WO2016047710A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2016047710A1
WO2016047710A1 PCT/JP2015/076982 JP2015076982W WO2016047710A1 WO 2016047710 A1 WO2016047710 A1 WO 2016047710A1 JP 2015076982 W JP2015076982 W JP 2015076982W WO 2016047710 A1 WO2016047710 A1 WO 2016047710A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
acid
thermoplastic elastomer
polyamide
hard segment
Prior art date
Application number
PCT/JP2015/076982
Other languages
English (en)
French (fr)
Inventor
壮一 京
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to JP2016550369A priority Critical patent/JPWO2016047710A1/ja
Priority to EP15843166.8A priority patent/EP3199571B1/en
Priority to US15/513,994 priority patent/US20170298182A1/en
Publication of WO2016047710A1 publication Critical patent/WO2016047710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2380/00Tyres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams

Definitions

  • the present invention relates to a tire mounted on a rim, and particularly relates to a tire in which at least a part of a tire case is formed of a resin material.
  • thermoplastic polymer materials such as thermoplastic elastomers and thermoplastic resin materials
  • thermoplastic polymer materials have many advantages from the viewpoint of improving productivity, such as being capable of injection molding.
  • a tire using a polyamide-based thermoplastic elastomer as the thermoplastic polymer material has been proposed (see JP 2012-46030 A).
  • a tire using a thermoplastic polymer material is easier to manufacture and lower in cost than a conventional rubber tire.
  • low loss there is room for improvement from the viewpoint of low rolling resistance (hereinafter sometimes referred to as “low loss”).
  • a tire using a thermoplastic polymer material can be assembled with a rim, and it is required to ensure excellent rim assembly so that internal air does not leak when the rim is assembled. . And it is calculated
  • an object of one embodiment of the present invention is to provide a tire that is formed using a resin material and that is excellent in both low loss property and rim assembly property.
  • thermoplastic elastomer contains a hard segment not containing an aromatic ring, a soft segment, and an aromatic ring.
  • a tire having a segment and a coupling portion coupling the soft segment.
  • FIG. 1A is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of a bead portion attached to a rim.
  • FIG. 2 is a cross-sectional view along the tire rotation axis showing a state where a reinforcing cord is embedded in the crown portion of the tire case of the tire of the first embodiment.
  • a tire according to an embodiment of the present invention is formed of a resin material containing a thermoplastic elastomer and has an annular tire skeleton.
  • the thermoplastic elastomer includes a hard segment that does not include an aromatic ring, a soft segment, and a bonding portion that includes an aromatic ring and connects the hard segment and the soft segment.
  • the tire frame since the tire frame includes the thermoplastic elastomer having the above-described configuration, both the low loss property and the rim assembly property are excellent. The reason is not clear, but is presumed as follows.
  • thermoplastic elastomer used in the tire has an aromatic ring at the bonding portion, the bonding portion attracts each other due to the ⁇ -electron interaction of the aromatic ring, and the hard segments easily gather together. It is thought that conversion will be promoted. When the hard segments are gathered, the domain size of the hard segment is increased, so that the interface between the hard segment domain and the soft segment domain is reduced in the entire thermoplastic elastomer.
  • intermediate phase a region where the hard segment and the soft segment are mixed.
  • the region where the intermediate phase is formed becomes large, it is considered that the characteristics of the hard segment and the soft segment are hardly exhibited, and it is difficult to obtain the low loss property of the tire.
  • the interface between the hard segment domain and the soft segment domain is less than in the case where the bonding portion does not have an aromatic ring, and the region in which the intermediate phase is formed becomes smaller. It is considered that low loss can be obtained.
  • bond part of a thermoplastic elastomer has a highly rigid aromatic ring, the elasticity modulus of a tire becomes high compared with the case where a coupling
  • the tire to which the thermoplastic elastomer having an aromatic ring at the joint is applied is excellent in both low loss and rim assembly.
  • the bonded portion of the thermoplastic elastomer since the bonded portion of the thermoplastic elastomer has an aromatic ring, a tire having higher heat resistance can be obtained as compared with a case where the bonded portion does not have an aromatic ring.
  • thermoplastic elastomer in which not only the bonding portion but also the hard segment includes an aromatic ring is a hard segment. It is thought that there is a tendency for photodegradation to occur more easily than when no aromatic ring is contained. Furthermore, when the hard segment contains an aromatic ring, the rigidity of the hard segment increases, so that the molecular chain is less likely to be folded, the steric hindrance of the aromatic ring makes the hard segment difficult to crystallize, and the elastic modulus of the thermoplastic elastomer is increased. It is considered that the tire rim assembly performance is low.
  • a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is such that when there are a plurality of substances corresponding to each component in the composition, a plurality of substances present in the composition unless otherwise specified. It means the total amount.
  • the tire has a tire frame body using a resin material.
  • the thermoplastic elastomer used as the resin material includes a hard segment that does not include an aromatic ring, a soft segment, and a joint that includes the aromatic ring and connects the hard segment and the soft segment.
  • the resin material may contain a thermoplastic elastomer other than the thermoplastic elastomer and an arbitrary component.
  • “resin” is a concept including a thermoplastic resin and a thermosetting resin, but does not include natural rubber.
  • the hard segment is a molecular motion restraint component that prevents plastic deformation of the thermoplastic elastomer.
  • the hard segment is composed of a polymer that has higher crystallinity and higher melting point than the soft segment and does not contain an aromatic ring.
  • the polymer constituting the hard segment is not particularly limited as long as it does not contain an aromatic ring, and may be selected according to the purpose. Specific examples of the polymer constituting the hard segment include polyamide, polyester, polyolefin, polystyrene, polyurethane, polyacrylate, polyvinyl chloride, and the like.
  • the soft segment is a flexible component exhibiting rubber elasticity, and is made of, for example, a polymer having lower crystallinity and lower glass transition temperature than the hard segment.
  • the soft segment preferably does not contain an aromatic ring from the viewpoint of light resistance.
  • the polymer constituting the soft segment is not particularly limited and may be selected according to the type and purpose of the hard segment. For example, polyester, polyether, polybutadiene, hydrogenated polybutadiene, hydrogenated polyisoprene, polyalkyl acrylate And polyvinyl acetate.
  • the bonding portion is a component that bonds the hard segment and the soft segment, and has an aromatic ring.
  • the structural unit derived from the chain extension agent containing an aromatic ring is mentioned, for example. That is, the bond is formed, for example, by bonding a chain extender containing an aromatic ring to both the end of the hard segment and the end of the soft segment.
  • the chain extender containing an aromatic ring is not particularly limited as long as it is a compound having an aromatic ring, a group bonded to the end group of the hard segment, and a group bonded to the end group of the soft segment.
  • aromatic rings examples include unsaturated hydrocarbon rings (aromatic hydrocarbon rings) in which carbons having ⁇ electrons are arranged in a ring.
  • aromatic ring examples include monocyclic aromatic rings such as benzene (aromatic ring having 6 carbon atoms) and [4n + 2] annulene (n is 1 to 4), naphthalene, anthracene, Examples thereof include polycyclic aromatic rings such as pyrene, triphenylene, porphyrin, azulene, indene, and fluorene.
  • the aromatic ring may be an aromatic heterocyclic ring in which one or more carbon atoms among the carbon atoms constituting the aromatic hydrocarbon ring are replaced with a hetero atom.
  • a heteroatom is an atom other than carbon that forms a ring structure, and specific examples include a nitrogen atom, an oxygen atom, and a sulfur atom. Examples of the number of carbon atoms replaced with heteroatoms include 1 or more and 4 or less.
  • the bonding part may contain only one kind of these aromatic rings, or may contain two or more kinds.
  • the bonding portion preferably includes an aromatic ring having a benzene ring among the aromatic rings, more preferably includes an aromatic ring having a benzene ring having no substituent, and is an aromatic ring that is a benzene ring. It is more preferable to include at least one polycyclic aromatic ring composed of a ring and a plurality of benzene rings, and it is particularly preferable to include a polycyclic aromatic ring composed of a plurality of benzene rings.
  • the number of aromatic rings contained in the bonding portion is not particularly limited, and examples thereof include 1 or more and 4 or less, preferably 2 or more and 4 or less, and more preferably 3 or more and 4 or less.
  • the number of aromatic rings is the number of aromatic rings contained in one bond.
  • the number of aromatic rings is two, and when there is only one anthracene structure, the number of aromatic rings is three, When it has only one porphyrin structure, it is considered that the number of aromatic rings is four.
  • an aromatic ring in which two atoms among the atoms forming one ring, such as the polycyclic aromatic ring, are shared with other rings It may be an aromatic ring (spiro ring) in which one of the atoms forming one ring is shared with another ring, and one ring and the other like biphenyl etc. May be bonded by a single bond, and one ring and another ring may be bonded via a linking group. Among these, it is preferable that a coupling
  • linking group examples include an alkylene group, a carbonyl group, an ether bond, an ester bond, a sulfide bond, an amide bond, a urethane bond, a urea bond, and the like, and a combination thereof may be used.
  • the bond portion is derived from a chain extender containing an aromatic ring
  • the chain extender containing an aromatic ring is bonded to the end group of the hard segment and the end group of the soft segment as described above.
  • bonded with the terminal group of a soft segment may each be directly couple
  • the linking group include those similar to the above linking group.
  • bonded with the end group of a hard segment and the group couple
  • Specific examples include a carboxy group, an amino group, a hydroxyl group, and an isocyanate group.
  • Specific examples of the chain extender containing an aromatic ring include, for example, aromatic diamines, aromatic dicarboxylic acids, aromatic diols, aromatic diisocyanates, and aromatic diamines or aromatic dicarboxylic acids are preferred.
  • the bonding part is preferably a structural unit derived from an aromatic diamine or a structural unit derived from an aromatic dicarboxylic acid.
  • Examples of the chain extender containing an aromatic ring include compounds represented by the following general formula (A).
  • A In the general formula (A), F H represents a group bonded to the terminal groups of the hard segment, F S represents a group bonded to the terminal groups of the soft segment, R H and R S single bond or a carbon independently A linear alkylene group having a number of 1 or more and 4 or less is represented, and Ar represents a linking group containing an aromatic ring.
  • group F H A group represented by F H in general formula (A)
  • group F S a group represented by F S in general formula (A)
  • group F S the aromatic ring contained in the linking group represented by Ar in the general formula (A)
  • linking group Ar is also as described above.
  • the number of aromatic rings contained in the linking group Ar is the same as the number of aromatic rings described above.
  • R H and R S in formula (A) are each independently preferably a single bond or a linear alkylene group having 1 to 2 carbon atoms, more preferably a single bond or a methylene group, and even more preferably a single bond. .
  • R H and R S in the general formula (A) are each preferably directly bonded to the aromatic ring contained in the linking group Ar.
  • the linking group Ar includes two or more aromatic rings
  • the aromatic ring to which R H in the general formula (A) is directly bonded and the aromatic ring to which R S in the general formula (A) is directly bonded are May be the same or different.
  • the linking group Ar includes two or more aromatic rings
  • the two or more aromatic rings may form a condensed ring, may form a spiro ring, via a single bond They may be bonded or may be bonded via a linking group.
  • the number of atoms connecting the aromatic rings is: Each is preferably 4 or less, more preferably 2 or less, and still more preferably 1 or less.
  • the structure of the bonding part in the case where the compound represented by the general formula (A) and the group F H and the group F S are both carboxyl groups is used as the chain extender.
  • the specific example of is shown, it is not limited to these.
  • “*” in the following structure indicates a position bonded to the hard segment or the soft segment, and the terminal carboxyl group (group F H or group F S ) of the chain extender is the end group of the hard segment or the soft segment. This represents a state in which an amide bond is formed by reacting with a certain amino group.
  • thermoplastic elastomers examples include polyamide-based thermoplastic elastomers (Thermoplastic Amid elastomer, TPA), polyester-based thermoplastic elastomers (Thermoplastic polymer elastomer, TPC), and polyolefin-based thermoplastic elastomers (ThermoplasticOlastomer). , TPO), polystyrene-based thermoplastic elastomers (Styrenic Thermoplastic Elastomer, TPS), polyurethane-based thermoplastic elastomers (Thermoplastic Polyethane, TPU), crosslinked thermoplastic rubbers (Thermoplastic Vulcanates, Thermoplastics). V), or other thermoplastic elastomer (Thermoplastic elastomers other, TPZ), and the like.
  • TPA polyamide-based thermoplastic elastomers
  • TPC polyester-based thermoplastic elastomers
  • ThermoplasticOlastomer Ther
  • a polyurethane-based thermoplastic elastomer (TPU), a polyamide-based thermoplastic elastomer (TPA), and a polyester-based thermoplastic elastomer (TPC) are polymers having a bond portion by a polyaddition reaction, and this bond It is a polymer that can change the physical properties of a thermoplastic elastomer only by changing the structure of the part, and is preferable because its method has been established.
  • polyurethane-based thermoplastic elastomers TPU
  • polyamide-based thermoplastic elastomers TPA
  • polyester-based thermoplastic elastomers TPC
  • polyamide-based thermoplastic elastomers (from the viewpoint of changes in physical properties due to water and hydrolyzability) TPA) is more preferred.
  • TPU polyurethane-based thermoplastic elastomers
  • TPA polyester-based thermoplastic elastomers
  • TPA polyamide-based thermoplastic elastomers
  • thermoplastic elastomer TPA
  • TPU polyurethane thermoplastic elastomer
  • polyamide thermoplastic elastomer means a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. Which has an amide bond (—CONH—) in the main chain of the polymer constituting the hard segment.
  • polyamide-based thermoplastic elastomer As the above-mentioned polyamide-based thermoplastic elastomer, at least polyamide is a crystalline hard segment having a high melting point, and other polymers (eg, polyester or polyether) are amorphous and a soft segment having a low glass transition temperature. The material which is doing is mentioned.
  • polyamide forming the hard segment examples include polyamides synthesized using monomers represented by the following general formula (1) or general formula (2).
  • R 1 represents a molecular chain of an aliphatic hydrocarbon having 2 to 20 carbon atoms (preferably a saturated aliphatic hydrocarbon) or an alkylene group having 2 to 20 carbon atoms.
  • R 2 represents a molecular chain of an aliphatic hydrocarbon having 3 to 20 carbon atoms (preferably a saturated aliphatic hydrocarbon) or an alkylene group having 3 to 20 carbon atoms.
  • R 1 is preferably an aliphatic hydrocarbon molecular chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms, and an aliphatic hydrocarbon molecular chain having 4 to 15 carbon atoms.
  • an alkylene group having 4 to 15 carbon atoms is more preferable, and an aliphatic hydrocarbon molecular chain having 10 to 15 carbon atoms or an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • R 2 is preferably an aliphatic hydrocarbon molecular chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms, and an aliphatic hydrocarbon having 4 to 15 carbon atoms.
  • a molecular chain or an alkylene group having 4 to 15 carbon atoms is more preferable, and an aliphatic hydrocarbon molecular chain having 10 to 15 carbon atoms or an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • Examples of the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • Examples of the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids and lactams, and copolycondensation polymers of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, undecane lactam, ⁇ -enantolactam, and 2-pyrrolidone.
  • diamine examples include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2, Examples thereof include diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as 4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, and 3-methylpentamethylenediamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m —COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 22 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
  • polyamide forming the hard segment polyamide (polyamide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (polyamide 11) obtained by ring-opening polycondensation of undecane lactam, and polyamide (polyamide) obtained by ring-opening polycondensation of lauryl lactam 12), polyamides obtained by polycondensation of 12-aminododecanoic acid (polyamide 12), polycondensation polyamides of diamine and dibasic acid (polyamide 66), and the like.
  • the polyamide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 11 can be represented by, for example, ⁇ CO— (CH 2 ) 10 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n (n represents an arbitrary number of repeating units). For example, n is preferably 2 to 100, and 3 to 50 Is more preferable.
  • the polyamide 66 can be represented by, for example, ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n (n represents an arbitrary number of repeating units).
  • n is preferably 2 to 100 3 to 50 are more preferable.
  • the polyamide-based thermoplastic elastomer preferably has a polyamide (polyamide 12) having a unit structure represented by — [CO— (CH 2 ) 11 —NH] — as a hard segment.
  • the polyamide 12 can be obtained by ring-opening polycondensation of lauryl lactam or polycondensation of 12-aminododecanoic acid.
  • the polyamide-based thermoplastic elastomer is a polyamide (polyamide 12) having a unit structure represented by — [CO— (CH 2 ) 11 —NH] — as a hard segment from the viewpoint of low loss and rim assembly. ), And at least one of polyamides (polyamide 6) having a unit structure represented by — [CO— (CH 2 ) 5 —NH] —.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably from 300 to 15000 from the viewpoint of melt moldability.
  • polymer compound that forms the soft segment examples include polyester and polyether. Further, for example, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol (PTMG), ABA type
  • the polymer forming the soft segment may have a functional group introduced at the terminal.
  • the functional group may be any group capable of reacting with a terminal group of a compound (polymer forming a hard segment, chain extender, etc.) to be reacted with a polymer forming a soft segment.
  • examples of the functional group include an amino group.
  • examples of the functional group include a carboxy group.
  • those having an amino group introduced at the end include, for example, polyether diamine obtained by reacting ammonia at the end of the polyether, and specifically, an ABA type triblock polymer. Ether diamine etc. are mentioned.
  • those in which the carboxy group is introduced at the terminal include, for example, polyether dicarboxylic acid in which the hydroxyl group at the terminal of the polyether becomes a carboxy group by an oxidation reaction, and the like.
  • examples of the “ABA type triblock polyether” include polyethers represented by the following general formula (3).
  • x and z each independently represents an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and most preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30.
  • examples of the “ABA type triblock polyether diamine” include polyether diamines represented by the following general formula (N).
  • X N and Z N each independently represent an integer of 1 to 20.
  • Y N represents an integer of 4 to 50.
  • X N and Z N are each preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and an integer of 1 to 12 Most preferred.
  • Y N is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30.
  • the polymer forming the soft segment may contain a diamine such as a branched saturated diamine having 6 to 22 carbon atoms, a branched alicyclic diamine having 6 to 16 carbon atoms, or norbornane diamine as a monomer unit.
  • a diamine such as a branched saturated diamine having 6 to 22 carbon atoms, a branched alicyclic diamine having 6 to 16 carbon atoms, or norbornane diamine as a monomer unit.
  • These branched saturated diamines having 6 to 22 carbon atoms, branched alicyclic diamines having 6 to 16 carbon atoms, or norbornane diamines may be used alone or in combination. However, it may be used in combination with the above-mentioned ABA type triblock polyether or the ABA type triblock polyether diamine.
  • Examples of the branched saturated diamine having 6 to 22 carbon atoms include 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, and 1,2- Examples include diaminopropane, 1,3-diaminopentane, 2-methyl-1,5-diaminopentane, and 2-methyl-1,8-diaminooctane.
  • Examples of the branched alicyclic diamine having 6 to 16 carbon atoms include 5-amino-2,2,4-trimethyl-1-cyclopentanemethylamine and 5-amino-1,3,3-trimethylcyclohexanemethylamine. Etc. These diamines may be either cis isomers or trans isomers, or may be a mixture of these isomers.
  • Examples of the norbornane diamine include 2,5-norbonane dimethylamine, 2,6-norbonane dimethylamine, and mixtures thereof.
  • the polymer which comprises the said soft segment may contain other diamine compounds other than the above as a monomer unit.
  • diamine compounds include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, Aliphatic diamines such as 2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentanemethylenediamine, bis (4-aminocyclohexyl) methane, bis (4-aminocyclohexyl) propane, Alicyclic diamines such as 1,3-bisaminomethylcyclohexane and 1,4-bisaminomethylcyclohexane, aromatic diamines such as metaxylylenediamine and paraxylylenediamine, etc. And the like.
  • the above diamine
  • the weight average molecular weight of the polymer forming the soft segment is preferably 200 or more and 6000 or less, more preferably 1000 or more and 6000 or less, and particularly preferably 3000 or more and 6000 or less from the viewpoint of toughness and low temperature flexibility.
  • the combination of the hard segment and the soft segment the combination of the hard segment and the soft segment mentioned above can be given.
  • lauryl lactam ring-opening polycondensate / polyethylene glycol combination lauryl lactam ring-opening polycondensate / polypropylene glycol combination, lauryl lactam ring-opening polycondensate / polytetramethylene ether glycol combination, lauryl lactam Ring-opening polycondensate / ABA type triblock polyether combination, Lauryl lactam ring-opening polycondensate / ABA type triblock polyether diamine combination, aminododecanoic acid polycondensate / polyethylene glycol combination, aminododecane Acid polycondensate / polypropylene glycol combination, aminododecanoic acid polycondensate / polytetramethylene ether glycol combination, aminododecanoic acid polycondensate / ABA type triamine combination, amino
  • bonded by the chain extension agent containing an aromatic ring is mentioned, for example.
  • the chain extender containing an aromatic ring include aromatic dicarboxylic acids and derivatives thereof, aromatic diamines, aromatic diols, and aromatic diisocyanates.
  • aromatic dicarboxylic acid examples include, for example, phthalic acid, isophthalic acid, terephthalic acid, phenylenediacetic acid, naphthalenedicarboxylic acid (2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-naphthalene) Dicarboxylic acid, 2,3-naphthalenedicarboxylic acid, etc.), biphenyl dicarboxylic acid (4,4-biphenyldicarboxylic acid, 2,2-biphenyldicarboxylic acid, etc.), anthracene dicarboxylic acid (2,6-anthracene dicarboxylic acid, 2,7 -Anthracene dicarboxylic acid, etc.), pyrene dicarboxylic acid (4,8-pyrene dicarboxylic acid, 1,6-pyrene dicarboxylic acid, etc.), triphenylene dicarboxyl,
  • aromatic diamine examples include, for example, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 1,4-naphthalenediamine, 1,5-naphthalene.
  • aromatic diamine examples include diamine, 2,6-naphthalenediamine, 2,7-naphthalenediamine, anthracene-9,10-diacetic acid.
  • aromatic diol examples include, for example, o-dihydroxybenzene, m-dihydroxybenzene, p-dihydroxybenzene, 1,4-naphthalenediol, 1,5-naphthalenediol, 2,6-naphthalenediol, 2,7 -Naphthalenediol, bisphenol A, ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, 9,10-dihydroxymethylanthracene, etc.
  • aromatic diisocyanate examples include, for example, 1,5-naphthalene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 2,6-diisopropylphenyl isocyanate, 1,3,5-triisopropylbenzene-2,4-diisocyanate, etc. Is mentioned.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer examples include 15,700 to 200,000. If the weight average molecular weight of the polyamide-based thermoplastic elastomer is less than 15,700, the rim assembly property may be lowered. Further, when the weight average molecular weight of the polyamide-based thermoplastic elastomer exceeds 200,000, the melt viscosity becomes high, and it is necessary to increase the molding temperature and the mold temperature in order to prevent insufficient filling when forming the tire skeleton. There may be. When the molding temperature and the mold temperature are increased in order to prevent insufficient filling, the cycle time becomes longer, resulting in poor productivity.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer is preferably 20,000 to 160,000.
  • the weight average molecular weight of the polyamide-based thermoplastic elastomer can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • HLC-8320GPC EcoSEC manufactured by Tosoh Corporation may be used.
  • the mass ratio (HS / SS) of the hard segment (HS) and the soft segment (SS) is preferably 30/70 to 90/10 from the viewpoint of moldability, and the rim assembly property and low From the viewpoint of loss, 40/60 to 80/20 is more preferable, 50/50 to 70/30 is further preferable, and 54/46 to 64/36 is particularly preferable.
  • the content of the hard segment in the polyamide thermoplastic elastomer is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 15 to 85% by mass with respect to the total amount of the polyamide thermoplastic elastomer. .
  • the content of the soft segment in the polyamide thermoplastic elastomer is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and particularly preferably 15 to 85% by mass with respect to the total amount of the polyamide thermoplastic elastomer.
  • the content thereof is such that the polymer end group (for example, hydroxyl group, amino group, etc.) forming the soft segment and the group (for example, carboxyl group) bonded to the end group of the soft segment in the chain extender. Group) and the like are preferably set to be substantially equimolar.
  • the polyamide-based thermoplastic elastomer may have a bond part that does not contain an aromatic ring in addition to a bond part that contains an aromatic ring.
  • a ratio (mass ratio) of the bond part including the aromatic ring to the entire bond part of the polyamide-based thermoplastic elastomer for example, 1% by mass or more and 100% by mass or less can be given, and 3% by mass or more and 100% by mass or less can be mentioned. desirable.
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method using a chain extender.
  • the polyamide-based thermoplastic elastomer includes a monomer constituting a hard segment (for example, ⁇ -aminocarboxylic acid such as 12-aminododecanoic acid or lactam such as lauryl lactam) and a chain extender (for example, adipic acid or Decanedicarboxylic acid) is polymerized in a container, and then a polymer constituting a soft segment (for example, polypropylene glycol, ABA type triblock polyether, diamine in which the terminal is modified with an amino group, etc.) is added, Further, it can be obtained by polymerization.
  • a hard segment for example, ⁇ -aminocarboxylic acid such as 12-aminododecanoic acid or lactam such as la
  • ⁇ -aminocarboxylic acid when used as the monomer constituting the hard segment, it can be synthesized by performing atmospheric pressure melt polymerization or atmospheric pressure melt polymerization, and further under reduced pressure melt polymerization.
  • lactam When used as the monomer constituting the hard segment, an appropriate amount of water can coexist, and from melt polymerization under pressure of 0.1 to 5 MPa, followed by normal pressure melt polymerization and / or reduced pressure melt polymerization.
  • These synthesis reactions can be carried out either batchwise or continuously.
  • a batch-type reaction tank, a single tank type or multi-tank type continuous reaction apparatus, a tubular continuous reaction apparatus, or the like may be used alone or in appropriate combination.
  • the polymerization temperature is preferably 150 to 300 ° C, more preferably 160 to 280 ° C.
  • the polymerization time can be appropriately determined depending on the relationship between the polymerization average molecular weight of the polyamide-based thermoplastic elastomer to be synthesized and the polymerization temperature. For example, it is preferably 0.5 to 30 hours, and more preferably 0.5 to 20 hours.
  • monoamines or diamines such as laurylamine, stearylamine, hexamethylenediamine, and metaxylylenediamine for the purpose of adjusting the molecular weight and stabilizing the melt viscosity at the time of molding as necessary.
  • An additive such as acetic acid, benzoic acid, stearic acid, adipic acid, sebacic acid, dodecanedioic acid or the like monocarboxylic acid or dicarboxylic acid; These additives can be appropriately selected in relation to the molecular weight and viscosity of the resulting polyamide-based thermoplastic elastomer within a range that does not adversely affect the effects of the present invention.
  • a catalyst can be used as necessary.
  • the catalyst includes at least one selected from the group consisting of P, Ti, Ge, Zn, Fe, Sn, Mn, Co, Zr, V, Ir, La, Ce, Li, Ca, and Hf.
  • Compounds include inorganic phosphorus compounds, organic titanium compounds, organic zirconium compounds, and organic tin compounds.
  • examples of the inorganic phosphorus compound include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid and other phosphorus-containing acids, phosphorus-containing acid alkali metal salts, and phosphorus-containing acid alkaline earths. A metal salt etc.
  • Examples of the organic titanium compound include titanium alkoxide [titanium tetrabutoxide, titanium tetraisopropoxide, and the like].
  • Examples of the organic zirconium compound include zirconium alkoxide (zirconium tetrabutoxide (also referred to as “Zr (OBu) 4 ” or “Zr (OC 4 H 8 ) 4 )”).
  • Examples of organotin compounds include distannoxane compounds [1-hydroxy-3-isothiocyanate-1,1,3,3-tetrabutyl distanoxane, etc.], tin acetate, dibutyltin dilaurate, butyltin hydroxide oxide hydrate, and the like. Can be mentioned.
  • the catalyst addition amount and the catalyst addition timing are not particularly limited as long as the target product can be obtained quickly.
  • polyamide-based thermoplastic elastomer examples include a structural unit in which a hard segment has a polyamide structure, a soft segment has a polyether structure, and a bonding portion is derived from an aromatic dicarboxylic acid or an aromatic diamine. Things.
  • the polyamide-based thermoplastic elastomer is a structural unit derived from polyamide synthesized using the monomer represented by the general formula (1) or (2), and the soft segment is at the end.
  • polyamide-based thermoplastic elastomer examples include, for example, a ring-opening polycondensate of lauryl lactam / polyethylene glycol / terephthalic acid, a ring-opening polycondensate of lauryl lactam / polypropylene glycol / terephthalic acid, and lauryl.
  • Ring-opening polycondensate of lactam / polytetramethylene ether glycol / terephthalic acid combination ring-opening polycondensate of lauryl lactam / ABA type triblock polyether / terephthalic acid combination, ring-opening polycondensate of lauryl lactam / ABA Type triblock polyetherdiamine / 2,6-anthracene dicarboxylic acid combination, lauryl lactam ring-opening polycondensate / polyethylene glycol / 2,6-anthracene dicarboxylic acid combination, lauryl lactam ring-opening polycondensate / polypropylene Recall / 2,6-anthracene dicarboxylic acid combination, lauryl lactam ring-opening polycondensate / polytetramethylene ether glycol / 2,6-anthracene dicarboxylic acid combination, lauryl lactam ring-
  • Ring-opening polycondensate of lactam / ABA type triblock polyether / terephthalic acid combination polycondensate of aminododecanoic acid / ABA type triblock polyether / terephthalic acid combination, polycondensate of aminododecanoic acid / ABA type Triblock polyether diamine / 2,6-anthracene dicarboxylic acid combination, aminododecanoic acid polycondensate / polytetramethylene ether glycol / terephthalic acid combination, aminododecanoic acid polycondensate / polytetramethylene ether glycol / 2
  • the combination of 1,6-anthracene dicarboxylic acid is particularly preferred.
  • polyamide-type thermoplastic elastomer what combined the preferable aspect mentioned above about the combination of a structural unit, the structural ratio, molecular weight, etc. can be used.
  • polyester thermoplastic elastomer refers to a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. Which has an ester bond (—COO—) in the main chain of the polymer constituting the hard segment.
  • Polyester-based thermoplastic elastomers consist of hard segments with at least a crystalline polyester and a high melting point, and soft segments with other polymers (such as polyester or polyether) that are amorphous and have a low glass transition temperature. Material.
  • an aliphatic polyester can be used as the crystalline polyester forming the hard segment in the polyester-based thermoplastic elastomer.
  • the aliphatic polyester can be formed, for example, from an aliphatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • Suitable aliphatic polyesters forming the hard segment include polyesters derived from aliphatic dicarboxylic acids and aliphatic diols, specifically, for example, dodecanedioic acid, adipic acid, pimelic acid, nonane diester.
  • An aliphatic dicarboxylic acid component such as acid, suberic acid, sebacic acid, or ester-forming derivatives thereof, and an aliphatic diol having a molecular weight of 300 or less
  • an aliphatic diol having a molecular weight of 300 or less for example, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neo Derived from aliphatic diols such as pentyl glycol and decamethylene glycol, alicyclic diols such as 1,4-cyclohexanedimethanol and tricyclodecane dimethylol
  • polymers of aliphatic diols eg, polypropylene glycol.
  • the suitable aliphatic polyester which forms a hard segment is 5 mol% or less of the polyfunctional carboxylic acid component of 3 or more functions, a polyfunctional oxyacid component, a polyfunctional hydroxy component, etc. with respect to the whole aliphatic polyester. The thing copolymerized in the range is also mentioned.
  • the aliphatic polyester forming the hard segment include, for example, a polyester obtained by reacting dodecanediol and dodecanedioic acid, a polyester obtained by reacting hexanediol and adipic acid, and PBT having both terminal carboxylic acids. And polyester obtained by reacting both terminal diols PPG, polyester obtained by reacting polypropylene glycol and dodecanedioic acid, and the like. Among these, polyester obtained by reacting polypropylene glycol and dodecanedioic acid includes preferable.
  • the number average molecular weight of the polymer (polyester) forming the hard segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • -Soft segment- Examples of the polymer forming the soft segment include polymers selected from aliphatic polyesters and aliphatic polyethers.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) Examples thereof include ethylene oxide addition polymers of glycol and copolymers of ethylene oxide and tetrahydrofuran.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol poly (propylene oxide) glycol ethylene oxide adducts, poly ( ⁇ -caprolactone) from the viewpoint of the elastic properties of the resulting copolymer
  • polybutylene adipate polyethylene adipate and the like are preferable.
  • the weight average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the bonding portion include a portion bonded by a chain extender containing an aromatic ring.
  • the chain extender include those described above, and among them, an aromatic dicarboxylic acid is preferable as the chain extender of the polyester-based thermoplastic elastomer from the viewpoint of reactivity.
  • the weight average molecular weight of the polyester-based thermoplastic elastomer is, for example, 15,700 to 200,000, and preferably 20,000 to 200,000 from the viewpoint of rim assembly property and productivity.
  • the mass ratio (HS / SS) of the hard segment (HS) and the soft segment (SS) is preferably 30/70 to 90/10 from the viewpoint of moldability. From the viewpoint of properties, 40/60 to 80/20 is more preferable, and 50/50 to 70/30 is particularly preferable.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method using a chain extender.
  • Polyurethane thermoplastic elastomers consist of hard segments in which at least polyurethane forms pseudo-crosslinks due to physical aggregation, and other polymers are amorphous and have soft segments with low glass transition temperatures. For example, it can be expressed as a copolymer containing a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon or an alicyclic hydrocarbon.
  • P ′ represents a short-chain aliphatic hydrocarbon or alicyclic hydrocarbon.
  • the long-chain aliphatic polyether and long-chain aliphatic polyester represented by P for example, those having a molecular weight of 500 to 5000 can be used.
  • the P is derived from a diol compound containing a long-chain aliphatic polyether represented by the P and a long-chain aliphatic polyester.
  • Examples of such a diol compound include polyethylene glycol, prepropylene glycol, polytetramethylene ether glycol, poly (butylene adipate) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene) having a molecular weight within the above range.
  • Carbonate) diol, the ABA type triblock polyether, and the like may be used alone or in combination of two or more.
  • R is derived from a diisocyanate compound containing an aliphatic hydrocarbon or alicyclic hydrocarbon represented by R.
  • aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate. Is mentioned.
  • diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate. These may be used alone or in combination of two or more.
  • the weight average molecular weight of the polymer constituting the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000 from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. .
  • P ′ As the short chain aliphatic hydrocarbon or alicyclic hydrocarbon represented by P ′, for example, those having a molecular weight of less than 500 can be used.
  • P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon or alicyclic hydrocarbon represented by P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, such as ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1 , 3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol and 1,10-decanediol .
  • glycol and polyalkylene glycol such as ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1 , 3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol. These may be used alone or in combination of two or more.
  • R in formula B is the same as R in formula A.
  • the number average molecular weight of the polymer (polyurethane) constituting the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the bonding portion include a portion bonded by a chain extender containing an aromatic ring.
  • the chain extender include those described above.
  • the chain extender of the polyurethane-based thermoplastic elastomer is preferably an aromatic diol from the viewpoint of reactivity.
  • the weight average molecular weight of the polyurethane-based thermoplastic elastomer is, for example, 15,700 to 200,000, and preferably 20,000 to 200,000 from the viewpoint of rim assembly property and productivity.
  • the mass ratio (HS / SS) of the hard segment (HS) and the soft segment (SS) is preferably 30/70 to 90/10, more preferably 40/60 to 80/20, / 50 to 70/30 is particularly preferable.
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method using a chain extender.
  • additives such as rubber, various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, and reinforcing materials are added to the resin material as desired. You may make it contain.
  • the content of the additive in the resin material (tire frame) is not particularly limited, and can be appropriately used as long as the effects of the present invention are not impaired.
  • the content of the resin component in the resin material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the resin material.
  • the content of the resin component in the resin material is the balance obtained by subtracting the total content of various additives from the total amount of the resin component.
  • the tire frame body uses the above-mentioned resin material.
  • the melting point (or softening point) of the resin material (tire frame) itself is usually 100 ° C. to 350 ° C., preferably about 100 ° C. to 250 ° C., but from the viewpoint of tire productivity, 120 ° C. to 250 ° C. The degree is preferable, and 120 ° C. to 200 ° C. is more preferable.
  • a resin material having a melting point of 120 ° C. to 250 ° C. for example, when a tire skeleton is formed by fusing the divided bodies (frame pieces), the periphery of 120 ° C. to 250 ° C. Even if the frame body is fused in the temperature range, the bonding strength between the tire frame pieces is sufficient.
  • the heating temperature is preferably 10 ° C to 150 ° C higher than the melting point (or softening point) of the resin material forming the tire frame piece, and more preferably 10 ° C to 100 ° C higher.
  • the resin material can be obtained by adding various additives as necessary and mixing them appropriately by a known method (for example, melt mixing).
  • the resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile yield strength specified in JIS K7113: 1995 of the resin material (tire frame) itself is preferably 5 MPa or more, more preferably 5 MPa to 20 MPa, and further preferably 5 MPa to 17 MPa.
  • the resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the resin material (tire frame) itself is preferably 10% or more, preferably 10% to 70%, and more preferably 15% to 60%.
  • the tensile yield elongation of the resin material is 10% or more, the elastic region is large and the air sealability can be improved.
  • the tensile elongation at break specified in JIS K7113: 1995 of the resin material (tire frame) itself is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and particularly preferably 200% or more.
  • the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (when loaded with 0.45 MPa) as defined in ISO 75-2 or ASTM D648 of the resin material (tire frame) itself is preferably 50 ° C. or more, preferably 50 ° C. to 150 ° C., and preferably 50 ° C. to 50 ° C. 130 ° C. is more preferable.
  • the deflection temperature under load of the resin material is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • FIG. 1A is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of a bead portion attached to a rim.
  • the tire 10 of the present embodiment has a cross-sectional shape that is substantially the same as a conventional general rubber pneumatic tire.
  • the tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20 shown in FIG. 1B, and side portions 14 that extend outward from the bead portion 12 in the tire radial direction.
  • a tire case 17 (tire frame) comprising a crown portion 16 (outer peripheral portion) for connecting a tire radial direction outer end of one side portion 14 and a tire radial direction outer end of the other side portion 14.
  • the tire case 17 of the present embodiment includes, as a resin material, for example, a hard segment that does not include an aromatic ring, a soft segment, and a joint that includes an aromatic ring and connects the hard segment and the soft segment.
  • a thermoplastic elastomer containing each additive may be used.
  • the tire case 17 is formed of a single resin material.
  • the present invention is not limited to this configuration, and each part of the tire case 17 is similar to a conventional general rubber pneumatic tire.
  • a reinforcing material (polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.) is embedded in the tire case 17 (for example, the bead portion 12, the side portion 14, the crown portion 16 and the like), and the reinforcing material is provided.
  • the tire case 17 may be reinforced.
  • the tire case 17 of the present embodiment is obtained by joining a pair of tire case halves (tire frame pieces) 17A formed of a resin material.
  • the tire case half 17A is formed by injection molding or the like so that one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrated with each other so as to face each other. It is formed by joining at the tire equator part.
  • the tire case 17 is not limited to the one formed by joining two members, and may be formed by joining three or more members.
  • the tire case half 17A formed of the resin material can be formed by, for example, vacuum forming, pressure forming, injection molding, melt casting, or the like. For this reason, it is not necessary to perform vulcanization compared to the case where the tire case is molded with rubber as in the prior art, the manufacturing process can be greatly simplified, and the molding time can be omitted.
  • the tire case half body 17A has a symmetrical shape, that is, the one tire case half body 17A and the other tire case half body 17A have the same shape. There is also an advantage that only one type of mold is required.
  • an annular bead core 18 made of a steel cord is embedded in the bead portion 12, similar to a conventional general pneumatic tire.
  • the present invention is not limited to this configuration, and the bead core 18 can be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
  • an organic fiber cord, a resin-coated organic fiber cord, or a hard resin may be used.
  • An annular seal layer 24 made of is formed.
  • the seal layer 24 may also be formed at a portion where the tire case 17 (bead portion 12) and the bead sheet 21 are in contact with each other.
  • a material having better sealing properties than the resin material constituting the tire case 17 a softer material than the resin material constituting the tire case 17 can be used.
  • thermoplastic resin thermoplastic elastomer
  • examples of such other thermoplastic resins include polyurethane resins, polyolefin resins, polystyrene thermoplastic resins, polyester resins, and the like, and blends of these resins with rubbers or elastomers.
  • Thermoplastic elastomers can also be used, for example, polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, combinations of these elastomers, and blends with rubber. Thing etc. are mentioned.
  • a reinforcement cord 26 having higher rigidity than the resin material constituting the tire case 17 is wound around the crown portion 16 in the circumferential direction of the tire case 17.
  • the reinforcing cord 26 is wound spirally in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire case 17, thereby forming a reinforcing cord layer 28.
  • FIG. 2 is a cross-sectional view along the tire rotation axis showing a state where a reinforcing cord is embedded in the crown portion of the tire case of the tire of the first embodiment.
  • the reinforcing cord 26 is spirally wound in a state in which at least a part is embedded in the crown portion 16 in a sectional view along the axial direction of the tire case 17.
  • a reinforcing cord layer 28 indicated by a broken line portion in FIG. 2 is formed together with a part of the outer peripheral portion 17.
  • the portion embedded in the crown portion 16 of the reinforcing cord 26 is in close contact with the resin material constituting the crown portion 16 (tire case 17).
  • a monofilament such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers such as a steel cord twisted with a steel fiber
  • a steel cord is used as the reinforcing cord 26.
  • the burying amount L indicates the burying amount of the reinforcing cord 26 in the tire rotation axis direction with respect to the tire case 17 (crown portion 16).
  • the embedding amount L of the reinforcing cord 26 in the crown portion 16 is preferably 1/5 or more of the diameter D of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount L of the reinforcing cord 26 exceeds 1/2 of the diameter D of the reinforcing cord 26, it is difficult to jump out of the embedded portion due to the size of the reinforcing cord 26.
  • the reinforcing cord layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.
  • the tread 30 is disposed on the outer peripheral side of the reinforcing cord layer 28 in the tire radial direction.
  • the rubber used for the tread 30 is preferably the same type of rubber as that used in conventional rubber pneumatic tires.
  • a tread formed of another type of resin material that is more excellent in wear resistance than the resin material constituting the tire case 17 may be used.
  • the tread 30 is formed with a tread pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.
  • the manufacturing method of the tire of this embodiment is explained.
  • the tire case half is formed using a resin material containing a thermoplastic resin elastomer as described above. These tire cases are preferably formed by injection molding.
  • the tire case halves supported by the thin metal support ring face each other.
  • a joining mold (not shown) is installed so as to be in contact with the outer peripheral surface of the abutting portion of the tire case half.
  • die is comprised so that the periphery of the junction part (butting part) of the tire case half body 17A may be pressed with a predetermined pressure.
  • the periphery of the joint portion of the tire case half is pressed at a temperature equal to or higher than the melting point (or softening point) of the resin material constituting the tire case.
  • the joint portion of the tire case half is heated or pressed by the joining mold, the joint portion is melted and the tire case halves are fused together, and the tire case 17 is formed by integrating these members.
  • the joining portion of the tire case half is heated using a joining mold, but the present invention is not limited to this.
  • the joining portion is heated by a separately provided high-frequency heater or the like.
  • the tire case halves may be joined by softening or melting in advance by irradiation with hot air, infrared rays, or the like, and pressurizing with a joining mold.
  • the heated reinforcing cord 26 is wound while being embedded in the outer peripheral surface of the crown portion 16 using a reel, a cord heating device, and a cord supply device provided with various rollers.
  • the reinforcing cord layer 28 can be formed on the outer peripheral side of the crown portion 16 of the tire case 17.
  • the reinforcing cord layer 28 is formed on the outer peripheral side of the crown portion 16 of the tire case 17 by winding the heated reinforcing cord 26 while being embedded in the outer peripheral surface of the crown portion 16.
  • the vulcanized belt-like tread 30 is wound around the outer peripheral surface of the tire case 17 by one turn, and the tread 30 is bonded to the outer peripheral surface of the tire case 17 using an adhesive or the like.
  • the precure tread used for the retread tire conventionally known can be used for the tread 30, for example. This step is the same step as the step of bonding the precure tread to the outer peripheral surface of the base tire of the retreaded tire.
  • the seal layer 24 made of vulcanized rubber is bonded to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 10 is completed.
  • the tire case 17 includes a thermoplastic segment that includes a hard segment that does not include an aromatic ring, a soft segment, and a joint that includes an aromatic ring and connects the hard segment and the soft segment. It is formed by the resin material containing. For this reason, the tire 10 of this embodiment is excellent in both low loss property and rim assembly property.
  • a reinforcing cord 26 having a rigidity higher than that of the resin material is spirally wound in the circumferential direction on the outer peripheral surface of the crown portion 16 of the tire case 17 formed of a resin material. Therefore, puncture resistance, cut resistance, and circumferential rigidity of the tire 10 are improved. In addition, creep of the tire case 17 formed of a resin material is prevented by improving the circumferential rigidity of the tire 10.
  • the reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16 of the tire case 17 formed of a resin material in a cross-sectional view along the axial direction of the tire case 17 (the cross section shown in FIG. 1A).
  • the reinforcing cord 26 since it is in close contact with the resin material, entry of air at the time of manufacture is suppressed, and movement of the reinforcing cord 26 due to input during travel is suppressed. Thereby, it is suppressed that peeling etc. arise in the reinforcement cord 26, the tire case 17, and the tread 30, and durability of the tire 10 improves.
  • the embedding amount L of the reinforcement cord 26 is 1/5 or more of the diameter D as shown in FIG. 2, the air entry at the time of manufacture is suppressed effectively, the input at the time of driving, etc. This further suppresses the movement of the reinforcing cord 26.
  • annular bead core 18 made of a metal material is embedded in the bead portion 12, the tire case 17, that is, the tire 10 is strong against the rim 20 like the conventional rubber pneumatic tire. Retained.
  • a seal layer 24 made of a rubber material having a sealing property than the resin material constituting the tire case 17 is provided at a portion of the bead portion 12 that contacts the rim 20, the tire 10 and the rim 20 The sealing performance between the two is improved. For this reason, compared with the case where it seals only with the rim
  • the reinforcing cord 26 is heated.
  • the outer periphery of the reinforcing cord 26 may be covered with the same resin material as the tire case 17. In this case, the covering reinforcing cord is used.
  • the resin material covered with the reinforcing cord 26 is also heated, so that the air can be effectively suppressed when being embedded in the crown portion 16.
  • the tire 10 of the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention is limited to this configuration. It may be a complete tube shape.
  • Example 1 In a reaction vessel having a volume of 2 liters equipped with a stirrer, a nitrogen gas inlet, and a condensed water outlet, 44 g of 1,2-aminododecanoic acid (manufactured by Aldrich), 600 g of aminododecanolactam, and terephthalic acid (a chain serving as a binding part) (Long extender) 18 g was added and the inside of the container was sufficiently purged with nitrogen, and then the temperature was raised to 280 ° C. and reacted under a pressure of 0.6 MPa for 5 hours.
  • 1,2-aminododecanoic acid manufactured by Aldrich
  • 600 g aminododecanolactam
  • terephthalic acid a chain serving as a binding part
  • the mixture was further reacted for 1 hour under a nitrogen stream to obtain a white solid which was a polyamide 12 polymer having a molecular weight of 2500 (polymerization reaction A).
  • the obtained polyamide 12 polymer is one in which terephthalic acid as a chain extender is bonded to one end of a polyamide (polyamide 12) having a molecular weight of 2500 as a hard segment.
  • the obtained polyamide thermoplastic elastomer was pelletized and injection molded at 220 ° C. to obtain a sample piece.
  • Various measurements were carried out using a sample obtained by punching a test piece from this sample piece.
  • Example 2 A white polyamide-based thermoplastic elastomer (weight average molecular weight: 76000) was used in the same manner as in Example 1 except that 18 g of isophthalic acid was used instead of 18 g of terephthalic acid and the amount of 196 g of PPG charged in the polymerization reaction B was changed to 141 g. )
  • Example 3 A white polyamide-based thermoplastic elastomer (weight average molecular weight: as in Example 1) except that 21 g of phenylenediacetic acid was used in place of 18 g of terephthalic acid and the amount of PPG charged in the polymerization reaction B was 196 g was changed to 205 g. 88000).
  • Example 4 A white polyamide-based thermoplastic elastomer as in Example 1 except that 43 g of 4,4′-biphenyldicarboxylic acid was used in place of 18 g of terephthalic acid and the amount of 196 g of PPG charged in the polymerization reaction B was changed to 205 g. (Weight average molecular weight: 82000) was obtained.
  • Example 5 A white polyamide-based thermoplastic elastomer (as in Example 1) except that 23 g of 2,6-naphthalenedicarboxylic acid was used instead of 18 g of terephthalic acid and the amount of 196 g of PPG charged in the polymerization reaction B was changed to 205 g. Weight average molecular weight: 77000).
  • Example 6 A white polyamide thermoplastic elastomer (as in Example 1) except that 32 g of 2,6-anthracene dicarboxylic acid was used instead of 18 g of terephthalic acid, and 196 g of the amount of PPG charged in the polymerization reaction B was changed to 189 g. Weight average molecular weight: 74000).
  • Example 7 A white polyamide thermoplastic elastomer (as in Example 1) except that 31 g of 4,8-pyrene dicarboxylic acid was used in place of 18 g of terephthalic acid, and 196 g of PPG charge was changed to 213 g of the conditions in the polymerization reaction B. Weight average molecular weight: 72000).
  • Example 8 A white polyamide-based thermoplastic elastomer (as in Example 1) except that 33 g of 2,7-triphenylenedicarboxylic acid was used in place of 18 g of terephthalic acid, and the amount of 196 g of PPG charged in the polymerization reaction B was changed to 204 g. Weight average molecular weight: 70000).
  • Example 9 In place of 196 g of polyoxypropylene diamine, 147 g of polyoxypropylene-polytetramethylene glycol-polyoxypropylene diamine (PPG-PTMG-PPG, manufactured by HUNTSMAN Co., Ltd., product name: Jeffamine model number: XTJ-548, weight average molecular weight 1700) was used. A white polyamide-based thermoplastic elastomer (weight average molecular weight: 85000) was obtained in the same manner as in Example 1 except that the amount of terephthalic acid charged in the polymerization reaction A was changed from 18 g to 17 g.
  • PPG-PTMG-PPG polyoxypropylene-polytetramethylene glycol-polyoxypropylene diamine
  • Example 10 Implemented except that 197 g of polytetramethylene glycol diamine (both terminal aminated PTMG, weight average molecular weight: 1000) was used instead of 196 g of polyoxypropylene diamine, and the amount of terephthalic acid charged in the polymerization reaction A was changed to 18 g. In the same manner as in Example 1, a white polyamide-based thermoplastic elastomer (weight average molecular weight: 79000) was obtained.
  • polytetramethylene glycol diamine both terminal aminated PTMG, weight average molecular weight: 1000
  • aminated PTMG at both ends is tosylated by reacting tosyl chloride with polytetramethylene glycol (manufactured by Wako Pure Chemicals, manufacturer code: 16-17745, weight average molecular weight: 2000) as a raw material. It was obtained by azidation with sodium azide and reduction reaction with platinum catalyst.
  • Example 11 Aldrich caprolactam 500 g, 2,6-naphthalenedicarboxylic acid 116 g, and aminohexanoic acid 77 g were placed in a 2 liter reaction vessel equipped with a stirrer, nitrogen gas inlet, and condensed water outlet, and the inside of the vessel was sufficiently purged with nitrogen After that, the temperature was raised to 250 ° C., and the reaction was carried out under a pressure of 0.6 MPa for 4 hours. After releasing the pressure, the mixture was further reacted for 1 hour under a nitrogen stream, and a white solid which was a polyamide 6 polymer having a number average molecular weight of 3000 was obtained through a water washing step.
  • the obtained polyamide 6 polymer is one in which 2,6-naphthalenedicarboxylic acid as a chain extender is bonded to one end of a polyamide (polyamide 6) having a molecular weight of 3000 as a hard segment.
  • polystyrene resin 133 g of polyoxypropylenediamine (PPG, Elastamine RP-2009, weight average molecular weight: 2000) as a polymer for forming a soft segment is added, and stirred at 230 ° C. for 5 hours. It was. Further, 1 g of Irganox 1010 was added to obtain a white polyamide-based thermoplastic elastomer (weight average molecular weight: 80000).
  • PPG polyoxypropylenediamine
  • Irganox 1010 1 g of Irganox 1010 was added to obtain a white polyamide-based thermoplastic elastomer (weight average molecular weight: 80000).
  • Example 1 A white polyamide-based thermoplastic elastomer (weight average molecular weight: as in Example 1) except that 24 g of dodecanedioic acid was used in place of 18 g of terephthalic acid and the amount of 196 g of PPG charged in the polymerization reaction B was changed to 205 g. 85000).
  • Example 2 A white polyamide-based thermoplastic elastomer (as in Example 1) except that 18 g of 1,4-cyclohexanedicarboxylic acid was used in place of 18 g of terephthalic acid and the amount of 196 g of PPG charged to 205 g in the conditions in the polymerization reaction B was changed to 205 g. Weight average molecular weight: 80000).
  • thermoplastic elastomer The following items were evaluated using the obtained thermoplastic elastomer. Specifically, the obtained thermoplastic elastomer is pelletized and injection molded under the conditions of a molding temperature of 220 ° C. and a mold temperature of 50 ° C. using “ROBOSHOT ⁇ 15-C” manufactured by FANUC CORPORATION. A sample piece was obtained. Various measurements were carried out using a sample obtained by punching out a test piece from this sample piece using a 28 mm ⁇ 100 mm mold having a thickness of 2 mm. The results are shown in Tables 1 and 2.
  • HS means a hard segment
  • SS means a soft segment
  • PA12 means polyamide 12
  • PA6 means polyamide 6
  • PPG means polypropylene glycol
  • PTMG means polytetramethylene ether glycol.
  • PPG-PTMG-PPG means a terpolymer having a structural unit derived from PTMG and a structural unit derived from PPG.
  • thermoplastic elastomer having a hard segment that does not include an aromatic ring, a soft segment, and a bonding portion that includes an aromatic ring is used.
  • thermoplastic elastomer in which the part does not contain an aromatic ring it was found that both low loss and rim assemblability are compatible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

熱可塑性エラストマーを含む樹脂材料で形成され且つ環状のタイヤ骨格体を有し、前記熱可塑性エラストマーは、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、を有するタイヤである。

Description

タイヤ
 本発明は、リムに装着されるタイヤにかかり、特に、タイヤケースの少なくとも一部が樹脂材料で形成されたタイヤに関する。
 従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
 近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。これら熱可塑性の高分子材料(熱可塑性エラストマー、熱可塑性樹脂材料等)は、射出成形が可能であるなど、生産性の向上の観点から有利な点が多い。例えば、前記熱可塑性の高分子材料としてポリアミド系熱可塑性エラストマーを用いたタイヤが提案されている(特開2012-46030号公報参照)。
 熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易で且つ低コストである。しかし、低転がり抵抗性(以下「低ロス性」と称する場合がある)の観点で改良の余地がある。また、熱可塑性の高分子材料を用いたタイヤにおいても、リム組みが可能であるとともに、リム組みをした際に内部の空気が漏れないように、優れたリム組み性を確保することが求められる。
 そして、低ロス性及びリム組み性は、いずれも優れており、両立されていることが、熱可塑性の高分子材料を用いたタイヤにおいて求められている。
 そこで、本発明の一実施形態は、前記事情を踏まえ、樹脂材料を用いて形成され、低ロス性及びリム組み性が共に優れるタイヤを提供することを目的とする。
[1]熱可塑性エラストマーを含む樹脂材料で形成され且つ環状のタイヤ骨格体を有し、前記熱可塑性エラストマーは、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、を有するタイヤ。
 本発明の一実施形態によれば、樹脂材料を用いて形成され、低ロス性及びリム組み性が共に優れるタイヤを提供することができる。
図1Aは、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。 図1Bは、リムに装着したビード部の断面図である。 図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。
 本発明の一実施形態に係るタイヤは、熱可塑性エラストマーを含む樹脂材料で形成され且つ環状のタイヤ骨格体を有する。そして、前記熱可塑性エラストマーは、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、を有する。
 前記タイヤでは、タイヤ骨格体が上記構成の熱可塑性エラストマーを含むため、低ロス性及びリム組み性が共に優れる。その理由は定かではないが、以下のように推測される。
 前記タイヤに用いられる上記熱可塑性エラストマーは、結合部が芳香族環を有するため、芳香族環のπ電子相互作用によって結合部同士が引き合い、それに伴ってハードセグメント同士が集まりやすく、ハードセグメントの結晶化が促進されると考えられる。ハードセグメント同士が集まると、ハードセグメントのドメインサイズが大きくなるため、熱可塑性エラストマー全体において、ハードセグメントのドメインとソフトセグメントのドメインとの界面が少なくなる。
 ここで、ハードセグメントのドメインとソフトセグメントのドメインとの界面においては、ハードセグメントとソフトセグメントとが混合している領域(以下、「中間相」と称する)が形成される場合がある。中間相が形成された領域が大きくなると、ハードセグメント及びソフトセグメントがそれぞれ有する特性が発揮されにくくなり、タイヤの低ロス性も得られにくくなることが考えられる。
 一方、前記タイヤでは、結合部が芳香族環を有さない場合に比べてハードセグメントのドメインとソフトセグメントのドメインとの界面が少なく、中間相が形成された領域が小さくなることで、タイヤの低ロス性が得られると考えられる。
 そして、前記タイヤでは、熱可塑性エラストマーの結合部が剛性の高い芳香族環を有するため、結合部が芳香族環を有さない場合に比べてタイヤの弾性率が高くなり、リム組みに適した弾性率が得られやすいと考えられる。
 以上のように、結合部が芳香族環を有する熱可塑性エラストマーを適用した前記タイヤは、低ロス性及びリム組み性が共に優れるのであると推測される。
 なお、ハードセグメントとソフトセグメントとの質量比において、ソフトセグメントの割合を多くすることで転がり抵抗を低く調整する方法も考えられるが、ソフトセグメントの割合が多くなると弾性率が低く得られたタイヤのリム組み性が低下する傾向がある。一方、リム組みに適した弾性率を得るためにハードセグメントの割合を多くすると転がり抵抗が高くなる傾向がある。そのため、ハードセグメントとソフトセグメントとの質量比のみを調整して低ロス性とリム組み性とを共に向上させることは難しい。これに対して前記タイヤでは、結合部が芳香族環を有する熱可塑性エラストマーを適用することで、低ロス性及びリム組み性が共に優れるタイヤが得られる
 また前記タイヤでは、熱可塑性エラストマーの結合部が芳香族環を有するため、結合部が芳香族環を有さない場合に比べて、耐熱性の高いタイヤが得られる。
 ここで、結合部だけでなくハードセグメントも芳香族環を含む熱可塑性エラストマー(特に、ハードセグメントを構成するポリマーが芳香族環を含むモノマーを用いて形成された熱可塑性エラストマー等)は、ハードセグメントが芳香族環を含まない場合に比べて光劣化しやすい傾向があると考えられる。
 さらに、ハードセグメントが芳香族環を含む場合、ハードセグメントの剛直性が増すことによって分子鎖が折りたたまれにくく、芳香族環の立体障害によりハードセグメントが結晶化しにくくなり、熱可塑性エラストマーの弾性率が低く、タイヤのリム組み性が低下することが考えられる。
 これに対して前記タイヤでは、ハードセグメントが芳香族環を含まず、かつ、結合部が芳香族環を含む熱可塑性エラストマーを適用しているため、低ロス性及びリム組み性が共に優れ、かつ、ハードセグメントが芳香族環を含む場合に比べて耐光性が優れると推測される。
 なお、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 また、本明細書において、組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
《樹脂材料》
<熱可塑性エラストマー>
 上述のように、前記タイヤは、樹脂材料を用いたタイヤ骨格体を有する。そして、前記樹脂材料として用いられる熱可塑性エラストマーは、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含みハードセグメントとソフトセグメントとを結合する結合部と、を有する。
 なお、前記樹脂材料は、上記熱可塑性エラストマー以外の熱可塑性エラストマーや、任意の成分を含んでいてもよい。また、本明細書において「樹脂」とは、熱可塑性樹脂及び熱硬化性樹脂を含む概念であるが、天然ゴムは含まない。
 ハードセグメントは、熱可塑性エラストマーの塑性変形を防止する分子運動拘束成分であり、例えば、ソフトセグメントに比べて結晶性が高く、融点が高いポリマーのうち、芳香族環を含まないポリマーで構成される。
 ハードセグメントを構成するポリマーとしては、芳香族環を含まないポリマーであれば特に限定されず、目的に応じて選択すればよい。ハードセグメントを構成するポリマーの具体例としては、例えば、ポリアミド、ポリエステル、ポリオレフィン、ポリスチレン、ポリウレタン、ポリアクリレート、ポリ塩化ビニル等が挙げられる。
 ソフトセグメントは、ゴム弾性を示す柔軟性成分であり、例えば、ハードセグメントに比べて結晶性が低く、ガラス転移温度が低いポリマーで構成されている。ソフトセグメントは、耐光性の観点から、芳香族環を含まないことが好ましい。
 ソフトセグメントを構成するポリマーとしては、特に限定されず、ハードセグメントの種類や目的に応じて選択すればよいが、例えば、ポリエステル、ポリエーテル、ポリブタジエン、水添ポリブタジエン、水添ポリイソプレン、ポリアルキルアクリレート、ポリ酢酸ビニル等が挙げられる。
 結合部は、前記の通り、ハードセグメントとソフトセグメントとを結合する成分であり、芳香族環を有する。結合部としては、例えば、芳香族環を含む鎖長延長剤に由来する構成単位が挙げられる。すなわち結合部は、例えば、芳香族環を含む鎖長延長剤がハードセグメントの末端及びソフトセグメントの末端の両方に結合することで形成される。
 芳香族環を含む鎖長延長剤は、芳香族環と、ハードセグメントの末端基と結合する基と、ソフトセグメントの末端基と結合する基と、を有する化合物であれば特に限定されない。
 芳香族環としては、π電子を持つ炭素が環状に並んだ不飽和の炭化水素環(芳香族炭化水素環)が挙げられる。芳香族環の具体例としては、例えば、ベンゼン(炭素数6の芳香族環)、[4n+2]アヌレン(nは1以上4以下)等の単環式の芳香族環のほか、ナフタレン、アントラセン、ピレン、トリフェニレン、ポルフィリン、アズレン、インデン、フルオレン等の多環式の芳香族環が挙げられる。
 芳香族環は、上記芳香族炭化水素環のほか、芳香族炭化水素環を構成する炭素原子のうち1つ以上の炭素原子がヘテロ原子に置き換えられた芳香族複素環であってもよい。ヘテロ原子は、環構造を形成する炭素以外の原子であり、具体的には、窒素原子、酸素原子、硫黄原子等が挙げられる。ヘテロ原子に置き換えられた炭素原子の数としては、例えば1以上4以下が挙げられる。
 なお、芳香族環は置換基を有してもよい。すなわち、結合部が芳香族環を含む鎖長延長剤に由来する場合、芳香族環を含む鎖長延長剤は、ハードセグメントの末端基と結合する基及びソフトセグメントの末端基と結合する基のほかに、さらに置換基を有していてもよい。上記置換基としては、例えば、アルキル基、アルコキシ基、酸素原子(=O)等が挙げられる。
 結合部は、これらの芳香族環を1種のみ含んでもよく、2種以上含んでもよい。
 結合部は、上記芳香族環の中でも、ベンゼン環を有する芳香族環を含むことが好ましく、置換基を有さないベンゼン環を有する芳香族環を含むことがより好ましく、ベンゼン環である芳香族環及び複数のベンゼン環で構成された多環式の芳香族環の少なくとも1種を含むことがさらに好ましく、複数のベンゼン環で構成された多環式の芳香族環を含むことが特に好ましい。
 結合部に含まれる芳香族環数は、特に限定されないが、例えば1個以上4個以下が挙げられ、2個以上4個以下が好ましく、3個以上4個以下がより好ましい。
 ここで、芳香族環数は、1つの結合部に含まれる芳香族環の個数である。例えば、1つの結合部に芳香族環として、ビフェニル構造を1つのみ有する場合は芳香族環数が2個であり、アントラセン構造を1つのみ有する場合は芳香族環数が3個であり、ポルフィリン構造を1つのみ有する場合は芳香族環数が4個であると考える。
 芳香族環数が2個以上である場合、前記多環式の芳香族環のように1つの環を形成する原子のうち2個の原子が他の環と共有する芳香族環(縮合環)であってもよく、1つの環を形成する原子のうち1個の原子が他の環と共有する芳香族環(スピロ環)であってもよく、前記ビフェニル等のように1つの環と他の環とが単結合で結合してもよく、1つの環と他の環とが連結基を介して結合してもよい。これらの中でも、結合部が縮合環を含むことが好ましい。
 なお、連結基としては、例えば、アルキレン基、カルボニル基、エーテル結合、エステル結合、スルフィド結合、アミド結合、ウレタン結合、ウレア結合等が挙げられ、これらを組み合わせたものであってもよい。
 結合部が芳香族環を含む鎖長延長剤に由来する場合、芳香族環を含む鎖長延長剤は、前記の通り、ハードセグメントの末端基と結合する基及びソフトセグメントの末端基と結合する基を有する。そして、ハードセグメントの末端基と結合する基及びソフトセグメントの末端基と結合する基は、それぞれ芳香族環に直接結合してもよく、連結基を介して結合してもよい。連結基としては、上記連結基と同様のものが挙げられる。
 ハードセグメントの末端基と結合する基及びソフトセグメントの末端基と結合する基は、それぞれハードセグメントの末端基及びソフトセグメントの末端基に応じて適宜選択すればよい。具体的には、例えば、カルボキシ基、アミノ基、水酸基、イソシアネート基等が挙げられる。
 また、芳香族環を含む鎖長延長剤の具体例としては、例えば、芳香族ジアミン、芳香族ジカルボン酸、芳香族ジオール、芳香族ジイソシアネート等が挙げられ、芳香族ジアミン又は芳香族ジカルボン酸が好ましい。
 すなわち、結合部が、芳香族ジアミンに由来する構成単位又は芳香族ジカルボン酸に由来する構成単位であることが好ましい。
 芳香族環を含む鎖長延長剤としては、例えば、下記一般式(A)で示される化合物が挙げられる。
 F-R-Ar-R-F 一般式(A)
 一般式(A)中、Fはハードセグメントの末端基と結合する基を表し、Fはソフトセグメントの末端基と結合する基を表し、R及びRはそれぞれ独立に単結合又は炭素数1以上4以下の直鎖のアルキレン基を表し、Arは芳香族環を含む連結基を表す。
 一般式(A)中のFで表される基(以下「基F」と称する場合がある)及び一般式(A)中のFで表される基(以下「基F」と称する場合がある)については、前述の通りである。また、一般式(A)中のArで表される連結基(以下「連結基Ar」と称する場合がある)に含まれる芳香族環についても、前述の通りである。さらに、連結基Arに含まれる芳香族環の数は、前述の芳香族環数と同様である。
 一般式(A)中のR及びRは、それぞれ独立に、単結合又は炭素数1以上2以下の直鎖のアルキレン基が好ましく、単結合又はメチレン基がより好ましく、単結合がさらに好ましい。
 一般式(A)中のR及びRは、それぞれ、連結基Arに含まれる芳香族環に直接結合していることが望ましい。なお、連結基Arが芳香族環を2個以上含む場合、一般式(A)中のRが直接結合する芳香族環と一般式(A)中のRが直接結合する芳香族環とが、同じであってもよく、異なるものであってもよい。
 また、連結基Arが芳香族環を2個以上含む場合、2個以上の芳香族環が、縮合環を形成していてもよく、スピロ環を形成していてもよく、単結合を介して結合していてもよく、連結基を介して結合していてもよい。2個以上の芳香族環が連結基を介して結合している場合、芳香族環を連結する原子の数(一方の芳香族環と他方の芳香族環とをつなぐ最小の原子数)は、それぞれ、4以下が好ましく、2以下がより好ましく、1以下がさらに好ましい。
 以下、結合部の構造の具体例のうち、鎖長延長剤として前記一般式(A)で示され基F及び基Fがいずれもカルボキシ基である化合物を用いた場合における結合部の構造の具体例を示すが、これらに限定されるものではない。なお、下記構造における「*」は、ハードセグメント又はソフトセグメントに結合する位置を示し、鎖長延長剤の末端のカルボキシ基(基F又は基F)がハードセグメント又はソフトセグメントの末端基であるアミノ基と反応してアミド結合を形成した状態を表している。
Figure JPOXMLDOC01-appb-C000001

 
 本発明に適用しうる熱可塑性エラストマーの種類としては、例えば、ポリアミド系熱可塑性エラストマー(Thermoplastic Amid elastomer、TPA)、ポリエステル系熱可塑性エラストマー(Thermoplastic polyester elastomer、TPC)、ポリオレフィン系熱可塑性エラストマー(Thermoplastic PolyOlefin、TPO)、ポリスチレン系熱可塑性エラストマー(Styrenic Thermoplastic Elastomer、TPS)、ポリウレタン系熱可塑性エラストマー(Thermoplastic Polyurethane、TPU)、熱可塑性ゴム架橋体(ThermoPlastic Vulcanizates、TPV)、又はその他の熱可塑性エラストマー(Thermoplastic elastomers other、TPZ)等が挙げられる。
 これらの中でも、ポリウレタン系熱可塑性エラストマー(TPU)、ポリアミド系熱可塑性エラストマー(TPA)、及びポリエステル系熱可塑性エラストマー(TPC)は、重付加の反応による結合部を有する重合体であって、この結合部の構造等を変化させるだけで熱可塑性エラストマーの物性を変化できる重合体であり、その手法も確立されているため、好ましい。
 そして、ポリウレタン系熱可塑性エラストマー(TPU)、ポリアミド系熱可塑性エラストマー(TPA)、及びポリエステル系熱可塑性エラストマー(TPC)の中でも、水による物性変化、加水分解性の観点から、ポリアミド系熱可塑性エラストマー(TPA)がより好ましい。その理由は、ポリアミド系熱可塑性エラストマー(TPA)はポリウレタン系熱可塑性エラストマー(TPU)に比べて水を吸収しにくく、また、ポリアミド系熱可塑性エラストマー(TPA)を構成するアミド結合はポリエステル系熱可塑性エラストマー(TPC)を構成するエステル結合よりも水に強く分解されにくいためである。
 以下、本発明において好ましい熱可塑性エラストマーのうち、特に好ましい熱可塑性エラストマーであるポリアミド系熱可塑性エラストマー(TPA)及びポリウレタン系熱可塑性エラストマー(TPU)について、それぞれ説明する。
(ポリアミド系熱可塑性エラストマー)
 本明細書において、「ポリアミド系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性エラストマーであって、ハードセグメントを構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 前記ポリアミド系熱可塑性エラストマーとしては、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
-ハードセグメント-
 前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーを用いて合成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 一般式(1)中、Rは、炭素数2~20の脂肪族炭化水素(好ましくは飽和脂肪族炭化水素)の分子鎖、又は、炭素数2~20のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000003
 一般式(2)中、Rは、炭素数3~20の脂肪族炭化水素(好ましくは飽和脂肪族炭化水素)の分子鎖、又は、炭素数3~20のアルキレン基を表す。
 一般式(1)中、Rとしては、炭素数3~18の脂肪族炭化水素の分子鎖又は炭素数3~18のアルキレン基が好ましく、炭素数4~15の脂肪族炭化水素の分子鎖又は炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の脂肪族炭化水素の分子鎖又は炭素数10~15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3~18の脂肪族炭化水素の分子鎖又は炭素数3~18のアルキレン基が好ましく、炭素数4~15の脂肪族炭化水素の分子鎖又は炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の脂肪族炭化水素の分子鎖又は炭素数10~15のアルキレン基が特に好ましい。
 前記一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 前記ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などの炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウンデカンラクタム、ω-エナントラクタム、2-ピロリドンなどの炭素数5~20の脂肪族ラクタムなどを挙げることができる。
 前記ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミンなどの炭素数2~20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC-(R-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~22の脂肪族ジカルボン酸を挙げることができる。
 前記ハードセグメントを形成するポリアミドとしては、ε-カプロラクタムを開環重縮合したポリアミド(ポリアミド6)、ウンデカンラクタムを開環重縮合したポリアミド(ポリアミド11)、ラウリルラクタムを開環重縮合したポリアミド(ポリアミド12)、12-アミノドデカン酸を重縮合したポリアミド(ポリアミド12)、又はジアミンと二塩基酸との重縮合ポリアミド(ポリアミド66)等を挙げることができる。
 前記ポリアミド6は、例えば、{CO-(CH-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド11は、例えば、{CO-(CH10-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド12は、例えば、{CO-(CH11-NH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド66は、例えば、{CO(CHCONH(CHNH}(nは任意の繰り返し単位数を表す)で表すことができ、例えば、nとしては2~100が好ましく、3~50が更に好ましい。
 前記ポリアミド系熱可塑性エラストマーは、ハードセグメントとして、-[CO-(CH11-NH]-で表される単位構造を有するポリアミド(ポリアミド12)を有することが好ましい。上述のようにポリアミド12は、ラウリルラクタムを開環重縮合又は12-アミノドデカン酸を重縮合することで得ることができる。
 また、前記ポリアミド系熱可塑性エラストマーは、低ロス性及びリム組み性の観点から、ハードセグメントとして、-[CO-(CH11-NH]-で表される単位構造を有するポリアミド(ポリアミド12)、及び-[CO-(CH-NH]-で表される単位構造を有するポリアミド(ポリアミド6)の少なくとも1つを有することが好ましい。
 前記ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300以上15000以下が好ましい。
-ソフトセグメント-
 前記ソフトセグメントを形成するポリマー(ソフトセグメントを形成する高分子化合物)としては、例えば、ポリエステルや、ポリエーテルが挙げられ、更に、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール(PTMG)、ABA型トリブロックポリエーテル等が挙げられ、これらを単独で又は2種以上を用いることができる。
 また、ソフトセグメントを形成するポリマーは、末端に官能基が導入されたものでもよい。前記官能基は、ソフトセグメントを形成するポリマーと反応させる化合物(ハードセグメントを形成するポリマー、鎖長延長剤等)の末端基と反応するものであればよい。例えば、ソフトセグメントを形成するポリマーと反応させる化合物の末端基がカルボキシ基である場合、前記官能基としてはアミノ基等が挙げられる。また、例えば、ソフトセグメントを形成するポリマーと反応させる化合物の末端基がアミノ基である場合、前記官能基としてはカルボキシ基等が挙げられる。
 ソフトセグメントを形成するポリマーのうち、アミノ基が末端に導入されたものとしては、例えばポリエーテルの末端にアンモニア等を反応させたポリエーテルジアミン等が挙げられ、具体的にはABA型トリブロックポリエーテルジアミン等が挙げられる。また、ソフトセグメントを形成するポリマーのうち、カルボキシ基が末端に導入されたものとしては、例えばポリエーテルの末端の水酸基が酸化反応によりカルボキシ基となったポリエーテルジカルボン酸等が挙げられ、具体的にはABA型トリブロックポリエーテルジカルボン酸等が挙げられる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを挙げることができる。
Figure JPOXMLDOC01-appb-C000004
 一般式(3)中、x及びzは、それぞれ独立に1~20の整数を表す。yは、4~50の整数を表す。
 前記一般式(3)において、x及びzとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(3)において、yとしては、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 また、「ABA型トリブロックポリエーテルジアミン」とは、下記一般式(N)に示されるポリエーテルジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000005
 一般式(N)中、X及びZは、それぞれ独立に1~20の整数を表す。Yは、4~50の整数を表す。
 前記一般式(N)において、X及びZとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(N)において、Yとしては、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 前記ソフトセグメントを形成するポリマーは、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミン等のジアミンをモノマー単位として含んでいてもよい。また、これら、炭素数6~22の分岐型飽和ジアミン、炭素数6~16の分岐脂環式ジアミン、又は、ノルボルナンジアミンは、それぞれ単独で用いてもよいし、これらを組み合わせて用いてもよいし、上述の、ABA型トリブロックポリエーテルや前記ABA型トリブロックポリエーテルジアミンと組み合わせて用いてもよい。
 前記炭素数6~22の分岐型飽和ジアミンとしては、例えば、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、1,2-ジアミノプロパン、1,3-ジアミノペンタン、2-メチル-1,5-ジアミノペンタン及び2-メチル-1,8-ジアミノオクタンなどが挙げられる。
 前記炭素数6~16の分岐脂環式ジアミンとしては、例えば、5-アミノ-2,2,4-トリメチル-1-シクロペンタンメチルアミン、5-アミノ-1,3,3-トリメチルシクロヘキサンメチルアミン等を挙げることができる。これらのジアミンはシス体及びトランス体のいずれであってもよく、これら異性体の混合物であってもよい。
 前記ノルボルナンジアミンとしては、例えば、2,5-ノルボナンジメチルアミン、2,6-ノルボナンジメチルアミンあるいはこれらの混合物などが挙げられる。
 更に、前記ソフトセグメントを構成するポリマーは、上述以外の他のジアミン化合物をモノマー単位として含んでいてもよい。他のジアミン化合物としては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタンメチレンジアミンなどの脂肪族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)プロパン、1,3-ビスアミノメチルシクロヘキサン、1,4-ビスアミノメチルシクロヘキサンなどの脂環式ジアミン、メタキシリレンジアミン、パラキシリレンジアミンなどの芳香族ジアミンなどが挙げられる。
 上述のジアミンは単独で使用してもよいし、2種類以上を適宜組合せて使用してもよい。
 ただし、ソフトセグメントを構成するポリマーは、耐光性の観点から、芳香族環を含まないことが好ましい。
 ソフトセグメントを形成するポリマーの重量平均分子量としては、強靱性及び低温柔軟性の観点から、200以上6000以下が好ましく、1000以上6000以下がより好ましく、3000以上6000以下が特に好ましい。
 前記ハードセグメントと前記ソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルジアミンの組み合わせ、アミノドデカン酸の重縮合体/ポリエチレングリコールの組合せ、アミノドデカン酸の重縮合体/ポリプロピレングリコールの組合せ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルの組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジアミンの組み合わせ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルジアミンの組み合わせ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルの組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジアミンの組み合わせ、が特に好ましい。
-結合部-
 上述の通り、ポリアミド系熱可塑性エラストマーの結合部としては、例えば、芳香族環を含む鎖長延長剤により結合された部分が挙げられる。
 芳香族環を含む鎖長延長剤としては、例えば、芳香族ジカルボン酸及びその誘導体、芳香族ジアミン、芳香族ジオール、並びに芳香族ジイソシアネート等が挙げられる。
 芳香族ジカルボン酸の具体例としては、例えば、フタル酸、イソフタル酸、テレフタル酸、フェニレン二酢酸、ナフタレンジカルボン酸(2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸等)、ビフェニルジカルボン酸(4,4-ビフェニルジカルボン酸、2,2-ビフェニルジカルボン酸等)、アントラセンジカルボン酸(2,6-アントラセンジカルボン酸、2,7-アントラセンジカルボン酸等)、ピレンジカルボン酸(4,8-ピレンジカルボン酸、1,6-ピレンジカルボン酸等)、トリフェニレンジカルボン酸(2,7-トリフェニレンジカルボン酸、1,7-トリフェニレンジカルボン酸等)、ポルフィリンジカルボン酸(21H,23H-ポルフィリン-2,12-ジカルボン酸等)等が挙げられる。
 芳香族ジアミンの具体例としては、例えば、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1,4-ナフタレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、2,7-ナフタレンジアミン、アントラセン-9,10-二酢酸等が挙げられる。
 芳香族ジオールの具体例としては、例えば、o-ジヒドロキシベンゼン、m-ジヒドロキシベンゼン、p-ジヒドロキシベンゼン、1,4-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、9,10-ジヒドロキシメチルアントラセン等が挙げられる。
 芳香族ジイソシアネートの具体例としては、例えば、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等が挙げられる。
-分子量-
 ポリアミド系熱可塑性エラストマーの重量平均分子量は、例えば15,700~200,000が挙げられる。前記ポリアミド系熱可塑性エラストマーの重量平均分子量が15,700未満であると、リム組み性が低下してしまう場合がある。また、前記ポリアミド系熱可塑性エラストマーの重量平均分子量が200,000を超えると、溶融粘度が高くなり、タイヤ骨格体を形成する際の充填不足を防ぐために成形温度、金型温度を高くする必要がある場合がある。そして、充填不足を防ぐために成形温度及び金型温度を高くした場合、サイクルタイムが長くなる為、生産性が劣る。
 前記ポリアミド系熱可塑性エラストマーの重量平均分子量としては、20,000~160,000が好ましい。前記ポリアミド系熱可塑性エラストマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができ、例えば、東ソー株式会社製の「HLC-8320GPC EcoSEC」等のGPC(ゲル浸透クロマトグラフィー)を用いることができる。後述する他の熱可塑性エラストマーの重量平均分子量の測定についても同様である。
 前記ポリアミド系熱可塑性エラストマーにおいて、ハードセグメント(HS)及びソフトセグメント(SS)の質量比(HS/SS)は、成形性の観点から、30/70~90/10が好ましく、リム組性及び低ロス性の観点から、40/60~80/20がより好ましく、50/50~70/30がさらに好ましく、54/46~64/36が特に好ましい。
 前記ポリアミド系熱可塑性エラストマー中のハードセグメントの含有量は、ポリアミド系熱可塑性エラストマー全量に対して、5~95質量%が好ましく、10~90質量%が更に好ましく、15~85質量%が特に好ましい。
 前記ポリアミド系熱可塑性エラストマー中のソフトセグメントの含有量は、ポリアミド系熱可塑性エラストマー全量に対して、5~95質量%が好ましく、10~90質量%が更に好ましく、15~85質量%が特に好ましい。
 前記鎖長延長剤を用いる場合、その含有量は前記ソフトセグメントを形成するポリマーの末端基(例えば水酸基、アミノ基等)と、鎖長延長剤におけるソフトセグメントの末端基と結合する基(例えばカルボキシル基等)と、がほぼ等モルになるように設定されることが好ましい。
 ポリアミド系熱可塑性エラストマーは、芳香族環を含む結合部に加えて芳香族環を含まない結合部を有していてもよい。ポリアミド系熱可塑性エラストマーが有する結合部全体に対する、芳香族環を含む結合部の割合(質量比)としては、例えば1質量%以上100質量%以下が挙げられ、3質量%以上100質量%以下が望ましい。
-製造方法-
 前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを、鎖長延長剤を用いて公知の方法によって共重合することで合成することができる。
 例えば、前記ポリアミド系熱可塑性エラストマーは、ハードセグメントを構成するモノマー(例えば、12-アミノドデカン酸などのω-アミノカルボン酸や、ラウリルラクタムなどのラクタム)と鎖長延長剤(例えば、アジピン酸又はデカンジカルボン酸)とを容器内で重合させた後、ソフトセグメントを構成するポリマー(例えば、ポリプロピレングリコール、ABA型トリブロックポリエーテル、これらの末端がアミノ基に変性されたジアミン等)を添加し、さらに重合させることで得ることができる。
 特に、ハードセグメントを構成するモノマーとしてω-アミノカルボン酸を使用する場合、常圧溶融重合又は常圧溶融重合に、更に減圧溶融重合を行って合成することができる。ハードセグメントを構成するモノマーとしてラクタムを用いる場合には、適量の水を共存させることができ、0.1~5MPaの加圧下での溶融重合とそれに続く常圧溶融重合及び/又は減圧溶融重合からなる方法で製造することができる。また、これら合成反応は、回分式及び連続式のいずれでも実施することができる。また、上述の合成反応には、バッチ式反応釜、一槽式若しくは多槽式の連続反応装置、又は管状連続反応装置などを単独で又は適宜組み合わせて用いてもよい。
 前記ポリアミド系熱可塑性エラストマーの製造において、重合温度は、150~300℃が好ましく、160~280℃が更に好ましい。また、重合時間は、合成するポリアミド系熱可塑性エラストマーの重合平均分子量及び重合温度との関係で適宜決定できるが、例えば、0.5~30時間が好ましく、0.5~20時間が更に好ましい。
 前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて分子量の調整や成形加工時の溶融粘度安定化を目的として、ラウリルアミン、ステアリルアミン、ヘキサメチレンジアミン、メタキシリレンジアミンなどのモノアミン又はジアミン;酢酸、安息香酸、ステアリン酸、アジピン酸、セバシン酸、ドデカン二酸などのモノカルボン酸又はジカルボン酸;などの添加剤を添加してもよい。これら添加剤は、本発明の効果に悪い影響を与えない範囲で、得られるポリアミド系熱可塑性エラストマーの分子量や粘度等の関係で適宜選定することができる。
 また、前記ポリアミド系熱可塑性エラストマーの製造においては、必要に応じて触媒を用いることができる。前記触媒としては、P、Ti、Ge、Zn、Fe、Sn、Mn、Co、Zr、V、Ir、La、Ce、Li、Ca、及び、Hfからなる群より選択される少なくとも1種を含む化合物が挙げられる。
 例えば、無機系リン化合物、有機チタン化合物、有機ジルコニウム化合物、有機スズ化合物等が挙げられる。
 具体的には、無機系リン化合物としては、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸等のリン含有酸、リン含有酸のアルカリ金属塩、リン含有酸のアルカリ土類金属塩等が挙げられる。
 有機チタン化合物としては、チタンアルコキシド〔チタンテトラブトキシド、チタンテトライソプロポキシド等〕等が挙げられる。
 有機ジルコニウム化合物としては、ジルコニウムアルコキシド〔ジルコニウムテトラブトキシド(「Zr(OBu)」または「Zr(OC」とも称される)等〕等が挙げられる。
 有機スズ化合物としては、ジスタノキサン化合物〔1-ヒドロキシ-3-イソチオシアネート-1,1,3,3-テトラブチルジスタノキサン等〕、酢酸スズ、ジラウリン酸ジブチルスズ、ブチルチンヒドロキシドオキシドヒドレート等が挙げられる。
 触媒添加量及び触媒添加時期は、目的物を速やかに得られる条件であれば特に制限されない。
 前記ポリアミド系熱可塑性エラストマーとしては、例えば、ハードセグメントがポリアミド構造を有し、ソフトセグメントがポリエーテル構造を有し、かつ、結合部が芳香族ジカルボン酸又は芳香族ジアミンに由来する構成単位であるものが挙げられる。
 また、ポリアミド系熱可塑性エラストマーとしては、ハードセグメントが前記一般式(1)若しくは一般式(2)で表されるモノマーを用いて合成されたポリアミドに由来する構成単位であり、ソフトセグメントが末端に水酸基若しくはアミノ基を有するポリエーテルに由来する構成単位であり、かつ、結合部が芳香族ジカルボン酸に由来する構成単位であるもの、又はハードセグメントが前記一般式(1)若しくは一般式(2)で表されるモノマーを用いて合成されたポリアミドに由来する構成単位であり、ソフトセグメントが末端にカルボキシ基を有するポリエーテルに由来する構成単位であり、かつ、結合部が芳香族ジアミンに由来する構成単位であるものが好ましい。
 さらに、ポリアミド系熱可塑性エラストマーの具体例としては、例えば、ラウリルラクタムの開環重縮合体/ポリエチレングリコール/テレフタル酸の組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコール/テレフタル酸の組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコール/テレフタル酸の組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテル/テレフタル酸の組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルジアミン/2,6-アントラセンジカルボン酸の組み合わせ、ラウリルラクタムの開環重縮合体/ポリエチレングリコール/2,6-アントラセンジカルボン酸の組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコール/2,6-アントラセンジカルボン酸の組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコール/2,6-アントラセンジカルボン酸の組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテル/2,6-アントラセンジカルボン酸の組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルジアミン/2,6-アントラセンジカルボン酸の組み合わせ、アミノドデカン酸の重縮合体/ポリエチレングリコール/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ポリプロピレングリコール/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコール/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテル/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジアミン/テレフタル酸の組み合わせ、アミノドデカン酸の重縮合体/ポリエチレングリコール/2,6-アントラセンジカルボン酸の組合せ、アミノドデカン酸の重縮合体/ポリプロピレングリコール/2,6-アントラセンジカルボン酸の組合せ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコール/2,6-アントラセンジカルボン酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテル/2,6-アントラセンジカルボン酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジアミン/2,6-アントラセンジカルボン酸の組み合わせが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテル/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテル/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ABA型トリブロックポリエーテルジアミン/2,6-アントラセンジカルボン酸の組み合わせ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコール/テレフタル酸の組合せ、アミノドデカン酸の重縮合体/ポリテトラメチレンエーテルグリコール/2,6-アントラセンジカルボン酸の組合せが特に好ましい。
 前記ポリアミド系熱可塑性エラストマーとしては、構成単位の組み合わせ、その構成比、分子量等について上述した好ましい態様同士を組み合わせたものを用いることができる。
(ポリエステル系熱可塑性エラストマー)
 本明細書において、「ポリエステル系熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性エラストマーであって、ハードセグメントを構成するポリマーの主鎖にエステル結合(-COO-)を有するものを意味する。
 ポリエステル系熱可塑性エラストマーは、少なくともポリエステルが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
-ハードセグメント-
 ポリエステル系熱可塑性エラストマーにおけるハードセグメントを形成する結晶性のポリエステルとしては、脂肪族ポリエステルを用いることができる。脂肪族ポリエステルは、例えば、脂肪族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。
 ハードセグメントを形成する好適な脂肪族ポリエステルとしては、脂肪族ジカルボン酸と脂肪族ジオールとから誘導されるポリエステルが挙げられ、具体的には、例えば、ドデカン二酸、アジピン酸、ピメリン酸、ノナン二酸、スベリン酸、セバシン酸、若しくはこれらのエステル形成性誘導体などの脂肪族ジカルボン酸成分と、分子量300以下の脂肪族ジオール〔例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール〕若しくは脂肪族ジオールの重合体(例えばポリプロピレングリコール等)と、から誘導されるポリエステル;又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステル;が挙げられる。また、ハードセグメントを形成する好適な脂肪族ポリエステルは、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、及び多官能ヒドロキシ成分などを、脂肪族ポリエステル全体に対して5モル%以下の範囲で共重合したものも挙げられる。
 ハードセグメントを形成する脂肪族ポリエステルの具体例としては、例えば、ドデカンジオールとドデカン二酸とを反応して得られるポリエステル、ヘキサンジオールとアジピン酸とを反応して得られるポリエステル、両末端カルボン酸PBTと両末端ジオールPPGとを反応して得られるポリエステル、ポリプロピレングリコールとドデカン二酸とを反応して得られるポリエステル等が挙げられ、この中でもポリプロピレングリコールとドデカン二酸とを反応して得られるポリエステルが好ましい。
 ハードセグメントを形成するポリマー(ポリエステル)の数平均分子量としては、強靱性及び低温柔軟性の観点から、300~6000が好ましい。
-ソフトセグメント-
 ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル及び脂肪族ポリエーテルから選択されたポリマーが挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られる共重合体の弾性特性の観点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペートなどが好ましい。
 ソフトセグメントを形成するポリマーの重量平均分子量としては、強靱性及び低温柔軟性の観点から、300~6000が好ましい。
-結合部-
 結合部は、例えば、芳香族環を含む鎖長延長剤により結合された部分が挙げられる。鎖長延長剤としては上述したものが挙げられるが、その中でも特にポリエステル系熱可塑性エラストマーの鎖長延長剤としては、反応性の観点から、芳香族ジカルボン酸が好ましい。
-分子量-
 ポリエステル系熱可塑性エラストマーの重量平均分子量は、例えば、リム組み性及び生産性の観点から15,700~200,000が挙げられ、20,000~200,000が好ましい。
 ポリエステル系熱可塑性エラストマーにおいて、ハードセグメント(HS)及びソフトセグメント(SS)の質量比(HS/SS)は、成形性の観点から、30/70~90/10が好ましく、リム組性及び低ロス性の観点から、40/60~80/20が更に好ましく、50/50~70/30が特に好ましい。
-製造方法-
 前記ポリエステル系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを、鎖長延長剤を用いて公知の方法によって共重合することで合成することができる。
(ポリウレタン系熱可塑性エラストマー)
 ポリウレタン系熱可塑性エラストマーは、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000006

 
 
-ソフトセグメント-
 式A中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。式A又は式B中、Rは、脂肪族炭化水素又は脂環族炭化水素を表す。式B中、P’は、短鎖脂肪族炭化水素又は脂環族炭化水素を表す。
 式A中、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。前記Pは、前記Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、前記ABA型トリブロックポリエーテル等が挙げられる。
 これらは単独で使用されてもよく、また2種以上が併用されてもよい。
 式A中、Rは、Rで表される脂肪族炭化水素又は脂環族炭化水素を含むジイソシアネート化合物に由来する。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、及び1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート及び4,4-シクロヘキサンジイソシアネート等が挙げられる。
 これらは単独で使用されてもよく、また2種以上が併用されてもよい。
 ソフトセグメントを構成するポリマーの重量平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、特に好ましくは500~3000である。
-ハードセグメント-
 式B中、P’で表される短鎖脂肪族炭化水素又は脂環族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素又は脂環族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、グリコール及びポリアルキレングリコールが挙げられ、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール及び1,10-デカンジオールが挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、及びシクロヘキサン-1,4-ジメタノール等が挙げられる。
 これらは単独で使用されてもよく、また2種以上が併用されてもよい。
 また、式B中のRは、式A中のRと同じである。
 ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300~1500が好ましい。
-結合部-
 結合部は、例えば、芳香族環を含む鎖長延長剤により結合された部分が挙げられる。鎖長延長剤としては上述したものが挙げられるが、その中でも特にポリウレタン系熱可塑性エラストマーの鎖延長剤としては、反応性の観点から、芳香族ジオールが好ましい。
-分子量-
 ポリウレタン系熱可塑性エラストマーの重量平均分子量は、例えば、リム組み性及び生産性の観点から15,700~200,000が挙げられ、20,000~200,000が好ましい。
 ポリウレタン系熱可塑性エラストマーにおいて、ハードセグメント(HS)及びソフトセグメント(SS)の質量比(HS/SS)は、30/70~90/10が好ましく、40/60~80/20が更に好ましく、50/50~70/30が特に好ましい。
-製造方法-
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを、鎖長延長剤を用いて公知の方法によって共重合することで合成することができる。
 前記樹脂材料には、所望に応じて、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。前記添加剤の樹脂材料(タイヤ骨格体)中の含有量は特に限定はなく、本発明の効果を損なわない範囲で適宜用いることができる。前記樹脂材料に添加剤など樹脂以外の成分を加える場合、前記樹脂材料中の樹脂成分の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。尚、樹脂材料中の樹脂成分の含有量は、前記樹脂成分の総量から各種添加剤の総含有量を差し引いた残部となる。
<樹脂材料の物性>
 次に、タイヤ骨格体を構成する樹脂材料の好ましい物性について説明する。前記タイヤ骨格体は、上述の樹脂材料を用いるものである。
 前記樹脂材料(タイヤ骨格体)自体の融点(又は軟化点)としては、通常100℃~350℃、好ましくは100℃~250℃程度であるが、タイヤの生産性の観点から120℃~250℃程度が好ましく、120℃~200℃が更に好ましい。
 このように、融点が120℃~250℃の樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、120℃~250℃の周辺温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、前記タイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成する樹脂材料の融点(又は軟化点)よりも10℃~150℃高い温度が好ましく、10℃~100℃高い温度が更に好ましい。
 前記樹脂材料は、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。
 溶融混合して得られた樹脂材料は、必要に応じてペレット状にして用いることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaがより好ましく、5MPa~17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10%~70%が好ましく、15%~60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、エアシール性をよくすることができる。
 前記樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張破断伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破断伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 前記樹脂材料(タイヤ骨格体)自体のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50℃~150℃が好ましく、50℃~130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
[第1の実施形態]
 以下に、図面に従って本発明の第1の実施形態に係るタイヤを説明する。
 本実施形態のタイヤ10について説明する。図1Aは、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、リムに装着したビード部の断面図である。図1Aに示すように、本実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
 図1Aに示すように、タイヤ10は、図1Bに示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17(タイヤ骨格体)を備えている。
 ここで、本実施形態のタイヤケース17は、樹脂材料として、例えば、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、を有する熱可塑性エラストマーに各添加剤を含めたものを用いることができる。
 本実施形態においてタイヤケース17は、単一の樹脂材料で形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
 本実施形態のタイヤケース17は、樹脂材料で形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
 前記樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
 また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
 本実施形態において、図1Bに示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂などで形成されていてもよい。
 本実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成する樹脂材料よりもシール性に優れた材料としては、タイヤケース17を構成する樹脂材料に比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、前記樹脂材料よりもシール性に優れる他の熱可塑性樹脂(熱可塑性エラストマー)を用いてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系熱可塑性樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
 図1Aに示すように、クラウン部16には、タイヤケース17を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。
 図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、本実施形態において補強コード26としては、スチールコードが用いられている。
 また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
 上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
 以下、本実施形態のタイヤの製造方法について説明する。
(タイヤケース成形工程)
 まず、上述のように熱可塑性樹脂エラストマーを含む樹脂材料を用いて、タイヤケース半体を形成する。これらタイヤケースの形成は、射出成形で行うことが好ましい。次に、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体17Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する樹脂材料の融点(又は軟化点)以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱や加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱してもよく、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧してタイヤケース半体を接合させてもよい。
(補強コード部材巻回工程)
 次に、図を省略するが、補強コード26を巻き付けたリール、コード加熱装置、各種ローラ等を備えたコード供給装置を用い、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28を形成することができる。
 このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
 次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。
 そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
(作用)
 本実施形態のタイヤ10は、タイヤケース17が、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、有する熱可塑性エラストマーを含む樹脂材料によって形成される。このため、本実施形態のタイヤ10は、低ロス性及びリム組み性が共に優れる。
 また、本実施形態のタイヤ10では、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に前記樹脂材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、及びタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、樹脂材料で形成されたタイヤケース17のクリープが防止される。
 また、タイヤケース17の軸方向に沿った断面視(図1Aに示される断面)で、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ樹脂材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、及びトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
 そして、図2に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
 さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
 またさらに、ビード部12のリム20と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とタイヤケース17を構成する樹脂材料のみとでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
 また、第1実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
 また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
 第1実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。
 以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 以下、本発明について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
[実施例1]
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、1,2-アミノドデカン酸(アルドリッチ製)44g、アミノドデカノラクタム600g、テレフタル酸(結合部となる鎖長延長剤)18gを入れ、容器内を十分窒素置換した後、280℃まで昇温し、0.6MPaの加圧下で5時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、分子量2500のポリアミド12重合物である白色固体を得た(重合反応A)。
 なお、得られたポリアミド12重合物は、ハードセグメントである分子量2500のポリアミド(ポリアミド12)の一方の末端に鎖長延長剤であるテレフタル酸が結合したものである。
 得られたポリアミド12重合物250gに、ソフトセグメントを形成するポリマーとしてポリオキシプロピレンジアミン(PPG、HUNTSMAN社製 エラスタミン RP-2009、重量平均分子量:2000)196g、テトラ-tert-ブトキシジルコニウム71mgを加え、230℃で6時間撹拌を行った(重合反応B)。さらにIrganox1010を1g加え、白色のポリアミド系熱可塑性エラストマー(重量平均分子量:80000)を得た。得られたポリアミド系熱可塑性エラストマーにおけるハードセグメント(HS)とソフトセグメント(SS)との質量比(HS/SS)を表1及び表2に示す。
 得られたポリアミド系熱可塑性エラストマーをペレット化し、220℃で射出成形し、サンプル片を得た。各種測定は、このサンプル片から試験片を打ち抜いたサンプルを用いて実施した。
[実施例2]
 テレフタル酸18gの代わりにイソフタル酸18gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを141gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:76000)を得た。
[実施例3]
 テレフタル酸18gの代わりにフェニレン二酢酸21gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを205gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:88000)を得た。
[実施例4]
 テレフタル酸18gの代わりに4,4’-ビフェニルジカルボン酸43gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを205gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:82000)を得た。
[実施例5]
 テレフタル酸18gの代わりに2,6-ナフタレンジカルボン酸23gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを205gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:77000)を得た。
[実施例6]
 テレフタル酸18gの代わりに2,6-アントラセンジカルボン酸32gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを189gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:74000)を得た。
[実施例7]
 テレフタル酸18gの代わりに4,8-ピレンジカルボン酸31gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを213gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:72000)を得た。
[実施例8]
 テレフタル酸18gの代わりに2,7-トリフェニレンジカルボン酸33gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを204gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:70000)を得た。
[実施例9]
 ポリオキシプロピレンジアミン196gの代わりにポリオキシプロピレン-ポリテトラメチレングリコール-ポリオキシプロピレンジアミン(PPG-PTMG-PPG、HUNTSMAN社製 品名:ジェファーミン 型番:XTJ-548、重量平均分子量1700)147gを用い、重合反応Aにおける条件のうちテレフタル酸仕込み量18gを17gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:85000)を得た。
[実施例10]
 ポリオキシプロピレンジアミン196gの代わりにポリテトラメチレングリコールジアミン(両末端アミン化PTMG、重量平均分子量:1000)197gを用い、重合反応Aにおける条件のうちテレフタル酸仕込み量18gを17gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:79000)を得た。
 上記両末端アミン化PTMGは、原料である両末端水酸基のポリテトラメチレングリコール(和光純薬製、製造元コード:164-17745、重量平均分子量:2000)とトシルクロリドとを反応させてトシル化したのち、アジ化ナトリウムによるアジド化、白金触媒による還元反応を経ることで、得た。
[実施例11]
 攪拌機、窒素ガス導入口、及び縮合水排出口を備えた容積2リットルの反応容器に、アルドリッチ製カプロラクタム500g、2,6-ナフタレンジカルボン酸116g、アミノヘキサン酸77gを入れ、容器内を十分窒素置換した後、250℃まで昇温し、0.6MPaの加圧下で4時間反応させた。圧力を解放したあと、窒素気流下でさらに1時間反応させ、水洗工程を経て、数平均分子量3000のポリアミド6重合物である白色固体を得た。
 なお、得られたポリアミド6重合物は、ハードセグメントである分子量3000のポリアミド(ポリアミド6)の一方の末端に鎖長延長剤である2,6-ナフタレンジカルボン酸が結合したものである。
 得られたポリアミド6重合物200gに、ソフトセグメントを形成するポリマーとしてポリオキシプロピレンジアミン(PPG、HUNTSMAN社製 エラスタミン RP-2009、重量平均分子量:2000)133gを加え、230℃で5時間撹拌を行った。さらにIrganox1010を1g加え、白色のポリアミド系熱可塑性エラストマー(重量平均分子量:80000)を得た。
[比較例1]
 テレフタル酸18gの代わりにドデカン二酸24gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを205gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:85000)を得た。
[比較例2]
 テレフタル酸18gの代わりに1,4-シクロヘキサンジカルボン酸18gを用い、重合反応Bにおける条件のうちPPG仕込み量196gを205gとした以外は、実施例1と同様にして白色のポリアミド系熱可塑性エラストマー(重量平均分子量:80000)を得た。
[評価]
 得られた熱可塑性エラストマーを用いて、以下の項目について評価した。具体的には、得られた熱可塑性エラストマーをペレット化し、射出成形機としてファナック(株)製「ROBOSHOT α15-C」を用い、成形温度220℃、金型温度50℃、の条件で射出成形し、サンプル片を得た。各種測定は、このサンプル片から、28mm×100mm、厚さ2mmの金型を用いて試験片を打ち抜いたサンプルを用いて実施した。結果を表1及び表2に示す。
(低ロス性)
 粘弾性測定装置(レオメトリックス社製)を使用し、φ8mm、厚さ2mmのサンプルを用いて温度30℃、歪み1%、周波数20Hzで損失正接(tanδ)を測定した。比較例1のサンプルにおいて得られたtanδを100として指数化し、195以下の場合を「A」、195より大きく366以下の場合を「B」、366より大きい場合を「C」とした。指数は小さい程低ロス性が良好であることを示し、「A」が最も良く、「C」が最も悪い。
(リム組み性)
 各実施例及び比較例で得られた熱可塑性エラストマーを用いて、それぞれ上述の第1の実施形態を参照し、タイヤを形成した。次いで、タイヤをリムに装着し、エアシール性が確保できた場合を「A」、リム組みの際に、硬くてハンドリング性に劣る場合を「B」、割れの発生や、エアシール性が確保できなかった場合を「C」とした。
(耐熱性)
 得られたサンプルについて、示差走査型熱量分析(DSC)装置〔ティー・エイ・インスツルメント・ジャパン株式会社製、DSC Q2000〕を用い、0℃から200℃まで10℃/分で昇温させて融解開始温度を測定した。融解開始温度が155℃以上の場合を「A」、147℃以上155℃未満の場合を「B」、147℃未満の場合を「C」とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表1及び表2中、「HS」はハードセグメント、「SS」はソフトセグメントを意味する。
 また、表1及び表2中、「PA12」はポリアミド12に、「PA6」はポリアミド6に、「PPG」はポリプロピレングリコールに、「PTMG」はポリテトラメチレンエーテルグリコールに由来することを意味する。さらに、「PPG-PTMG-PPG」は、PTMG由来の構成単位とPPG由来の構成単位を有する三元共重合体を意味する。
 表1及び表2からわかるように、本実施例では、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含む結合部と、を有する熱可塑性エラストマーを用いているため、結合部が芳香族環を含まない熱可塑性エラストマーを用いた比較例に比べ、低ロス性及びリム組み性が両立されていることが分かった。
 2014年9月24日に出願された日本国特許出願2014-193428号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1.  熱可塑性エラストマーを含む樹脂材料で形成され且つ環状のタイヤ骨格体を有し、
     前記熱可塑性エラストマーは、芳香族環を含まないハードセグメントと、ソフトセグメントと、芳香族環を含み前記ハードセグメント及び前記ソフトセグメントを結合する結合部と、を有するタイヤ。
  2.  前記結合部に含まれる芳香族環数が1~4個である請求項1に記載のタイヤ。
  3.  前記ハードセグメント(HS)と前記ソフトセグメント(SS)との質量比(HS/SS)が30/70~90/10である請求項1又は請求項2に記載のタイヤ。
  4.  前記結合部がジアミンまたはジカルボン酸に由来する構成単位である請求項1~請求項3のいずれか1項に記載のタイヤ。
  5.  前記ハードセグメントがポリアミド構造を有し、前記ソフトセグメントがポリエーテル構造を有し、前記結合部がジカルボン酸に由来する構成単位である請求項1~請求項4のいずれか1項に記載のタイヤ。
PCT/JP2015/076982 2014-09-24 2015-09-24 タイヤ WO2016047710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016550369A JPWO2016047710A1 (ja) 2014-09-24 2015-09-24 タイヤ
EP15843166.8A EP3199571B1 (en) 2014-09-24 2015-09-24 Tire
US15/513,994 US20170298182A1 (en) 2014-09-24 2015-09-24 Tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014193428 2014-09-24
JP2014-193428 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016047710A1 true WO2016047710A1 (ja) 2016-03-31

Family

ID=55581229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076982 WO2016047710A1 (ja) 2014-09-24 2015-09-24 タイヤ

Country Status (4)

Country Link
US (1) US20170298182A1 (ja)
EP (1) EP3199571B1 (ja)
JP (1) JPWO2016047710A1 (ja)
WO (1) WO2016047710A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546018A (zh) * 2017-04-18 2019-12-06 株式会社普利司通 轮胎
JP2020117588A (ja) * 2019-01-22 2020-08-06 三菱瓦斯化学株式会社 ポリアミド樹脂、組成物および成形品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199593B1 (en) 2014-09-24 2018-11-14 Bridgestone Corporation Tire
EP3202818B1 (en) 2014-09-29 2018-11-14 Bridgestone Corporation Tire
EP3202817B1 (en) 2014-09-29 2019-07-17 Bridgestone Corporation Tire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819342A (ja) * 1981-07-28 1983-02-04 Ube Ind Ltd 強化ゴム組成物の製造法
JPS5993742A (ja) * 1982-11-18 1984-05-30 Bridgestone Corp 高破壊物性ポリマ−
US4703086A (en) * 1981-11-05 1987-10-27 Ube Industries, Ltd. Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
JPH0687962A (ja) * 1992-07-07 1994-03-29 Kayaku Akzo Kk 熱可塑性エラストマー用架橋助剤及びこれを使用した熱可塑性エラストマーの製造方法
US5342918A (en) * 1993-04-30 1994-08-30 Texaco Chemical Company Carboxyl-terminated polyetheramines
JP2006316219A (ja) * 2005-05-16 2006-11-24 Tosoh Corp 熱可塑性エラストマー組成物
JP2009526892A (ja) * 2006-02-16 2009-07-23 アルケマ フランス 少なくとも一部がポリトリメチレンエーテルグリコールを起源とするポリアミドブロックとポリエーテルブロックとを含むコポリマーの新規な使用
WO2013048206A2 (ko) * 2011-09-30 2013-04-04 코오롱인더스트리 주식회사 타이어 이너라이너용 필름 및 이의 제조 방법
JP2013528666A (ja) * 2010-03-31 2013-07-11 コーロン インダストリーズ インク タイヤインナーライナ用フィルムおよびその製造方法
WO2014104864A1 (ko) * 2012-12-31 2014-07-03 코오롱인더스트리 주식회사 가교 고분자, 고분자 수지 조성물 및 고분자 필름

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136638A (ja) * 1982-02-09 1983-08-13 Ube Ind Ltd 強化弾性体の製造法
US5283289A (en) * 1981-11-05 1994-02-01 Ube Industries, Ltd. Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
US4519432A (en) * 1984-02-08 1985-05-28 Lim International S.A. Reinforced polyurethane tires
US4919997A (en) * 1987-11-06 1990-04-24 Allied-Signal Inc. Melt-blown water-absorbing tissues and matts
US6905765B2 (en) * 2002-08-09 2005-06-14 E.I. Du Pont De Nemours And Company Polyether ester elastomers comprising poly(trimethylene-ethylene ether) ester soft segment and alkylene ester hard segment
WO2009093695A1 (ja) * 2008-01-23 2009-07-30 Ube Industries, Ltd. ゴム組成物、ベーストレッド用ゴム組成物、チェーファー用ゴム組成物、及びサイドウォール用ゴム組成物、並びにそれらを用いたタイヤ
US8631846B2 (en) * 2009-07-31 2014-01-21 Compagnie Generale Des Etablissements Michelin Pneumatic tyre with built-in self-sealing ply
JP5893439B2 (ja) * 2012-02-29 2016-03-23 株式会社ブリヂストン タイヤの製造方法
JP2013220692A (ja) * 2012-04-13 2013-10-28 Bridgestone Corp タイヤ
CN105102239B (zh) * 2013-02-28 2018-01-02 株式会社普利司通 轮胎

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819342A (ja) * 1981-07-28 1983-02-04 Ube Ind Ltd 強化ゴム組成物の製造法
US4703086A (en) * 1981-11-05 1987-10-27 Ube Industries, Ltd. Fiber-reinforced rubber composition and production process thereof and fiber-reinforced elastic product
JPS5993742A (ja) * 1982-11-18 1984-05-30 Bridgestone Corp 高破壊物性ポリマ−
JPH0687962A (ja) * 1992-07-07 1994-03-29 Kayaku Akzo Kk 熱可塑性エラストマー用架橋助剤及びこれを使用した熱可塑性エラストマーの製造方法
US5342918A (en) * 1993-04-30 1994-08-30 Texaco Chemical Company Carboxyl-terminated polyetheramines
JP2006316219A (ja) * 2005-05-16 2006-11-24 Tosoh Corp 熱可塑性エラストマー組成物
JP2009526892A (ja) * 2006-02-16 2009-07-23 アルケマ フランス 少なくとも一部がポリトリメチレンエーテルグリコールを起源とするポリアミドブロックとポリエーテルブロックとを含むコポリマーの新規な使用
JP2013528666A (ja) * 2010-03-31 2013-07-11 コーロン インダストリーズ インク タイヤインナーライナ用フィルムおよびその製造方法
WO2013048206A2 (ko) * 2011-09-30 2013-04-04 코오롱인더스트리 주식회사 타이어 이너라이너용 필름 및 이의 제조 방법
WO2014104864A1 (ko) * 2012-12-31 2014-07-03 코오롱인더스트리 주식회사 가교 고분자, 고분자 수지 조성물 및 고분자 필름

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110546018A (zh) * 2017-04-18 2019-12-06 株式会社普利司通 轮胎
EP3613611A4 (en) * 2017-04-18 2020-11-25 Bridgestone Corporation PNEUMATIC
CN110546018B (zh) * 2017-04-18 2021-12-07 株式会社普利司通 轮胎
JP2020117588A (ja) * 2019-01-22 2020-08-06 三菱瓦斯化学株式会社 ポリアミド樹脂、組成物および成形品
JP7188118B2 (ja) 2019-01-22 2022-12-13 三菱瓦斯化学株式会社 ポリアミド樹脂、組成物および成形品

Also Published As

Publication number Publication date
EP3199571A1 (en) 2017-08-02
US20170298182A1 (en) 2017-10-19
JPWO2016047710A1 (ja) 2017-07-06
EP3199571A4 (en) 2017-08-02
EP3199571B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6001811B2 (ja) タイヤ
WO2016047710A1 (ja) タイヤ
WO2014157558A1 (ja) タイヤ
JP6723157B2 (ja) タイヤ
WO2016047707A1 (ja) タイヤ
JP6897903B2 (ja) タイヤ
WO2014157559A1 (ja) タイヤ
JP6001812B2 (ja) タイヤ
JP6001813B2 (ja) タイヤ
JP5989280B1 (ja) タイヤ骨格体およびタイヤ
JP5989279B1 (ja) タイヤ骨格体およびタイヤ
JP2016150641A (ja) タイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513994

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015843166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843166

Country of ref document: EP