WO2016047368A1 - 細胞剥離装置および細胞剥離方法 - Google Patents

細胞剥離装置および細胞剥離方法 Download PDF

Info

Publication number
WO2016047368A1
WO2016047368A1 PCT/JP2015/074362 JP2015074362W WO2016047368A1 WO 2016047368 A1 WO2016047368 A1 WO 2016047368A1 JP 2015074362 W JP2015074362 W JP 2015074362W WO 2016047368 A1 WO2016047368 A1 WO 2016047368A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
container
cell
ultrasonic wave
peeling
Prior art date
Application number
PCT/JP2015/074362
Other languages
English (en)
French (fr)
Inventor
森脇 三造
三宅 孝志
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to JP2016550067A priority Critical patent/JP6353549B2/ja
Publication of WO2016047368A1 publication Critical patent/WO2016047368A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor

Definitions

  • This invention relates to a technique for selectively peeling cells cultured in a container from the container.
  • Such a case may include both a case in which useful cells are selected and extracted from cells distributed in the container and a case in which unnecessary cells are removed.
  • a method for detaching such a cell in addition to a method in which an operator manually detaches a cell under microscope observation, for example, there is a method in which vibration energy is given to a cell by making an ultrasonic wave incident and the cell is detached from a container. It is considered.
  • Patent Document 1 The technique described in Patent Document 1 is based on the premise that there is a wide processing space above the cells to be detached, but such a premise may not be satisfied depending on the type of container and the state of culture. Therefore, as described in Patent Document 2, it is required to detach cells by an operation from the outer surface of the container, particularly from the bottom surface side.
  • Patent Document 2 when the vibration generating unit is brought into contact, mechanical vibration from the vibration generating unit diffuses over a wide range of the container, and it is difficult to narrow down a region to be peeled off. Further, a standing wave is generated by reflection of the vibration wave on the surface of the medium carrying the cell, and sufficient energy cannot be given to the cell, so that peeling may not be performed well. Even when the vibration generating portion is provided in a non-contact manner with respect to the container, the energy of the ultrasonic wave incident on the cell is reduced by reflection from the container, and separation cannot be performed well.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of reliably peeling cells carried in a container with excellent selectivity by an operation from the outer surface of the container.
  • one aspect of the cell detaching apparatus is a holding means for holding a container for holding cells, and a container spaced apart from the container held by the holding means.
  • the ultrasonic wave is emitted from the outer surface of the container toward the processing target region, and the ultrasonic wave is incident on the cell through the outer surface of the container, so that at least a part of the cell is detached from the container.
  • a transmission substance that supplies an ultrasonic transmission substance to a space between the ultrasonic emission means and the processing target area, and connects the ultrasonic emission means and the processing target area by the ultrasonic transmission substance Supply means.
  • the ultrasonic wave emitting means is separated from the container toward the processing target region in the outer surface of the container carrying the cells.
  • An ultrasonic transmission substance is supplied to a space between the ultrasonic emission means and the processing target area, and the ultrasonic transmission substance is provided between the ultrasonic emission means and the processing target area.
  • the term “ultrasound” means an elastic wave that propagates in a medium such as gas, liquid, solid, etc., and has an energy that can destroy a cell. It is not limited to elastic waves having frequencies outside the audible range.
  • ultrasonic waves are emitted from the ultrasonic wave emitting means that is spaced from the processing target region on the outer surface of the container.
  • the ultrasonic wave emitting means and the processing target area are connected by an ultrasonic transmission material.
  • an ultrasonic wave is incident on a container by air propagation, the ultrasonic wave is scattered or reflected by the outer surface of the container, so that it is difficult to selectively and efficiently make the ultrasonic wave incident on the cells separated from the outer surface of the container.
  • the ultrasonic wave emitting means is brought into contact with the outer surface of the container, it is difficult to make the ultrasonic wave incident only on a specific region because the mechanical vibration is transmitted to the container.
  • a standing wave may be generated and the cell may not be given sufficient energy for peeling.
  • the ultrasonic transmission means is not directly brought into contact with the container, but an ultrasonic transmission substance is interposed between the ultrasonic emission means and the region to be processed, so that the ultrasonic waves are efficiently incident on the cells to be peeled off. Can be made. Also, the incident range of ultrasonic waves can be controlled by the position and size of the contact surface between the outer surface of the container and the ultrasonic transmission material. Further, since the distance between the ultrasonic wave emitting means and the outer surface of the container is not limited, the influence of standing waves can be suppressed. As described above, according to the present invention, even when the operation is performed from the outer surface side of the container, the cells carried in the container can be surely detached with excellent selectivity.
  • the ultrasonic wave emitting means is arranged away from the outer surface of the container, and the ultrasonic wave emitting means and the processing target area on the outer surface of the container are connected by the ultrasonic transmission substance.
  • the ultrasonic waves emitted from the ultrasonic wave emitting means are incident on the processing target region via the ultrasonic transmission material. Therefore, scattering in the air and reflection on the outer surface of the container are suppressed, and ultrasonic waves are incident on the cells to be detached with excellent selectivity, and the cells can be detached from the container.
  • FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a cell peeling apparatus according to the present invention.
  • the cell peeling apparatus 1 is an apparatus for peeling cells in a specific region from cells cultured in a medium injected into a sample container such as a petri dish or dish.
  • the term “cell” represents a concept including not only a single cell but also a cell mass or a cell colony composed of a plurality of cells. That is, the cell peeling device 1 is used for at least one of a use of peeling a single cell among cells cultured in a sample container and a use of peeling a cell mass or a cell colony composed of a plurality of cells.
  • detaching cells The purpose of detaching cells is to remove unnecessary cells cultured in a container, and to collect and use the necessary cells or transfer them to other containers There are cases where this is the purpose. Therefore, only the cells at a desired position can be detached, and the position selectivity that does not damage the surrounding cells is required.
  • the cell detachment apparatus described in this specification can be used for any of these purposes.
  • XYZ orthogonal coordinate axes are set as shown in FIG.
  • the XY plane represents the horizontal plane
  • the Z axis represents the vertical axis.
  • the (+ Z) direction represents a vertically upward direction.
  • the cell detaching apparatus 1 includes a control unit 100 having a CPU 101 that controls the operation of the entire apparatus. Moreover, the cell peeling apparatus 1 includes a holding stage 11 that holds a shallow dish type dish D as an example of a sample container.
  • the holding stage 11 holds the dish D in a horizontal posture by contacting the peripheral edge of the outer bottom surface Bb of the dish D and in a state where the lower part of the outer bottom surface Bb of the dish D is opened.
  • the dish D is a shallow dish type container made of, for example, glass or resin, in which the inner bottom surface Ba has a substantially circular shape with a diameter of about several tens of millimeters.
  • a liquid or gel medium M is injected into the dish D in advance, and the cells C are cultured in the medium M. That is, the cells C are carried on the inner bottom surface Ba of the dish D.
  • the ultrasonic irradiation unit 12 is disposed below the dish D held on the holding stage 11.
  • the ultrasonic irradiation unit 12 includes an ultrasonic transducer 121 that emits ultrasonic waves and a cylindrical nozzle 122 that accommodates the ultrasonic transducer 121.
  • the ultrasonic transducer 121 generates an ultrasonic wave having a predetermined frequency and intensity according to a drive signal from the transducer drive unit 104 provided in the control unit 100, and is directed upward, that is, the outer bottom surface Bb of the dish D.
  • Ultrasonic waves are emitted toward The vibrator driver 104 can change the frequency and intensity of the ultrasonic wave emitted from the ultrasonic vibrator 121 in order to perform excellent peeling in accordance with various containers, cells, thicknesses, and the like. It is preferable.
  • the ultrasonic transducer 121 is supported by the elevating mechanism 103 provided in the control unit 100 so as to be movable up and down within the cylinder of the nozzle 122.
  • the elevating mechanism 103 elevates and lowers the ultrasonic transducer 121 in accordance with a control command from the CPU 101 and changes its vertical direction (Z direction) position.
  • the nozzle 122 has a cylindrical shape having an opening 122a opened upward, and an ultrasonic transducer 121 is disposed inside.
  • An introduction port 122 b is provided on the lower side surface of the nozzle 122.
  • the introduction port 122b communicates with the transmission medium supply unit 105 of the control unit 100, and the ultrasonic transmission medium supplied from the transmission medium supply unit 105 is introduced into the nozzle 122 from the introduction port 122b.
  • the cell peeling device 1 is configured so that the vibration surface (upper surface) of the ultrasonic transducer 121 and the lower surface (outer bottom surface Bb) of the dish D are connected by an ultrasonic transmission medium.
  • the cells are detached by applying ultrasonic vibration through the bottom surface of the dish D including Bb and the inner bottom surface Ba.
  • the ultrasonic transmission medium various liquids, gel-like bodies, or elastic bodies having a property of transmitting ultrasonic vibrations with low loss can be used.
  • water can be preferably used. In the following, water is used as the ultrasonic transmission medium.
  • the ultrasonic transmission medium (water) introduced from the transmission medium supply unit 105 to the nozzle 122 fills the internal space of the nozzle 122 and is discharged from the upper opening 122a.
  • the water thus discharged comes into contact with the lower surface (outer bottom surface Bb) of the dish D, and water is continuously supplied from the transmission medium supply unit 105 to the nozzle 122, so that the upper surface of the ultrasonic transducer 121 and the dish D are A liquid-tight state is formed between the outer bottom surface Bb.
  • a recovery container 123 is provided below the nozzle 122.
  • the water flowing down from the nozzle 122 and received in the recovery container 123 is recovered and processed by the waste liquid recovery unit 106 provided in the control unit 100.
  • the ultrasonic vibrator 121, the nozzle 122, the collection container 123, etc. constitute the ultrasonic irradiation unit 12 as a unit.
  • the ultrasonic irradiation unit 12 is movable relative to the dish D held on the holding stage 11 in the XY direction, that is, in the horizontal direction.
  • the scanning movement mechanism 102 is provided in the control unit 100, and the scanning movement mechanism 102 moves at least one of the holding stage 11 and the ultrasonic irradiation unit 12 in the XY direction (horizontal direction), so that the dish is moved.
  • the relative movement between D and the ultrasonic irradiation unit 12 is realized.
  • the CPU 101 adjusts the relative position between the dish D and the ultrasonic irradiation unit 12 by controlling the scanning movement mechanism 102.
  • the ultrasonic irradiation unit 12 is positioned at a processing position on the bottom surface of the dish D that faces the processing target region irradiated with the ultrasonic waves.
  • the holding stage 11 is fixed and the ultrasonic irradiation unit 12 is movable. Since the medium D is supported on the dish D held on the holding stage 11 and the cells may float in the medium M, the dish D may vibrate or move when the medium M has fluidity. This is because the position and posture of the contents may change depending on the situation.
  • the scanning movement mechanism 102 moves the ultrasonic transducer 121, the nozzle 122, and the recovery container 123 integrally, that is, horizontally while maintaining the mutual positional relationship.
  • FIG. 2A, FIG. 2B, FIG. 3A and FIG. 3B are diagrams for explaining the principle of cell detachment in this embodiment.
  • 2A is a side view showing a state in which the ultrasonic irradiation unit 12 is positioned with respect to the cell Cx to be detached
  • FIG. 2B is a top view thereof.
  • FIG. 3A is a diagram schematically illustrating how a standing wave is generated in the ultrasonic irradiation unit 12
  • FIG. 3B is a diagram illustrating a configuration example for preventing the generation of a standing wave.
  • the cell detachment is performed as follows. As shown in FIG. 2A, the ultrasonic irradiation unit 12 is positioned at a position immediately below the cell Cx to be detached among the cells C cultured in the dish D. More precisely, the scanning irradiation mechanism 102 moves the ultrasonic irradiation unit 12 relative to the holding stage 11 in the horizontal direction, so that the ultrasonic irradiation unit 12 is positioned immediately below the cell Cx. Positioning. At this time, in the plan view shown in FIG. 2B, the opening periphery of the nozzle 122 is disposed so as to surround the processing target region Rp including the cell Cx. The position of the cell Cx to be peeled can be taught to the CPU 101 by the user inputting coordinate information through an input interface (not shown), for example.
  • the amplitude Az of the ultrasonic transducer 121 in the up-and-down movement can be set to one quarter or more, more preferably one half or more of the wavelength of the ultrasonic wave from the viewpoint of preventing standing waves.
  • the ultrasonic irradiation unit 12 is disposed below the dish D held in a horizontal posture by the holding stage 11.
  • the ultrasonic vibration is applied to a position corresponding to a position directly below the cell Cx to be separated on the bottom surface of the dish D, so that the cell Cx is detached from the dish D.
  • the ultrasonic vibrator 121 is disposed in the cylindrical nozzle 122, and the nozzle 122 is filled with water as the ultrasonic transmission medium T.
  • the water discharged from the opening 122a above the nozzle 122 comes into contact with the lower surface of the dish D, so that the space between the ultrasonic transducer 121 and the lower surface of the dish D becomes liquid-tight.
  • the ultrasonic wave is emitted from the ultrasonic vibrator 121 in a state where the ultrasonic wave transmission medium T connects the bottom surface of the dish D corresponding to the position immediately below the cell Cx to be detached and the ultrasonic vibrator 121.
  • the following effects can be obtained.
  • the space from the vibration surface of the ultrasonic transducer 121 to the cell Cx to be peeled is filled with a liquid or solid and no gas layer is interposed, there is little reflection of ultrasonic waves, and vibration energy is efficiently used. Can be well communicated to cell Cx. Thereby, it is possible to reduce the power of ultrasonic waves necessary for reliably peeling the cells Cx.
  • the incident range of ultrasonic waves on the bottom surface of the dish D is limited only to the area touching the water. Can be limited. Thereby, it is possible not only to further improve the energy efficiency by suppressing the scattering of the ultrasonic waves but concentrating on a specific position, but also to increase the selectivity of the incident position. That is, it is possible to cause only the desired cells to be peeled off without affecting the surrounding cells by making the ultrasonic wave incident only on the desired processing target region Rp.
  • the detached cells can be carried out of the dish D using a pipette or a manipulator introduced from the outside, if necessary, and may be discharged by supplying a liquid to the dish D. .
  • the frequency of the ultrasonic wave suitable for peeling the cells cultured and adhered in the glass dish D is about 10 kHz to 1 MHz.
  • the frequency of the ultrasonic wave is 80 kHz
  • the output is about 25 W
  • the distance between the dish lower surface and the ultrasonic transducer is changed between 15 mm and 35 mm. The cells could be detached.
  • the ultrasonic vibrator 121 moves up and down in the nozzle 122 filled with water as the ultrasonic transmission medium T. It is good also as such a structure.
  • the description of the same configuration as that of the first embodiment described above is omitted or the same reference numerals are given, and detailed description is omitted.
  • each configuration provided in the first embodiment is also provided in the following modified examples.
  • FIGS. 4A to 4C and FIGS. 5A to 5C are views showing modifications of the ultrasonic irradiation unit in the first embodiment.
  • an ultrasonic transducer 1211 having a recessed upper surface is provided in place of the ultrasonic transducer 121 of the first embodiment whose upper surface is finished in a plane parallel to the bottom surface of the dish D. .
  • the configuration is the same as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the ultrasonic vibration emitted from the ultrasonic vibrator 1211 is converged toward the bottom surface of the dish D. Therefore, even if the output of the ultrasonic transducer is the same, the intensity of ultrasonic vibration incident on the cell Cx to be peeled can be further increased.
  • the ultrasonic transducer 151 is fixed inside the nozzle 152. Then, instead of the lifting mechanism 103 of the first embodiment, the lifting mechanism 107 provided in the control unit 100 moves the nozzle 152 up and down, so that the distance Dz between the lower surface of the dish D and the ultrasonic transducer 151 changes. Even with such a configuration, the cells can be detached in the same manner as in the apparatus of the first embodiment described above.
  • the transmission medium supply unit 105 supplies the ultrasonic transmission medium in accordance with the elevation of the nozzle 152. The amount may vary.
  • the horizontal cross-sectional area is smaller toward the top of the ultrasonic transducer 161 provided in the nozzle 162 having the same configuration as the nozzle 122 shown in FIG. 2A.
  • a taper member 163 is attached as a vibration transmission member. Therefore, the ultrasonic wave is emitted from the upper surface of the taper member 163 toward the lower surface of the dish D, and the radiation area of the ultrasonic wave can be regulated. Thereby, the size of the region where the ultrasonic wave is incident on the bottom surface of the dish D can be further reduced, and the position selectivity of the ultrasonic wave incident range can be further increased.
  • the vibration transmission member can also function as a nozzle by supplying an ultrasonic transmission medium into the cylinder.
  • the ultrasonic vibrator 171 and the nozzle 172 are provided independently. Specifically, an ultrasonic transducer 171 is disposed below the dish D. On the other hand, the nozzle 172 is disposed on the side of the ultrasonic transducer 171 so that the discharge port opens toward the space between the lower surface of the dish D and the upper surface of the ultrasonic transducer 171. Then, water as the ultrasonic transmission medium T is discharged from the nozzle 172, and the space between the lower surface of the dish D and the upper surface of the ultrasonic vibrator 171 is brought into a liquid-tight state. The water flowing down is received by the recovery container 173 and recovered by the waste liquid recovery unit 106. According to such a configuration, it is possible to reduce the amount of use of the ultrasonic transmission medium T while obtaining the same operational effects as the apparatus of the first embodiment.
  • a suction nozzle 184 is further provided in the ultrasonic irradiation unit 18 of the modification shown in FIG. 5C. Specifically, the supply nozzle 182 and the suction nozzle 184 are disposed so as to sandwich the ultrasonic transducer 181 disposed below the dish D from the horizontal direction. The suction nozzle 184 is connected to the waste liquid recovery unit 106, and a negative pressure is supplied into the nozzle.
  • Water as the ultrasonic transmission medium T discharged from the supply nozzle 182 fills the space between the lower surface of the dish D and the ultrasonic transducer 181, and is sucked by the suction nozzle 184 and collected by the waste liquid collection unit 106. Thereby, it is suppressed that water spreads along the bottom part of the container D, and it becomes possible to irradiate an ultrasonic wave only to a specific area
  • a collection container 183 is provided below the ultrasonic transducer 181, for receiving water that could not be sucked by the suction nozzle 184. If all the water can be collected by the suction nozzle 184, the collection container 183 can be omitted.
  • FIG. 6 is a diagram showing a schematic configuration of the second embodiment of the cell peeling apparatus according to the present invention.
  • the cell peeling apparatus 2 of this embodiment is obtained by adding a configuration for identifying the position of a cell to be imaged and peeled from the dish D to the cell peeling apparatus 1 of the first embodiment described above. Except for this point, the configuration and operation of each part are the same as those of the first embodiment, and therefore, the same components as those of the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the cell peeling device 2 includes an imaging unit 23 disposed above the dish D held on the holding stage 11.
  • the imaging unit 23 has an imaging element such as a CCD or a CMOS sensor, for example, and images the dish D from above to generate image data.
  • the imaging unit 23 may be either an area image sensor having a function of capturing a two-dimensional image, or a unit that captures a two-dimensional image by a combination of a linear image sensor that captures a one-dimensional image and a scanning mechanism. .
  • the entire dish D may be imaged in several areas and combined.
  • the control unit 200 of the cell detaching apparatus 2 includes an image processing unit 208 that executes various image processing using image data output from the imaging unit 23, and the CPU 201 controls each part of the apparatus based on the processing result of the image processing unit 208. It has a function to control. Except for these points, the configuration and function of the control unit 200 are the same as those of the control unit 100 of the first embodiment.
  • the image processing unit 208 analyzes the image captured by the imaging unit 23 by appropriate image processing, and thereby the position of the cell to be detached is automatically specified.
  • the CPU 201 controls the scanning movement mechanism 102 in accordance with the position information specified by the image processing unit 208, so that the ultrasonic transducer 121 is disposed immediately below the cell Cx to be separated. Positioning with the ultrasonic irradiation unit 12 is performed.
  • the processing position can be automatically determined without the user inputting position information.
  • the cell has optical characteristics that can be recognized by image processing, the cell can be automatically detached without fine settings.
  • the captured image and the result of the image processing are notified to the user, and the determination of the processing position is left to the user. You may be made to do.
  • each modification of the ultrasonic irradiation unit in the first embodiment can be similarly applied to the second embodiment. That is, instead of the ultrasonic irradiation unit 12 of FIG. 6, any of the ultrasonic irradiation units of the modified examples shown in FIGS. 4A to 5C may be employed.
  • the cell detaching apparatus is a superposition of the processing position, that is, the lower surface of the dish D, by relative movement in the XY direction between the dish D held on the holding stage 11 and the ultrasonic irradiation unit 12.
  • the ultrasonic irradiation unit 12 is positioned at a position opposite to the processing target area where the sound wave is incident.
  • an ultrasonic irradiation unit in which a plurality of ultrasonic transducers and nozzle outlets are arranged in the X direction is provided in the Y direction with respect to the dish D. It is configured to move relative to each other.
  • FIG. 7 is a view showing a third embodiment of the cell peeling apparatus according to the present invention.
  • FIG. 8 is a top view showing the main part.
  • the cell peeling device 3 of this embodiment includes a control unit 300 having a CPU 301 that controls the operation of the entire device.
  • the cell peeling apparatus 3 includes a holding stage 31 that holds the dish D.
  • the holding stage 31 holds the dish D in a horizontal posture by contacting the peripheral edge of the outer bottom surface of the dish D and in a state where the lower part of the bottom surface of the dish D is opened.
  • the dish D is shown as a substantially rectangular shape with four corners rounded in plan view, but may be circular in plan view as described above.
  • the ultrasonic irradiation unit 32 is arranged below the dish D held on the holding stage 31.
  • the ultrasonic irradiation unit 32 is disposed opposite to the lower surface of the dish D and is disposed below the ultrasonic transducer 321, an ultrasonic transducer 321 that emits an ultrasonic wave upward, a nozzle 322 disposed at a side position thereof, and the ultrasonic transducer 321.
  • the ultrasonic irradiation unit 32 includes a deaeration unit 325 on the flow path of the ultrasonic transmission medium from the transmission medium supply unit 305 to the nozzle 322.
  • a plurality of ultrasonic transducers 321 having the same shape are arranged in the X direction.
  • An ultrasonic transducer array in which these ultrasonic transducers 321 are integrated is provided so as to cover a region longer than the length of the dish D in the X direction.
  • the transducer driving unit 304 provided in the control unit 300 individually drives the plurality of ultrasonic transducers 321. That is, each ultrasonic transducer 321 can emit and stop ultrasonic waves independently of each other.
  • the vibrator raising / lowering mechanism 303 provided in the control unit 300 prevents the occurrence of standing waves by raising and lowering each ultrasonic vibrator 321 integrally.
  • the nozzle 322 has a plurality of discharge ports 322a arranged at equal intervals in the X direction.
  • the transmission medium supply unit 305 provided in the control unit 300 can supply water as an ultrasonic transmission medium to the nozzles 322, and can individually control the discharge and stop of water from the discharge ports 322a. Further, by reducing the amount of dissolved gas in the water supplied to the nozzle 322 by the deaeration unit 325, attenuation of ultrasonic waves propagating in the water can be reduced. In addition, such a deaeration unit functions effectively similarly in combination with other embodiment.
  • each ultrasonic transducer 321 and the position of each discharge port 322a are shifted from each other.
  • the arrangement pitch of the ultrasonic transducers 321 and the arrangement pitch of the discharge ports 322a are equal in the X direction.
  • the center position in the X direction of each ultrasonic transducer 321 and the center position in the X direction of each discharge port 322a are shifted in the X direction by (1/2) of the arrangement pitch.
  • ultrasonic waves can be selectively incident on each position on the bottom surface of the dish D. That is, in the processing target area where the ultrasonic vibration is incident on the bottom surface of the dish D, the ultrasonic transducer 321 located immediately below the area emits an ultrasonic wave, and the ultrasonic transmission medium (water ) Is only supplied. Since the positions in the X direction are different between the ultrasonic transducer 321 and the discharge port 322a, the arrangement pitch in the X direction can be selected by selecting the combination of the ultrasonic transducer 321 and the discharge port 322a to be operated. The incident position of the ultrasonic wave in the X direction can be controlled with approximately (1/2) resolution. The incident positioning in the Y direction is realized by the relative movement of the holding stage 31 and the ultrasonic irradiation unit 32 in the Y direction by the scanning movement mechanism 302 provided in the control unit 300 as in the first embodiment.
  • the incident position of the ultrasonic wave in the X direction is set by a combination of the ultrasonic vibrator 321 that emits the ultrasonic wave and the discharge port 322a that discharges the ultrasonic transmission medium.
  • the incident position of the ultrasonic wave in the Y direction is set by relative movement between the holding stage 31 and the ultrasonic irradiation unit 32.
  • the area where the ultrasonic wave is incident is limited to one place, and the size thereof is also set. Fixed.
  • the ultrasonic irradiation unit 32 is moved relative to the dish D in the Y direction, and the ultrasonic wave incident position in the X direction is adjusted as needed, so that the entire dish D is scanned by one relative movement to detach the cells. Can be executed.
  • the cell peeling device 3 of this embodiment is provided with an imaging unit 33 above the dish D held on the holding stage 31.
  • the imaging unit 33 includes a linear image sensor in which a large number of minute imaging elements are arranged in the X direction.
  • an illumination light source 34 is provided on the opposite side of the imaging unit 33 with the dish D interposed therebetween, that is, on the lower surface side of the dish D and directly below the imaging unit 33. Lighting of the illumination light source 34 is controlled by an illumination control unit 309 provided in the control unit 300.
  • the imaging unit 33 captures a one-dimensional image in the X direction from above the dish D with a linear image sensor under illumination by the illumination light source 34.
  • a region R surrounded by a broken line in FIG. 8 schematically shows an imaging range of the linear image sensor. Then, when the imaging unit 33 and the illumination light source 34 are integrally moved relative to the dish D in the Y direction, a two-dimensional image obtained by imaging the dish D from above is acquired.
  • the scanning movement mechanism 302 fixes the imaging unit 33 and the illumination light source 34 and the holding stage 31 moves to the dish D. This is realized by moving in the Y direction. Further, the configuration in which the holding stage 31 is fixed and the ultrasonic irradiation unit 32 is movable is realized by moving the imaging unit 33 and the illumination light source 34 in the Y direction integrally with the ultrasonic unit 32.
  • the captured image of the dish D is analyzed by the image processing unit 308 provided in the control unit 300, and thereby the position of the cell to be detached is specified. Based on this position information, the CPU 301 controls the scanning movement mechanism 302, the lifting mechanism 303, the vibrator driving unit 304, and the transmission medium supply unit 305 to irradiate the cells Cx with ultrasonic waves and separate them from the dish D.
  • the dish D is placed in the direction indicated by the white arrow in FIG. 8 relative to the ultrasonic irradiation unit 32 and the imaging unit 33. While moving, imaging and image processing and cell detachment by ultrasonic irradiation can be performed in parallel. More generally, first, the scanning movement with respect to the dish D of the imaging unit 33 for capturing an image is performed, the position of the cell to be peeled is specified by image processing, and then the scanning movement with respect to the dish D of the ultrasonic irradiation unit 32 is performed. Then, the cells are irradiated with ultrasonic waves to be detached.
  • a suction nozzle shown in FIG. 5C may be further provided.
  • a plurality of units in which ultrasonic transducers are provided inside the nozzle cylinder may be arranged side by side in the X direction.
  • the relationship between the position of the ultrasonic transducer and the position of the nozzle ejection port is restricted.
  • such units are arranged in two rows and the arrangement of the ultrasonic transducer is a so-called staggered pattern. It may be arranged.
  • the holding stages 11 and 31 function as the “holding means” of the present invention.
  • the ultrasonic transducers 121, 151, 161, 171, 181, and 321 function as the “ultrasonic output means” of the present invention.
  • water as the ultrasonic transmission medium T corresponds to the “ultrasonic transmission substance” of the present invention, and the nozzles 122, 152, 162, 172, 182, 322, the transmission medium supply units 105, 305, etc. It functions as a “transmitter supply means”.
  • the nozzles 122, 152, 162, 172, 182, and 322 correspond to the “tubular body” of the present invention, and the transmission medium supply sections 105 and 305 serve as the “liquid injection section” of the present invention. It corresponds. Further, the elevating mechanisms 103, 107, 303 function as “distance changing means” of the present invention.
  • the imaging units 23 and 33 in the second and third embodiments function as “imaging means” of the present invention
  • the image processing units 208 and 308 function as “peeling position specifying means” of the present invention.
  • the CPUs 201 and 301 function as the “incident position setting means” of the present invention together with the scanning movement mechanisms 102 and 302 that function as the “positioning mechanism” of the present invention.
  • the plurality of ultrasonic transducers 321 in the third embodiment correspond to “a plurality of emission portions” of the present invention
  • the plurality of discharge ports 322 a provided in the nozzle 322 include “a plurality of discharge ports” of the present invention. Is equivalent to.
  • the suction nozzle 184 in the modified example of the first embodiment functions as the “suction means” of the present invention.
  • the dish D having the inner bottom surface Ba formed flat is used.
  • a container having a curved surface at the bottom or a container having a continuous curved surface from the bottom to the side is used. May be.
  • the supply position of the ultrasonic wave is not limited to the bottom of the container, and for example, the ultrasonic wave may be incident on the outer surface of the container via the ultrasonic transmission medium.
  • the inner surface of the outer surface of the container facing the container wall surface is covered with the medium or liquid injected into the container. It is more preferable that the ultrasonic wave is incident on the area.
  • the ultrasonic transmission medium water
  • the ultrasonic transmission medium water
  • the entire bottom surface of the dish D may be brought into contact with the water surface of the water stored in the water tank, and an ultrasonic vibrator may be disposed in the water tank.
  • the cell peeling apparatus of the above embodiment peels cells cultured in the dish D, which is a shallow dish-type sample container with an open top.
  • the above-described cell detachment apparatus can be applied to detachment of cells carried in a container with a closed top such as a culture plate or a flask.
  • a configuration for removing cells detached in the container and carrying it out of the container for example, a suction nozzle may be further provided.
  • the ultrasonic wave emitted from one ultrasonic transducer is incident on one place on the lower surface of the dish.
  • the ultrasonic waves emitted from two or more ultrasonic transducers are concentrated in one place, or the propagation direction of the ultrasonic waves is changed by diffraction or reflection to one place. It may be converged.
  • processing information is given from the culture management device connected to the cell peeling device via a communication line.
  • identification information such as a marking attached to the container, a barcode, an RFID tag, etc.
  • an image in the container are acquired by an external culture management device (for example, an incubator) or an analysis device.
  • an external culture management device for example, an incubator
  • processing information indicating what kind of peeling processing is performed on the cells in the container is created in advance.
  • information may be exchanged using an appropriate storage medium such as a USB memory, a flash memory card, and an optical disk, instead of communication via a communication line.
  • the cell detaching apparatus acquires container identification information, information on a region in which cells are distributed, information for container alignment, the above-described processing information, etc. from the culture management apparatus, and a cell at a position specified by these information
  • the above-described cell detachment process is executed to detach specified cells.
  • the information related to the content of the peeling process to be performed can be acquired by analysis in the apparatus, or can be acquired from the external apparatus in cooperation with the external apparatus.
  • the present invention is particularly suitable for an application for removing unnecessary cells distributed in a container, or an application for extracting only necessary cells among those cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 平坦な底面に細胞Cを担持する容器Dを保持する保持手段11と、保持手段11に保持された容器Dから離間して配置され、容器Dの底面のうちの処理対象領域に向けて超音波を出射し、容器Dの底面を介して細胞Cに超音波を入射させて、細胞の少なくとも一部を容器Dから剥離させる超音波出射手段121と、超音波出射手段121と処理対象領域との間の空間に超音波伝達物質を供給して超音波出射手段121と処理対象領域とを超音波伝達物質により接続する伝達物質供給手段105,122とを備える。

Description

細胞剥離装置および細胞剥離方法
 この発明は、容器内で培養された細胞を選択的に容器から剥離する技術に関するものである。
 培養プレートやディッシュ(シャーレ)などの容器の底面で細胞を接着培養した試料を用いた実験・研究においては、培養される細胞の一部を容器から剥離させて取り出すことが必要になる場合がある。このようなケースとしては、容器内に分布する細胞から有用なものを選抜して取り出すケースと、不要な細胞を除去するケースとの両方が含まれ得る。このような細胞の剥離を行う方法として、オペレータが例えば顕微鏡観察下で手作業により細胞を剥離させる方法以外に、例えば超音波を入射させることで細胞に振動エネルギーを与えて容器から剥離させる方法が考えられている。
 例えば特許文献1に記載の技術においては、平坦な担体に担持された細胞群のうち切り出したい細胞に収束された超音波が上方から照射され、これにより当該細胞が遊離する。また特許文献2には、培養容器のうち細胞が培養された培養面に対し裏側に当たる、培養容器外部から高周波振動発生部を接触させて、または非接触で振動を付与することで、一部の細胞を選択的に剥離させることが記載されている。
特開2010-022226号公報 特開2014-018185号公報
 特許文献1に記載の技術は、剥離したい細胞の上方に広い処理空間があることが前提となっているが、容器の種類や培養の状態によっては、このような前提が満足されない場合がある。したがって、特許文献2に記載のように、容器外面、特に底面側からの操作によって細胞を剥離することが求められる。しかしながら、特許文献2に記載のように、振動発生部を接触させた場合には振動発生部からの機械振動が容器の広い範囲に拡散し、剥離する領域を絞り込むことが難しい。また、細胞を担持する培地の表面で振動波が反射することで定在波が生じ、十分なエネルギーを細胞に与えることができず剥離を良好に行えないことがある。また振動発生部を容器に対し非接触に設けた場合にも、容器での反射により細胞に入射する超音波のエネルギーが小さくなり、やはり剥離を良好に行えない。
 このように、容器内に担持される細胞を、容器外面からの操作により優れた選択性で確実に剥離する剥離技術については、これまでのところ十分に実用的な技術が確立されているとは言えない。
 この発明は上記課題に鑑みなされたものであり、容器外面からの操作により、容器内に担持される細胞を優れた選択性で確実に剥離することのできる技術を提供することを目的とする。
 この発明にかかる細胞剥離装置の一の態様は、上記目的を達成するため、細胞を担持する容器を保持する保持手段と、前記保持手段に保持された前記容器から離間して配置され、前記容器の外面のうちの処理対象領域に向けて超音波を出射し、前記容器の外面を介して前記細胞に前記超音波を入射させて、前記細胞の少なくとも一部を前記容器から剥離させる超音波出射手段と、前記超音波出射手段と前記処理対象領域との間の空間に超音波伝達物質を供給して、前記超音波出射手段と前記処理対象領域とを前記超音波伝達物質により接続する伝達物質供給手段とを備えている。
 また、この発明にかかる細胞剥離方法の一の態様は、上記目的を達成するため、細胞を担持する容器の外面のうちの処理対象領域に向けて、超音波出射手段を前記容器から離間させて配置する工程と、前記超音波出射手段と前記処理対象領域との間の空間に超音波伝達物質を供給して、前記超音波出射手段と前記処理対象領域との間を前記超音波伝達物質で接続しながら、前記超音波出射手段から前記処理対象領域に超音波を入射させて、前記細胞の少なくとも一部を前記容器から剥離させる工程とを備えている。
 本発明において、「超音波」の語は、気体、液体、固体等の媒質中を伝搬する弾性波であって細胞を破壊することができる程度のエネルギーを持つもの全般を意味しており、人間の可聴域外の周波数を持つ弾性波に限定されるものではない。
 このように構成された発明では、容器外面の処理対象領域に対し離間配置された超音波出射手段から超音波が出射される。そして、超音波出射手段と処理対象領域との間は超音波伝達物質により接続される。空気伝搬により超音波を容器に入射させる場合、超音波が散乱したり容器外面で反射したりするため、容器外面を隔てた細胞に選択的にかつ効率よく超音波を入射させることが難しい。また、容器外面に超音波出射手段を接触させた場合、機械振動が容器に伝わって特定の領域のみに超音波を入射させることが難しい。また剥離対象たる細胞と超音波出射手段との距離が固定されてしまうため、定在波が発生して剥離に十分なエネルギーを細胞に与えることができなくなる場合がある。
 本発明では、超音波出射手段を直接容器に接触させるのではなく、超音波出射手段と処理対象領域との間に超音波伝達物質を介在させるので、超音波を効率よく剥離対象たる細胞に入射させることができる。また超音波の入射範囲も、容器外面と超音波伝達物質との接触面の位置と大きさとにより制御することが可能である。また超音波出射手段と容器外面との距離についても制限されないので、定在波による影響を抑制することが可能となる。このように、本発明によれば、容器外面側からの操作であっても、容器内に担持される細胞を優れた選択性で確実に剥離させることが可能である。
 本発明によれば、超音波出射手段が容器外面から離間して配置され、超音波出射手段と容器外面の処理対象領域との間が超音波伝達物質で接続される。超音波出射手段から出射される超音波は超音波伝達物質を介して処理対象領域に入射する。そのため、空気中での散乱や容器外面での反射が抑えられ、剥離対象たる細胞に対し優れた選択性で超音波が入射し、細胞を容器から剥離させることができる。
 この発明の前記ならびにその他の目的と新規な特徴は、添付図面を参照しながら次の詳細な説明を読めば、より完全に明らかとなるであろう。ただし、図面は専ら解説のためのものであって、この発明の範囲を限定するものではない。
この発明にかかる細胞剥離装置の第1実施形態の概略構成を示す図である。 この実施形態における細胞剥離の原理を説明する第1の図である。 この実施形態における細胞剥離の原理を説明する第2の図である。 この実施形態における細胞剥離の原理を説明する第3の図である。 この実施形態における細胞剥離の原理を説明する第4の図である。 第1実施形態における超音波照射ユニットの変形例を示す第1の図である。 第1実施形態における超音波照射ユニットの変形例を示す第2の図である。 第1実施形態における超音波照射ユニットの変形例を示す第3の図である。 第1実施形態における超音波照射ユニットの変形例を示す第4の図である。 第1実施形態における超音波照射ユニットの変形例を示す第5の図である。 第1実施形態における超音波照射ユニットの変形例を示す第6の図である。 この発明にかかる細胞剥離装置の第2実施形態の概略構成を示す図である。 この発明にかかる細胞剥離装置の第3実施形態を示す図である。 第3実施形態の主要部を示す上面図である。
 <第1実施形態>
 図1はこの発明にかかる細胞剥離装置の第1実施形態の概略構成を示す図である。この細胞剥離装置1は、シャーレ、ディッシュ等の試料容器に注入された培地内で培養された細胞のうち、特定の領域の細胞を容器から剥離させるための装置である。本明細書において「細胞」というとき、単一の細胞のみならず、複数の細胞からなる細胞塊や細胞コロニーも含む概念を表すものとする。すなわち、この細胞剥離装置1は、試料容器内で接着培養された細胞のうち単一の細胞を剥離する用途、および、複数の細胞からなる細胞塊または細胞コロニーを剥離する用途の少なくとも一方に用いられるものである。
 細胞を剥離させる目的としては、容器内で培養される細胞のうち不要なものを除去することを目的とするケースと、必要な細胞を採取して利用したり他の容器等に移し替えたりすることを目的とするケースとがあり得る。そのために、所望の位置の細胞のみを剥離させることができ、周囲の細胞にダメージを与えない位置選択性が必要とされる。本明細書で説明する細胞剥離装置は、このいずれの目的にも利用することができる。
 以下、各図における方向を統一的に示すために、図1に示すようにXYZ直交座標軸を設定する。ここで、XY平面が水平面を表す一方、Z軸が鉛直軸を表す。より詳しくは、(+Z)方向が鉛直上向き方向を表している。
 この細胞剥離装置1は、装置全体の動作を制御するCPU101を有する制御ユニット100を備えている。また、細胞剥離装置1は、試料容器の一例としての浅皿型のディッシュDを保持する保持ステージ11を備えている。保持ステージ11は、ディッシュDの外底面Bbの周縁部に当接することでディッシュDを水平姿勢に、かつディッシュDの外底面Bbの下方が開放された状態で保持する。ディッシュDは、内底面Baが直径数十ミリメートル程度の略円形で平坦に形成された、例えばガラスまたは樹脂製で浅皿型の容器である。ディッシュD内には予め液状またはゲル状の培地Mが注入されており、培地M内で細胞Cが培養されている。すなわち、ディッシュDの内底面Baに細胞Cが担持されている。
 保持ステージ11に保持されるディッシュDの下方には超音波照射ユニット12が配置されている。超音波照射ユニット12は、超音波を出射する超音波振動子121と、超音波振動子121を収容する筒状のノズル122とを備えている。超音波振動子121は、制御ユニット100に設けられた振動子駆動部104からの駆動信号に応じて所定の周波数および強度の超音波を発生し、上方に向けて、つまりディッシュDの外底面Bbに向けて超音波を出射する。種々の容器や細胞、その厚さ等に対応して良好に剥離を行うために、振動子駆動部104は、超音波振動子121から出射させる超音波の周波数および強度を変更可能となっていることが好ましい。
 また、超音波振動子121は、制御ユニット100に設けられた昇降機構103により、ノズル122の筒内で昇降可能に支持されている。昇降機構103は、CPU101からの制御指令に応じて超音波振動子121を昇降させ、その鉛直方向(Z方向)位置を変化させる。
 ノズル122は上向きに開いた開口122aを有する筒型形状となっており、内部に超音波振動子121が配置されている。ノズル122の下部側面には導入口122bが設けられている。導入口122bは制御ユニット100の伝達媒体供給部105と連通しており、伝達媒体供給部105から供給される超音波伝達媒体が導入口122bからノズル122の内部に導入される。
 詳しくは後述するが、この細胞剥離装置1は、超音波振動子121の振動面(上面)とディッシュD下面(外底面Bb)との間が超音波伝達媒体で接続された状態で、外底面Bbおよび内底面Baを含むディッシュD底面を介して超音波振動を付与することで細胞の剥離を行う。超音波伝達媒体としては、超音波振動を低損失で伝達する性質を有する種々の液体、ゲル状体または弾性体を用いることができ、例えば水を好適に用いることができる。以下では超音波伝達媒体として水が用いられるものとする。
 伝達媒体供給部105からノズル122に導入される超音波伝達媒体(水)はノズル122の内部空間を満たし、さらに上部の開口122aから吐出される。こうして吐出された水がディッシュDの下面(外底面Bb)に接触し、水が伝達媒体供給部105から継続的にノズル122に供給されることにより、超音波振動子121の上面とディッシュDの外底面Bbとの間が液密状態とされる。
 ノズル122から吐出されて流下する水を回収するために、ノズル122の下方に回収容器123が設けられている。ノズル122から流下し回収容器123に受け止められた水は、制御ユニット100に設けられた廃液回収部106に回収され処理される。超音波振動子121、ノズル122、回収容器123等が一体として超音波照射ユニット12を構成する。
 超音波照射ユニット12は、保持ステージ11に保持されるディッシュDに対して相対的に、XY方向、すなわち水平方向に移動自在となっている。具体的には、制御ユニット100に走査移動機構102が設けられており、走査移動機構102が保持ステージ11および超音波照射ユニット12の少なくとも一方をXY方向(水平方向)に移動させることで、ディッシュDと超音波照射ユニット12との相対移動が実現される。CPU101は、走査移動機構102を制御することで、ディッシュDと超音波照射ユニット12との相対位置を調整する。これにより、ディッシュD底面のうち超音波が照射される処理対象領域と対向する処理位置に、超音波照射ユニット12が位置決めされる。
 超音波照射ユニット12および保持ステージ11のいずれを可動とするかは任意であるが、保持ステージ11を固定し超音波照射ユニット12を可動とすることがより好ましい。保持ステージ11に保持されるディッシュDには培地Mが担持されており、また細胞が培地M中に浮遊している場合もあるため、培地Mが流動性を有する場合、ディッシュDの振動や移動によって内容物の位置や姿勢が変わってしまうことがあり得るからである。超音波照射ユニット12の移動においては、走査移動機構102は超音波振動子121、ノズル122および回収容器123を一体的に、つまりこれら相互の位置関係を維持しつつ水平移動させる。
 図2A、図2B、図3Aおよび図3Bはこの実施形態における細胞剥離の原理を説明する図である。このうち図2Aは剥離すべき細胞Cxに対し超音波照射ユニット12が位置決めされた状態を示す側面図であり、図2Bはその上面図である。また、図3Aは超音波照射ユニット12において定在波が発生する様子を模式的に示す図であり、図3Bは定在波の発生を防止するための構成例を示す図である。
 細胞の剥離は以下のようにして実行される。図2Aに示すように、ディッシュD内で培養された細胞Cのうち剥離させるべき細胞Cxの直下位置に超音波照射ユニット12が位置決めされる。より正確には、走査移動機構102が超音波照射ユニット12を保持ステージ11に対し水平方向に相対移動させることで、超音波照射ユニット12が細胞Cxの直下位置となるように超音波照射ユニット12を位置決めする。このとき、図2Bに示す平面視において、ノズル122の開口周縁部が細胞Cxを含む処理対象領域Rpを囲むように配置される。剥離させるべき細胞Cxの位置については、例えば、図示しない入力インターフェースを介してユーザーが座標情報を入力することでCPU101に教示することができる。
 そして、ノズル122に超音波伝達媒体Tとしての水が継続的に供給され、ノズル122の開口122aから水が吐出されることで、超音波振動子121と、細胞Cx直下のディッシュD下面(外底面Bb)との間が水により液密状態となる。この状態で、超音波振動子121が超音波をディッシュD底面に向け出射する。これにより、超音波振動がディッシュD底面を介して培地M中の細胞Cxに付与される。細胞種やその厚さに応じた周波数および強度の超音波による機械的振動が細胞Cxに加えられることにより、細胞CxがディッシュDの内底面Baから剥離する。
 この場合、超音波振動子121とディッシュDの外底面Bbとの間に超音波伝達媒体Tとして水が満たされている。そのため、超音波振動子121と超音波伝達媒体Tとの間、超音波伝達媒体TとディッシュD底面との間およびディッシュD底面と培地Mとの間での超音波の反射は少ない。また、超音波が水流に沿って伝搬することで散乱が抑えられる。これにより、超音波による機械振動のエネルギーが培地M中の細胞Cxに効率よく伝えられ、細胞Cxの剥離を効果的に行うことができる。
 一方、培地Mの上面とその上方の雰囲気との間の界面では超音波の反射が比較的多くなる。このため、図3Aに点線で模式的に示すように、超音波振動子121の振動面と培地M上面との間に定在波が発生し、細胞Cxに与えられる振動のエネルギーが小さくなってしまうことがある。これに起因する剥離の失敗を防止するために、この実施形態では、図3Bに示すように、昇降機構103により超音波振動子121を上下方向に移動させながら、超音波振動子121からの超音波の出射が行われる。
 これにより、超音波振動子121とディッシュD底面との距離が変化することで定在波の発生が防止され、振動のエネルギーを効率よく細胞Cxに作用させることができる。その結果、細胞CxをディッシュDの内底面から確実に剥離させることが可能となる。昇降移動における超音波振動子121の振幅Azについては、定在波防止の観点から、超音波の波長の4分の1以上、より好ましくは波長の2分の1以上とすることができる。
 以上のように、この実施形態では、保持ステージ11により水平姿勢に保持されたディッシュDの下方に超音波照射ユニット12が配置される。ディッシュD底面のうち剥離すべき細胞Cxの直下位置に当たる位置に超音波振動が与えられることで、細胞CxがディッシュDから剥離する。超音波照射ユニット12では、筒状のノズル122内に超音波振動子121が配置され、さらにノズル122内には超音波伝達媒体Tとしての水が満たされる。ノズル122上部の開口122aから吐出される水がディッシュD下面に接触することで超音波振動子121とディッシュD下面との間の空間が液密状態となる。
 このように、剥離すべき細胞Cxの直下位置に当たるディッシュD底面と超音波振動子121との間が超音波伝達媒体Tにより接続された状態で超音波振動子121から超音波が出射されるようにすることで、以下のような効果が得られる。第1に、超音波振動子121の振動面から剥離すべき細胞Cxまでの間の空間が液体または固体により満たされ、気体層が介在しないため、超音波の反射が少なく、振動のエネルギーを効率よく細胞Cxに伝えることができる。これにより、細胞Cxを確実に剥離するために必要な超音波のパワーを低減することができる。
 第2に、水中を伝わる超音波が周囲雰囲気との界面を超えて雰囲気中に伝搬する確率が非常に低いため、ディッシュD底面への超音波の入射範囲を、水に触れている領域のみに制限することができる。これにより超音波の散乱を抑え特定の位置に集中させることでエネルギー効率をさらに向上させることができるだけでなく、入射位置の選択性を高めることが可能となる。すなわち、所望の処理対象領域Rpのみに超音波を入射させて、周囲の細胞に影響を与えずに特定の細胞のみを剥離させることが可能となる。
 剥離させた細胞については、必要に応じて、外部から導入されるピペットやマニピュレータ等を用いてディッシュDから搬出することができ、またディッシュDに液体を供給することにより流し出すようにしてもよい。
 本願発明者の実験によれば、ガラス製のディッシュD内で接着培養された細胞を剥離させるのに適した超音波の周波数は、10kHzないし1MHz程度である。例えば細胞種としてNIH3T3細胞を用いた実験では、超音波の周波数を80kHz、出力を約25Wとして、ディッシュ下面と超音波振動子との距離を15ミリメートルないし35ミリメートルの間で変化させることにより、良好に細胞を剥離させることができた。
 なお、上記実施形態の超音波照射ユニット12では超音波伝達媒体Tである水を満たしたノズル122内で超音波振動子121が上下動する構成となっているが、これに代えて、例えば以下のような構成としてもよい。なお、以下の変形例の説明においては、上記した第1実施形態と同一の構成については記載を省略または同一符号を付して詳しい説明を省略する。しかしながら、特に断りのない限り、第1実施形態に備えられた各構成は以下の変形例においても備えられているものとする。
 図4Aないし4Cおよび図5Aないし5Cは第1実施形態における超音波照射ユニットの変形例を示す図である。このうち図4Aに示す変形例では、上面がディッシュD底面と平行な平面に仕上げられた第1実施形態の超音波振動子121に代えて、上面を窪ませた超音波振動子1211が設けられる。この点を除く構成は第1実施形態のものと同じであり、同一構成には同一符号を付して説明を省略する。このような構成では、超音波振動子1211から出射された超音波振動がディッシュD底面に向けて収束される。そのため、超音波振動子の出力が同じであっても、剥離させるべき細胞Cxに入射する超音波振動の強度をより高めることができる。
 また、図4Bおよび図4Cに示す変形例の超音波照射ユニット15では、超音波振動子151がノズル152の内部に固定されている。そして、第1実施形態の昇降機構103に代えて制御ユニット100に設けられる昇降機構107がノズル152を昇降させることで、ディッシュD下面と超音波振動子151との距離Dzが変化する。このような構成によっても、上記した第1実施形態の装置と同様にして細胞の剥離を行うことができる。なお、超音波振動子151とディッシュD下面との間の液密状態が確実に維持されるようにするために、ノズル152の昇降に応じて、伝達媒体供給部105が超音波伝達媒体の供給量を変化させてもよい。
 図5Aに示す変形例の超音波照射ユニット16では、図2Aに示すノズル122と同様の構成を有するノズル162内に設けられた超音波振動子161の上部に、上部ほど水平方向断面積が小さくなるテーパー部材163が振動伝達部材として取り付けられている。そのため、超音波はテーパー部材163の上面からディッシュD下面に向けて出射されることとなり、超音波の放射面積を規制することができる。これにより、ディッシュD底面において超音波が入射する領域のサイズをより小さくすることができ、超音波入射範囲の位置選択性をより高めることができる。
 なお、このようなテーパー部材に代えて、超音波の伝搬方向を規制するホーンが設けられてもよい。特に、筒状のホーンまたは振動伝達部材を設けた場合には、筒内に超音波伝達媒体を供給することで振動伝達部材にノズルとしての機能を兼備させることができる。
 図5Bに示す変形例の超音波照射ユニット17では、超音波振動子171とノズル172とが独立に設けられている。具体的には、ディッシュDの下方に超音波振動子171が配置される。一方、ディッシュD下面と超音波振動子171上面との間の空間に向けて吐出口が開口するように、ノズル172が超音波振動子171の側方に配置される。そして、ノズル172から超音波伝達媒体Tとしての水が吐出されて、ディッシュD下面と超音波振動子171上面との間が液密状態とされる。流下する水は回収容器173により受け止められ、廃液回収部106に回収される。このような構成によれば、第1実施形態の装置と同様の作用効果を得つつ、超音波伝達媒体Tの使用量を削減することができる。
 図5Cに示す変形例の超音波照射ユニット18では、図5Bに示す超音波照射ユニット17と同様の構成に加えて、吸引ノズル184がさらに設けられる。具体的には、ディッシュDの下方に配置された超音波振動子181を水平方向から挟むように、供給ノズル182および吸引ノズル184が配置される。吸引ノズル184は廃液回収部106に接続され、ノズル内には負圧が供給される。
 供給ノズル182から吐出される超音波伝達媒体Tとしての水はディッシュD下面と超音波振動子181との間の空間を満たし、吸引ノズル184により吸引されて廃液回収部106に回収される。これにより、容器Dの底部に沿って水が広がることが抑制され、特定の領域にのみ超音波を照射することが可能となる。超音波振動子181の下方には、吸引ノズル184により吸引しきれなかった水を受け止めるための回収容器183が設けられる。吸引ノズル184により全ての水を回収することが可能であれば、回収容器183は省略することができる。
 <第2実施形態>
 図6はこの発明にかかる細胞剥離装置の第2実施形態の概略構成を示す図である。この実施形態の細胞剥離装置2は、上記した第1実施形態の細胞剥離装置1に、ディッシュD内を撮像し剥離させるべき細胞の位置を特定するための構成が追加されたものである。この点を除く各部の構成およびその動作は第1実施形態のものと同一であるため、ここでは第1実施形態と同一の構成には同一符号を付して詳しい説明を省略する。
 細胞剥離装置2は、保持ステージ11に保持されるディッシュDの上方に配置された撮像部23を備えている。撮像部23は例えばCCDまたはCMOSセンサなどの撮像素子を有し、ディッシュDを上方から撮像して画像データを生成する。撮像部23としては、二次元画像を撮像する機能を有するエリアイメージセンサによるもの、一次元画像を撮像するリニアイメージセンサと走査機構との組み合わせにより二次元画像を撮像するもののいずれであってもよい。また、ディッシュDの全体がいくつかの領域に分けて撮像され、それらが合成されてもよい。
 細胞剥離装置2の制御ユニット200は、撮像部23から出力される画像データを用いて種々の画像処理を実行する画像処理部208を備え、CPU201は画像処理部208の処理結果に基づき装置各部を制御する機能を有する。これらの点を除き、制御ユニット200の構成および機能は第1実施形態の制御ユニット100のものと同じである。
 この実施形態では、撮像部23により撮像された画像を画像処理部208が適宜の画像処理により解析し、これにより剥離させるべき細胞の位置が自動的に特定される。CPU201は、画像処理部208により特定された位置情報に応じて走査移動機構102を制御することで、剥離させるべき細胞Cxの直下位置に超音波振動子121が配置されるように、ディッシュDと超音波照射ユニット12との間の位置決めを行う。このように、この実施形態では、ユーザーが位置情報を入力しなくても、自動的に処理位置を決定することができる。また、画像処理により認識することが可能な光学的特徴を有する細胞であれば、ユーザーが細かい設定を行うことなくそれを自動的に剥離させることができる。
 なお、上記のように処理位置を自動的に決定するのに代えて、あるいはこれに加えて、例えば撮像された画像や画像処理の結果がユーザーに報知され、処理位置の決定についてはユーザーに委ねられるようにしてもよい。
 また、第1実施形態における超音波照射ユニットの各変形例は、第2実施形態に対しても同様に適用することができる。すなわち、図6の超音波照射ユニット12に代えて、図4Aないし図5Cに示した変形例の超音波照射ユニットのいずれかが採用されてもよい。
 <第3実施形態>
 上記した第1および第2実施形態の細胞剥離装置は、保持ステージ11に保持されたディッシュDと超音波照射ユニット12との間のXY方向における相対移動によって、処理位置すなわちディッシュD下面のうち超音波を入射させる処理対象領域との対向位置に、超音波照射ユニット12を位置決めしている。一方、次に説明するこの発明にかかる細胞剥離装置の第3実施形態は、超音波振動子およびノズルの吐出口をX方向にそれぞれ複数配した超音波照射ユニットを、ディッシュDに対しY方向に相対移動させる構成となっている。
 図7はこの発明にかかる細胞剥離装置の第3実施形態を示す図である。また、図8はその主要部を示す上面図である。この実施形態の細胞剥離装置3は、装置全体の動作を制御するCPU301を有する制御ユニット300を備えている。また、細胞剥離装置3は、ディッシュDを保持する保持ステージ31を備えている。保持ステージ31は、ディッシュDの外底面周縁部に当接することでディッシュDを水平姿勢に、かつディッシュD底面の下方を開放した状態で保持する。なお、図7ではディッシュDが平面視において四隅を丸めた略矩形形状として示されているが、これまで説明してきたように平面視において円形のものであってもよい。
 保持ステージ31に保持されるディッシュDの下方には、超音波照射ユニット32が配置されている。超音波照射ユニット32は、ディッシュDの下面に対向配置され上向きに超音波を出射する超音波振動子321と、その側方位置に配置されたノズル322と、超音波振動子321の下方に配置された回収容器323とを備えている。また、超音波照射ユニット32は、伝達媒体供給部305からノズル322に至る超音波伝達媒体の流路上に脱気ユニット325を備えている。
 図8に示すように、この実施形態では互いに同一形状の複数の超音波振動子321がX方向に配列されている。これらの超音波振動子321が一体化された超音波振動子アレイが、X方向におけるディッシュDの長さよりも長い領域を覆うように設けられる。制御ユニット300に設けられた振動子駆動部304は、複数の超音波振動子321を個別に駆動する。すなわち、各超音波振動子321は、互いに独立して超音波を出射および停止することができる。一方、制御ユニット300に設けられた振動子昇降機構303は、各超音波振動子321を一体的に昇降させて定在波の発生を防止する。
 ノズル322は、X方向に等間隔に配列された複数の吐出口322aを有している。制御ユニット300に設けられた伝達媒体供給部305は、超音波伝達媒体としての水をノズル322に供給し、各吐出口322aからの水の吐出およびその停止を個別に制御することができる。また脱気ユニット325により、ノズル322に供給される水中の溶存気体量を減少させることで、水中を伝搬する超音波の減衰を少なくすることができる。なお、このような脱気ユニットは、他の実施形態との組み合わせても同様に、有効に機能するものである。
 X方向において、各超音波振動子321の位置と各吐出口322aの位置とが互いにずれている。具体的には、X方向において超音波振動子321の配列ピッチと吐出口322aの配列ピッチとが等しい。そして、各超音波振動子321のX方向における中心位置と各吐出口322aのX方向における中心位置とが配列ピッチの(1/2)だけ、X方向にずれている。
 このような構成によれば、ディッシュD底面の各位置に選択的に超音波を入射させることができる。すなわち、ディッシュD底面のうち超音波振動が入射する処理対象領域は、当該領域の直下位置にある超音波振動子321が超音波を出射し、かつ当該領域にノズル322から超音波伝達媒体(水)が供給されている領域のみとなる。超音波振動子321と吐出口322aとの間でX方向における位置が異なっているため、作動させる超音波振動子321と吐出口322aとの組み合わせを選択することにより、X方向におけるこれらの配列ピッチの概ね(1/2)の分解能でX方向における超音波の入射位置を制御することができる。Y方向の入射位置決めについては、第1実施形態と同様、制御ユニット300に設けられた走査移動機構302が保持ステージ31と超音波照射ユニット32とをY方向に相対移動させることにより実現される。
 このように、本実施形態では、X方向における超音波の入射位置は、超音波を出射する超音波振動子321と超音波伝達媒体を吐出する吐出口322aとの組み合わせによって設定される。一方、Y方向における超音波の入射位置は、保持ステージ31と超音波照射ユニット32との相対移動により設定される。
 第1実施形態のように保持ステージと超音波照射ユニットとのXY方向における相対移動によって超音波の入射位置を決定する態様では、超音波が入射する領域は1箇所に限定され、またそのサイズも固定される。これに対して、本実施形態における位置決め態様では、X方向において複数箇所に同時に超音波を入射させたり、入射領域を拡張したりすることが可能である。したがって、Y方向において超音波照射ユニット32をディッシュDに対し相対移動させながら、X方向における超音波入射位置を随時調整することにより、1回の相対移動でディッシュD全体を走査して細胞の剥離を実行することができる。
 このため、図8に示すように、剥離させるべき細胞Cxが複数ある場合でも、それらの位置が事前にわかっていれば、ディッシュDに対する超音波照射ユニット32の1回の相対移動でその全てを剥離させることが可能である。したがって、この実施形態では、剥離させるべき細胞が多数である場合や広範囲に分布している場合でも、短時間で効率よくそれらを剥離させることが可能である。
 剥離させるべき細胞Cxの位置を特定するために、この実施形態の細胞剥離装置3には、保持ステージ31に保持されるディッシュDの上方に撮像部33が設けられる。撮像部33は、微小な撮像素子がX方向に多数配列されたリニアイメージセンサを備えている。また、ディッシュDを挟んで撮像部33の反対側、つまりディッシュDの下面側で撮像部33の直下に当たる位置に照明光源34が設けられている。照明光源34の点灯は、制御ユニット300に設けられた照明制御部309により制御される。
 撮像部33は、照明光源34による照明下でディッシュDの上方からX方向の一次元画像をリニアイメージセンサにより撮像する。図8において破線で囲まれた領域Rは、リニアイメージセンサの撮像範囲を模式的に示している。そして、撮像部33および照明光源34が一体的にディッシュDに対しY方向に相対移動することにより、ディッシュDを上から撮像した二次元画像が取得される。
 撮像部33および照明光源34のディッシュDに対する相対移動は、保持ステージ31が可動に構成されている場合には、走査移動機構302が撮像部33および照明光源34を固定し保持ステージ31がディッシュDをY方向に移動させることにより実現される。また、保持ステージ31が固定され、超音波照射ユニット32が可動となった構成では、超音波ユニット32と一体的に撮像部33および照明光源34がY方向に移動することにより実現される。
 撮像されたディッシュDの画像は、制御ユニット300に設けられた画像処理部308により解析され、これにより剥離させるべき細胞の位置が特定される。この位置情報に基づき、CPU301は、走査移動機構302、昇降機構303、振動子駆動部304および伝達媒体供給部305を制御して、細胞Cxへの超音波照射を行い、ディッシュDから剥離させる。
 画像から剥離させるべき細胞Cxを特定するための画像処理が短時間で可能であれば、超音波照射ユニット32および撮像部33に対し相対的に、図8において白矢印で示す方向にディッシュDを移動させながら、撮像および画像処理と、超音波照射による細胞の剥離とを並行して行うこともできる。より一般的には、まず画像を撮像するための撮像部33のディッシュDに対する走査移動を行い、画像処理によって剥離させるべき細胞の位置を特定した後、超音波照射ユニット32のディッシュDに対する走査移動を行って、当該細胞に超音波を照射し剥離させる。
 また、剥離作業の終了後に再度撮像を行って剥離が適切に行われたかどうかを観察し、剥離すべき細胞が残留している場合には当該細胞について再度剥離が実行されるようにしてもよい。
 この実施形態においても、超音波照射ユニットの構成についてはいくつかの変形例が考えられる。例えば、図5Cに示される吸引ノズルがさらに設けられてもよい。また、図2Aまたは図4Bに示されるように、ノズルの筒体の内部に超音波振動子が設けられたユニットが、X方向に複数並べて配置されてもよい。この場合、超音波振動子の位置とノズル吐出口の位置との関係が制約されるが、これを解決するために、例えばこのようなユニットを2列に並べて超音波振動子の配置がいわゆる千鳥配置となるようにしてもよい。
 <その他>
 以上説明したように、上記各実施形態においては、保持ステージ11,31が本発明の「保持手段」として機能している。また、超音波振動子121,151,161,171,181,321が本発明の「超音波出射手段」として機能している。また、超音波伝達媒体Tとしての水が本発明の「超音波伝達物質」に相当し、ノズル122,152,162,172,182,322、伝達媒体供給部105,305等が本発明の「伝達物質供給手段」として機能している。より具体的には、このうちノズル122,152,162,172,182,322は本発明の「筒状体」に相当し、伝達媒体供給部105,305が本発明の「液体注入部」に相当している。また、昇降機構103,107,303が本発明の「距離変更手段」として機能している。
 また、第2および第3実施形態における撮像部23,33が本発明の「撮像手段」として機能し、画像処理部208,308が本発明の「剥離位置特定手段」として機能している。また、CPU201,301が、本発明の「位置決め機構」として機能する走査移動機構102,302とともに、本発明の「入射位置設定手段」として機能している。
 また、第3実施形態における複数の超音波振動子321が本発明の「複数の出射部」に相当しており、ノズル322に設けられた複数の吐出口322aが本発明の「複数の吐出口」に相当している。また、第1実施形態の変形例における吸引ノズル184が、本発明の「吸引手段」として機能している。
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記第1実施形態では、ディッシュDの内底面Baが平坦に形成されたものを使用したが、底部が曲面を持つ容器や、底部から側部にかけて連続的な曲面を有する容器が使用されてもよい。また超音波の供給位置は容器底部に限定されず、例えば容器の外側面に超音波伝達媒体を介して超音波が入射するように構成されてもよい。この場合、剥離させたい細胞の存在する位置に集中的に超音波を作用させるために、容器の外面のうち容器壁面を挟んで対向する内面側が容器内に注入された培地または液体により覆われている領域に、超音波を入射させることがより好ましい。
 また例えば、第1実施形態では、ディッシュD下面のうち超音波を入射させたい領域のみに超音波伝達媒体(水)が供給される。しかしながら、例えば超音波振動子が単独でも十分な分解能で超音波の入射範囲を制御することができる程度の高い指向性を有するものであれば、超音波伝達媒体の供給範囲を限定する必要は必ずしもない。この意味では、例えば、水槽に貯留された水の水面にディッシュDの下面全体を触れさせ、水槽中に超音波振動子を配置した構成とすることもできる。
 また、上記実施形態の細胞剥離装置は上部が開放された浅皿型の試料容器であるディッシュD内で培養された細胞を剥離させるものである。しかしながら、上記したように細胞の剥離はディッシュ下面側に設けた超音波照射ユニットにより行われ、上方からのアクセスは必ずしも必要ない。したがって、培養プレートやフラスコのような上部が閉じた形状の容器に担持される細胞の剥離にも、上記した細胞剥離装置を適用することができる。また、容器内で剥離した細胞を除去し容器外へ搬出するための構成、例えば吸引ノズルがさらに設けられてもよい。
 また、上記実施形態ではディッシュ下面の1箇所に対して1つの超音波振動子から出射される超音波を入射させている。しかしながら、より強力な超音波振動を与えるために、2以上の超音波振動子から出射される超音波を1箇所に集中させたり、回折または反射により超音波の伝搬方向を変化させて1箇所に収束させたりしてもよい。
 また、ディッシュDで培養された細胞のうちどの領域のものをどのような態様で剥離させるかについては、例えば、当該細胞剥離装置と通信回線を介して接続された培養管理装置から加工情報が与えられるようにしてもよい。すなわち、外部の培養管理装置(例えばインキュベータ)または分析装置により、細胞を担持する容器の識別情報(容器に付されたマーキング、バーコード、RFID用タグなど)と当該容器内の画像とが取得される。そして、細胞種や形状、大きさなどの分析結果に基づき、当該容器内の細胞に対しどのような剥離加工を行うかを表す加工情報が予め作成される。なお、通信回線を介した通信に代えて、USBメモリ、フラッシュメモリカードおよび光ディスク等の適宜の記憶媒体を用いて情報の受け渡しが行われてもよい。
 細胞剥離装置は、培養管理装置から容器の識別情報、細胞が分布する領域に関する情報、容器の位置合わせのための情報、上記した加工情報等を取得し、これらの情報により特定される位置の細胞に対し、上記した細胞剥離処理を実行して指定された細胞を剥離させる。このように、実行すべき剥離処理の内容に関する情報については、装置内での分析により取得することができるほか、外部装置との連携により外部装置から取得することも可能である。
 本発明は、容器中に分布する細胞のうち不要なものを取り除く用途、あるいは、それらの細胞のうち必要なもののみを取り出す用途に特に好適である。
 以上、特定の実施例に沿って発明を説明したが、この説明は限定的な意味で解釈されることを意図したものではない。発明の説明を参照すれば、本発明のその他の実施形態と同様に、開示された実施形態の様々な変形例が、この技術に精通した者に明らかとなるであろう。故に、添付の特許請求の範囲は、発明の真の範囲を逸脱しない範囲内で、当該変形例または実施形態を含むものと考えられる。
 1,2,3 細胞剥離装置
 11,31 保持ステージ(保持手段)
 23,33 撮像部(撮像手段)
 102,302 走査移動機構(位置決め機構、入射位置設定手段)
 103,107,303 昇降機構(距離変更手段)
 105,305 伝達媒体供給部(液体注入部、伝達物質供給手段)
 121,151,161,171,181 超音波振動子(超音波出射手段)
 122,152,162,172,182,322 ノズル(超音波出射手段、筒状体)
 184 吸引ノズル(吸引手段)
 201,301 CPU(入射位置設定手段)
 208,308 画像処理部(剥離位置特定手段)
 321 超音波振動子(超音波出射手段、出射部)
 322a 吐出口
 D ディッシュ(容器)
 T 超音波伝達媒体(超音波伝達物質)

Claims (15)

  1.  細胞を担持する容器を保持する保持手段と、
     前記保持手段に保持された前記容器から離間して配置され、前記容器の外面のうちの処理対象領域に向けて超音波を出射し、前記容器の外面を介して前記細胞に前記超音波を入射させて、前記細胞の少なくとも一部を前記容器から剥離させる超音波出射手段と、
     前記超音波出射手段と前記処理対象領域との間の空間に超音波伝達物質を供給して、前記超音波出射手段と前記処理対象領域とを前記超音波伝達物質により接続する伝達物質供給手段と
    を備える細胞剥離装置。
  2.  前記伝達物質供給手段は、前記超音波伝達物質としての液体を供給して、前記超音波出射手段と前記処理対象領域との間を液密状態にする請求項1に記載の細胞剥離装置。
  3.  前記伝達物質供給手段は、一方端が前記容器の外面に向けて開口し内部空間に前記液体を保持する筒状体と、前記筒状体の前記内部空間に前記液体を注入する液体注入部とを有し、前記筒状体の開口から前記液体を吐出させて前記容器の外面に供給し、
     前記超音波出射手段は、前記筒状体の前記内部空間にまたは前記筒状体の前記一方端と反対側の他方端に設けられる請求項2に記載の細胞剥離装置。
  4.  前記超音波出射手段と前記容器との距離を変化させる距離変更手段を備え、
     前記距離変更手段が前記超音波出射手段と前記容器との距離を変化させながら、前記超音波出射手段が前記超音波を出射する請求項1ないし3のいずれかに記載の細胞剥離装置。
  5.  前記容器内の前記細胞を撮像する撮像手段と、
     前記撮像手段が撮像した画像に基づき、前記容器内で剥離すべき細胞の位置を特定する剥離位置特定手段と、
     前記剥離位置特定手段により特定された位置の情報に応じて、前記容器の外面への前記超音波の入射位置を設定する入射位置設定手段と
    を備える請求項1ないし4のいずれかに記載の細胞剥離装置。
  6.  前記入射位置設定手段は、前記剥離位置特定手段により特定された位置の情報に応じて、前記容器に対し相対的に前記超音波出射手段を移動位置決めする位置決め機構を有する請求項5に記載の細胞剥離装置。
  7.  前記伝達物質供給手段が、前記超音波伝達物質の前記容器の外面への供給位置を変更可能であり、
     前記入射位置設定手段は、前記剥離位置特定手段により特定された位置の情報に応じて、前記伝達物質供給手段から前記容器の底面への前記超音波伝達物質の供給位置を設定する請求項5に記載の細胞剥離装置。
  8.  前記伝達物質供給手段が、前記容器の外面の互いに異なる位置に向けて前記超音波伝達物質としての液体を吐出する複数の吐出口を有し、
     前記入射位置設定手段は、前記剥離位置特定手段により特定された位置の情報に応じて、前記吐出口の各々からの前記超音波伝達物質の吐出量を個別に制御する請求項5ないし7のいずれかに記載の細胞剥離装置。
  9.  前記超音波出射手段が、前記容器の外面の互いに異なる位置に向けて前記超音波を出射する複数の出射部を有し、
     前記入射位置設定手段は、前記剥離位置特定手段により特定された位置の情報に応じて、前記出射部の各々からの前記超音波の出射量を個別に制御する請求項5ないし8のいずれかに記載の細胞剥離装置。
  10.  前記伝達物質供給手段から前記容器の外面に供給される前記超音波伝達物質としての液体を、前記容器外面から吸引する吸引手段を備える請求項1ないし9のいずれかに記載の細胞剥離装置。
  11.  前記超音波出射手段は、前記容器の外面に入射させる前記超音波の強度を変更可能である請求項1ないし10のいずれかに記載の細胞剥離装置。
  12.  細胞を担持する容器の外面のうちの処理対象領域に向けて、超音波出射手段を前記容器から離間させて配置する工程と、
     前記超音波出射手段と前記処理対象領域との間の空間に超音波伝達物質を供給して、前記超音波出射手段と前記処理対象領域との間を前記超音波伝達物質で接続しながら、前記超音波出射手段から前記処理対象領域に超音波を入射させて、前記細胞の少なくとも一部を前記容器から剥離させる工程と
    を備える細胞剥離方法。
  13.  前記超音波出射手段と前記処理対象領域との間の空間に前記超音波伝達物質としての液体を供給し、前記超音波出射手段と前記処理対象領域との間を液密状態にして前記超音波出射手段から前記超音波を出射する請求項12に記載の細胞剥離方法。
  14.  前記超音波出射手段と前記容器との距離を変化させながら、前記超音波出射手段から前記超音波を出射する請求項12または13に記載の細胞剥離方法。
  15.  前記容器内の前記細胞を撮像する工程と、
     撮像された画像に基づき、前記容器内で剥離すべき細胞の位置を特定する工程と、
     特定された位置に前記超音波の入射位置を調整する工程と
    を備える請求項12ないし14のいずれかに記載の細胞剥離方法。
PCT/JP2015/074362 2014-09-26 2015-08-28 細胞剥離装置および細胞剥離方法 WO2016047368A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016550067A JP6353549B2 (ja) 2014-09-26 2015-08-28 細胞剥離装置および細胞剥離方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-197064 2014-09-26
JP2014197064 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016047368A1 true WO2016047368A1 (ja) 2016-03-31

Family

ID=55580897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074362 WO2016047368A1 (ja) 2014-09-26 2015-08-28 細胞剥離装置および細胞剥離方法

Country Status (2)

Country Link
JP (1) JP6353549B2 (ja)
WO (1) WO2016047368A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030260A (ja) * 2017-08-08 2019-02-28 学校法人慶應義塾 細胞生産方法及び細胞生産装置
WO2019044804A1 (ja) * 2017-08-28 2019-03-07 学校法人慶應義塾 細胞生産方法及び細胞生産装置
CN111206028A (zh) * 2019-03-24 2020-05-29 罗火生 一种超声波收获细胞方法和装置
WO2023074850A1 (ja) 2021-10-29 2023-05-04 キヤノン株式会社 細胞剥離液及び細胞剥離方法、細胞保存方法
WO2023145797A1 (ja) * 2022-01-31 2023-08-03 キヤノン株式会社 細胞剥離方法、細胞剥離システム及び情報処理装置
WO2023248527A1 (ja) * 2022-06-20 2023-12-28 株式会社日立製作所 細胞剥離装置および細胞剥離方法
WO2024095909A1 (ja) * 2022-11-01 2024-05-10 キヤノン株式会社 細胞剥離装置、及び細胞剥離方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116515A (ja) * 2001-10-18 2003-04-22 Hitachi Ltd 生体分子回収方法及びその装置
JP2008092857A (ja) * 2006-10-11 2008-04-24 Olympus Corp 細胞分離装置及び細胞分離方法
JP2011521640A (ja) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド 超音波細胞除去方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149612A (ja) * 2006-12-19 2008-07-03 Canon Inc インクジェット記録方法
JP5753042B2 (ja) * 2011-09-20 2015-07-22 株式会社Screenホールディングス 電池用電極の製造方法および電池の製造方法
JP5753043B2 (ja) * 2011-09-20 2015-07-22 株式会社Screenホールディングス 電池用電極の製造方法および電池の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003116515A (ja) * 2001-10-18 2003-04-22 Hitachi Ltd 生体分子回収方法及びその装置
JP2008092857A (ja) * 2006-10-11 2008-04-24 Olympus Corp 細胞分離装置及び細胞分離方法
JP2011521640A (ja) * 2008-05-30 2011-07-28 コーニング インコーポレイテッド 超音波細胞除去方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019030260A (ja) * 2017-08-08 2019-02-28 学校法人慶應義塾 細胞生産方法及び細胞生産装置
WO2019044804A1 (ja) * 2017-08-28 2019-03-07 学校法人慶應義塾 細胞生産方法及び細胞生産装置
CN111206028A (zh) * 2019-03-24 2020-05-29 罗火生 一种超声波收获细胞方法和装置
WO2023074850A1 (ja) 2021-10-29 2023-05-04 キヤノン株式会社 細胞剥離液及び細胞剥離方法、細胞保存方法
WO2023145797A1 (ja) * 2022-01-31 2023-08-03 キヤノン株式会社 細胞剥離方法、細胞剥離システム及び情報処理装置
WO2023248527A1 (ja) * 2022-06-20 2023-12-28 株式会社日立製作所 細胞剥離装置および細胞剥離方法
WO2024095909A1 (ja) * 2022-11-01 2024-05-10 キヤノン株式会社 細胞剥離装置、及び細胞剥離方法

Also Published As

Publication number Publication date
JPWO2016047368A1 (ja) 2017-04-27
JP6353549B2 (ja) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6353549B2 (ja) 細胞剥離装置および細胞剥離方法
US6699711B1 (en) Device and method for selective exposure of a biological sample to sound waves
CN109195717A (zh) 超声换能器二维阵列的发射波束成形
US10241085B2 (en) Scanning acoustic microscope with an inverted transducer and bubbler functionality
CN109155127A (zh) 超声传感器的接收操作
US20080053230A1 (en) Ultrasonic Inspection Method and Ultrasonic Inspection Device
JP2008092857A (ja) 細胞分離装置及び細胞分離方法
JP7396824B2 (ja) 超音波水噴射装置
CN109946217B (zh) 一种声驱动的流式细胞检测装置
KR20140133037A (ko) 분리 결합형 초음파 프로브 장치
JP5487152B2 (ja) 細胞採取システム
CN109698118A (zh) 芯片的制造方法
JP4660772B2 (ja) 検体動作制御装置、検体動作用のパラメータの取得方法、及び検体動作制御方法
US7923679B2 (en) Method and device for handling objects
KR20200101841A (ko) 칩 및 프레임체 중 적어도 어느 것을 제조하는 방법
WO2018003443A1 (ja) 伝熱プレート、ウェルプレートユニット、及び、細胞剥離装置
CN112368366B (zh) 细胞处理装置
US20090165830A1 (en) Ultrasound Actuator for Cleaning Objects
JP5530081B2 (ja) 超音波ダイセクション装置および超音波ダイセクション方法
US11648564B2 (en) Well plate drier and cover
CN115232724A (zh) 用于组织快速裂解的声流体器件及自动化裂解与活检装置
KR20210134504A (ko) 웨이퍼의 생성 방법
CN203694435U (zh) 一种介入治疗用超声发射装置
US20170121664A1 (en) Cell separation device and cell separation method
US9335237B2 (en) Systems and methods for acoustically processing tissues samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550067

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843332

Country of ref document: EP

Kind code of ref document: A1