WO2016050077A1 - 利用激光切割基板的方法及激光切割设备 - Google Patents
利用激光切割基板的方法及激光切割设备 Download PDFInfo
- Publication number
- WO2016050077A1 WO2016050077A1 PCT/CN2015/079307 CN2015079307W WO2016050077A1 WO 2016050077 A1 WO2016050077 A1 WO 2016050077A1 CN 2015079307 W CN2015079307 W CN 2015079307W WO 2016050077 A1 WO2016050077 A1 WO 2016050077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- line
- substrate
- shape
- parallel
- cutting
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/08—Severing cooled glass by fusing, i.e. by melting through the glass
- C03B33/082—Severing cooled glass by fusing, i.e. by melting through the glass using a focussed radiation beam, e.g. laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/359—Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
- B23K26/402—Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/0222—Scoring using a focussed radiation beam, e.g. laser
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/023—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor the sheet or ribbon being in a horizontal position
- C03B33/037—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/02—Cutting or splitting sheet glass or ribbons; Apparatus or machines therefor
- C03B33/04—Cutting or splitting in curves, especially for making spectacle lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/54—Glass
Definitions
- Embodiments of the present invention relate to a method of cutting a substrate using a laser and a laser cutting apparatus.
- the existing glass cutting equipment is mainly divided into cutter wheel cutting and CO 2 laser cutting.
- the cutter wheel splitting methods mainly include natural splitting, steam type, hot air type and pressure type, and the splitting mode of CO 2 laser cutting is mainly cold and hot impact.
- the cutting path of the cutter wheel cutting and CO 2 laser cutting is single, and only the horizontal and vertical straight cutting paths are included, and only the substrate with a relatively simple shape can be cut, and the cutting can not be correspondingly shaped, and the cutting order is fixed.
- the embodiment of the invention provides a method for laser cutting a substrate and a laser cutting device, which are used to increase the stress destructive force point when the substrate is cut, improve the cutting effect of the substrate, and reduce the fragmentation of the substrate.
- Embodiments of the present invention provide a method for cutting a substrate by using a laser, the method comprising the following steps:
- the auxiliary split line is drawn outside the shape line; and the minimum distance of the auxiliary split line toward the end of the shape line from the shape line is located at the first position Within the threshold.
- the embodiment of the invention further provides a laser cutting device, the device comprising: a laser knife and a control device connected to the laser knife, wherein
- the control device is configured to control the laser knife to trace the first parallel line, the second parallel line, the shape line and the auxiliary split line on the substrate; the first parallel line is along the first direction, and the second parallel line is along the In the two directions, the second direction is perpendicular to the first direction, the second parallel line intersects the first parallel line, and the mutually intersecting first parallel line and the second parallel line are enclosed
- the laser knife engraves a first parallel line, a second parallel line, a shape line, and an auxiliary split line on the substrate according to the set stroke.
- FIG. 1 is a flow chart of a method for cutting a substrate by using a laser according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a scribe line on a substrate in a method for cutting a substrate by using a laser according to an embodiment of the present invention
- FIG. 3 is a schematic diagram of another scribe line on a substrate in a method for cutting a substrate by using a laser according to an embodiment of the present invention
- FIG. 4 is a schematic diagram of another scribe line on a substrate in a method of cutting a substrate by using a laser according to an embodiment of the present invention
- FIG. 5 is a schematic diagram of another scribe line on a substrate in a method for cutting a substrate by using a laser according to an embodiment of the present invention
- FIG. 6 is a schematic diagram of another scribe line on a substrate in a method of cutting a substrate by using a laser according to an embodiment of the present invention.
- the embodiment of the invention provides a method for cutting a substrate by using a laser and a laser cutting device.
- the auxiliary splitting line is added to improve the effect of cutting the profile when cutting the substrate by laser, thereby improving the substrate cutting.
- the effect is to improve the cracking of the substrate.
- Embodiments of the present invention provide a method of cutting a substrate by using a laser, the method comprising the following steps.
- the auxiliary split line is drawn outside the shape line; and the minimum distance of the end of the auxiliary split line toward the shape line from the shape line is within the first set threshold.
- the first parallel line, the second parallel line and the auxiliary split line are provided to help split the substrate, thereby increasing the stress damage point when the substrate is cut, thereby facilitating the cutting of the substrate, and avoiding the glass substrate during cutting.
- the yield of substrate cutting can be effectively improved, and waste of materials can be avoided.
- the cutting path of the cutting method is reasonable and ingenious, and the cut substrate can be completely separated, and the automatic take-out condition is provided.
- FIG. 1 In order to facilitate the understanding of the embodiments of the present invention, a detailed description will be made below with reference to FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG.
- Embodiments of the present invention provide a method of cutting a substrate by using a laser, the method comprising the following steps.
- Step 001 drawing, on the substrate, a plurality of first parallel lines along the first direction and a plurality of second parallel lines along the second direction, wherein the second direction is perpendicular to the first direction, and the plurality of second parallel lines are a plurality of first parallel lines intersecting, and a region between the first parallel line and the second parallel line intersecting each other for engraving the shape of the sub-substrate;
- first parallel lines 20 and second parallel lines 30 are depicted on the substrate 10, wherein the first direction is a horizontal direction and the second direction is a vertical direction. Therefore, the plurality of first parallel lines 20 and The two parallel lines 30 are enclosed in a rectangular frame, and when cutting, the size of the glass substrate 10 can be described.
- a parallel line 20 and a second parallel line 30, as shown in FIG. 2, according to the size of the substrate 10, a second parallel line 30 arranged offset may be used to form three rectangular frames, thereby maximizing the use of the substrate 10. material.
- a plurality of rectangular frames arranged in an array may also be formed, which is not limited herein.
- Step 002 in the area for depicting the shape of the sub-substrate, the shape line 50 of the sub-substrate is drawn;
- a shape line 50 is drawn on the substrate 10, and the shape line 50 may form lines of different shapes depending on the shape of the sub-substrate.
- the shape line 50 shown in FIG. 2 is a rectangular line with rounded corners.
- the shape line shown in Fig. 5 is such that a recessed notch is provided on the shape line shown in Fig. 2.
- the shape line shown in Fig. 6 is an elliptical line. It should be noted that the shape of the shape line is not limited thereto, and can be characterized according to actual needs.
- the minimum distance between the first parallel line 20 and the line of the shape line 50 on the side close to the first parallel line is within the second set threshold; the second parallel line 30 is adjacent to the second parallel line.
- the distance of the line of the side shape line 50 is within a second set threshold, for example, the second set threshold is 0.5 mm to 1.5 mm.
- any value between 0.5mm and 1.5mm for example, the first parallel line 20 and the side close to the first parallel line
- the distance of the line of the shape line 50 is 0.5 mm; the distance between the second parallel line 30 and the line of the shape line 50 on the side close to the second parallel line is 0.5 mm.
- Step 003 in the region for characterizing the shape of the sub-substrate, the auxiliary split line 40 is drawn on the outer side 60 of the shape line 50; and the minimum distance of the auxiliary split line 40 toward the end of the shape line 50 from the shape line 50 is located at the first position. Within the threshold.
- auxiliary split lines 40 are depicted in accordance with different shape lines 50 to help split the substrate 10.
- the shape line 50 is a rectangular line
- the corners of the rectangular line are rounded, and each rounded corner corresponds to a intersection of the first parallel line 20 and the second parallel line
- the auxiliary split line 40 is a straight line or an arc line along the intersection of each of the first parallel line 20 and the second parallel line 30 toward its corresponding rounded direction, or the auxiliary split line 40 is respectively paralleled to the adjacent first line
- the fold line connecting the line 20 and the second parallel line 30, the end of the auxiliary split line 40 toward the shape line 50 is a corner of the fold line.
- the auxiliary splitting line 40 is used to help shape the shape of the rounded corners, avoiding the occurrence of cracks in the shape line 50 at the rounded corners during cutting, and the auxiliary splitting line 40 can be depicted at the rounded corners.
- the shape of the auxiliary splitting line 40 can be selected according to the actual situation.
- the auxiliary splitting line 40 is not limited to the above description.
- the auxiliary splitting line 40 may have one end at a point of intersection with the first parallel line 20 and the second parallel line 30. As shown in FIG. 2, the end may also be located at the first parallel line. 20 or second parallel line 30.
- the auxiliary split line 40 may include the following:
- the auxiliary splitting line 40 is a straight line, and the intersection of the first parallel line 20 and the second parallel line 30 points to the rounded corner corresponding to the intersection point, and the straight line is close to the end of the rounded corner.
- the minimum distance is within the first set threshold.
- the distance d shown in FIG. 2 is the distance from the rounded end of the straight line to the rounded corner.
- the auxiliary split line 40 is an angle bisector of the angle between the first parallel line 20 and the second parallel line 30 to which the auxiliary split line 40 is connected. For easy portrayal.
- the auxiliary splitting line 40 is a curved line, and the intersecting point of the curved line along the first parallel line 20 and the second parallel line 30 points to a rounded corner corresponding to the intersection, and the curved line is close to the circle.
- the minimum distance from one end of the corner to the fillet is within a first set threshold.
- the auxiliary splitting line 40 is a broken line, and the auxiliary splitting line 40 is a fold line whose two ends are respectively connected to the adjacent first parallel line 20 and the second parallel line 30, and the auxiliary splitting line 40 is oriented toward the shape line.
- the end of 50 is the corner of the fold line, and the minimum distance of the corner from its corresponding fillet is within a first set threshold.
- the auxiliary split line 40 includes an X-shaped line disposed in the concave bend line, in addition to any of the types of lines shown in FIG. 2, FIG. 3, and FIG. And the minimum distance of the end of the X-shaped line from its adjacent shape line 50 should be within a first set threshold.
- the shape line 50 is an elliptical line, and the long axis of the elliptical line is located on the center line of the two second parallel lines 30 forming the region for patterning the shape of the sub-substrate, the auxiliary split line 40 is an arcuate line drawn along the intersection of each of the first parallel line 20 and the second parallel line 30 toward its corresponding long axis end. And the minimum distance of the curved line from the corresponding shape line 50 is within the first set threshold.
- the long axis of the elliptical line may also be located on the center line of the two first parallel lines 20 forming the area for characterizing the shape of the sub-substrate.
- the portion between the first parallel line 20, the second parallel line 30, and the shape line 50 can be divided by the auxiliary split line 40 provided, thereby facilitating the formation of different small pieces of the substrate 10 during cutting. Avoid cracks during cutting.
- the first set threshold is, for example, 50 ⁇ m to 150 ⁇ m, such as: 50 ⁇ m, 60 ⁇ m, 80 ⁇ m, 90 ⁇ m, 100 ⁇ m, Any value between 50 ⁇ m and 150 ⁇ m such as 120 ⁇ m or 150 ⁇ m.
- the minimum distance of the auxiliary split line 40 toward the end of the shape line 50 from the shape line 50 is 100 ⁇ m.
- the above specific embodiment only gives a specific operation mode, and any technical solution including cutting the substrate 10 by using the auxiliary splitting line 40 should be included in the content of the present invention, such as step 001 and step 002.
- the order of the characterization may be determined according to actual needs, that is, the first parallel line 20 and the second parallel line 30 may be first drawn according to the above specific embodiment, and then the shape line 50 may be scribed; The shape line 50 is followed by the first parallel line 20 and the second parallel line 30.
- the principle is the same as the principle of the foregoing specific embodiment, and details are not described herein again.
- the auxiliary splitting line is provided to help split the substrate, thereby avoiding the cracking of the glass substrate during cutting, effectively improving the yield of the substrate cutting, and avoiding waste of materials.
- the cutting path of the cutting method is reasonable and ingenious, and the cut substrate can be completely separated, and the automatic take-out condition is provided.
- the substrate when the lines are drawn, microcracks are formed on the substrate, and after the lines are drawn, the substrate can be split and the cutting is completed under the action of stress. A sub-substrate of the desired shape is obtained. If the substrate fails to split, laser cutting can be performed to complete the cutting by the principle of thermal expansion and contraction.
- the embodiment of the invention further provides a laser cutting device, the device comprising: a laser knife and a control device connected to the laser knife, wherein
- the control device is provided with a control laser knife for drawing a stroke of the first parallel line, the second parallel line, the shape line and the auxiliary split line on the substrate; and the minimum distance of the auxiliary split line toward the end of the shape line from the shape line is located at the first Set the threshold;
- the laser knife engraves the first parallel line, the second parallel line, the shape line and the auxiliary split line on the substrate according to the set stroke.
- the setting of controlling the laser knife to trace the first parallel line, the second parallel line, the shape line and the auxiliary split line on the substrate comprises: controlling the laser knife to draw a plurality of first parallel lines along the first direction on the substrate a plurality of second parallel lines along a second direction perpendicular to the first direction and intersecting the first parallel line, and a shape line of the sub-substrate, wherein the first parallel line and the second parallel line intersecting each other Enclosing a region for characterizing the shape of the sub-substrate, the shape line is located in a region for depicting the shape of the sub-substrate, and in the region for characterizing the shape of the sub-substrate, the auxiliary split line is drawn outside the shape line; and the auxiliary split line is oriented toward the shape The minimum distance of the end of the line from the shape line is within a first set threshold.
- control device sets the path of the auxiliary splitting line, and controls the laser cutter to cut the auxiliary splitting line to help split the substrate, thereby avoiding the cracking of the glass substrate during cutting, and effectively improving the yield of the substrate cutting and avoiding Waste of materials.
- the cutting path of the cutting method is reasonable and ingenious, and the cut substrate can be completely separated, and the automatic take-out condition is provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
Claims (12)
- 一种利用激光切割基板的方法,包括以下步骤:在基板上刻画出多条沿第一方向的第一平行线、多条沿第二方向的第二平行线、以及子基板的形状线,其中,所述第二方向与所述第一方向垂直,多条所述第二平行线与多条所述第一平行线交叉,所述相互交叉的第一平行线与第二平行线之间围成用于刻画子基板形状的区域,所述形状线位于所述用于刻画子基板形状的区域内;在所述用于刻画子基板形状的区域内,在所述形状线外侧刻画辅助分裂线;且所述辅助分裂线朝向所述形状线的端部距离所述形状线的最小距离位于第一设定阈值内。
- 根据权利要求1所述的利用激光切割基板的方法,其中,所述在基板上刻画出多条沿第一方向的第一平行线、多条沿第二方向的第二平行线,以及子基板的形状线,其中,所述第二方向与所述第一方向垂直,所述第二平行线与所述第一平行线交叉,所述相互交叉的第一平行线与第二平行线之间围成用于刻画子基板形状的区域,所述形状线位于所述用于刻画子基板形状的区域内包括:在基板上刻画出多条沿第一方向的第一平行线及多条沿第二方向的第二平行线,其中,所述第二方向与所述第一方向垂直,所述第二平行线与所述第一平行线交叉,所述相互交叉的第一平行线与第二平行线之间围成用于刻画子基板形状的区域;在所述用于刻画子基板形状的区域内刻画出子基板的形状线。
- 根据权利要求1所述的利用激光切割基板的方法,其中,所述形状线为矩形线,且矩形线的边角为圆角,每个圆角对应一个第一平行线与第二平行线的交汇点;所述辅助分裂线为沿每个第一平行线与第二平行线的交汇点朝向其对应的圆角方向的直线或弧形线,或所述辅助分裂线为其两端分别与相邻的第一平行线及第二平行线相连的折线,所述辅助分裂线朝向所述形状线的端部为折线的拐角。
- 根据权利要求3所述的利用激光切割基板的方法,其中,所述形状线 的一端具有凹陷的折弯线,所述辅助分裂线还包括设置在所述凹陷的折弯线内的X形线。
- 根据权利要求1所述的利用激光切割基板的方法,其中,所述辅助分裂线为其连接的第一平行线及第二平行线之间夹角的角平分线。
- 根据权利要求1所述的利用激光切割基板的方法,其中,所述形状线为椭圆形线,所述椭圆形线的长轴位于形成用于刻画子基板形状的区域的两条第一平行线或两条第二平行线的中线上,所述辅助分裂线为沿每个第一平行线与第二平行线的交汇点朝向其对应的长轴端刻画的弧形线。
- 如权利要求1~6任一项所述的利用激光切割基板的方法,其中,所述第一平行线与所述形状线靠近其一侧的线条的距离位于第二设定阈值内;所述第二平行线与所述形状线靠近其一侧的线条的距离位于第二设定阈值内。
- 如权利要求7所述的利用激光切割基板的方法,其中,所述第二设定阈值为0.5mm~1.5mm。
- 如权利要求8所述的利用激光切割基板的方法,其中,所述第一平行线与靠近该第一平行线一侧的所述形状线的线条的最小距离为0.5mm;所述第二平行线与靠近该第二平行线一侧的所述形状线的线条的最小距离为0.5mm。
- 如权利要求1或8所述的利用激光切割基板的方法,其中,所述第一设定阈值为50μm~150μm。
- 如权利要求10所述的激光切割基板的方法,其特征在于,所述第一设定阈值为100μm。
- 一种激光切割设备,包括:激光刀以及与所述激光刀连接的控制装置,其中,所述控制装置内设定有控制所述激光刀在基板上刻画第一平行线、第二平行线、形状线及辅助分裂线的行程;第一平行线沿第一方向,第二平行线沿第二方向,所述第二方向与所述第一方向垂直,所述第二平行线与所述第一平行线交叉,所述相互交叉的第一平行线与第二平行线之间围成用于刻画子基板形状的区域,所述形状线位于所述用于刻画子基板形状的区域内;在所述用于刻画子基板形状的区域内,在所述形状线外侧刻画辅助分裂线,且 辅助分裂线朝向所述形状线的端部距离所述形状线的最小距离位于第一设定阈值内;所述激光刀按照所述设定的行程在基板上刻画出第一平行线、第二平行线、形状线及辅助分裂线。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/770,581 US9963376B2 (en) | 2014-09-29 | 2015-05-19 | Method for cutting substrate by laser and laser cutting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410515814.9 | 2014-09-29 | ||
CN201410515814.9A CN104310779A (zh) | 2014-09-29 | 2014-09-29 | 一种激光切割基板的方法及激光切割设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016050077A1 true WO2016050077A1 (zh) | 2016-04-07 |
Family
ID=52366130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/079307 WO2016050077A1 (zh) | 2014-09-29 | 2015-05-19 | 利用激光切割基板的方法及激光切割设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9963376B2 (zh) |
CN (1) | CN104310779A (zh) |
WO (1) | WO2016050077A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104310779A (zh) | 2014-09-29 | 2015-01-28 | 合肥鑫晟光电科技有限公司 | 一种激光切割基板的方法及激光切割设备 |
CN106316090A (zh) * | 2016-08-18 | 2017-01-11 | 武汉市楚源光电有限公司 | 一种激光切割超薄强化玻璃的方法 |
KR102355278B1 (ko) * | 2016-10-14 | 2022-01-25 | 니폰 덴키 가라스 가부시키가이샤 | 유리판의 제조 방법 |
US20180257170A1 (en) * | 2017-03-13 | 2018-09-13 | Coherent Lasersystems Gmbh & Co. Kg | Controlled separation of laser processed brittle material |
CN108098164B (zh) * | 2017-12-21 | 2020-01-31 | 广东正业科技股份有限公司 | 一种激光切割的路径优化方法、智能设备及存储装置 |
CN107942566A (zh) * | 2018-01-04 | 2018-04-20 | 京东方科技集团股份有限公司 | 基板切割方法 |
CN109304547A (zh) * | 2018-10-12 | 2019-02-05 | 广东正业科技股份有限公司 | 一种硬脆材料的激光加工方法及系统 |
CN109516684A (zh) * | 2018-11-22 | 2019-03-26 | 英诺激光科技股份有限公司 | 一种激光切割滤光片的方法 |
CN109437540B (zh) * | 2018-12-29 | 2021-07-20 | 重庆市合川区金星玻璃制品有限公司 | 一种玻璃切割装置 |
CN110262106B (zh) * | 2019-06-24 | 2021-12-28 | 深圳市华星光电半导体显示技术有限公司 | 一种显示面板及其激光切割方法 |
CN113751889A (zh) * | 2020-05-29 | 2021-12-07 | 京东方科技集团股份有限公司 | 基板及其切割方法、电子器件及电子设备 |
CN112321142B (zh) * | 2020-10-26 | 2022-08-26 | 蓝思科技(长沙)有限公司 | 一种玻璃加工方法 |
CN112876058B (zh) * | 2021-01-15 | 2022-10-11 | 厦门天马微电子有限公司 | 异形显示面板的切割方法、异形显示面板 |
CN113172354A (zh) * | 2021-05-13 | 2021-07-27 | 深圳力星激光智能装备有限公司 | 一种脆性片材孔形结构的激光加工方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282617C (zh) * | 2003-01-17 | 2006-11-01 | 株式会社村上开明堂 | 用于制造玻璃坯件的方法 |
CN103771694A (zh) * | 2014-01-08 | 2014-05-07 | 合肥鑫晟光电科技有限公司 | 激光切割方法及激光切割系统 |
CN104310779A (zh) * | 2014-09-29 | 2015-01-28 | 合肥鑫晟光电科技有限公司 | 一种激光切割基板的方法及激光切割设备 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4467168A (en) * | 1981-04-01 | 1984-08-21 | Creative Glassworks International | Method of cutting glass with a laser and an article made therewith |
DE10016628A1 (de) | 2000-04-04 | 2001-10-18 | Schott Glas | Verfahren zum Herstellen von kleinen Dünnglasscheiben und größere Dünnglasscheibe als Halbfabrikat für dieses Herstellen |
KR100807587B1 (ko) * | 2002-03-09 | 2008-02-28 | 엘지.필립스 엘시디 주식회사 | 액정 패널의 절단 방법 |
DE102005024497B4 (de) * | 2005-05-27 | 2008-06-19 | Schott Ag | Verfahren zum mechanischen Brechen von geritzten flachen Werkstücken aus sprödbrüchigem Material |
CN102765876A (zh) * | 2011-05-05 | 2012-11-07 | 上海镭立激光科技有限公司 | 一种激光自聚焦穿丝玻璃切割方法 |
TWI474983B (zh) * | 2011-10-04 | 2015-03-01 | Mitsuboshi Diamond Ind Co Ltd | Scoring Method and Breaking Method of Mother Substrate |
TWI481576B (zh) * | 2012-05-02 | 2015-04-21 | Taiwan Mitsuboshi Diamond Ind Co Ltd | 切割玻璃之方法及切割設備 |
EP2781296B1 (de) * | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser |
JP6588911B2 (ja) * | 2013-12-17 | 2019-10-09 | コーニング インコーポレイテッド | ガラスの3d形成 |
-
2014
- 2014-09-29 CN CN201410515814.9A patent/CN104310779A/zh active Pending
-
2015
- 2015-05-19 US US14/770,581 patent/US9963376B2/en active Active
- 2015-05-19 WO PCT/CN2015/079307 patent/WO2016050077A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1282617C (zh) * | 2003-01-17 | 2006-11-01 | 株式会社村上开明堂 | 用于制造玻璃坯件的方法 |
CN103771694A (zh) * | 2014-01-08 | 2014-05-07 | 合肥鑫晟光电科技有限公司 | 激光切割方法及激光切割系统 |
CN104310779A (zh) * | 2014-09-29 | 2015-01-28 | 合肥鑫晟光电科技有限公司 | 一种激光切割基板的方法及激光切割设备 |
Also Published As
Publication number | Publication date |
---|---|
CN104310779A (zh) | 2015-01-28 |
US9963376B2 (en) | 2018-05-08 |
US20160362325A1 (en) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016050077A1 (zh) | 利用激光切割基板的方法及激光切割设备 | |
JP6201608B2 (ja) | スクライブ方法 | |
CN103635438B (zh) | 平板玻璃的切割分离方法 | |
CN105772950B (zh) | 二维激光切割管材的切割方法 | |
JP2008540169A (ja) | 脆性材料における超音波誘起クラック伝搬 | |
TWI588107B (zh) | Strengthen the glass cutting method | |
US20170225997A1 (en) | Liquid crystal screen glass cutting method and apparatus | |
CN105382951A (zh) | 一种蓝宝石的曲面多线切割方法及其装置 | |
TW201603927A (zh) | 雷射切割方法及其裝置 | |
CN101530951A (zh) | 激光切割脆性基板的方法及脆性基板 | |
US10919796B2 (en) | Method for producing glass plate | |
CN105382936A (zh) | 基板裂断装置 | |
CN104476687B (zh) | 多线切割导轮及其布线方法 | |
CN103956337B (zh) | 一种半导体晶片的切割方法 | |
JP2014051415A (ja) | 脆性材料基板のスクライブ方法 | |
JP5365390B2 (ja) | ブレイクユニット及びブレイク方法 | |
TWI745398B (zh) | 玻璃基板之時間差分斷方法 | |
JP2016210026A (ja) | 脆性材料基板の分断方法 | |
CN105116581A (zh) | 一种显示屏的切割工艺 | |
JP2010083716A (ja) | 脆性材料基板の分断方法 | |
CN101524785A (zh) | 分离脆性材料的方法 | |
JP2015066831A (ja) | 脆性材料基板のブレイク方法並びにブレイク装置 | |
TWI412073B (zh) | Wafer cutting method for contact image sensing unit | |
CN102962900B (zh) | 自由空间光隔离器芯片体的切割方法 | |
CN103962727A (zh) | 蓝宝石切割装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14770581 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847029 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1)EPC ( EPO FORM 1205A DATED 06-09-2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15847029 Country of ref document: EP Kind code of ref document: A1 |