WO2016051653A1 - 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2016051653A1
WO2016051653A1 PCT/JP2015/004238 JP2015004238W WO2016051653A1 WO 2016051653 A1 WO2016051653 A1 WO 2016051653A1 JP 2015004238 W JP2015004238 W JP 2015004238W WO 2016051653 A1 WO2016051653 A1 WO 2016051653A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
electrolyte secondary
battery
transition metal
Prior art date
Application number
PCT/JP2015/004238
Other languages
English (en)
French (fr)
Inventor
研児 木船
史治 新名
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201580051096.7A priority Critical patent/CN106716685B/zh
Priority to US15/503,509 priority patent/US10601029B2/en
Priority to JP2016551485A priority patent/JP6610552B2/ja
Publication of WO2016051653A1 publication Critical patent/WO2016051653A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • Non-aqueous electrolyte secondary batteries that charge and discharge by moving lithium ions between positive and negative electrodes have high energy density and high capacity, and are therefore widely used as drive power sources for such mobile information terminals. ing.
  • non-aqueous electrolyte secondary batteries have attracted attention as power sources for power tools, electric vehicles (EV), hybrid electric vehicles (HEV, PHEV), etc., and further expansion of applications is expected.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV PHEV
  • Patent Document 1 proposes a positive electrode active material containing lithium carbonate as means for improving high-temperature storage characteristics and load characteristics, and Patent Document 2 maintains a high discharge capacity even during a large current discharge.
  • a lithium manganese oxide modified with an oxide containing tungsten has been proposed.
  • Patent Document 1 and Patent Document 2 are used, there is a problem that when the positive electrode active material is exposed to the atmosphere, a decrease in the initial charge capacity cannot be suppressed.
  • the cause of characteristic deterioration due to atmospheric exposure is LiOH reaction. Specifically, moisture present on the surface of the lithium transition metal oxide reacts with the lithium transition metal oxide, and the surface layer of the lithium transition metal oxide reacts. A certain Li and hydrogen substitution reaction occurs, Li is extracted from the lithium transition metal oxide, and LiOH is generated to deteriorate the characteristics.
  • the present invention provides a positive electrode for a nonaqueous electrolyte secondary battery in which a decrease in initial charge capacity is suppressed even when a positive electrode active material exposed to the atmosphere is used, and a nonaqueous electrolyte secondary battery using the same
  • the object is to provide a battery.
  • the present invention is a positive electrode for a non-aqueous electrolyte secondary battery containing a lithium transition metal oxide, comprising a mixture of a lithium transition metal oxide, tungsten oxide, and a carbonic acid compound, the surface of the lithium transition metal oxide It is characterized by being a positive electrode for a non-aqueous electrolyte secondary battery having tungsten oxide in at least a part thereof, and having a mixed carbonate compound in a part of the surface of the tungsten oxide.
  • At least part of the surface of the lithium transition metal oxide has tungsten oxide, and the carbonate compound mixed with the positive electrode is in contact with part of the surface of the tungsten oxide, and the interface between the carbonate compound and tungsten oxide. Is formed.
  • the interface is located away from the vicinity of the surface of the lithium transition metal oxide and preferentially adsorbs moisture in the atmosphere, so that the LiOH generation reaction is unlikely to occur on the surface of the lithium transition metal oxide, and charging This is to suppress the deterioration of the capacity.
  • the amount of the carbonic acid compound mixed in the positive electrode is preferably contained in an amount of 0.5% by mass or more and 5% by mass or less with respect to the lithium transition metal oxide. This is because when the amount of the carbonic acid compound mixed with the positive electrode is less than 0.5% by mass, the interface between the tungsten oxide and the carbonic acid compound mixed with the positive electrode is reduced, so that the effect of moisture adsorption at the interface is not sufficient. In addition, the LiOH formation reaction on the surface of the lithium transition metal oxide cannot be sufficiently suppressed, and the effect of suppressing the deterioration of the charge capacity is reduced.
  • the carbonic acid compound mixed in the positive electrode is larger than 5% by mass, the amount of the positive electrode active material is decreased and the positive electrode capacity is decreased.
  • the carbonic acid compound to be mixed is not particularly limited, but is preferably lithium carbonate, lithium dihydrogen carbonate, cobalt carbonate, nickel carbonate, manganese carbonate, potassium carbonate, or ammonium dihydrogen carbonate.
  • lithium carbonate is preferable.
  • the particle size of the carbonic acid compound is preferably smaller than the particle size of the lithium transition metal oxide, and particularly preferably 25% or less of the particle size of the lithium transition metal oxide.
  • the particle diameter of the lithium transition metal oxide was calculated as a volume average particle diameter by a laser diffraction method, and the particle diameter of the carbonate compound was calculated as follows.
  • the particle size is the particle size of the smallest unit particle forming the aggregate.
  • the particle size of the carbonic acid compound is larger than the particle size of the lithium transition metal oxide, the dispersion state of the carbonic acid compound in the positive electrode is deteriorated, and the contact area between the tungsten oxide and the carbonic acid compound mixed in the positive electrode is reduced. .
  • the interface formation between the tungsten oxide and the carbonic acid compound mixed with the positive electrode becomes insufficient, the LiOH generation reaction on the surface of the lithium transition metal oxide easily occurs due to the moisture in the atmosphere, and the charge capacity is deteriorated. The effect of suppression is reduced.
  • the carbonic acid compound is mixed in the step of kneading the conductive agent and the binder.
  • the method of adding is mentioned.
  • the carbonate compound not only the carbonate compound mixed in the positive electrode but also lithium carbonate unavoidably contained in the lithium transition metal oxide exists.
  • This unavoidable lithium carbonate refers to the lithium carbonate or lithium transition metal oxide that remains on the surface of the lithium transition metal oxide after the lithium carbonate used as a raw material when the lithium transition metal oxide is produced. Lithium carbonate produced by reacting with carbon dioxide in the atmospheric gas during or after production.
  • the amount of the carbonic acid compound mixed in the positive electrode is preferably 50% by mass or more, more preferably 75% by mass or more of the carbonic acid compound contained in the positive electrode.
  • the state of having tungsten oxide on at least a part of the surface of the lithium transition metal oxide means that the tungsten oxide adheres to the surface of the lithium transition metal oxide, and more preferably, the surface is uniformly scattered on the surface. It is in a state.
  • the tungsten oxide contained in the positive electrode is not particularly limited, but WO 3 that is hexavalent, in which the oxidation number of tungsten is most stable, is preferable.
  • the amount of tungsten oxide when the amount of tungsten oxide is small, the amount of the interface formed by contact between the tungsten oxide and the carbonate compound decreases. That is, since the amount of moisture in the atmosphere that is adsorbed at the interface is reduced, moisture that is not adsorbed is liable to cause a reaction of forming a lithium transition metal oxide and LiOH, so that the effect of suppressing the deterioration of the charge capacity of the battery is reduced.
  • the amount of tungsten oxide in the positive electrode active material is preferably 0.05 mol% or more and 10 mol% or less, more preferably 0.1 mol% or more and 5 mol% with respect to the transition metal of the lithium transition metal oxide. Or less, more preferably 0.2 mol% or more and 3 mol% or less.
  • tungsten oxide is added in a step of kneading a conductive agent and a binder in addition to a method in which a lithium transition metal oxide and tungsten oxide are mechanically mixed and adhered in advance. There are methods.
  • the particle size of tungsten oxide is preferably smaller than that of lithium transition metal oxide, and particularly preferably 25% or less of the particle size of lithium transition metal oxide.
  • the particle size of tungsten oxide was calculated as follows.
  • Tungsten oxide particles observed with a scanning electron microscope (SEM) were randomly extracted, the major axis and minor axis length of these particles were measured, and the average value was defined as the tungsten oxide particle size.
  • SEM scanning electron microscope
  • the particle size of tungsten oxide is larger than the particle size of the lithium transition metal oxide, the dispersion state of tungsten oxide in the positive electrode is deteriorated, and the contact area between the tungsten oxide and the carbonic acid compound mixed in the positive electrode is reduced. .
  • the interface formation between the tungsten oxide and the carbonic acid compound mixed with the positive electrode becomes insufficient, the LiOH generation reaction on the surface of the lithium transition metal oxide easily occurs due to the moisture in the atmosphere, and the charge capacity is deteriorated. The effect of suppression is reduced.
  • a lithium transition metal oxide containing Ni that easily reacts with moisture in the atmosphere has a high effect of improving the deterioration of charge capacity due to exposure to the atmosphere, and the proportion of Ni in M is preferably 30% or more by molar ratio. More preferably, it is 50% or more.
  • nickel cobalt lithium manganate is a compound in which the molar ratio is Ni> Mn.
  • the molar ratio of nickel, cobalt, and manganese is 5: 2: 3, 5: 3: 2
  • a material having a known composition such as 6: 2: 2, 7: 1: 2, 7: 2: 1, or 8: 1: 1 can be used.
  • the nickel cobalt lithium aluminum oxide those having a known composition such as a molar ratio of nickel, cobalt, and aluminum of 80: 15: 5, 85: 12: 3, 90: 7: 3 can be used. .
  • the presence of a phosphate compound on a part of the surface of tungsten oxide improves the ability to adsorb moisture at the interface between tungsten oxide and the carbonic acid compound mixed in the positive electrode. As a result, it is possible to dramatically reduce the deterioration of the initial charging characteristics due to atmospheric exposure.
  • the phosphoric acid compound is present on the surface of the tungsten oxide existing on at least a part of the surface of the lithium transition metal oxide, and the phosphoric acid compound, tungsten oxide, and the carbonic acid compound mixed in the positive electrode have a high mutual relationship.
  • action arises and the effect
  • the phosphate compound contained in the positive electrode is not particularly limited, but is preferably lithium phosphate, lithium dihydrogen phosphate, cobalt phosphate, nickel phosphate, manganese phosphate, potassium phosphate, ammonium dihydrogen phosphate. Of these, lithium phosphate is particularly preferable. When these phosphoric acid compounds are used, the effect of suppressing the decrease in the initial charge capacity due to atmospheric exposure is further exhibited.
  • the ratio of the phosphoric acid compound to the total mass of the lithium transition metal oxide is preferably 0.01% by mass or more and 1.5% by mass or less, and 0.02% by mass or more, 1.2% in terms of phosphorus element.
  • the mass% is more preferable, and 0.1 mass% or more and 1.0 mass% or less is more preferable.
  • the ratio is less than 0.01% by mass, the synergistic effect of the carbonic acid compound and the phosphoric acid compound mixed with tungsten oxide and the positive electrode is reduced, and the characteristic deterioration due to atmospheric exposure of the electrode plate may not be suppressed.
  • the ratio exceeds 1.5% by mass, the amount of the positive electrode active material is reduced by that amount, so that the positive electrode capacity is reduced.
  • phosphoric acid is used in a step of kneading a conductive agent and a binder in addition to a method in which a lithium transition metal composite oxide and a phosphoric acid compound are mechanically mixed and adhered in advance.
  • the method of adding a compound is mentioned.
  • the particle size of the phosphoric acid compound is preferably smaller than the particle size of the lithium transition metal oxide, and particularly preferably 25% or less of the particle size of the lithium transition metal oxide.
  • the particle size of the phosphoric acid compound was calculated as follows.
  • the particle size is the particle size of the smallest unit particle forming the aggregate.
  • the particle size of the phosphoric acid compound is larger than the particle size of the lithium transition metal oxide, the dispersion state of the phosphoric acid compound in the positive electrode is deteriorated, and the contact area between the phosphoric acid compound and tungsten oxide is reduced.
  • the interface formation between tungsten oxide and phosphoric acid compound becomes insufficient, the synergistic effect of carbonic acid compound mixed with tungsten oxide and positive electrode and phosphoric acid compound is reduced, lithium transition metal due to moisture in the atmosphere LiOH formation reaction is likely to occur on the surface of the oxide, and the effect of suppressing deterioration of charge capacity is reduced.
  • a conventionally used negative electrode can be used.
  • a negative electrode active material and a binder are mixed with water or an appropriate solvent, applied to the negative electrode current collector, dried, and rolled. Can be obtained.
  • the negative electrode current collector it is preferable to use a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, a film having a metal surface layer such as copper, or the like.
  • the binder polytetrafluoroethylene (PTFE) or the like can be used as in the case of the positive electrode, but it is preferable to use a styrene-butadiene copolymer (SBR) or a modified body thereof.
  • the binder may be used in combination with a thickener such as carboxymethylcellulose (CMC).
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • carbon materials, metals or alloy materials alloyed with lithium such as Si and Sn, metal composite oxides, etc. Can be used. These may be used alone or in combination of two or more.
  • Nonaqueous electrolyte As the nonaqueous electrolyte solvent, conventionally used cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate may be used. it can. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a high lithium ion conductivity in terms of high dielectric constant, low viscosity, and low melting point. Further, the volume ratio of the cyclic carbonate to the chain carbonate in the mixed solvent is preferably regulated in the range of 2: 8 to 5: 5.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; compounds containing sulfone groups such as propane sultone; 1,2-dimethoxyethane, 1,2- Compounds containing ethers such as diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyltetrahydrofuran; butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile , 1,2,3-propanetricarbonitrile, compounds containing nitriles such as 1,3,5-pentanetricarbonitrile; compounds containing amides such as dimethylformamide, etc. can be used together with the above-mentioned solvents, These
  • solutes can be used as the solute of the non-aqueous electrolyte, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN which are fluorine-containing lithium salts.
  • (CF 3 SO 2 ) 2 LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6, etc.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN which are fluorine-containing lithium salts.
  • (CF 3 SO 2 ) 2 LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6, etc.
  • lithium salt other than fluorine-containing lithium salt [lithium salt containing one or more elements among P, B, O, S, N, Cl (for example, LiClO 4 etc.)] is added to fluorine-containing lithium salt. May be used.
  • lithium salts having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], li [P (C 2 O 4 ) 2 F 2] and the like.
  • LiBOB lithium-bisoxalate borate
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ]
  • li [P (C 2 O 4 ) 2 F 2] and the like.
  • the said solute may be used independently and may be used in mixture of 2 or more types.
  • separator As a separator, the separator conventionally used can be used. For example, a polypropylene or polyethylene separator, a polypropylene-polyethylene multilayer separator, or a separator whose surface is coated with a resin such as an aramid resin can be used.
  • a layer made of an inorganic filler conventionally used can be formed at the interface between the positive electrode and the separator or the interface between the negative electrode and the separator.
  • the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surfaces are treated with hydroxide or the like.
  • the filler layer may be formed by directly applying a filler-containing slurry to the positive electrode, negative electrode, or separator, or by attaching a filler-formed sheet to the positive electrode, negative electrode, or separator. Can do.
  • this mixture was fired at 900 ° C. for 10 hours in an air atmosphere and pulverized, so that it was expressed as Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2 having a particle size of 8 ⁇ m.
  • positive electrode active material particles having lithium nickel cobalt manganese composite oxide as a main component and having lithium carbonate inevitably generated on the surface thereof were obtained.
  • generated on the surface of lithium nickel cobalt manganese complex oxide was 0.15 wt% with respect to lithium nickel cobalt manganese complex oxide.
  • the positive electrode produced as described above is used as the working electrode 11, while metallic lithium is used for the counter electrode 12 and the reference electrode 13 serving as the negative electrode, respectively, and ethylene carbonate is used as the non-aqueous electrolyte 14.
  • LiPF 6 is dissolved to a concentration of 1 mol / l in a mixed solvent in which volume ratio of 3: 3: 4 is mixed with styrene, methyl ethyl carbonate and dimethyl carbonate, and 1% by mass of vinylene carbonate is further dissolved.
  • a three-electrode test cell 20 was produced.
  • the battery thus produced is hereinafter referred to as battery A1.
  • Example 2 In the production of the positive electrode active material, in the case of Experimental Example 1 except that WO 3 was mixed with the positive electrode active material particles made of Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2. Similarly, a three-electrode test cell was produced. The battery thus produced is hereinafter referred to as battery A2.
  • the amount of tungsten oxide in the positive electrode active material thus produced is that of the lithium nickel cobalt manganese composite oxide represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2 . It was 1.0 mol% with respect to the total amount of metals excluding lithium.
  • a battery (battery B2) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A2, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the amount of lithium carbonate contained in the positive electrode active material thus produced was 0.65 wt% with respect to the lithium nickel cobalt manganese composite oxide.
  • a battery (battery B3) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A3, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the amount of tungsten oxide contained in the positive electrode active material thus produced is a lithium nickel cobalt manganese composite represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2.
  • the amount of lithium carbonate contained in the positive electrode active material was 0.65 wt% with respect to the lithium nickel cobalt manganese composite oxide.
  • the tungsten oxide 32 having a particle diameter of 300 nm attached to the surface of the lithium nickel cobalt manganese composite oxide 33 was observed. Aggregates and aggregates of lithium carbonate 31 having a particle diameter of 500 nm adhered to the aggregates of tungsten oxide 32 were confirmed.
  • a battery (battery B4) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A4, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • Example 5 In the production of the positive electrode active material, lithium carbonate was mixed with the positive electrode active material particles made of Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2 , and then lithium phosphate was further mixed. A three-electrode test cell was prepared in the same manner as in Experimental Example 4 except for the above. The battery thus produced is hereinafter referred to as battery A5.
  • the amount of tungsten oxide contained in the positive electrode active material thus produced is a lithium nickel cobalt manganese composite represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2. 1.0 mol% with respect to the total amount of metal excluding lithium, and the amounts of lithium carbonate and lithium phosphate contained in the positive electrode active material are 0.65 wt% with respect to the lithium nickel cobalt manganese composite oxide, It was 0.5 wt%.
  • a battery (battery B5) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A5, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the initial charge capacity of the battery without exposure to the atmosphere is defined as the “initial charge capacity without exposure”, and there is exposure to the atmosphere (positive electrode exposed to the atmosphere)
  • the initial charge capacity of the battery (when using a plate) is defined as “initial charge capacity with exposure”.
  • exposure to the atmosphere is based on the difference between the initial charge capacity without exposure and the initial charge capacity with exposure of the corresponding battery. The deterioration charge capacity by was calculated.
  • the batteries of Experimental Example 4 and Experimental Example 5 in which the tungsten oxide attached to the surface of the lithium nickel cobalt manganese composite oxide and the lithium carbonate attached to the tungsten oxide were observed are the experimental examples.
  • the deterioration rate of the charge capacity due to exposure to the atmosphere was greatly improved.
  • the improvement of the deterioration rate was remarkable in the battery of Example 5 in which lithium carbonate, tungsten oxide, and lithium phosphate were added. It was.
  • tungsten oxide and carbonate compound By mixing tungsten oxide and carbonate compound with lithium nickel cobalt manganese composite oxide, tungsten oxide present in at least part of lithium nickel cobalt manganese composite oxide and the mixed carbonate compound are in contact with each other to form an interface. .
  • the interface is located away from the vicinity of the surface of the lithium nickel cobalt manganese composite oxide. As a result, it was difficult for LiOH generation reaction between the moisture adsorbed on the interface and Li in the surface layer of the lithium nickel cobalt manganese composite oxide, and a high effect of suppressing deterioration of the charge capacity was obtained.
  • the amount of lithium carbonate produced on the surface of the lithium nickel cobalt manganese composite oxide produced in this way was 0.57 wt% with respect to the lithium nickel cobalt manganese composite oxide.
  • a battery (battery B6) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A6, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the amount of tungsten oxide in the positive electrode active material thus produced is that of the lithium nickel cobalt manganese composite oxide represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2 . It was 1.0 mol% with respect to the total amount of metals excluding lithium.
  • Example 8 In the production of the positive electrode active material, the case of Experimental Example 6 except that lithium carbonate was mixed with the positive electrode active material particles made of Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2. In the same manner, a three-electrode test cell was produced. The battery thus produced is hereinafter referred to as battery A8.
  • the amount of lithium carbonate contained in the positive electrode active material thus produced was lithium nickel cobalt manganese composite oxide represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2. It was 1.07 wt% with respect to the thing.
  • a battery (battery B8) using a positive electrode plate exposed to the air in the same manner as the battery A8, except that the positive electrode plate was rolled with a rolling roller and then exposed to the air under the above-described conditions. ) was produced.
  • the amount of tungsten oxide in the positive electrode active material thus produced is a lithium nickel cobalt manganese composite oxide represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2 .
  • the amount of lithium carbonate in the positive electrode active material was 1.07 wt% with respect to the lithium nickel cobalt manganese composite oxide.
  • a battery (battery B9) using a positive electrode plate exposed to the atmosphere in the same manner as the electricity A2 except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the amount of tungsten oxide contained in the positive electrode active material thus produced is a lithium nickel cobalt manganese composite represented by Li 1.07 [Ni 0.465 Co 0.186 Mn 0.279 ] O 2. 1.0 mol% with respect to the total amount of metal excluding lithium, and the amounts of lithium carbonate and lithium phosphate contained in the positive electrode active material are 1.07 wt% with respect to the lithium nickel cobalt manganese composite oxide, It was 0.5 wt%.
  • a battery (battery B10) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A10, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. ) was produced.
  • the batteries of Experimental Example 9 and Experimental Example 10 in which lithium carbonate and tungsten oxide are mixed are improved in the deterioration rate of the charge capacity due to atmospheric exposure as compared with the batteries of Experimental Examples 6 to 8.
  • the deterioration rate was significantly improved.
  • the amounts of lithium carbonate contained in the positive electrode were 0.65 wt% and 0.57 wt%, respectively, although there was no significant difference, mixed carbonic acid.
  • the improvement in the deterioration rate of the charge capacity was remarkable.
  • mixed lithium carbonate has an interface with tungsten oxide that preferentially adsorbs moisture in the atmosphere at a location away from the vicinity of the surface of the lithium transition metal oxide, and on the surface of the lithium transition metal oxide. While suppressing the LiOH formation reaction, unavoidable lithium carbonate present on the surface of the lithium transition metal oxide has an interface with tungsten oxide in the vicinity of the surface of the lithium transition metal oxide. It is thought that it was not able to suppress enough.
  • the amount of lithium carbonate present on the surface of the lithium transition metal oxide is small, and the amount of lithium carbonate to be mixed is preferably 50% by mass or more of lithium carbonate contained in the positive electrode, and 75% by mass or more. Is more preferable.
  • a positive electrode for a non-aqueous electrolyte secondary battery according to one aspect of the present invention and a non-aqueous electrolyte secondary battery using the same are, for example, a driving power source for a mobile information terminal such as a mobile phone, a notebook computer, a smartphone, and a tablet terminal. It can be applied to applications where high energy density is required. Furthermore, it can be expected to be used for high-power applications such as electric vehicles (EV), hybrid electric vehicles (HEV, PHEV) and electric tools.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV hybrid electric vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 大気曝露した正極活物質を用いた場合でも、初期充電容量の低下を抑制した非水電解質二次電池用正極を提供することを目的とする。 リチウム遷移金属酸化物を含む非水電解質二次電池用正極であって、リチウム遷移金属酸化物と、酸化タングステンと、炭酸化合物とを混合してなり、リチウム遷移金属酸化物の表面の少なくとも一部に、酸化タングステンを有し、酸化タングステンの表面の一部に、混合した炭酸化合物を有する非水電解質二次電池用正極であることを特徴とする。

Description

非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池用正極およびそれを用いた非水電解質二次電池に関するものである。
 近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての二次電池にはさらなる高容量化が要求されている。リチウムイオンが正負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
 さらに最近では、非水電解質二次電池は、電動工具、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。
 こうした動力用電源では、長時間の使用が可能となるような高容量化や、比較的短時間に大電流充放電を繰り返す場合の出力特性の向上が求められており、大電流充放電での出力特性を維持しつつ高容量化を達成することが必須となっている。
 たとえば、特許文献1には、高温保存特性や負荷特性を改善する手段として、炭酸リチウムを含有させた正極活物質が提案され、特許文献2には、大電流放電時でも高い放電容量を維持する手段として、タングステンを含む酸化物で修飾を行ったリチウムマンガン酸化物が提案されている。
特開2002-203558号公報 特開2005-320184号公報
 しかしながら、特許文献1、特許文献2に開示されている技術を用いても、正極活物質を大気曝露した場合には、初期充電容量の低下を抑制できないという課題があった。
 大気曝露による特性劣化の原因は、LiOH反応であり、具体的には、リチウム遷移金属酸化物の表面に存在する水分とリチウム遷移金属酸化物とが反応し、リチウム遷移金属酸化物の表面層にあるLiと水素の置換反応が起こり、リチウム遷移金属酸化物からLiが引き抜かれてLiOHが生成することにより特性が劣化する。
 また、これまでに、酸化タングステンを正極活物質に含有させることで、大気曝露による初期充電容量の低下を抑制する効果があることが知られていたが、その効果は不十分であり、初期充電容量の低下という課題は依然として残っていた。
 本発明は、上記課題を解決するために、大気曝露した正極活物質を用いた場合でも、初期充電容量の低下を抑制した非水電解質二次電池用正極およびそれを用いた非水電解質二次電池を提供することを目的とするものである。 
 本発明は、リチウム遷移金属酸化物を含む非水電解質二次電池用正極であって、リチウム遷移金属酸化物と、酸化タングステンと、炭酸化合物とを混合してなり、リチウム遷移金属酸化物の表面の少なくとも一部に、酸化タングステンを有し、酸化タングステンの表面の一部に、混合した炭酸化合物を有する非水電解質二次電池用正極であることを特徴とする。
 本発明によれば、大気曝露した正極活物質を用いた場合でも、初期充電容量の低下が抑制される非水電解質二次電池用正極および非水電解質二次電池を提供することができる。
本実験例で用いた三電極式試験セルを示す模式図。 (a)本実験例4の正極極板のSEM観察画像(b)本実験例4の正極極板のSEM観察写真の概念図。
 本発明の実施形態について以下に説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 [正極]
 本発明では、リチウム遷移金属酸化物の表面の少なくとも一部に酸化タングステンを有し、正極に混合した炭酸化合物が、酸化タングステンの表面の一部に接し、炭酸化合物と酸化タングステンとの間の界面が形成される。
 当該界面は、リチウム遷移金属酸化物の表面近傍から離れた場所に位置し、大気中の水分を優先的に吸着するため、リチウム遷移金属酸化物の表面でLiOHの生成反応が起こりにくくなり、充電容量の劣化を抑えるというものである。
 また、正極に混合した炭酸化合物の量は、リチウム遷移金属酸化物に対して0.5質量%以上、5質量%以下含まれることが好ましい。これは、正極に混合した炭酸化合物の量が0.5質量%未満であると、酸化タングステンと正極に混合した炭酸化合物との界面が少なくなるため、界面での水分吸着の効果が十分でなく、リチウム遷移金属酸化物の表面でのLiOHの生成反応を十分に抑制できず、充電容量の劣化抑制の効果が小さくなる。
 一方、正極に混合した炭酸化合物が5質量%より大きくなると、正極活物質の量が減り正極容量が低下するため好ましくない。
 また、混合する炭酸化合物は、特に限定されないが、炭酸リチウム、炭酸二水素リチウム、炭酸コバルト、炭酸ニッケル、炭酸マンガン、炭酸カリウム、炭酸二水素アンモニウムであることが好ましく、これらの中でも、炭酸リチウムであることが好ましい。
 炭酸化合物の粒径は、リチウム遷移金属酸化物の粒径より小さいことが好ましく、リチウム遷移金属酸化物の粒径の25%以下であることが特に好ましい。なお、リチウム遷移金属酸化物の粒径は、レーザー回折法により体積平均粒径を算出し、炭酸化合物の粒径は、以下のようにして算出した。
 走査型電子顕微鏡(SEM)で観察した炭酸化合物の粒子を無作為に100個抽出し、それらの粒子の長径と短径の長さを測定し、その平均値を炭酸化合物の粒径とした。なお、炭酸化合物が凝集体として存在する場合、その粒径とは、凝集体を形成する最小単位の粒子の粒径である。
 ここで、炭酸化合物の粒径がリチウム遷移金属酸化物の粒径より大きいと、正極中での炭酸化合物の分散状態が悪くなり、酸化タングステンと正極に混合した炭酸化合物との接触面積が少なくなる。その結果、酸化タングステンと正極に混合した炭酸化合物との界面形成が不十分となって、大気中の水分によるリチウム遷移金属酸化物の表面でのLiOHの生成反応が起こりやすくなり、充電容量の劣化抑制の効果が小さくなる。
 なお、正極に炭酸化合物を混合する方法としては、リチウム遷移金属酸化物と炭酸化合物とをあらかじめ機械的に混合して付着させる方法の他、導電剤と結着剤を混練する工程で炭酸化合物を添加する方法が挙げられる。
 また、炭酸化合物としては、正極に混合した炭酸化合物だけでなく、リチウム遷移金属酸化物に不可避的に含有される炭酸リチウムが存在する。この不可避的な炭酸リチウムとは、リチウム遷移金属酸化物を製造する際に、原料として用いた炭酸リチウムが製造後もリチウム遷移金属酸化物の表面に残存した炭酸リチウムや、リチウム遷移金属酸化物を製造する際あるいは製造した後に、雰囲気ガス中の炭酸ガスと反応して生成した炭酸リチウムである。
 正極に混合した炭酸化合物の量は、正極中に含まれる炭酸化合物の50質量%以上であることが好ましく、75質量%以上であることがより好ましい。
 これは、リチウム遷移金属酸化物の表面に存在する不可避的な炭酸リチウムに対して、混合する炭酸化合物が少ないと、大気中の水分がリチウム遷移金属酸化物の表面に存在する不可避的な炭酸リチウムと酸化タングステンとの界面に吸着されるため、その結果、吸着された水分により、LiOHの生成反応が生じやすくなるためである。
 リチウム遷移金属酸化物の表面の少なくとも一部に、酸化タングステンを有する状態とは、酸化タングステンがリチウム遷移金属酸化物の表面に付着し、より好ましくは、表面に均一に点在して付着している状態である。正極に含まれる酸化タングステンは、特に限定されないが、タングステンの酸化数が最も安定である6価となるWOが好ましい。
 ここで、酸化タングステンの量が少ないと、酸化タングステンと炭酸化合物とが接して形成される界面の量が少なくなる。すなわち界面に吸着される大気中の水分の量が少なくなるため、吸着されない水分がリチウム遷移金属酸化物とLiOHの生成反応を起こしやすくなるため、電池の充電容量の劣化抑制の効果が小さくなる。
 一方、酸化タングステンの量が多くなりすぎると、酸化タングステンによって、リチウム遷移金属酸化物の表面が広く覆われる(被覆部位が多くなる)ため、電池の充放電特性が低下する。
 このため、正極活物質中における酸化タングステンの量はリチウム遷移金属酸化物の遷移金属に対して0.05mol%以上、10mol%以下であることが好ましく、より好ましくは0.1mol%以上、5mol%以下であり、さらに好ましくは0.2mol%以上、3mol%以下である。
 酸化タングステンを含む正極を作製する方法としては、リチウム遷移金属酸化物と酸化タングステンをあらかじめ機械的に混合して付着させる方法の他、導電剤と結着剤を混練する工程で酸化タングステンを添加する方法があげられる。
酸化タングステンの粒径は、リチウム遷移金属酸化物の粒径より小さいことが好ましく、リチウム遷移金属酸化物の粒径の25%以下であることが特に好ましい。なお、酸化タングステンの粒径は、以下のようにして算出した。
 走査型電子顕微鏡(SEM)で観察した酸化タングステンの粒子を無作為に100個抽出し、それらの粒子の長径と短径の長さを測定し、その平均値を酸化タングステンの粒径とした。なお、酸化タングステンが凝集体として存在する場合、その粒径とは、凝集体を形成する最小単位の粒子の粒径である。
 ここで、酸化タングステンの粒径がリチウム遷移金属酸化物の粒径より大きいと、正極中での酸化タングステンの分散状態が悪くなり、酸化タングステンと正極に混合した炭酸化合物との接触面積が小さくなる。その結果、酸化タングステンと正極に混合した炭酸化合物との界面形成が不十分となって、大気中の水分によるリチウム遷移金属酸化物の表面でのLiOHの生成反応が起こりやすくなり、充電容量の劣化抑制の効果が小さくなる。
 本発明の実施形態の一例である非水電解質二次電池用正極は、一般式Li1+x2+b(式中、x、aおよびbは、x+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNi、Co、Mn及びAlからなる群より少なくとも一種の元素を含む)であることが好ましい。特に、大気中の水分と反応しやすいNiを含むリチウム遷移金属酸化物では、大気曝露による充電容量の劣化の改善効果が高く、M中のNiの占める割合はモル比で30%以上が好ましく、50%以上であることがより好ましい。
 中でも、大気中の水分と特に反応しやすいNi3+を含むリチウム遷移金属酸化物では、大気曝露による充電容量の劣化の抑制効果が大きい。Ni3+を含む化合物としては、ニッケルコバルトマンガン酸リチウムでは、モル比でNi>Mnである化合物であり、例えば、ニッケルとコバルトとマンガンのモル比が5:2:3、5:3:2、6:2:2、7:1:2、7:2:1、8:1:1である等、公知の組成のものを用いることができる。また、ニッケルコバルトアルミニウム酸リチウムでは、例えばニッケルとコバルトとアルミニウムのモル比が80:15:5、85:12:3、90:7:3である等、公知の組成のものを用いることができる。
 さらに、正極にリン酸化合物を混合することにより、大気中に存在する水分のリチウム遷移金属酸化物への吸着をより一層抑制することができる。
 これは、詳細は不明であるが、酸化タングステンの表面の一部に、リン酸化合物が存在することで、酸化タングステンと正極に混合した炭酸化合物との界面での水分を吸着する能力が向上するためと考えられ、結果として大気曝露による初期充電特性の劣化を飛躍的に低減することができる。
 リン酸化合物は、リチウム遷移金属酸化物の表面の少なくとも一部に存在する酸化タングステンの表面に存在しており、リン酸化合物と、酸化タングステンと、正極に混合した炭酸化合物との間で高い相互作用が生じ、大気中の水分を吸着する作用と量が高まり、リチウム遷移金属酸化物の表面でのLiOHの生成反応をより抑制することができる。
 正極に含まれるリン酸化合物は、特に限定されないが、リン酸リチウム、リン酸二水素リチウム、リン酸コバルト、リン酸ニッケル、リン酸マンガン、リン酸カリウム、リン酸二水素アンモニウムであることが好ましく、これらの中でも、特にリン酸リチウムが好ましい。これらのリン酸化合物を用いると、大気曝露による初期充電容量低下の抑制効果が一層発揮される。
リチウム遷移金属酸化物の総質量に対するリン酸化合物の割合は、リン元素換算で、0.01質量%以上、1.5質量%以下であることが好ましく、0.02質量%以上、1.2質量%以下がより好ましく、0.1質量%以上1.0質量%以下がさらに好ましい。
 上記割合が0.01質量%未満になると、酸化タングステンと正極に混合した炭酸化合物とリン酸化合物による相乗効果が低減し、極板の大気曝露による特性劣化を抑制できないことがある。一方、上記割合が1.5質量%を超えると、その分だけ正極活物質の量が減るため正極容量が低下する。
 リン酸化合物を含む正極を作製する方法としては、リチウム遷移金属複合酸化物とリン酸化合物をあらかじめ機械的に混合して付着させる方法の他、導電剤と結着剤を混練する工程でリン酸化合物を添加する方法が挙げられる。
 リン酸化合物の粒径は、リチウム遷移金属酸化物の粒径より小さいことが好ましく、リチウム遷移金属酸化物の粒径の25%以下であることが特に好ましい。なお、リン酸化合物の粒径は、以下のようにして算出した。
 走査型電子顕微鏡(SEM)で観察したリン酸化合物の粒子を無作為に100個抽出し、それらの粒子の長径と短径の長さを測定し、その平均値をリン酸化合物の粒径とした。なお、リン酸化合物が凝集体として存在する場合、その粒径とは、凝集体を形成する最小単位の粒子の粒径である。
 ここで、リン酸化合物の粒径がリチウム遷移金属酸化物の粒径より大きいと、正極中でのリン酸化合物の分散状態が悪くなり、リン酸化合物と酸化タングステンとの接触面積が少なくなる。その結果、酸化タングステンとリン酸化合物との界面形成が不十分となって、酸化タングステンと正極に混合した炭酸化合物とリン酸化合物との相乗効果が低減し、大気中の水分のよるリチウム遷移金属酸化物の表面でのLiOHの生成反応が起こりやすくなり、充電容量の劣化抑制の効果が小さくなる。
 [負極]
 負極としては、従来から用いられてきた負極を用いることができ、例えば、負極活物質と、結着剤とを水あるいは適当な溶媒で混合し、負極集電体に塗布し、乾燥し、圧延することにより得られる。負極集電体には、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルム等を用いることが好適である。結着剤としては、正極の場合と同様にポリテトラフルオロエチレン(PTFE)等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いることが好ましい。結着剤は、カルボキシメチルセルロース(CMC)等の増粘剤と併用されてもよい。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、炭素材料、SiやSn等のリチウムと合金化する金属或いは合金材料、金属複合酸化物等を用いることができる。また、これらは単独でも2種以上を混合して用いてもよい。
 [非水電解質]
 非水電解質の溶媒としては、従来から使用されている、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、高誘電率、低粘度、低融点の観点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、2:8~5:5の範囲に規制することが好ましい。
 また、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物;プロパンスルトン等のスルホン基を含む化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物;ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物;ジメチルホルムアミド等のアミドを含む化合物等を上記の溶媒とともに用いることもでき、また、これらの水素原子Hの一部がフッ素原子Fにより置換されている溶媒も用いることができる。
 一方、非水電解質の溶質としては、従来から用いられてきた溶質を用いることができ、例えば、フッ素含有リチウム塩であるLiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFなどを用いることができる。さらに、フッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO等)〕を加えたものを用いても良い。特に、高温環境下においても負極の表面に安定な被膜を形成する点から、フッ素含有リチウム塩とオキサラト錯体をアニオンとするリチウム塩とを含むことが好ましい。
 上記のオキサラト錯体をアニオンとするリチウム塩の例として、LiBOB〔リチウム-ビスオキサレートボレート〕、Li[B(C)F]、Li[P(C)F]、Li[P(C]が挙げられる。中でも特に負極で安定な被膜を形成させるLiBOBを用いることが好ましい。
 なお、上記溶質は、単独で用いてもよいし、2種以上を混合して用いてもよい。
 [セパレータ]
 セパレータとしては、従来から用いられてきたセパレータを用いることができる。例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータや、セパレータの表面にアラミド系樹脂等の樹脂が塗布されたものを用いることができる。
 また、正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーからなる層を形成することができる。フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。上記フィラー層の形成方法は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
 以下、本発明を実施するための形態について実験例を挙げてさらに詳細に説明する。ただし、以下に示す実験例は、本発明の技術思想を具体化するための非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の一例を説明するために例示したものであり、本発明は以下の実験例に何ら限定されるものではない。本発明は、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
              [第一の実験例]
 (実験例1)
 [正極活物質の作製]
 まず、共沈により得られた[Ni0.50Co0.20Mn0.30](OH)で表されるニッケルコバルトマンガン複合水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に水酸化リチウムと上記で得たニッケルコバルトマンガン複合酸化物とを、リチウムと遷移金属全体とのモル比が1.15:1になるように、石川式らいかい乳鉢にて混合した。
 その後、この混合物を空気雰囲気中にて900℃で10時間焼成し、粉砕することにより、粒径が8μmのLi1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物を主成分とし、その表面に不可避的に生成される炭酸リチウムを有する正極活物質粒子を得た。なお、リチウムニッケルコバルトマンガン複合酸化物の表面に生成した炭酸リチウムの量は、リチウムニッケルコバルトマンガン複合酸化物に対して0.15wt%であった。
 [正極極板の作製]
 上記正極活物質と導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質と導電剤と結着剤との質量比が92:5:3となるように秤量し、これらを混練して正極合剤スラリーを調製した。次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、さらにアルミニウム製の集電タブを取り付けることにより、正極集電体の両面に正極合剤層が形成された正極極板を作製した。
 そして、図1に示すように上記のようにして作製した正極を作用極11として用いる一方、負極となる対極12及び参照極13にそれぞれ金属リチウムを用い、また非水電解液14として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPFを1mol/lの濃度になるように溶解させ、さらにビニレンカーボネートを1質量%溶解させたものを用いて、三電極式試験セル20を作製した。このようにして作製した電池を、以下、電池A1と称する。
 [大気曝露した正極極板を用いた電池の作製]
 正極極板を作製する際に、圧延ローラーより圧延した後、以下の条件で大気曝露を行ったこと以外は、電池A1と同様にして大気曝露した正極極板を用いた電池(電池B1)を作製した。
 ・大気曝露条件
  温度60℃、湿度50%の恒温恒湿槽に3日放置した。
 (実験例2)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oからなる正極活物質粒子に対して、WOを混合した以外は実験例1の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A2と称する。
 なお、このようにして作製した正極活物質中における酸化タングステンの量はLi1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%だった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A2と同様にして大気曝露した正極極板を用いた電池(電池B2)を作製した。
 (実験例3)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oを主成分とする正極活物質粒子に対して、炭酸リチウムを混合した以外は、実験例1の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A3と称する。
 なお、このようにして作製した正極活物質に含まれる炭酸リチウムの量は、リチウムニッケルコバルトマンガン複合酸化物に対して0.65wt%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A3と同様にして大気曝露した正極極板を用いた電池(電池B3)を作製した。
 (実験例4)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oからなる正極活物質粒子に対して、WOを混合した後に炭酸リチウムを混合した以外は、実験例1の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A4と称する。
 なお、このようにして作製した正極活物質中に含まれる酸化タングステンの量は、Li1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%、正極活物質に含まれる炭酸リチウムの量はリチウムニッケルコバルトマンガン複合酸化物に対して、0.65wt%であった。
 得られた正極極板について、走査型電子顕微鏡(SEM)にて観察したところ、図2に示されるように、リチウムニッケルコバルトマンガン複合酸化物33の表面に付着した粒径300nmの酸化タングステン32の凝集体と、その酸化タングステン32の凝集体に付着した粒径500nmの炭酸リチウム31の凝集体が確認された。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A4と同様にして大気曝露した正極極板を用いた電池(電池B4)を作製した。
 (実験例5)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oからなる正極活物質粒子に対して、炭酸リチウムを混合した後にリン酸リチウムをさらに混合した以外は、実験例4の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A5と称する。
 なお、このようにして作製した正極活物質中に含まれる酸化タングステンの量は、Li1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%、正極活物質中に含まれる炭酸リチウム、リン酸リチウムの量は、リチウムニッケルコバルトマンガン複合酸化物に対してそれぞれ0.65wt%、0.5wt%であった。
 得られた正極極板について、走査型電子顕微鏡(SEM)にて観察したところ、リチウムニッケルコバルトマンガン複合酸化物の表面に付着した粒径300nmの酸化タングステンと、その酸化タングステンに付着した粒径500nmの炭酸リチウムの粒子と、粒径500nmのリン酸リチウムが確認された。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A5と同様にして大気曝露した正極極板を用いた電池(電池B5)を作製した。
 <充電条件>
 25℃の温度条件下において、0.2mA/cmの電流密度で4.3V(vs.Li/Li)まで定電流充電を行い、4.3V(vs. Li/Li)の定電圧で電流密度が0.04mA/cmになるまで定電圧充電を行い、初期充電容量を測定した。
 <大気曝露による充電容量の劣化率の算出>
 上記で求めた初期充電容量のうち、大気曝露なし(大気曝露していない正極極板使用時)の電池の初期充電容量を「曝露なし初期充電容量」とし、大気曝露あり(大気曝露した正極極板使用時)の電池の初期充電容量を「曝露あり初期充電容量」とし、下記に示す式(1)に基づき、対応する電池の曝露なし初期充電容量と曝露あり初期充電容量の差から大気曝露による劣化充電容量を算出した。
 そして、酸化タングステンおよび炭酸リチウムのいずれも混合していない実験例1の大気曝露による充電容量の劣化率を「100」として、各実験例の大気曝露による充電容量の劣化率を求め、その結果をまとめて表1に示した。
大気曝露による劣化充電容量=曝露なし初期充電容量-曝露あり初期充電容量 (1)
Figure JPOXMLDOC01-appb-T000001
 表1の結果から分かるように、リチウムニッケルコバルトマンガン複合酸化物の表面に付着した酸化タングステンと、その酸化タングステンに付着した炭酸リチウムが観察された実験例4と実験例5の電池は、実験例1~実験例3の電池に比べ、大気曝露による充電容量の劣化率の改善が大きく、特に炭酸リチウムと酸化タングステンとリン酸リチウムを加えた実験例5の電池では劣化率の改善が顕著であった。
 一方、炭酸リチウムのみを混合した実験例3の電池では、何も混合しなかった実験例1の電池と充電容量の劣化率はほとんど変わらず、充電容量の劣化に対して抑制の効果は見られなかった。
なお、酸化タングステンのみを混合した実験例2の電池では充電容量の劣化率の改善は実験例1の電池と比較して効果が見られた。
 このような結果が得られた理由は、下記に述べるとおりのものと考えられる。
 リチウムニッケルコバルトマンガン複合酸化物に酸化タングステンと炭酸化合物を混合することで、リチウムニッケルコバルトマンガン複合酸化物の少なくとも一部に存在する酸化タングステンと、混合した炭酸化合物とが接して界面が形成される。
 混合した炭酸リチウムはリチウムニッケルコバルトマンガン複合酸化物の表面から離れた場所に位置するため、当該界面もリチウムニッケルコバルトマンガン複合酸化物の表面近傍から離れた場所に位置する。その結果、界面に吸着した水分がリチウムニッケルコバルトマンガン複合酸化物の表面層のLiとの間でLiOHの生成反応が起こりにくくなり、充電容量の劣化を抑える高い効果が得られた。
 一方、酸化タングステンが混合されていない実験例3の電池では、酸化タングステンと炭酸リチウムが接する界面が形成されず、実験例1の電池と同様に大気中の水分がリチウム遷移酸化物の表面と反応するため、大気曝露による充電容量の劣化率に改善効果はみられない。
 また、酸化タングステンのみを混合した実験例2の電池では、炭酸リチウムがリチウムニッケルコバルトマンガン複合酸化物の表面に存在するため、界面がリチウムニッケルコバルトマンガン複合酸化物の表面近傍に位置し、界面に吸着された水分によりLiと水素の置換反応が起こりやすく、結果としてLiOHが生成する反応が生じており、充電容量の劣化の抑制の効果が十分発揮されなかった。
              [第二の実験例]
 (実験例6)
 まず、共沈による得られた[Ni0.5Co0.20Mn0.30](OH)で表されるニッケルコバルトマンガン複合水酸化物を500℃で焼成して、ニッケルコバルトマンガン複合酸化物を得た。次に水酸化リチウムと上記で得たニッケルコバルトマンガン複合酸化物とを、リチウムと、遷移金属全体とのモル比が1.2:1になるように、石川式らいかい乳鉢にて混合した。
 その後、この混合物を空気雰囲気中にて850℃で10時間焼成し、粉砕することにより、粒径が4μmのLi1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物を得た。そして、この実験例6で得られたLi1.07[Ni0.465Co0.186Mn0.279]Oからなる正極活物質粒子を用いた以外は、実験例1の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A6と称する。
 なお、このようにして作製したリチウムニッケルコバルトマンガン複合酸化物の表面に生成した炭酸リチウムの量は、リチウムニッケルコバルトマンガン複合酸化物に対して0.57wt%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A6と同様にして大気曝露した正極極板を用いた電池(電池B6)を作製した。
 (実験例7) 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]OにWOのみを混合した以外は実験例6の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A7と称する。
 なお、このようにして作製した正極活物質中における酸化タングステンの量はLi1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%だった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A7と同様にして大気曝露した正極極板を用いた電池(電池B7)を作製した。
 (実験例8)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oからなる正極活物質粒子に対して、炭酸リチウムを混合した以外は、実験例6の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A8と称する。
 なお、このようにして作製した正極活物質に含まれる炭酸リチウムの量は、Li1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物に対して1.07wt%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A8と同様にして大気曝露した正極極板を用いた電池(電池B8)を作製した。
 (実験例9)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]OにWOを混合した後に炭酸リチウムを混合したこと以外は、実験例6と同様にして三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A9と称する。
 なお、このようにして作製した正極活物質中における酸化タングステンの量は、Li1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%、正極活物質中における炭酸リチウムの量はリチウムニッケルコバルトマンガン複合酸化物に対して、1.07wt%であった。
 得られた正極極板について、走査型電子顕微鏡(SEM)にて観察したところ、第一の実験例と同様に、リチウム遷移金属酸化物の表面に付着した粒径300nmの酸化タングステンと、その酸化タングステンに付着し、リチウム遷移金属酸化物の表面に付着していない粒径500nmの炭酸リチウムの粒子が確認された。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電気A2と同様にして大気曝露した正極極板を用いた電池(電池B9)を作製した。
 (実験例10)
 正極活物質の作製において、Li1.07[Ni0.465Co0.186Mn0.279]Oに炭酸リチウムを混合した後にリン酸リチウムをさらに混合した以外は、実験例9の場合と同様にして、三電極式試験セルを作製した。このようにして作製した電池を、以下、電池A10と称する。
 なお、このようにして作製した正極活物質中に含まれる酸化タングステンの量は、Li1.07[Ni0.465Co0.186Mn0.279]Oで表されるリチウムニッケルコバルトマンガン複合酸化物のリチウムを除く金属の総量に対して1.0mol%、正極活物質中に含まれる炭酸リチウム、リン酸リチウムの量は、リチウムニッケルコバルトマンガン複合酸化物に対してそれぞれ1.07wt%、0.5wt%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気曝露を行ったこと以外は、電池A10と同様にして大気曝露した正極極板を用いた電池(電池B10)を作製した。
 これらの電池の大気曝露による充電容量の劣化率を求め、その結果をまとめて表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から分かるように、炭酸リチウムと酸化タングステンを混合した実験例9、実験例10の電池は、実験例6~実験例8の電池に比べ、大気曝露による充電容量の劣化率の改善が大きく、特に炭酸リチウムと酸化タングステンとリン酸リチウムを加えた実験例10の電池では劣化率の改善が顕著であった。
 一方、炭酸リチウムのみを混合した実験例8の電池では何も混合しなかった実験例6の電池と充電容量の劣化率はほとんど変わらず、充電容量の劣化に対して抑制の効果は見られなかった。
 なお、酸化タングステンのみを混合した実験例7の電池では充電容量の劣化率の改善は実験例6の電池と比較して効果が見られた。
 また、実験例4の電池と実験例7の電池とを比較すると、正極中に含まれる炭酸リチウム量はそれぞれ、0.65wt%、0.57wt%と大差が無いにも関わらず、混合した炭酸リチウムを多く含む実施例4の電池が充電容量の劣化率の改善が顕著であった。
 これは、混合した炭酸リチウムでは、大気中の水分が優先的に吸着する酸化タングステンとの界面が、リチウム遷移金属酸化物の表面近傍から離れた場所に位置し、リチウム遷移金属酸化物の表面でLiOHの生成反応を抑制する一方、リチウム遷移金属酸化物の表面に存在する不可避的な炭酸リチウムは、酸化タングステンとの界面がリチウム遷移金属酸化物の表面近傍に存在するため、LiOHの生成反応を十分に抑制できなかったためと考えられる。
したがって、リチウム遷移金属酸化物の表面に存在する炭酸リチウムは少ない方が望ましく、混合する炭酸リチウムの量は、正極中に含まれる炭酸リチウムの50質量%以上が好ましく、75質量%以上とすることがより好ましい。
 本発明の一局面の非水電解質二次電池用正極およびこれを用いた非水電解質二次電池は、例えば、携帯電話、ノートパソコン、スマートフォン、タブレット端末等の移動情報端末の駆動電源で、特に高エネルギー密度が必要とされる用途に適用することができる。さらに、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)や電動工具のような高出力用途への展開も期待できる。
 11 作用極(正極)
 12 対極(負極)
 13 参照極
 14 非水電解液
 20 三電極式試験セル
 31 炭酸リチウム
 32 酸化タングステン
 33 リチウムニッケルコバルトマンガン複合酸化物

Claims (10)

  1.  リチウム遷移金属酸化物を含む非水電解質二次電池用正極であって、
     リチウム遷移金属酸化物と、酸化タングステンと、炭酸化合物とを混合してなり、
     前記リチウム遷移金属酸化物の表面の少なくとも一部に、酸化タングステンを有し、
     前記酸化タングステンの表面の一部に、混合した炭酸化合物を有することを特徴とする非水電解質二次電池用正極。
  2.  前記炭酸化合物が、リチウム遷移金属酸化物に対して0.5質量%以上、5質量%以下含まれる請求項1に記載の非水電解質二次電池用正極。
  3.  前記炭酸化合物が炭酸リチウムである請求項1または2に記載の非水電解質二次電池用正極。
  4.  前記炭酸リチウムは、混合する量が正極中に含まれる炭酸リチウムの50質量%以上であることを特徴とする請求項3に記載の非水電解質二次電池用正極。
  5.  前記酸化タングステンがWOである請求項1~4のいずれかに記載の非水電解質二次電池用正極。
  6.  前記リチウム遷移金属酸化物は一般式Li1+x2+b(式中、x、aおよびbは、x+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNi、Co、Mn及びAlからなる群より少なくとも一種の元素を含む)で表される請求項1~5のいずれかに記載の非水電解質二次電池用正極。
  7.  リン酸化合物が含まれる請求項1~6のいずれかに記載の非水電解質二次電池用正極。
  8.  前記酸化タングステンの表面の一部に、前記リン酸化合物を有する請求項7に記載の非水電解質二次電池用正極。
  9.  前記リン酸化合物が、リン酸リチウムである請求項7または8に記載の非水電解質二次電池用正極。
  10.  請求項1~9のいずれかに記載の非水電解質二次電池用正極を用いた、非水電解質二次電池。
PCT/JP2015/004238 2014-09-30 2015-08-25 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 WO2016051653A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051096.7A CN106716685B (zh) 2014-09-30 2015-08-25 非水电解质二次电池用正极和使用其的非水电解质二次电池
US15/503,509 US10601029B2 (en) 2014-09-30 2015-08-25 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2016551485A JP6610552B2 (ja) 2014-09-30 2015-08-25 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200324 2014-09-30
JP2014200324 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051653A1 true WO2016051653A1 (ja) 2016-04-07

Family

ID=55629733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004238 WO2016051653A1 (ja) 2014-09-30 2015-08-25 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US10601029B2 (ja)
JP (1) JP6610552B2 (ja)
CN (1) CN106716685B (ja)
WO (1) WO2016051653A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087510A (ja) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 非水電解液二次電池
WO2021201003A1 (ja) * 2020-03-31 2021-10-07 花王株式会社 正極組成物
JP2022507064A (ja) * 2018-11-09 2022-01-18 ビーエーエスエフ コーポレーション リチウム化遷移金属酸化物粒子の製造方法、及び当該方法により製造される粒子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107785578B (zh) * 2016-08-25 2019-06-11 宁德时代新能源科技股份有限公司 正极添加剂及其制备方法、正极片及锂离子二次电池
KR102160572B1 (ko) * 2017-07-26 2020-09-28 주식회사 엘지화학 리튬이차전지용 양극 및 이를 포함하는 리튬이차전지
JP7198413B2 (ja) * 2019-01-30 2023-01-04 トヨタ自動車株式会社 正極活物質および該正極活物質を備える非水電解液二次電池
JP7519346B2 (ja) * 2019-04-19 2024-07-19 パナソニックエナジー株式会社 非水電解質二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073425A (ja) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd 非水電解質二次電池
WO2007086289A1 (ja) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池とその製造方法、実装方法
JP2008270161A (ja) * 2006-12-26 2008-11-06 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2012111116A1 (ja) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 リチウムイオン二次電池及びその製造方法
WO2014049964A1 (ja) * 2012-09-25 2014-04-03 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極活物質

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002054512A1 (en) 2000-12-28 2002-07-11 Sony Corporation Positive electrode active material and nonaqueous electrolyte secondary cell
JP4325112B2 (ja) 2000-12-28 2009-09-02 ソニー株式会社 正極活物質及び非水電解質二次電池
JP2002203558A (ja) * 2000-12-28 2002-07-19 Sony Corp 非水電解質二次電池
JP4794866B2 (ja) * 2004-04-08 2011-10-19 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法ならびにそれを用いた非水電解質二次電池
JP4798962B2 (ja) * 2004-05-06 2011-10-19 日本電工株式会社 リチウムマンガン複合酸化物及びその製造方法
JP5077131B2 (ja) * 2007-08-02 2012-11-21 ソニー株式会社 正極活物質、並びにそれを用いた正極、および非水電解質二次電池
JP4710916B2 (ja) * 2008-02-13 2011-06-29 ソニー株式会社 非水電解質二次電池用正極活物質、これを用いた非水電解質二次電池用正極および非水電解質二次電池
CN103956480B (zh) * 2014-05-21 2016-04-20 山东大学 一种wo3包覆锰酸锂材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073425A (ja) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd 非水電解質二次電池
WO2007086289A1 (ja) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池とその製造方法、実装方法
JP2008270161A (ja) * 2006-12-26 2008-11-06 Mitsubishi Chemicals Corp リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
WO2012111116A1 (ja) * 2011-02-16 2012-08-23 トヨタ自動車株式会社 リチウムイオン二次電池及びその製造方法
WO2014049964A1 (ja) * 2012-09-25 2014-04-03 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池用正極活物質

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087510A (ja) * 2017-11-10 2019-06-06 トヨタ自動車株式会社 非水電解液二次電池
JP2022507064A (ja) * 2018-11-09 2022-01-18 ビーエーエスエフ コーポレーション リチウム化遷移金属酸化物粒子の製造方法、及び当該方法により製造される粒子
WO2021201003A1 (ja) * 2020-03-31 2021-10-07 花王株式会社 正極組成物

Also Published As

Publication number Publication date
US20170194628A1 (en) 2017-07-06
JPWO2016051653A1 (ja) 2017-07-13
CN106716685B (zh) 2020-04-21
JP6610552B2 (ja) 2019-11-27
CN106716685A (zh) 2017-05-24
US10601029B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
JP6610552B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP6103034B2 (ja) 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
WO2016047056A1 (ja) 非水電解質二次電池
JP6493409B2 (ja) 非水電解質二次電池
JP6443339B2 (ja) 非水電解質二次電池用正極
CN106663780B (zh) 非水电解质二次电池用正极和非水电解质二次电池
JP6585088B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2017038816A1 (ja) 電解液およびリチウムイオン二次電池
JP6627758B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
WO2015004841A1 (ja) 非水電解質二次電池
WO2013146054A1 (ja) 非水電解質二次電池
US10553856B2 (en) Nonaqueous electrolyte secondary battery
WO2015025882A1 (ja) 電解液、及びリチウムイオン二次電池
JP6572882B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2011071100A (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2009218112A (ja) 非水電解質二次電池及びその製造方法
WO2016067522A1 (ja) 非水電解質二次電池
JP6299771B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
JP2024022073A (ja) 非水系電解液を用いた非水系電解液電池
JP2014146518A (ja) 非水電解質二次電池用非水電解質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551485

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15503509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847461

Country of ref document: EP

Kind code of ref document: A1