WO2016047440A1 - 表示装置およびその製造方法、ならびに電子機器 - Google Patents

表示装置およびその製造方法、ならびに電子機器 Download PDF

Info

Publication number
WO2016047440A1
WO2016047440A1 PCT/JP2015/075572 JP2015075572W WO2016047440A1 WO 2016047440 A1 WO2016047440 A1 WO 2016047440A1 JP 2015075572 W JP2015075572 W JP 2015075572W WO 2016047440 A1 WO2016047440 A1 WO 2016047440A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
display device
auxiliary electrode
light emitting
Prior art date
Application number
PCT/JP2015/075572
Other languages
English (en)
French (fr)
Inventor
達也 松海
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/510,714 priority Critical patent/US10186569B2/en
Priority to CN201580049112.9A priority patent/CN107079561B/zh
Publication of WO2016047440A1 publication Critical patent/WO2016047440A1/ja
Priority to US16/224,182 priority patent/US11476322B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • H10K59/1315Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • the present disclosure relates to a display device having an organic light emitting element, a manufacturing method thereof, and an electronic apparatus including the display device.
  • the organic EL display device has a bottom emission method that emits light from each organic EL element toward the drive panel, and a top emission that emits this light toward the sealing panel. ), But the latter is the mainstream of development because the aperture ratio can be increased.
  • the light extraction side that is, the electrode on the sealing panel side is an electrode common to each organic EL element, and for example, ITO (Indium Tin Oxide) or the like
  • ITO Indium Tin Oxide
  • the light transmissive conductive material has a resistivity about two to three digits higher than that of a normal metal material. Therefore, the voltage applied to the light extraction side electrode becomes non-uniform in the plane, and thus there is a problem that the light emission luminance between the organic EL elements varies in position and the display quality is deteriorated.
  • the present applicant has disclosed a technique in which a low-resistance auxiliary wiring and an electrode on the light extraction side are connected via a conductive contact portion (see, for example, Patent Document 1).
  • Patent Document 1 requires separate coating using a vapor deposition mask in the manufacturing process. For this reason, there is a possibility that such a manufacturing process hinders further increase in integration and miniaturization in the organic EL display device.
  • a display device includes a base, an organic light emitting element including a stacked structure in which a first electrode layer, an organic light emitting layer, and a second electrode layer are sequentially stacked on the base; A driving element that drives the organic light emitting element; and an auxiliary electrode layer that is provided on the substrate and includes an end face in contact with the second electrode layer.
  • an electronic apparatus as an embodiment of the present disclosure includes the display device.
  • a display device manufacturing method includes the following operations ⁇ 1> to ⁇ 7>.
  • ⁇ 1> Form driving elements and auxiliary electrode layers on the substrate.
  • ⁇ 2> Form a first insulating layer so as to cover the drive element and the auxiliary electrode layer.
  • ⁇ 3> Forming a first opening in a part of the first insulating layer to expose an end face of the auxiliary electrode layer.
  • a first electrode layer is selectively formed on the first insulating layer.
  • a second opening having a second opening on the first insulating layer at a position corresponding to the first electrode layer and a third opening communicating with the first opening at a position corresponding to the auxiliary wiring layer. Forming an insulating layer.
  • An organic light emitting layer is formed so as to cover the first electrode layer without covering the end face of the auxiliary wiring layer.
  • ⁇ 7> Form the second electrode layer so as to cover the organic light emitting layer and also cover the end face of the auxiliary wiring layer.
  • the second electrode layer is in contact with the end surface of the auxiliary wiring layer, and thus the connection resistance is sufficiently reduced even in a minute region.
  • the display device the manufacturing method thereof, and the electronic apparatus as an embodiment of the present disclosure, it is possible to exhibit good display performance while realizing high integration.
  • the effect of this indication is not limited to this, Any effect of the following description may be sufficient.
  • FIG. 2 is a plan view illustrating an example of a display area illustrated in FIG. 1.
  • FIG. 4 is a cross-sectional view illustrating a cross section taken along line IV-IV illustrated in FIG. 3. It is sectional drawing showing 1 process of the manufacturing method of the display apparatus shown in FIG. It is sectional drawing showing the 1 process following FIG. 5A.
  • FIG. 5C is a cross-sectional view illustrating a process following FIG. 5B. It is sectional drawing showing the 1 process following FIG. 5C. It is sectional drawing showing the 1 process following FIG. 5D. It is sectional drawing showing the 1 process following FIG. 5E.
  • FIG. 5F is a cross-sectional view illustrating a process following FIG. 5F. It is sectional drawing showing the principal part structure of the display apparatus as a 1st reference example. It is sectional drawing showing the principal part structure of the display apparatus as a 2nd reference example. It is sectional drawing showing the principal part structure of the display apparatus as a 3rd reference example. It is sectional drawing showing the principal part structure of the display apparatus as a 1st modification.
  • FIG. 8 is a plan view illustrating a schematic configuration of a module including the display device illustrated in FIGS. 1 and 7. It is a perspective view showing the external appearance of the smart phone as an application example of the display apparatus shown in FIG. 1 and FIG.
  • FIG. 1 shows the overall configuration of the display device 1.
  • the display device 1 is used as an ultra-thin organic EL color display device or the like.
  • a display region 110 in which a plurality of organic EL elements EL described later are arranged in a matrix on a transparent substrate 10A.
  • a signal line driving circuit 120 and a scanning line driving circuit 130 which are drivers for displaying images are formed around the display area 110.
  • a pixel drive circuit 140 is formed in the display area 110.
  • FIG. 2 illustrates an example of the pixel driving circuit 140.
  • the pixel driving circuit 140 is formed in the lower layer of the first electrode 18A described later, that is, between the substrate 10A and the first electrode 18A.
  • the pixel driving circuit 140 is an active driving circuit having a driving transistor Tr1 and a writing transistor Tr2, a capacitor (holding capacitor) Cs therebetween, and an organic EL element EL.
  • the organic EL element EL is connected in series with the drive transistor Tr1 between the first power supply line (Vcc) and the second power supply line (GND).
  • the drive transistor Tr1 and the write transistor Tr2 are configured by a general thin film transistor (TFT (Thin Film Transistor)).
  • the drive transistor Tr1 and the write transistor Tr2 have, for example, an inverted stagger structure (so-called bottom gate type). However, a staggered structure (top gate type) may be used.
  • the pixel drive circuit 140 includes, for example, a plurality of signal lines 120A extending in the column direction and a plurality of scanning lines 130A extending in the row direction.
  • One of the plurality of organic EL elements EL (sub-pixel) is provided corresponding to each intersection of each signal line 120A and each scanning line 130A.
  • Each signal line 120A is connected to a signal line drive circuit 120, and an image signal is supplied from the signal line drive circuit 120 to the source electrode of the write transistor Tr2 via the signal line 120A.
  • Each scanning line 130A is connected to the scanning line driving circuit 130, and a scanning signal is sequentially supplied from the scanning line driving circuit 130 to the gate electrode of the writing transistor Tr2 via the scanning line 130A.
  • FIG. 3 shows a planar configuration of the display area 110 of the display device 1
  • FIG. 4 shows a cross-sectional configuration in the direction of the arrow along the line IV-IV in FIG.
  • the display device 1 includes, for example, a first layer L1 including a thin film transistor Tr and a second layer L2 including an organic EL element EL between a pair of insulating substrates 10A and 10B.
  • the thin film transistor Tr includes a gate electrode 11, a gate insulating film 12, a silicon film 13A, a stopper insulating film 14, an n + amorphous silicon film 13B, and a wiring layer 15A as a source electrode and a drain electrode on a substrate 10A.
  • an insulating protective insulating film (passivation film) 16 and a planarization insulating film 17A are sequentially stacked on the thin film transistor Tr.
  • the organic EL element EL is formed on the planarization insulating film 17A.
  • the substrates 10A and 10B are made of a transparent insulating material such as a glass material or a plastic material.
  • the thin film transistor Tr is a drive transistor Tr1 for driving each organic EL element EL to emit light.
  • the gate electrode 11 is made of, for example, molybdenum (Mo).
  • the silicon film 13A is a part for forming a channel region of the thin film transistor Tr, and is formed of, for example, an amorphous silicon film.
  • the wiring layer 15A constitutes a source electrode and a drain electrode of the thin film transistor Tr and also has a function as a wiring such as a signal line.
  • a constituent material of the wiring layer 15A for example, titanium (Ti), titanium nitride (TiN), Al, Mo, tungsten (W), chromium (Cr), gold (Au), platinum (Pt), copper (Cu) ITO, IZO (IndiumInZinc Oxide; indium zinc oxide) or silver (Ag), or alloys containing these metal materials as main components.
  • the wiring layer 15A has a laminated structure such as Mo / Al / Ti, Mo / (AlSi alloy) / Ti, Mo / (AlSiCu alloy) / Ti or Mo / (AlCe (cerium) alloy) / Ti. You may have.
  • the protective insulating film 16 is for protecting the thin film transistor Tr, and is made of, for example, an insulating material made of at least one of SiO2, SiN, or SiON.
  • the planarization insulating film 17A is for planarizing the layer structure to form the organic EL element EL thereon.
  • Each organic EL element EL has a stacked structure in which a first electrode 18A, an organic light emitting layer 19, and a second electrode 20 are stacked in this order on a planarizing insulating film 17A.
  • the first electrode 18A and the organic light emitting layer 19 are separated from each other by the interelectrode insulating film 21 on the planarizing insulating film 17A, and are formed in a matrix in the substrates 10A and 10B, for example, in a rectangular shape as shown in FIG. Has been placed.
  • the second electrode 20 is a common electrode for each organic EL element EL, and is uniformly formed in the substrates 10A and 10B as shown in FIG.
  • the interelectrode insulating film 21 is made of, for example, an insulating material such as photosensitive polyimide resin.
  • a protective film (not shown) is uniformly formed on the second electrode 20 of the organic EL element EL, and a seal is not formed between the protective film (not shown) and the transparent substrate 10B.
  • the stop resin 17B is uniformly formed.
  • the first electrode 18A is an electrode (anode electrode or cathode electrode) for applying a voltage to the organic light emitting layer 19, and also serves as a reflective electrode for reflecting light from the organic light emitting layer 19 and guiding it upward. It is functioning. Therefore, the first electrode 18A is made of a highly reflective metal, for example, Al, an alloy mainly containing Al, such as an AlNd (neodymium) alloy or an AlCe alloy. Note that such a constituent material of the first electrode 18A has a property that the surface is easily oxidized (surface oxidation property).
  • the organic light emitting layer 19 is formed by sequentially depositing a hole transport layer, a light emitting layer, and an electron transport layer (not shown), and is sandwiched between the first electrode 18A and the second electrode 20.
  • a predetermined voltage is applied between the first electrode 18A and the second electrode 20
  • light emission can be obtained by carrier recombination of holes and electrons injected into the light emitting layer.
  • the light emitting layer is, for example, a light emitting layer for white light emission, and includes, for example, a laminate of a red light emitting film, a green light emitting film, and a blue light emitting film (all not shown).
  • the red light-emitting film, the green light-emitting film, and the blue light-emitting film are formed by applying a part of holes injected from the first electrode 18A through the hole injection layer and the hole transport layer to the second electrode 20 by applying an electric field. Are recombined with some of the electrons injected through the electron injection layer and the electron transport layer to generate red, green, and blue light, respectively.
  • the red light emitting film contains, for example, at least one of a red light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material.
  • the red light emitting material may be fluorescent or phosphorescent.
  • the red light-emitting film is formed by using 4,4-bis (2,2-diphenylbinine) biphenyl (DPVBi) and 2,6-bis [(4′-methoxydiphenylamino) styryl] -1,5-dicyanonaphthalene (BSN). ) Is mixed with 30% by weight.
  • the green light emitting film contains, for example, at least one of a green light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material.
  • the green light emitting material may be fluorescent or phosphorescent.
  • the green light emitting film is composed of, for example, DPVBi mixed with 5% by weight of coumarin 6.
  • the blue light emitting film contains, for example, at least one of a blue light emitting material, a hole transporting material, an electron transporting material, and a charge transporting material.
  • the blue light emitting material may be fluorescent or phosphorescent.
  • the blue light-emitting film is composed of, for example, DPVBi mixed with 2.5% by weight of 4,4′-bis [2- ⁇ 4- (N, N-diphenylamino) phenyl ⁇ vinyl] biphenyl (DPAVBi). Yes.
  • the second electrode 20 is also an electrode (an anode electrode or a cathode electrode) for applying a voltage to the organic light emitting layer 19. Since the second electrode 20 transmits light from the organic light emitting layer 19 and emits the light upward, it is a transparent or translucent electrode. Therefore, the second electrode 20 is made of, for example, ITO or IZO, which is a transparent material, or MgAg alloy, Cu, Ag, Mg, Al, or the like, which is a translucent material. Therefore, the light transmittance of the second electrode 20 is higher than the light transmittance of an auxiliary electrode layer 18B described later.
  • the second electrode 20 is formed by, for example, a sputtering film forming method.
  • an auxiliary electrode layer 18B is further provided in a region between the adjacent first electrodes 18A.
  • the auxiliary electrode layer 18B is provided in the first level L1 including the thin film transistor Tr, and the end face 18T is in contact with the second electrode 20 described later (see FIG. 4).
  • the auxiliary electrode layer 18B is formed on the gate insulating film 12 covering the surface 10AS of the substrate 10A.
  • the auxiliary electrode layer 18B is formed by, for example, a vacuum deposition method. Since the auxiliary wiring layer 18B is electrically connected to the second electrode 20, the in-plane non-uniformity of the electrode voltage in the second electrode 20 is alleviated.
  • the conductivity of the auxiliary electrode layer 18 ⁇ / b> B is higher than the conductivity of the second electrode 20.
  • the auxiliary electrode layer 18B has the same configuration as that of the wiring layer 15A of the thin film transistor Tr, for example. Therefore, for example, the light transmittance of the second electrode 20 is higher than the light transmittance of the auxiliary electrode layer 18B.
  • the thickness of the auxiliary electrode layer 18B is larger than the thickness of the organic light emitting layer 19, for example. If the thickness of the organic light emitting layer 19 is, for example, about 400 nm at the maximum, the thickness of the auxiliary electrode layer 18B may be, for example, 450 nm or more. Further, the end face 18T of the auxiliary electrode layer 18B is perpendicular to the surface 10AS of the substrate 10A or extends in an overhanging direction away from the substrate 10A (ie, upward). The auxiliary wiring layer 18B is covered with the planarization insulating film 17A and the interelectrode insulating film 21.
  • the region corresponding to a part of the auxiliary wiring layer 18B in the planarization insulating film 17A and the interelectrode insulating film 21 has a forward taper shape whose width increases from the substrate 10A toward the substrate 10B.
  • the opening K is provided.
  • the opening K is a communication between the opening 21K1 formed in the interelectrode insulating film 21 and the opening 17AK formed in the planarizing insulating film 17A.
  • the auxiliary wiring layer 18 ⁇ / b> B is exposed at the bottom of the opening K, and the end surface 18 ⁇ / b> T is in contact with the second electrode 20.
  • the organic light emitting layer 19 is not formed on the end face 18T of the auxiliary electrode layer 18B.
  • the end face 18T is covered with the second electrode 20. That is, the second electrode 20 is provided in common to all the organic EL elements EL so as to cover the entire display region 110.
  • the opening 21K1 of the interelectrode insulating film 21 a straight line connecting the upper end edge 21UT facing the end surface 18T of the auxiliary electrode layer 18B and the upper end edge 18UT of the end surface 18T, and a direction perpendicular to the surface 10AS of the substrate 10A
  • the formed angle ⁇ is preferably 45 ° or less. This is to more reliably avoid the organic light emitting layer 19 from adhering to the end face 18T when the display device 1 is formed.
  • An opening 21K2 is formed in a region of the interelectrode insulating film 21 corresponding to the first electrode 18A.
  • a color filter layer CF is provided between the sealing resin 17B and the substrate 10B.
  • the color filter layer CF includes, for example, three color filters, a red (R) filter, a green (G) filter, and a blue (B) filter.
  • Each organic EL element EL is assigned a red filter, a green filter, or a blue filter. Therefore, the white light from the organic light emitting layer 19 is converted into red light, green light, or blue light by passing through the red filter, green filter, or blue filter, respectively, and then emitted to the outside through the substrate 10B. .
  • FIGS. 5A to 5G are cross-sectional views showing a part of the manufacturing process of the organic EL display device 1.
  • the gate electrode 11 and the gate insulation are formed on the substrate 10A made of the above-described material by using, for example, sputtering, CVD (Chemical Vapor Deposition), and photolithography.
  • the film 12, the silicon film 13A, the stopper insulating film 14, the n + amorphous silicon film 13B, and the wiring layer 15A are stacked in this order to form, for example, a plurality of thin film transistors Tr arranged in a matrix.
  • the auxiliary electrode layer 18B is simultaneously formed on the gate insulating film 12 by using the same material as the wiring layer 15A and having the same stacked structure as the wiring layer 15A. Good. As shown in FIG. 3, the auxiliary electrode layer 18B is formed in a region between the adjacent first electrodes 18A.
  • the protective insulating film 16 is uniformly formed by, for example, a CVD method so as to cover the thin film transistor Tr and the auxiliary electrode layer 18B. However, it is preferable that a part of the upper surface of the auxiliary electrode layer 18B is exposed.
  • a planarization insulating film 17A is uniformly applied and formed on the protective insulating film 16 by, for example, a spin coat method or a slit coat method.
  • the planarization insulating film 17A in the region corresponding to the auxiliary electrode layer 18B is exposed and developed by, for example, photolithography, and further baked to form the opening 17AK having the forward tapered slope 17AS.
  • the planarization insulating film 17A and the protective insulating film 16 in the vicinity of the end face 18T are removed so that the end face 18T of the auxiliary electrode layer 18B is exposed.
  • the inclination of the inclined surface 17AS in the forward tapered opening 17AK is appropriately set depending on the film thickness and the forming method of the second electrode 20 to be formed later.
  • the above-described constituent materials of the first electrode 18A and the auxiliary electrode layer 18C are used.
  • the metal layer 18 is uniformly formed by sputtering.
  • the metal layer 18 is selectively etched by, for example, photolithography, so that the first electrode 18A and the auxiliary electrode layer 18C having the shapes shown in FIGS. Form.
  • the first electrode 18A is formed at a position corresponding to each thin film transistor Tr.
  • patterning is performed so that a part of the auxiliary electrode layer 18C is electrically connected to the auxiliary electrode layer 18B.
  • the auxiliary electrode layer 18 ⁇ / b> B is made of a material having a high etching selectivity with respect to the metal layer 18. For this reason, when the metal layer 18 is etched, the auxiliary electrode layer 18B can be avoided from being etched at the same time.
  • the etching at this time is performed by wet etching using, for example, a mixed acid of phosphoric acid, nitric acid and acetic acid.
  • an interelectrode insulating film 21 made of the above-described material is formed on the planarizing insulating film 17A, the first electrode 18A, and the auxiliary electrode layers 18B and 18C by, for example, spin coating or slit coating.
  • the coating is uniformly formed by the method, and is patterned by a photolithography method so that the first electrode 18A is separated from each other in a predetermined shape, that is, the first electrode 18A.
  • the region corresponding to the auxiliary electrode layer 18B is selectively removed by, for example, photolithography, and the opening 21K1 having a forward tapered side surface is formed, so that the opening 21K1 and the opening 17AK communicate with each other.
  • An opening K is obtained.
  • the side surface of the opening K including the inclined surface 21S and the inclined surface 17AS may be formed in a stepped shape, or the side surface of the opening K may have no step.
  • a straight line connecting the upper end edge 21UT facing the end surface 18T of the auxiliary electrode layer 18B and the upper end edge 18UT of the end surface 18T, and a direction perpendicular to the surface 10AS of the substrate 10A The formed angle ⁇ is preferably 45 ° or less. This is because when the organic light emitting layer 19 is formed, the organic light emitting layer 19 is more reliably avoided from adhering to the end face 18T.
  • the region corresponding to the first electrode 18A is selectively removed in the same manner to form the opening 21K2 having a forward tapered side surface.
  • the organic light emitting layer 19 is formed on each first electrode 18A by, for example, a vacuum deposition method.
  • the organic light emitting layer 19 is also formed in the interelectrode insulating film 21, but the organic light emitting layer 19 is not formed on the end face 18T of the auxiliary electrode layer 18B.
  • the end surface 18T of the auxiliary electrode layer 18B is a steep slope, so that the organic material hardly wraps around, and as a result, the organic material hardly adheres.
  • the organic light emitting layer 19 covering the gate insulating film 12 and the organic light emitting layer 19 covering the upper surface of the auxiliary electrode layer 18B are reliably separated. This is because the thickness of the auxiliary electrode layer 18B is larger than the thickness of the organic light emitting layer 19.
  • the upper surface of the first electrode 18A exposed as the bottom surface of the opening 21K2 is entirely covered with the organic light emitting layer 19.
  • the second electrode 20 made of the above-described material is uniformly formed by, for example, a sputtering film forming method so as to cover the whole.
  • the second electrode 20 is formed so as to cover the end face 18T of the auxiliary electrode layer 18B where the organic light emitting layer 19 is not formed.
  • the inorganic material constituting the second electrode 20 is easier to wrap around the side surface of the object to be sputtered (here, the planarization insulating film 17A and the interelectrode insulating film 21) as compared with the organic material.
  • the second electrode 20 is also formed on the organic light emitting layer 19 covering the opening 21K2, and the organic EL element EL is obtained.
  • the protective film 23 made of the above-described material is uniformly formed on the second electrode 20 by, for example, the CVD method, and the sealing resin 17B is uniformly formed on the protective film 23 by, for example, the drop injection method.
  • the display device 1 of the present embodiment shown in FIGS. 1 and 2 is manufactured by forming and sandwiching the substrate 10B made of the above-described material.
  • the organic light emitting layer 19 emits light with a luminance corresponding to the potential difference with the second electrode 20.
  • the light from the organic light emitting layer 19 passes through the second electrode 20 while being reflected by the first electrode 18A, and is emitted upward, that is, from the substrate 10B.
  • a predetermined image is displayed on the organic EL display device 1 by emitting light corresponding to the pixel signal from the organic EL element EL arranged in each pixel.
  • any one of a red filter, a green filter, and a blue filter is assigned to each organic EL element EL. For this reason, white light emitted from the organic light emitting layer 19 in each organic EL element EL is converted into red light, green light, or blue light, respectively, and emitted from the substrate 10B.
  • Some organic EL display devices obtain different emission colors for each organic EL element by separately coating each organic EL element with a light emitting layer made of an organic light emitting material that emits light of each color.
  • a light emitting layer made of an organic light emitting material that emits light of each color it is necessary to pattern the light-emitting layer made of an organic light-emitting material that emits light of each color so as to be a part that becomes each individually partitioned pixel.
  • a low molecular organic light emitting material is known to be deposited by a vacuum process through a shadow mask
  • a polymer organic light emitting material is known to be a printing technique using an ink jet. .
  • the organic light emitting layer 19 common to all the organic EL elements EL is collectively formed over the entire surface of the display region 110, and the white light from the organic light emitting layer 19 is applied to the color filter layer CF. Therefore, attention is paid to a configuration in which each color is separated.
  • the resistivity of the material constituting the transparent electrode on the sealing panel side, that is, the second electrode 20 is higher than the resistivity of copper or the like. Therefore, in the present embodiment, in order to reduce variation in light emission luminance in the display region 110, the second electrode 20 is connected to the auxiliary electrode layer 18B provided separately, and the voltage drop in the surface of the second electrode 20 is reduced. Like to do. However, for example, like the display device 101 as the first reference example shown in FIG.
  • the opening KK is simply formed so as to expose the upper surface of the auxiliary electrode layer 18B provided in the first layer L1
  • the organic light emitting layer 19 is formed over the entire surface of the display region 110 so as to fill the opening KK, it becomes difficult to conduct the second electrode 20 and the auxiliary electrode layer 18. This is because the organic light emitting layer 19 covers the entire upper surface of the auxiliary electrode layer 18B.
  • the display device 101 has insufficient light emission luminance, making it difficult to display a high-quality image. Therefore, in order to solve such a problem, a part of the organic light emitting layer 19 covering the upper surface of the auxiliary electrode layer 18 is selectively used like the display device 102 as the second reference example shown in FIG. 6B.
  • the second electrode 20 After the removal, the second electrode 20 needs to be formed. However, since patterning accuracy is also required in this case, it is difficult to cope with further higher definition and miniaturization of each organic EL element EL. In addition, the manufacturing process becomes complicated. Such a problem is caused by, for example, the opening KK so as to expose the upper surface of the auxiliary electrode layer 18B provided in the second layer L2, as in the display device 103 as the third reference example shown in FIG. 6C. This also occurs in the same way.
  • the second electrode 20 that covers the display region 110 is provided so as to be in contact with the end face 18T of the auxiliary electrode layer 18B.
  • the connection resistance can be sufficiently reduced in a smaller region as compared with the case where the second electrode 20 is in contact with only the upper surface of the auxiliary electrode layer 18B.
  • the auxiliary electrode layer 18B is provided in the first layer L1 including the thin film transistor Tr. For this reason, the connection resistance between the second electrode 20 and the auxiliary electrode layer 18B can be sufficiently reduced without deteriorating the light emitting performance of the organic EL element EL.
  • the thickness of the auxiliary electrode layer 18B is the same as the thickness of the first electrode 18A. The thickness of the first electrode 18A cannot be made too large in order to ensure the flatness of the first electrode 18A. This is because if the flatness of the first electrode 18A is impaired, the light emission performance of the organic EL element EL is lowered.
  • the width must be increased, and as a result, the occupation area may be increased.
  • such a problem can be solved by providing the auxiliary electrode layer 18B in the first layer L1 and ensuring a sufficient thickness.
  • the auxiliary electrode layer 18B is disposed inside the display area 110 as an active area, and the auxiliary electrode layer 18B and the second electrode 20 are connected inside the display area 110. I have to. For this reason, for example, a so-called frame region, which is necessary when an auxiliary electrode layer is provided around the display region 110 and a potential is applied from the auxiliary electrode layer to the second electrode, becomes unnecessary. In addition, when an auxiliary electrode layer is provided around the display region 110, it is necessary to increase the thickness of the second electrode in order to alleviate the voltage drop at the second electrode on a relatively large screen. As a result, the transmittance of the second electrode is lowered.
  • the thickness of the second electrode 20 is reduced while the second electrode 20 is reduced in thickness.
  • a voltage drop at the two electrodes 20 can also be suppressed.
  • the display device 1 of the present embodiment is suitable for higher integration and can exhibit good display performance.
  • the opening K when the opening K is formed, the end face 18T of the auxiliary electrode layer 18B is exposed, and the organic light emitting layer 19 is selectively formed by vacuum deposition.
  • the second electrode 20 is formed over the entire surface by a sputtering film formation method. That is, only the difference between the adhesion characteristics of the organic material by the vacuum deposition method and the adhesion characteristics of the inorganic material by the sputter deposition method is used, and patterning or the like is added to the organic light emitting layer 19 after the deposition. No processing is done. Therefore, it is possible to cope with further higher definition and miniaturization of the organic EL element EL while simplifying the manufacturing process.
  • FIG. 7 illustrates a cross-sectional configuration of a main part of an organic EL display device (display device 2) as a modification of the above embodiment.
  • the configuration of the auxiliary electrode layer 18B included in the first layer L1 is the same as the configuration of the wiring layer 15A of the thin film transistor Tr.
  • the auxiliary electrode layer 18B includes a first layer 18B1 having the same configuration as the gate electrode 11 of the thin film transistor Tr, and a second layer 18B2 having the same configuration as the wiring layer 15A of the thin film transistor Tr.
  • the other configuration is the same as that of the display device 1 of the first embodiment.
  • the first layer 18B1 is formed together with the gate electrode 11 and the second layer 18B2 is formed together with the wiring layer 15A.
  • the gate insulating film 12 covering the first layer 18B1 is removed before forming the second layer 18B2.
  • auxiliary electrode layer 18B has a two-layer structure of the first layer 18B1 and the second layer 18B2, the auxiliary electrode layer is maintained while maintaining the overall thickness as compared with the display device 1.
  • the thickness of 18B can be further increased.
  • the cross-sectional area of the auxiliary electrode layer 18B can be further increased, and the voltage drop of the second electrode 20 can be further reduced. For this reason, further improvement in display performance can be expected.
  • the display device display devices 1 and 2 as described above to an electronic device
  • Examples of the electronic device include a television device, a digital camera, a notebook personal computer, a mobile terminal device such as a smartphone, or a video camera. That is, the display device can be applied to electronic devices in various fields that display a video signal input from the outside or a video signal generated inside as an image or video.
  • the display device is incorporated into various electronic devices including an application example described later, for example, as a module shown in FIG.
  • a region 61 protruding from the substrate 10B is provided on one side of the substrate 10A, and wirings of the signal line drive circuit 120, the scanning line drive circuit 130, and the power supply line supply circuit 140 are extended to the region 61.
  • External connection terminals (first peripheral electrode, second peripheral electrode, etc.) are formed.
  • the external connection terminal may be provided with a flexible printed circuit (FPC) 62 for signal input / output.
  • FPC flexible printed circuit
  • FIG. 9 illustrates an appearance of a smartphone to which the display device of the above embodiment is applied.
  • This smartphone has, for example, a display unit 230 and a non-display unit 240, and the display unit 230 is configured by the display device of the above embodiment.
  • the distance in the thickness direction between the upper end edge 21UT of the interelectrode insulating film 21 and the upper end edge 18UT of the end face 18T is set to 5000 nm.
  • the organic light emitting layer 19 was formed to have a film thickness of 120 nm by a vacuum vapor deposition method using a vapor deposition mask with a full opening. At this time, the end face 18T was not covered.
  • the second electrode 20 was formed to have a film thickness of 150 nm using IZO by a magnetron sputtering film forming method.
  • the protective film 23 was formed using SiNx by a CVD method.
  • Example 2 A sample of the display device 101 shown in FIG. 6A was produced. That is, the opening KK is formed so as to expose only the upper surface of the auxiliary electrode layer 18B, and the organic light emitting layer 19 and the second electrode 20 are formed so as to entirely cover the slope of the opening KK and the upper surface of the auxiliary electrode layer 18B. Formed.
  • the light emission test of the organic EL element EL was performed for each sample of the above experimental examples 1 and 2. As a result, the sample of Experimental Example 1 emitted sufficient luminance, but the sample of Experimental Example 2 did not emit light.
  • the organic light-emitting elements EL that emit white light have been described as examples.
  • the present technology is not limited to this.
  • an organic light emitting element EL that emits red light, green light, and blue light may be used.
  • light of a desired wavelength may be extracted by changing the distance (that is, the optical distance) between the first electrode 18A and the second electrode 20.
  • the present technology can also be applied to a passive matrix display device.
  • the configuration of the pixel driving circuit for active matrix driving is not limited to that described in the above embodiment, and a capacitor or a transistor may be added as necessary. In that case, other driving circuits may be added in addition to the signal line driving circuit 120 and the scanning line driving circuit 130 described above in accordance with the change of the pixel driving circuit.
  • this technique can take the following structures.
  • a substrate An organic light emitting device including a stacked structure in which a first electrode layer, an organic light emitting layer, and a second electrode layer are sequentially stacked on the substrate;
  • a driving element provided on the substrate and driving the organic light emitting element;
  • a display device comprising: an auxiliary electrode layer including an end surface provided on the substrate and in contact with the second electrode layer.
  • the auxiliary electrode layer is provided in a hierarchy including the driving element.
  • a thickness of the auxiliary electrode layer is larger than a thickness of the organic light emitting layer.
  • the conductivity of the auxiliary electrode layer is higher than the conductivity of the second electrode layer.
  • the end surface of the auxiliary electrode layer is perpendicular to the surface of the substrate or extends in an overhanging direction away from the substrate.
  • the drive element has a wiring layer;
  • the drive element has a gate electrode;
  • the auxiliary electrode layer is formed by a vacuum deposition method,
  • a portion of the auxiliary electrode layer is covered with an insulating layer;
  • An electronic device provided with a display device, The display device A substrate; An organic light emitting device including a stacked structure in which a first electrode layer, an organic light emitting layer, and a second electrode layer are sequentially stacked on the substrate; A driving element provided on the substrate and driving the organic light emitting element; And an auxiliary electrode layer including an end surface provided on the base and in contact with the second electrode layer.

Abstract

 この表示装置は、基体と、基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、基体上に設けられ、有機発光素子を駆動する駆動素子と、基体上に設けられ、第2電極層と接する端面を含む補助電極層とを有する。

Description

表示装置およびその製造方法、ならびに電子機器
 本開示は、有機発光素子を有する表示装置およびその製造方法、ならびにこの表示装置を備えた電子機器に関する。
 近年、有機EL(Electro Luminescence)現象を利用して映像を表示する有機EL表示装置が注目されている。
 有機EL表示装置には、各有機EL素子からの光を上記駆動パネル側に射出する下面発光(ボトム・エミッション)方式と、逆にこの光を上記封止パネル側に射出する上面発光(トップエミッション)方式とがあるが、後者のほうが開口率を高くすることができるため、開発の主流となっている。
 ここで、上面発光方式の有機EL表示装置では、光取り出し側、すなわち封止パネル側の電極は、各有機EL素子に共通の電極であると共に、例えばITO(Indium Tin Oxide;酸化インジウムスズ)などの光透過性の導電材料により構成されている。ところが、このような光透過性の導電材料は通常の金属材料などと比べ、抵抗率が2~3桁程度高くなっている。よって、この光取り出し側の電極へ印加された電圧が面内で不均一となるため、各有機EL素子間の発光輝度に位置ばらつきが生じ、表示品質が低下してしまうという問題があった。
 そこで、本出願人は、低抵抗の補助配線と光取り出し側の電極とを、導電性のコンタクト部を介して接続するようにした技術を開示している(例えば特許文献1参照)。
特開2012―230928号公報
 しかしながら上記特許文献1の技術では、その製造過程において蒸着マスクを用いた塗り分けが必要となる。このため、そのような製造過程が有機EL表示装置におけるさらなる高集積化や微細化を図る上での妨げとなる可能性がある。
 したがって、より高集積化に適し、良好な表示性能を発揮することのできる表示装置およびその製造方法、ならびにこの表示装置を備えた電子機器を提供することが望ましい。
 本開示の一実施形態としての表示装置は、基体と、その基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、基体上に設けられ、有機発光素子を駆動する駆動素子と、基体上に設けられ、第2電極層と接する端面を含む補助電極層とを有する。また、本開示の一実施形態としての電子機器は、上記表示装置を備えたものである。
 本開示の一実施形態としての表示装置の製造方法は、以下の<1>~<7>の各操作を含むものである。
<1>基体上に、駆動素子および補助電極層を形成すること。
<2>駆動素子および補助電極層を覆うように第1絶縁層を形成すること。
<3>第1絶縁層の一部に第1の開口を形成し、補助電極層の端面を露出させること。
<4>第1絶縁層の上に第1電極層を選択的に形成すること。
<5>第1絶縁層の上に、第1電極層と対応する位置に第2の開口を有すると共に補助配線層と対応する位置に第1の開口と連通する第3の開口を有する第2の絶縁層を形成すること。
<6>補助配線層の端面を覆うことなく第1電極層を覆うように有機発光層を形成すること。
<7>有機発光層を覆うと共に補助配線層の端面をも覆うように第2電極層を形成すること。
 本開示の一実施形態としての表示装置およびその製造方法、ならびに電子機器では、第2電極層が補助配線層の端面と接するようにしたので、微小領域であっても接続抵抗が十分に低減される。
 本開示の一実施形態としての表示装置およびその製造方法、電子機器によれば、高集積化を実現しつつ、良好な表示性能を発揮することができる。なお、本開示の効果はこれに限定されるものではなく、以下の記載のいずれの効果であってもよい。
本開示の一実施の形態に係る表示装置の全体構成を表す概略図である。 図1に示した画素駆動回路の一例を表す図である。 図1に示した表示領域の一例を表す平面図である。 図3に示したIV-IV線に沿った断面を表す断面図である。 図1に示した表示装置の製造方法の一工程を表す断面図である。 図5Aに続く一工程を表す断面図である。 図5Bに続く一工程を表す断面図である。 図5Cに続く一工程を表す断面図である。 図5Dに続く一工程を表す断面図である。 図5Eに続く一工程を表す断面図である。 図5Fに続く一工程を表す断面図である。 第1の参考例としての表示装置の要部構成を表す断面図である。 第2の参考例としての表示装置の要部構成を表す断面図である。 第3の参考例としての表示装置の要部構成を表す断面図である。 第1の変形例としての表示装置の要部構成を表す断面図である。 図1および図7に示した表示装置を含むモジュールの概略構成を表す平面図である。 図1および図7に示した表示装置の適用例としてのスマートフォンの外観を表す斜視図である。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.一実施の形態(基本構成の表示装置)
2.変形例
3.適用例
4.実験例
<1.実施の形態>
[表示装置1の構成]
 図1~図4を参照して、本開示における一実施の形態としての有機EL表示装置1(以下、単に表示装置1という。)について説明する。図1は、表示装置1の全体構成を表すものである。表示装置1は、極薄型の有機ELカラーディスプレイ装置などとして用いられるものであり、例えば、透明な基板10Aの上に、後述する複数の有機EL素子ELがマトリクス状に配置されてなる表示領域110が形成されると共に、この表示領域110の周辺に、映像表示用のドライバである信号線駆動回路120および走査線駆動回路130が形成されたものである。
 表示領域110内には画素駆動回路140が形成されている。図2は、画素駆動回路140の一例を表したものである。この画素駆動回路140は、後述する第1電極18Aの下層、すなわち基板10Aと第1電極18Aとの間に形成されている。画素駆動回路140は、駆動トランジスタTr1および書き込みトランジスタTr2と、その間のキャパシタ(保持容量)Csと、有機EL素子ELとを有するアクティブ型の駆動回路である。有機EL素子ELは、第1の電源ライン(Vcc)と第2の電源ライン(GND)との間において駆動トランジスタTr1に直列に接続されている。駆動トランジスタTr1および書き込みトランジスタTr2は、一般的な薄膜トランジスタ(TFT(Thin Film Transistor))により構成される。駆動トランジスタTr1および書き込みトランジスタTr2は、例えば逆スタガー構造(いわゆるボトムゲート型)を有する。ただし、スタガー構造(トップゲート型)でもよい。
 画素駆動回路140は、例えば列方向に伸びる複数の信号線120Aと、行方向に伸びる複数の走査線130Aとを有する。各信号線120Aと各走査線130Aとの各交差点に対応して、複数の有機EL素子ELのいずれか1つ(サブピクセル)が設けられている。各信号線120Aは信号線駆動回路120に接続され、この信号線駆動回路120から信号線120Aを介して書き込みトランジスタTr2のソース電極に画像信号が供給されるようになっている。各走査線130Aは走査線駆動回路130に接続され、この走査線駆動回路130から走査線130Aを介して書き込みトランジスタTr2のゲート電極に走査信号が順次供給されるようになっている。
 図3は、表示装置1の表示領域110の平面構成を表すものであり、図4は図3におけるIV-IV線に沿った矢視方向の断面構成を示している。
 図4に示したように、表示装置1は、一対の絶縁性の基板10A,10Bの間に、例えば薄膜トランジスタTrを含む第1の階層L1と、有機EL素子ELを含む第2の階層L2とが順に積層された構造を有している。薄膜トランジスタTrは、基板10Aの上にゲート電極11と、ゲート絶縁膜12と、シリコン膜13Aと、ストッパ絶縁膜14と、n+非晶質シリコン膜13Bと、ソース電極およびドレイン電極としての配線層15Aとが順に積層されたものである。さらに、薄膜トランジスタTrの上には、絶縁性の保護絶縁膜(パッシベーション膜)16と平坦化絶縁膜17Aとが順に積層されている。有機EL素子ELは、平坦化絶縁膜17Aの上に形成されている。
 基板10A,10Bは、例えばガラス材料やプラスチック材料などの透明な絶縁性材料により構成される。
 薄膜トランジスタTrは、各有機EL素子ELを発光駆動させるための駆動トランジスタTr1である。このうち、ゲート電極11は、例えばモリブデン(Mo)などにより構成される。また、シリコン膜13Aは薄膜トランジスタTrのチャネル領域を形成する部分であり、例えば非晶質シリコン膜などにより構成される。
 配線層15Aは、薄膜トランジスタTrのソース電極およびドレイン電極を構成すると共に、信号線などの配線としての機能をも有している。配線層15Aの構成材料としては、例えば、チタン(Ti)、窒化チタン(TiN)、Al、Mo、タングステン(W)、クロム(Cr)、金(Au)、白金(Pt)、銅(Cu)、ITO、IZO(Indium Zinc Oxide ;酸化インジウム亜鉛)もしくは銀(Ag)、またはこれらの金属材料を主成分とする合金などが挙げられる。
 また、配線層15Aは、例えばMo/Al/Ti、Mo/(AlSi合金)/ Ti、Mo/(AlSiCu合金)/TiまたはMo/(AlCe(セリウム)合金)/ Ti、のような積層構造を有していてもよい。
 保護絶縁膜16は、薄膜トランジスタTrを保護するためのものであり、例えばSiO2、SiNまたはSiONのうちの少なくとも1種からなる絶縁材料により構成される。また、平坦化絶縁膜17Aは、層構造を平坦化してその上に有機EL素子ELを形成するためのものであり、例えば感光性のポリイミド樹脂、ポリベンズオキサゾール樹脂、ノボラック樹脂、ポリヒドロキシスチレンまたはアクリル樹脂などの絶縁性材料により構成される。
 各有機EL素子ELは、平坦化絶縁膜17Aの上に、第1電極18Aと、有機発光層19と、第2電極20とが順に積層された積層構造を有している。このうち第1電極18Aおよび有機発光層19は、平坦化絶縁膜17A上の電極間絶縁膜21によって互いに分離され、例えば図3に示したような矩形状によって基板10A,10B内でマトリクス状に配置されている。一方、第2電極20は、各有機EL素子ELに対して共通の電極であり、図4に示したように、基板10A,10B内に一様に形成されている。なお、電極間絶縁膜21は、例えば感光性のポリイミド樹脂などの絶縁性材料により構成される。このような有機EL素子ELの第2電極20上には、たとえば保護膜(図示せず)が一様に形成され、この保護膜(図示せず)と透明基板10Bとの層間には、封止樹脂17Bが一様に形成されている。このような構成により、表示装置1は、有機発光層19から発せられた光を、最終的に第2電極20側(基板10B側)、すなわち上方から射出するようになっており、いわゆる上面発光型の構造をなしている。
 第1電極18Aは、有機発光層19に電圧を印加するための電極(アノード電極またはカソード電極)であると共に、この有機発光層19からの光を反射して上方へ導くための反射電極としても機能している。よって、この第1電極18Aは、反射率の高い金属、例えばAlや、AlNd(ネオジム)合金またはAlCe合金などのAlを主成分とする合金などにより構成される。なお、このような第1電極18Aの構成材料は、表面が酸化されやすいという性質(表面酸化性)を有している。
 有機発光層19は、図示しない正孔輸送層、発光層および電子輸送層を順次堆積させたものであり、第1電極18Aおよび第2電極20によって挟持されている。そしてこれら第1電極18Aと第2電極20との間に所定の電圧を印加すると、発光層内に注入された正孔および電子のキャリア再結合によって、発光が得られるようになっている。
 発光層は例えば白色発光用の発光層であり、例えば赤色発光膜、緑色発光膜および青色発光膜(いずれも図示せず)の積層体を有している。赤色発光膜,緑色発光膜および青色発光膜は、電界をかけることにより、第1電極18Aから正孔注入層および正孔輸送層を介して注入された正孔の一部と、第2電極20から電子注入層および電子輸送層を介して注入された電子の一部とが再結合して、それぞれ赤色,緑色および青色の光を発生させるものである。
 赤色発光膜は、例えば、赤色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。赤色発光材料は、蛍光性のものでも燐光性のものでもよい。赤色発光膜は、例えば4,4-ビス(2,2-ジフェニルビニン)ビフェニル(DPVBi)に2,6-ビス[(4’-メトキシジフェニルアミノ)スチリル]-1,5-ジシアノナフタレン(BSN)を30重量%混合したものにより構成されている。
 緑色発光膜は、例えば、緑色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。緑色発光材料は、蛍光性のものでも燐光性のものでもよい。緑色発光膜は、例えば、DPVBiにクマリン6を5重量%混合したものにより構成されている。
 青色発光膜は、例えば、青色発光材料,正孔輸送性材料,電子輸送性材料および両電荷輸送性材料のうち少なくとも1種を含んでいる。青色発光材料は、蛍光性のものでも燐光性のものでもよい。青色発光膜は、例えば、DPVBiに4,4’-ビス[2-{4-(N,N-ジフェニルアミノ)フェニル}ビニル]ビフェニル(DPAVBi)を2.5重量%混合したものにより構成されている。
 第2電極20も、有機発光層19に電圧を印加するための電極(アノード電極またはカソード電極)である。第2電極20は、この有機発光層19からの光を透過して上方へ射出するため、透明または半透明の電極となっている。よって、この第2電極20は、例えば、透明材料であるITOやIZO、または半透明材料であるMgAg合金やCu、Ag、Mg、Alなどにより構成される。したがって、第2電極20の光透過率は、後述の補助電極層18Bの光透過率よりも高い。また、第2電極20は、例えばスパッタ成膜法により形成されたものである。
 図3および図4に示したように、隣り合う第1電極18A同士の間の領域には、補助電極層18Bがさらに設けられている。補助電極層18Bは、薄膜トランジスタTrを含む第1の階層L1に設けられており、その端面18Tが、後述する第2電極20と接している(図4参照)。補助電極層18Bは、例えば基板10Aの表面10ASを覆うゲート絶縁膜12の上に形成されている。補助電極層18Bは、例えば真空蒸着法により形成されたものである。補助配線層18Bが第2電極20と電気的に接続されていることにより、第2電極20における電極電圧の面内不均一性が緩和される。したがって、補助電極層18Bの導電率は、第2電極20の導電率よりも高いことが望ましい。具体的には、補助電極層18Bは、例えば薄膜トランジスタTrの配線層15Aの構成と同じ構成である。したがって、例えば第2電極20の光透過率は、補助電極層18Bの光透過率よりも高い。
 補助電極層18Bの厚さは、例えば有機発光層19の厚さよりも大きい。有機発光層19の厚さは例えば最大で400nm程度とすれば、補助電極層18Bの厚さは例えば450nm以上であるとよい。また、補助電極層18Bの端面18Tは、基板10Aの表面10ASに対して垂直をなし、または、基板10Aから離れる方向(すなわち上方)へオーバーハング状に伸びている。補助配線層18Bは、平坦化絶縁膜17Aおよび電極間絶縁膜21に覆われている。但し、平坦化絶縁膜17Aおよび電極間絶縁膜21のうちの補助配線層18Bの一部に対応する領域(図4参照)には、基板10Aから基板10Bへ向かうほど幅が拡大する順テーパ状の開口Kが設けられている。開口Kは、電極間絶縁膜21に形成された開口21K1と、平坦化絶縁膜17Aに形成された開口17AKとが連通したものである。この開口Kの底部では補助配線層18Bが露出しており、その端面18Tが第2電極20と接している。有機発光層19は、補助電極層18Bの端面18Tには形成されていない。端面18Tは第2電極20により覆われている。すなわち、第2電極20は、表示領域110を全面的に覆うように、全ての有機EL素子ELに対して共通に設けられている。また、電極間絶縁膜21の開口21K1における、補助電極層18Bの端面18Tと対向する上端縁21UTと、端面18Tにおける上端縁18UTとを結ぶ直線と、基板10Aの表面10ASに垂直な方向とのなす角度θは45°以下であるとよい。表示装置1を形成する際、端面18Tに有機発光層19が付着するのをより確実に回避するためである。また、電極間絶縁膜21の、第1電極18Aと対応する領域には開口21K2が形成されている。
 封止樹脂17Bと基板10Bとの間には、カラーフィルタ層CFが設けられている。カラーフィルタ層CFは、例えば、赤色(R)フィルタ、緑色(G)フィルタおよび青色(B)フィルタの3色のフィルタを含んでいる。各有機EL素子ELには、赤色フィルタ、緑色フィルタまたは青色フィルタのいずれかが割り当てられている。このため、有機発光層19からの白色光が赤色フィルタ、緑色フィルタまたは青色フィルタをそれぞれ透過することにより赤色光、緑色光または青色光にそれぞれ変換されたのち、基板10Bを介して外部へ発せられる。
 次に、図5A~図5Gを参照して、表示装置1の製造方法について説明する。図5A~図5Gはそれぞれ、有機EL表示装置1の製造工程の一部を断面図で表したものである。
 まず、図5Aに示したように、前述した材料よりなる基板10A上に、例えばスパッタ法、CVD(Chemical Vapor Deposition ;化学気相成長)法およびフォトリソグラフィ法を用いて、ゲート電極11、ゲート絶縁膜12、シリコン膜13A、ストッパ絶縁膜14、n+非晶質シリコン膜13Bおよび配線層15Aをこの順に積層し、例えばマトリクス状に配置された複数の薄膜トランジスタTrをそれぞれ形成する。
 ここで、配線層15Aを例えばスパッタ法により形成する際に、この配線層15Aと同一の材料を用いて、配線層15Aと同じ積層構造として、補助電極層18Bをゲート絶縁膜12上に同時に形成するとよい。補助電極層18Bの形成位置は、図3に示したように、隣り合う第1電極18A同士の間の領域とする。なお、これら配線層15Aおよび補助電極層18Bの各材料は、後述する金属層18のエッチング方法により適宜選択され、例えば後述するようにリン酸、硝酸および酢酸の混合酸を用いてウエットエッチングにより行う場合、Ti/Al/Tiの多層膜とすることができ、その場合の膜厚としては、例えばTi/Al/Ti=200nm/500nm/200nm程度とする。
 薄膜トランジスタTrおよび補助電極層18Bを形成したのち、これら薄膜トランジスタTrおよび補助電極層18Bを覆うように、保護絶縁膜16を、例えばCVD法により一様に形成する。但し、補助電極層18Bの上面の一部が露出するようにするとよい。
 続いて、図5Bに示したように、保護絶縁膜16上に、例えばスピンコート法やスリットコート法により平坦化絶縁膜17Aを一様に塗布形成する。そののち、補助電極層18Bに対応する領域の平坦化絶縁膜17Aに対し例えばフォトリソグラフィ法によって露光および現像を行い、さらに焼成を行うことにより、順テーパ形状の斜面17ASを有する開口17AKを形成する。この際、補助電極層18Bの端面18Tが露出するように、端面18Tの近傍の平坦化絶縁膜17Aおよび保護絶縁膜16を除去する。なお、この順テーパ形状の開口17AKにおける斜面17ASの斜度は、のちに形成する第2電極20の膜厚や形成方法によって適宜設定する。
 次に、図5Cに示したように、平坦化絶縁膜17Aおよび補助電極層18B上に、例えば前述した第1電極18Aおよび補助電極層18Cの構成材料(この例では、金属材料)を用いて、例えばスパッタ法により金属層18を一様に形成する。
 そののち、図5Dに示したように、金属層18を例えばフォトリソグラフィ法によって選択的にエッチングすることにより、図3および図4に示した形状を有する第1電極18Aおよび補助電極層18Cをそれぞれ形成する。この際、第1電極18Aを、各薄膜トランジスタTrに対応する位置に形成する。また、補助電極層18Cの一部が補助電極層18Bと電気的に接続されるようにパターニングする。ここで、補助電極層18Bは、金属層18に対してエッチング選択比の高い材料から構成されている。このため、金属層18をエッチングする際に補助電極層18Bも同時にエッチングされてしまうのを回避することができる。なお、このときのエッチングは、例えばリン酸、硝酸および酢酸の混合酸を用いたウエットエッチングにより行う。
 次に、図5Eに示したように、平坦化絶縁膜17A、第1電極18Aおよび補助電極層18B,18C上に、前述した材料よりなる電極間絶縁膜21を、例えばスピンコート法やスリットコート法により一様に塗布形成し、例えばフォトリソグラフィ法によって所定の形状、すなわち各第1電極18Aが互いに分離されるようにパターニングする。また、この際、補助電極層18Bに対応する領域を例えばフォトリソグラフィ法によって選択的に除去し、順テーパ形状の側面を有する開口21K1を形成することで、開口21K1と開口17AKとが連通してなる開口Kを得る。このとき、開口Kの、斜面21Sおよび斜面17ASを含む側面が階段状となるように形成されてもよいし、開口Kの側面を、段差を有さないものとしてもよい。また、電極間絶縁膜21の開口21K1における、補助電極層18Bの端面18Tと対向する上端縁21UTと、端面18Tにおける上端縁18UTとを結ぶ直線と、基板10Aの表面10ASに垂直な方向とのなす角度θを45°以下とするとよい。有機発光層19を形成する際、端面18Tに有機発光層19が付着するのをより確実に回避するためである。また、開口21K1の形成と併せて、第1電極18Aと対応する領域を同様にして選択的に除去し、順テーパ形状の側面を有する開口21K2を形成する。
 次に、図5Fに示したように、各第1電極18A上に有機発光層19を、例えば真空蒸着法により形成する。このとき、電極間絶縁膜21にも有機発光層19が形成されるが、補助電極層18Bの端面18Tには有機発光層19が形成されない。補助電極層18Bの端面18Tは急斜面であるので、有機材料の回り込みが生じにくく、その結果有機材料が付着しにくいからである。また、ゲート絶縁膜12を覆う有機発光層19と、補助電極層18Bの上面を覆う有機発光層19とは、確実に分離される。有機発光層19の厚さよりも補助電極層18Bの厚さのほうが大きいからである。これに対し、開口21K2の底面として露出した第1電極18Aの上面は、有機発光層19によって全面的に覆われる。
 そののち、図5Gに示したように、全体を覆うように、例えばスパッタ成膜法により前述した材料よりなる第2電極20を一様に形成する。このとき、有機発光層19が形成されなかった補助電極層18Bの端面18Tをも覆うように第2電極20が形成される。有機材料に比べ、第2電極20を構成する無機材料は、スパッタ成膜される対象物(ここでは平坦化絶縁膜17Aおよび電極間絶縁膜21)の側面への回り込みが容易であるからである。また、開口21K2を覆う有機発光層19の上にも第2電極20が形成され、有機EL素子ELが得られる。
 最後に、第2電極20上に、例えばCVD法により前述した材料によりなる保護膜23を一様に形成すると共に、この保護膜23上に封止樹脂17Bを、例えば滴下注入法により一様に形成し、これを前述した材料よりなる基板10Bで挟み込むことにより、図1および図2に示した本実施の形態の表示装置1が製造される。
[表示装置1の動作]
 表示装置1では、配線層15Aおよび薄膜トランジスタTrを介して第1電極18Aに電圧が印加されると、第2電極20との間の電位差に応じた輝度で有機発光層19が発光する。この有機発光層19からの光は、第1電極18Aで反射されつつ第2電極20を透過することにより、上方、すなわち基板10Bから射出される。そして各画素に配置された有機EL素子ELから画素信号に応じた光が射出されることで、有機EL表示装置1に所定の画像が表示される。 ここで、各有機EL素子ELには、例えば赤色フィルタ、緑色フィルタまたは青色フィルタのいずれかが割り当てられている。このため、各有機EL素子ELにおける有機発光層19から発せられた白色光は、それぞれ赤色光、緑色光または青色光のいずれかに変換され、基板10Bから射出される。
[表示装置1の作用・効果]
 有機EL表示装置としては、各色に発光する有機発光材料からなる発光層を有機EL素子ごとに塗り分けることで、有機EL素子ごとに異なる発光色を得るものがある。この場合、各色に発光する有機発光材料からなる発光層を、それぞれの個別に区画された画素となる部分となるようにパターニングを行う必要がある。このパターニングの技術として、例えば低分子の有機発光材料についてはシャドーマスクを介した真空プロセスによる蒸着方法が知られており、高分子の有機発光材料についてはインクジェットを使用した印刷技術が知られている。ところがこれらのパターニングの技術では精細度に限界があるので、近年の表示装置における有機EL素子ELの高精細化や微細化には十分に対応できなくなりつつある。そのため、上記で説明したように、全ての有機EL素子ELにおいて共通の有機発光層19を表示領域110の全面に亘って一括形成し、その有機発光層19からの白色光をカラーフィルタ層CFを介して各色に分離する構成が注目されている。
 ところで、上面発光方式の有機EL表示装置では、既に述べたように、封止パネル側の透明電極、すなわち第2電極20を構成する材料の抵抗率が銅などの抵抗率と比べて高い。したがって本実施の形態では、表示領域110における発光輝度のばらつきを低減するために、第2電極20を別途設けた補助電極層18Bと接続し、第2電極20における面内での電圧降下を低減するようにしている。しかしながら、例えば図6Aに示した第1の参考例としての表示装置101のように、単純に、第1の階層L1に設けた補助電極層18Bの上面を露出させるように開口KKを形成し、その開口KKを埋めるように有機発光層19を表示領域110の全面に亘って一括形成してしまうと、第2電極20と補助電極層18との導通が困難となる。補助電極層18Bの上面を全て有機発光層19が覆うこととなるからである。この場合、表示装置101では発光輝度が不足し、良質の画像表示が困難となる。したがって、このような問題を解消するには、図6Bに示した第2の参考例としての表示装置102のように、補助電極層18の上面を覆う有機発光層19の一部を選択的に除去したのち、第2電極20を形成する必要がある。しかし、この場合もパターニング精度が要求されるので、各有機EL素子ELのさらなる高精細化や微細化への対応が困難となる。また、製造工程の複雑化を招くことにもなる。このような問題は、例えば図6Cに示した第3の参考例としての表示装置103のように、単純に、第2の階層L2に設けた補助電極層18Bの上面を露出させるように開口KKを形成した場合も同様に生じる。
 そこで本実施の形態の表示装置1では、表示領域110を広く覆う第2電極20が補助電極層18Bの端面18Tと接するように設けるようにしている。このような構成とすることで、例えば第2電極20が補助電極層18Bの上面のみと接する場合と比較して、より微小な領域において接続抵抗を十分に低減することができる。補助電極層18Bの厚さを大きく確保することで、補助電極層18Bの面内方向の寸法、すなわち幅を拡大せずとも補助電極層18Bの断面積を十分に確保し、抵抗を下げることができるからである。
 また、本実施の形態では、補助電極層18Bを、薄膜トランジスタTrを含む第1の階層L1に設けるようにした。このため、有機EL素子ELの発光性能を劣化させることなく、第2電極20と補助電極層18Bとの接続抵抗を十分に低減することができる。ところが補助電極層18Bを、例えば第1電極18Aと同時に第2の階層L2に設けた場合、補助電極層18Bの厚さは第1電極18Aの厚さと同じになる。第1電極18Aの厚さは、その第1電極18Aの平坦性を確保するため、あまり大きくすることはできない。第1電極18Aの平坦性が損なわれれば、有機EL素子ELの発光性能が低下するからである。そのため、補助電極層18Bの断面積を十分に確保するにはその幅を拡大せざるを得ず、その結果、占有面積の拡大を招くおそれが生じる。これに対し、本実施の形態では、補助電極層18Bを第1の階層L1に設け、十分な厚さを確保することでそのような問題を解消することができる。
 また、本実施の形態では、アクティブエリアとしての表示領域110の内部に補助電極層18Bを配設すると共に、表示領域110の内部においてその補助電極層18Bと第2電極20との接続を行うようにしている。このため、例えば表示領域110の周囲に補助電極層を配設し、その補助電極層から第2電極へ電位を与えるようにした場合に必要となる、いわゆる額縁領域は不要となる。また、表示領域110の周囲に補助電極層を配設した場合、比較的大きな面積の画面では第2電極での電圧降下を緩和するため、第2電極の厚さを大きくする必要があり、その結果、第2電極の透過率が低下することとなる。これに対し、本実施の形態では、表示領域110の内部においてその補助電極層18Bと第2電極20との接続を行うようにしているので、第2電極20の厚さを低減しつつ、第2電極20での電圧降下も抑制することができる。
 このように、本実施の形態の表示装置1は、より高集積化に適し、良好な表示性能を発揮することができる。
 また、このような構成の表示装置1を得るために、本実施の形態では、開口Kを形成する際に補助電極層18Bの端面18Tを露出させ、真空蒸着法により有機発光層19を選択的に成膜しつつ、スパッタ成膜法により第2電極20を全面的に成膜するようにしている。すなわち、真空蒸着法による有機材料の付着特性と、スパッタ成膜法による無機材料の付着特性との差を利用しているにすぎず、成膜後の有機発光層19に対してパターニングなどの追加処理を何ら行うことはしていない。このため、製造工程の簡素化を図りつつ、有機EL素子ELのさらなる高精細化や微細化への対応が可能となる。
<2.変形例>
[表示装置2の構成]
 図7は、上記実施の形態の変形例としての有機EL表示装置(表示装置2)の要部断面構成を表したものである。上記表示装置1では、第1の階層L1に含まれる補助電極層18Bの構成を、薄膜トランジスタTrの配線層15Aの構成と同じものとした。これに対し、表示装置2では、補助電極層18Bを、薄膜トランジスタTrのゲート電極11と同じ構成を有する第1の層18B1と、薄膜トランジスタTrの配線層15Aと同じ構成を有する第2の層18B2との積層構造を有するものとした。この点を除き、他は第1の実施の形態の表示装置1と同様の構成である。表示装置2を形成する際には、第1の層18B1を、ゲート電極11と共に一括形成し、第2の層18B2を、配線層15Aと共に一括形成する。但し、第2の層18B2を形成する前に、第1の層18B1を覆うゲート絶縁膜12を除去しておく。
[表示装置2の作用・効果]
 表示装置2では、補助電極層18Bを第1の層18B1と第2の層18B2との2層構造としたので、上記表示装置1と比べて、全体の厚さを維持しつつ、補助電極層18Bの厚さをより増大させることができる。このため、補助電極層18Bの断面積をより増大することができ、第2電極20の電圧降下をよりいっそう低減することができる。このため、よりいっそうの表示性能の向上が期待できる。
<3.適用例>
 以下、上記のような表示装置(表示装置1,2)の電子機器への適用例について説明する。電子機器としては、例えばテレビジョン装置,デジタルカメラ,ノート型パーソナルコンピュータ、スマートフォン等の携帯端末装置あるいはビデオカメラ等が挙げられる。すなわち、上記表示装置は、外部から入力された映像信号あるいは内部で生成した映像信号を、画像あるいは映像として表示するあらゆる分野の電子機器に適用することが可能である。
[モジュール]
 上記表示装置は、例えば図8に示したようなモジュールとして、後述の適用例をはじめとする種々の電子機器に組み込まれる。このモジュールは、例えば、基板10Aの一辺に、基板10Bからはみ出した領域61を設け、この領域61に、信号線駆動回路120、走査線駆動回路130および電源線供給回路140の配線を延長して外部接続端子(第1周辺電極および第2周辺電極等)を形成したものである。この外部接続端子には、信号の入出力のためのフレキシブルプリント配線基板(FPC;Flexible Printed Circuit)62が設けられていてもよい。
[適用例]
 図9は、上記実施の形態の表示装置が適用されるスマートフォンの外観を表したものである。このスマートフォンは、例えば、表示部230および非表示部240を有しており、この表示部230が上記実施の形態の表示装置により構成されている。
<4.実験例>
(実験例1)
 上記実施の形態に係る表示装置1のサンプルを作製した。ここではモリブデンを用いてゲート電極11を形成した。ゲート絶縁膜12はSiOとSiNとの2層構造とした。シリコン膜13Aは非晶質シリコンにより形成した。また、配線層15Aおよび補助電極層18Bは、いずれもTi/Al/Tiの3層構造とした。この3層構造において、Ti(チタン)層の厚さはいずれも200nmとし、Al(アルミニウム)層の厚さはいずれも600nmとした。さらに、平坦化絶縁膜17Aと電極間絶縁膜21との合計の厚さは6000nmとした。したがって、電極間絶縁膜21の上端縁21UTと、端面18Tの上端縁18UTとの厚さ方向の距離は5000nmとした。また、有機発光層19を、全開口の蒸着マスクを用いた真空蒸着法により120nmの膜厚となるように形成した。このとき、端面18Tを覆わないようにした。また、第2電極20は、マグネトロンスパッタ成膜法により、IZOを用いて150nmの膜厚となるように形成した。保護膜23は、CVD法によりSiNxを用いて形成した。
(実験例2)
 図6Aに示した表示装置101のサンプルを作製した。すなわち、補助電極層18Bの上面のみを露出させるように開口KKを形成し、その開口KKの斜面および補助電極層18Bの上面をも全面的に覆うように有機発光層19および第2電極20を形成した。
 上記実験例1,2の各サンプルについて、有機EL素子ELの発光テストをそれぞれ実施した。その結果、実験例1のサンプルでは十分な輝度の発光が得られたが、実験例2のサンプルでは発光が得られなかった。
 以上、実施の形態を挙げて本開示を説明したが、本開示は上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施の形態において説明した各層の材料および厚みなどは限定されるものではなく、他の材料および厚みとしてもよい。
 また、上記実施の形態等では、各有機発光素子ELとして白色光を発するものを例示して説明したが、本技術はこれに限定されるものではない。例えば、赤色光、緑色光および青色光をそれぞれ発する有機発光素子ELを用いてもよい。その場合、例えば第1電極18Aと第2電極20との間隔(すなわち光学的距離)を変化させることで所望の波長光をそれぞれ取り出すようにすればよい。
 さらに、上記実施の形態等では、アクティブマトリクス型の表示装置の場合について説明したが、本技術はパッシブマトリクス型の表示装置への適用も可能である。また、アクティブマトリクス駆動のための画素駆動回路の構成は、上記実施の形態で説明したものに限られず、必要に応じて容量素子やトランジスタを追加してもよい。その場合、画素駆動回路の変更に応じて、上述した信号線駆動回路120や走査線駆動回路130のほかに、他の駆動回路を追加してもよい。
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
 基体と、
 前記基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、
 前記基体上に設けられ、前記有機発光素子を駆動する駆動素子と、
 前記基体上に設けられ、前記第2電極層と接する端面を含む補助電極層と
 を有する表示装置。
(2)
 前記補助電極層は、前記駆動素子を含む階層に設けられている
 上記(1)記載の表示装置。
(3)
 前記補助電極層の厚さは、前記有機発光層の厚さよりも大きい
 上記(1)または(2)に記載の表示装置。
(4)
 前記補助電極層の導電率は、前記第2電極層の導電率よりも高い
 上記(1)から(3)のいずれか1つに記載の表示装置。
(5)
 前記補助電極層の端面は、前記基体の表面に対して垂直をなし、または、前記基体から離れる方向へオーバーハング状に伸びている
 上記(1)から(4)のいずれか1つに記載の表示装置。
(6)
 前記駆動素子は配線層を有し、
 前記駆動素子の配線層の構成材料と前記補助電極層の構成材料とが同じである
 上記(1)から(5)のいずれか1つに記載の表示装置。
(7)
 前記基体と前記補助電極層との間に下地層をさらに備え、
 前記駆動素子はゲート電極を有し、
 前記下地層の構成材料と前記ゲート電極の構成材料とが同じである
 上記(1)から(6)のいずれか1つに記載の表示装置。
(8)
 前記第2電極層の光透過率は、前記補助電極層の光透過率よりも高い
 上記(1)から(7)のいずれか1つに記載の表示装置。
(9)
 前記補助電極層は真空蒸着法により形成されたものであり、
 前記第2電極層はスパッタ成膜法により形成されたものである
 上記(1)から(8)のいずれか1つに記載の表示装置。
(10)
 前記補助電極層の一部は絶縁層により覆われており、
 前記絶縁層は、前記補助電極層と重なり合う領域に開口を有している
 上記(1)から(9)のいずれか1つに記載の表示装置。
(11)
 前記絶縁層の開口における、前記補助電極層の端面と対向する上端縁と前記補助電極層の端面における上端縁とを結ぶ直線と、前記基体の表面に垂直な方向とのなす角度は45°以下である
 上記(10)記載の表示装置。
(12)
 基体上に、駆動素子および補助電極層を形成することと、
 前記駆動素子および前記補助電極層を覆うように第1絶縁層を形成することと、
 前記第1絶縁層の一部に第1の開口を形成し、前記補助電極層の端面を露出させることと、
 前記第1絶縁層の上に、第1電極層を選択的に形成することと、
 前記第1絶縁層の上に、前記第1電極層と対応する位置に第2の開口を有すると共に前記補助配線層と対応する位置に前記第1の開口と連通する第3の開口を有する第2の絶縁層を形成することと、
 前記補助配線層の端面を覆うことなく前記第1電極層を覆うように有機発光層を形成することと、
 前記有機発光層を覆うと共に前記補助配線層の端面をも覆うように第2電極層を形成することと
 を含む
 表示装置の製造方法。
(12)
 表示装置を備えた電子機器であって、
 前記表示装置は、
 基体と、
 前記基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、
 前記基体上に設けられ、前記有機発光素子を駆動する駆動素子と、
 前記基体上に設けられ、前記第2電極層と接する端面を含む補助電極層と
 を有する
 電子機器。
 本出願は、日本国特許庁において2014年9月22日に出願された日本特許出願番号2014-192786号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (13)

  1.  基体と、
     前記基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、
     前記基体上に設けられ、前記有機発光素子を駆動する駆動素子と、
     前記基体上に設けられ、前記第2電極層と接する端面を含む補助電極層と
     を有する表示装置。
  2.  前記補助電極層は、前記駆動素子を含む階層に設けられている
     請求項1記載の表示装置。
  3.  前記補助電極層の厚さは、前記有機発光層の厚さよりも大きい
     請求項1記載の表示装置。
  4.  前記補助電極層の導電率は、前記第2電極層の導電率よりも高い
     請求項1記載の表示装置。
  5.  前記補助電極層の端面は、前記基体の表面に対して垂直をなし、または、前記基体から離れる方向へオーバーハング状に伸びている
     請求項1記載の表示装置。
  6.  前記駆動素子は配線層を有し、
     前記駆動素子の配線層の構成材料と前記補助電極層の構成材料とが同じである
     請求項1記載の表示装置。
  7.  前記基体と前記補助電極層との間に下地層をさらに備え、
     前記駆動素子はゲート電極を有し、
     前記下地層の構成材料と前記ゲート電極の構成材料とが同じである
     請求項1記載の表示装置。
  8.  前記第2電極層の光透過率は、前記補助電極層の光透過率よりも高い
     請求項1記載の表示装置。
  9.  前記補助電極層は真空蒸着法により形成されたものであり、
     前記第2電極層はスパッタ成膜法により形成されたものである
     請求項1記載の表示装置。
  10.  前記補助電極層の一部は絶縁層により覆われており、
     前記絶縁層は、前記補助電極層と重なり合う領域に開口を有している
     請求項1記載の表示装置。
  11.  前記絶縁層の開口における、前記補助電極層の端面と対向する上端縁と前記補助電極層の端面における上端縁とを結ぶ直線と、前記基体の表面に垂直な方向とのなす角度は45°以下である
     請求項10記載の表示装置。
  12.  基体上に、駆動素子および補助電極層を形成することと、
     前記駆動素子および前記補助電極層を覆うように第1絶縁層を形成することと、
     前記第1絶縁層の一部に第1の開口を形成し、前記補助電極層の端面を露出させることと、
     前記第1絶縁層の上に、第1電極層を選択的に形成することと、
     前記第1絶縁層の上に、前記第1電極層と対応する位置に第2の開口を有すると共に前記補助配線層と対応する位置に前記第1の開口と連通する第3の開口を有する第2の絶縁層を形成することと、
     前記補助配線層の端面を覆うことなく前記第1電極層を覆うように有機発光層を形成することと、
     前記有機発光層を覆うと共に前記補助配線層の端面をも覆うように第2電極層を形成することと
     を含む
     表示装置の製造方法。
  13.  表示装置を備えた電子機器であって、
     前記表示装置は、
     基体と、
     前記基体上に第1電極層と有機発光層と第2電極層とが順に積層された積層構造を含む有機発光素子と、
     前記基体上に設けられ、前記有機発光素子を駆動する駆動素子と、
     前記基体上に設けられ、前記第2電極層と接する端面を含む補助電極層と
     を有する
     電子機器。
PCT/JP2015/075572 2014-09-22 2015-09-09 表示装置およびその製造方法、ならびに電子機器 WO2016047440A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/510,714 US10186569B2 (en) 2014-09-22 2015-09-09 Display device having an auxiliary electrode on the substrate with an end surface contacting an electrode of the organic light emitting element
CN201580049112.9A CN107079561B (zh) 2014-09-22 2015-09-09 显示装置、制造显示装置的方法以及电子装置
US16/224,182 US11476322B2 (en) 2014-09-22 2018-12-18 Display device, method of manufacturing the display device, and electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192786A JP2016062885A (ja) 2014-09-22 2014-09-22 表示装置およびその製造方法、ならびに電子機器
JP2014-192786 2014-09-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/510,714 A-371-Of-International US10186569B2 (en) 2014-09-22 2015-09-09 Display device having an auxiliary electrode on the substrate with an end surface contacting an electrode of the organic light emitting element
US16/224,182 Continuation US11476322B2 (en) 2014-09-22 2018-12-18 Display device, method of manufacturing the display device, and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2016047440A1 true WO2016047440A1 (ja) 2016-03-31

Family

ID=55580967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075572 WO2016047440A1 (ja) 2014-09-22 2015-09-09 表示装置およびその製造方法、ならびに電子機器

Country Status (4)

Country Link
US (2) US10186569B2 (ja)
JP (1) JP2016062885A (ja)
CN (2) CN107079561B (ja)
WO (1) WO2016047440A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236750A1 (zh) * 2022-06-09 2023-12-14 京东方科技集团股份有限公司 显示面板及显示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565048B (zh) * 2017-08-24 2020-05-26 京东方科技集团股份有限公司 一种阵列基板的制备方法、阵列基板和显示装置
KR102482990B1 (ko) * 2017-12-27 2022-12-29 엘지디스플레이 주식회사 상부 발광형 유기발광 다이오드 표시장치
CN110071225A (zh) * 2019-04-08 2019-07-30 深圳市华星光电半导体显示技术有限公司 显示面板及制作方法
CN110085648B (zh) * 2019-05-17 2021-03-16 京东方科技集团股份有限公司 阵列基板及其制作方法、显示面板、显示装置
CN110556406A (zh) * 2019-08-26 2019-12-10 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制备方法
KR20210083989A (ko) * 2019-12-27 2021-07-07 엘지디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
KR20220051896A (ko) * 2020-10-19 2022-04-27 삼성디스플레이 주식회사 입력센서를 포함하는 표시장치 및 입력센서의 제조방법
JP2022080003A (ja) * 2020-11-17 2022-05-27 株式会社ジャパンディスプレイ 表示装置
CN112992937B (zh) * 2021-02-22 2022-07-15 京东方科技集团股份有限公司 显示基板、显示装置、显示基板以及显示装置制备方法
KR20220168616A (ko) * 2021-06-16 2022-12-26 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN114141826B (zh) * 2021-11-16 2023-08-01 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法
CN115207248B (zh) * 2022-07-15 2024-01-19 武汉华星光电半导体显示技术有限公司 显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031645A (ja) * 2003-06-16 2005-02-03 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2009128577A (ja) * 2007-11-22 2009-06-11 Hitachi Ltd 有機発光表示装置
JP2012230928A (ja) * 2006-06-19 2012-11-22 Sony Corp 発光表示装置およびその製造方法
JP2013054979A (ja) * 2011-09-06 2013-03-21 Sony Corp 有機el表示装置、有機el表示装置の製造方法および電子機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW439387B (en) * 1998-12-01 2001-06-07 Sanyo Electric Co Display device
US7161184B2 (en) * 2003-06-16 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US7224118B2 (en) * 2003-06-17 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus having a wiring connected to a counter electrode via an opening portion in an insulating layer that surrounds a pixel electrode
JP4016144B2 (ja) * 2003-09-19 2007-12-05 ソニー株式会社 有機発光素子およびその製造方法ならびに表示装置
JP2008225179A (ja) * 2007-03-14 2008-09-25 Sony Corp 表示装置、表示装置の駆動方法、および電子機器
JP4893392B2 (ja) * 2007-03-15 2012-03-07 ソニー株式会社 表示装置および電子機器
JP2008288075A (ja) * 2007-05-18 2008-11-27 Sony Corp 表示装置の製造方法および表示装置
US8692455B2 (en) * 2007-12-18 2014-04-08 Sony Corporation Display device and method for production thereof
JP4600786B2 (ja) * 2007-12-18 2010-12-15 ソニー株式会社 表示装置およびその製造方法
JP2009283304A (ja) * 2008-05-22 2009-12-03 Seiko Epson Corp 発光装置及びその製造方法、並びに電子機器
JP5256863B2 (ja) * 2008-06-06 2013-08-07 ソニー株式会社 有機発光素子およびその製造方法ならびに表示装置
JP5690280B2 (ja) * 2009-10-15 2015-03-25 パナソニック株式会社 表示パネル装置及びその製造方法
US20120228603A1 (en) * 2009-11-17 2012-09-13 Sharp Kabushiki Kaisha Organic el display
KR101348537B1 (ko) * 2010-09-29 2014-01-07 파나소닉 주식회사 El 표시 패널, el 표시 장치 및 el 표시 패널의 제조 방법
JP5678740B2 (ja) * 2011-03-11 2015-03-04 ソニー株式会社 有機el表示装置および電子機器
KR101811027B1 (ko) * 2011-07-07 2017-12-21 삼성디스플레이 주식회사 유기 발광 디스플레이 장치
US9245939B2 (en) * 2011-11-07 2016-01-26 Joled Inc. Organic electroluminescence display panel and organic electroluminescence display apparatus
WO2013069234A1 (ja) * 2011-11-07 2013-05-16 パナソニック株式会社 有機el表示パネル及び有機el表示装置
TWI470849B (zh) * 2012-01-20 2015-01-21 Ind Tech Res Inst 發光元件
US9178174B2 (en) * 2012-03-27 2015-11-03 Sony Corporation Display device and method of manufacturing the same, method of repairing display device, and electronic apparatus
KR20140088369A (ko) * 2013-01-02 2014-07-10 삼성디스플레이 주식회사 유기 발광 표시 장치
CN103715231B (zh) * 2013-12-31 2016-11-23 京东方科技集团股份有限公司 有机发光显示面板、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031645A (ja) * 2003-06-16 2005-02-03 Semiconductor Energy Lab Co Ltd 表示装置及びその作製方法
JP2012230928A (ja) * 2006-06-19 2012-11-22 Sony Corp 発光表示装置およびその製造方法
JP2009128577A (ja) * 2007-11-22 2009-06-11 Hitachi Ltd 有機発光表示装置
JP2013054979A (ja) * 2011-09-06 2013-03-21 Sony Corp 有機el表示装置、有機el表示装置の製造方法および電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023236750A1 (zh) * 2022-06-09 2023-12-14 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN111047994A (zh) 2020-04-21
US20190123129A1 (en) 2019-04-25
CN107079561B (zh) 2020-02-07
CN107079561A (zh) 2017-08-18
US20170278919A1 (en) 2017-09-28
CN111047994B (zh) 2021-12-28
US10186569B2 (en) 2019-01-22
JP2016062885A (ja) 2016-04-25
US11476322B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
US11476322B2 (en) Display device, method of manufacturing the display device, and electronic apparatus
US11778879B2 (en) Display device including concave/convex structure in the inorganic insulation layer
JP5348299B2 (ja) 発光表示装置およびその製造方法
JP4600786B2 (ja) 表示装置およびその製造方法
US11217644B2 (en) Semiconductor device, transistor array substrate and light emitting device
US11515384B2 (en) Display device with organic layer
KR20150002119A (ko) 유기전계 발광소자 및 이의 제조 방법
US20210328107A1 (en) Light emitting display device and manufacturing method thereof
US11974467B2 (en) Semiconductor device
KR102047746B1 (ko) 유기전계 발광소자 및 이의 제조 방법
KR20210130608A (ko) 발광 표시 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15510714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845472

Country of ref document: EP

Kind code of ref document: A1