufactured by Nippon Shokubai Co., Ltd.
 前記ポリアルキレンイミンの数平均分子量は、3,000~30,000の範囲が好ましい。 The number average molecular weight of the polyalkyleneimine is preferably in the range of 3,000 to 30,000.
 前記銀粒子を分散させるために必要な前記分散剤の使用量は、前記銀粒子100質量部に対し、0.01~50質量部の範囲が好ましく、また、前記絶縁性基材(A)上、もしくは、後述するプライマー層(B)上に、良好な密着性を示す銀粒子層(M1)を形成できることから、前記銀粒子100質量部に対し、0.1~10質量部の範囲が好ましく、さらに前記銀粒子層(M1)のめっき性を向上できることから、0.1~5質量部の範囲がより好ましい。 The amount of the dispersant required to disperse the silver particles is preferably in the range of 0.01 to 50 parts by mass with respect to 100 parts by mass of the silver particles, and is on the insulating substrate (A). Alternatively, since a silver particle layer (M1) showing good adhesion can be formed on the primer layer (B) described later, the range of 0.1 to 10 parts by mass is preferable with respect to 100 parts by mass of the silver particles. Further, since the plating property of the silver particle layer (M1) can be improved, the range of 0.1 to 5 parts by mass is more preferable.
 前記銀粒子の分散液の製造方法としては、特に制限はなく、種々の方法を用いて製造できるが、例えば、低真空ガス中蒸発法などの気相法を用いて製造した銀粒子を、溶媒中に分散させてもよいし、液相で銀化合物を還元して直接銀粒子の分散液を調製してもよい。気相、液相法とも、適宜、必要に応じて、溶媒交換や溶媒添加により、製造時の分散液と塗工時の分散液の溶剤組成を変更することが可能である。気相、液相法のうち、分散液の安定性や製造工程の簡便さから、液相法を特に好適に用いることができる。液相法としては、例えば、前記高分子分散剤の存在下で銀イオンを還元することによって製造することができる。 The method for producing the dispersion liquid of silver particles is not particularly limited and can be produced by using various methods. For example, silver particles produced by a gas phase method such as an evaporation method in a low vacuum gas can be used as a solvent. It may be dispersed therein, or the silver compound may be reduced in the liquid phase to directly prepare a dispersion of silver particles. In both the gas phase and the liquid phase methods, the solvent composition of the dispersion liquid at the time of production and the dispersion liquid at the time of coating can be changed as appropriate by exchanging the solvent or adding a solvent. Of the gas phase and liquid phase methods, the liquid phase method can be particularly preferably used because of the stability of the dispersion liquid and the simplicity of the manufacturing process. As a liquid phase method, for example, it can be produced by reducing silver ions in the presence of the polymer dispersant.
 前記銀粒子の分散液には、さらに必要に応じて、界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤などの有機化合物を配合してもよい。 If necessary, the dispersion liquid of silver particles may further contain an organic compound such as a surfactant, a leveling agent, a viscosity modifier, a film forming aid, an antifoaming agent, and an antiseptic.
 前記界面活性剤としては、例えば、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンソルビトールテトラオレエート、ポリオキシエチレン・ポリオキシプロピレン共重合体等のノニオン系界面活性剤;オレイン酸ナトリウム等の脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、ポリオキシエチレンアルキル硫酸塩、アルカンスルホネートナトリウム塩、アルキルジフェニルエーテルスルホン酸ナトリウム塩等のアニオン系界面活性剤;アルキルアミン塩、アルキルトリメチルアンモニウム塩、アルキルジメチルベンジルアンモニウム塩等のカチオン系界面活性剤などが挙げられる。 Examples of the surfactant include nonions such as polyoxyethylene nonylphenyl ether, polyoxyethylene lauryl ether, polyoxyethylene styrylphenyl ether, polyoxyethylene sorbitol tetraoleate, and polyoxyethylene / polyoxypropylene copolymer. Surfactants; fatty acid salts such as sodium oleate, alkyl sulfate ester salts, alkylbenzene sulfonates, alkyl sulfosuccinates, naphthalene sulfonates, polyoxyethylene alkyl sulfates, alkane sulfonate sodium salts, sodium alkyldiphenyl ether sulfonates Anionic surfactants such as salts; cationic surfactants such as alkylamine salts, alkyltrimethylammonium salts, and alkyldimethylbenzylammonium salts can be mentioned.
 前記レベリング剤としては、一般的なレベリング剤を使用することができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone-based compounds, acetylenediol-based compounds, and fluorine-based compounds.
 前記粘度調整剤としては、一般的な増粘剤を使用することができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体、合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトール等が挙げられる。 As the viscosity modifier, a general thickener can be used. For example, an acrylic polymer that can be thickened by adjusting it to alkaline, a synthetic rubber latex, and a thickening agent by associating molecules can be used. Examples thereof include urethane resin, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amido wax, polyethylene oxide, metal soap, and dibenzylidene sorbitol.
 前記成膜助剤としては、一般的な成膜助剤を使用することができ、例えば、ジオクチルスルホコハク酸エステルソーダ塩等アニオン系界面活性剤、ソルビタンモノオレエート等の疎水性ノニオン系界面活性剤、ポリエーテル変性シロキサン、シリコーンオイルなどが挙げられる。 As the film-forming auxiliary, a general film-forming auxiliary can be used. For example, an anionic surfactant such as dioctyl sulfosuccinate sodium salt, a hydrophobic nonionic surfactant such as sorbitan monooleate, etc. can be used. , Polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を使用することができ、例えば、シリコーン系消泡剤、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the defoaming agent, a general defoaming agent can be used, and examples thereof include silicone-based defoaming agents, nonionic-based surfactants, polyethers, higher alcohols, and polymer-based surfactants.
 前記防腐剤としては、一般的な防腐剤を使用することができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, a general preservative can be used, for example, an isothiazoline-based preservative, a triazine-based preservative, an imidazole-based preservative, a pyridine-based preservative, an azole-based preservative, a pyrithione-based preservative, and the like. Can be mentioned.
 また、本発明のセミアディティブ工法用積層体のより好ましい態様として、前記絶縁性基材層(A)と、導電性の銀粒子層(M1)の間に、さらにプライマー層(B)を有する積層体を挙げることができる。このプライマー層を設けたセミアディティブ工法用積層体は、前記絶縁性基材(A)への導電層(M3)の密着性をより一層向上できることから好ましい。 Further, as a more preferable embodiment of the laminate for the semi-additive method of the present invention, a laminate having a primer layer (B) between the insulating base material layer (A) and the conductive silver particle layer (M1). I can raise my body. The laminate for the semi-additive method provided with this primer layer is preferable because the adhesion of the conductive layer (M3) to the insulating base material (A) can be further improved.
 前記プライマー層(B)は、前記絶縁性基材(A)の表面の一部、又は全面にプライマーを塗工し、前記プライマー中に含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成できる。ここで、プライマーとは、絶縁性基材(A)への導電層(M3)の密着性を向上させる目的で用いるものであり、後述する各種の樹脂を溶剤中に溶解、もしくは分散させた液状組成物である。 The primer layer (B) is coated with a primer on a part or the entire surface of the insulating base material (A) to remove solvents such as an aqueous medium and an organic solvent contained in the primer. Can be formed. Here, the primer is used for the purpose of improving the adhesion of the conductive layer (M3) to the insulating base material (A), and is a liquid in which various resins described later are dissolved or dispersed in a solvent. It is a composition.
 前記プライマーを前記絶縁性基材(A)に塗工する方法としては、プライマー層(B)が良好に形成できれば特に制限は無く、種々の塗工方法を、使用する絶縁性基材(A)の形状、サイズ、剛柔の度合いなどによって適宜選択すればよい。具体的な塗工方法としては、例えば、グラビア法、オフセット法、フレキソ法、パッド印刷法、グラビアオフセット法、凸版法、凸版反転法、スクリーン法、マイクロコンタクト法、リバース法、エアドクターコーター法、ブレードコーター法、エアナイフコーター法、スクイズコーター法、含浸コーター法、トランスファーロールコーター法、キスコーター法、キャストコーター法、スプレーコーター法、インクジェット法、ダイコーター法、スピンコーター法、バーコーター法、ディップコーター法等が挙げられる。 The method of applying the primer to the insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and various coating methods can be used for the insulating base material (A). It may be appropriately selected according to the shape, size, degree of flexibility and the like. Specific coating methods include, for example, a gravure method, an offset method, a flexographic method, a pad printing method, a gravure offset method, a letterpress method, a letterpress inversion method, a screen method, a microcontact method, a reverse method, and an air doctor coater method. Blade coater method, air knife coater method, squeeze coater method, impregnation coater method, transfer roll coater method, kiss coater method, cast coater method, spray coater method, inkjet method, die coater method, spin coater method, bar coater method, dip coater method. And so on.
 また、フィルム、シート、板状の前記絶縁性基材(A)の両面に、前記プライマーを塗工する方法は、プライマー層(B)が良好に形成できれば特に制限はなく、上記で例示した塗工方法を適宜選択すればよい。この際、前記プライマー層(B)は、前記絶縁性基材(A)の両面に同時形成してもよく、前記絶縁性基材(A)の片面に形成した後、他方の面に形成してもよい。 Further, the method of applying the primer to both surfaces of the film, the sheet, and the plate-shaped insulating base material (A) is not particularly limited as long as the primer layer (B) can be formed well, and the coating illustrated above is exemplified. The construction method may be selected as appropriate. At this time, the primer layer (B) may be simultaneously formed on both surfaces of the insulating base material (A), and may be formed on one side of the insulating base material (A) and then on the other side. You may.
 前記絶縁性基材(A)は、プライマーの塗工性向上や、前記回路パターン層(M2)の基材への密着性を向上させる目的で、プライマー塗工前に、表面処理を行ってもよい。前記絶縁性基材(A)の表面処理方法としては、上述した絶縁性基材(A)上に、銀粒子層(M1)を形成する場合の表面処理方法と同様の方法を用いることができる。 The insulating base material (A) may be surface-treated before the primer coating for the purpose of improving the coatability of the primer and improving the adhesion of the circuit pattern layer (M2) to the base material. good. As the surface treatment method for the insulating base material (A), the same method as the surface treatment method for forming the silver particle layer (M1) on the insulating base material (A) described above can be used. ..
 前記プライマーを絶縁性基材(A)の表面に塗工した後、その塗工層に含まれる溶媒を除去してプライマー層(B)を形成する方法としては、例えば、乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ前記絶縁性基材(A)に悪影響を与えない範囲の温度に設定すればよく、室温乾燥でも加熱乾燥でもよい。具体的な乾燥温度は、20~350℃の範囲が好ましく、60~300℃の範囲がより好ましい。また、乾燥時間は、1~200分の範囲が好ましく、1~60分の範囲がより好ましい。 As a method of applying the primer to the surface of the insulating base material (A) and then removing the solvent contained in the coating layer to form the primer layer (B), for example, drying using a dryer is used. The method of volatilizing the solvent is common. The drying temperature may be set to a temperature within a range in which the solvent can be volatilized and does not adversely affect the insulating base material (A), and may be room temperature drying or heat drying. The specific drying temperature is preferably in the range of 20 to 350 ° C, more preferably in the range of 60 to 300 ° C. The drying time is preferably in the range of 1 to 200 minutes, more preferably in the range of 1 to 60 minutes.
 上記の乾燥は、送風を行ってもよいし、特に送風を行わなくてもよい。また、乾燥は、大気中で行ってもよいし、窒素、アルゴンなどの置換雰囲気、もしくは気流下で行ってもよく、真空下で行ってもよい。 The above drying may be performed by blowing air, or may not be blown in particular. Further, the drying may be carried out in the atmosphere, in a substitution atmosphere such as nitrogen or argon, in an air flow, or in a vacuum.
 前記絶縁性基材(A)が、枚葉のフィルム、シート、板の場合には、塗工場所での自然乾燥の他、送風、定温乾燥器などの乾燥器内で行うことができる。また、前記絶縁性基材(A)がロールフィルムやロールシートの場合には、塗工工程に続けて、設置された非加熱または加熱空間内でロール材を連続的に移動させることにより、乾燥を行うことができる。 When the insulating base material (A) is a single-leaf film, sheet, or board, it can be naturally dried at the coating site, blown air, or in a dryer such as a constant temperature dryer. When the insulating base material (A) is a roll film or a roll sheet, the roll material is dried by continuously moving the roll material in the installed non-heated or heated space following the coating process. It can be performed.
 前記プライマー層(B)の膜厚は、本発明を用いて製造するプリント配線板の仕様、用途によって適宜選択すればよいが、前記絶縁性基材(A)と前記金属パターン層(M2)との密着性を、より向上できることから、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。 The film thickness of the primer layer (B) may be appropriately selected depending on the specifications and applications of the printed wiring board manufactured using the present invention, but the insulating base material (A) and the metal pattern layer (M2) are used. The range of 10 nm to 30 μm is preferable, the range of 10 nm to 1 μm is more preferable, and the range of 10 nm to 500 nm is further preferable, because the adhesion of the material can be further improved.
 プライマー層(B)を形成する樹脂は、前記金属粒子の分散剤に反応性官能基[Y]を有するものを用いる場合、反応性官能基[Y]に対して反応性を有する反応性官能基[X]を有する樹脂が好ましい。前記反応性官能基[X]としては、例えば、アミノ基、アミド基、アルキロールアミド基、ケト基、カルボキシル基、無水カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、オキセタン環、ビニル基、アリル基、(メタ)アクリロイル基、(ブロック化)イソシアネート基、(アルコキシ)シリル基等が挙げられる。また、プライマー層(B)を形成する化合物として、シルセスキオキサン化合物を用いることもできる。 When a resin having a reactive functional group [Y] is used as the dispersant for the metal particles, the resin forming the primer layer (B) is a reactive functional group having a reactivity with the reactive functional group [Y]. A resin having [X] is preferable. Examples of the reactive functional group [X] include an amino group, an amide group, an alkyrole amide group, a keto group, a carboxyl group, an anhydrous carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group and an oxetane. Examples thereof include a ring, a vinyl group, an allyl group, a (meth) acryloyl group, a (blocked) isocyanate group, and a (alkoxy) silyl group. Further, as the compound forming the primer layer (B), a silsesquioxane compound can also be used.
 特に、前記分散剤中の反応性官能基[Y]が、塩基性窒素原子含有基の場合、前記絶縁性基材(A)上での回路パターン層(M2)の密着性をより向上できることから、プライマー層(B)を形成する樹脂は、反応性官能基[X]として、ケト基、カルボキシル基、カルボニル基、アセトアセチル基、エポキシ基、脂環エポキシ基、アルキロールアミド基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基を有するものが好ましい。 In particular, when the reactive functional group [Y] in the dispersant is a basic nitrogen atom-containing group, the adhesion of the circuit pattern layer (M2) on the insulating substrate (A) can be further improved. The resin forming the primer layer (B) has, as the reactive functional group [X], a keto group, a carboxyl group, a carbonyl group, an acetoacetyl group, an epoxy group, an alicyclic epoxy group, an alkylolamide group, an isocyanate group, and the like. Those having a vinyl group, a (meth) acryloyl group and an allyl group are preferable.
 前記プライマー層(B)を形成する樹脂としては、例えば、ウレタン樹脂、アクリル樹脂、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、ポリイソシアネートにフェノール等のブロック化剤を反応させて得られたブロックイソシアネートポリビニルアルコール、ポリビニルピロリドン等が挙げられる。なお、ウレタン樹脂をシェルとしアクリル樹脂をコアとするコア・シェル型複合樹脂は、例えば、ウレタン樹脂存在下でアクリル単量体を重合することにより得られる。また、これらの樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the resin forming the primer layer (B) include a urethane resin, an acrylic resin, a core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core, an epoxy resin, an imide resin, an amide resin, and a melamine resin. , Phenolic resin, urea formaldehyde resin, blocked isocyanate obtained by reacting polyisocyanate with a blocking agent such as phenol, polyvinyl alcohol, polyvinylpyrrolidone and the like. The core-shell type composite resin having a urethane resin as a shell and an acrylic resin as a core can be obtained, for example, by polymerizing an acrylic monomer in the presence of a urethane resin. Further, these resins can be used alone or in combination of two or more.
 上記のプライマー層(B)を形成する樹脂の中でも、絶縁性基材(A)上への導電層(M3)の密着性をより向上できることから、加熱により還元性化合物を生成する樹脂が好ましい。前記還元性化合物としては、例えば、フェノール化合物、芳香族アミン化合物、硫黄化合物、リン酸化合物、アルデヒド化合物等が挙げられる。これらの還元性化合物の中でも、フェノール化合物、アルデヒド化合物が好ましい。 Among the resins forming the primer layer (B), a resin that produces a reducing compound by heating is preferable because the adhesion of the conductive layer (M3) to the insulating substrate (A) can be further improved. Examples of the reducing compound include phenol compounds, aromatic amine compounds, sulfur compounds, phosphoric acid compounds, aldehyde compounds and the like. Among these reducing compounds, phenol compounds and aldehyde compounds are preferable.
 加熱により還元性化合物を生成する樹脂をプライマーに用いた場合、プライマー層(B)を形成する際の加熱乾燥工程でホルムアルデヒド、フェノール等の還元性化合物を生成する。加熱により還元性化合物を生成する樹脂の具体例としては、例えば、N-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、尿素―ホルムアルデヒド-メタノール縮合物、尿素-メラミン-ホルムアルデヒド-メタノール縮合物、ポリN-アルコキシメチロール(メタ)アクリルアミド、ポリ(メタ)アクリルアミドのホルムアルデヒド付加物、メラミン樹脂等の加熱によりホルムアルデヒドを生成する樹脂;フェノール樹脂、フェノールブロックイソシアネート等の加熱によりフェノール化合物を生成する樹脂などが挙げられる。これらの樹脂の中でも、密着性向上の観点から、ウレタン樹脂をシェルとしN-アルキロール(メタ)アクリルアミドを含む単量体を重合した樹脂をコアとするコア・シェル型複合樹脂、メラミン樹脂、フェノールブロックイソシアネートが好ましい。 When a resin that produces a reducing compound by heating is used as a primer, a reducing compound such as formaldehyde or phenol is produced in the heating and drying step when forming the primer layer (B). Specific examples of the resin that produces a reducing compound by heating include a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide, and N-alkyrole (meth) acrylamide using a urethane resin as a shell. Core-shell type composite resin with a polymer polymer resin as the core, urea-formaldehyde-methanol condensate, urea-melamine-formaldehyde-methanol condensate, poly N-alkoxymethylol (meth) acrylamide, poly (meth) Examples thereof include a formaldehyde adduct of acrylamide, a resin that produces formaldehyde by heating a melamine resin, and the like; a resin that produces a phenol compound by heating a phenol resin, a phenol block isocyanate, and the like. Among these resins, from the viewpoint of improving adhesion, a core-shell type composite resin having a urethane resin as a shell and a resin obtained by polymerizing a monomer containing N-alkyrole (meth) acrylamide as a core, a melamine resin, and a phenol Blocked isocyanate is preferred.
 なお、本発明において、「(メタ)アクリルアミド」とは、「メタクリルアミド」及び「アクリルアミド」の一方又は両方をいい、「(メタ)アクリル酸」とは、「メタクリル酸」及び「アクリル酸」の一方又は両方をいう。 In the present invention, "(meth) acrylamide" refers to one or both of "methacrylamide" and "acrylamide", and "(meth) acrylic acid" refers to "methacrylic acid" and "acrylic acid". Refers to one or both.
 加熱により還元性化合物を生成する樹脂は、加熱により還元性化合物を生成する官能基を有する単量体をラジカル重合、アニオン重合、カチオン重合等の重合方法により重合することによって得られる。 The resin that produces a reducing compound by heating is obtained by polymerizing a monomer having a functional group that produces a reducing compound by heating by a polymerization method such as radical polymerization, anionic polymerization, or cationic polymerization.
 加熱により還元性化合物を生成する官能基を有する単量体としては、例えば、N-アルキロールビニル単量体が挙げられ、具体的には、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド、N-イソプロポキシメチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ペントキシメチル(メタ)アクリルアミド、N-エタノール(メタ)アクリルアミド、N-プロパノール(メタ)アクリルアミド等が挙げられる。 Examples of the monomer having a functional group that produces a reducing compound by heating include N-alkyrole vinyl monomer, and specific examples thereof include N-methylol (meth) acrylamide and N-methoxymethyl (N-methoxymethyl). Meta) acrylamide, N-ethoxymethyl (meth) acrylamide, N-propoxymethyl (meth) acrylamide, N-isopropoxymethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) ) Acrylamide, N-pentoxymethyl (meth) acrylamide, N-ethanol (meth) acrylamide, N-propanol (meth) acrylamide and the like.
 また、上記の加熱により還元性化合物を生成する樹脂を製造する際には、加熱により還元性化合物を生成する官能基を有する単量体等とともに、(メタ)アクリル酸アルキルエステルなどのその他の各種単量体を共重合することもできる。 In addition, when producing a resin that produces a reducing compound by heating, a monomer having a functional group that produces a reducing compound by heating, and various other types such as (meth) acrylic acid alkyl ester are used. The monomers can also be copolymerized.
 前記ブロックイソシアネートを、前記プライマー層(B)を形成する樹脂として用いた場合は、イソシアネート基間で自己反応することでウレトジオン結合を形成し、又は、イソシアネート基と、他の成分が有する官能基とが結合を形成することによって、プライマー層(B)を形成する。この際形成される結合は、前記金属粒子分散液を塗工する前に形成されていてもよいし、前記金属粒子分散液を塗工する前には形成されておらず、前記金属粒子分散液を塗工した後に加熱によって形成されてもよい。 When the blocked isocyanate is used as a resin for forming the primer layer (B), a uretdione bond is formed by self-reacting between the isocyanate groups, or the isocyanate group and the functional group of other components are used. Form a bond to form a primer layer (B). The bond formed at this time may be formed before the metal particle dispersion liquid is applied, or is not formed before the metal particle dispersion liquid is applied, and the metal particle dispersion liquid is not formed. May be formed by heating after coating.
 前記ブロックイソシアネートとしては、イソシアネート基がブロック剤によって封鎖され形成した官能基を有するものが挙げられる。 Examples of the blocked isocyanate include those having a functional group formed by blocking the isocyanate group with a blocking agent.
 前記ブロックイソシアネートは、ブロックイソシアネート1モルあたり、前記官能基を350~600g/molの範囲で有するものが好ましい。 The blocked isocyanate is preferably one having the functional group in the range of 350 to 600 g / mol per 1 mol of the blocked isocyanate.
 前記官能基は、密着性向上の観点から、前記ブロックイソシアネートの1分子中に1~10個有するものが好ましく、2~5個有するものがより好ましい。 From the viewpoint of improving adhesion, the functional group preferably has 1 to 10 in one molecule of the blocked isocyanate, and more preferably 2 to 5.
 また、前記ブロックイソシアネートの数平均分子量は、密着性向上の観点から、1,500~5,000の範囲が好ましく、1,500~3,000の範囲がより好ましい。 The number average molecular weight of the blocked isocyanate is preferably in the range of 1,500 to 5,000, more preferably in the range of 1,500 to 3,000, from the viewpoint of improving adhesion.
 さらに、前記ブロックイソシアネートとしては、密着性をさらに向上する観点から、芳香環を有するものが好ましい。前記芳香環としては、フェニル基、ナフチル基等が挙げられる。 Further, as the blocked isocyanate, one having an aromatic ring is preferable from the viewpoint of further improving the adhesion. Examples of the aromatic ring include a phenyl group and a naphthyl group.
 なお、前記ブロックイソシアネートは、イソシアネート化合物が有するイソシアネート基の一部又は全部と、ブロック剤とを反応させることによって製造することができる。 The blocked isocyanate can be produced by reacting a part or all of the isocyanate groups of the isocyanate compound with the blocking agent.
 前記ブロックイソシアネートの原料となるイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、カルボジイミド変性ジフェニルメタンジイソシアネート、クルードジフェニルメタンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート等の芳香環を有するポリイソシアネート化合物;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の脂肪族ポリイソシアネート化合物又は脂環式構造を有するポリイソシアネート化合物などが挙げられる。また、前記したポリイソシアネート化合物のそれらのビュレット体、イソシアヌレート体、アダクト体等も挙げられる。 Examples of the isocyanate compound as a raw material of the blocked isocyanate include 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, crude diphenylmethane diisocyanate, phenylenediocyanate, tolylene diisocyanate, naphthalenedi isocyanate and the like. Polyisocyanate compound having an aromatic ring; an aliphatic polyisocyanate compound such as hexamethylene diisocyanate, lysine diisocyanate, cyclohexanediisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, or polyisocyanate having an alicyclic structure. Examples include compounds. Moreover, those burette form, isocyanurate form, adduct form and the like of the said polyisocyanate compound are also mentioned.
 また、前記イソシアネート化合物としては、上記で例示したポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物等とを反応させて得られるものも挙げられる。 Further, examples of the isocyanate compound include those obtained by reacting the polyisocyanate compound exemplified above with a compound having a hydroxyl group or an amino group.
 前記ブロックイソシアネートに芳香環を導入する場合、芳香環を有するポリイソシアネート化合物を用いることが好ましい。また、芳香環を有するポリイソシアネート化合物の中でも、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートのイソシアヌレート体、トリレンジイソシアネートのイソシアヌレート体が好ましい。 When introducing an aromatic ring into the blocked isocyanate, it is preferable to use a polyisocyanate compound having an aromatic ring. Among the polyisocyanate compounds having an aromatic ring, 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, isocyanurate of 4,4'-diphenylmethane diisocyanate, and isocyanurate of tolylene diisocyanate are preferable.
 前記ブロックイソシアネートの製造に用いるブロック化剤としては、例えば、フェノール、クレゾール等のフェノール化合物;ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム等のラクタム化合物;ホルムアミドオキシム、アセトアルドオキシム、アセトンオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、シクロヘキサノンオキシム等のオキシム化合物;2-ヒドロキシピリジン、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ベンジルアルコール、メタノール、エタノール、n-ブタノール、イソブタノール、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン、ブチルメルカプタン、ドデシルメルカプタン、アセトアニリド、酢酸アミド、コハク酸イミド、マレイン酸イミド、イミダゾール、2-メチルイミダゾール、尿素、チオ尿素、エチレン尿素、ジフェニルアニリン、アニリン、カルバゾール、エチレンイミン、ポリエチレンイミン、1H-ピラゾール、3-メチルピラゾール、3,5-ジメチルピラゾール等が挙げられる。これらの中でも、70~200℃の範囲で加熱することによって解離してイソシアネート基を生成可能なブロック化剤が好ましく、110~180℃の範囲で加熱することによって解離するイソシアネート基を生成可能なブロック化剤がより好ましい。具体的には、フェノール化合物、ラクタム化合物、オキシム化合物が好ましく、特に、フェノール化合物は、ブロック化剤が加熱により脱離する際に還元性化合物となることからより好ましい。 Examples of the blocking agent used for producing the blocked isocyanate include phenol compounds such as phenol and cresol; lactam compounds such as ε-caprolactam, δ-valerolactam and γ-butyrolactam; Oxime compounds such as methyl ethyl keto oxime, methyl isobutyl keto oxime, cyclohexanone oxime; 2-hydroxypyridine, butyl cellosolve, propylene glycol monomethyl ether, benzyl alcohol, methanol, ethanol, n-butanol, isobutanol, dimethyl malonate, diethyl malonate, acet Methyl acetate, ethyl acetoacetate, acetylacetone, butyl mercaptan, dodecyl mercaptan, acetoanilide, acetate amide, succinate imide, maleate imide, imidazole, 2-methyl imidazole, urea, thiourea, ethylene urea, diphenylaniline, aniline, carbazole, Examples thereof include ethyleneimine, polyethyleneimine, 1H-pyrazole, 3-methylpyrazole, 3,5-dimethylpyrazole and the like. Among these, a blocking agent capable of dissociating to generate an isocyanate group by heating in the range of 70 to 200 ° C. is preferable, and a block capable of producing an isocyanate group dissociating by heating in the range of 110 to 180 ° C. is preferable. Agents are more preferred. Specifically, a phenol compound, a lactam compound, and an oxime compound are preferable, and a phenol compound is more preferable because it becomes a reducing compound when the blocking agent is desorbed by heating.
 前記ブロックイソシアネートの製造方法としては、例えば、予め製造した前記イソシアネート化合物と前記ブロック化剤とを混合し反応させる方法、前記イソシアネート化合物の製造に用いる原料とともに前記ブロック化剤を混合し反応させる方法等が挙げられる。 Examples of the method for producing the blocked isocyanate include a method of mixing and reacting the isocyanate compound produced in advance with the blocking agent, a method of mixing and reacting the blocking agent with a raw material used for producing the isocyanate compound, and the like. Can be mentioned.
 より具体的には、前記ブロックイソシアネートは、前記ポリイソシアネート化合物と、水酸基又はアミノ基を有する化合物とを反応させることによって末端にイソシアネート基を有するイソシアネート化合物を製造し、次いで、前記イソシアネート化合物と前記ブロック化剤とを混合し反応させることによって製造することができる。 More specifically, the blocked isocyanate produces an isocyanate compound having an isocyanate group at the terminal by reacting the polyisocyanate compound with a compound having a hydroxyl group or an amino group, and then the isocyanate compound and the block. It can be produced by mixing and reacting with an agent.
 上記の方法で得られたブロックイソシアネートの前記プライマー層(B)を形成する樹脂中の含有比率は、50~100質量%の範囲が好ましく、70~100質量%の範囲がより好ましい。 The content ratio of the blocked isocyanate obtained by the above method in the resin forming the primer layer (B) is preferably in the range of 50 to 100% by mass, more preferably in the range of 70 to 100% by mass.
 前記メラミン樹脂としては、例えば、メラミン1モルに対してホルムアルデヒドが1~6モル付加したモノ又はポリメチロールメラミン;トリメトキシメチロールメラミン、トリブトキシメチロールメラミン、ヘキサメトキシメチロールメラミン等の(ポリ)メチロールメラミンのエーテル化物(エーテル化度は任意);尿素-メラミン-ホルムアルデヒド-メタノール縮合物などが挙げられる。 Examples of the melamine resin include mono or polymethylol melamine in which 1 to 6 mol of formaldehyde is added to 1 mol of melamine; (poly) methylol melamine such as trimethoxymethylol melamine, tributoxymethylol melamine, and hexamethoxymethylol melamine. Ethereate (arbitrary degree of etherification); urea-melamine-formaldehyde-methanol condensate and the like.
 また、上記のように加熱により還元性化合物を生成する樹脂を用いる方法の他に、樹脂に還元性化合物を添加する方法も挙げられる。この場合に、添加する還元性化合物としては、例えば、フェノール系酸化防止剤、芳香族アミン系酸化防止剤、硫黄系酸化防止剤、リン酸系酸化防止剤、ビタミンC、ビタミンE、エチレンジアミン四酢酸ナトリウム、亜硫酸塩、次亜燐酸、次亜燐酸塩、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、ジメチルアミンボラン、フェノール等が挙げられる。 Further, in addition to the method using a resin that produces a reducing compound by heating as described above, a method of adding a reducing compound to the resin can also be mentioned. In this case, examples of the reducing compound to be added include phenol-based antioxidants, aromatic amine-based antioxidants, sulfur-based antioxidants, phosphoric acid-based antioxidants, vitamin C, vitamin E, and ethylenediamine tetraacetic acid. Examples thereof include sodium, sulfite, hypophosphoric acid, hypophosphite, hydrazine, formaldehyde, sodium hydride, dimethylamine borane, phenol and the like.
 本発明において、樹脂に還元性化合物を添加する方法は、最終的に低分子量成分やイオン性化合物が残留することで電気特性が低下する可能性があるため、加熱により還元性化合物を生成する樹脂を用いる方法がより好ましい。 In the present invention, the method of adding a reducing compound to a resin may result in deterioration of electrical properties due to the residual low molecular weight component or ionic compound. Therefore, a resin that produces a reducing compound by heating. Is more preferable.
また、前記プライマー層(B)を形成する好ましい樹脂として、アミノトリアジン環を有する化合物を含有するものを挙げることができる。前記アミノトリアジン環を有する化合物は、低分子量の化合物であっても、より高分子量の樹脂であってもよい。 Further, as a preferable resin for forming the primer layer (B), a resin containing a compound having an aminotriazine ring can be mentioned. The compound having an aminotriazine ring may be a compound having a low molecular weight or a resin having a higher molecular weight.
 前記アミノトリアジン環を有する低分子量の化合物としては、アミノトリアジン環を有する各種添加剤を用いることができる。市販品としては、2,4-ジアミノ-6-ビニル-s-トリアジン(四国化成株式会社製「VT」)、四国化成株式会社製「VD-3」や「VD-4」(アミノトリアジン環と水酸基を有する化合物)、四国化成株式会社製「VD-5」(アミノトリアジン環とエトキシシリル基を有する化合物)等が挙げられる。これらは、添加剤として、前記のプライマー層(B)を形成する樹脂中に、1種、もしくは、2種以上を添加して使用することができる。 As the low molecular weight compound having an aminotriazine ring, various additives having an aminotriazine ring can be used. Commercially available products include 2,4-diamino-6-vinyl-s-triazine (“VT” manufactured by Shikoku Kasei Co., Ltd.), “VD-3” and “VD-4” manufactured by Shikoku Kasei Co., Ltd. (with aminotriazine ring). (Compound having a hydroxyl group), "VD-5" manufactured by Shikoku Kasei Co., Ltd. (compound having an aminotriazine ring and an ethoxysilyl group) and the like can be mentioned. These can be used by adding one kind or two or more kinds to the resin forming the primer layer (B) as an additive.
 前記アミノトリアジン環を有する低分子量の化合物の使用量としては、前記樹脂100質量部に対し、0.1質量部以上50質量部以下が好ましく、0.5質量部以上10質量部以下がより好ましい。 The amount of the low molecular weight compound having an aminotriazine ring is preferably 0.1 parts by mass or more and 50 parts by mass or less, and more preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the resin. ..
 前記アミノトリアジン環を有する樹脂としては、樹脂のポリマー鎖中にアミノトリアジン環が共有結合で導入されているものも好適に用いることができる。具体的には、アミノトリアジン変性ノボラック樹脂が挙げられる。 As the resin having an aminotriazine ring, a resin in which an aminotriazine ring is introduced by a covalent bond in the polymer chain of the resin can also be preferably used. Specific examples thereof include aminotriazine-modified novolak resins.
 前記アミノトリアジン変性ノボラック樹脂は、アミノトリアジン環構造とフェノール構造とがメチレン基を介して結合したノボラック樹脂である。前記アミノトリアジン変性ノボラック樹脂は、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物と、フェノール、クレゾール、ブチルフェノール、ビスフェノールA、フェニルフェノール、ナフトール、レゾルシン等のフェノール化合物と、ホルムアルデヒドとをアルキルアミン等の弱アルカリ性触媒の存在下又は無触媒で、中性付近で共縮合反応させるか、メチルエーテル化メラミン等のアミノトリアジン化合物のアルキルエーテル化物と、前記フェノール化合物とを反応させることにより得られる。 The aminotriazine-modified novolak resin is a novolak resin in which an aminotriazine ring structure and a phenol structure are bonded via a methylene group. The aminotriazine-modified novolak resin contains, for example, an aminotriazine compound such as melamine, benzoguanamine, and acetoguanamine, a phenol compound such as phenol, cresol, butylphenol, bisphenol A, phenylphenol, naphthol, and resorcin, and formaldehyde as an alkylamine. It can be obtained by a cocondensation reaction in the vicinity of neutrality in the presence or absence of a weak alkaline catalyst, or by reacting an alkyl etherified compound of an aminotriazine compound such as methyl etherified melamine with the phenol compound.
 前記アミノトリアジン変性ノボラック樹脂は、メチロール基を実質的に有していないものが好ましい。また、前記アミノトリアジン変性ノボラック樹脂には、その製造時に副生成物として生じるアミノトリアジン構造のみがメチレン結合した分子、フェノール構造のみがメチレン結合した分子等が含まれていても構わない。さらに、若干量の未反応原料が含まれていてもよい。 The aminotriazine-modified novolak resin preferably has substantially no methylol group. Further, the aminotriazine-modified novolak resin may contain a molecule in which only the aminotriazine structure generated as a by-product during its production is methylene-bonded, a molecule in which only the phenol structure is methylene-bonded, and the like. Further, a small amount of unreacted raw material may be contained.
 前記フェノール構造としては、例えば、フェノール残基、クレゾール残基、ブチルフェノール残基、ビスフェノールA残基、フェニルフェノール残基、ナフトール残基、レゾルシン残基等が挙げられる。また、ここでの残基とは、芳香環の炭素に結合している水素原子が少なくとも1つが抜けた構造を意味する。例えば、フェノールの場合は、ヒドロキシフェニル基を意味する。 Examples of the phenol structure include phenol residues, cresol residues, butylphenol residues, bisphenol A residues, phenylphenol residues, naphthol residues, resorcin residues and the like. Further, the residue here means a structure in which at least one hydrogen atom bonded to the carbon of the aromatic ring is removed. For example, in the case of phenol, it means a hydroxyphenyl group.
 前記トリアジン構造としては、例えば、メラミン、ベンゾグアナミン、アセトグアナミン等のアミノトリアジン化合物由来の構造が挙げられる。 Examples of the triazine structure include structures derived from aminotriazine compounds such as melamine, benzoguanamine, and acetoguanamine.
 前記フェノール構造及び前記トリアジン構造は、それぞれ1種で用いることも2種以上併用することもできる。また、密着性をより向上できることから、前記フェノール構造としてはフェノール残基が好ましく、前記トリアジン構造としてはメラミン由来の構造が好ましい。 The phenol structure and the triazine structure can be used alone or in combination of two or more. Further, since the adhesion can be further improved, a phenol residue is preferable as the phenol structure, and a melamine-derived structure is preferable as the triazine structure.
 また、前記アミノトリアジン変性ノボラック樹脂の水酸基価は、密着性をより向上できることから、50mgKOH/g以上200mgKOH/g以下が好ましく、80mgKOH/g以上180mgKOH/g以下がより好ましく、100mgKOH/g以上150mgKOH/g以下がさらに好ましい。 Further, the hydroxyl value of the aminotriazine-modified novolak resin is preferably 50 mgKOH / g or more and 200 mgKOH / g or less, more preferably 80 mgKOH / g or more and 180 mgKOH / g or less, and 100 mgKOH / g or more and 150 mgKOH / g because the adhesion can be further improved. It is more preferably g or less.
 前記アミノトリアジン変性ノボラック樹脂は、1種で用いることも2種以上併用することもできる。 The aminotriazine-modified novolak resin can be used alone or in combination of two or more.
 また、前記アミノトリアジン環を有する化合物として、アミノトリアジン変性ノボラック樹脂を用いる場合、エポキシ樹脂を併用することが好ましい。 When an aminotriazine-modified novolak resin is used as the compound having an aminotriazine ring, it is preferable to use an epoxy resin in combination.
 前記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、アルコールエーテル型エポキシ樹脂、テトラブロムビスフェノールA型エポキシ樹脂、ナフタレン型エポキシ樹脂、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド誘導体由来の構造を有する含リンエポキシ化合物、ジシクロペンタジエン誘導体由来の構造を有するエポキシ樹脂、エポキシ化大豆油等の油脂のエポキシ化物などが挙げられる。これらのエポキシ樹脂は、1種で用いることも2種以上併用することもできる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolak type epoxy resin, alcohol ether type epoxy resin, and tetrabrom. It has a structure derived from a bisphenol A type epoxy resin, a naphthalene type epoxy resin, a phosphorus-containing epoxy compound having a structure derived from a 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide derivative, and a structure derived from a dicyclopentadiene derivative. Examples thereof include epoxies of fats and oils such as epoxy resin and epoxidized soybean oil. These epoxy resins can be used alone or in combination of two or more.
 前記エポキシ樹脂の中でも、密着性をより向上できることから、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂が好ましく、特に、ビスフェノールA型エポキシ樹脂が好ましい。 Among the epoxy resins, bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and bisphenol A novolak type epoxy resin are selected because the adhesion can be further improved. It is preferable, and in particular, a bisphenol A type epoxy resin is preferable.
 また、前記エポキシ樹脂のエポキシ当量は、密着性をより向上できることから、100g/当量以上300g/当量以下が好ましく、120g/当量以上250g/当量以下がより好ましく、150g/当量以上200g/当量以下がさらに好ましい。 Further, the epoxy equivalent of the epoxy resin is preferably 100 g / equivalent or more and 300 g / equivalent or less, more preferably 120 g / equivalent or more and 250 g / equivalent or less, and 150 g / equivalent or more and 200 g / equivalent or less because the adhesiveness can be further improved. More preferred.
 前記プライマー層(B)が、アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂を含有する層の場合、密着性をより向上できることから、前記アミノトリアジン変性ノボラック樹脂中のフェノール性水酸基(x)と前記エポキシ樹脂中のエポキシ基(y)とのモル比[(x)/(y)]が、0.1以上5以下が好ましく、0.2以上3以下がより好ましく、0.3以上2以下がさらに好ましい。 When the primer layer (B) is a layer containing an aminotriazine-modified novolak resin and an epoxy resin, the adhesion can be further improved. Therefore, the phenolic hydroxyl group (x) in the aminotriazine-modified novolak resin and the epoxy resin are contained. The molar ratio [(x) / (y)] with the epoxy group (y) is preferably 0.1 or more and 5 or less, more preferably 0.2 or more and 3 or less, and further preferably 0.3 or more and 2 or less.
 前記プライマー層(B)として、アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂を含有する層を形成する場合には、前記アミノトリアジン環を有する化合物やエポキシ樹脂を含有するプライマー樹脂組成物を用いる。 When forming a layer containing an aminotriazine-modified novolak resin and an epoxy resin as the primer layer (B), a primer resin composition containing the compound having an aminotriazine ring or an epoxy resin is used.
 さらに、前記アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂を含有するプライマー層(B)の形成に用いるプライマー樹脂組成物には、必要に応じて、例えば、ウレタン樹脂、アクリル樹脂、ブロックイソシアネート樹脂、メラミン樹脂、フェノール樹脂等、その他の樹脂を配合してもよい。これらのその他の樹脂は、1種で用いることも2種以上併用することもできる。 Further, the primer resin composition used for forming the primer layer (B) containing the aminotriazine-modified novolak resin and the epoxy resin may contain, for example, a urethane resin, an acrylic resin, a blocked isocyanate resin, or a melamine resin, if necessary. Other resins such as phenol resin may be blended. These other resins may be used alone or in combination of two or more.
 前記プライマー層(B)を形成するために用いるプライマーは、塗工性、成膜性の観点から、プライマー中に前記樹脂を1~70質量%含有するものが好ましく、1~20質量%含有するものがより好ましい。 The primer used to form the primer layer (B) preferably contains 1 to 70% by mass of the resin in the primer from the viewpoint of coatability and film forming property, and contains 1 to 20% by mass. The one is more preferable.
 また、前記プライマーに使用可能な溶媒としては、各種有機溶剤、水性媒体が挙げられる。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、シクロヘキサノン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Further, examples of the solvent that can be used for the primer include various organic solvents and aqueous media. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone and the like, and examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。 Examples of the organic solvent to be mixed with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve and butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol and propylene. Examples thereof include an alkylene glycol solvent such as glycol; a polyalkylene glycol solvent such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; and a lactam solvent such as N-methyl-2-pyrrolidone.
 また、前記プライマー層(B)を形成する樹脂は、必要に応じて、例えば、アルコキシシリル基、シラノール基、水酸基、アミノ基等、架橋反応に寄与する官能基を有していてもよい。これらの官能基を利用して形成される架橋構造は、後工程の銀粒子層(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、銀粒子層(M1)を形成する工程以降で架橋構造を形成してもよい。銀粒子層(M1)を形成する工程以降で架橋構造を形成する場合、前記回路パターン層(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成しておいてもよく、前記回路パターン層(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 Further, the resin forming the primer layer (B) may have a functional group that contributes to the crosslinking reaction, such as an alkoxysilyl group, a silanol group, a hydroxyl group, or an amino group, if necessary. The crosslinked structure formed by utilizing these functional groups may have already formed the crosslinked structure before the step of forming the silver particle layer (M1) in the subsequent step, or the silver particle layer (M1). The crosslinked structure may be formed after the step of forming the above. When the crosslinked structure is formed after the step of forming the silver particle layer (M1), the crosslinked structure may be formed on the primer layer (B) before forming the circuit pattern layer (M2). After forming the circuit pattern layer (M2), a crosslinked structure may be formed in the primer layer (B) by, for example, aging.
 前記プライマー層(B)には、必要に応じて、架橋剤をはじめ、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知のものを適宜添加して使用してもよい。 If necessary, a known substance such as a cross-linking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent agent, and an antifoaming agent is appropriately added to the primer layer (B). May be used.
 前記架橋剤としては、例えば、金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩化合物、イソシアネート化合物等が挙げられ、25~100℃程度の比較的低温で反応し架橋構造を形成する熱架橋剤、メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、ブロックイソシアネート化合物等の100℃以上の比較的高温で反応し架橋構造を形成する熱架橋剤や各種光架橋剤が挙げられる。前記プライマー層(B)として、前記アミノトリアジン変性ノボラック樹脂及びエポキシ樹脂を使用する場合には、プライマー樹脂組成物に、前記架橋剤として、多価カルボン酸を用いることが好ましい。前記多価カルボン酸としては、例えば、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、コハク酸等が挙げられる。これらの架橋剤は、1種で用いることも2種以上併用することもできる。また、これらの架橋剤の中でも、密着性をより向上できることから、無水トリメリット酸が好ましい。 Examples of the cross-linking agent include a metal chelate compound, a polyamine compound, an aziridine compound, a metal salt compound, an isocyanate compound and the like, and a thermal cross-linking agent that reacts at a relatively low temperature of about 25 to 100 ° C. to form a cross-linking structure. Examples thereof include thermal cross-linking agents such as melamine-based compounds, epoxy-based compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds that react at a relatively high temperature of 100 ° C. or higher to form a cross-linking structure, and various photocross-linking agents. When the aminotriazine-modified novolak resin and the epoxy resin are used as the primer layer (B), it is preferable to use a polyvalent carboxylic acid as the cross-linking agent in the primer resin composition. Examples of the polyvalent carboxylic acid include trimellitic anhydride, pyromellitic anhydride, maleic anhydride, succinic acid and the like. These cross-linking agents may be used alone or in combination of two or more. Further, among these cross-linking agents, trimellitic anhydride is preferable because the adhesion can be further improved.
 前記架橋剤の使用量は、種類によって異なるものの、基材上への回路パターン層(M2)の密着性向上の観点から、前記プライマーに含まれる樹脂の合計100質量部に対して、0.01~60質量部の範囲が好ましく、0.1~10質量部の範囲がより好ましく、0.1~5質量部の範囲がさらに好ましい。 Although the amount of the cross-linking agent used varies depending on the type, from the viewpoint of improving the adhesion of the circuit pattern layer (M2) on the substrate, it is 0.01 with respect to a total of 100 parts by mass of the resin contained in the primer. The range of about 60 parts by mass is preferable, the range of 0.1 to 10 parts by mass is more preferable, and the range of 0.1 to 5 parts by mass is further preferable.
 前記架橋剤を用いた場合、後工程の銀粒子層(M1)を形成する工程以前に、すでに架橋構造を形成していてもよく、また、銀粒子層(M1)を形成する工程以降で架橋構造を形成してもよい。銀粒子層(M1)を形成する工程以降で架橋構造を形成する場合、前記回路パターン層(M2)を形成する前に、前記プライマー層(B)に架橋構造を形成してもよく、前記回路パターン導(M2)を形成した後に、例えば、エージングすることによって、前記プライマー層(B)に架橋構造を形成してもよい。 When the cross-linking agent is used, the cross-linked structure may already be formed before the step of forming the silver particle layer (M1) in the subsequent step, and the cross-linking may be performed after the step of forming the silver particle layer (M1). The structure may be formed. When the crosslinked structure is formed after the step of forming the silver particle layer (M1), the crosslinked structure may be formed on the primer layer (B) before the circuit pattern layer (M2) is formed. After forming the pattern guide (M2), a crosslinked structure may be formed in the primer layer (B) by, for example, aging.
 本発明において、前記プライマー層(B)上に、前記銀粒子層(M1)を形成する方法は、絶縁性基材(A)上に、前記銀粒子層(M1)を形成する方法と同様である。 In the present invention, the method of forming the silver particle layer (M1) on the primer layer (B) is the same as the method of forming the silver particle layer (M1) on the insulating base material (A). be.
 また、前記プライマー層(B)は、前記絶縁性基材(A)と同様に、前記銀粒子分散液の塗工性向上や、回路パターン層(M2)の基材への密着性を向上する目的で、銀粒子分散液を塗工する前に、表面処理を行ってもよい。 Further, the primer layer (B) improves the coatability of the silver particle dispersion liquid and improves the adhesion of the circuit pattern layer (M2) to the base material, similarly to the insulating base material (A). For the purpose, surface treatment may be performed before applying the silver particle dispersion.
 本発明のプリント配線板の製造方法の工程1は、絶縁性基材(A)の両表面上に、導電性の銀粒子層(M1)を有する積層体に、両面を貫通する貫通孔を形成する工程である。 In step 1 of the method for manufacturing a printed wiring board of the present invention, through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of an insulating base material (A). It is a process to do.
 工程1において、前記積層体に両面を貫通する貫通孔を形成する方法としては、公知慣用の方法を、適宜選択すれば良いが、例えば、ドリル加工、レーザー加工、レーザー加工による銅層の孔開けと酸化剤、アルカリ性薬剤、酸性薬剤等を用いた絶縁性基材の薬剤エッチングを組み合わせた加工法、レジストを用いた銅箔の孔パターンエッチングと、酸化剤、アルカリ性薬剤、酸性薬剤等を用いた絶縁性基材の薬剤エッチングを組み合わせた加工法などの方法が挙げられる。 In step 1, a known and commonly used method may be appropriately selected as a method for forming through holes penetrating both sides of the laminate. For example, drilling, laser processing, or laser processing is used to drill holes in the copper layer. A processing method that combines chemical etching of an insulating substrate using an oxidizing agent, an alkaline agent, an acidic agent, etc., hole pattern etching of a copper foil using a resist, and an oxidizing agent, an alkaline agent, an acidic agent, etc. Examples thereof include a processing method that combines chemical etching of an insulating base material.
 前記穴開け加工で形成する穴の孔径(直径)は、0.01~1mmの範囲が好ましく、0.02~0.5mmの範囲がより好ましく、0.03~0.1mmの範囲がさらに好ましい。 The hole diameter (diameter) formed by the drilling process is preferably in the range of 0.01 to 1 mm, more preferably in the range of 0.02 to 0.5 mm, and even more preferably in the range of 0.03 to 0.1 mm. ..
 孔開け加工時に発生する有機物や無機物のゴミ(スミア)が、後述する両面の電気的接続、及び、回路パターン層(M2)を形成するめっき工程でめっき析出性の不良や、めっき密着性の低下、めっき外観を損なう原因となる可能性があるため、ゴミを除去すること(デスミア)が好ましい。デスミアの方法としては、例えば、プラズマ処理、逆スパッタ処理等の乾式処理、過マンガン酸カリウム等の酸化剤水溶液による洗浄処理、アルカリや酸の水溶液による洗浄処理、有機溶剤による洗浄処理等の湿式処理などが挙げられる。 Organic and inorganic dust (smear) generated during drilling process causes poor plating precipitation and deterioration of plating adhesion in the plating process of forming the electrical connection on both sides and the circuit pattern layer (M2), which will be described later. It is preferable to remove dust (desmia) because it may cause the appearance of plating to be spoiled. Desmia methods include, for example, dry treatment such as plasma treatment and reverse sputtering treatment, cleaning treatment with an aqueous solution of an oxidizing agent such as potassium permanganate, cleaning treatment with an aqueous solution of alkali or acid, and wet treatment such as cleaning treatment with an organic solvent. And so on.
本発明のプリント配線板の製造方法の工程2は、前記工程1において形成された貫通孔を有する積層体の表面上に、パラジウム、導電性ポリマー、カーボンのいずれかを付与して、貫通孔表面を導電化する工程である。 In step 2 of the method for manufacturing a printed wiring board of the present invention, either palladium, a conductive polymer, or carbon is applied to the surface of the laminate having through holes formed in step 1, and the surface of the through holes is formed. Is a process of making the material conductive.
前記貫通孔表面を導電化する方法は、例えば、豊永 実、サーキットテクノロジ、vol.8,No.1(1993)pp.47-59に『ダイレクトプレーティング』として記載されている方法を参考にして行うことができる。 The method for making the surface of the through hole conductive is, for example, Minoru Toyonaga, Circuit Technology, vol.8, No. 1 (1993) pp. This can be done with reference to the method described as "Direct Plating" in 47-59.
前記貫通孔表面を導電化する方法としては、前記文献に記載されている、(1)パラジウム-スズコロイドシステム、(2)スズフリーパラジウムシステム、(3)導電性ポリマーシステム、(4)グラファイトシステムの4種類のいずれかを用いれば良い。 As a method for making the through-hole surface conductive, (1) palladium-tin colloidal system, (2) tin-free palladium system, (3) conductive polymer system, and (4) graphite system described in the above document. Any one of the four types may be used.
前記貫通孔表面をパラジウム-スズコロイドを用いて導電化する方法としては、貫通孔の形成された前記積層体表面をクリーナー-コンディショナー処理した後、スズ-パラジウムコロイドを表面に吸着させ、アクセレレータ処理してスズを除去することにより実施される。また、パラジウムを、さらに硫化パラジウムに転換させて導電性を高める方法も用いることができる。 As a method of making the surface of the through hole conductive using palladium-tin colloid, the surface of the laminate on which the through hole is formed is treated with a cleaner-conditioner, and then the tin-palladium colloid is adsorbed on the surface and treated with an accelerator. It is carried out by removing tin. Further, a method of further converting palladium to palladium sulfide to increase conductivity can also be used.
また、前記貫通孔表面を導電性ポリマーで導電化する方法としては、ピロール誘導体のモノマーを酸化重合させる方法を用いることができる。貫通孔の形成された前記積層体表面をコンディショナー処理した後、過マンガン酸塩水溶液で処理し、前記絶縁性基材(A)に形成された貫通孔の表面にMnOを形成する。高沸点アルコールを溶かしたモノマー水溶液を基板時表面に浸漬した後、希硫酸水溶液に浸漬すると、MnOで被覆された表面で重合化が進み、導電性ポリマーを形成することで導電化を行う。 Further, as a method for making the surface of the through hole conductive with a conductive polymer, a method of oxidatively polymerizing a monomer of a pyrrole derivative can be used. The surface of the laminated body in which the through holes are formed is treated with a conditioner and then treated with an aqueous solution of permanganate to form MnO 2 on the surface of the through holes formed in the insulating base material (A). When a monomer aqueous solution in which a high boiling point alcohol is dissolved is immersed in the surface of the substrate and then immersed in a dilute sulfuric acid aqueous solution, polymerization proceeds on the surface coated with MnO 2 , and conductivity is achieved by forming a conductive polymer.
さらに、前記貫通孔表面をグラファイトで導電化する方法としては、前記、貫通孔を形成したセミアディティブプロセス工法用基材の表面を懸濁したカーボンブラックの溶液で処理し、基板全面にカーボンを吸着させることで行うことができる。貫通孔の形成された前記積層体表面をコンディショナー処理することによって、基材表面を正帯電させた後、負電荷をもったカーボンブラックを表面に吸着させて導電性を確保することができる。 Further, as a method of making the surface of the through hole conductive with graphite, the surface of the base material for the semi-additive process method in which the through hole is formed is treated with a suspended carbon black solution, and carbon is adsorbed on the entire surface of the substrate. It can be done by letting it do. By conditioning the surface of the laminated body in which the through holes are formed, the surface of the base material is positively charged, and then carbon black having a negative charge is adsorbed on the surface to ensure conductivity.
 貫通孔表面を導電化する方法としては、前記のパラジウム、導電性ポリマー、カーボンを用いるいずれの方法を用いることも可能であり、市販の公知慣用のプロセスを利用することができる。例えば、スズーパラジウムプロセスでは、クリムソンプロセスとして知られている方法を用いることができ、グラファイトシステムでは、例えば、ブラックホールプロセスとして知られているプロセスを利用することができる。これらの方法のうち、材料、および、プロセスコストの観点からカーボンを用いて導電化する方法を用いることが好ましい。 As a method for making the surface of the through hole conductive, any of the above-mentioned methods using palladium, a conductive polymer, and carbon can be used, and a commercially available known and conventional process can be used. For example, in the tin-palladium process, a method known as the Crimson process can be used, and in the graphite system, for example, a process known as the black hole process can be utilized. Of these methods, it is preferable to use a method of conducting conductivity using carbon from the viewpoint of materials and process cost.
 本発明のプリント配線板の製造方法の工程3は、前記工程2において、貫通孔表面を導電化する際に用いるパラジウム、導電性ポリマー、カーボンのいずれかのうち、銀粒子層(M1)上に吸着されたものを除去して、導電性の銀粒子層(M1)を露出させる工程である。 In step 3 of the method for manufacturing a printed wiring board of the present invention, on the silver particle layer (M1) among any of palladium, a conductive polymer, and carbon used for making the through-hole surface conductive in step 2. This is a step of removing the adsorbed material to expose the conductive silver particle layer (M1).
 工程3において、導電性の銀粒子層(M1)上に吸着したパラジウム、導電性ポリマー、カーボンのいずれかを除去するために用いられる薬剤は、前記銀粒子層(M1)の表層のみをエッチングすることが好ましい。この目的には、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩の水溶液、もしくは、硫酸/過酸化水素水溶液を用いて行うことができる。 In step 3, the chemical used for removing any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) etches only the surface layer of the silver particle layer (M1). Is preferable. For this purpose, an aqueous solution of persulfate such as ammonium persulfate, sodium persulfate, potassium persulfate, or a sulfuric acid / hydrogen peroxide aqueous solution can be used.
過硫酸塩の水溶液、もしくは、硫酸/過酸化水素水溶液の濃度は、前記銀粒子層(M1)表層のエッチング後に、導電性シード層(M1‘)として機能する導電性を保持できれば良く、使用するエッチング装置の設計等に合わせて、適宜調整すれば良い。 The concentration of the aqueous solution of persulfate or the aqueous solution of sulfuric acid / hydrogen peroxide may be used as long as it can maintain the conductivity that functions as the conductive seed layer (M1') after etching the surface layer of the silver particle layer (M1). It may be adjusted as appropriate according to the design of the etching apparatus.
 本発明のプリント配線板の製造方法の工程3を経て、前記導電性の銀粒子層(M1)上に吸着したパラジウム、導電性ポリマー、カーボンのいずれかを除去した積層体は、乾燥工程を経て、銀粒子層(M1‘)を導電シードとする、セミアディティブ工法用積層体として用いることができる。 The laminate from which any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) has been removed through step 3 of the method for manufacturing a printed wiring board of the present invention is subjected to a drying step. , Can be used as a laminate for a semi-additive method using a silver particle layer (M1') as a conductive seed.
 本発明のプリント配線板の製造方法の工程4においては、前記工程3において、前記導電性の銀粒子層(M1)上に吸着したパラジウム、導電性ポリマー、カーボンのいずれかを除去した銀粒子層(M1‘)上に、回路パターンのパターンレジストを形成する。 In step 4 of the method for manufacturing a printed wiring board of the present invention, in step 3, the silver particle layer from which any of palladium, the conductive polymer, and carbon adsorbed on the conductive silver particle layer (M1) is removed. A pattern resist of a circuit pattern is formed on (M1').
 前記の表面処理剤による処理としては、例えば、特開平7-258870号公報に記載されている、トリアゾール系化合物、シランカップリング剤および有機酸からなる防錆剤を用いて処理する方法、特開2000-286546号公報に記載されている、有機酸、ベンゾトリアゾール系防錆剤およびシランカップリング剤を用いて処理する方法、特開2002-363189号公報に記載されている、トリアゾールやチアジアゾール等の含窒素複素環と、トリメトキシシリル基やトリエトキシシリル基等のシリル基が、チオエーテル(スルフィド)結合等を有する有機基を介して結合された構造の物質を用いて処理する方法、WO2013/186941号公報に記載されている、トリアジン環とアミノ基を有するシラン化合物を用いて処理する方法、特開2015-214743号公報に記載されている、ホルミルイミダゾール化合物と、アミノプロピルシラン化合物とを反応させて得られるイミダゾールシラン化合物を用いて処理する方法、特開2016-134454号公報に記載されているアゾールシラン化合物を用いて処理する方法、特開2017-203073号公報に記載されている、一分子中にアミノ基および芳香環を有する芳香族化合物と2以上のカルボキシル基を有する多塩基酸、ならびにハロゲン化物イオンを含む溶液で処理する方法、特開2018-16865号公報に記載されているトリアゾールシラン化合物を含有する表面処理剤で処理する方法、などを用いることができる。 As the treatment with the above-mentioned surface treatment agent, for example, a method described in JP-A-7-258870, a method of treatment using a rust preventive agent composed of a triazole-based compound, a silane coupling agent and an organic acid, JP-A. A method for treating with an organic acid, a benzotriazole-based rust preventive agent and a silane coupling agent described in Japanese Patent Application Laid-Open No. 2000-286546, and triazole, thiadiazol and the like described in JP-A-2002-363189. A method for treating a nitrogen-containing heterocycle and a silyl group such as a trimethoxysilyl group or a triethoxysilyl group using a substance having a structure bonded via an organic group having a thioether (sulfide) bond or the like, WO2013 / 186941. A method for treating with a silane compound having a triazole ring and an amino group described in Japanese Patent Application Laid-Open No. 2015-214743, a formyl imidazole compound described in JP-A-2015-214743 is reacted with an aminopropylsilane compound. The method for treating with the imidazole silane compound obtained in the above, the method for treating with the azole silane compound described in JP-A-2016-134454, the single molecule described in JP-A-2017-203073. A method for treating with a solution containing an aromatic compound having an amino group and an aromatic ring, a polybasic acid having two or more carboxyl groups, and a halide ion, triazolesilane described in JP-A-2018-16865. A method of treating with a surface treatment agent containing a compound, or the like can be used.
 本発明のプリント配線板の製造方法において、表面に金属パターンを形成するためには、感光性レジストにフォトマスクを通すか、ダイレクト露光機を用いて、活性光でパターンを露光する。露光量は、必要に応じて適宜設定すればよい。露光により感光性レジストに形成された潜像を、現像液を用いて除去することによって、パターンレジストを形成する。 In the method for manufacturing a printed wiring board of the present invention, in order to form a metal pattern on the surface, a photomask is passed through a photosensitive resist or a direct exposure machine is used to expose the pattern with active light. The exposure amount may be appropriately set as needed. A pattern resist is formed by removing the latent image formed on the photosensitive resist by exposure using a developing solution.
 前記現像液としては、0.3~2質量%の炭酸ナトリウム、炭酸カリウム等の希薄アルカリ水溶液が挙げられる。前記希薄アルカリ水溶液中には、界面活性剤、消泡剤や、現像を促進させるために、少量の有機溶剤等を添加してもよい。また、上記で露光した基材を、現像液に浸漬するか、現像液をスプレー等でレジスト上に噴霧することにより現像を行ない、この現像によって、パターン形成部が除去されたパターンレジストを形成できる。 Examples of the developer include a dilute alkaline aqueous solution such as 0.3 to 2% by mass of sodium carbonate and potassium carbonate. A surfactant, a defoaming agent, a small amount of an organic solvent, or the like may be added to the dilute alkaline aqueous solution in order to accelerate development. Further, the substrate exposed above is immersed in a developing solution or developed by spraying the developing solution onto a resist, and by this development, a pattern resist from which the pattern forming portion is removed can be formed. ..
 パターンレジストを形成する際には、さらに、プラズマによるデスカム処理や、市販のレジスト残渣除去剤を用いて、硬化レジストと基板との境界部分に生じた裾引き部分や基板表面に残存したレジスト付着物などのレジスト残渣を除去してもよい。 When forming the pattern resist, further, using plasma descam treatment or a commercially available resist residue removing agent, a resist deposit remaining on the hemming portion formed at the boundary portion between the cured resist and the substrate and the surface of the substrate. The resist residue such as may be removed.
 本発明で用いる感光性レジストとしては、市販のレジストインキ、液体レジスト、ドライフィルムレジストを用いることができ、目的とするパターンの解像度、使用する露光機の種類、後工程のめっき処理で用いる薬液の種類、pH等によって適宜選択すればよい。 As the photosensitive resist used in the present invention, a commercially available resist ink, liquid resist, or dry film resist can be used, and the resolution of the target pattern, the type of the exposure machine used, and the chemical solution used in the plating treatment in the subsequent step can be used. It may be appropriately selected depending on the type, pH and the like.
 市販のレジストインキとしては、例えば、太陽インキ製造株式会社製の「めっきレジストMA-830」、「エッチングレジストX-87」;NAZDAR社のエッチングレジスト、めっきレジスト;互応化学工業株式会社製の「エッチングレジスト PLAS FINE PER」シリーズ、「めっきレジスト PLAS FINE PPR」シリーズ等が挙げられる。また、電着レジストとしては、例えば、ダウ・ケミカル・カンパニー社の「イーグルシリーズ」、「ペパーシリーズ」等が挙げられる。さらに、市販のドライフィルムとしては、例えば、日立化成株式会社製の「フォテック」シリーズ;ニッコーマテリアルズ株式会社製の「ALPHO」シリーズ;旭化成株式会社製の「サンフォート」シリーズ、デュポン社製の「リストン」シリーズ等が挙げられる。 Examples of commercially available resist inks include "plating resist MA-830" and "etching resist X-87" manufactured by Taiyo Ink Mfg. Co., Ltd .; etching resist and plating resist manufactured by NAZDAR Co., Ltd .; "etching" manufactured by Mutual Chemical Industry Co., Ltd. Examples include the "resist PLAS FINE PER" series and the "plating resist PLAS FINE PPR" series. Examples of the electrodeposition resist include "Eagle series" and "Pepper series" manufactured by Dow Chemical Company. Further, as commercially available dry films, for example, "Fotech" series manufactured by Hitachi Kasei Co., Ltd .; "ALPHO" series manufactured by Nikko Materials Co., Ltd .; "Sunfort" series manufactured by Asahi Kasei Co., Ltd., and "Sunfort" series manufactured by DuPont Co., Ltd. Liston "series and the like.
 効率良くプリント配線板を製造するためには、ドライフィルムレジストを用いることが簡便で、特に微細回路を形成する場合には、セミアディティブ工法用のドライフィルムを用いればよい。この目的に用いる市販のドライフィルムとしては、例えば、ニッコーマテリアルズ株式会社製の「ALFO LDF500」、「NIT2700」、旭化成株式会社製の「サンフォート UFG―258」、日立化成株式会社製の「RDシリーズ(RD-2015、1225)」、「RYシリーズ(RY-5319、5325)」、デュポン社製の「PlateMasterシリーズ(PM200、300)」等を用いることができる。 In order to efficiently manufacture a printed wiring board, it is easy to use a dry film resist, and especially when forming a fine circuit, a dry film for the semi-additive method may be used. Commercially available dry films used for this purpose include, for example, "ALFO LDF500" and "NIT2700" manufactured by Nikko Materials Co., Ltd., "Sunfort UFG-258" manufactured by Asahi Kasei Corporation, and "RD" manufactured by Hitachi Kasei Co., Ltd. Series (RD-2015, 1225) "," RY series (RY-5319, 5325) "," PlateMaster series (PM200, 300) "manufactured by DuPont, and the like can be used.
 本発明のプリント配線板の製造方法の工程6において、基材上に回路パターン層(M2)を形成するには、前記導電性の銀粒子層(M1‘)を電解銅めっきのカソード電極として使用し、上記のようにして、現像により露出した前記銀粒子層(M1’)上に、電解銅めっき法による処理を行うことにより、積層体の貫通孔を銅めっきで接続すると同時に、回路パターン層(M2)を形成することができる。 In step 6 of the method for manufacturing a printed wiring board of the present invention, in order to form a circuit pattern layer (M2) on a substrate, the conductive silver particle layer (M1') is used as a cathode electrode for electrolytic copper plating. Then, by performing the treatment by the electrolytic copper plating method on the silver particle layer (M1') exposed by the development as described above, the through holes of the laminated body are connected by the copper plating, and at the same time, the circuit pattern layer is formed. (M2) can be formed.
 前記の電解銅めっき法により回路パターン層(M2)を形成する前において、必要に応じて、前記銀粒子層(M1‘)表面の表面処理を行ってもよい。この表面処理としては、前記銀粒子層(M1’)の表面や形成したレジストパターンが損傷しない条件で、酸性又はアルカリ性の洗浄液による洗浄処理、コロナ処理、プラズマ処理、UV処理、気相オゾン処理、液相オゾン処理、表面処理剤による処理等が挙げられる。これらの表面処理は、1種の方法で行うことも2種以上の方法を併用することもできる。 Before forming the circuit pattern layer (M2) by the electrolytic copper plating method, the surface of the silver particle layer (M1') may be surface-treated, if necessary. The surface treatment includes cleaning treatment with an acidic or alkaline cleaning liquid, corona treatment, plasma treatment, UV treatment, vapor phase ozone treatment, under the condition that the surface of the silver particle layer (M1') and the formed resist pattern are not damaged. Examples include liquid phase ozone treatment and treatment with a surface treatment agent. These surface treatments can be performed by one method or by using two or more methods in combination.
 本発明のプリント配線板の製造方法を用いて、絶縁性基材上に回路パターンの導電層(M2)を形成する際、めっき膜の応力緩和や密着力向上を目的として、めっき後にアニーリングを行ってもよい。アニーリングは、後述するエッチング工程の前に行ってもよいし、エッチング工程の後に行ってもよく、エッチングの前後で行ってもよい。 When the conductive layer (M2) of the circuit pattern is formed on the insulating base material by using the method for manufacturing a printed wiring board of the present invention, annealing is performed after plating for the purpose of stress relaxation and improvement of adhesion of the plating film. May be. Annealing may be performed before the etching step described later, after the etching step, or before and after the etching.
 アニーリングの温度は、用いる基材の耐熱性や使用目的によって40~300℃の温度範囲で適宜選択すればよいが、40~250℃の範囲が好ましく、めっき膜の酸化劣化を抑制する目的から、40~200℃の範囲がより好ましい。また、アニーリングの時間は、40~200℃の温度範囲の場合には、10分~10日間、200℃を超える温度でのアニーリングは、5分~10時間程度がよい。また、めっき膜をアニーリングする際には、適宜、めっき膜表面に防錆剤を付与してもよい。 The annealing temperature may be appropriately selected in the temperature range of 40 to 300 ° C. depending on the heat resistance of the substrate to be used and the purpose of use, but is preferably in the range of 40 to 250 ° C. for the purpose of suppressing oxidative deterioration of the plating film. The range of 40 to 200 ° C. is more preferable. The annealing time is preferably 10 minutes to 10 days in the temperature range of 40 to 200 ° C., and 5 minutes to 10 hours in the case of a temperature exceeding 200 ° C. Further, when annealing the plating film, a rust preventive may be appropriately applied to the surface of the plating film.
 本発明のプリント配線板の製造方法の工程7においては、前記工程6において、めっきにより回路パターン層(M2)を形成した後に、前記感光性レジストを用いて形成したパターンレジストを剥離し、非パターン形成部の銀粒子層(M1‘)をエッチング液により除去する。パターンレジストの剥離は、用いた感光性レジストのカタログ、仕様書等に記載されている推奨条件で行えばよい。また、パターンレジストの剥離の際に用いるレジスト剥離液としては、市販のレジスト剥離液や、45~60℃に設定した水酸化ナトリウムもしくは水酸化カリウムの1.5~3質量%水溶液を用いることができる。レジストの剥離は、前記回路パターンの導電層(M2)を形成した基材を、剥離液に浸漬するか、剥離液をスプレー等で噴霧することによって行うことができる。 In step 7 of the method for manufacturing a printed wiring board of the present invention, in step 6, after forming the circuit pattern layer (M2) by plating, the pattern resist formed by using the photosensitive resist is peeled off to form a non-pattern. The silver particle layer (M1') of the formed portion is removed by an etching solution. The pattern resist may be peeled off under the recommended conditions described in the catalog, specifications, etc. of the photosensitive resist used. As the resist stripping solution used for stripping the pattern resist, a commercially available resist stripping solution or a 1.5 to 3% by mass aqueous solution of sodium hydroxide or potassium hydroxide set at 45 to 60 ° C. may be used. can. The resist can be peeled off by immersing the substrate on which the conductive layer (M2) of the circuit pattern is formed in a stripping solution or by spraying the stripping solution with a spray or the like.
 また、非パターン形成部の銀粒子層(M1‘)を除去する際に用いるエッチング液は、前記銀粒子層(M1’)のみを選択的にエッチングし、前記回路パターン層(M2)を形成する銅は、エッチングしないものが好ましい。このようなエッチング液としては、カルボン酸と過酸化水素との混合物が挙げられる。 Further, the etching solution used for removing the silver particle layer (M1') in the non-pattern forming portion selectively etches only the silver particle layer (M1') to form the circuit pattern layer (M2). Copper is preferably non-etched. Examples of such an etching solution include a mixture of a carboxylic acid and hydrogen peroxide.
 前記カルボン酸としては、例えば、酢酸、蟻酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、シュウ酸、マロン酸、コハク酸、安息香酸、サリチル酸、フタル酸、イソフタル酸、テレフタル酸、没食子酸、メリト酸、ケイ皮酸、ピルビン酸、乳酸、リンゴ酸、クエン酸、フマル酸、マレイン酸、アコニット酸、グルタル酸、アジピン酸、アミノ酸等が挙げられる。これらのカルボン酸は、1種で用いることも2種以上併用することもできる。これらのカルボン酸の中でも、エッチング液としての製造、取り扱いが容易であることから、主として酢酸を用いることが好ましい。 Examples of the carboxylic acid include acetic acid, formic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, margalic acid and stearic acid. Oleic acid, linoleic acid, linolenic acid, arachidonic acid, eikosapentaenoic acid, docosahexaenoic acid, oxalic acid, malonic acid, succinic acid, benzoic acid, salicylic acid, phthalic acid, isophthalic acid, terephthalic acid, gallic acid, melitonic acid, coconut skin Examples thereof include acids, pyruvate, lactic acid, malic acid, citric acid, fumaric acid, maleic acid, aconitic acid, glutaric acid, adipic acid, amino acids and the like. These carboxylic acids can be used alone or in combination of two or more. Among these carboxylic acids, it is preferable to mainly use acetic acid because it is easy to manufacture and handle as an etching solution.
 エッチング液として、カルボン酸と過酸化水素との混合物を用いると、過酸化水素がカルボン酸と反応することによって、過カルボン酸(ぺルオキシカルボン酸)が生成すると考えられる。生成した過カルボン酸は、前記回路パターン層(M2)を構成する銅の溶解を抑制しながら、前記銀粒子層(M1‘)を構成する銀を優先的に溶解するものと推測される。 When a mixture of carboxylic acid and hydrogen peroxide is used as the etching solution, it is considered that a percarboxylic acid (peroxycarboxylic acid) is produced by the reaction of hydrogen peroxide with the carboxylic acid. It is presumed that the generated percarboxylic acid preferentially dissolves the silver constituting the silver particle layer (M1') while suppressing the dissolution of the copper constituting the circuit pattern layer (M2).
 前記カルボン酸と過酸化水素との混合物の混合割合としては、銅の回路パターン層(M2)の溶解を抑制できることから、カルボン酸1モルに対して、過酸化水素を2~100モルの範囲が好ましく、過酸化水素2~50モルの範囲がより好ましい。 The mixing ratio of the mixture of the carboxylic acid and hydrogen peroxide is in the range of 2 to 100 mol of hydrogen peroxide with respect to 1 mol of the carboxylic acid because the dissolution of the copper circuit pattern layer (M2) can be suppressed. Preferably, the range of 2 to 50 mol of hydrogen peroxide is more preferable.
 前記カルボン酸と過酸化水素との混合物は、水で希釈された水溶液が好ましい。また、前記水溶液中の前記カルボン酸と過酸化水素との混合物の含有比率は、エッチング液の温度上昇の影響を抑制できることから、2~65質量%の範囲が好ましく、2~30質量%の範囲がより好ましい。 The mixture of the carboxylic acid and hydrogen peroxide is preferably an aqueous solution diluted with water. Further, the content ratio of the mixture of the carboxylic acid and hydrogen peroxide in the aqueous solution is preferably in the range of 2 to 65% by mass and preferably in the range of 2 to 30% by mass because the influence of the temperature rise of the etching solution can be suppressed. Is more preferable.
 上記の希釈に用いる水としては、イオン交換水、純水、超純水等のイオン性物質や不純物を除去した水を用いることが好ましい。 As the water used for the above dilution, it is preferable to use water from which ionic substances and impurities such as ion-exchanged water, pure water, and ultrapure water have been removed.
 前記エッチング液には、前記銅の回路パターン層(M2)を保護して、溶解を抑制するための保護剤をさらに添加してもよい。保護剤としては、アゾール化合物を用いることが好ましい。 A protective agent for protecting the copper circuit pattern layer (M2) and suppressing dissolution may be further added to the etching solution. As the protective agent, it is preferable to use an azole compound.
 前記アゾール化合物としては、例えば、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキソゾール、チアゾール、セレナゾール、オキサジアゾール、チアジアゾール、オキサトリアゾール、チアトリアゾール等が挙げられる。 Examples of the azole compound include imidazole, pyrazole, triazole, tetrazole, oxozole, thiazole, selenazole, oxadiazole, thiadiazole, oxatriazole, and thiatriazole.
 前記アゾール化合物の具体例としては、例えば、2-メチルベンゾイミダゾール、アミノトリアゾール、1,2,3-ベンゾトリアゾール、4-アミノベンゾトリアゾール、1-ビスアミノメチルベンゾトリアゾール、アミノテトラゾール、フェニルテトラゾール、2-フェニルチアゾール、ベンゾチアゾール等が挙げられる。これらのアゾール化合物は、1種で用いることも2種以上併用することもできる。 Specific examples of the azole compound include, for example, 2-methylbenzimidazole, aminotriazole, 1,2,3-benzotriazole, 4-aminobenzotriazole, 1-bisaminomethylbenzotriazole, aminotetrazole, phenyltetrazole, 2 -Phenylthiazole, benzothiazole and the like can be mentioned. These azole compounds may be used alone or in combination of two or more.
 前記アゾール化合物のエッチング液中の濃度は、0.001~2質量%の範囲が好ましく、0.01~0.2質量%の範囲がより好ましい。 The concentration of the azole compound in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 0.2% by mass.
 また、前記エッチング液には、前記銅の回路パターン層(M2)の溶解を抑制できることから、保護剤として、ポリアルキレングリコールを添加することが好ましい。 Further, since the dissolution of the copper circuit pattern layer (M2) can be suppressed in the etching solution, it is preferable to add polyalkylene glycol as a protective agent.
 前記ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリオキシエチレンポリオキシプロピレンブロックコポリマー等の水溶性ポリマーなどが挙げられる。これらの中でも、ポリエチレングリコールが好ましい。また、ポリアルキレングリコールの数平均分子量としては、200~20,000の範囲が好ましい。 Examples of the polyalkylene glycol include water-soluble polymers such as polyethylene glycol, polypropylene glycol, and polyoxyethylene polyoxypropylene block copolymer. Among these, polyethylene glycol is preferable. The number average molecular weight of the polyalkylene glycol is preferably in the range of 200 to 20,000.
 前記ポリアルキレングリコールのエッチング液中の濃度は、0.001~2質量%の範囲が好ましく、0.01~1質量%の範囲がより好ましい。 The concentration of the polyalkylene glycol in the etching solution is preferably in the range of 0.001 to 2% by mass, more preferably in the range of 0.01 to 1% by mass.
 前記エッチング液には、pHの変動を抑制するため、有機酸のナトリウム塩、カリウム塩、アンモニウム塩等の添加剤を必要に応じて配合してもよい。 Additives such as sodium salt, potassium salt and ammonium salt of organic acid may be added to the etching solution as necessary in order to suppress fluctuations in pH.
 本発明のプリント配線板の製造方法において非パターン形成部の銀粒子層(M1‘)の除去は、前記回路パターン層(M2)を形成した後、前記感光性レジストを用いて形成したパターンレジストを剥離した基材を、前記エッチング液に浸漬するか、前記基材上にエッチング液をスプレー等で噴霧することによって行うことができる。 In the method for manufacturing a printed wiring board of the present invention, the silver particle layer (M1') in the non-pattern forming portion is removed by forming the circuit pattern layer (M2) and then using the photosensitive resist to form a pattern resist. This can be done by immersing the peeled substrate in the etching solution or by spraying the etching solution onto the substrate by spraying or the like.
 エッチング装置を用いて、非パターン形成部の銀粒子層(M1‘)を除去する場合には、例えば、前記エッチング液の全成分を所定の組成になるように調製した後、エッチング装置に供給してもよく、前記エッチング液の各成分を個別にエッチング装置に供給し、装置内で、前記各成分を混合して、所定の組成になるように調製してもよい。 When the silver particle layer (M1') in the non-pattern forming portion is removed by using an etching apparatus, for example, all the components of the etching solution are prepared to have a predetermined composition and then supplied to the etching apparatus. Alternatively, each component of the etching solution may be individually supplied to an etching apparatus, and the respective components may be mixed in the apparatus to prepare a predetermined composition.
 前記エッチング液は、10~35℃の温度範囲で用いることが好ましく、特に過酸化水素を含有するエッチング液を使用する場合には、過酸化水素の分解を抑制できることから、30℃以下の温度範囲で用いることが好ましい。 The etching solution is preferably used in a temperature range of 10 to 35 ° C., and particularly when an etching solution containing hydrogen peroxide is used, decomposition of hydrogen peroxide can be suppressed, so that the temperature range is 30 ° C. or lower. It is preferable to use in.
 前記銀粒子層(M1‘)を、前記エッチング液で除去処理した後、エッチング液中に溶解した銀成分がプリント配線板上に付着、残留するのを防ぐ目的で、水洗以外に、さらに洗浄操作を行ってもよい。洗浄操作には、酸化銀、硫化銀、塩化銀を溶解するが、銀をほとんど溶解しない洗浄溶液を用いることが好ましい。具体的には、チオ硫酸塩もしくはトリス(3-ヒドロキシアルキル)ホスフィンを含有する水溶液、又は、メルカプトカルボン酸もしくはその塩を含有する水溶液を洗浄薬液として用いることが好ましい。 After the silver particle layer (M1') is removed with the etching solution, a further cleaning operation other than washing with water is performed for the purpose of preventing the silver component dissolved in the etching solution from adhering to and remaining on the printed wiring board. May be done. For the cleaning operation, it is preferable to use a cleaning solution that dissolves silver oxide, silver sulfide, and silver chloride, but hardly dissolves silver. Specifically, it is preferable to use an aqueous solution containing thiosulfate or tris (3-hydroxyalkyl) phosphine, or an aqueous solution containing mercaptocarboxylic acid or a salt thereof as a cleaning chemical solution.
 前記、チオ硫酸塩としては、例えば、チオ硫酸アンモニウム、チオ硫酸ナトリウム、チオ硫酸カリウム等が挙げられる。また、前記トリス(3-ヒドロキシアルキル)ホスフィンとしては、例えば、トリス(3-ヒドロキシメチル)ホスフィン、トリス(3-ヒドロキシエチル)ホスフィン、トリス(3-ヒドロキシプロピル)ホスフィン等が挙げられる。これらのチオ硫酸塩又はトリス(3-ヒドロキシアルキル)ホスフィンは、それぞれ1種で用いることも2種以上併用することもできる。 Examples of the thiosulfate include ammonium thiosulfate, sodium thiosulfate, potassium thiosulfate and the like. Examples of the tris (3-hydroxyalkyl) phosphine include tris (3-hydroxymethyl) phosphine, tris (3-hydroxyethyl) phosphine, and tris (3-hydroxypropyl) phosphine. These thiosulfates or tris (3-hydroxyalkyl) phosphines can be used alone or in combination of two or more.
 チオ硫酸塩を含有する水溶液を用いる場合の濃度としては、工程時間、用いる洗浄装置の特性等によって適宜設定すればよいが、0.1~40質量%の範囲が好ましく、洗浄効率や連続使用時の薬液の安定性の観点から、1~30質量%の範囲がより好ましい。 The concentration when using an aqueous solution containing a thiosulfate may be appropriately set depending on the process time, the characteristics of the cleaning device to be used, etc., but is preferably in the range of 0.1 to 40% by mass, and during cleaning efficiency and continuous use. From the viewpoint of the stability of the chemical solution, the range of 1 to 30% by mass is more preferable.
 また、前記トリス(3-ヒドロキシアルキル)ホスフィンを含有する水溶液を用いる場合の濃度としては、工程時間、用いる洗浄装置の特性等によって適宜設定すればよいが、0.1~50質量%の範囲が好ましく、洗浄効率や連続使用時の薬液の安定性の観点から、1~40質量%の範囲がより好ましい。 The concentration of the aqueous solution containing tris (3-hydroxyalkyl) phosphine may be appropriately set depending on the process time, the characteristics of the cleaning device used, and the like, but is in the range of 0.1 to 50% by mass. Preferably, the range of 1 to 40% by mass is more preferable from the viewpoint of cleaning efficiency and stability of the chemical solution during continuous use.
 前記メルカプトカルボン酸としては、例えば、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、システイン、N―アセチルシステイン等が挙げられる。また、前記メルカプトカルボン酸の塩としては、例えば、アルカリ金属塩、アンモニウム塩、アミン塩等が挙げられる。 Examples of the mercaptocarboxylic acid include thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioapple acid, cysteine, N-acetylcysteine and the like. Examples of the salt of the mercaptocarboxylic acid include alkali metal salts, ammonium salts, amine salts and the like.
 メルカプトカルボン酸又はその塩の水溶液を用いる場合の濃度としては、0.1~20質量%の範囲が好ましく、洗浄効率や大量に処理する場合のプロセスコストの観点から、0.5~15質量%の範囲がより好ましい。 When an aqueous solution of mercaptocarboxylic acid or a salt thereof is used, the concentration is preferably in the range of 0.1 to 20% by mass, and from the viewpoint of cleaning efficiency and process cost when processing a large amount, 0.5 to 15% by mass. The range of is more preferable.
 上記の洗浄操作を行う方法としては、例えば、前記非パターン形成部の銀粒子層(M1)をエッチング除去して得られたプリント配線板を前記洗浄薬液に浸漬する方法、前記プリント配線板にスプレー等で洗浄薬液を噴霧する方法等が挙げられる。洗浄薬液の温度は、室温(25℃)で用いることができるが、外気温に影響を受けずに安定的に洗浄処理を行えることから、例えば、30℃に温度設定して用いてもよい。 Examples of the method for performing the above cleaning operation include a method of immersing a printed wiring board obtained by etching and removing the silver particle layer (M1) of the non-pattern forming portion in the cleaning chemical solution, and spraying the printed wiring board. A method of spraying a cleaning chemical solution with or the like can be mentioned. The temperature of the cleaning chemical solution can be used at room temperature (25 ° C.), but since the cleaning process can be performed stably without being affected by the outside air temperature, the temperature may be set to 30 ° C. for use.
 また、前記非パターン形成部の銀粒子層(M1‘)をエッチング液により除去する工程と洗浄操作は、必要に応じて繰り返して行うことができる。 Further, the step of removing the silver particle layer (M1') of the non-pattern forming portion with an etching solution and the cleaning operation can be repeated as necessary.
 本発明のプリント配線板は、上記のように、前記エッチング液で非パターン形成部の銀粒子層(M1‘)を除去処理した後、非パターン形成部の絶縁性を、さらに向上させる目的で、必要に応じて、さらに洗浄操作を行ってもよい。この洗浄操作には、例えば、水酸化カリウム又は水酸化ナトリウムの水溶液に、過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液を用いることができる。 As described above, the printed wiring board of the present invention has the purpose of further improving the insulating property of the non-pattern forming portion after removing the silver particle layer (M1') of the non-pattern forming portion with the etching solution. If necessary, a further cleaning operation may be performed. For this cleaning operation, for example, an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of potassium hydroxide or sodium hydroxide can be used.
 前記アルカリ性過マンガン酸溶液を用いた洗浄は、20~60℃に設定したアルカリ性過マンガン酸溶液に、上記の方法により得られたプリント配線板を浸漬する方法、前記プリント配線板にスプレー等でアルカリ性過マンガン酸溶液を噴霧する方法等が挙げられる。前記プリント配線板は、アルカリ性過マンガン酸溶液の基材表面への濡れ性をよくし、洗浄効率を向上させる目的で、洗浄前に、アルコール性水酸基を有する水溶性の有機溶媒に接触させる処理を行ってもよい。前記有機溶媒としては、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール等が挙げられる。これらの有機溶媒は、1種で用いることも2種以上併用することもできる。 Cleaning using the alkaline permanganate solution is a method of immersing the printed wiring board obtained by the above method in an alkaline permanganate solution set at 20 to 60 ° C., or the printed wiring board is alkaline by spraying or the like. Examples thereof include a method of spraying a permanganate solution. The printed wiring board is treated with a water-soluble organic solvent having an alcoholic hydroxyl group before cleaning for the purpose of improving the wettability of the alkaline permanganate solution to the surface of the substrate and improving the cleaning efficiency. You may go. Examples of the organic solvent include methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol and the like. These organic solvents may be used alone or in combination of two or more.
 前記アルカリ性過マンガン酸溶液の濃度は、必要に応じて適宜選択すればよいが、0.1~10質量%の水酸化カリウム又は水酸化ナトリウム水溶液100質量部に、過マンガン酸カリウム又は過マンガン酸ナトリウムを0.1~10質量部溶解させたものが好ましく、洗浄効率の観点から、1~6質量%の水酸化カリウム又は水酸化ナトリウム水溶液100質量部に、過マンガン酸カリウム又は過マンガン酸ナトリウムを1~6質量部溶解させたものがより好ましい。 The concentration of the alkaline permanganate solution may be appropriately selected as needed, but potassium permanganate or permanganate is added to 100 parts by mass of 0.1 to 10% by mass of potassium hydroxide or sodium hydroxide aqueous solution. It is preferable that 0.1 to 10 parts by mass of sodium is dissolved, and from the viewpoint of cleaning efficiency, potassium permanganate or sodium permanganate is added to 100 parts by mass of 1 to 6% by mass of potassium hydroxide or sodium hydroxide aqueous solution. Is more preferably dissolved in 1 to 6 parts by mass.
 上記のアルカリ性過マンガン酸溶液を用いた洗浄を行う場合には、アルカリ性過マンガン酸溶液の洗浄後に、洗浄した前記プリント配線板を、中和・還元作用のある液を用いて処理することが好ましい。前記中和・還元作用のある液としては、例えば、0.5~15質量%の希硫酸、又は有機酸を含有する水溶液が挙げられる。また、前記有機酸としては、例えば、ギ酸、酢酸、シュウ酸、クエン酸、アスコルビン酸、メチオニン等が挙げられる。 When cleaning with the above alkaline permanganic acid solution, it is preferable to treat the washed printed wiring board with a solution having a neutralizing / reducing action after cleaning with the alkaline permanganic acid solution. .. Examples of the liquid having a neutralizing / reducing action include an aqueous solution containing 0.5 to 15% by mass of dilute sulfuric acid or an organic acid. Examples of the organic acid include formic acid, acetic acid, oxalic acid, citric acid, ascorbic acid, and methionine.
 上記のアルカリ性過マンガン酸溶液による洗浄は、前記エッチング液中に溶解した銀成分がプリント配線板上に付着、残留するのを防ぐ目的で行う洗浄の後に行ってもよいし、前記エッチング液中に溶解した銀成分がプリント配線板上に付着、残留するのを防ぐ目的で、洗浄を行う代わりに、アルカリ性過マンガン酸溶液による洗浄のみを行ってもよい。 The cleaning with the alkaline permanganic acid solution may be performed after the cleaning for the purpose of preventing the silver component dissolved in the etching solution from adhering to and remaining on the printed wiring board, or may be performed in the etching solution. In order to prevent the dissolved silver component from adhering to and remaining on the printed wiring board, instead of cleaning, only cleaning with an alkaline permanganic acid solution may be performed.
 また、本発明のプリント配線板の製造方法を用いて製造されたプリント配線板は、適宜、必要に応じて、回路パターン上へのカバーレイフィルム積層、ソルダーレジスト層の形成、及び、回路パターンの最終表面処理として、ニッケル/金めっき、ニッケル/パラジウム/金めっき、パラジウム/金めっきを施してもよい。 Further, the printed wiring board manufactured by using the method for manufacturing the printed wiring board of the present invention can be used for covering the coverlay film on the circuit pattern, forming the solder resist layer, and the circuit pattern, if necessary. As the final surface treatment, nickel / gold plating, nickel / palladium / gold plating, and palladium / gold plating may be performed.
 以上に述べた本発明のプリント配線板の製造方法により、真空装置を用いることなく、種々の平滑基材上に密着性の高い、設計再現性が良く、良好な矩形断面形状の平滑表面の回路パターンを有する、両面接続された基板を製造することが可能である。したがって、本発明のセミアディティブ工法用積層体を用いることで、種々の形状、サイズの高密度、高性能のプリント配線板用基板、プリント配線板を、低コストで、良好に提供することができ、プリント配線板分野における産業上の利用性が高い。また、積層体を用いることにより、プリント配線板のみならず、平面上基材表面にパターン化された金属層を有する種々の部材、例えば、コネクター、電磁波シールド、RFIDなどのアンテナ、フィルムコンデンサーなども製造できる。 By the method for manufacturing a printed wiring board of the present invention described above, a circuit having a smooth surface having a good rectangular cross-sectional shape, having high adhesion on various smooth substrates, having good design reproducibility, without using a vacuum device. It is possible to manufacture a double-sided connected substrate having a pattern. Therefore, by using the laminate for the semi-additive method of the present invention, it is possible to provide a high-density, high-performance printed wiring board board and a printed wiring board of various shapes and sizes at low cost and satisfactorily. , Highly industrially usable in the field of printed wiring boards. Further, by using the laminated body, not only the printed wiring board but also various members having a metal layer patterned on the surface of the base material on a plane, for example, a connector, an electromagnetic wave shield, an antenna such as RFID, a film capacitor, etc. can be used. Can be manufactured.
 以下、実施例および比較例を用いて本発明をさらに詳細に説明する。以下の実施例および比較例において、「部」および「%」は、いずれも質量基準である。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the following examples and comparative examples, "part" and "%" are both based on mass.
[製造例1:プライマー(B-1)の製造]
 温度計、窒素ガス導入管、攪拌器を備えた窒素置換された容器中で、ポリエステルポリオール(1,4-シクロヘキサンジメタノールとネオペンチルグリコールとアジピン酸とを反応させて得られたポリエステルポリオール)100質量部、2,2―ジメチロールプロピオン酸17.6質量部、1,4-シクロヘキサンジメタノール21.7質量部及びジシクロヘキシルメタン-4,4’-ジイソシアネート106.2質量部を、メチルエチルケトン178質量部の混合溶剤中で反応させることによって、末端にイソシアネート基を有するウレタンプレポリマー溶液を得た。
[Production Example 1: Production of Primer (B-1)]
Polyester polyol (polyolpolyol obtained by reacting 1,4-cyclohexanedimethanol, neopentylglycol, and adipic acid in a nitrogen-substituted container equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer) 100 By mass, 17.6 parts by mass of 2,2-dimethylolpropionic acid, 21.7 parts by mass of 1,4-cyclohexanedimethanol, 106.2 parts by mass of dicyclohexylmethane-4,4'-diisocyanate, and 178 parts by mass of methylethylketone. By reacting in the mixed solvent of the above, a urethane prepolymer solution having an isocyanate group at the terminal was obtained.
 次いで、前記ウレタンプレポリマー溶液にトリエチルアミン13.3質量部を加えて、前記ウレタンプレポリマーが有するカルボキシル基を中和し、さらに水380質量部を加えて十分に攪拌することにより、ウレタンプレポリマーの水性分散液を得た。 Next, 13.3 parts by mass of triethylamine was added to the urethane prepolymer solution to neutralize the carboxyl group of the urethane prepolymer, and 380 parts by mass of water was further added to sufficiently stir the urethane prepolymer. An aqueous dispersion was obtained.
 上記で得られたウレタンプレポリマーの水性分散液に、25質量%エチレンジアミン水溶液8.8質量部を加え、攪拌することによって、ウレタンプレポリマーを鎖伸長した。次いでエージング・脱溶剤することによって、ウレタン樹脂の水性分散液(不揮発分30質量%)を得た。前記ウレタン樹脂の重量平均分子量は53,000であった。 8.8 parts by mass of a 25% by mass ethylenediamine aqueous solution was added to the aqueous dispersion of the urethane prepolymer obtained above, and the mixture was stirred to extend the chain of the urethane prepolymer. Then, by aging and removing the solvent, an aqueous dispersion of urethane resin (nonvolatile content: 30% by mass) was obtained. The weight average molecular weight of the urethane resin was 53,000.
 次に、攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗、重合触媒滴下用滴下漏斗を備えた反応容器に脱イオン水140質量部、上記で得られたウレタン樹脂の水分散液100質量部を入れ、窒素を吹き込みながら80℃まで昇温した。その後、攪拌しながら、メタクリル酸メチル60質量部、アクリル酸n-ブチル30質量部及びN-n-ブトキシメチルアクリルアミド10質量部からなる単量体混合物と、0.5質量%過硫酸アンモニウム水溶液20質量部とを別々の滴下漏斗から、反応容器内温度を80℃に保ちながら120分間かけて滴下した。 Next, 140 parts by mass of deionized water was placed in a reaction vessel equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a thermometer, a dropping funnel for dropping a monomer mixture, and a dropping funnel for dropping a polymerization catalyst, and the urethane obtained above. 100 parts by mass of the aqueous dispersion of the resin was added, and the temperature was raised to 80 ° C. while blowing nitrogen. Then, with stirring, a monomer mixture consisting of 60 parts by mass of methyl methacrylate, 30 parts by mass of n-butyl acrylate and 10 parts by mass of Nn-butoxymethylacrylamide, and 20 parts by mass of a 0.5% by mass ammonium persulfate aqueous solution were added. The parts were dropped from a separate dropping funnel over 120 minutes while keeping the temperature inside the reaction vessel at 80 ° C.
 滴下終了後、さらに同温度にて60分間攪拌した後、反応容器内の温度を40℃に冷却して、不揮発分が20質量%になるように脱イオン水で希釈した後、200メッシュ濾布で濾過することによって、前記ウレタン樹脂をシェル層とし、メタクリル酸メチル等を原料とするアクリル樹脂をコア層とするコア・シェル型複合樹脂であるプライマー層用樹脂組成物の水分散液を得た。次に、イソプロパノールと水の質量割合が7/3となり、不揮発分が2質量%となるように、この水分散液にイソプピルアルコールと脱イオン水を加えて混合し、プライマー(B-1)を得た。 After the dropping is completed, the mixture is further stirred at the same temperature for 60 minutes, cooled to 40 ° C., diluted with deionized water so that the non-volatile content becomes 20% by mass, and then 200 mesh filter cloth is used. By filtering with, an aqueous dispersion of a resin composition for a primer layer, which is a core-shell type composite resin having the urethane resin as a shell layer and an acrylic resin made of methyl methacrylate or the like as a core layer, was obtained. .. Next, isopropanol alcohol and deionized water were added to this aqueous dispersion and mixed so that the mass ratio of isopropanol and water was 7/3 and the non-volatile content was 2% by mass, and the primer (B-1) was added. Got
[製造例2:プライマー(B-2)の製造]
 還流冷却器、温度計、撹拌機を備えた反応フラスコに、37質量%ホルムアルデヒドと7質量%メタノールを含むホルマリン600質量部に、水200質量部及びメタノール350質量部を加えた。次いで、この水溶液に25質量%水酸化ナトリウム水溶液を加え、pH10に調整した後、メラミン310質量部を加え、液温を85℃まで上げ、メチロール化反応を1時間行った。
[Production Example 2: Production of Primer (B-2)]
To a reaction flask equipped with a reflux condenser, a thermometer and a stirrer, 200 parts by mass of water and 350 parts by mass of methanol were added to 600 parts by mass of formalin containing 37% by mass formaldehyde and 7% by mass methanol. Next, a 25% by mass sodium hydroxide aqueous solution was added to this aqueous solution to adjust the pH to 10, then 310 parts by mass of melamine was added, the liquid temperature was raised to 85 ° C., and a methylolation reaction was carried out for 1 hour.
 その後、ギ酸を加えてpH7に調整した後、60℃まで冷却し、エーテル化反応(二次反応)させた。白濁温度40℃で25質量%水酸化ナトリウム水溶液を加えてpH9に調整し、エーテル化反応を止めた(反応時間:1時間)。温度50℃の減圧下で残存するメタノールを除去(脱メタノール時間:4時間)し、不揮発分80質量%のメラミン樹脂を含むプライマー用樹脂組成物を得た。次に、この樹脂組成物にメチルエチルケトンを加えて希釈混合することで、不揮発分2質量%のプライマー(B-2)を得た。 After that, formic acid was added to adjust the pH to 7, and then the mixture was cooled to 60 ° C. and subjected to an etherification reaction (secondary reaction). A 25% by mass sodium hydroxide aqueous solution was added at a cloudiness temperature of 40 ° C. to adjust the pH to 9, and the etherification reaction was stopped (reaction time: 1 hour). The residual methanol was removed under reduced pressure at a temperature of 50 ° C. (methanol removal time: 4 hours) to obtain a primer resin composition containing a melamine resin having a non-volatile content of 80% by mass. Next, methyl ethyl ketone was added to this resin composition and diluted and mixed to obtain a primer (B-2) having a non-volatile content of 2% by mass.
[製造例3:プライマー(B-3)の製造]
 温度計、窒素ガス導入管、攪拌器を備え、窒素置換された反応容器に、2,2-ジメチロールプロピオン酸9.2質量部、ポリメチレンポリフェニルポリイソシアネート(東ソー株式会社製「ミリオネートMR-200」)57.4質量部及びメチルエチルケトン233質量部を仕込み、70℃で6時間反応させ、イソシアネート化合物を得た。次いで、反応容器内にブロック化剤としてフェノール26.4質量部を供給し、70℃で6時間反応させた。その後、40℃まで冷却し、ブロックイソシアネートの溶液を得た。
[Production Example 3: Production of Primer (B-3)]
A reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer and substituted with nitrogen, 2,2-dimethylol propionic acid 9.2 parts by mass, polymethylene polyphenyl polyisocyanate ("Millionate MR-" manufactured by Toso Co., Ltd. 200 ”) 57.4 parts by mass and 233 parts by mass of methyl ethyl ketone were charged and reacted at 70 ° C. for 6 hours to obtain an isocyanate compound. Next, 26.4 parts by mass of phenol was supplied as a blocking agent into the reaction vessel, and the reaction was carried out at 70 ° C. for 6 hours. Then, it cooled to 40 degreeC, and the solution of blocked isocyanate was obtained.
 次に、上記で得られたブロックイソシアネートの溶液に、40℃でトリエチルアミン7質量部を加えて前記ブロックイソシアネートが有するカルボキシル基を中和し、水を加えて十分に攪拌した後、メチルエチルケトンを留去して、不揮発分20質量%のブロックイソシアネートと水とを含有するプライマー層用樹脂組成物を得た。次に、この樹脂組成物にメチルエチルケトンを加えて希釈混合することで、不揮発分2質量%のプライマー(B-3)を得た。 Next, 7 parts by mass of triethylamine was added to the solution of the blocked isocyanate obtained above at 40 ° C. to neutralize the carboxyl group of the blocked isocyanate, water was added and the mixture was sufficiently stirred, and then the methyl ethyl ketone was distilled off. Then, a resin composition for a primer layer containing blocked isocyanate having a non-volatile content of 20% by mass and water was obtained. Next, methyl ethyl ketone was added to this resin composition and diluted and mixed to obtain a primer (B-3) having a non-volatile content of 2% by mass.
[製造例4:プライマー(B-4)の製造]
 ノボラック樹脂(DIC株式会社製「PHENOLITE TD-2131」、水酸基当量104g/当量)35質量部、エポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)64質量部、及び、2,4-ジアミノ-6-ビニル-s-トリアジン(四国化成株式会社製「VT」)1質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー(B-4)を得た。
[Production Example 4: Production of Primer (B-4)]
Novolak resin ("PHENOLITE TD-2131" manufactured by DIC Co., Ltd., hydroxyl group equivalent 104 g / equivalent) 35 parts by mass, epoxy resin ("EPICLON 850-S" manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent) ) 64 parts by mass and 1 part by mass of 2,4-diamino-6-vinyl-s-triazine (“VT” manufactured by Shikoku Kasei Co., Ltd.), and then diluted with methyl ethyl ketone so that the non-volatile content is 2% by mass. By mixing, a primer (B-4) was obtained.
[製造例5:プライマー(B-5)の製造]
 ノボラック樹脂(DIC株式会社製「PHENOLITE TD-2131」、水酸基当量104g/当量)35質量部、エポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)64質量部、及び、トリアジン環を有するシランカップリング剤(四国化成株式会社製「VD-5」)1質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー(B-5)を得た。
[Production Example 5: Production of Primer (B-5)]
Novolak resin ("PHENOLITE TD-2131" manufactured by DIC Corporation, hydroxyl group equivalent 104 g / equivalent) 35 parts by mass, epoxy resin ("EPICLON 850-S" manufactured by DIC Corporation; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent) ) 64 parts by mass and 1 part by mass of a silane coupling agent having a triazine ring (“VD-5” manufactured by Shikoku Kasei Co., Ltd.), and then dilute and mix with methyl ethyl ketone so that the non-volatile content is 2% by mass. Then, a primer (B-5) was obtained.
[製造例6:プライマー(B-6)の製造]
 温度計、冷却管、分留管、攪拌器を取り付けたフラスコに、フェノール750質量部、メラミン75質量部、41.5質量%ホルマリン346質量部、及びトリエチルアミン1.5質量部を加え、発熱に注意しながら100℃まで昇温した。還流下100℃にて2時間反応させた後、常圧下にて水を除去しながら180℃まで2時間かけて昇温した。次いで、減圧下で未反応のフェノールを除去し、アミノトリアジン変性ノボラック樹脂を得た。水酸基当量は120g/当量であった。
 上記で得られたアミノトリアジンノボラック樹脂65質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)35質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー組成物(B-6)を得た。
[Production Example 6: Production of Primer (B-6)]
Add 750 parts by mass of phenol, 75 parts by mass of melamine, 346 parts by mass of 41.5% by mass of formalin, and 1.5 parts by mass of triethylamine to a flask equipped with a thermometer, a cooling tube, a fractionation tube, and a stirrer to generate heat. The temperature was raised to 100 ° C. with caution. After reacting at 100 ° C. under reflux for 2 hours, the temperature was raised to 180 ° C. over 2 hours while removing water under normal pressure. Then, the unreacted phenol was removed under reduced pressure to obtain an aminotriazine-modified novolak resin. The hydroxyl group equivalent was 120 g / equivalent.
After mixing 65 parts by mass of the aminotriazine novolak resin obtained above and 35 parts by mass of an epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent), with methyl ethyl ketone. A primer composition (B-6) was obtained by diluting and mixing so that the non-volatile content was 2% by mass.
[製造例7:プライマー(B-7)の製造]
 製造例6で得られたアミノトリアジンノボラック樹脂48質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)52質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー組成物(B-7)を得た。
[Production Example 7: Production of Primer (B-7)]
After mixing 48 parts by mass of the aminotriazine novolak resin obtained in Production Example 6 and 52 parts by mass of an epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent), A primer composition (B-7) was obtained by diluting and mixing with methyl ethyl ketone so that the non-volatile content was 2% by mass.
[製造例8:プライマー(B-8)の製造]
 アミノトリアジンノボラック樹脂とエポキシ樹脂の量をそれぞれ、48質量部から39質量部、52質量部から61質量部に変更した以外は、製造例78と同様にして、不揮発分2質量%のプライマー組成物(B-8)を得た。
[Production Example 8: Production of Primer (B-8)]
A primer composition having a non-volatile content of 2% by mass in the same manner as in Production Example 78, except that the amounts of the aminotriazine novolak resin and the epoxy resin were changed from 48 parts by mass to 39 parts by mass and from 52 parts by mass to 61 parts by mass, respectively. (B-8) was obtained.
[製造例9:プライマー(B-9)の製造]
 アミノトリアジンノボラック樹脂とエポキシ樹脂の量をそれぞれ、48質量部から31質量部、52質量部から69質量部に変更した以外は、製造例8と同様にして、不揮発分2質量%のプライマー組成物(B-9)を得た。
[Production Example 9: Production of Primer (B-9)]
A primer composition having a non-volatile content of 2% by mass in the same manner as in Production Example 8 except that the amounts of the aminotriazine novolak resin and the epoxy resin were changed from 48 parts by mass to 31 parts by mass and from 52 parts by mass to 69 parts by mass, respectively. (B-9) was obtained.
[製造例10:プライマー(B-10)の製造]
 製造例7で得られたアミノトリアジンノボラック樹脂47質量部、及びエポキシ樹脂(DIC株式会社製「EPICLON 850-S」;ビスフェノールA型エポキシ樹脂、エポキシ基当量188g/当量)52質量部に、さらに無水トリメリット酸1質量部を混合後、メチルエチルケトンで不揮発分が2質量%となるように希釈混合することで、プライマー(B-10)を得た。
[Production Example 10: Production of Primer (B-10)]
47 parts by mass of the aminotriazine novolak resin obtained in Production Example 7 and 52 parts by mass of an epoxy resin (“EPICLON 850-S” manufactured by DIC Co., Ltd .; bisphenol A type epoxy resin, epoxy group equivalent 188 g / equivalent) are further anhydrous. A primer (B-10) was obtained by mixing 1 part by mass of trimellitic acid and then diluting and mixing with methyl ethyl ketone so that the non-volatile content was 2% by mass.
[製造例11:プライマー(B-11)の製造]
 撹拌機、還流冷却管、窒素導入管、温度計、滴下漏斗を備えた反応容器に脱イオン水350質量部、界面活性剤(花王株式会社製「ラテムルE-118B」:有効成分25質量%)4質量部を入れ、窒素を吹き込みながら70℃まで昇温した。
[Production Example 11: Production of Primer (B-11)]
A reaction vessel equipped with a stirrer, a reflux cooling tube, a nitrogen introduction tube, a thermometer, and a dropping funnel contains 350 parts by mass of deionized water and a surfactant (“Latemuru E-118B” manufactured by Kao Co., Ltd .: 25% by mass of the active ingredient). 4 parts by mass was added, and the temperature was raised to 70 ° C. while blowing nitrogen.
 撹拌下、反応容器中にメタクリル酸メチル47.0質量部、メタクリル酸グリシジル5.0質量部、アクリル酸n-ブチル45.0質量部、メタクリル酸3.0質量部からなるビニル単量体混合物と界面活性剤(第一工業製薬株式会社製「アクアロンKH-1025」:有効成分25質量%)4質量部と脱イオン水15質量部とを混合して得られたモノマープレエマルジョンの一部(5質量部)を添加し、続いて過硫酸カリウム0.1質量部を添加し、反応容器内温度を70℃に保ちながら60分間で重合させた。 A vinyl monomer mixture consisting of 47.0 parts by mass of methyl methacrylate, 5.0 parts by mass of glycidyl methacrylate, 45.0 parts by mass of n-butyl acrylate, and 3.0 parts by mass of methacrylic acid in a reaction vessel under stirring. And a part of the monomer pre-emulsion obtained by mixing 4 parts by mass of a surfactant (“Aqualon KH-1025” manufactured by Daiichi Kogyo Seiyaku Co., Ltd .: 25% by mass of the active ingredient) and 15 parts by mass of deionized water. 5 parts by mass) was added, and then 0.1 part by mass of potassium persulfate was added, and the mixture was polymerized in 60 minutes while keeping the temperature inside the reaction vessel at 70 ° C.
 次いで、反応容器内の温度を70℃に保ちながら、残りのモノマープレエマルジョン(114質量部)と、過硫酸カリウムの水溶液(有効成分1.0質量%)30質量部とを、各々別の滴下漏斗を使用して、180分間かけて滴下した。滴下終了後、同温度にて60分間撹拌した。 Next, while maintaining the temperature in the reaction vessel at 70 ° C., the remaining monomer preemulsion (114 parts by mass) and 30 parts by mass of an aqueous solution of potassium persulfate (1.0% by mass of the active ingredient) were separately added dropwise. Dropped over 180 minutes using a funnel. After completion of the dropping, the mixture was stirred at the same temperature for 60 minutes.
 前記反応容器内の温度を40℃に冷却し、ついで、不揮発分が10.0質量%になるように脱イオン水を使用した後、200メッシュ濾布で濾過することによって、本発明で使用するプライマー層用樹脂組成物を得た。次に、この樹脂組成物に水を加えて希釈混合することで、不揮発分5質量%のプライマー(B-11)を得た。 It is used in the present invention by cooling the temperature in the reaction vessel to 40 ° C., using deionized water so that the non-volatile content becomes 10.0% by mass, and then filtering with a 200-mesh filter cloth. A resin composition for a primer layer was obtained. Next, water was added to this resin composition to dilute and mix the mixture to obtain a primer (B-11) having a non-volatile content of 5% by mass.
[調製例1:銀粒子分散液の調製]
 エチレングリコール45質量部及びイオン交換水55質量部の混合溶媒に、分散剤としてポリエチレンイミンにポリオキシエチレンが付加した化合物を用いて平均粒径30nmの銀粒子を分散させることによって、銀粒子及び分散剤を含有する分散体を調製した。次いで、得られた分散体に、イオン交換水、エタノール及び界面活性剤を添加して、5質量%の銀粒子分散液を調製した。
[Preparation Example 1: Preparation of silver particle dispersion]
Silver particles and dispersion by dispersing silver particles having an average particle size of 30 nm in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water using a compound obtained by adding polyoxyethylene to polyethyleneimine as a dispersant. A dispersion containing the agent was prepared. Then, ion-exchanged water, ethanol and a surfactant were added to the obtained dispersion to prepare a 5% by mass silver particle dispersion.
[調製例2:銀粒子層(M1)上に付与されたパラジウム、導電性ポリマー、カーボンのいずれかを除去するためのエッチング液の調製]
 水1Lに、硫酸3.75g、過酸化水素13.5gを加えて、銀粒子層(M1)上に付与されたパラジウム、導電性ポリマー、カーボンのいずれかを除去するためのエッチング液を調製した。
[Preparation Example 2: Preparation of an etching solution for removing any of palladium, a conductive polymer, and carbon applied on the silver particle layer (M1)]
3.75 g of sulfuric acid and 13.5 g of hydrogen peroxide were added to 1 L of water to prepare an etching solution for removing any of palladium, a conductive polymer, and carbon applied on the silver particle layer (M1). ..
[調製例3:銀用エッチング液の調製]
 水47.4質量部に、酢酸2.6質量部を加え、さらに、35質量%過酸化水素水50質量部を加えて、銀用エッチング液(1)を調製した。この銀用エッチング液(1)の過酸化水素とカルボン酸とのモル比(過酸化水素/カルボン酸)は13.6であり、銀用エッチング液(1)中の過酸化水素及びカルボン酸の混合物の含有比率は22.4質量%であった。
[Preparation Example 3: Preparation of Etching Solution for Silver]
2.6 parts by mass of acetic acid was added to 47.4 parts by mass of water, and 50 parts by mass of 35% by mass hydrogen peroxide solution was further added to prepare an etching solution for silver (1). The molar ratio (hydrogen / carboxylic acid) of hydrogen hydrogen and carboxylic acid in this etching solution for silver (1) is 13.6, and the hydrogen peroxide and carboxylic acid in the etching solution for silver (1) The content ratio of the mixture was 22.4% by mass.
[調製例4:導電性ポリマー分散液の調製]
 特許文献(特開2003-231991)に基づき、硫酸イオンがドープされたポリピロール/ポリビニルピロリドン(PPy/PVP(SO 2-))コロイドを合成した。ドーパントとして硫
酸ナトリウムを使用し、酸化剤として過硫酸アンモニウムを使用し、界面活性剤としてポリビニルピロリドンを用いた。モノマーとしてピロールを使用した。
0.85gのPVP(ポリビニルピロリドン、和光純薬社製、特級)を、温度40℃の温水500ml中に溶解し、得られた溶液に、酸化剤として過硫酸アンモニウム7.0g、ドーパントとして硫酸ナトリウム32.2gを加え、更に水を加えて全量1Lの水溶液を得た。得られた水溶液に、5mLのピロール(東京化成(株)製、特級)を加え、室温で約12時間撹拌して化学酸化重合を行い、重合反応混合物を得た。これを遠心分離することにより、黒色の堆積物を得た。得られた堆積物を水で数回洗浄し、50mlの水に再分散させて10g/Lの(PPy/PVP(SO 2-))水性コロイド液を得た。
[Preparation Example 4: Preparation of Conductive Polymer Dispersion Liquid]
Based on Patent Document (Japanese Patent Laid-Open No. 2003-231991 ), a polypyrrole / polyvinylpyrrolidone (PPy / PVP ( SO4-2 )) colloid doped with sulfate ion was synthesized. Sodium sulfate was used as the dopant, ammonium persulfate was used as the oxidizing agent, and polyvinylpyrrolidone was used as the surfactant. Pyrrole was used as the monomer.
0.85 g of PVP (polyvinylpyrrolidone, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was dissolved in 500 ml of warm water at a temperature of 40 ° C., and in the obtained solution, 7.0 g of ammonium persulfate as an oxidizing agent and sodium sulfate 32 as a dopant were used. .2 g was added, and water was further added to obtain a total volume of 1 L of an aqueous solution. 5 mL of pyrrole (manufactured by Tokyo Kasei Co., Ltd., special grade) was added to the obtained aqueous solution, and the mixture was stirred at room temperature for about 12 hours to carry out chemical oxidative polymerization to obtain a polymerization reaction mixture. This was centrifuged to obtain a black deposit. The resulting deposit was washed several times with water and redistributed in 50 ml of water to give a 10 g / L ( PPy / PVP ( SO4-2 )) aqueous colloidal solution.
(実施例1)
 絶縁性基材であるポリイミドフィルム(東レ・デュポン株式会社製「カプトン 100EN-C」;厚さ25μm)の表面に、調製例1で得られた銀粒子分散体を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の銀粒子層が0.5g/mとなるように塗工した。次いで、熱風乾燥機を用いて160℃で5分間乾燥した。さらに、フィルムを裏返して、上記と同様にして調製例1で得られた銀粒子分散体を銀粒子層が0.5g/mとなる様に塗工し、熱風乾燥機を用いて160℃で5分間乾燥することによって、ポリイミドフィルムの両表面に銀粒子層を形成した。このようにして得られたフィルム基材を250℃で5分間焼成し、テスターで銀粒子層の導通を確認した。
(Example 1)
The silver particle dispersion obtained in Preparation Example 1 is placed on the surface of a polyimide film (“Kapton 100EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 25 μm), which is an insulating base material, on a desktop compact coater (RK print). Using a "K printing prober" manufactured by Coat Instrument Co., Ltd., the silver particle layer after drying was coated to be 0.5 g / m 2 . Then, it was dried at 160 ° C. for 5 minutes using a hot air dryer. Further, the film was turned over, and the silver particle dispersion obtained in Preparation Example 1 was coated in the same manner as above so that the silver particle layer was 0.5 g / m 2 , and the temperature was 160 ° C. using a hot air dryer. A silver particle layer was formed on both surfaces of the polyimide film by drying in. The film substrate thus obtained was fired at 250 ° C. for 5 minutes, and the continuity of the silver particle layer was confirmed with a tester.
 上記で得られた両表面に導電性の銀粒子層を有するポリイミドフィルムに、配線長100mm、インピーダンス50Ωのマイクロストリップラインの伝送特性評価端子における裏面ベタGNDへの接続位置にドリルを用いて、フィルムに100μm径のスルーホールを形成した。このようにして得られたスルーホール付き基材を、マクダーミッド社のブラックホールプロセス(コンディショニング-カーボン吸着処理-エッチング)に通して、スルーホールの表面にカーボンを付着させ、カーボンの付着した銀粒子層(M1)を、調製例2で製造した硫酸/過酸化水素水溶液を用いたエッチング処理で除去することにより、銀粒子層(M1)上に付着したカーボンを除去し、導電性の銀粒子層(M1)を露出させた。フィルム上の銀粒子層の表裏面をテスターで検査することにより、表裏面が電気的に接続され、導電性が確保されていることを確認した。 On the polyimide film having conductive silver particle layers on both surfaces obtained above, a film was used at the connection position to the back surface solid GND at the transmission characteristic evaluation terminal of a microstrip line with a wiring length of 100 mm and an impedance of 50 Ω. A through hole having a diameter of 100 μm was formed in the hole. The substrate with through holes thus obtained is passed through a black hole process (conditioning-carbon adsorption treatment-etching) of McDermid to attach carbon to the surface of the through holes, and a silver particle layer to which carbon is attached. By removing (M1) by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution produced in Preparation Example 2, carbon adhering to the silver particle layer (M1) is removed, and the conductive silver particle layer (M1) is removed. M1) was exposed. By inspecting the front and back surfaces of the silver particle layer on the film with a tester, it was confirmed that the front and back surfaces were electrically connected and the conductivity was ensured.
 このようにして得られた銀粒子層(M1)の上に、ドライフィルムレジスト(日立化成株式会社製「フォテックRD-1225」;レジスト膜厚25μm)を、ロールラミネーターを用いて100℃で圧着し、続いて、ダイレクト露光デジタルイメージング装置(オルボッテク社製「Nuvogo1000R」)を用いて、レジスト上に配線長100mm、インピーダンス50Ωのマイクロストリップラインパターン及び、測定プローブ用のGNDに接続するスルーホール部の端子パッドパターンを露光した。次いで、1質量%炭酸ナトリウム水溶液を用いて現像を行うことによって、銀粒子層(M1)上にマイクロストリップラインパターン、及びプローブ端子パッド部が除去されたパターンレジストを形成し、ポリイミドフィルム上の銀粒子層(M1)を露出させた。 A dry film resist (“Fotech RD-1225” manufactured by Hitachi Chemical Co., Ltd .; resist film thickness 25 μm) was pressure-bonded onto the silver particle layer (M1) thus obtained at 100 ° C. using a roll laminator. Then, using a direct exposure digital imaging device (“Nuvogo1000R” manufactured by Orbotec), a microstrip line pattern with a wiring length of 100 mm and an impedance of 50 Ω on the resist, and a through-hole terminal connected to the GND for the measurement probe. The pad pattern was exposed. Then, by developing with a 1 mass% sodium carbonate aqueous solution, a microstrip line pattern and a pattern resist from which the probe terminal pad portion was removed were formed on the silver particle layer (M1), and silver on the polyimide film was formed. The particle layer (M1) was exposed.
 次いで、パターンレジストが形成された基材の銀粒子層表面をカソードに設置し、含リン銅をアノードとして、硫酸銅を含有する電解めっき液(硫酸銅60g/L、硫酸190g/L、塩素イオン50mg/L、添加剤(ローム・アンド・ハース電子材料株式会社製 カパーグリームST-901」)を用いて、電流密度2A/dm2で41分間電解めっきを行うことによって、レジストの除去されたマイクロストリップパターン及びプローブ端子パッド部に電解銅めっきによる18μm厚の回路パターン層(M2)を形成した。次いで、銅による金属パターンの形成されたフィルムを、50℃に設定した3質量%の水酸化ナトリウム水溶液に浸漬することによって、パターンレジストを剥離した。 Next, the surface of the silver particle layer of the base material on which the pattern resist was formed was placed on the cathode, and an electrolytic plating solution containing copper sulfate (copper sulfate 60 g / L, sulfuric acid 190 g / L, chlorine ion) with phosphorus-containing copper as an anode. Microstrip from which resist was removed by electrolytic plating at a current density of 2 A / dm2 for 41 minutes using 50 mg / L, an additive (Copper Grim ST-901, manufactured by Roam & Haas Electronic Materials Co., Ltd.). A circuit pattern layer (M2) having a thickness of 18 μm was formed on the pattern and the probe terminal pad portion by electrolytic copper plating. Next, a film on which a metal pattern made of copper was formed was subjected to a 3% by mass sodium hydroxide aqueous solution set at 50 ° C. The pattern resist was peeled off by immersing in.
 次いで、調製例3で得られた銀用エッチング剤に、上記で得られたフィルムを、25℃で30秒間浸漬することで、回路パターン以外の銀粒子層を除去し、プリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。 Next, the film obtained above was immersed in the etching agent for silver obtained in Preparation Example 3 at 25 ° C. for 30 seconds to remove the silver particle layer other than the circuit pattern, and a printed wiring board was obtained. .. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例2)
 乾燥後の銀粒子層が0.5g/mから、0.8g/mとなる様に変更した以外は、実施例1と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 2)
The circuit pattern layer (M2) of the microstrip line pattern was formed in the same manner as in Example 1 except that the silver particle layer after drying was changed from 0.5 g / m 2 to 0.8 g / m 2 . A printed wiring board to have was obtained. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例3)
 スルーホールの形成をドリルによる100μm径から、レーザーを用いた70μm径に変更した以外は、実施例2と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 3)
A printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 2 except that the diameter of the through hole was changed from 100 μm by a drill to 70 μm by a laser. .. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
 (実施例4)
 乾燥後の銀粒子層が0.5g/mから、1.5g/mとなる様に変更した以外は、実施例1と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 4)
The circuit pattern layer (M2) of the microstrip line pattern was formed in the same manner as in Example 1 except that the silver particle layer after drying was changed from 0.5 g / m 2 to 1.5 g / m 2 . A printed wiring board to have was obtained. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例5)
ポリイミドフィルム(東レ・デュポン株式会社製「カプトン 100EN-C」、厚さ25μm)の表面に、製造例1で得られたプライマー(B-1)を、卓上型小型コーター(RKプリントコートインストルメント社製「Kプリンティングプローファー」)を用いて、乾燥後の厚さが120nmとなるように塗工し、次いで、熱風乾燥機を用いて80℃で5分間乾燥した、さらに、フィルムを裏返して、上記と同様にして製造例1で得られたプライマー(B-1)を乾燥後の厚さが120nmとなるように塗工し、熱風乾燥機を用いて80℃で5分間乾燥することによって、ポリイミドフィルムの両表面にプライマー層を形成した。
(Example 5)
On the surface of a polyimide film (“Capton 100EN-C” manufactured by Toray DuPont Co., Ltd., thickness 25 μm), the primer (B-1) obtained in Production Example 1 was applied to a desktop compact coater (RK Print Coat Instrument Co., Ltd.). The film was coated to a thickness of 120 nm after drying using a “K printing prober”), and then dried at 80 ° C. for 5 minutes using a hot air dryer. Further, the film was turned inside out. In the same manner as above, the primer (B-1) obtained in Production Example 1 was coated so that the thickness after drying was 120 nm, and dried at 80 ° C. for 5 minutes using a hot air dryer. Primer layers were formed on both surfaces of the polyimide film.
絶縁性基材(A)を、ポリイミドフィルムから、上記で得られたポリイミドフィルムの両表面にプライマー層を形成したポリイミドに変更した以外は、実施例2と同様にして、ポリイミドフィルムの両表面に形成されたプライマー層(B)上に、乾燥後の銀粒子層が0.8g/mとなる様に、導電性の銀粒子層(M1)を形成し、以降は、実施例2と同様にして、プリント配線板を得た。作製したプリント配線板の回路パターン部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。 The insulating base material (A) was applied to both surfaces of the polyimide film in the same manner as in Example 2 except that the polyimide film was changed to a polyimide having primer layers formed on both surfaces of the polyimide film obtained above. A conductive silver particle layer (M1) is formed on the formed primer layer (B) so that the dried silver particle layer becomes 0.8 g / m 2 , and thereafter, the same as in Example 2. And obtained a printed wiring board. The cross-sectional shape of the circuit pattern part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
 (実施例6)
 スルーホールの形成をドリルによる100μm径から、レーザーを用いた70μm径に変更した以外は、実施例5と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 6)
A printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 5 except that the diameter of the through hole was changed from 100 μm by a drill to 70 μm by a laser. .. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例7~22)
 プライマー層に用いるプライマーの種類及びその乾燥条件、銀粒子層の銀量、スルーホール形成法を表1又は2に示したものに変更した以外は、実施例6と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Examples 7 to 22)
The microstrip line pattern is the same as in Example 6 except that the type of primer used for the primer layer, its drying conditions, the amount of silver in the silver particle layer, and the through-hole formation method are changed to those shown in Table 1 or 2. A printed wiring board having the circuit pattern layer (M2) of the above was obtained. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例23)
 実施例7において、スルーホール付き基材を、マクダーミッド社のブラックホールプロセス(コンディショニング-カーボン吸着処理-エッチング)に通す代わりに、塩化パラジウム1g/l、塩酸1ml/lおよびジメチルチオ尿素1g/lを含む触媒液に25℃で3分間浸漬した。次いで、基板を水洗し、ジメチルアミンボラン10g/lおよび水酸化ナトリウム5g/lを含む還元液により50℃で2分間処理して、スルーホールの表面をパラジウムにより導電化した。この基材を水洗した後、調製例2で作製した硫酸/過酸化水素水溶液を用いたエッチング処理で除去することにより、ポリイミドフィルム上の導電性の銀粒子層(M1)を露出させた。フィルム上の銀粒子層の表裏面をテスターで検査することにより、表裏面が電気的に接続され、導電性が確保されていることを確認した。
 パターンレジスト形成以降は、実施例7と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 23)
In Example 7, instead of passing the substrate with through holes through a MacDermid black hole process (conditioning-carbon adsorption treatment-etching), it contains 1 g / l of palladium chloride, 1 ml / l of hydrochloric acid and 1 g / l of dimethylthiourea. It was immersed in the catalyst solution at 25 ° C. for 3 minutes. Then, the substrate was washed with water and treated with a reducing solution containing 10 g / l of dimethylamine borane and 5 g / l of sodium hydroxide at 50 ° C. for 2 minutes, and the surface of the through hole was made conductive with palladium. After washing this substrate with water, the conductive silver particle layer (M1) on the polyimide film was exposed by removing it by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2. By inspecting the front and back surfaces of the silver particle layer on the film with a tester, it was confirmed that the front and back surfaces were electrically connected and the conductivity was ensured.
After forming the pattern resist, a printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 7. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(実施例24)
 (実施例24)
 実施例7において、スルーホール付き基材を、マクダーミッド社のブラックホールプロセス(コンディショニング-カーボン吸着処理-エッチング)に通す代わりに、調製例4で作製した(PPy/PVP(SO 2-))水性コロイド液に中に室温で2分間浸漬し、スルーホール表面にコロイド粒子を付着させて、スルーホールの表面を導電性ポリマーにより導電化した。この基材を水洗した後、調製例2で作製した硫酸/過酸化水素水溶液を用いたエッチング処理で除去することにより、ポリイミドフィルム上の導電性の銀粒子層(M1)を露出させた。フィルム上の銀粒子層の表裏面をテスターで検査することにより、表裏面が電気的に接続され、導電性が確保されていることを確認した。
 パターンレジスト形成以降は、実施例7と同様にして、マイクロストリップラインパターンの回路パターン層(M2)を有するプリント配線板を得た。作製したプリント配線板の回路形成部(マイクロストリップライン、及びプローブン端子部)の断面形状は、配線高さ、及び、配線幅の減少がなく、かつ、アンダーカットのない矩形形状を示し、平滑な表面の回路パターン層(M2)であった。
(Example 24)
(Example 24)
In Example 7, instead of passing the substrate with through holes through the black hole process (conditioning-carbon adsorption treatment - etching) of MacDermid, the aqueous solution prepared in Preparation Example 4 (PPy / PVP (SO 4-2)). The colloidal liquid was immersed in the colloidal liquid at room temperature for 2 minutes to attach colloidal particles to the surface of the through hole, and the surface of the through hole was made conductive by a conductive polymer. After washing this substrate with water, the conductive silver particle layer (M1) on the polyimide film was exposed by removing it by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2. By inspecting the front and back surfaces of the silver particle layer on the film with a tester, it was confirmed that the front and back surfaces were electrically connected and the conductivity was ensured.
After forming the pattern resist, a printed wiring board having a circuit pattern layer (M2) of a microstrip line pattern was obtained in the same manner as in Example 7. The cross-sectional shape of the circuit forming part (microstrip line and proben terminal part) of the manufactured printed wiring board shows a rectangular shape with no decrease in wiring height and wiring width and no undercut, and is smooth. It was a circuit pattern layer (M2) on the surface.
(比較例1)
 両面に銀粒子層を形成したポリイミドフィルムを用いる代わりに、両面にめっき下地層として3μm厚の粗化銅箔を有する市販の25μm厚ポリイミドベースFCCL(宇部エクシモ株式会社製「ユピセルN-BE1310YSB」)を用いた以外は、上記実施例1と同様にして、両面を貫通するスルーホールを形成し、マクダーミッド社のブラックホールプロセス(コンディショニング-カーボン吸着処理-エッチング)に通して、スルーホールの表面にカーボンを付着させ、カーボンの付着した銅箔表面を、調製例2で作製した硫酸/過酸化水素水溶液を用いたエッチング処理で除去することにより、絶縁性基材(A)の両表面上に、銅箔を有し、さらに、絶縁性基材両面を接続する貫通孔を有し、貫通孔の表面が、カーボンによって導電性が確保された基材を得た。
以降は、銀粒子層(M1)表面の代わりに、銅箔表面にパターンレジストを形成する以外は、実施例1と同様にして、銅箔のめっき下地層上に、銅による18μm厚のマイクロストリップライン、及びプローブ端子部パッドパターンの導体回路層を形成した。
(Comparative Example 1)
Instead of using a polyimide film having silver particle layers formed on both sides, a commercially available 25 μm-thick polyimide-based FCCL (“Yupicel N-BE1310YSB” manufactured by Ube Eximo Co., Ltd.) having a roughened copper foil with a thickness of 3 μm as a plating base layer on both sides. In the same manner as in Example 1 above, a through hole penetrating both sides is formed and passed through a black hole process (conditioning-carbon adsorption treatment-etching) of McDermid, and carbon is applied to the surface of the through hole. And the surface of the copper foil to which carbon was attached was removed by an etching treatment using the sulfuric acid / hydrogen peroxide aqueous solution prepared in Preparation Example 2, so that copper was applied to both surfaces of the insulating base material (A). A base material having a foil and further having through holes connecting both sides of the insulating base material and having a through hole surface whose conductivity was ensured by carbon was obtained.
After that, in the same manner as in Example 1 except that a pattern resist is formed on the surface of the copper foil instead of the surface of the silver particle layer (M1), a microstrip having a thickness of 18 μm made of copper is placed on the plating base layer of the copper foil. A conductor circuit layer of a line and a probe terminal pad pattern was formed.
 次いで、銅のシードエッチングに用いる硫酸/過酸化水素系のフラッシュエッチング液に、浸漬して銅のシードを除去したところ、マイクロストリップラインの導電層(M3)がエッチングされて、膜厚が約3μm薄くなるとともに、配線幅も約6μm減少し、かつ、断面形状が矩形を保持できなくなり「台形」状となった。また銅の導電層表面はエッチングにより粗化されて平滑性が低下した。 Next, when the copper seed was removed by immersing it in a sulfuric acid / hydrogen peroxide flash etching solution used for copper seed etching, the conductive layer (M3) of the microstrip line was etched and the film thickness was about 3 μm. As it became thinner, the wiring width decreased by about 6 μm, and the cross-sectional shape became "trapezoidal" because it could not hold a rectangle. Further, the surface of the conductive layer of copper was roughened by etching to reduce the smoothness.
(比較例2)
 両面に銀粒子層を形成したポリイミドフィルムを用いる代わりに、両面にめっき下地層としてニッケル/クロム(厚さ30nm、ニッケル/クロム質量比=80/20)、さらに70nmの銅をスパッタし、1μm厚の電解銅めっき処理したポリイミドフィルム(東レ・デュポン株式会社製「カプトン 100EN-C」;厚さ25μm)を用いた以外は、上記比較例1と同様にして、銅箔のめっき下地層上に、銅による18μm厚のマイクロストリップライン、及びプローブ端子部パッドパターンの導体回路層を形成した。
(Comparative Example 2)
Instead of using a polyimide film having silver particle layers formed on both sides, nickel / chromium (thickness 30 nm, nickel / chromium mass ratio = 80/20) and 70 nm copper are sputtered as a plating base layer on both sides to a thickness of 1 μm. On the copper foil plating base layer in the same manner as in Comparative Example 1 above, except that the electrolytic copper-plated polyimide film (“Capton 100EN-C” manufactured by Toray DuPont Co., Ltd .; thickness 25 μm) was used. A 18 μm thick microstrip line made of copper and a conductor circuit layer of a probe terminal pad pattern were formed.
 次いで、銅のシードエッチングに用いる硫酸/過酸化水素系のフラッシュエッチング液に、浸漬して銅のシードを除去したところ、マイクロストリップラインの導電層(M3)がエッチングされて、膜厚が約1μm薄くなるとともに、配線幅も約2μm減少し、かつ、断面形状が矩形を保持できなくなり「台形」状となった。また銅の導電層表面はエッチングにより粗化されて平滑性が低下した。さらに、導電層(M3)パターン以外の領域では銅層のみが除去され、ニッケル/クロム層が除去されずに残留した。 Next, when the copper seed was removed by immersing it in a sulfuric acid / hydrogen peroxide flash etching solution used for copper seed etching, the conductive layer (M3) of the microstrip line was etched and the film thickness was about 1 μm. As it became thinner, the wiring width decreased by about 2 μm, and the cross-sectional shape became "trapezoidal" because it could not hold a rectangle. Further, the surface of the conductive layer of copper was roughened by etching to reduce the smoothness. Further, in the region other than the conductive layer (M3) pattern, only the copper layer was removed, and the nickel / chromium layer remained without being removed.
[アンダーカットの有無及び配線部の断面形状の確認]
 上記で得られたプリント配線板の櫛歯電極部の断面を走査型電子顕微鏡(日本電子株式会社製「JSM7800」)で500~10,000倍に拡大し観察して、アンダーカットの有無及び櫛歯電極部の断面形状を確認した。
作製したプリント配線板の配線表面をレーザー顕微鏡(キーエンス社製、VK-9710)で観察することにより、配線表面の表面粗さを確認し、Rzが3μm以下であるものを平滑である(平滑性:○)と評価した。また、配線形成に用いたレジストによる配線の設計幅と、形成された配線の上面幅の差異が2μm以下の場合、サイドエッチが抑制され、矩形形状を保持できた(矩形性:○)と評価し、表1,2に示した。

[Check for undercut and cross-sectional shape of wiring]
The cross section of the comb tooth electrode portion of the printed wiring plate obtained above was magnified 500 to 10,000 times with a scanning electron microscope (“JSM7800” manufactured by Nippon Denshi Co., Ltd.) and observed to determine the presence or absence of undercut and the comb. The cross-sectional shape of the tooth electrode was confirmed.
By observing the wiring surface of the produced printed wiring board with a laser microscope (manufactured by KEYENCE, VK-9710), the surface roughness of the wiring surface is confirmed, and those having an Rz of 3 μm or less are smooth (smoothness). : ○) was evaluated. Further, when the difference between the design width of the wiring by the resist used for wiring formation and the upper surface width of the formed wiring is 2 μm or less, the side etch is suppressed and the rectangular shape can be maintained (rectangularity: ○). Then, it is shown in Tables 1 and 2.

Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002


1:絶縁性基材
2:銀粒子層
3:貫通孔(スルーホール)
4:パラジウム、導電性ポリマー、カーボン
5:パターンレジスト
6:導電層(電解銅めっき層)
(a)セミアディティブ工法用積層体(請求項1の構成)
(b)工程1:貫通孔(スルーホール)形成
(c)工程2:スルーホール導電化
(d)工程3:導電性銀粒子層の露出
(e)工程4:パターンレジスト形成
(f)工程5:電解銅めっきによる導電層形成
(g)工程6:パターンレジスト剥離
(h)工程6:銀シード除去(請求項11の構成)
1: Insulating base material 2: Silver particle layer 3: Through hole (through hole)
4: Palladium, conductive polymer, carbon 5: Pattern resist 6: Conductive layer (electrolytic copper plating layer)
(A) Laminated body for semi-additive construction method (configuration of claim 1)
(B) Step 1: Through hole (through hole) formation (c) Step 2: Through hole conductivity (d) Step 3: Exposure of conductive silver particle layer (e) Step 4: Pattern resist formation (f) Step 5 : Conductive layer formation by electrolytic copper plating (g) Step 6: Pattern resist peeling (h) Step 6: Silver seed removal (configuration of claim 11)

Claims (7)

  1.  絶縁性基材(A)の両表面上に、導電性の銀粒子層(M1)を有する積層体に、両面を貫通する貫通孔を形成する工程1、
     前記銀粒子層(M1)および貫通孔を有する基材の表面上に、パラジウム、導電性ポリマー、カーボンのいずれかを付与して、貫通孔表面を導電化する工程2、
     銀粒子層(M1)上に付与された、パラジウム、導電性ポリマー、カーボンのいずれかを除去して、導電性の銀粒子層(M1‘)のみを露出させる工程3、
    前記導電性の銀粒子層(M1‘)上に、パターンレジストを形成する工程4、
     電解銅めっきにより、基材両面および貫通孔表面を電気的に接続するとともに、回路パターン層(M2)形成を行う工程5、
    パターンレジストを剥離し、非回路パターン形成部の前記銀粒子層(M1)をエッチング液により除去する工程6
    を有することを特徴とするプリント配線板の製造方法。
    Step 1, in which through holes penetrating both sides are formed in a laminate having a conductive silver particle layer (M1) on both surfaces of the insulating base material (A).
    Step 2, in which either palladium, a conductive polymer, or carbon is applied onto the surface of the silver particle layer (M1) and the base material having through holes to make the through hole surface conductive.
    Step 3, in which any one of palladium, the conductive polymer, and carbon applied on the silver particle layer (M1) is removed to expose only the conductive silver particle layer (M1').
    Step 4 of forming a pattern resist on the conductive silver particle layer (M1').
    Step 5, in which both sides of the base material and the surface of the through hole are electrically connected by electrolytic copper plating and a circuit pattern layer (M2) is formed.
    Step 6 of peeling off the pattern resist and removing the silver particle layer (M1) of the non-circuit pattern forming portion with an etching solution.
    A method for manufacturing a printed wiring board, which comprises.
  2.  絶縁性基材(A)と、銀粒子層(M1)の間に、さらにプライマー層(B)を有する積層体を使用することを特徴とする請求項1記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 1, wherein a laminate having a primer layer (B) is used between the insulating base material (A) and the silver particle layer (M1).
  3.  前記銀粒子層(M1)を構成する銀粒子が、高分子分散剤で被覆されたものである請求項1または2記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 1 or 2, wherein the silver particles constituting the silver particle layer (M1) are coated with a polymer dispersant.
  4.  請求項2記載のセミアディティブ工法用積層体において、前記プライマー層(B)が反応性官能基[X]を有する樹脂で構成される層であり、前記高分子分散剤が反応性官能基[Y]を有するものであり、前記反応性官能基[X]と前記反応性官能基[Y]とは反応により互いに結合を形成できるものである請求項3記載のプリント配線板の製造方法。 In the laminate for the semi-additive method according to claim 2, the primer layer (B) is a layer composed of a resin having a reactive functional group [X], and the polymer dispersant is a reactive functional group [Y]. ], And the method for producing a printed wiring board according to claim 3, wherein the reactive functional group [X] and the reactive functional group [Y] can form a bond with each other by a reaction.
  5.  前記反応性官能基[Y]が、塩基性窒素原子含有基である請求項4記載のプリント配線板の製造方法。 The method for producing a printed wiring board according to claim 4, wherein the reactive functional group [Y] is a basic nitrogen atom-containing group.
  6.  前記反応性官能基[Y]を有する高分子分散剤が、ポリアルキレンイミン、及びオキシエチレン単位を含むポリオキシアルキレン構造を有するポリアルキレンイミンからなる群から選ばれる1種以上である請求項5記載のプリント配線板の製造方法。 The fifth aspect of claim 5, wherein the polymer dispersant having the reactive functional group [Y] is one or more selected from the group consisting of polyalkyleneimine and polyalkyleneimine having a polyoxyalkylene structure containing an oxyethylene unit. How to manufacture printed wiring boards.
  7.  前記反応性官能基[X]が、ケト基、アセトアセチル基、エポキシ基、カルボキシル基、N-アルキロール基、イソシアネート基、ビニル基、(メタ)アクリロイル基、アリル基からなる群から選ばれる1種以上である請求項4~6のいずれか1項記載のプリント配線板の製造方法。 The reactive functional group [X] is selected from the group consisting of a keto group, an acetoacetyl group, an epoxy group, a carboxyl group, an N-alkyrole group, an isocyanate group, a vinyl group, a (meth) acryloyl group and an allyl group1 The method for manufacturing a printed wiring board according to any one of claims 4 to 6, which is more than one kind.
PCT/JP2021/038869 2020-11-05 2021-10-21 Laminate for semi-additive manufacturing and printed wiring board using same WO2022097481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022527760A JPWO2022097481A1 (en) 2020-11-05 2021-10-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020184974 2020-11-05
JP2020-184974 2020-11-05

Publications (1)

Publication Number Publication Date
WO2022097481A1 true WO2022097481A1 (en) 2022-05-12

Family

ID=81457260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038869 WO2022097481A1 (en) 2020-11-05 2021-10-21 Laminate for semi-additive manufacturing and printed wiring board using same

Country Status (3)

Country Link
JP (1) JPWO2022097481A1 (en)
TW (1) TW202233414A (en)
WO (1) WO2022097481A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067341A (en) * 2005-09-02 2007-03-15 Nippon Mektron Ltd Method of manufacturing circuit board
JP2009283528A (en) * 2008-05-20 2009-12-03 Toyobo Co Ltd Polyimide base printed wiring board and method of manufacturing the same
JP2012049165A (en) * 2010-08-24 2012-03-08 Fujikura Ltd Printed wiring board and manufacturing method thereof
WO2019217388A1 (en) * 2018-05-08 2019-11-14 Macdermid Enthone Inc. Carbon-based direct plating process
WO2020003879A1 (en) * 2018-06-26 2020-01-02 Dic株式会社 Method for producing molded body having metal pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007067341A (en) * 2005-09-02 2007-03-15 Nippon Mektron Ltd Method of manufacturing circuit board
JP2009283528A (en) * 2008-05-20 2009-12-03 Toyobo Co Ltd Polyimide base printed wiring board and method of manufacturing the same
JP2012049165A (en) * 2010-08-24 2012-03-08 Fujikura Ltd Printed wiring board and manufacturing method thereof
WO2019217388A1 (en) * 2018-05-08 2019-11-14 Macdermid Enthone Inc. Carbon-based direct plating process
WO2020003879A1 (en) * 2018-06-26 2020-01-02 Dic株式会社 Method for producing molded body having metal pattern

Also Published As

Publication number Publication date
TW202233414A (en) 2022-09-01
JPWO2022097481A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
JP6766983B2 (en) Manufacturing method of printed wiring board
JP6750766B2 (en) Method for manufacturing printed wiring board
JP6667119B1 (en) Laminated body for printed wiring board and printed wiring board using the same
WO2022097481A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097479A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097482A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097480A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097485A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2022097483A1 (en) Multilayer body for semi-additive process and printed wiring board using same
WO2022097484A1 (en) Laminate for semi-additive manufacturing and printed wiring board using same
WO2020130071A1 (en) Method for manufacturing printed wiring board
WO2022097488A1 (en) Laminate for semi-additive construction method and printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022527760

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21889034

Country of ref document: EP

Kind code of ref document: A1