WO2016047279A1 - 装置 - Google Patents

装置 Download PDF

Info

Publication number
WO2016047279A1
WO2016047279A1 PCT/JP2015/072150 JP2015072150W WO2016047279A1 WO 2016047279 A1 WO2016047279 A1 WO 2016047279A1 JP 2015072150 W JP2015072150 W JP 2015072150W WO 2016047279 A1 WO2016047279 A1 WO 2016047279A1
Authority
WO
WIPO (PCT)
Prior art keywords
period
communication
wireless lan
cellular system
frequency band
Prior art date
Application number
PCT/JP2015/072150
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP15845336.5A priority Critical patent/EP3200518B1/en
Priority to US15/501,027 priority patent/US10306626B2/en
Priority to JP2016550014A priority patent/JP6572901B2/ja
Priority to EP20167642.6A priority patent/EP3735055A1/en
Publication of WO2016047279A1 publication Critical patent/WO2016047279A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • This disclosure relates to an apparatus.
  • CA Carrier Aggregation
  • Patent Document 1 discloses a registered frequency band that can be used by a registered operator, and an unlicensed license that can be used when a predetermined condition is satisfied, in addition to a dedicated frequency band that is dedicated to each operator. A technique that enables the use of bands is disclosed.
  • a frequency band (for example, a wireless LAN channel included in the 5 GHz band) is shared between a cellular system and a wireless LAN (Local Area Network).
  • the cellular system communication is performed in the frequency band in a certain period, and the wireless LAN communication is performed in the frequency band in another period.
  • the cellular system performs communication in a frequency band shared between the cellular system and the wireless LAN within a first period, and the cellular system in the frequency band within a second period.
  • a communication processing unit that stops the communication is provided.
  • the first period is one or more subframes including a subframe in which the synchronization signal of the cellular system is transmitted.
  • the second period does not include a subframe in which the synchronization signal is transmitted.
  • communication of the cellular system in the frequency band shared between the cellular system and the wireless LAN is stopped during the first period in which communication of the cellular system is performed or in the frequency band.
  • An acquisition unit that acquires information on the second period, and a communication processing unit that transmits a wireless LAN frame in the frequency band in accordance with the start of the first period or the second period.
  • the wireless LAN frame includes duration information for setting the NAV.
  • an apparatus including an acquisition unit that acquires information indicating a second period, and a measurement unit that performs measurement on the frequency band based on the information.
  • the first period is one or more subframes including a subframe in which the synchronization signal of the cellular system is transmitted.
  • the second period does not include a subframe in which the synchronization signal is transmitted.
  • An apparatus in the frequency band shared between the cellular system and the wireless LAN, the duration included in the wireless LAN frame in response to reception of the wireless LAN frame transmitted by the base station of the cellular system.
  • An apparatus includes an acquisition unit that acquires time information and a communication processing unit that sets a NAV for the frequency band based on the duration information.
  • the terminal device can more easily maintain synchronization for communication of the cellular system in the frequency band shared between the cellular system and the wireless LAN.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 3 is a flowchart showing an example of a schematic flow of processing of the base station according to the first embodiment. It is explanatory drawing for demonstrating operation
  • Frequency band sharing (a) Background of frequency sharing Further frequency bands that can be used in cellular systems are required. For example, a 5 GHz band can be considered as a further frequency band that can be used in a cellular system.
  • the 5 GHz band is also used in wireless LAN. Therefore, when the 5 GHz band is used in the cellular system, for example, the 5 GHz band is shared between the cellular system and the wireless LAN. Specifically, for example, a frequency band of 5 GHz band (for example, a wireless LAN channel) is used in a wireless LAN at a certain time and used in a cellular system at another time. Thereby, the frequency utilization efficiency of 5 GHz band improves.
  • the wireless LAN standards include IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and these standards are characterized by adopting IEEE802.11 as a MAC (Media Access Control) layer.
  • C Use as a Component Carrier
  • the shared band will be used as a component carrier (CC), for example.
  • CC component carrier
  • the frequency band for the cellular system is used as PCC and the shared band is used as SCC.
  • the control signal and the data signal can be transmitted / received using the frequency band for the cellular system, and the data signal can be transmitted / received using the shared band.
  • fair sharing may be defined as “an opportunity to use a shared band in a wireless LAN and an opportunity to use the shared band in a cellular system are given as well”. That is, it can be regarded as fair sharing that the actual communication amount is not the same between the cellular system and the wireless LAN, but the communication opportunity is the same between the cellular system and the wireless LAN.
  • a shared band is used for a certain period in a cellular system, then the shared band is released from use of the cellular system for a similar period.
  • FIG. 1 is an explanatory diagram for explaining an example of data transmission according to IEEE 802.11.
  • DATA frames and ACK frames are basic frames.
  • the ACK frame is a frame for notifying the transmission side of the successful reception of the DATA frame when the DATA frame is correctly received.
  • wireless communication can be performed using only a DATA frame and an ACK frame.
  • two frames that is, an RTS (Request To Send) frame and a CTS (Clear To Send) frame are used.
  • the wireless LAN node confirms that the signal is not transmitted for a period of DIFS (DCF (Distributed Coordination Function) InterFrame Space) before transmitting the RTS frame. This is called carrier sense. If the nodes start transmitting signals at the same time when DIFS has passed, the signals will collide. Therefore, each node waits for a back-off time that is randomly set for each node, and transmits a signal if no signal is transmitted during the back-off time.
  • DIFS Distributed Coordination Function
  • a node cannot transmit a signal while detecting any signal.
  • an RTS frame and a CTS frame including a duration field for setting a value called NAV have been added.
  • a NAV is set based on the value included in the duration field. The node that has set the NAV refrains from transmitting signals over the period of the NAV.
  • the first node that transmits the DATA frame transmits the RTS frame.
  • other nodes located around the first node receive the RTS frame and acquire the value included in the duration field in the RTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the RTS frame to the end of the ACK frame.
  • the second node that receives the DATA frame transmits a CTS frame only SIFS (Short InterFrame Space) after the end of the RTS frame in response to the reception of the RTS frame.
  • SIFS Short InterFrame Space
  • other nodes located around the second node receive the CTS frame and acquire the value included in the duration field in the CTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the CTS frame to the end of the ACK frame.
  • another node that is not close to the first node but is close to the second node ie, a hidden node for the first node It is possible to prevent a signal from being transmitted during communication between one node and the second node.
  • the RTS frame includes a frame control field, a reception address field, a transmission address field, and an FCS (Frame Check Sequence) in addition to the duration field.
  • the CTS frame includes a frame control field, a reception address field, and an FCS.
  • DIFS and SIFS in the IEEE 802.11 series standard have the following lengths, for example.
  • MAC frames In IEEE 802.11, there are three types of MAC frames: a management frame, a control frame, and a data frame.
  • the RTS frame, CTS frame, and ACK frame described above are control frames, and the beacon frame is a management frame.
  • the beacon frame has a structure similar to that of other frames (for example, an RTS frame, a CTS frame, an ACK frame, and a data frame), and includes information different from the other frames.
  • the header in the MAC frame has fields (type field and subtype field) for indicating the frame type.
  • the following values are included in the field.
  • beacon frame In IEEE 802.11, an access point periodically transmits a beacon frame.
  • the station can acquire information about the access point by receiving the beacon frame. It can be said that a beacon frame in a wireless LAN corresponds to system information in a cellular system.
  • a beacon frame includes a beacon interval.
  • the beacon interval is a time interval of beacon transmission. From the beacon interval, the station can know the approximate time when the next beacon is transmitted.
  • the beacon interval can be set with a granularity of 10 ms between 20 ms and 1000 ms. For example, the beacon interval is set to 100 ms.
  • a beacon frame includes a time stamp.
  • the time stamp is information used for time synchronization between the access point and the station.
  • a beacon frame includes a service set ID (service set ID). It can be said that the service set ID in the wireless LAN corresponds to the cell ID in the cellular system.
  • the beacon frame includes other information such as a modulation scheme to be supported and a channel.
  • beacon frame (B-3) Transmission of beacon frame
  • the access point attempts to transmit a beacon frame at a beacon interval.
  • the access point performs carrier sense over DIFS and waits for a back-off time. Therefore, when the channel is exclusively used by another node, the time for the access point to transmit the beacon frame is shifted backward.
  • FIG. 2 is an explanatory diagram for explaining an example of beacon transmission according to IEEE 802.11.
  • the access point performs carrier sense over DIFS, waits for the back-off time, and then transmits the beacon frame 71. Further, the access point transmits a beacon frame 73 after the elapse of the beacon interval 72. Thereafter, after the beacon interval 74 elapses, the channel is busy due to signal transmission by other nodes. Therefore, the access point performs carrier sense over DIFS after the busy state ends, and transmits a beacon frame 75 after waiting for the back-off time. Thereafter, the access point transmits a beacon frame 77 after the elapse of the beacon interval 76.
  • the access point performs carrier sense over DIFS, waits for the back-off time, and then transmits a beacon frame.
  • DCF Distributed Control Function
  • PCF Point Coordination Function
  • an access point polls a station on a wireless LAN channel, and the station transmits a wireless LAN frame on the channel.
  • a specific example of the PCF operation will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a first explanatory diagram for explaining an example of the PCF operation.
  • an access point 81 and stations 83, 85, 87 are shown.
  • the access point 81 polls each of the stations 83, 85, and 87. That is, the access point 81 transmits a CF-Poll frame to each of the stations 83, 85, and 87.
  • Each of the stations 83, 85, and 87 transmits a data frame in response to reception of the CF-Poll frame.
  • FIG. 4 is a second explanatory diagram for explaining an example of the PCF operation.
  • an access point 81 and stations 83, 85, 87 are shown.
  • the access point 81 transmits a beacon frame 91 including a CF (Contention Free) parameter.
  • the CP parameter includes duration information for setting the NAV, and the stations 83, 85, and 87 that have received the beacon frame 91 set the NAV based on the duration information.
  • the access point 81 transmits a Data + CF-Poll frame 92 addressed to the station 83, and the station 83 transmits a Data + CF-ACK frame 93 addressed to the access point 81.
  • the access point 81 transmits a CF-ACK + CF-Poll frame 94 addressed to the station 85, and the station 85 transmits a Data frame 95 addressed to the access point 81. Further, the access point 81 transmits a DATA + CF-ACK + CF-Poll frame 96 addressed to the station 87, and the station 87 transmits a Data + CF-ACK frame 97 addressed to the access point 81. Thereafter, the AP 81 transmits a CF-END + CF-ACK frame. Then, the access point 81 transmits a beacon frame 99. The access point 81 transmits a beacon frame after PIFS (Polling InterFrame Space), which is a shorter time, rather than the DIFS and the back-off time.
  • PIFS Poly InterFrame Space
  • PCF is described as a non-contention based system, this does not mean that there will be no contention.
  • PCF operation can eliminate contention in one access point and one or more stations near the one access point. However, there is no connection between one access point (and one or more stations near the one access point) and another access point (and one or more stations near the other access point). There can be tension.
  • FIG. 5 is an explanatory diagram for explaining an LTE frame format.
  • radio frame a unit of time called a radio frame is used.
  • One radio frame is 10 ms.
  • Each radio frame is identified by an SFN (System Frame Number) which is any one of 0 to 1023.
  • the radio frame includes 10 subframes identified by # 0 to # 9. Each subframe is 1 ms. Further, each subframe includes two slots, and each slot includes, for example, seven OFDM (Orthogonal Frequency Division Multiplexing) symbols. That is, each subframe includes 14 OFDM symbols.
  • the frame format shown in FIG. 5 is a downlink frame format, and the uplink frame format includes SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols instead of OFDM symbols.
  • Carrier aggregation (b-1) Component carrier
  • a maximum of five component carriers (CC) are bundled and used by UE (User Equipment).
  • Each CC is a band having a maximum width of 20 MHz.
  • carrier aggregation there are cases where CCs that are continuous in the frequency direction are used and CCs that are separated in the frequency direction are used.
  • carrier aggregation it is possible to set the CC to be used for each UE.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carrier
  • the PCC is the most important CC among a plurality of CCs, it is desirable that the communication quality is the most stable CC. Note that which CC is used as a PCC actually depends on how it is mounted.
  • SCC is added to PCC. Further, the added existing SCC can be deleted.
  • the SCC is changed by deleting an existing SCC and adding a new SCC.
  • (B-3) PCC determination method and change method When a UE connection is first established and the UE state transitions from RRC (Radio Resource Control) Idle to RRC Connected, the UE establishes the connection.
  • the CC used for the UE becomes the PCC for the UE. More specifically, the connection is established through a connection establishment procedure. In that case, the state of UE changes from RRC Idle to RRC Connected. Moreover, CC used for the said procedure turns into PCC for the said UE.
  • the above procedure is a procedure started from the UE side.
  • the PCC is changed by inter-frequency handover. More specifically, when a handover is instructed in the connection reconfiguration procedure, the PCC is handed over and the PCC is changed.
  • the above procedure is a procedure started from the network side.
  • the SCC can be deleted.
  • the deletion of the SCC can be performed through a connection reconfiguration procedure. Specifically, a specific SCC specified in the message is deleted.
  • the above procedure is a procedure started from the network side.
  • deletion of all SCCs can be performed through a connection re-establishment procedure.
  • radio link failure RLF
  • the subsequent connection re-establishment procedure are not performed by the SCC, but only by the PCC.
  • B-7 Backhaul Conditions for Carrier Aggregation
  • an ACK (Acknowledgement) for an SCC downlink signal is transmitted on the PUCCH of the PCC. Since the ACK is used for retransmission of data by an eNB (evolved Node B), the delay of the ACK is not allowed. Therefore, when the first eNB that uses the CC that is the PCC for the UE is different from the second eNB that uses the CC that is the SCC for the UE, the first eNB and the second eNB It is desirable that the delay in the backhaul between and is about 10 ms at most.
  • FIG. 6 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
  • the system 1 includes a base station 100, a terminal device 200, an access point 300, and a station 400.
  • Base station 100 is a base station of a cellular system.
  • the cellular system is a system compliant with LTE, LTE-Advanced, or a communication standard based on these, and the base station 100 operates according to the communication standard.
  • Base station 100 may be a small cell or a macro cell.
  • the base station 100 performs radio communication in the cellular system frequency band.
  • the frequency band is a component carrier for the cellular system.
  • the frequency band for the cellular system is a frequency band included in a licensed band.
  • the base station 100 further performs wireless communication in a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN.
  • a frequency band that is, a shared band
  • the shared band is a wireless LAN channel.
  • the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the shared band is not limited to these examples, and may be a frequency band included in another band such as a 3.5 GHz band or a 60 GHz band.
  • the shared band is a frequency band included in an unlicensed band.
  • the base station 100 performs wireless communication with a terminal device (for example, the terminal device 200).
  • the base station 100 performs wireless communication with a terminal device located in the cell 10 of the base station 100.
  • the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • Terminal device 200 (A) Wireless communication in cellular system
  • the terminal device 200 is a terminal device capable of communication in the cellular system.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these, and the terminal device 200 operates according to the communication standard.
  • the terminal device 200 performs wireless communication in the frequency band for the cellular system. Further, for example, the terminal device 200 performs wireless communication in the shared band.
  • the terminal device 200 performs wireless communication with a base station (for example, the base station 100). For example, when the terminal device 200 is located in a cell of a base station (for example, the cell 10 of the base station 100), the terminal device 200 performs wireless communication with the base station. Specifically, for example, the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station 100.
  • a base station for example, the base station 100.
  • the terminal device 200 may be communicable also in wireless LAN.
  • the terminal device 200 may operate in accordance with the IEEE 802.11 standard (for example, IEEE 802.11a, 11b, 11g, 11n, 11ac, or 11ad).
  • the terminal device 200 may perform wireless communication with the access point in the shared band or another channel of the wireless LAN. That is, the terminal device 200 may operate as a wireless LAN station.
  • Access point 300 is a wireless LAN access point.
  • the access point 300 operates in accordance with the IEEE 802.11 standard (eg, IEEE 802.11a, 11b, 11g, 11n, 11ac, or 11ad).
  • the access point 300 performs wireless communication with a wireless LAN station (for example, the station 400) in the shared band or another channel of the wireless LAN.
  • a wireless LAN station for example, the station 400
  • the station 400 is a wireless LAN station.
  • the station 400 operates in accordance with the IEEE 802.11 standard (eg, IEEE 802.11a, 11b, 11g, 11n, 11ac, or 11ad).
  • the station 400 performs wireless communication with a wireless LAN access point (for example, the access point 300) in the shared band or another channel of the wireless LAN.
  • a wireless LAN access point for example, the access point 300
  • FIG. 7 is an explanatory diagram for explaining an example of exclusive use and release of a shared band in a cellular system.
  • the base station 100 waits for SIFS (Short InterFrame Space) and cellular IFS (that is, IFS for the cellular system) after the busy state of the shared band ends, and is shared for a predetermined period.
  • Wireless communication in the band (cellular system wireless communication) is performed.
  • the base station 100 stops wireless communication in the shared band (that is, releases the shared band for the wireless LAN).
  • SIFS Short InterFrame Space
  • cellular IFS that is, IFS for the cellular system
  • DIFS is 34 us. Therefore, the base station 100 can transmit a signal before the wireless LAN node after the busy state of the shared band ends.
  • the shared band is used as a component carrier in the cellular system.
  • the frequency band for the cellular system is used as a primary component carrier (PCC) or a secondary component carrier (SCC) for the terminal device, and the shared band is used as an SCC for the terminal device.
  • PCC primary component carrier
  • SCC secondary component carrier
  • the period band for the cellular system is used for transmitting the control signal
  • the shared band is used for transmitting the data signal.
  • the shared band can be used as a downlink dedicated frequency band.
  • FIG. 8 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the wireless communication unit 120 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores programs and data for the operation of the base station 100.
  • Processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes an information acquisition unit 151 and a communication processing unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 9 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the wireless communication unit 220 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program and data for the operation of the terminal device 200.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes an information acquisition unit 241, a measurement unit 243, and a communication processing unit 245. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • FIG. 10 is a block diagram illustrating an exemplary configuration of the access point 300 according to the embodiment of the present disclosure.
  • the access point 300 includes an antenna unit 310, a wireless communication unit 320, a network communication unit 330, a storage unit 340, and a processing unit 350.
  • Antenna unit 310 The antenna unit 310 radiates a signal output from the wireless communication unit 320 as a radio wave to space. Further, the antenna unit 310 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 320.
  • the wireless communication unit 320 transmits and receives signals.
  • the wireless communication unit 320 transmits and receives signals in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the wireless communication unit 320 may transmit and receive signals in yet another frequency band (wireless LAN channel).
  • Network communication unit 330 The network communication unit 330 transmits and receives information. For example, the network communication unit 330 transmits information to other nodes and receives information from other nodes.
  • Storage unit 340 temporarily or permanently stores a program and data for operation of access point 300.
  • Processing unit 350 provides various functions of the access point 300.
  • the processing unit 350 includes an information acquisition unit 351 and a communication processing unit 353.
  • the processing unit 350 may further include other components other than these components. That is, the processing unit 350 can perform operations other than the operations of these components.
  • FIG. 11 is a block diagram illustrating an exemplary configuration of the station 400 according to the embodiment of the present disclosure.
  • the station 400 includes an antenna unit 410, a wireless communication unit 420, a storage unit 430, and a processing unit 440.
  • Antenna unit 410 The antenna unit 410 radiates a signal output from the wireless communication unit 420 to the space as a radio wave. In addition, the antenna unit 410 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 420.
  • the wireless communication unit 420 transmits and receives signals.
  • the wireless communication unit 420 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • Storage unit 430 The storage unit 430 temporarily or permanently stores a program and data for the operation of the station 400.
  • the processing unit 440 provides various functions of the station 400.
  • the processing unit 440 includes an information acquisition unit 441 and a communication processing unit 443.
  • the processing unit 440 may further include other components other than these components. That is, the processing unit 440 can perform operations other than the operations of these components.
  • a frequency band (for example, a wireless LAN channel included in the 5 GHz band) is shared between the cellular system and the wireless LAN.
  • the cellular system communication is performed in the frequency band (that is, the shared band) in a certain period, and the wireless LAN communication is performed in the frequency band in another period.
  • a cellular system synchronization signal is not transmitted in the frequency band over a period during which wireless LAN communication is performed in the frequency band, and the terminal device cannot receive the synchronization signal in the frequency band. Therefore, when the period is long, for example, the terminal device cannot maintain synchronization for communication of the cellular system in the frequency band. As a result, for example, the terminal device acquires the synchronization again after the period, and the use efficiency of the frequency band in the cellular system can be lowered.
  • the terminal device cannot receive the synchronization signal. Therefore, for example, the terminal device cannot maintain synchronization for communication of the cellular system in the frequency band. As a result, for example, the terminal device acquires the synchronization again, and the use efficiency of the frequency band in the cellular system can be reduced.
  • a mechanism is provided that enables the terminal device to more easily maintain synchronization for communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN (that is, the shared band). It is desirable.
  • the base station 100 uses the frequency band shared between the cellular system and the wireless LAN within the first period (hereinafter referred to as “execution period”) ( That is, communication of the cellular system in the shared band) is performed, and communication of the cellular system in the frequency band is stopped within a second period (hereinafter referred to as “stop period”).
  • execution period is one or more subframes including a subframe in which the synchronization signal of the cellular system is transmitted, and the stop period is one or more other than the subframe in which the synchronization signal is transmitted. Is a subframe.
  • the terminal device can more easily maintain synchronization for communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN (that is, the shared band).
  • the base station 100 (communication processing unit 153) is shared between the cellular system and the wireless LAN within the first period (that is, the execution period).
  • the cellular system communicates in the frequency band (that is, the shared band), and the cellular system communication in the frequency band is stopped within the second period (that is, the stop period).
  • the shared band is a wireless LAN channel. More specifically, for example, the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the shared band is not limited to these examples, and may be a frequency band included in another band such as a 3.5 GHz band or a 60 GHz band.
  • the base station 100 uses the shared band as a component carrier (CC). More specifically, for example, the base station 100 uses the shared band as a secondary component carrier (SCC) of the terminal device.
  • CC component carrier
  • SCC secondary component carrier
  • the base station 100 can use the shared band as a downlink-dedicated frequency band. That is, the base station 100 can only transmit a downlink signal in the shared band.
  • Execution period / stop period (b-1) Synchronization signal
  • the execution period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted.
  • the period is one or more other subframes not including the subframe in which the synchronization signal is transmitted.
  • the execution period is one or more subframes including a subframe in which PSS (Primary Synchronization Signal) and / or SSS (Secondary Synchronization Signal) is transmitted.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the subframe in which the PSS is transmitted is a subframe with subframe numbers 0 and 5
  • the subframe in which the SSS is transmitted also has a subframe number of 0, 5 is a subframe.
  • TDD Time Division Duplex
  • the subframe in which the PSS is transmitted is a subframe with subframe numbers 1 and 6
  • the subframe in which the SSS is transmitted has a subframe number of 0. 5 is a subframe.
  • (B-2) Period having a predetermined subframe number
  • the one or more subframes (that is, the execution period) are subframes having a predetermined subframe number
  • the one or more other subframes A frame (that is, a stop period) is a subframe having another predetermined subframe number.
  • the execution period and the stop period are periods repeated in a cycle of a radio frame (for example, 10 subframes).
  • the sum of the length of the execution period and the length of the stop period is the length of a radio frame (for example, 10 ms), and the execution period and the stop period are adjacent to each other, and the period of the radio frame (for example, 10 ms period).
  • (B-4) A plurality of consecutive subframes
  • the execution period is a plurality of consecutive subframes including a subframe in which the synchronization signal is transmitted.
  • the stop period is a plurality of other consecutive subframes that do not include a subframe in which the synchronization signal is transmitted.
  • the shared band can be used together to some extent in a wireless LAN. Therefore, the use efficiency of the shared band in the wireless LAN can be improved.
  • FIG. 12 is an explanatory diagram for explaining an example of the execution period and the stop period. Referring to FIG. 12, twelve subframes are shown. In this example, the execution period 21 is a subframe whose subframe number is 5 to 1 (5, 6, 7, 8, 9, 0, 1), and the stop period 23 is a subframe number 2 to 4. Is a subframe.
  • the base station 100 performs cellular system communication in the shared band within a subframe having a subframe number of 5 to 1 (ie, the execution period 21), and subframes having a subframe number of 2 to 4 ( That is, the communication of the cellular system in the shared band is stopped within the stop period 23).
  • the execution period 21 and the stop period 23 are repeated at a period of a radio frame (10 subframes), and the base station 100 performs communication in the shared band within each execution period 21, and within each stop period 23, the above-mentioned Stop communication in the shared band.
  • the execution period may be a subframe with a subframe number of 0 to 6
  • the stop period may be a subframe with a subframe number of 7 to 9.
  • the execution period may be a subframe with a subframe number of 0 to 5, and the stop period is a subframe with a subframe number of 6 to 9. May be.
  • the execution period may be a subframe whose subframe number is 5 to 0 (5, 6, 7, 8, 9, 0), and the stop period is a subframe number. May be a subframe in which 1 to 4.
  • a subframe immediately before a subframe in which a synchronization signal is transmitted may be included in the execution period.
  • the execution period is not a subframe with a subframe number of 5 to 0, but a subframe number of 4 to 0 (4, 5, 6, 7, 8, 9, 0). It may be a subframe.
  • the stop period may be a subframe having subframe numbers 1 to 3.
  • the communication of the cellular system in the shared band includes downlink transmission in the shared band. Further, the downlink transmission includes transmission of the synchronization signal.
  • the shared band does not have to be a dedicated frequency band for the downlink.
  • the communication of the cellular system in the shared band may include uplink reception in the shared band.
  • the communication processing unit 153 allocates the radio resource in the shared band to the terminal device.
  • the communication processing unit 153 allocates the radio resource in the shared band within the execution period to one or more terminal devices, and allocates the radio resource in the shared band within the stop period to any terminal device. Absent.
  • the communication processing unit 153 performs transmission processing (encoding, modulation, mapping of signals to radio resources, etc.) for downlink transmission in the shared band. In this case, the communication processing unit 153 performs transmission processing for downlink transmission within the execution period, and does not perform transmission processing for downlink transmission within the stop period. Note that the communication processing unit 153 may perform reception processing for uplink reception in the shared band (such as demapping, demodulation, and decoding of signals from radio resources). In this case, the communication processing unit 153 performs reception processing for uplink reception within the execution period, and does not perform reception processing for uplink reception within the stop period.
  • transmission processing encoding, modulation, mapping of signals to radio resources, etc.
  • the communication processing unit 153 may switch the communication on / off state in the shared band. In this case, the communication processing unit 153 may turn on the communication in the shared band within the execution period and turn off the communication in the shared band within the stop period.
  • the base station 100 performs communication in the shared band within the execution period, and stops communication in the shared band within the stop period.
  • the base station 100 performs communication in the shared band within the execution period, and stops communication in the shared band within the stop period.
  • the terminal device can more easily maintain synchronization for communication of the cellular system in the shared band. More specifically, for example, since the synchronization signal of the cellular system is continuously transmitted without being interrupted by wireless LAN communication, the terminal device more easily maintains synchronization for communication of the cellular system. can do.
  • Period information (a-1) Operation of base station
  • the base station 100 may execute the execution period or the stop period. (Hereinafter referred to as “period information”) is transmitted to the terminal device 200 that performs communication of the cellular system.
  • the base station 100 (communication processing unit 153) transmits system information including the period information.
  • the base station 100 (communication processing unit 153) may individually transmit a message including the period information to the terminal device 200.
  • the communication processing unit 153 performs transmission processing of the period information (for example, generation, scheduling, mapping to radio resources, encoding, and / or modulation of the system information or the message). Execute.
  • the period information for example, generation, scheduling, mapping to radio resources, encoding, and / or modulation of the system information or the message.
  • the terminal device 200 is connected to the execution period (that is, the period during which communication of the cellular system in the shared band is performed) or the suspension period (that is, the cellular system in the shared band). Measurement for the shared band is performed based on the period information indicating the period during which communication is stopped.
  • the information acquisition unit 241 acquires the period information, and the measurement unit 243 performs measurement for the shared band based on the period information. Specifically, for example, the measurement unit 243 uses the signal (for example, a reference signal) transmitted in the shared band in the execution period (in other words, a period other than the stop period) to set the shared band. Perform the measurement of interest.
  • the signal for example, a reference signal
  • the measurement includes measurement of the channel state of the shared band. More specifically, for example, the measurement includes measurement of CQI (Chanel Quality Indicators), PMI (Precoding Matrix Indicators), PTI (Precoding Type Indicators) and / or RI (Rank Indicators).
  • CQI Channel Quality Indicators
  • PMI Precoding Matrix Indicators
  • PTI Precoding Type Indicators
  • RI Rank Indicators
  • the measurement includes measurement of reception power and / or reception quality of a reference signal (for example, CRS (Cell-specific Reference Signal)) transmitted in the shared band. More specifically, for example, the measurement includes measurement of RSRP (Reference Signal Received Power) and / or RSRQ (Reference Signal Received Quality).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the base station 100 stops communication in the shared band, and as a result, the terminal device 200 appropriately measures even if a signal (for example, a reference signal) of the cellular system is not transmitted in the shared band. It becomes possible to do.
  • a signal for example, a reference signal
  • the base station 100 (communication processing unit 153) transmits the one or more other subframes (that is, the stop period) to MBSFN (MBMS (Multimedia Broadcast Multicast Service) over Single). Frequency Network) may be used as a subframe.
  • MBSFN Multimedia Broadcast Multicast Service
  • Frequency Network may be used as a subframe.
  • the base station 100 may transmit system information (for example, SIB2) indicating the one or more other subframes (that is, the stop period) as MBSFN subframes.
  • system information for example, SIB2
  • SIB2 system information indicating the one or more other subframes (that is, the stop period) as MBSFN subframes.
  • the base station 100 stops communication in the shared band, and as a result, the terminal device 200 appropriately measures even if a signal (for example, a reference signal) of the cellular system is not transmitted in the shared band. It becomes possible to do.
  • a signal for example, a reference signal
  • the execution period and the stop period may be a period common between the base station 100 and the base station 100 adjacent to the base station 100. That is, the base station 100 and the adjacent base station may perform communication in the shared band within the execution period, and stop communication in the shared band within the stop period.
  • the base station 100 may transmit the period information to the adjacent base station, and the adjacent base station may receive and acquire the period information.
  • the adjacent base station may transmit the period information to the base station 100, and the base station 100 may receive and acquire the period information.
  • any one of the control devices may transmit the period information to the base station 100 and the adjacent base station, and each of the base station 100 and the adjacent base station receives the period information, You may get it.
  • the execution period and the stop period are determined in advance, and may be set in advance in the base station 100 and the adjacent base station.
  • the base station 100 and the adjacent base station perform communication in the shared band within the execution period, and stop communication in the shared band within the stop period. Therefore, a situation in which a wireless LAN node that receives both a signal transmitted from the base station 100 and a signal transmitted from the adjacent base station cannot transmit a signal in the shared band for a long time can be avoided.
  • FIG. 13 is a flowchart illustrating an example of a schematic flow of processing of the base station 100 according to the first embodiment.
  • the base station 100 (communication processing unit 153) performs cellular system communication in the shared band within the execution period (S501).
  • the base station 100 (communication processing unit 153) stops the communication of the cellular system in the shared band within the stop period (S503). Then, the process returns to step S501.
  • the base station 100 (communication processing unit 153) transmits a wireless LAN frame in the shared band in accordance with the start of the execution period.
  • the wireless LAN frame is duration information for setting the NAV, and includes the duration information indicating a duration corresponding to the length of the execution period.
  • a wireless LAN node for example, an access point and a station
  • the wireless LAN frame is a beacon frame including a parameter related to CFP (Control Free Period) for PCF operation, and the parameter includes the duration information. More specifically, the parameter is a CF (Contention Free) parameter, and the duration information is a CFP maximum duration (CFP MaxDuration) or a CFP remaining duration (CFP Duration Remaining).
  • the base station 100 transmits the beacon frame in the shared band at the start of the execution period.
  • the wireless LAN frame may be an RTS frame or a CTS frame. That is, the base station 100 may transmit an RTS frame or a CTS frame in the shared band in accordance with the start of the execution period.
  • (B) Transmission interval For example, the base station 100 (communication processing unit 153) transmits the wireless LAN frame in the shared band at intervals of wireless frames. Thereby, for example, when the execution period is repeated at intervals of radio frames, interference with communication of the cellular system in the shared band is continuously suppressed.
  • the communication processing unit 153 performs the wireless LAN frame transmission processing (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the wireless LAN node (access point 300 or station 400) is based on the duration information in response to reception of the wireless LAN frame transmitted by the base station 100 in the shared band.
  • the NAV for the shared band is set.
  • the information acquisition unit (information acquisition unit 351 or information acquisition unit 441) of the wireless LAN node acquires the duration information in response to reception of the wireless LAN frame transmitted by the base station 100 in the shared band.
  • the communication processing unit (communication processing unit 353 or communication processing unit 443) of the wireless LAN node sets the NAV for the shared band based on the duration information.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the duration information indicates a duration comparable to the length of the execution period.
  • the wireless LAN node sets the value of the duration that is the execution period as NAV, and the NAV becomes 0 at the end of the execution period. Therefore, the wireless LAN node (access point 300 or station 400) does not transmit a signal in the shared band from the start to the end of the execution period.
  • this point will be described with reference to FIG.
  • FIG. 14 is an explanatory diagram for explaining the operation of the wireless LAN node that receives the wireless LAN frame transmitted by the base station 100.
  • the base station 100 transmits a wireless LAN frame including duration information in the shared band in accordance with the start of the execution period 21 (that is, the start of a subframe whose subframe number is 5).
  • the duration information indicates a duration equivalent to the length of the execution period 21 (that is, 7 subframes, 7 ms).
  • the access point 300 and the station 400 receive the wireless LAN frame transmitted in the shared band, and set the duration (7 ms) as the NAV for the shared band. Since the NAV becomes 0 at the end of the execution period 21, the access point 300 and the station 400 do not transmit a signal in the shared band within the execution period 21. Therefore, interference with communication of the cellular system in the shared band can be suppressed.
  • FIG. 15 is a flowchart illustrating an example of a schematic process flow of the base station 100 according to the first modification of the first embodiment.
  • the base station 100 (communication processing unit 153) transmits a wireless LAN frame in the shared band in accordance with the start of the execution period (S511).
  • the wireless LAN frame includes duration information for setting the NAV.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the base station 100 (communication processing unit 153) performs cellular system communication in the shared band within the execution period (S513).
  • the base station 100 (communication processing unit 153) stops the communication of the cellular system in the shared band within the stop period (S515). Then, the process returns to step S511.
  • the base station 100 (communication processing unit 153) notifies the wireless LAN node of the execution period or the stop period.
  • the wireless LAN node is the access point 300 or the station 400.
  • the wireless LAN node is an access point 300 that supports PCF operation.
  • the base station 100 (communication processing unit 153) includes the cellular system and the wireless LAN. By transmitting information related to the execution period or the suspension period (hereinafter referred to as “period-related information”) to the terminal device 200 that can communicate in both cases, the execution period or the suspension period is transmitted to the wireless LAN node. Notice.
  • the base station 100 (communication processing unit 153) transmits system information including the period related information.
  • the base station 100 (communication processing unit 153) may individually transmit a message including the period related information to the terminal device 200.
  • the communication processing unit 153 transmits the period related information (for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation). Execute.
  • the period related information for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation.
  • the terminal device 200 acquires the period related information. Then, for example, the terminal device 200 (communication processing unit 245) transmits a wireless LAN frame including the period related information to the wireless LAN node.
  • the wireless LAN frame is a data frame.
  • the communication processing unit 245 executes transmission processing of the wireless LAN frame (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the wireless LAN node may be communicable in the cellular system.
  • the base station 100 (communication processing unit 153) may notify the wireless LAN node of the execution period or the stop period by transmitting the period related information to the wireless LAN node. That is, the base station 100 may directly notify the wireless LAN node of the execution period or the stop period according to the communication method of the cellular system.
  • the base station 100 may transmit system information including the period related information.
  • the base station 100 may individually transmit a message including the period related information to the wireless LAN node.
  • the communication processing unit 153 performs transmission processing of the period related information (for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation). May be.
  • the period related information for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation. May be.
  • the base station 100 (communication processing unit 153) transmits the wireless LAN frame including the period related information, so that the execution period or The stop period may be notified to the wireless LAN node. That is, the base station 100 may directly notify the wireless LAN node of the execution period or the stop period according to a wireless LAN communication method.
  • the wireless LAN frame may be a data frame.
  • the communication processing unit 153 may execute the wireless LAN frame transmission process (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the base station 100 (communication processing unit 153) transmits the period related information to the wireless LAN node via the backhaul, thereby The execution period or the stop period may be notified to the wireless LAN node.
  • the communication processing unit 153 may execute a message transmission process (for example, generation and / or encoding of the message) including the period related information.
  • a message transmission process for example, generation and / or encoding of the message
  • the base station 100 (communication processing unit 153) notifies the wireless LAN node of the execution period or the suspension period. Thereby, for example, it is possible to cause the wireless LAN node to perform an operation for suppressing interference with communication of the cellular system in the shared band within the execution period.
  • Period-related information (that is, information related to the execution period or the stop period) includes information indicating the length of the execution period or the stop period.
  • the period related information includes information indicating the start point (offset) of the execution period or the stop period.
  • the period related information may not include information indicating the start time.
  • the wireless LAN node can know the end point of the execution period (that is, the start point of the stop period) by carrier sense.
  • the wireless LAN node can also know the start time of the execution period from the end time of the execution period (that is, the start time of the stop period) and the execution period or the length of the stop period.
  • the period related information may include information indicating the period of the execution period or the stop period.
  • the wireless LAN node (that is, the access point 300 or the station 400) transmits the wireless LAN in the shared band in accordance with the start of the execution period or the stop period. Send a frame.
  • the wireless LAN frame includes duration information for setting the NAV.
  • the information acquisition unit (that is, the information acquisition unit 351 or the information acquisition unit 441) of the wireless LAN node acquires information on the execution period or the stop period (that is, period related information).
  • the communication processing unit (that is, the communication processing unit 353 or the communication processing unit 443) of the wireless LAN node transmits the wireless LAN frame in the shared band in accordance with the execution period or the stop period.
  • wireless LAN nodes for example, an access point and a station
  • the wireless LAN node set the NAV based on the duration information and share the information within the execution period or the suspension period.
  • the signal is not transmitted in the band by its own judgment. Therefore, interference with communication of the cellular system in the shared band can be suppressed.
  • the wireless LAN frame is a beacon frame including a parameter related to CFP for PCF operation, and the parameter includes the duration information. More specifically, the parameter is a CF parameter, and the duration information is a CFP maximum duration (CFP MaxDuration) or a CFP remaining duration (CFP DurationRemaining).
  • CFP MaxDuration CFP maximum duration
  • CFP DurationRemaining CFP remaining duration
  • the wireless LAN frame may be an RTS frame or a CTS frame.
  • the wireless LAN node (communication processing unit) transmits the wireless LAN frame in the shared band at a wireless frame interval.
  • the execution period and the stop period are repeated at radio frame intervals, interference with communication of the cellular system in the shared band is continuously suppressed.
  • the communication processing unit that is, the information acquisition unit 351 or the information acquisition unit 441) of the wireless LAN node performs the transmission processing of the wireless LAN frame (for example, the above-described processing) Wireless LAN frame generation, encoding, and / or demodulation, etc.).
  • the wireless LAN node is an access point 300, and access The point 300 (information acquisition unit 351) transmits the wireless LAN frame in the shared band in accordance with the start of the stop period.
  • the wireless LAN frame is a beacon frame including a parameter related to CFP for PCF operation, and the parameter includes the duration information.
  • the duration information indicates a duration corresponding to the length of the stop period.
  • the station 400 sets the NAV for the shared band based on the duration information in response to reception of the beacon frame transmitted by the access point 300 in the shared band.
  • the duration information indicates a duration corresponding to the length of the stop period.
  • the duration information indicates a duration comparable to the length of the stop period.
  • the station 400 sets a value of a duration comparable to the length of the stop period as the NAV, and the NAV becomes 0 at the end of the stop period. Therefore, the station 400 does not transmit a signal in the shared band from the start to the end of the stop period unless polling is performed by the access point 300.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 16 is an explanatory diagram for explaining the operation of the station 400 that receives a beacon frame transmitted by the access point 300.
  • an execution period 21 and a stop period 23 are shown as in FIG.
  • the access point 300 transmits a beacon frame including duration information in the shared band at the start of the stop period 23 (that is, the start of a subframe having a subframe number of 2).
  • the duration information indicates a duration equivalent to the length of the stop period 23 (that is, 3 subframes, 3 ms).
  • the station 400 receives the beacon frame transmitted in the shared band, and sets the duration (3 ms) as the NAV for the shared band.
  • the station 400 Since the NAV becomes 0 at the end of the stop period 23, the station 400 does not transmit a signal in the shared band unless polling is performed by the access point 300 within the stop period 23. Therefore, according to the appropriate polling by the access point 300, the radio frame transmitted by the station 400 does not extend beyond the stop period 23 to the execution period 21. Therefore, interference with communication of the cellular system in the shared band can be suppressed. For example, the base station 100 can ensure the shared band more reliably. Note that, within the stop period 23, wireless LAN communication can be performed by PCF in the shared band.
  • the base station 100 it is possible to suppress interference with communication of the cellular system in the shared band. Further, for example, since the wireless LAN communication during the stop period is controlled by the PCF, the base station 100 more reliably secures the shared band from the start point of the execution period and starts communication of the cellular system. be able to.
  • the wireless LAN frame is transmitted.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the wireless LAN frame may be a beacon frame including parameters related to CFP for PCF operation, or may be an RTS frame or a CTS frame.
  • another wireless LAN node may receive the wireless LAN frame transmitted by the wireless LAN node in the shared band, based on the duration information, based on the duration information. Set the NAV for the shared band.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the duration information indicates a duration comparable to the length of the execution period.
  • the other wireless LAN node sets the duration value that is the execution period as NAV, and the NAV becomes 0 at the end of the execution period. Therefore, the other wireless LAN node (access point 300 or station 400) does not transmit a signal in the shared band from the start to the end of the execution period.
  • the wireless LAN node transmits a wireless LAN frame including duration information in the shared band at the start of the execution period 21 (that is, the start of the subframe whose subframe number is 5). To do.
  • the duration information indicates a duration equivalent to the length of the execution period 21 (that is, 7 subframes, 7 ms).
  • Other wireless LAN nodes receive the wireless LAN frame transmitted in the shared band, and set the duration (7 ms) as the NAV for the shared band. Since the NAV becomes 0 at the end of the execution period 21, the other wireless LAN node does not transmit a signal in the shared band within the execution period 21. Therefore, interference with communication of the cellular system in the shared band can be suppressed.
  • FIG. 17 is a flowchart illustrating a first example of a schematic process flow of the access point 300 according to the second modification of the first embodiment. .
  • the access point 300 acquires information related to the execution period or the stop period (that is, period related information) (S521).
  • the access point 300 (communication processing unit 353) transmits a beacon frame in the shared band in accordance with the start of the stop period (S523).
  • the beacon frame is a beacon frame including a parameter related to CFP for PCF operation, and the parameter includes duration information for setting the NAV. Further, the duration information indicates a duration corresponding to the length of the stop period.
  • the access point 300 (communication processing unit 353) performs wireless LAN communication with the PCF in the shared band within the stop period (S525). For example, the access point 300 (communication processing unit 353) performs polling and data transmission / reception.
  • the access point 300 (communication processing unit 353) stops wireless LAN communication in the shared band within the execution period (S527). Then, the process returns to step S523.
  • FIG. 18 is a flowchart illustrating a second example of a schematic flow of processing of a wireless LAN node according to a second modification of the first embodiment.
  • the wireless LAN node is the access point 300 or the station 400.
  • the wireless LAN node acquires information related to the execution period or the stop period (that is, period related information) (S531).
  • the wireless LAN node (communication processing unit 353 or communication processing unit 443) transmits a wireless LAN frame in the shared band in accordance with the start of the execution period (S533).
  • the wireless LAN frame includes duration information for setting the NAV.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the wireless LAN node (communication processing unit 353 or communication processing unit 443) stops wireless LAN communication in the shared band within the execution period (S535).
  • the wireless LAN node (communication processing unit 353 or communication processing unit 443) performs wireless LAN communication in the shared band within the stop period (S537). Then, the process returns to step S533.
  • a frequency band (for example, a wireless LAN channel included in the 5 GHz band) is shared between the cellular system and the wireless LAN.
  • the cellular system communication is performed in the frequency band (that is, the shared band) in a certain period, and the wireless LAN communication is performed in the frequency band in another period.
  • the base station 100 transmits a beacon frame in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the beacon frame includes parameters related to CFP for PCF operation, and the parameters include duration information for setting the NAV.
  • the base station 100 After transmitting the beacon frame, the base station 100 performs communication of the cellular system in the frequency band within a period corresponding to the duration information.
  • beacon frame (communication processing unit 153) uses a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN. ) Transmits a beacon frame.
  • the beacon frame includes parameters related to CFP for PCF operation, and the parameters include duration information for setting the NAV.
  • the base station 100 (communication processing unit 153) performs communication of the cellular system in the frequency band (that is, the shared band) within a period corresponding to the duration information after transmitting the beacon frame. For example, the base station 100 (communication processing unit 153) stops communication of the cellular system in the frequency band except for the period.
  • the parameter is a CF parameter
  • the duration information is a CFP maximum duration (CFP MaxDuration) or a CFP remaining duration (CFP Duration Remaining).
  • Period corresponding to duration information is a period of the same length as the duration indicated by the duration information.
  • the communication processing unit 153 performs the wireless LAN frame transmission processing (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the station 400 sets a NAV for the shared band based on the duration information in response to reception of a beacon frame transmitted by the base station 100 in the shared band.
  • the information acquisition unit 441 acquires the duration information in response to reception of the beacon frame transmitted by the base station 100 in the shared band.
  • the communication processing unit 443 sets the NAV for the shared band based on the duration information.
  • FIG. 19 is an explanatory diagram for describing a first example of transmission of a beacon frame and communication in a shared band.
  • base station 100 transmits beacon frame 31 including duration information in the shared band. Then, the base station 100 performs communication of the cellular system in the shared band within a period 33 (a period shorter than the beacon interval) corresponding to the duration information.
  • the station 400 sets the NAV based on the duration information in response to the reception of the beacon frame 31, and stops the wireless LAN communication in the shared band over the period 33. After the elapse of the period 33, the NAV becomes 0, and the station 400 performs wireless LAN communication in the shared band. And base station 100 transmits beacon frame 31 again after progress of a beacon interval.
  • the frequency of transmitting the beacon frame becomes lower.
  • the base station 100 (communication processing unit 153) alternately performs transmission of the beacon frame and transmission of other beacon frames at a beacon interval approximately equal to the length of the period. Also good.
  • the other beacon frame does not include duration information.
  • the other beacon frame may include duration information, and the duration information may indicate 0 or a very short duration.
  • FIG. 20 is an explanatory diagram for explaining a second example of transmission of a beacon frame and communication in a shared band.
  • base station 100 transmits a first beacon frame 35 including duration information in the shared band. Then, the base station 100 performs communication of the cellular system in the shared band within a period 37 (a period having the same length as the beacon interval) corresponding to the duration information.
  • the station 400 sets the NAV based on the duration information, and stops the wireless LAN communication in the shared band over the period 37.
  • the base station 100 transmits the second beacon frame 39 after the elapse of the beacon interval equivalent to the period 37.
  • the second beacon frame 39 does not include duration information (or includes duration information indicating zero or a very short duration), and the station 400 is in the shared band after the second beacon frame 39. Wireless LAN communication is performed. And base station 100 transmits the 1st beacon frame 35 again after progress of a beacon interval.
  • the base station 100 performs communication of the cellular system in the shared band within a period corresponding to the duration information after transmitting the beacon frame.
  • interference between the cellular system and the wireless LAN in the shared band can be further reduced.
  • the wireless LAN node does not transmit a signal in the shared band while the cellular system communication is performed in the shared band. Therefore, interference from the wireless LAN to the cellular system in the shared band can be further reduced.
  • the base station 100 (communication processing unit 153) may be configured to stop communication of the cellular system in the period or the shared band.
  • Information indicating a period (hereinafter referred to as “period information”) is transmitted to the terminal device 200.
  • the base station 100 (communication processing unit 153) transmits system information including the period information.
  • the base station 100 (communication processing unit 153) may individually transmit a message including the period information to the terminal device 200.
  • the communication processing unit 153 performs transmission processing of the period information (for example, generation, scheduling, mapping to radio resources, encoding, and / or modulation of the system information or the message). Execute.
  • the period information for example, generation, scheduling, mapping to radio resources, encoding, and / or modulation of the system information or the message.
  • the terminal device 200 is configured to receive information indicating a period during which communication of the cellular system in the shared band is performed or another period during which communication of the cellular system in the shared band is stopped ( That is, based on the period information), the measurement for the shared band is performed.
  • the information acquisition unit 241 acquires the period information, and the measurement unit 243 performs measurement for the shared band based on the period information. Specifically, for example, the measurement unit 243 uses the signal (for example, a reference signal) transmitted in the shared band in the period (in other words, a period other than the other period) to set the shared band. Perform the measurement of interest.
  • the signal for example, a reference signal
  • the measurement includes measurement of the channel state of the shared band. More specifically, for example, the measurement includes measurement of CQI, PMI, PTI and / or RI.
  • the measurement includes measurement of reception power and / or reception quality of a reference signal (for example, CRS) transmitted in the shared band. More specifically, for example, the measurement includes measurement of RSRP and / or RSRQ.
  • a reference signal for example, CRS
  • the base station 100 stops communication in the shared band, and as a result, the terminal device 200 appropriately measures even if a signal (for example, a reference signal) of the cellular system is not transmitted in the shared band. It becomes possible to do.
  • a signal for example, a reference signal
  • beacon frame and the duration information included in the beacon frame are the same period between the base station 100 and the base station 100 adjacent to the base station 100. It may be. That is, the base station 100 and the adjacent base station may transmit beacon frames including the same duration information at the same timing.
  • the base station 100 may transmit information indicating the timing (hereinafter referred to as “timing information”) and the duration information to the adjacent base station, and the adjacent base station transmits the timing information and The duration information may be received and acquired.
  • the adjacent base station may transmit the timing information and the duration information to the base station 100, and the base station 100 may receive and acquire the timing information and the duration information.
  • any one of the control devices may transmit the timing information and the duration information to the base station 100 and the adjacent base station, and each of the base station 100 and the adjacent base station Timing information and the duration information may be received and acquired.
  • the timing information and the duration information are determined in advance, and may be set in advance in the base station 100 and the adjacent base station.
  • the base station 100 and the neighboring base station transmit a beacon frame including the duration information in the shared band at a timing indicated by the timing information, and then the duration information Communication in the shared band is performed within a period corresponding to. Therefore, a situation in which a wireless LAN node that receives both a signal transmitted from the base station 100 and a signal transmitted from the adjacent base station cannot transmit a signal in the shared band for a long time can be avoided.
  • FIG. 21 is a flowchart illustrating a first example of a schematic flow of processing of the base station 100 according to the second embodiment.
  • the base station 100 transmits a beacon frame at a beacon interval longer than a period in which the base station 100 performs cellular system communication in the shared band.
  • the base station 100 (communication processing unit 153) transmits a beacon frame in the shared band (S541).
  • the beacon frame includes parameters related to CFP for PCF operation, and the parameters include duration information for setting NAV.
  • the base station 100 (communication processing unit 153) performs communication of the cellular system in the shared band within a period corresponding to the duration information (S543). This period is a period shorter than the beacon interval.
  • the base station 100 (communication processing unit 153) stops communication of the cellular system in the shared band (S545). Then, the process returns to step S541.
  • FIG. 22 is a flowchart illustrating a second example of a schematic flow of processing of the base station 100 according to the second embodiment.
  • the base station 100 transmits the first beacon frame and the second beacon frame at a beacon interval approximately equal to the length of the period during which the base station 100 performs cellular system communication in the shared band. And alternately.
  • the base station 100 (communication processing unit 153) transmits the first beacon frame in the shared band (S551).
  • the first beacon frame includes a parameter related to CFP for PCF operation, and the parameter includes duration information for setting NAV.
  • the base station 100 (communication processing unit 153) performs communication of the cellular system in the shared band within a period corresponding to the duration information (S553). This period is a period having the same length as the beacon interval.
  • the base station 100 (communication processing unit 153) transmits the second beacon frame in the shared band (S555).
  • the second beacon frame does not include duration information.
  • the second beacon frame may include duration information, and the duration information may indicate 0 or a very short duration.
  • the base station 100 (communication processing unit 153) stops communication of the cellular system in the shared band (S557). Then, the process returns to step S551.
  • a frequency band (for example, a wireless LAN channel included in the 5 GHz band) is shared between the cellular system and the wireless LAN.
  • the cellular system communication is performed in the frequency band (that is, the shared band) in a certain period, and the wireless LAN communication is performed in the frequency band in another period.
  • the access point 300 has a first period during which the base station 100 communicates in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band). (Hereinafter referred to as “execution period”) or the start of a second period in which the base station 100 stops communication in the frequency band (hereinafter referred to as “stop period”).
  • execution period a frequency band shared between the cellular system and the wireless LAN
  • stop period the start of a second period in which the base station 100 stops communication in the frequency band
  • Send a frame includes parameters related to CFP for PCF operation, and the parameters include duration information for setting the NAV.
  • the base station 100 has a first period during which the base station 100 communicates in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band) ( In other words, the wireless LAN access point 300 that supports the PCF operation is notified of the execution period) or the second period during which the base station 100 stops communication in the frequency band (that is, the stop period).
  • the information acquisition unit 151 acquires information on the execution period or the stop period (hereinafter referred to as “period related information”).
  • the communication processing unit 153 notifies the access point 300 of the execution period or the stop period.
  • Execution period / stop period For example, the execution period and the stop period are periods that are periodically repeated.
  • the stop period is a period having the same length as the execution period.
  • the stop period is a period having the same length as the execution period.
  • Period-related information includes information indicating the length of the execution period or the stop period.
  • the period related information includes information indicating the start point (offset) of the execution period or the stop period.
  • the period related information may not include information indicating the start time.
  • the access point 300 can know the end point of the execution period (that is, the start point of the stop period) by carrier sense.
  • the access point 300 can also know the start time of the execution period from the end time of the execution period (that is, the start time of the stop period) and the execution period or the length of the stop period.
  • the period related information may include information indicating the period of the execution period or the stop period.
  • the base station 100 (communication processing unit 153)
  • the execution period or the stop period is notified to the access point 300 by transmitting the period related information to the terminal device 200 that can communicate in both LANs.
  • the base station 100 (communication processing unit 153) transmits system information including the period related information.
  • the base station 100 (communication processing unit 153) may individually transmit a message including the period related information to the terminal device 200.
  • the communication processing unit 153 transmits the period related information (for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation). Execute.
  • the period related information for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation.
  • the terminal device 200 acquires the period-related information. Then, for example, the terminal device 200 (communication processing unit 245) transmits a wireless LAN frame including the period related information to the access point 300.
  • the wireless LAN frame is a data frame.
  • the communication processing unit 245 executes transmission processing of the wireless LAN frame (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the access point 300 may be communicable in the cellular system.
  • the base station 100 (communication processing unit 153) may notify the access point 300 of the execution period or the stop period by transmitting the period related information to the access point 300. That is, the base station 100 may directly notify the access point 300 of the execution period or the stop period according to the communication method of the cellular system.
  • the base station 100 may transmit system information including the period related information.
  • the base station 100 may individually transmit a message including the period related information to the access point 300.
  • the communication processing unit 153 performs transmission processing of the period related information (for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation). May be.
  • the period related information for example, generation of the system information or the message, scheduling, mapping to radio resources, encoding, and / or modulation. May be.
  • the base station 100 (communication processing unit 153) transmits a wireless LAN frame including the period related information to The access point 300 may be notified of the execution period or the stop period. That is, the base station 100 may directly notify the access point 300 of the execution period or the stop period according to a wireless LAN communication method.
  • the wireless LAN frame may be a data frame.
  • the communication processing unit 153 may execute the wireless LAN frame transmission process (for example, generation, encoding, and / or demodulation of the wireless LAN frame).
  • the base station 100 (communication processing unit 153) transmits the period related information to the access point 300 via the backhaul, thereby executing the above-described execution.
  • the access point 300 may be notified of the period or the stop period.
  • the communication processing unit 153 may execute a message transmission process (for example, generation and / or encoding of the message) including the period related information.
  • a message transmission process for example, generation and / or encoding of the message
  • the base station 100 (communication processing unit 153) notifies the access point 300 of the execution period or the stop period.
  • the access point 300 can be made to perform an operation for suppressing interference with the communication of the cellular system in the shared band within the execution period.
  • the access point 300 transmits a beacon frame in the shared band in accordance with the start of the execution period or the stop period.
  • the beacon frame includes parameters related to CFP for PCF operation, and the parameters include duration information for setting the NAV.
  • the information acquisition unit 351 acquires information on the execution period or the stop period (that is, period related information).
  • the communication processing unit 353 transmits a beacon frame in the shared band in accordance with the start of the execution period or the stop period.
  • the station 400 near the access point 300 sets the NAV based on the duration information and transmits a signal in the shared band within the execution period or the stop period based on its own judgment. No longer. Therefore, interference with communication of the cellular system in the shared band can be suppressed.
  • the parameter is a CF parameter
  • the duration information is a CFP maximum duration (CFP MaxDuration) or a CFP remaining duration (CFP Duration Remaining).
  • beacon frame and related operation (d-1) First case
  • the access point 300 determines the length of the execution period and the stop.
  • the beacon frame is transmitted in the shared band at the start of one of the execution period and the stop period at a beacon interval approximately equal to the sum of the period lengths.
  • FIG. 23 is an explanatory diagram for describing a first example of transmission of a beacon frame and operations related thereto in the first case.
  • the access point 300 transmits the beacon frame 51 in the shared band in accordance with the start of the execution period 53 in which the base station 100 communicates in the shared band.
  • the beacon frame 51 includes duration information indicating a duration (for example, a duration comparable to the sum) corresponding to the sum of the length of the execution period 53 and the length of the stop period 55.
  • the base station 100 performs communication of the cellular system in the shared band within the execution period 53, and then stops communication of the cellular system in the shared band within the stop period 55.
  • the station 400 sets the NAV based on the duration information in response to the reception of the beacon frame 51. As a result, the station 400 does not transmit a signal in the shared band over the execution period 53 and the stop period 55 unless polling is performed by the access point 300. The access point 300 does not transmit a signal in the shared band over the execution period 53 (of course, polling is not performed). After the execution period 53 elapses, the access point 300 and the station 400 perform wireless LAN communication with the PCF in the shared band within the stop period 55.
  • the access point 300 transmits the beacon frame 51 again after the elapse of a beacon interval that is about the same as the sum of the length of the execution period 53 and the length of the stop period 55.
  • the base station 100 more reliably secures the shared band from the start point of the execution period and starts communication of the cellular system. be able to.
  • FIG. 24 is an explanatory diagram for describing a second example of transmission of a beacon frame and operations related thereto in the first case.
  • the access point 300 transmits the beacon frame 51 in the shared band in accordance with the start of the execution period 53 in which the base station 100 communicates in the shared band.
  • the beacon frame 51 includes duration information indicating a duration corresponding to the length of the execution period 53 (for example, a duration comparable to the length of the execution period 53).
  • the base station 100 performs communication of the cellular system in the shared band within the execution period 53, and then stops communication of the cellular system in the shared band within the stop period 55.
  • the station 400 sets the NAV based on the duration information in response to the reception of the beacon frame 51. As a result, the station 400 does not transmit a signal in the shared band over the execution period 53 unless polling is performed by the access point 300. The access point 300 does not transmit a signal in the shared band over the execution period 53 (of course, polling is not performed). After the execution period 53 elapses, the NAV of the station 400 becomes 0, and the access point 300 and the station 400 perform wireless LAN communication using DCF in the shared band within the stop period 55.
  • the access point 300 transmits the beacon frame 51 again after the elapse of a beacon interval that is approximately equal to the sum of the length of the execution period 53 and the length of the stop period 55.
  • FIG. 25 is an explanatory diagram for describing a third example of transmission of a beacon frame and operations related thereto in the first case.
  • the access point 300 transmits the beacon frame 51 in the shared band in accordance with the start of the stop period 55 in which the base station 100 stops communication in the shared band.
  • the beacon frame 51 includes duration information indicating a duration corresponding to the length of the stop period 55 (for example, a duration comparable to the length of the stop period 55).
  • the base station 100 stops communication of the cellular system in the shared band within the stop period 55, and then performs communication of the cellular system in the shared band within the execution period 53.
  • the station 400 sets the NAV based on the duration information in response to the reception of the beacon frame 51. As a result, the station 400 does not transmit a signal in the shared band over the stop period 55 unless polled by the access point 300.
  • the access point 300 and the station 400 perform wireless LAN communication with the PCF in the shared band within the stop period 55. After the stop period 55 elapses, the NAV of the station 400 becomes 0. However, since the cellular system communicates within the execution period 53, the shared band is busy. Therefore, the access point 300 and the station 400 do not transmit signals in the shared band over the execution period 53 as a result of carrier sense.
  • the access point 300 transmits the beacon frame 51 again after the elapse of a beacon interval that is approximately equal to the sum of the length of the execution period 53 and the length of the stop period 55.
  • the base station 100 more reliably secures the shared band from the start point of the execution period and starts communication of the cellular system. be able to.
  • the execution period and the stop period may have the same length.
  • the access point 300 (communication processing unit 353) has the beacon interval approximately the same as the length of each of the execution period and the stop period, and the start of each of the execution period and the stop period in the shared band.
  • a beacon frame may be transmitted.
  • FIG. 26 is an explanatory diagram for explaining a first example of transmission of a beacon frame and operations related thereto in the second case.
  • the access point 300 transmits the first beacon frame 61 in the shared band in accordance with the start of the execution period 63 in which the base station 100 communicates in the shared band.
  • the first beacon frame 61 includes duration information indicating a duration corresponding to the length of the execution period 63 (for example, a duration comparable to the length of the execution period 63).
  • the base station 100 performs communication of the cellular system in the shared band within the execution period 63.
  • the station 400 sets the NAV based on the duration information in response to the reception of the first beacon frame 61. As a result, the station 400 does not transmit a signal in the shared band over the execution period 63 unless polling is performed by the access point 300. The access point 300 does not transmit a signal in the shared band over the execution period 63 (of course, polling is not performed).
  • the access point 300 moves in the shared band in accordance with the start of the stop period 67 in which the base station 100 stops communication in the shared band (in other words, after a beacon interval equivalent to the length of the execution period 63 elapses).
  • a second beacon frame 65 is transmitted.
  • the second beacon frame 65 includes duration information indicating a duration corresponding to the length of the stop period 67 (for example, a duration comparable to the length of the stop period 67).
  • the base station 100 stops communication of the cellular system in the shared band within the stop period 67.
  • the station 400 sets the NAV based on the duration information in response to the reception of the second beacon frame 65. As a result, the station 400 does not transmit a signal in the shared band over the stop period 67 unless polling is performed by the access point 300.
  • the access point 300 and the station 400 perform wireless LAN communication with the PCF in the shared band within the stop period 67.
  • the access point 300 transmits the first beacon frame 61 again in the shared band at the start of the execution period 63 (in other words, after a beacon interval equivalent to the length of the stop period 67 has elapsed).
  • the base station 100 more reliably secures the shared band from the start point of the execution period and starts communication of the cellular system. be able to.
  • FIG. 27 is an explanatory diagram for describing a second example of transmission of a beacon frame and operations related thereto in the second case.
  • the access point 300 transmits the first beacon frame 61 in the shared band in accordance with the start of the execution period 63 in which the base station 100 communicates in the shared band.
  • the first beacon frame 61 includes duration information indicating a duration corresponding to the length of the execution period 63 (for example, a duration comparable to the length of the execution period 63).
  • the base station 100 performs communication of the cellular system in the shared band within the execution period 63.
  • the station 400 sets the NAV based on the duration information in response to the reception of the first beacon frame 61. As a result, the station 400 does not transmit a signal in the shared band over the execution period 63 unless polling is performed by the access point 300. The access point 300 does not transmit a signal in the shared band over the execution period 63 (of course, polling is not performed).
  • the access point 300 moves in the shared band in accordance with the start of the stop period 67 in which the base station 100 stops communication in the shared band (in other words, after a beacon interval equivalent to the length of the execution period 63 elapses).
  • a second beacon frame 65 is transmitted.
  • the second beacon frame 65 includes duration information indicating a duration shorter than the stop period 67.
  • the base station 100 stops communication of the cellular system in the shared band within the stop period 67.
  • the station 400 sets the NAV based on the duration information in response to the reception of the second beacon frame 65. Then, the access point 300 and the station 400 have the wireless LAN of the PCF in the shared band within the duration indicated by the duration information in the suspension period 67 (that is, a period shorter than the suspension period 67). Communicate. Thereafter, the access point 300 and the station 400 perform wireless LAN communication using DCF in the shared band within the remaining period of the stop period 67.
  • the access point 300 transmits the first beacon frame 61 again in the shared band at the start of the execution period 63 (in other words, after a beacon interval equivalent to the length of the stop period 67 has elapsed).
  • the second beacon frame 65 may include duration information indicating a duration of zero.
  • the access point 300 and the station 400 may perform wireless LAN communication using DCF in the shared band within the stop period 67.
  • the base station 100 uses information indicating the execution period or the stop period (hereinafter referred to as “period information”).
  • period information information indicating the execution period or the stop period.
  • the terminal device 200 is configured such that the terminal device 200 performs the execution period (that is, the period during which communication of the cellular system in the shared band is performed) or the suspension period (that is, communication of the cellular system in the shared band).
  • the measurement for the shared band is performed based on the period information indicating the period during which the shared band is stopped.
  • the explanation about this point is not different between the first embodiment and the third embodiment. Therefore, the overlapping description is omitted here.
  • the execution period and the stop period may be a period common between the base station 100 and the base station 100 adjacent to the base station 100.
  • the explanation about this point is not different between the first embodiment and the third embodiment. Therefore, the overlapping description is omitted here.
  • FIG. 28 is a flowchart illustrating an example of a schematic flow of processing of the base station 100 according to the third embodiment.
  • the base station 100 acquires information related to the execution period or the stop period (that is, period-related information), and the base station 100 (communication processing unit 153) uses the execution period or the stop period as an access point. 300 is notified (S561).
  • the base station 100 (communication processing unit 153) performs cellular system communication in the shared band within the execution period (S563).
  • the base station 100 (communication processing unit 153) stops communication of the cellular system in the shared band within the stop period (S565). Then, the process returns to step S563.
  • FIG. 29 is a flowchart illustrating a first example of a schematic flow of processing of the access point 300 according to the third embodiment.
  • the first example is processing corresponding to the first case described above.
  • the access point 300 acquires information related to the execution period or the stop period (that is, period related information) (S571).
  • the access point 300 (communication processing unit 353) transmits a beacon frame in the shared band in accordance with the start of one of the execution period and the stop period (S573).
  • the beacon frame is a beacon frame including a parameter related to CFP for PCF operation, and the parameter includes duration information for setting the NAV.
  • the access point 300 (communication processing unit 353) performs wireless LAN communication in the shared band within the stop period, and stops wireless LAN communication in the shared band within the execution period (S575). Then, the process returns to step S573.
  • FIG. 30 is a flowchart illustrating a second example of a schematic flow of processing of the access point 300 according to the third embodiment.
  • the second example is processing corresponding to the second case described above.
  • the access point 300 acquires information related to the execution period or the stop period (that is, period related information) (S581).
  • the access point 300 (communication processing unit 353) transmits a beacon frame in the shared band in accordance with the start of the execution period (S583).
  • the beacon frame is a beacon frame including a parameter related to CFP for PCF operation, and the parameter includes duration information for setting the NAV.
  • the duration information indicates a duration corresponding to the length of the execution period.
  • the access point 300 (communication processing unit 353) stops wireless LAN communication in the shared band within the execution period (S585).
  • the access point 300 (communication processing unit 353) transmits a beacon frame in the shared band in accordance with the start of the stop period (S587).
  • the beacon frame is also a beacon frame including parameters related to CFP for PCF operation, and the parameters include duration information for setting the NAV.
  • the access point 300 (communication processing unit 353) performs wireless LAN communication in the shared band within the suspension period (S589). Then, the process returns to step S583.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • the access point 300 may be realized as a wireless LAN access point (also referred to as a wireless base station) having a router function or not having a router function.
  • the access point 300 may be realized as a mobile wireless LAN router.
  • at least some of the components of the access point 300 may be realized in a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these devices.
  • the station 400 is a mobile terminal such as a smartphone, a tablet PC, a notebook PC, a portable game terminal or a digital camera, a fixed terminal such as a television receiver, a printer, a digital scanner, or a network storage, or a car navigation device. It may be realized as an in-vehicle terminal.
  • the station 400 may be realized as a terminal (also referred to as an MTC terminal) that performs M2M communication, such as a smart meter, a vending machine, a remote monitoring device, or a POS (Point Of Sale) terminal.
  • MTC terminal also referred to as an MTC terminal
  • M2M communication such as a smart meter, a vending machine, a remote monitoring device, or a POS (Point Of Sale) terminal.
  • at least some of the components of the station 400 may be realized in a wireless communication module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 31 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 31, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 31 shows an example in which the eNB 800 has a plurality of antennas 810, the eNB 800 may have a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 31, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 31, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 31 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827.
  • the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the wireless communication interface 825 supports a wireless LAN communication method (for example, one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad) in addition to the cellular communication method. May be.
  • the wireless communication interface 825 may include a BB processor 826 (and an RF circuit 827) of a wireless LAN communication method.
  • the information acquisition unit 151 and / or the communication processing unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 825. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or the whole of the wireless communication interface 825 and / or the controller 821, and the information acquisition unit 151 and / or the communication processing unit 153 are included in the module. May be implemented.
  • the module is a program for causing the processor to function as the information acquisition unit 151 and / or the communication processing unit 153 (in other words, for causing the processor to execute the operation of the information acquisition unit 151 and / or the communication processing unit 153). May be stored and the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 151 and / or the communication processing unit 153 is installed in the eNB 800, and the radio communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program. May be executed.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the information acquisition unit 151 and / or the communication processing unit 153, and the processor is used as the information acquisition unit 151 and / or the communication processing unit 153.
  • a program for functioning may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • FIG. 32 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 32, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 32 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 31 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the wireless communication interface 855 includes a plurality of BB processors 856
  • the wireless communication interface 855 may include a single BB processor 856.
  • the wireless communication interface 855 supports a wireless LAN communication method (for example, one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad) in addition to the cellular communication method. May be.
  • the wireless communication interface 855 may include a BB processor 856 of a wireless LAN communication method.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 32, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • 32 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the information acquisition unit 151 and / or the communication processing unit 153 described with reference to FIG. 8 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863.
  • the eNB 830 illustrated in FIG. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or the entire module and / or a module including the controller 851, and the information acquisition unit 151 and / or the communication processing unit 153 are included in the module. May be implemented.
  • the module is a program for causing the processor to function as the information acquisition unit 151 and / or the communication processing unit 153 (in other words, for causing the processor to execute the operation of the information acquisition unit 151 and / or the communication processing unit 153). May be stored and the program may be executed.
  • a program for causing a processor to function as the information acquisition unit 151 and / or the communication processing unit 153 is installed in the eNB 830, and the radio communication interface 855 (for example, the BB processor 856) and / or the controller 851 executes the program. May be executed.
  • the eNB 830, the base station device 850, or the module may be provided as a device including the information acquisition unit 151 and / or the communication processing unit 153, and the processor is used as the information acquisition unit 151 and / or the communication processing unit 153.
  • a program for functioning may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 8 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • FIG. 33 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 33 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 supports a wireless LAN communication method (for example, one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad) in addition to the cellular communication method. May be.
  • the wireless communication interface 912 may include a BB processor 913 (and an RF circuit 914) using a wireless LAN communication method.
  • the wireless communication interface 912 may support still another type of wireless communication method such as a short-range wireless communication method or a proximity wireless communication method.
  • the BB processor 913 (and RF) for each wireless communication method is supported. Circuit 914) may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 33 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 33 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 shown in FIG. 33 one or more components (information acquisition unit 241, measurement unit 243, and / or communication processing unit 245) included in the processing unit 240 described with reference to FIG. It may be implemented at interface 912. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the information acquisition unit 441 and / or the communication processing unit 443 described with reference to FIG. 11 are the same as the one or more components included in the processing unit 240.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the antenna unit 410 and the wireless communication unit 420 described with reference to FIG. 11 are the same as the antenna unit 210 and the wireless communication unit 220.
  • FIG. 34 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 34 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 supports a wireless LAN communication method (for example, one or more of wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad) in addition to the cellular communication method. May be.
  • the wireless communication interface 933 may include a BB processor 934 (and an RF circuit 935) using a wireless LAN communication method.
  • the wireless communication interface 933 may support still another type of wireless communication method such as a short-range wireless communication method or a proximity wireless communication method.
  • the BB processor 934 (and RF) for each wireless communication method is supported. Circuit 935).
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 34 shows an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 34 via a power supply line partially shown by a broken line in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the information acquisition unit 441 and / or the communication processing unit 443 described with reference to FIG. 11 are the same as the one or more components included in the processing unit 240.
  • the wireless communication unit 220 described with reference to FIG. 9 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the antenna unit 410 and the wireless communication unit 420 described with reference to FIG. 11 are the same as the antenna unit 210 and the wireless communication unit 220.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as an apparatus including one or more components (information acquisition unit 241, measurement unit 243, and / or communication processing unit 245) included in the processing unit 240.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the information acquisition unit 441 and / or the communication processing unit 443 described with reference to FIG. 11 are the same as the one or more components included in the processing unit 240.
  • FIG. 35 is a block diagram illustrating an example of a schematic configuration of a wireless access point 1050 to which the technology according to the present disclosure can be applied.
  • the wireless access point 1050 includes a controller 1051, a memory 1052, an input device 1054, a display device 1055, a network interface 1057, a wireless communication interface 1063, an antenna switch 1064, and an antenna 1065.
  • the controller 1051 may be, for example, a CPU or a DSP (Digital Signal Processor), and various functions (for example, access restriction, routing, encryption, firewall) of the IP (Internet Protocol) layer and higher layers of the wireless access point 1050 And log management).
  • the memory 1052 includes a RAM and a ROM, and stores programs executed by the controller 1051 and various control data (for example, a terminal list, a routing table, an encryption key, a security setting, and a log).
  • the input device 1054 includes, for example, a button or a switch, and accepts an operation from the user.
  • the display device 1055 includes an LED lamp and the like, and displays an operation status of the wireless access point 1050.
  • the network interface 1057 is a wired communication interface for the wireless access point 1050 to connect to the wired communication network 1058.
  • the network interface 1057 may have a plurality of connection terminals.
  • the wired communication network 1058 may be a LAN such as Ethernet (registered trademark), or may be a WAN (Wide Area Network).
  • the wireless communication interface 1063 supports one or more wireless LAN standards such as IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad, and provides a wireless connection as an access point to nearby terminals.
  • the wireless communication interface 1063 typically includes a baseband processor, an RF circuit, a power amplifier, and the like.
  • the wireless communication interface 1063 may be a one-chip module in which a memory that stores a communication control program, a processor that executes the program, and related circuits are integrated.
  • the antenna switch 1064 switches the connection destination of the antenna 1065 among a plurality of circuits included in the wireless communication interface 1063.
  • the antenna 1065 has a single antenna element or a plurality of antenna elements, and is used for transmission and reception of radio signals by the radio communication interface 1063.
  • the wireless access point 1050 may include a module including the controller 1051 and / or the wireless communication interface 1063, and the information acquisition unit 351 and the communication processing unit 353 may be mounted in the module.
  • the module executes a program for causing the processor to function as the information acquisition unit 351 and the communication processing unit 353 (in other words, a program for causing the processor to execute the operations of the information acquisition unit 351 and the communication processing unit 353). You may memorize
  • a program for causing a processor to function as the information acquisition unit 351 and the communication processing unit 353 may be installed in the wireless access point 1050, and the controller 1051 and / or the wireless communication interface 1063 may execute the program.
  • the wireless access point 1050 or the module may be provided as an apparatus including the information acquisition unit 351 and the communication processing unit 353, and a program for causing the processor to function as the information acquisition unit 351 and the communication processing unit 353 is provided. May be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the base station 100 is the frequency band (between a cellular system and wireless LAN) within a 1st period (namely, execution period) ( That is, the communication processing unit 153 performs communication of the cellular system in the shared band) and stops communication of the cellular system in the frequency band within the second period (that is, the stop period).
  • the first period is one or more subframes including a subframe in which the synchronization signal of the upper cellular system is transmitted.
  • the second period does not include a subframe in which the synchronization signal is transmitted.
  • the terminal device can more easily maintain synchronization for communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN (that is, the shared band).
  • the base station 100 performs communication for transmitting a beacon frame in a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN.
  • the beacon frame includes parameters related to CFP for PCF operation and includes duration information for setting NAV.
  • the communication processing unit 153 performs communication of the cellular system in the frequency band within a period corresponding to the duration information after transmitting the beacon frame.
  • the base station 100 performs communication in a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN.
  • An information acquisition unit that acquires information (that is, period-related information) about the first period (that is, the execution period) or the second period (that is, the stop band) in which the base station 100 stops communication in the frequency band.
  • the access point 300 performs the first period (ie, execution) in which the base station 100 performs communication in a frequency band (ie, shared band) shared between the cellular system and the wireless LAN. Period), or an information acquisition unit 351 that acquires information (that is, period-related information) regarding the second period (that is, the stop period) in which the base station 100 stops communication in the frequency band, and the first period Or the communication processing part 353 which transmits the beacon frame in the said frequency band according to the start of the said 2nd period is provided.
  • the beacon frame includes parameters related to CFP for PCF operation and includes duration information for setting NAV.
  • the communication system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these has been described, but the present disclosure is not limited to such an example.
  • the communication system may be a system that complies with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a device of the present specification eg, base station, base station device or module for base station device, terminal device or module for terminal device, access point or module for access point, or station or station
  • a computer program (in other words, a computer program for causing a processor (for example, a CPU, a DSP, etc.) included in the module to function as a component (for example, an information acquisition unit, a communication processing unit, and / or a measurement unit) of the device. It is also possible to create a computer program for causing the processor to execute the operation of the constituent elements of the device.
  • a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, a terminal apparatus, or a terminal apparatus
  • a memory for storing the computer program
  • processors capable of executing the computer program Module for access point, access point or module for access point, or module for station or station.
  • a method including the operation of the components of the apparatus is also included in the technology according to the present disclosure.
  • the following configurations also belong to the technical scope of the present disclosure.
  • Communication that performs communication of the cellular system in the frequency band shared between the cellular system and the wireless LAN within the first period, and stops communication of the cellular system in the frequency band within the second period Processing section, With The first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted; The second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted.
  • apparatus (2) The one or more subframes are subframes having a predetermined subframe number; The one or more other subframes are subframes having other predetermined subframe numbers. The apparatus according to (1) above.
  • each of the first period and the second period is a period that is repeated in a cycle of a radio frame.
  • the communication processing unit transmits a wireless LAN frame in the frequency band in accordance with the start of the first period,
  • the wireless LAN frame is duration information for setting a NAV (Network Allocation Vector), and includes the duration information indicating a duration corresponding to the length of the first period.
  • the apparatus according to any one of (1) to (3).
  • the wireless LAN frame is a beacon frame including a parameter related to CFP (Control Free Period) for PCF (Point Control Function) operation, The parameter includes the duration information, The apparatus according to (4) above.
  • the wireless LAN frame is an RTS (Request To Send) frame or a CTS (Clear To Send) frame.
  • the communication processing unit transmits the wireless LAN frame in the frequency band at intervals of wireless frames.
  • the communication processing unit notifies the wireless LAN node of the first period or the second period.
  • the wireless LAN node is an access point that supports a PCF operation.
  • the communication processing unit transmits the information indicating the first period or the second period to a terminal device that performs communication of the cellular system, according to any one of (1) to (9). Equipment.
  • the communication processing unit uses the one or more other subframes as MBSFN (MBMS (Multimedia Broadcast Multicast Service) over Single Frequency Network) subframes according to any one of (1) to (9).
  • Information on a first period in which communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN is performed, or a second period in which communication of the cellular system in the frequency band is stopped An acquisition unit to acquire; A communication processing unit that transmits a wireless LAN frame in the frequency band in accordance with the start of the first period or the second period; With The wireless LAN frame includes duration information for setting a NAV. apparatus.
  • the first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted;
  • the second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted.
  • the communication processing unit transmits the wireless LAN frame in the frequency band in accordance with the start of the second period,
  • the wireless LAN frame is a beacon frame including parameters related to CFP for PCF operation;
  • the parameter includes the duration information;
  • the duration information indicates a duration corresponding to the length of the second period.
  • the communication processing unit transmits the wireless LAN frame in the frequency band in accordance with the start of the first period,
  • the duration information indicates a duration corresponding to a length of the first period.
  • the device according to (13) or (14).
  • (17) Information indicating a first period during which communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN is performed, or a second period during which communication of the cellular system in the frequency band is stopped An acquisition unit for acquiring Based on the information, a measurement unit that performs measurement for the frequency band; and With The first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted; The second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted.
  • a device comprising: (21) A device, A communication processing unit for transmitting a beacon frame in a frequency band shared between the cellular system and the wireless LAN; With The beacon frame includes parameters related to CFP for PCF operation, the parameter including duration information for setting NAV; The communication processing unit performs communication of the cellular system in the frequency band within a period corresponding to the duration information after transmission of the beacon frame. apparatus.
  • a device comprising: (27) Acquisition of information related to a first period in which a base station communicates in a frequency band shared between a cellular system and a wireless LAN, or a second period in which the base station stops communication in the frequency band And A communication processing unit that notifies the wireless LAN access point that supports the PCF operation of the first period or the second period; A device comprising: (28) The apparatus according to (27), wherein each of the first period and the second period is a period that is periodically repeated.
  • the first period and the second period have the same length
  • the communication processing unit has a beacon interval that is approximately the same as the length of each of the first period and the second period, and the frequency corresponding to the start of each of the first period and the second period. Transmitting the beacon frame in a band;
  • the apparatus is a base station of the cellular system, a base station apparatus for the base station, or a module for the base station apparatus (1) to (12), (21) to (25), (27) The apparatus according to any one of (28).
  • the processor Performing communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN within a first period; Stopping communication of the cellular system in the frequency band within a second period; Including The first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted; The second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted.
  • the first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted;
  • the second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted. program.
  • the first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted;
  • the second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted. recoding media.
  • the processor Information indicating a first period during which communication of the cellular system in a frequency band shared between the cellular system and the wireless LAN is performed, or a second period during which communication of the cellular system in the frequency band is stopped And getting Performing measurements on the frequency band based on the information; Including The first period is one or more subframes including a subframe in which a synchronization signal of the cellular system is transmitted; The second period is one or more other subframes not including a subframe in which the synchronization signal is transmitted.
  • beacon frame includes parameters related to CFP for PCF operation, the parameter including duration information for setting NAV;
  • the program is Performing communication of the cellular system in the frequency band within a period corresponding to the duration information after transmission of the beacon frame;
  • beacon frames in a frequency band shared between the cellular system and the wireless LAN; Is a readable recording medium on which a program for causing a processor to execute is recorded,
  • the beacon frame includes parameters related to CFP for PCF operation, the parameter including duration information for setting NAV;
  • the program is Performing communication of the cellular system in the frequency band within a period corresponding to the duration information after transmission of the beacon frame; Is a program for causing a processor to further execute recoding media.
  • the beacon frame is a parameter related to CFP for PCF operation, and includes the parameter including duration information for setting NAV.
  • beacon frame is a parameter related to CFP for PCF operation, and includes the parameter including duration information for setting NAV. program.
  • beacon frame is a parameter related to CFP for PCF operation, and includes the parameter including duration information for setting NAV. recoding media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】セルラーシステムと無線LANとの間で共用される周波数帯域おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することを可能にする。 【解決手段】第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における上記セルラーシステムの通信を行い、第2の期間内で、上記周波数帯域における上記セルラーシステムの通信を停止する通信処理部、を備える装置が提供される。上記第1の期間は、上記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記第2の期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。

Description

装置
 本開示は、装置に関する。
 3GPP(3rd Generation Partnership Project)において、システムスループットを向上させる様々な技術が議論されている。システムスループットを向上するためには、使用する周波数を増やすことが一番の近道と言える。3GPPでは、リリース10及びリリース11において、キャリアアグリゲーション(Carrier Aggregation:CA)という技術が検討された。CAは、20MHzの帯域幅を有するコンポーネントキャリアを束ねて使用することにより、システムスループット及び最大のデータレートを向上させる技術である。このCAの技術を採用するためには、CCとして使用可能な周波数帯域が必要である。そのため、セルラーシステムの無線通信に使用可能なさらなる周波数帯域が求められている。
 例えば、特許文献1には、事業者ごとに専用に割り当てられる専用周波数帯域に加えて、登録した事業者が使用可能な登録制周波数帯域と、所定の条件が満たされる場合に使用可能なアンライセンスバンドとを使用することを可能にする技術が開示されている。
特開2006-094001号公報
 例えば、セルラーシステムと無線LAN(Local Area Network)との間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、ある期間では、上記周波数帯域においてセルラーシステムの通信が行われ、別の期間では、上記周波数帯域において無線LANの通信が行われる。
 しかし、上記周波数帯域において無線LANの通信が行われる期間によっては、上記周波数帯域におけるセルラーシステムの通信のための同期を維持することが端末装置にとって困難になり得る。
 そこで、セルラーシステムと無線LANとの間で共用される周波数帯域おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における上記セルラーシステムの通信を行い、第2の期間内で、上記周波数帯域における上記セルラーシステムの通信を停止する通信処理部、を備える装置が提供される。上記第1の期間は、上記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記第2の期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。
 また、本開示によれば、セルラーシステムと無線LANとの間で共用される周波数帯域における上記セルラーシステムの通信が行われる第1の期間、又は、上記周波数帯域における上記セルラーシステムの通信が停止される第2の期間に関する情報を取得する取得部と、上記第1の期間又は上記第2の期間の開始に合わせて、上記周波数帯域における無線LANフレームの送信を行う通信処理部と、を備える装置が提供される。上記無線LANフレームは、NAVを設定するための持続時間情報を含む。
 また、本開示によれば、セルラーシステムと無線LANとの間で共用される周波数帯域における上記セルラーシステムの通信が行われる第1の期間、又は、上記周波数帯域における上記セルラーシステムの通信が停止される第2の期間を示す情報を取得する取得部と、上記情報に基づいて、上記周波数帯域を対象とする測定を行う測定部と、を備える装置が提供される。上記第1の期間は、上記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記第2の期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。
 また、本開示によれば、セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得する取得部と、上記持続時間情報に基づいて、上記周波数帯域についてのNAVを設定する通信処理部と、を備える装置が提供される。
 以上説明したように本開示によれば、セルラーシステムと無線LANとの間で共用される周波数帯域おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
IEEE 802.11に従ったデータ送信の例を説明するための説明図である。 IEEE 802.11に従ったビーコンの送信の例を説明するための説明図である。 PCF動作の一例を説明するための第1の説明図である。 PCF動作の一例を説明するための第2の説明図である。 LTEのフレームフォーマットを説明するための説明図である。 本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 セルラーシステムにおける共用帯域の専有と解放の例を説明するための説明図である。 同実施形態に係る基地局の構成の一例を示すブロック図である。 同実施形態に係る端末装置の構成の一例を示すブロック図である。 同実施形態に係るアクセスポイントの構成の一例を示すブロック図である。 同実施形態に係るステーションの構成の一例を示すブロック図である。 実行期間及び停止期間の一例を説明するための説明図である。 、第1の実施形態に係る基地局の処理の概略的な流れの一例を示すフローチャートである。 基地局により送信される無線LANフレームを受信する無線LANノードの動作を説明するための説明図である。 第1の実施形態の第1の変形例に係る基地局の処理の概略的な流れの一例を示すフローチャートである。 アクセスポイントにより送信されるビーコンフレームを受信するステーション400の動作を説明するための説明図である。 第1の実施形態の第2の変形例に係るアクセスポイントの処理の概略的な流れの第1の例を示すフローチャートである。 第1の実施形態の第2の変形例に係る無線LANノードの処理の概略的な流れの第2の例を示すフローチャートである。 ビーコンフレームの送信と共用帯域における通信の第1の例を説明するための説明図である。 ビーコンフレームの送信と共用帯域における通信の第2の例を説明するための説明図である。 第2の実施形態に係る基地局の処理の概略的な流れの第1の例を示すフローチャートである。 第2の実施形態に係る基地局の処理の概略的な流れの第2の例を示すフローチャートである。 第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第1の例を説明するための説明図である。 第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第2の例を説明するための説明図である。 第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第3の例を説明するための説明図である。 第2のケースにおけるビーコンフレームの送信とそれに関連する動作の第1の例を説明するための説明図である。 第2のケースにおけるビーコンフレームの送信とそれに関連する動作の第2の例を説明するための説明図である。 第3の実施形態に係る基地局の処理の概略的な流れの一例を示すフローチャートである。 第3の実施形態に係るアクセスポイントの処理の概略的な流れの第1の例を示すフローチャートである。 第3の実施形態に係るアクセスポイントの処理の概略的な流れの第2の例を示すフローチャートである。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。 無線アクセスポイントの概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.システムの概略的な構成
 3.各装置の構成
  3.1.基地局の構成
  3.2.端末装置の構成
  3.3.アクセスポイントの構成
  3.4.ステーションの構成
 4.第1の実施形態
  4.1.概略
  4.2.技術的特徴
  4.3.処理の流れ
  4.4.第1の変形例
  4.5.第2の変形例
 5.第2の実施形態
  5.1.概略
  5.2.技術的特徴
  5.3.処理の流れ
 6.第3の実施形態
  6.1.概略
  6.2.技術的特徴
  6.3.処理の流れ
 7.応用例
  7.1.基地局に関する応用例
  7.2.端末装置/ステーションに関する応用例
  7.3.アクセスポイントに関する応用例
 8.まとめ
 <<1.はじめに>>
 まず、図1~図5を参照して、周波数帯域の共用、無線LANに関する技術、及びセルラーシステムに関する技術を説明する。
 (1)周波数帯域の共用
 (a)周波数共用の背景
 セルラーシステムにおいて使用可能なさらなる周波数帯域が求められている。例えば、セルラーシステムにおいて使用可能なさらなる周波数帯域として、5GHz帯が考えられる。
 しかし、5GHz帯は、無線LANでも使用されている。そのため、セルラーシステムにおいて5GHz帯が使用される場合には、例えば、5GHz帯は、セルラーシステムと無線LANとの間で共用(share)される。具体的には、例えば、5GHz帯の周波数帯域(例えば、無線LANのチャネル)が、ある時間には無線LANにおいて使用され、別の時間にはセルラーシステムにおいて使用される。これにより、5GHz帯の周波数利用効率が向上する。なお、無線LAN規格には、IEEE802.11a、11b、11g、11n、11ac及び11adなどがあり、これらの規格は、MAC(Media Access Control)層としてIEEE802.11を採用することを特徴とする。
 (b)共用の手法
 無線LANのノード(アクセスポイント及びステーション)は、世の中に既に広く普及している。そのため、後方互換性(Backward Compatibility)の観点から、無線LANのノードの動作が変更されるのではなく、セルラーシステムと無線LANとの間で周波数帯域を共用するための仕組みが、LTE(Long Term Evolution)の技術として検討され、LTEの新たな規格として定められることが望ましい。なお、上記新たな規格に準拠した端末装置は、セルラーシステムと無線LANとの間で共用される周波数帯域(以下、「共用帯域」と呼ぶ)を使用するが、上記新たな規格に準拠しない端末装置は、共用帯域を使用しないと考えられる。
 (c)コンポーネントキャリアとしての使用
 LTE、LTE-Advanced又はこれらに準ずる通信規格に準拠したセルラーシステムでは、共用帯域は、例えば、コンポーネントキャリア(CC:Component Carrier)として使用されるであろう。さらに、セルラーシステム用の周波数帯域がPCCとして使用され、共用帯域はSCCとして使用されることが、想定される。また、セルラーシステム用の周波数帯域を使用して制御信号及びデータ信号が送受信され、共用帯域を使用してデータ信号が送受信され得る。
 (d)フェアな共用
 共用帯域はセルラーシステムと無線LANとの間でフェアに共用されることが望ましい。無線LANでは、CSMA(Carrier Sense Multiple Access)に従ってチャネル(共用帯域)がフェアに共用されているので、例えば、セルラーシステムと無線LANとの間でも、CSMAを考慮した手法で、チャネル(共用帯域)がフェアに共用されることが望ましい。
 フェアな共用として、様々な共用が考え得る。例えば、フェアな共用は、「無線LANで共用帯域を使用する機会と、セルラーシステムで当該共用帯域を使用する機会とが、同様に与えられること」と定義され得る。即ち、実際の通信量がセルラーシステムと無線LANとの間で同じであることではなく、通信の機会がセルラーシステムと無線LANとの間で同じであることが、フェアな共用とみなされ得る。
 一例として、共用帯域が、セルラーシステムにおいて一定期間使用されると、その後、当該共用帯域は、同程度の期間当該セルラーシステムの使用から解放される。
 (2)無線LANに関する技術
 (a)データ送信
 図1を参照して、IEEE 802.11に従ったデータ送信の例を説明する。図1は、IEEE 802.11に従ったデータ送信の例を説明するための説明図である。
 IEEE 802.11では、DATAフレーム及びACKフレームが基本のフレームである。ACKフレームは、DATAフレームが正しく受信された時に、DATAフレームの受信の成功を送信側に知らせるためのフレームである。無線LANでは、DATAフレーム及びACKフレームのみにより無線通信が行われ得るが、一般的に、さらにRTS(Request To Send)フレーム及びCTS(Clear To Send)フレームという2つのフレームが使用される。
 無線LANのノードは、RTSフレームを送信する前に、DIFS(DCF (Distributed Coordination Function) InterFrame Space)という期間の間、信号が送信されていないことを確認する。これは、キャリアセンスと呼ばれる。DIFSが経過した時点で各ノードが同時に信号を送信し始めると、信号が衝突してしまう。そのため、各ノードは、ノードごとにランダムに設定されるバックオフ時間だけ待機し、バックオフ時間の間にも信号が送信されていなければ信号を送信する。
 基本的には、ノードは、いずれかの信号を検出している間は、信号を送信できない。しかし、隠れ端末問題(hidden node problem)というものが存在するので、NAV(Network Allocation Vector)という値の設定のための持続時間(Duration)フィールドを含むRTSフレーム及びCTSフレームが追加された。当該持続時間フィールドに含まれる値に基づいて、NAVが設定される。NAVを設定したノードは、当該NAVの期間にわたって信号の送信を控える。
 まず、DATAフレームを送信する第1のノードがRTSフレームを送信する。すると、当該第1のノードの周囲に位置する他のノードは、RTSフレームを受信し、RTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。例えば、当該NAVの期間は、RTSフレームの終了からACKフレームの終了までの期間である。
 また、DATAフレームを受信する第2のノードが、RTSフレームの受信に応じて、RTSフレームの終了からSIFS(Short InterFrame Space)だけ後に、CTSフレームを送信する。すると、上記第2のノードの周囲に位置する他のノードは、CTSフレームを受信し、CTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。当該NAVの期間は、CTSフレームの終了からACKフレームの終了までの期間である。これにより、例えば、上記第1のノードの近くにはいないが、上記第2のノードの近くにいる他のノード(即ち、上記第1のノードにとっての隠れ端末(hidden node))が、上記第1のノードと上記第2のノードとの通信の間に信号を送信することを、防ぐことができる。
 なお、RTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド、送信アドレスフィールド及びFCS(Frame Check Sequence)を含む。また、CTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド及びFCSを含む。
 また、IEEE802.11シリーズの規格におけるDIFS及びSIFSは、例えば以下のような長さを有する。
Figure JPOXMLDOC01-appb-T000001
 (b)ビーコン
 図2を参照して、IEEE 802.11におけるビーコンを説明する。
 (b-1)ビーコンフレーム
 IEEE 802.11では、管理フレーム(Management Frame)、制御フレーム(Control Frame)及びデータフレーム(Data Frame)という3つのタイプのMACフレームがある。上述したRTSフレーム、CTSフレーム及びACKフレームは、制御フレームであり、ビーコンフレームは、管理フレームである。
 ビーコンフレームも、他のフレーム(例えば、RTSフレーム、CTSフレーム、ACKフレーム、及びデータフレーム)と同様の構造を有し、他のフレームとは異なる情報を含んでいる。
 なお、MACフレームの中のヘッダには、フレームタイプを示すためのフィールド(タイプフィールド及びサブタイプフィールド)がある。ビーコンフレーム、RTSフレーム、CTSフレーム、ACKフレーム、及びデータフレームの各々では、上記フィールドに以下のような値が含まれている。
Figure JPOXMLDOC01-appb-T000002
 (b-2)ビーコンフレームに含まれる情報
 IEEE 802.11では、アクセスポイントが周期的にビーコンフレームを送信する。ステーションは、当該ビーコンフレームの受信により、アクセスポイントについての情報を取得することができる。無線LANにおけるビーコンフレームは、セルラーシステムにおけるシステム情報に対応するとも言える。
 例えば、ビーコンフレームには、ビーコン間隔(beacon interval)が含まれる。ビーコン間隔は、ビーコンの送信の時間間隔である。ステーションは、当該ビーコン間隔から、次のビーコンが送信されるおおよその時間を知ることができる。ビーコン間隔は、20ms~1000msの間で10msの粒度で設定可能である。例えば、ビーコン間隔は、100msに設定される。
 例えば、ビーコンフレームには、タイムスタンプが含まれる。タイムスタンプは、アクセスポイントとステーションとの間での時間同期のために用いられる情報である。
 例えば、ビーコンフレームには、サービスセットID(service set ID)が含まれる。無線LANにおけるサービスセットIDは、セルラーシステムにおけるセルIDに対応するとも言える。
 なお、例えば、ビーコンフレームには、サポートする変調方式、及びチャネルなどの他の情報が含まれる。
 (b-3)ビーコンフレームの送信
 アクセスポイントは、ビーコン間隔でビーコンフレームの送信を試みる。アクセスポイントは、ビーコンフレームの送信の際にも、DIFSにわたるキャリアセンスを行い、バックオフ時間だけ待機する。そのため、チャネルが他のノードにより専有されていた場合には、アクセスポイントがビーコンフレームを送信する時間は、後方にシフトされる。以下、この点について図2を参照して具体例を説明する。
 図2は、IEEE 802.11に従ったビーコンの送信の例を説明するための説明図である。例えば、アクセスポイントは、DIFSにわたるキャリアセンスを行い、バックオフ時間だけ待機した後に、ビーコンフレーム71を送信する。さらに、アクセスポイントは、ビーコン間隔72の経過後に、ビーコンフレーム73を送信する。その後、ビーコン間隔74の経過後には、他のノードによる信号の送信に起因してチャネルがビジー状態になっている。そのため、アクセスポイントは、ビジー状態の終了後に、DIFSにわたるキャリアセンスを行い、バックオフ時間だけ待機した後に、ビーコンフレーム75を送信する。その後、アクセスポイントは、ビーコン間隔76の経過後に、ビーコンフレーム77を送信する。
 以上のように、アクセスポイントは、DIFSにわたるキャリアセンスを行い、バックオフ時間だけ待機した後に、ビーコンフレームを送信する。
 (c)PCF
 上述したコンテンションベースの方式は、DCF(Distributed Control Function)と呼ばれる。一方、無線LANでは、DCFに加えて、PCF(Point Coordination Function)と呼ばれるノンコンテンションベースの方式が用意されている。DCFは分散制御によるアクセス方式であり、PCFは集中制御によるアクセス方式であると言える。
 PCFでは、アクセスポイントが、無線LANのチャネルにおいてステーションへのポーリングを行い、当該ステーションが、当該チャネルにおいて無線LANフレームを送信する。以下、図3及び図4を参照して、PCF動作の具体例を説明する。
 図3は、PCF動作の一例を説明するための第1の説明図である。図3を参照すると、アクセスポイント81及びステーション83、85、87が示されている。アクセスポイント81は、ステーション83、85、87の各々にポーリングを行う。即ち、アクセスポイント81は、ステーション83、85、87の各々へCF-Pollフレームを送信する。ステーション83、85、87の各々は、当該CF-Pollフレームの受信に応じて、データフレームを送信する。
 図4は、PCF動作の一例を説明するための第2の説明図である。図4を参照すると、アクセスポイント81及びステーション83、85、87が示されている。まず、アクセスポイント81は、CF(Contention Free)パラメータを含むビーコンフレーム91を送信する。当該CPパラメータは、NAVを設定するための持続時間(duration)情報を含み、ビーコンフレーム91を受信したステーション83、85、87は、上記持続時間情報に基づいて、NAVを設定する。ビーコンフレーム91の後に、アクセスポイント81は、ステーション83宛のData+CF-Pollフレーム92を送信し、ステーション83は、アクセスポイント81宛のData+CF-ACKフレーム93を送信する。さらに、アクセスポイント81は、ステーション85宛のCF-ACK+CF-Pollフレーム94を送信し、ステーション85は、アクセスポイント81宛のDataフレーム95を送信する。さらに、アクセスポイント81は、ステーション87宛のDATA+CF-ACK+CF-Pollフレーム96を送信し、ステーション87は、アクセスポイント81宛のData+CF-ACKフレーム97を送信する。その後、AP81は、CF-END+CF-ACKフレームを送信する。そして、アクセスポイント81は、ビーコンフレーム99を送信する。アクセスポイント81は、DIFS及びバックオフ時間ではなく、より短い時間であるPIFS(Polling InterFrame Space)の経過後に、ビーコンフレームを送信する。以上のように、PCFでは、ビーコンフレームの送信によりNAVが設定され、NAVの設定により無線LANの通信が抑制されている間に、ポーリング及びデータの送受信が行われる。
 なお、PCFはノンコンテンションベースの方式であると述べたが、これは、コンテンションが一切なくなることを意味しない。上述したように、PCF動作により、1つのアクセスポイント、及び当該1つのアクセスポイントの近くの1つ以上のステーションの中で、コンテンションがなくなり得る。しかし、1つのアクセスポイント(及び当該1つのアクセスポイントの近くの1つ以上のステーション)と他のアクセスポイント(及び当該他のアクセスポイントの近くの1つ以上のステーション)との間には、コンテンションが存在し得る。
 (3)セルラーシステムに関する技術
 (a)フレームフォーマット
 図5を参照して、LTEのフレームフォーマットを説明する。図5は、LTEのフレームフォーマットを説明するための説明図である。
 まず、LTEでは、無線フレーム(Radio Frame)という時間の単位が用いられる。1無線フレームは、10msである。個々の無線フレームは、0~1023のいずれかであるSFN(System Frame Number)により識別される。
 無線フレームは、#0~#9により各々識別される10個のサブフレームを含む。各サブフレームは、1msである。さらに、各サブフレームは、2個のスロットを含み、各スロットは、例えば7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボルを含む。即ち、各サブフレームは、14個のOFDMシンボルを含む。なお、図5に示されるフレームフォーマットは、ダウンリンクのフレームフォーマットであり、アップリンクのフレームフォーマットは、OFDMシンボルの代わりに、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルを含む。
 (b)キャリアアグリゲーション
 (b-1)コンポーネントキャリア
 リリース10のキャリアアグリゲーションでは、最大で5つのコンポーネントキャリア(CC)が束ねられて、UE(User Equipment)により使用される。各CCは、最大20MHz幅の帯域である。キャリアアグリゲーションでは、周波数方向で連続するCCが使用される場合と、周波数方向で離れたCCが使用される場合とがある。キャリアアグリゲーションでは、使用されるCCをUE毎に設定することが可能である。
 (b-2)PCCとSCC
 キャリアアグリゲーションでは、UEにより使用される複数のCCのうちの1つが特別なCCである。当該1つの特別なCCは、PCC(Primary Component Carrier)と呼ばれる。また、上記複数のCCのうちの残りは、SCC(Secondary Component Carrier)と呼ばれる。PCCは、UEによって異なり得る。
 PCCは、複数のCCの中で最も重要なCCであるので、通信品質が最も安定しているCCであることが望ましい。なお、どのCCをPCCとするかは、実際には、どのように実装するかに依存する。
 SCCは、PCCに追加される。また、追加された既存のSCCは、削除されることが可能である。なお、SCCの変更は、既存のSCCの削除と新たなSCCの追加により行われる。
 (b-3)PCCの決定手法及び変更手法
 UEの接続が最初に確立され、UEの状態が、RRC(Radio Resource Control) IdleからRRC Connectedに遷移する場合には、UEが接続の確立の際に使用するCCが、当該UEにとってのPCCとなる。より具体的には、接続確立(Connection Establishment)の手続きを通じて接続が確立される。その際に、UEの状態は、RRC IdleからRRC Connectedに遷移する。また、上記手続きに使用されるCCが、上記UEにとってのPCCとなる。なお、上記手続きは、UE側から開始される手続きである。
 また、PCCの変更は、周波数間ハンドオーバにより行われる。より具体的には、接続再構成(Connection Reconfiguration)の手続きにおいてハンドオーバが指示されると、PCCのハンドオーバが行われ、PCCが変更される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 (b-4)SCCの追加
 上述したように、SCCは、PCCに追加される。その結果、SCCは、PCCに付随する。換言すると、SCCは、PCCに従属する。SCCの追加は、接続再構成の手続きを通じて行われることが可能である。なお、当該手続きは、ネットワーク側から開始される手続きである。
 (b-5)SCCの削除
 上述したように、SCCは、削除されることができる。SCCの削除は、接続再構成の手続きを通じて行われることが可能である。具体的には、メッセージの中で指定される特定のSCCが削除される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 また、全てのSCCの削除は、接続再確立(Connection Re-establishment)の手続きを通じて行われることが可能である。
 (b-6)PCCの特別な役割
 接続確立の手続き、NAS(Non-Access Stratum)シグナリングの送受信、及び物理アップリンク制御チャネル(PUCCH:Physical Uplink Control Channel)でのアップリンク制御信号の送受信は、SCCでは行われず、PCCのみで行われる。
 また、無線リンク障害(RLF:Radio Link Failure)の検出及びその後の接続再確立の手続きも、SCCでは行われず、PCCのみで行われる。
 (b-7)キャリアアグリゲーションのためのバックホールの条件
 例えば、SCCのダウンリンク信号に対するACK(Acknowledgement)は、PCCのPUCCHで送信される。上記ACKは、eNB(evolved Node B)によるデータの再送に使用されるので、上記ACKの遅延は許容されない。したがって、UEにとってのPCCであるCCを使用する第1のeNBと、UEにとってのSCCであるCCを使用する第2のeNBとが異なる場合には、当該第1のeNBと当該第2のeNBとの間のバックホールでの遅延はせいぜい10ms程度であることが望まれる。
 <<2.通信システムの概略的な構成>>
 図6及び図7を参照して、本開示の実施形態に係るシステム1の概略的な構成を説明する。図6は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図4を参照すると、システム1は、基地局100、端末装置200、アクセスポイント300、及びステーション400を含む。
 (1)基地局100
 基地局100は、セルラーシステムの基地局である。例えば、当該セルラーシステムは、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムであり、基地局100は、当該通信規格に従って動作する。基地局100は、スモールセルであってもよく、又はマクロセルであってもよい。
 (a)周波数帯域
 (a-1)セルラーシステム用の周波数帯域
 基地局100は、上記セルラーシステム用の周波数帯域での無線通信を行う。例えば、当該周波数帯域は、上記セルラーシステム用のコンポーネントキャリアである。
 上記セルラーシステム用の上記周波数帯域は、ライセンスバンド(licensed band)に含まれる周波数帯域である。
 (a-2)共用帯域
 とりわけ本開示の実施形態では、基地局100は、さらに、上記セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)での無線通信を行う。例えば、当該共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。なお、上記共用帯域は、これらの例に限られず、3.5GHz帯又は60GHz帯などの他のバンドに含まれる周波数帯域であってもよい。
 上記共用帯域は、アンライセンスバンド(unlicensed band)に含まれる周波数帯域である。
 (b)端末装置との無線通信
 基地局100は、端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、基地局100のセル10内に位置する端末装置との無線通信を行う。具体的には、例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (2)端末装置200
 (a)セルラーシステムにおける無線通信
 端末装置200は、上記セルラーシステムにおいて通信可能な端末装置である。上述したように、例えば、上記セルラーシステムは、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムであり、端末装置200は、当該通信規格に従って動作する。
 端末装置200は、上記セルラーシステム用の上記周波数帯域での無線通信を行う。さらに、例えば、端末装置200は、上記共用帯域での無線通信を行う。
 端末装置200は、基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局のセル(例えば、基地局100のセル10)内に位置する場合に、当該基地局との無線通信を行う。具体的には、例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局100へのアップリンク信号を送信する。
 (b)無線LANにおける無線通信
 さらに、端末装置200は、無線LANにおいても通信可能であってもよい。例えば、端末装置200は、IEEE802.11規格(例えば、IEEE802.11a、11b、11g、11n、11ac又は11adなど)に従って動作してもよい。
 端末装置200は、上記共用帯域、又は無線LANの他のチャネルにおいて、アクセスポイントとの無線通信を行ってもよい。即ち、端末装置200は、無線LANのステーションとして動作してもよい。
 (3)アクセスポイント300
 アクセスポイント300は、無線LANのアクセスポイントである。例えば、アクセスポイント300は、IEEE802.11規格(例えば、IEEE802.11a、11b、11g、11n、11ac又は11adなど)に従って動作する。
 例えば、アクセスポイント300は、上記共用帯域、又は無線LANの他のチャネルにおいて、無線LANのステーション(例えば、ステーション400)との無線通信を行う。
 (4)ステーション400
 ステーション400は、無線LANのステーションである。例えば、ステーション400は、IEEE802.11規格(例えば、IEEE802.11a、11b、11g、11n、11ac又は11adなど)に従って動作する。
 例えば、ステーション400は、上記共用帯域、又は無線LANの他のチャネルにおいて、無線LANのアクセスポイント(例えば、アクセスポイント300)との無線通信を行う。
 (5)セルラーシステムにおける共用帯域の使用
 (a)共用帯域の占有及び解放
 例えば、基地局100は、所定時間にわたり上記共用帯域を占有し、その後、上記共用帯域を解放する。即ち、基地局100は、所定の期間にわたり上記共用帯域での無線通信を行い、その後、上記共用帯域での無線通信を停止する。以下、この点について図7を参照して具体例を説明する。
 図7は、セルラーシステムにおける共用帯域の専有と解放の例を説明するための説明図である。図7を参照すると、例えば、基地局100は、共用帯域のビジー状態の終了後に、SIFS(Short InterFrame Space)及びセルラーIFS(即ち、セルラーシステム用のIFS)だけ待機し、所定の期間にわたり、共用帯域における無線通信(セルラーシステムの無線通信)を行う。その後、基地局100は、上記共用帯域における無線通信を停止する(即ち、無線LANのために上記共用帯域を解放する)。例えば、SIFSは1usであり、セルラーIFSは10usであり、DIFSは34usである。そのため、基地局100は、上記共用帯域のビジー状態の終了後に、無線LANのノードよりも先に信号を送信することができる。
 (b)キャリアアグリゲーション
 例えば、上記共用帯域は、上記セルラーシステムにおいてコンポーネントキャリアとして使用される。例えば、上記セルラーシステム用の周期数帯域は、端末装置にとってのプライマリコンポーネントキャリア(PCC)又はセカンダリコンポーネントキャリア(SCC)として使用され、上記共用帯域は、端末装置にとってのSCCとして使用される。
 さらに、例えば、制御信号の送信には、上記セルラーシステム用の周期数帯域が使用され、上記共用帯域は、データ信号の送信に使用される。なお、上記共用帯域は、ダウンリンク専用の周波数帯域として使用され得る。
 <<3.各装置の構成>>
 続いて、図8~図11を参照して、各装置の構成の一例を説明する。
 <3.1.基地局の構成>
 まず、図8を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図8は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図8を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、基地局100の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (5)処理部150
 処理部150は、基地局100の様々な機能を提供する。処理部150は、情報取得部151及び通信処理部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 情報取得部151及び通信処理部153の動作は後に詳細に説明する。
 <3.2.端末装置の構成>
 次に、図9を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図9は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図9を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (4)処理部240
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241、測定部243及び通信処理部245を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
 情報取得部241、測定部243及び通信処理部245の動作は後に詳細に説明する。
 <3.3.アクセスポイントの構成>
 次に、図10を参照して、本開示の実施形態に係るアクセスポイント300の構成の一例を説明する。図10は、本開示の実施形態に係るアクセスポイント300の構成の一例を示すブロック図である。図10を参照すると、アクセスポイント300は、アンテナ部310、無線通信部320、ネットワーク通信部330、記憶部340及び処理部350を備える。
 (1)アンテナ部310
 アンテナ部310は、無線通信部320により出力される信号を電波として空間に放射する。また、アンテナ部310は、空間の電波を信号に変換し、当該信号を無線通信部320へ出力する。
 (2)無線通信部320
 無線通信部320は、信号を送受信する。例えば、無線通信部320は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。無線通信部320は、さらに他の周波数帯域(無線LANのチャネル)で、信号を送受信してもよい。
 (3)ネットワーク通信部330
 ネットワーク通信部330は、情報を送受信する。例えば、ネットワーク通信部330は、他のノードへの情報を送信し、他のノードからの情報を受信する。
 (4)記憶部340
 記憶部340は、アクセスポイント300の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (5)処理部350
 処理部350は、アクセスポイント300の様々な機能を提供する。処理部350は、情報取得部351及び通信処理部353を含む。なお、処理部350は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部350は、これらの構成要素の動作以外の動作も行い得る。
 情報取得部351及び通信処理部353の動作は後に詳細に説明する。
 <3.4.ステーションの構成>
 次に、図11を参照して、本開示の実施形態に係るステーション400の構成の一例を説明する。図11は、本開示の実施形態に係るステーション400の構成の一例を示すブロック図である。図11を参照すると、ステーション400は、アンテナ部410、無線通信部420、記憶部430及び処理部440を備える。
 (1)アンテナ部410
 アンテナ部410は、無線通信部420により出力される信号を電波として空間に放射する。また、アンテナ部410は、空間の電波を信号に変換し、当該信号を無線通信部420へ出力する。
 (2)無線通信部420
 無線通信部420は、信号を送受信する。例えば、無線通信部420は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (3)記憶部430
 記憶部430は、ステーション400の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (4)処理部440
 処理部440は、ステーション400の様々な機能を提供する。処理部440は、情報取得部441及び通信処理部443を含む。なお、処理部440は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部440は、これらの構成要素の動作以外の動作も行い得る。
 情報取得部441及び通信処理部443の動作は後に詳細に説明する。
 <<4.第1の実施形態>>
 続いて、図12~図18を参照して、本開示の第1の実施形態を説明する。
 <4.1.概略>
 (1)技術的課題
 例えば、セルラーシステムと無線LANとの間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、ある期間では、上記周波数帯域(即ち、共用帯域)においてセルラーシステムの通信が行われ、別の期間では、上記周波数帯域において無線LANの通信が行われる。
 しかし、上記周波数帯域において無線LANの通信が行われる期間によっては、上記周波数帯域におけるセルラーシステムの通信のための同期を維持することが端末装置にとって困難になり得る。
 例えば、上記周波数帯域において無線LANの通信が行われる期間にわたって、上記周波数帯域においてセルラーシステムの同期信号が送信されず、端末装置は、上記周波数帯域において上記同期信号を受信することができない。そのため、上記期間が長い場合には、例えば、端末装置は、上記周波数帯域における上記セルラーシステムの通信のための同期を維持できない。その結果、例えば、端末装置は、上記期間の後に、当該同期を再び獲得することになり、上記セルラーシステムにおける上記周波数帯域の利用効率が低くなり得る。
 また、例えば、上記周波数帯域において無線LANの通信が行われる期間が短い場合であっても、セルラーシステムの同期信号が送信されるサブフレーム内で上記周波数帯域において無線LANの通信が行われれば、端末装置は、上記同期信号を受信することができない。そのため、例えば、端末装置は、上記周波数帯域における上記セルラーシステムの通信のための同期を維持できない。その結果、例えば、端末装置は、当該同期を再び獲得することになり、上記セルラーシステムにおける上記周波数帯域の利用効率が低くなり得る。
 そこで、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することを可能にする仕組みが提供されることが望ましい。
(2)技術的手段
 第1の実施形態では、基地局100は、第1の期間(以下、「実行期間」と呼ぶ)内で、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)における上記セルラーシステムの通信を行い、第2の期間(以下、「停止期間」と呼ぶ)内で、上記周波数帯域における上記セルラーシステムの通信を停止する。上記実行期間は、上記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記停止期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することが可能になる。
 <4.2.技術的特徴>
 次に、図12を参照して、第1の実施形態に係る技術的特徴を説明する。
 (1)共用帯域における通信の実行/停止
 上述したように、基地局100(通信処理部153)は、第1の期間(即ち、実行期間)内で、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)における上記セルラーシステムの通信を行い、第2の期間(即ち、停止期間)内で、上記周波数帯域における上記セルラーシステムの通信を停止する。
 (a)共用帯域
 (a-1)共用帯域の例
 例えば、上記共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。
 なお、上記共用帯域は、これらの例に限られず、3.5GHz帯又は60GHz帯などの他のバンドに含まれる周波数帯域であってもよい。
 (a-2)CCとしての使用
 例えば、基地局100は、上記共用帯域をコンポーネントキャリア(CC)として使用する。より具体的には、例えば、基地局100は、上記共用帯域を、端末装置のセカンダリコンポーネントキャリア(SCC)として使用する。
 (a-3)ダウンリンク専用の周波数帯域
 基地局100は、上記共用帯域をダウンリンク専用の周波数帯域として使用し得る。即ち、基地局100は、上記共用帯域においてダウンリンク信号の送信のみを行い得る。
 (b)実行期間/停止期間
 (b-1)同期信号
 上述したように、上記実行期間は、上記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記停止期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。
 例えば、上記実行期間は、PSS(Primary Synchronization Signal)及び/又はSSS(Secondary Synchronization Signal)が送信されるサブフレームを含む1つ以上のサブフレームである。例えば、FDD(Frequency Division Duplex)のケースでは、PSSが送信されるサブフレームは、サブフレーム番号が0、5であるサブフレームであり、SSSが送信されるサブフレームも、サブフレーム番号が0、5であるサブフレームである。例えば、TDD(Time Division Duplex)のケースでは、PSSが送信されるサブフレームは、サブフレーム番号が1、6であるサブフレームであり、SSSが送信されるサブフレームは、サブフレーム番号が0、5であるサブフレームである。
 (b-2)所定のサブフレーム番号を有する期間
 例えば、上記1つ以上のサブフレーム(即ち、実行期間)は、所定のサブフレーム番号を有するサブフレームであり、上記1つ以上の他のサブフレーム(即ち、停止期間)は、他の所定のサブフレーム番号を有するサブフレームである。
 これにより、例えば、共用帯域における通信の仕組みをより容易に設計することが可能になる。
 (b-3)繰り返される期間
 例えば、上記実行期間及び上記停止期間は、無線フレーム(例えば、10サブフレーム)の周期で繰り返される期間である。例えば、上記実行期間の長さと上記停止期間の長さとの和は、無線フレームの長さ(例えば、10ms)であり、上記実行期間及び上記停止期間は、互いに隣接し、無線フレームの周期(例えば、10msの周期)で繰り返される。
 これにより、例えば、各無線フレーム内で共用帯域におけるセルラーシステムの通信を行うことが可能になる。
 (b-4)複数の連続するサブフレーム
 例えば、上記実行期間は、上記同期信号が送信されるサブフレームを含む複数の連続するサブフレームである。
 例えば、上記停止期間は、上記同期信号が送信されるサブフレームを含まない複数の他の連続するサブフレームである。これにより、例えば、無線LANにおいてある程度まとめて上記共用帯域が使用され得る。そのため、無線LANにおける上記共用帯域の利用効率が向上し得る。
 (b-5)実行期間/停止期間の例
 -実行期間/停止期間の一例
 図12は、実行期間及び停止期間の一例を説明するための説明図である。図12を参照すると、12個のサブフレームが示されている。この例では、実行期間21は、サブフレーム番号が5~1(5、6、7、8、9、0、1)であるサブフレームであり、停止期間23は、サブフレーム番号が2~4であるサブフレームである。即ち、基地局100は、サブフレーム番号が5~1であるサブフレーム(即ち、実行期間21)内で、共用帯域におけるセルラーシステムの通信を行い、サブフレーム番号が2~4であるサブフレーム(即ち、停止期間23)内で、当該共用帯域における当該セルラーシステムの当該通信を停止する。実行期間21及び停止期間23は、無線フレーム(10サブフレーム)の周期で繰り返され、基地局100は、各実行期間21内で、上記共用帯域における通信を行い、各停止期間23内で、上記共用帯域における通信を停止する。
 -実行期間/停止期間の他の例
 なお、当然ながら、第1の実施形態に係る上記実行期間及び上記停止期間は、図12に示される一例に限定されない。
 一例として、上記実行期間は、サブフレーム番号が0~6であるサブフレームであってもよく、上記停止期間は、サブフレーム番号が7~9であるサブフレームであってもよい。
 別の例として、FDDのケースにおいて、上記実行期間は、サブフレーム番号が0~5であるサブフレームであってもよく、上記停止期間は、サブフレーム番号が6~9であるサブフレームであってもよい。あるいは、FDDのケースにおいて、上記実行期間は、サブフレーム番号が5~0(5、6、7、8、9、0)であるサブフレームであってもよく、上記停止期間は、サブフレーム番号が1~4であるサブフレームであってもよい。
 さらに別の例として、同期信号が送信されるサブフレームの直前のサブフレームも、上記実行期間に含まれてもよい。例えば、FDDのケースにおいて、上記実行期間は、サブフレーム番号が5~0であるサブフレームではなく、サブフレーム番号が4~0(4、5、6、7、8、9、0)であるサブフレームであってもよい。この場合に、上記停止期間は、サブフレーム番号が1~3であるサブフレームであってもよい。これにより、例えば、無線LANフレームが上記停止期間内に終了しない場合であっても、当該無線LANフレームが同期信号に干渉する可能性が低くなる。
 (c)セルラーシステムの通信
 例えば、上記共用帯域における上記セルラーシステムの通信は、上記共用帯域におけるダウンリンク送信を含む。さらに、当該ダウンリンク送信は、上記同期信号の送信を含む。
 なお、上記共用帯域は、ダウンリンク専用の周波数帯域ではなくてもよい。この場合に、上記共用帯域における上記セルラーシステムの通信は、上記共用帯域におけるアップリンク受信を含んでもよい。
 (d)実行/停止のための処理
 第1の例として、通信処理部153は、上記共用帯域の無線リソースを端末装置に割り当てる。この場合に、通信処理部153は、上記実行期間内の上記共用帯域の無線リソースを1つ以上の端末装置に割り当て、上記停止期間内の上記共用帯域の無線リソースをいずれの端末装置にも割り当てない。
 第2の例として、通信処理部153は、上記共用帯域におけるダウンリンク送信のための送信処理(符号化、変調、及び無線リソースへの信号のマッピングなど)を行う。この場合に、通信処理部153は、上記実行期間内でのダウンリンク送信のための送信処理を行い、上記停止期間内でのダウンリンク送信のための送信処理を行いわない。なお、通信処理部153は、上記共用帯域におけるアップリンク受信のための受信処理(無線リソースからの信号のデマッピング、復調及び復号など)を行ってもよい。この場合に、通信処理部153は、上記実行期間内でのアップリンク受信のための受信処理を行い、上記停止期間内でのアップリンク受信のための受信処理を行いわない。
 第3の例として、通信処理部153は、上記共用帯域における通信のオン/オフ状態の切替えを行ってもよい。この場合に、通信処理部153は、上記実行期間内での上記共用帯域における通信をオン状態にし、上記停止期間内での上記共用帯域における通信をオフ状態にしてもよい。
 例えばこのような処理により、基地局100は、上記実行期間内で上記共用帯域における通信を行い、上記停止期間内で上記共用帯域における通信を停止する。
 以上のように、基地局100は、上記実行期間内で上記共用帯域における通信を行い、上記停止期間内で上記共用帯域における通信を停止する。これにより、例えば、共用帯域おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することが可能になる。より具体的には、例えば、無線LANの通信に妨げられることなく、セルラーシステムの同期信号が継続的に送信されるので、端末装置は、当該セルラーシステムの通信のための同期をより容易に維持することができる。
 (2)端末装置のための動作
 (a)第1の例:期間情報の送信
 (a-1)基地局の動作
 例えば、基地局100(通信処理部153)は、上記実行期間又は上記停止期間を示す情報(以下、「期間情報」と呼ぶ)を、上記セルラーシステムの通信を行う端末装置200へ送信する。
 例えば、基地局100(通信処理部153)は、上記期間情報を含むシステム情報を送信する。あるいは、基地局100(通信処理部153)は、上記期間情報を含むメッセージを端末装置200へ個別に送信してもよい。
 具体的な処理として、例えば、通信処理部153は、上記期間情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行する。
 (a-2)端末装置の動作
 例えば、端末装置200は、上記実行期間(即ち、上記共用帯域における上記セルラーシステムの通信が行われる期間)又は上記停止期間(即ち、上記共用帯域における上記セルラーシステムの通信が停止される期間)を示す上記期間情報に基づいて、上記共用帯域を対象とする測定を行う。
 例えば、情報取得部241は、上記期間情報を取得し、測定部243は、上記期間情報に基づいて、上記共用帯域を対象とする測定を行う。具体的には、例えば、測定部243は、上記実行期間(換言すると、上記停止期間以外の期間)に上記共用帯域において送信される信号(例えば、リファレンス信号など)を用いて、上記共用帯域を対象とする測定を行う。
 例えば、上記測定は、上記共用帯域のチャネル状態の測定を含む。より具体的に、例えば、上記測定は、CQI(Chanel Quality Indicators)、PMI(Precoding Matrix Indicators)、PTI(Precoding Type Indicators)及び/又はRI(Rank Indicators)の測定を含む。
 例えば、上記測定は、上記共用帯域において送信されるリファレンス信号(例えば、CRS(Cell-specific Reference Signal))の受信電力及び/又は受信品質の測定を含む。より具体的には、例えば、上記測定は、RSRP(Reference Signal Received Power)及び/又はRSRQ(Reference Signal Received Quality)の測定を含む。
 これにより、例えば、基地局100が上記共用帯域における通信を停止し、その結果、上記共用帯域においてセルラーシステムの信号(例えば、リファレンス信号など)が送信されなくても、端末装置200は適切に測定を行うことが可能になる。
 (b)第2の例:MBSFNサブフレーム
 基地局100(通信処理部153)は、上記1つ以上の他のサブフレーム(即ち、上記停止期間)をMBSFN(MBMS(Multimedia Broadcast Multicast Service) over Single Frequency Network)サブフレームとして使用してもよい。
 一例として、基地局100(通信処理部153)は、上記1つ以上の他のサブフレーム(即ち、上記停止期間)をMBSFNサブフレームとして示すシステム情報(例えば、SIB2)を送信してもよい。
 これにより、例えば、基地局100が上記共用帯域における通信を停止し、その結果、上記共用帯域においてセルラーシステムの信号(例えば、リファレンス信号など)が送信されなくても、端末装置200は適切に測定を行うことが可能になる。
 (3)基地局間での実行期間/停止期間の協調
 上記実行期間及び上記停止期間は、基地局100と基地局100の隣接基地局との間で共通の期間であってもよい。即ち、基地局100及び上記隣接基地局は、上記実行期間内で上記共用帯域における通信を行い、上記停止期間内で上記共用帯域における通信を停止してもよい。
 一例として、基地局100は、上記期間情報を上記隣接基地局へ送信してもよく、上記隣接基地局は、当該期間情報を受信し、取得してもよい。あるいは、上記隣接基地局が、上記期間情報を基地局100へ送信してもよく、基地局100は、当該期間情報を受信し、取得してもよい。
 別の例として、いずれかの制御装置が、上記期間情報を基地局100及び上記隣接基地局へ送信してもよく、基地局100及び上記隣接基地局の各々は、当該期間情報を受信し、取得してもよい。
 さらに別の例として、上記実行期間及び上記停止期間は、予め定められており、基地局100及び上記隣接基地局に予め設定されていてもよい。
 これらの例の結果として、例えば、基地局100及び上記隣接基地局は、上記実行期間内で上記共用帯域における通信を行い、上記停止期間内で上記共用帯域における通信を停止する。そのため、基地局100により送信される信号と上記隣接基地局により送信される信号との両方を受信する無線LANノードが、長時間にわたり上記共用帯域において信号を送信できなくなる状況が、回避され得る。
 <4.3.処理の流れ>
 次に、図13を参照して、第1の実施形態に係る処理の一例を説明する。図13は、第1の実施形態に係る基地局100の処理の概略的な流れの一例を示すフローチャートである。
 基地局100(通信処理部153)は、実行期間内で、共用帯域におけるセルラーシステムの通信を行う(S501)。
 基地局100(通信処理部153)は、停止期間内で、上記共用帯域における上記セルラーシステムの通信を停止する(S503)。そして、処理はステップS501へ戻る。
 <4.4.第1の変形例>
 次に、図14及び図15を参照して、第1の実施形態の第1の変形例を説明する。
 (1)技術的特徴
 第1の変形例では、基地局100(通信処理部153)は、上記実行期間の開始に合わせて、上記共用帯域における無線LANフレームの送信を行う。当該無線LANフレームは、NAVを設定するための持続時間情報であって、上記実行期間の長さに対応する持続時間(duration)を示す上記持続時間情報を含む。
 これにより、例えば、基地局100の近くの無線LANノード(例えば、アクセスポイント及びステーション)は、上記持続時間情報に基づいてNAVを設定し、上記実行期間内では上記共用帯域において信号を送信しなくなる。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。
 (a)無線LANフレーム
 一例として、上記無線LANフレームは、PCF動作のためのCFP(Control Free Period)に関するパラメータを含むビーコンフレームであり、当該パラメータは、上記持続時間情報を含む。より具体的には、当該パラメータは、CF(Contention Free)パラメータであり、上記持続時間情報は、CFP最大持続時間(CFP MaxDuration)又はCFP残持続時間(CFP DurationRemaining)である。基地局100は、上記実行期間の開始に合わせて、上記共用帯域における上記ビーコンフレームの送信を行う。
 別の例として、上記無線LANフレームは、RTSフレーム又はCTSフレームであってもよい。即ち、基地局100は、上記実行期間の開始に合わせて、上記共用帯域におけるRTSフレーム又はCTSフレームの送信を行ってもよい。
 (b)送信間隔
 例えば、基地局100(通信処理部153)は、無線フレームの間隔で、上記共用帯域における上記無線LANフレームの送信を行う。これにより、例えば、無線フレームの間隔で上記実行期間が繰り返される場合に、上記共用帯域における上記セルラーシステムの通信への干渉が継続的に抑えられる。
 (c)送信のための処理
 具体的な処理として、通信処理部153は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行する。
 (d)無線LANノードの動作
 例えば、無線LANノード(アクセスポイント300又はステーション400)は、上記共用帯域において基地局100により送信される上記無線LANフレームの受信に応じて、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。上記無線LANノードの情報取得部(情報取得部351又は情報取得部441)は、上記共用帯域において基地局100により送信される上記無線LANフレームの受信に応じて、上記持続時間情報を取得する。上記無線LANノードの通信処理部(通信処理部353又は通信処理部443)は、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。
 上述したように、上記持続時間情報は、上記実行期間の長さに対応する持続時間を示す。例えば、上記持続時間情報は、上記実行期間の長さと同程度の持続時間を示す。その結果、上記無線LANノード(アクセスポイント300又はステーション400)は、上記実行期間である持続時間の値をNAVとして設定し、当該NAVは、上記実行期間の終了時点で0になる。そのため、上記無線LANノード(アクセスポイント300又はステーション400)は、上記実行期間の開始から終了まで、上記共用帯域において信号を送信しない。以下、この点について、図14を参照して具体例を説明する。
 図14は、基地局100により送信される無線LANフレームを受信する無線LANノードの動作を説明するための説明図である。図14を参照すると、図12と同様に、実行期間21及び停止期間23が示されている。基地局100は、実行期間21の開始(即ち、サブフレーム番号が5であるサブフレームの開始)に合わせて、共用帯域において、持続時間情報を含む無線LANフレームを送信する。当該持続時間情報は、実行期間21の長さ(即ち、7サブフレーム、7ms)と同程度の持続時間を示す。アクセスポイント300及びステーション400は、上記共用帯域において送信される上記無線LANフレームを受信し、上記共用帯域についてのNAVとして、上記持続時間(7ms)を設定する。当該NAVは、実行期間21の終了時点で0になるので、アクセスポイント300及びステーション400は、実行期間21内で、上記共用帯域において信号を送信しない。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。
 (2)処理の流れ
 図15は、第1の実施形態の第1の変形例に係る基地局100の処理の概略的な流れの一例を示すフローチャートである。
 基地局100(通信処理部153)は、実行期間の開始に合わせて、共用帯域における無線LANフレームの送信を行う(S511)。上記無線LANフレームは、NAVを設定するための持続時間情報を含む。当該持続時間情報は、上記実行期間の長さに対応する持続時間を示す。
 基地局100(通信処理部153)は、上記実行期間内で、上記共用帯域におけるセルラーシステムの通信を行う(S513)。
 基地局100(通信処理部153)は、停止期間内で、上記共用帯域における上記セルラーシステムの通信を停止する(S515)。そして、処理はステップS511へ戻る。
 <4.5.第2の変形例>
 次に、図16及び図17を参照して、第1の実施形態の第2の変形例を説明する。
 (1)技術的特徴
 (a)無線LANノードへの期間の通知
 第2の変形例では、基地局100(通信処理部153)は、上記実行期間又は上記停止期間を無線LANノードに通知する。
 上記無線LANノードは、アクセスポイント300又はステーション400である。一例として、上記無線LANノードは、PCF動作をサポートするアクセスポイント300である。
 (a-1)通知の手法
  -第1の例:端末装置経由での通知
   --基地局100の動作
 第1の例として、基地局100(通信処理部153)は、上記セルラーシステム及び無線LANの両方において通信可能な端末装置200へ、上記実行期間又は上記停止期間に関する情報(以下、「期間関連情報」と呼ぶ)を送信することにより、上記実行期間又は上記停止期間を上記無線LANノードに通知する。
 例えば、基地局100(通信処理部153)は、上記期間関連情報を含むシステム情報を送信する。あるいは、基地局100(通信処理部153)は、上記期間関連情報を含むメッセージを端末装置200へ個別に送信してもよい。
 具体的な処理として、例えば、通信処理部153は、上記期間関連情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行する。
   --端末装置200の動作
 例えば、端末装置200(情報取得部241)は、上記期間関連情報を取得する。そして、例えば、端末装置200(通信処理部245)は、上記期間関連情報を含む無線LANフレームを、上記無線LANノードへ送信する。
 一例として、上記無線LANフレームは、データフレームである。
 具体的な処理として、例えば、通信処理部245は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行する。
  -第2の例:セルラーシステムにおいて通信可能な無線LANノードへの通知
 第2の例として、上記無線LANノードは、上記セルラーシステムにおいて通信可能であってもよい。この場合に、基地局100(通信処理部153)は、上記期間関連情報を上記無線LANノードへ送信することにより、上記実行期間又は上記停止期間を上記無線LANノードに通知してもよい。即ち、基地局100は、上記セルラーシステムの通信方式に従って、上記実行期間又は上記停止期間を上記無線LANノードに直接的に通知してもよい。
 基地局100(通信処理部153)は、上記期間関連情報を含むシステム情報を送信してもよい。あるいは、基地局100(通信処理部153)は、上記期間関連情報を含むメッセージを上記無線LANノードへ個別に送信してもよい。
 具体的な処理として、通信処理部153は、上記期間関連情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行してもよい。
  -第3の例:無線LANフレームの中での通知
 第3の例として、基地局100(通信処理部153)は、上記期間関連情報を含む無線LANフレームを送信することにより、上記実行期間又は上記停止期間を上記無線LANノードに通知してもよい。即ち、基地局100は、無線LANの通信方式に従って、上記実行期間又は上記停止期間を上記無線LANノードに直接的に通知してもよい。
 一例として、当該無線LANフレームは、データフレームであってもよい。
 具体的な処理として、通信処理部153は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行してもよい。
  -第4の例:バックホール経由での通知
 第4の例として、基地局100(通信処理部153)は、バックホールを介して上記期間関連情報を上記無線LANノードへ送信することにより、上記実行期間又は上記停止期間を上記無線LANノードに通知してもよい。
 具体的な処理として、通信処理部153は、上記期間関連情報を含むメッセージの送信処理(例えば、当該メッセージの生成、及び/又は符号化など)を実行してもよい。
 例えば以上のように、基地局100(通信処理部153)は、上記無線LANノードに上記実行期間又は上記停止期間を通知する。これにより、例えば、上記実行期間内での上記共用帯域における上記セルラーシステムの通信への干渉を抑えるための動作を、上記無線LANノードに行わせることが可能になる。
 (a-2)期間関連情報
 例えば、上記期間関連情報(即ち、上記実行期間又は上記停止期間に関する情報)は、上記実行期間又は上記停止期間の長さを示す情報を含む。
 例えば、上記期間関連情報は、上記実行期間又は上記停止期間の開始時点(オフセット)を示す情報を含む。なお、上記期間関連情報は、当該開始時点を示す情報を含まなくてもよい。無線LANノードは、キャリアセンスにより、上記実行期間の終了時点(即ち、上記停止期間の開始時点)を知り得る。また、無線LANノードは、上記実行期間の終了時点(即ち、上記停止期間の開始時点)と、上記実行期間又は上記停止期間の長さとから、上記実行期間の開始時点も知り得る。
 上記期間関連情報は、上記実行期間又は上記停止期間の周期を示す情報を含んでもよい。
 (b)無線LANフレームの送信
 第2の変形例では、上記無線LANノード(即ち、アクセスポイント300又はステーション400)は、上記実行期間又は上記停止期間の開始に合わせて、上記共用帯域における無線LANフレームの送信を行う。当該無線LANフレームは、NAVを設定するための持続時間情報を含む。
 上記無線LANノードの情報取得部(即ち、情報取得部351又は情報取得部441)は、上記実行期間又は上記停止期間に関する情報(即ち、期間関連情報)を取得する。上記無線LANノードの通信処理部(即ち、通信処理部353又は通信処理部443)は、上記実行期間又は上記停止期間に合わせて、上記共用帯域における上記無線LANフレームの送信を行う。
 これにより、例えば、上記無線LANノードの近くの他の無線LANノード(例えば、アクセスポイント及びステーション)は、上記持続時間情報に基づいてNAVを設定し、上記実行期間又は上記停止期間内で上記共用帯域において信号を自らの判断では送信しなくなる。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。
 (b-1)無線LANフレーム
 一例として、上記無線LANフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、上記持続時間情報を含む。より具体的には、当該パラメータは、CFパラメータであり、上記持続時間情報は、CFP最大持続時間(CFP MaxDuration)又はCFP残持続時間(CFP DurationRemaining)である。
 別の例として、上記無線LANフレームは、RTSフレーム又はCTSフレームであってもよい。
 (b-2)送信間隔
 例えば、上記無線LANノード(通信処理部)は、無線フレームの間隔で、上記共用帯域における上記無線LANフレームの送信を行う。これにより、例えば、無線フレームの間隔で上記実行期間及び上記停止期間が繰り返される場合に、上記共用帯域における上記セルラーシステムの通信への干渉が継続的に抑えられる。
 (b-3)送信のための処理
 具体的な処理として、上記無線LANノードの通信処理部(即ち、情報取得部351又は情報取得部441)は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行する。
 (b-4)無線LANフレームの送信及びそれに関連する動作の例
 -第1の例:停止期間の開始に合わせた送信
 第1の例として、上記無線LANノードは、アクセスポイント300であり、アクセスポイント300(情報取得部351)は、上記停止期間の開始に合わせて、上記共用帯域における上記無線LANフレームの送信を行う。この場合に、上記無線LANフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、上記持続時間情報を含む。さらに、上記持続時間情報は、上記停止期間の長さに対応する持続時間を示す。
 一方、例えば、ステーション400は、上記共用帯域においてアクセスポイント300により送信される上記ビーコンフレームの受信に応じて、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。
 上述したように、上記持続時間情報は、上記停止期間の長さに対応する持続時間を示す。例えば、上記持続時間情報は、上記停止期間の長さと同程度の持続時間を示す。その結果、ステーション400は、上記停止期間の長さと同程度の持続時間の値をNAVとして設定し、当該NAVは、上記停止期間の終了時点で0になる。そのため、ステーション400は、上記停止期間の開始から終了まで、アクセスポイント300によるポーリングがない限り、上記共用帯域において信号を送信しない。以下、この点について、図16を参照して具体例を説明する。
 図16は、アクセスポイント300により送信されるビーコンフレームを受信するステーション400の動作を説明するための説明図である。図16を参照すると、図12と同様に、実行期間21及び停止期間23が示されている。アクセスポイント300は、停止期間23の開始(即ち、サブフレーム番号が2であるサブフレームの開始)に合わせて、共用帯域において、持続時間情報を含むビーコンフレームを送信する。当該持続時間情報は、停止期間23の長さ(即ち、3サブフレーム、3ms)と同程度の持続時間を示す。ステーション400は、上記共用帯域において送信される上記ビーコンフレームを受信し、上記共用帯域についてのNAVとして、上記持続時間(3ms)を設定する。当該NAVは、停止期間23の終了時点で0になるので、ステーション400は、停止期間23内で、アクセスポイント300によるポーリングがない限り、上記共用帯域において信号を送信しない。よって、アクセスポイント300による適切なポーリングによれば、ステーション400により送信される無線フレームが停止期間23をはみ出して実行期間21にまで及ぶということはない。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。また、例えば、基地局100は、上記共用帯域をより確実に確保することができる。なお、停止期間23内では、上記共用帯域においてPCFで無線LANの通信が行われ得る。
 以上のように、第1の例によれば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になる。また、例えば、上記停止期間における無線LANの通信がPCFで制御されるので、基地局100は、より確実に、上記実行期間の開始時点から上記共用帯域を確保し、セルラーシステムの通信を開始することができる。
 -第2の例:実行期間の開始に合わせた送信
 第2の例として、上記無線LANノード(情報取得部351又は情報取得部441)は、上記実行期間の開始に合わせて、上記共用帯域における上記無線LANフレームの送信を行う。上記持続時間情報は、上記実行期間の長さに対応する持続時間を示す。なお、上記無線LANフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであってもよく、又は、RTSフレーム若しくはCTSフレームであってもよい。
 一方、例えば、他の無線LANノード(アクセスポイント300又はステーション400)は、上記共用帯域において上記無線LANノードにより送信される上記無線LANフレームの受信に応じて、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。
 上述したように、上記持続時間情報は、上記実行期間の長さに対応する持続時間を示す。例えば、上記持続時間情報は、上記実行期間の長さと同程度の持続時間を示す。その結果、上記他の無線LANノード(アクセスポイント300又はステーション400)は、上記実行期間である持続時間の値をNAVとして設定し、当該NAVは、上記実行期間の終了時点で0になる。そのため、上記他の無線LANノード(アクセスポイント300又はステーション400)は、上記実行期間の開始から終了まで、上記共用帯域において信号を送信しない。
 図14を再び参照すると、無線LANノードは、実行期間21の開始(即ち、サブフレーム番号が5であるサブフレームの開始)に合わせて、共用帯域において、持続時間情報を含む無線LANフレームを送信する。当該持続時間情報は、実行期間21の長さ(即ち、7サブフレーム、7ms)と同程度の持続時間を示す。他の無線LANノードは、上記共用帯域において送信される上記無線LANフレームを受信し、上記共用帯域についてのNAVとして、上記持続時間(7ms)を設定する。当該NAVは、実行期間21の終了時点で0になるので、上記他の無線LANノードは、実行期間21内で、上記共用帯域において信号を送信しない。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。
 以上のように、第1の例によれば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になる。
 (2)処理の流れ
 (a)第1の例
 図17は、第1の実施形態の第2の変形例に係るアクセスポイント300の処理の概略的な流れの第1の例を示すフローチャートである。
 アクセスポイント300(情報取得部351)は、実行期間又は停止期間に関する情報(即ち、期間関連情報)を取得する(S521)。
 アクセスポイント300(通信処理部353)は、上記停止期間の開始に合わせて、共用帯域におけるビーコンフレームの送信を行う(S523)。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、NAVを設定するための持続時間情報を含む。さらに、当該持続時間情報は、上記停止期間の長さに対応する持続時間を示す。
 アクセスポイント300(通信処理部353)は、上記停止期間内で、上記共用帯域におけるPCFでの無線LANの通信を行う(S525)。例えば、アクセスポイント300(通信処理部353)は、ポーリング及びデータの送受信などを行う。
 アクセスポイント300(通信処理部353)は、上記実行期間内で、上記共用帯域における無線LANの通信を停止する(S527)。そして、処理はステップS523へ戻る。
 (b)第2の例
 図18は、第1の実施形態の第2の変形例に係る無線LANノードの処理の概略的な流れの第2の例を示すフローチャートである。当該無線LANノードは、アクセスポイント300又はステーション400である。
 無線LANノード(情報取得部351又は情報取得部441)は、実行期間又は停止期間に関する情報(即ち、期間関連情報)を取得する(S531)。
 無線LANノード(通信処理部353又は通信処理部443)は、上記実行期間の開始に合わせて、共用帯域における無線LANフレームの送信を行う(S533)。上記無線LANフレームは、NAVを設定するための持続時間情報を含む。当該持続時間情報は、上記実行期間の長さに対応する持続時間を示す。
 上記無線LANノード(通信処理部353又は通信処理部443)は、上記実行期間内で、上記共用帯域における無線LANの通信を停止する(S535)。
 上記無線LANノード(通信処理部353又は通信処理部443)は、上記停止期間内で、上記共用帯域における無線LANの通信を行う(S537)。そして、処理はステップS533へ戻る。
 <<5.第2の実施形態>>
 続いて、図19~図22を参照して、本開示の第2の実施形態を説明する。
 <5.1.概略>
 (1)技術的課題
 例えば、セルラーシステムと無線LANとの間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、ある期間では、上記周波数帯域(即ち、共用帯域)においてセルラーシステムの通信が行われ、別の期間では、上記周波数帯域において無線LANの通信が行われる。
 しかし、セルラーシステムと無線LANとの間で周波数帯域が共用される場合には、セルラーシステムと無線LANとの間で干渉が生じ得る。その結果、セルラーシステム及び/又は無線LANの通信品質が低下し得る。
 そこで、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることを可能にする仕組みが提供されることが望ましい。
 (2)技術的手段
 第2の実施形態では、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるビーコンフレームの送信を行う。当該ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間(duration)情報を含む。基地局100は、上記ビーコンフレームの送信後に、上記持続時間情報に対応する期間内に、上記周波数帯域における上記セルラーシステムの通信を行う。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。
 <5.2.技術的特徴>
 次に、図19及び図20を参照して、第2の実施形態に係る技術的特徴を説明する。
 (1)共用帯域におけるビーコンフレームの送信とセルラーシステムの通信
 上述したように、基地局100(通信処理部153)は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるビーコンフレームの送信を行う。当該ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間情報を含む。
 基地局100(通信処理部153)は、上記ビーコンフレームの送信後に、上記持続時間情報に対応する期間内に、上記周波数帯域(即ち、共用帯域)における上記セルラーシステムの通信を行う。例えば、基地局100(通信処理部153)は、上記期間を除き、上記周波数帯域における上記セルラーシステムの通信を停止する。
 (a)共用帯域
 共用帯域についての説明は、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは重複する記載を省略する。
 (b)パラメータ
 例えば、上記パラメータは、CFパラメータであり、上記持続時間情報は、CFP最大持続時間(CFP MaxDuration)又はCFP残持続時間(CFP DurationRemaining)である。
 (c)持続時間情報に対応する期間
 例えば、上記持続時間情報に対応する期間は、上記持続時間情報により示される持続時間と同程度の長さの期間である。
 (d)送信のための処理
 具体的な処理として、通信処理部153は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行する。
 (e)ステーション400の動作
 例えば、ステーション400は、上記共用帯域において基地局100により送信されるビーコンフレームの受信に応じて、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。情報取得部441は、上記共用帯域において基地局100により送信される上記ビーコンフレームの受信に応じて、上記持続時間情報を取得する。通信処理部443は、上記持続時間情報に基づいて、上記共用帯域についてのNAVを設定する。
 (f)ビーコンフレームの送信と共用帯域における通信の例
 (f-1)第1の例
 例えば、基地局100(通信処理部153)は、上記期間の長さよりも長いビーコン間隔で、上記ビーコンフレームの送信を行う。以下、図19を参照して具体例を説明する。
 図19は、ビーコンフレームの送信と共用帯域における通信の第1の例を説明するための説明図である。図19を参照すると、基地局100は、共用帯域において、持続時間情報を含むビーコンフレーム31を送信する。そして、基地局100は、当該持続時間情報に対応する期間33(ビーコン間隔よりも短い期間)内に、上記共用帯域における上記セルラーシステムの通信を行う。一方、ステーション400は、上記ビーコンフレーム31の受信に応じて、上記持続時間情報に基づいてNAVを設定し、期間33にわたり上記共用帯域における無線LANの通信を停止する。期間33の経過後に、NAVは0となり、ステーション400は、上記共用帯域における無線LANの通信を行う。そして、基地局100は、ビーコン間隔の経過後に、ビーコンフレーム31を再び送信する。
 これにより、例えば、ビーコンフレームを送信の頻度がより低くなる。
 (f-2)第2の例
 基地局100(通信処理部153)は、上記期間の長さと同程度のビーコン間隔で、上記ビーコンフレームの送信と他のビーコンフレームの送信とを交互に行ってもよい。例えば、当該他のビーコンフレームは、持続時間情報を含まない。あるいは、上記他のビーコンフレームは、持続時間情報を含み、当該持続時間情報は、0又は非常に短い持続時間を示してもよい。以下、図20を参照して具体例を説明する。
 図20は、ビーコンフレームの送信と共用帯域における通信の第2の例を説明するための説明図である。図20を参照すると、基地局100は、共用帯域において、持続時間情報を含む第1のビーコンフレーム35を送信する。そして、基地局100は、当該持続時間情報に対応する期間37(ビーコン間隔と同程度の長さを有する期間)内に、上記共用帯域における上記セルラーシステムの通信を行う。一方、ステーション400は、上記第1のビーコンフレーム35の受信に応じて、上記持続時間情報に基づいてNAVを設定し、期間37にわたり上記共用帯域における無線LANの通信を停止する。基地局100は、期間37と同程度のビーコン間隔の経過後に、第2のビーコンフレーム39を送信する。第2のビーコンフレーム39は、持続時間情報を含まず(あるいは、0又は非常に短い持続時間を示す持続時間情報を含み)、ステーション400は、第2のビーコンフレーム39の後に、上記共用帯域における無線LANの通信を行う。そして、基地局100は、ビーコン間隔の経過後に、第1のビーコンフレーム35を再び送信する。
 これにより、例えば、持続時間情報が示すことが可能な最大の持続時間にわたり、共用帯域における無線LANノードの通信を抑制することが可能になる。
 以上のように、基地局100は、上記ビーコンフレームの送信後に、上記持続時間情報に対応する期間内に、上記共用帯域における上記セルラーシステムの通信を行う。これにより、例えば、上記共用帯域におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。より具体的には、例えば、無線LANノードは、上記共用帯域における上記セルラーシステムの通信が行われる間、上記共用帯域において信号を送信しない。そのため、上記共用帯域における無線LANからセルラーシステムへの干渉がより小さくなり得る。
 (2)端末装置への期間情報の送信
 (a)基地局の動作
 例えば、基地局100(通信処理部153)は、上記期間、又は上記共用帯域における上記セルラーシステムの通信が停止される他の期間を示す情報(以下、「期間情報」と呼ぶ)を、端末装置200へ送信する。
 例えば、基地局100(通信処理部153)は、上記期間情報を含むシステム情報を送信する。あるいは、基地局100(通信処理部153)は、上記期間情報を含むメッセージを端末装置200へ個別に送信してもよい。
 具体的な処理として、例えば、通信処理部153は、上記期間情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行する。
 (b)端末装置の動作
 例えば、端末装置200は、上記共用帯域における上記セルラーシステムの通信が行われる期間、又は、上記共用帯域における上記セルラーシステムの通信が停止される他の期間を示す情報(即ち、期間情報)に基づいて、上記共用帯域を対象とする測定を行う。
 例えば、情報取得部241は、上記期間情報を取得し、測定部243は、上記期間情報に基づいて、上記共用帯域を対象とする測定を行う。具体的には、例えば、測定部243は、上記期間(換言すると、上記他の期間以外の期間)に上記共用帯域において送信される信号(例えば、リファレンス信号など)を用いて、上記共用帯域を対象とする測定を行う。
 例えば、上記測定は、上記共用帯域のチャネル状態の測定を含む。より具体的に、例えば、上記測定は、CQI、PMI、PTI及び/又はRIの測定を含む。
 例えば、上記測定は、上記共用帯域において送信されるリファレンス信号(例えば、CRS)の受信電力及び/又は受信品質の測定を含む。より具体的には、例えば、上記測定は、RSRP及び/又はRSRQの測定を含む。
 これにより、例えば、基地局100が上記共用帯域における通信を停止し、その結果、上記共用帯域においてセルラーシステムの信号(例えば、リファレンス信号など)が送信されなくても、端末装置200は適切に測定を行うことが可能になる。
 (3)基地局間でのビーコンの協調
 上記ビーコンフレームの送信のタイミング、及び上記ビーコンフレームに含まれる上記持続時間情報は、基地局100と基地局100の隣接基地局との間で共通の期間であってもよい。即ち、基地局100及び上記隣接基地局は、同一のタイミングで、同一の持続時間情報を含むビーコンフレームを送信してもよい。
 一例として、基地局100は、上記タイミングを示す情報(以下、「タイミング情報」と呼ぶ)及び上記持続時間情報を上記隣接基地局へ送信してもよく、上記隣接基地局は、当該タイミング情報及び当該持続時間情報を受信し、取得してもよい。あるいは、上記隣接基地局が、上記タイミング情報及び上記持続時間情報を基地局100へ送信してもよく、基地局100は、上記タイミング情報及び上記持続時間情報を受信し、取得してもよい。
 別の例として、いずれかの制御装置が、上記タイミング情報及び上記持続時間情報を、基地局100及び上記隣接基地局へ送信してもよく、基地局100及び上記隣接基地局の各々は、上記タイミング情報及び上記持続時間情報を受信し、取得してもよい。
 さらに別の例として、上記タイミング情報及び上記持続時間情報は、予め定められており、基地局100及び上記隣接基地局に予め設定されていてもよい。
 これらの例の結果として、例えば、基地局100及び上記隣接基地局は、上記タイミング情報により示されるタイミングで、上記持続時間情報を含むビーコンフレームを上記共用帯域において送信し、その後、上記持続時間情報に対応する期間内で上記共用帯域における通信を行う。そのため、基地局100により送信される信号と上記隣接基地局により送信される信号との両方を受信する無線LANノードが、長時間にわたり上記共用帯域において信号を送信できなくなる状況が、回避され得る。
 <5.3.処理の流れ>
 次に、図21及び図22を参照して、第2の実施形態に係る処理の例を説明する。
 (1)第1の例
 図21は、第2の実施形態に係る基地局100の処理の概略的な流れの第1の例を示すフローチャートである。当該第1の例では、基地局100が共用帯域におけるセルラーシステムの通信を行う期間よりも長いビーコン間隔で、基地局100はビーコンフレームを送信する。
 基地局100(通信処理部153)は、共用帯域におけるビーコンフレームの送信を行う(S541)。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間情報を含む。
 基地局100(通信処理部153)は、上記持続時間情報に対応する期間内で、上記共用帯域における上記セルラーシステムの通信を行う(S543)。当該期間は、ビーコン間隔よりも短い期間である。
 その後、基地局100(通信処理部153)は、上記共用帯域における上記セルラーシステムの通信を停止する(S545)。そして、処理はステップS541へ戻る。
 (2)第2の例
 図22は、第2の実施形態に係る基地局100の処理の概略的な流れの第2の例を示すフローチャートである。当該第2の例では、基地局100が共用帯域におけるセルラーシステムの通信を行う期間の長さと同程度のビーコン間隔で、基地局100は第1のビーコンフレームの送信と第2のビーコンフレームの送信とを交互に行う。
 基地局100(通信処理部153)は、共用帯域における第1のビーコンフレームの送信を行う(S551)。上記第1のビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間情報を含む。
 基地局100(通信処理部153)は、上記持続時間情報に対応する期間内で、上記共用帯域における上記セルラーシステムの通信を行う(S553)。当該期間は、ビーコン間隔と同程度の長さを有する期間である。
 さらに、基地局100(通信処理部153)は、上記共用帯域における第2のビーコンフレームの送信を行う(S555)。例えば、当該第2のビーコンフレームは、持続時間情報を含まない。あるいは、上記第2のビーコンフレームは、持続時間情報を含み、当該持続時間情報は、0又は非常に短い持続時間を示してもよい。
 基地局100(通信処理部153)は、上記共用帯域における上記セルラーシステムの通信を停止する(S557)。そして、処理はステップS551へ戻る。
 <<6.第3の実施形態>>
 続いて、図23~図30を参照して、本開示の第3の実施形態を説明する。
 <6.1.概略>
 (1)技術的課題
 例えば、セルラーシステムと無線LANとの間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、ある期間では、上記周波数帯域(即ち、共用帯域)においてセルラーシステムの通信が行われ、別の期間では、上記周波数帯域において無線LANの通信が行われる。
 しかし、セルラーシステムと無線LANとの間で周波数帯域が共用される場合には、セルラーシステムと無線LANとの間で干渉が生じ得る。その結果、セルラーシステム及び/又は無線LANの通信品質が低下し得る。
 そこで、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることを可能にする仕組みが提供されることが望ましい。
 (2)技術的手段
 第3の実施形態では、アクセスポイント300は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)において基地局100が通信を行う第1の期間(以下、「実行期間」と呼ぶ)の開始、又は、上記周波数帯域において基地局100が通信を停止する第2の期間(以下、「停止期間」)の開始に合わせて、上記共用帯域におけるビーコンフレームの送信を行う。当該ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間情報を含む。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。
 <6.2.技術的特徴>
 次に、図23~図27を参照して、第3の実施形態に係る技術的特徴を説明する。
 (1)アクセスポイントへの期間の通知
 例えば、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)において基地局100が通信を行う第1の期間(即ち、実行期間)、又は、上記周波数帯域において基地局100が通信を停止する第2の期間(即ち、停止期間)を、PCF動作をサポートする無線LANのアクセスポイント300に通知する。
 例えば、情報取得部151は、上記実行期間又は上記停止期間に関する情報(以下、「期間関連情報」と呼ぶ)を取得する。通信処理部153は、上記実行期間又は上記停止期間をアクセスポイント300に通知する。
 (a)実行期間/停止期間
 例えば、上記実行期間及び上記停止期間は、周期的に繰り返される期間である。
 例えば、上記停止期間は、上記実行期間と同程度の長さを有する期間である。一例として、上記停止期間は、上記実行期間と同程度の長さを有する期間である。
 (b)期間関連情報
 例えば、上記期間関連情報(即ち、上記実行期間又は上記停止期間に関する情報)は、上記実行期間又は上記停止期間の長さを示す情報を含む。
 例えば、上記期間関連情報は、上記実行期間又は上記停止期間の開始時点(オフセット)を示す情報を含む。なお、上記期間関連情報は、当該開始時点を示す情報を含まなくてもよい。アクセスポイント300は、キャリアセンスにより、上記実行期間の終了時点(即ち、上記停止期間の開始時点)を知り得る。また、アクセスポイント300は、上記実行期間の終了時点(即ち、上記停止期間の開始時点)と、上記実行期間又は上記停止期間の長さとから、上記実行期間の開始時点も知り得る。
 上記期間関連情報は、上記実行期間又は上記停止期間の周期を示す情報を含んでもよい。
 (c)通知の手法
 (c-1)第1の例:端末装置経由での通知
  -基地局100の動作
 第1の例として、基地局100(通信処理部153)は、上記セルラーシステム及び無線LANの両方において通信可能な端末装置200へ、上記期間関連情報を送信することにより、上記実行期間又は上記停止期間をアクセスポイント300に通知する。
 例えば、基地局100(通信処理部153)は、上記期間関連情報を含むシステム情報を送信する。あるいは、基地局100(通信処理部153)は、上記期間関連情報を含むメッセージを端末装置200へ個別に送信してもよい。
 具体的な処理として、例えば、通信処理部153は、上記期間関連情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行する。
  -端末装置200の動作
 例えば、端末装置200(情報取得部241)は、上記期間関連情報を取得する。そして、例えば、端末装置200(通信処理部245)は、上記期間関連情報を含む無線LANフレームを、アクセスポイント300へ送信する。
 一例として、上記無線LANフレームは、データフレームである。
 具体的な処理として、例えば、通信処理部245は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行する。
 (b-2)第2の例:セルラーシステムにおいて通信可能なアクセスポイントへの通知
 第2の例として、アクセスポイント300は、上記セルラーシステムにおいて通信可能であってもよい。この場合に、基地局100(通信処理部153)は、上記期間関連情報をアクセスポイント300へ送信することにより、上記実行期間又は上記停止期間を上記アクセスポイント300に通知してもよい。即ち、基地局100は、上記セルラーシステムの通信方式に従って、上記実行期間又は上記停止期間をアクセスポイント300に直接的に通知してもよい。
 基地局100(通信処理部153)は、上記期間関連情報を含むシステム情報を送信してもよい。あるいは、基地局100(通信処理部153)は、上記期間関連情報を含むメッセージをアクセスポイント300へ個別に送信してもよい。
 具体的な処理として、通信処理部153は、上記期間関連情報の送信処理(例えば、上記システム情報又は上記メッセージの生成、スケジューリング、無線リソースへのマッピング、符号化、及び/又は変調など)を実行してもよい。
 (b-3)第3の例:無線LANフレームの中での通知
 第3の例として、基地局100(通信処理部153)は、上記期間関連情報を含む無線LANフレームを送信することにより、上記実行期間又は上記停止期間をアクセスポイント300に通知してもよい。即ち、基地局100は、無線LANの通信方式に従って、上記実行期間又は上記停止期間をアクセスポイント300に直接的に通知してもよい。
 一例として、当該無線LANフレームは、データフレームであってもよい。
 具体的な処理として、通信処理部153は、上記無線LANフレームの送信処理(例えば、上記無線LANフレームの生成、符号化、及び/又は復調など)を実行してもよい。
  -第4の例:バックホール経由での通知
 第4の例として、基地局100(通信処理部153)は、バックホールを介して上記期間関連情報をアクセスポイント300へ送信することにより、上記実行期間又は上記停止期間をアクセスポイント300に通知してもよい。
 具体的な処理として、通信処理部153は、上記期間関連情報を含むメッセージの送信処理(例えば、当該メッセージの生成、及び/又は符号化など)を実行してもよい。
 例えば以上のように、基地局100(通信処理部153)は、アクセスポイント300に上記実行期間又は上記停止期間を通知する。これにより、例えば、上記実行期間内での上記共用帯域における上記セルラーシステムの通信への干渉を抑えるための動作を、アクセスポイント300に行わせることが可能になる。
 (2)ビーコンフレームの送信
 上述したように、アクセスポイント300は、上記実行期間又は上記停止期間の開始に合わせて、上記共用帯域におけるビーコンフレームの送信を行う。当該ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含み、当該パラメータは、NAVを設定するための持続時間情報を含む。
 情報取得部351は、上記実行期間又は上記停止期間に関する情報(即ち、期間関連情報)を取得する。通信処理部353は、上記実行期間又は上記停止期間の開始に合わせて、上記共用帯域におけるビーコンフレームの送信を行う。
 これにより、例えば、上記共用帯域におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。より具体的には、例えば、アクセスポイント300の近くのステーション400は、上記持続時間情報に基づいてNAVを設定し、上記実行期間又は上記停止期間内で上記共用帯域において信号を自らの判断では送信しなくなる。そのため、上記共用帯域における上記セルラーシステムの通信への干渉が抑えられ得る。
 (a)共用帯域
 共用帯域についての説明は、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは重複する記載を省略する。
 (b)パラメータ
 例えば、上記パラメータは、CFパラメータであり、上記持続時間情報は、CFP最大持続時間(CFP MaxDuration)又はCFP残持続時間(CFP DurationRemaining)である。
 (d)ビーコンフレームの送信及びそれに関連する動作の例
 (d-1)第1のケース
 例えば、第1のケースとして、アクセスポイント300(通信処理部353)は、上記実行期間の長さと上記停止期間の長さとの和と同程度のビーコン間隔で、上記実行期間及び上記停止期間のうちの一方の開始に合わせて、上記共用帯域における上記ビーコンフレームの送信を行う。
  -第1の例
 図23は、第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第1の例を説明するための説明図である。
 アクセスポイント300は、共用帯域において基地局100が通信を行う実行期間53の開始に合わせて、上記共用帯域においてビーコンフレーム51を送信する。ビーコンフレーム51は、実行期間53の長さ及び停止期間55の長さの和に対応する持続時間(例えば、当該和と同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、実行期間53内で、上記共用帯域における上記セルラーシステムの通信を行い、その後、停止期間55内で、上記共用帯域における上記セルラーシステムの通信を停止する。
 一方、ステーション400は、上記ビーコンフレーム51の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、実行期間53及び停止期間55にわたり上記共用帯域において信号を送信しない。アクセスポイント300は、実行期間53にわたり上記共用帯域において信号を送信しない(当然ながらポーリングも行わない)。実行期間53の経過後に、アクセスポイント300及びステーション400は、停止期間55内で、上記共用帯域におけるPCFでの無線LANの通信を行う。
 さらに、アクセスポイント300は、実行期間53の長さと停止期間55の長さの和と同程度のビーコン間隔の経過後に、ビーコンフレーム51を再び送信する。
 これにより、例えば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になる。また、例えば、上記停止期間における無線LANの通信がPCFで制御されるので、基地局100は、より確実に、上記実行期間の開始時点から上記共用帯域を確保し、セルラーシステムの通信を開始することができる。
  -第2の例
 図24は、第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第2の例を説明するための説明図である。
 アクセスポイント300は、共用帯域において基地局100が通信を行う実行期間53の開始に合わせて、上記共用帯域においてビーコンフレーム51を送信する。ビーコンフレーム51は、実行期間53の長さに対応する持続時間(例えば、実行期間53の長さと同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、実行期間53内で、上記共用帯域における上記セルラーシステムの通信を行い、その後、停止期間55内で、上記共用帯域における上記セルラーシステムの通信を停止する。
 一方、ステーション400は、上記ビーコンフレーム51の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、実行期間53にわたり上記共用帯域において信号を送信しない。アクセスポイント300は、実行期間53にわたり上記共用帯域において信号を送信しない(当然ながらポーリングも行わない)。実行期間53の経過後に、ステーション400のNAVは0となり、アクセスポイント300及びステーション400は、停止期間55内で、上記共用帯域におけるDCFでの無線LANの通信を行う。
 さらに、アクセスポイント300は、実行期間53の長さと停止期間55の長さの和と同程度のビーコン間隔の経過後に、ビーコンフレーム51を再び送信する。
 これにより、例えば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になり、且つ、上記停止期間においてDCFでの無線LAN通信を行うことが可能になる。
  -第3の例
 図25は、第1のケースにおけるビーコンフレームの送信とそれに関連する動作の第3の例を説明するための説明図である。
 アクセスポイント300は、共用帯域において基地局100が通信を停止する停止期間55の開始に合わせて、上記共用帯域においてビーコンフレーム51を送信する。ビーコンフレーム51は、停止期間55の長さに対応する持続時間(例えば、停止期間55の長さと同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、停止期間55内で、上記共用帯域における上記セルラーシステムの通信を停止し、その後、実行期間53内で、上記共用帯域における上記セルラーシステムの通信を行う。
 一方、ステーション400は、上記ビーコンフレーム51の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、停止期間55にわたり上記共用帯域において信号を送信しない。アクセスポイント300及びステーション400は、停止期間55内で、上記共用帯域におけるPCFでの無線LANの通信を行う。停止期間55の経過後に、ステーション400のNAVは0となるが、実行期間53内で、セルラーシステムの通信が行われるので、上記共用帯域はビジー状態である。そのため、アクセスポイント300及びステーション400は、キャリアセンスの結果として、実行期間53にわたり上記共用帯域において信号を送信しない。
 さらに、アクセスポイント300は、実行期間53の長さと停止期間55の長さの和と同程度のビーコン間隔の経過後に、ビーコンフレーム51を再び送信する。
 これにより、例えば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になる。また、例えば、上記停止期間における無線LANの通信がPCFで制御されるので、基地局100は、より確実に、上記実行期間の開始時点から上記共用帯域を確保し、セルラーシステムの通信を開始することができる。
 (d-2)第2のケース
 第2のケースとして、上記実行期間と上記停止期間は、同程度の長さを有してもよい。アクセスポイント300(通信処理部353)は、上記実行期間及び上記停止期間の各々の長さと同程度のビーコン間隔で、上記実行期間及び上記停止期間の各々の開始に合わせて、上記共用帯域における上記ビーコンフレームの送信を行ってもよい。
  -第1の例
 図26は、第2のケースにおけるビーコンフレームの送信とそれに関連する動作の第1の例を説明するための説明図である。
 アクセスポイント300は、共用帯域において基地局100が通信を行う実行期間63の開始に合わせて、上記共用帯域において第1のビーコンフレーム61を送信する。第1のビーコンフレーム61は、実行期間63の長さに対応する持続時間(例えば、実行期間63の長さと同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、実行期間63内で、上記共用帯域における上記セルラーシステムの通信を行う。
 一方、ステーション400は、第1のビーコンフレーム61の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、実行期間63にわたり上記共用帯域において信号を送信しない。アクセスポイント300は、実行期間63にわたり上記共用帯域において信号を送信しない(当然ながらポーリングも行わない)。
 さらに、アクセスポイント300は、共用帯域において基地局100が通信を停止する停止期間67の開始に合わせて(換言すると、実行期間63の長さと同程度のビーコン間隔の経過後に)、上記共用帯域において第2のビーコンフレーム65を送信する。第2のビーコンフレーム65は、停止期間67の長さに対応する持続時間(例えば、停止期間67の長さと同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、停止期間67内で、上記共用帯域における上記セルラーシステムの通信を停止する。
 一方、ステーション400は、第2のビーコンフレーム65の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、停止期間67にわたり上記共用帯域において信号を送信しない。アクセスポイント300及びステーション400は、停止期間67内で、上記共用帯域におけるPCFでの無線LANの通信を行う。
 さらに、アクセスポイント300は、実行期間63の開始に合わせて(換言すると、停止期間67の長さと同程度のビーコン間隔の経過後に)、上記共用帯域において第1のビーコンフレーム61を再び送信する。
 これにより、例えば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になる。また、例えば、上記停止期間における無線LANの通信がPCFで制御されるので、基地局100は、より確実に、上記実行期間の開始時点から上記共用帯域を確保し、セルラーシステムの通信を開始することができる。
  -第2の例
 図27は、第2のケースにおけるビーコンフレームの送信とそれに関連する動作の第2の例を説明するための説明図である。
 アクセスポイント300は、共用帯域において基地局100が通信を行う実行期間63の開始に合わせて、上記共用帯域において第1のビーコンフレーム61を送信する。第1のビーコンフレーム61は、実行期間63の長さに対応する持続時間(例えば、実行期間63の長さと同程度の持続時間)を示す持続時間情報を含む。
 基地局100は、実行期間63内で、上記共用帯域における上記セルラーシステムの通信を行う。
 一方、ステーション400は、第1のビーコンフレーム61の受信に応じて、上記持続時間情報に基づいてNAVを設定する。その結果、ステーション400は、アクセスポイント300によるポーリングがない限り、実行期間63にわたり上記共用帯域において信号を送信しない。アクセスポイント300は、実行期間63にわたり上記共用帯域において信号を送信しない(当然ながらポーリングも行わない)。
 さらに、アクセスポイント300は、共用帯域において基地局100が通信を停止する停止期間67の開始に合わせて(換言すると、実行期間63の長さと同程度のビーコン間隔の経過後に)、上記共用帯域において第2のビーコンフレーム65を送信する。第2のビーコンフレーム65は、停止期間67よりも短い持続時間を示す持続時間情報を含む。
 基地局100は、停止期間67内で、上記共用帯域における上記セルラーシステムの通信を停止する。
 一方、ステーション400は、第2のビーコンフレーム65の受信に応じて、上記持続時間情報に基づいてNAVを設定する。そして、アクセスポイント300及びステーション400は、停止期間67のうちの、上記持続時間情報により示される持続時間(即ち、停止期間67よりも短い期間)内で、上記共用帯域におけるPCFでの無線LANの通信を行う。その後、アクセスポイント300及びステーション400は、停止期間67のうちの残りの期間内で、上記共用帯域におけるDCFでの無線LANの通信を行う。
 さらに、アクセスポイント300は、実行期間63の開始に合わせて(換言すると、停止期間67の長さと同程度のビーコン間隔の経過後に)、上記共用帯域において第1のビーコンフレーム61を再び送信する。
 なお、第2のビーコンフレーム65は、0である持続時間を示す持続時間情報を含んでもよい。その結果、アクセスポイント300及びステーション400は、停止期間67内で、上記共用帯域におけるDCFでの無線LANの通信を行ってもよい。
 これにより、例えば、上記共用帯域におけるセルラーシステムの通信への干渉を抑えることが可能になり、且つ、上記停止期間においてDCF(及びPCFで)での無線LAN通信を行うことが可能になる。
 (3)端末装置のための動作
 (a)基地局の動作
 例えば、基地局100(通信処理部153)は、上記実行期間又は上記停止期間を示す情報(以下、「期間情報」と呼ぶ)を、上記セルラーシステムの通信を行う端末装置200へ送信する。この点についての説明は、第1の実施形態と第3の実施形態との間で差異はない。よって、ここでは重複する記載を省略する。
 (b)端末装置の動作
 例えば、端末装置200は、上記実行期間(即ち、上記共用帯域における上記セルラーシステムの通信が行われる期間)又は上記停止期間(即ち、上記共用帯域における上記セルラーシステムの通信が停止される期間)を示す上記期間情報に基づいて、上記共用帯域を対象とする測定を行う。この点についての説明は、第1の実施形態と第3の実施形態との間で差異はない。よって、ここでは重複する記載を省略する。
 (4)基地局間での実行期間/停止期間の協調
 上記実行期間及び上記停止期間は、基地局100と基地局100の隣接基地局との間で共通の期間であってもよい。この点についての説明は、第1の実施形態と第3の実施形態との間で差異はない。よって、ここでは重複する記載を省略する。
 <6.3.処理の流れ>
 次に、図28~図30を参照して、第3の実施形態に係る処理の例を説明する。
 (1)基地局100の処理
 図28は、第3の実施形態に係る基地局100の処理の概略的な流れの一例を示すフローチャートである。
 基地局100(情報取得部151)は、実行期間又は停止期間に関する情報(即ち、期間関連情報)を取得し、基地局100(通信処理部153)は、上記実行期間又は上記停止期間をアクセスポイント300に通知する(S561)。
 基地局100(通信処理部153)は、上記実行期間内で、共用帯域におけるセルラーシステムの通信を行う(S563)。
 基地局100(通信処理部153)は、上記停止期間内で、上記共用帯域における上記セルラーシステムの通信を停止する(S565)。そして、処理はステップS563へ戻る。
 (1)アクセスポイント300の処理
 (a)第1の例
 図29は、第3の実施形態に係るアクセスポイント300の処理の概略的な流れの第1の例を示すフローチャートである。当該第1の例は、上述した第1のケースに対応する処理である。
 アクセスポイント300(情報取得部351)は、実行期間又は停止期間に関する情報(即ち、期間関連情報)を取得する(S571)。
 アクセスポイント300(通信処理部353)は、上記実行期間及び上記停止期間のうちの一方の開始に合わせて、共用帯域におけるビーコンフレームの送信を行う(S573)。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、NAVを設定するための持続時間情報を含む。
 アクセスポイント300(通信処理部353)は、上記停止期間内で、上記共用帯域における無線LANの通信を行い、上記実行期間内で、上記共用帯域における無線LANの通信を停止する(S575)。そして、処理はステップS573へ戻る。
 (b)第2の例
 図30は、第3の実施形態に係るアクセスポイント300の処理の概略的な流れの第2の例を示すフローチャートである。当該第2の例は、上述した第2のケースに対応する処理である。
 アクセスポイント300(情報取得部351)は、実行期間又は停止期間に関する情報(即ち、期間関連情報)を取得する(S581)。
 アクセスポイント300(通信処理部353)は、上記実行期間の開始に合わせて、共用帯域におけるビーコンフレームの送信を行う(S583)。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、NAVを設定するための持続時間情報を含む。当該持続時間情報は、上記実行期間の長さに対応する持続時間を示す。
 アクセスポイント300(通信処理部353)は、上記実行期間内で、上記共用帯域における無線LANの通信を停止する(S585)。
 アクセスポイント300(通信処理部353)は、上記停止期間の開始に合わせて、共用帯域におけるビーコンフレームの送信を行う(S587)。上記ビーコンフレームも、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、当該パラメータは、NAVを設定するための持続時間情報を含む。
 アクセスポイント300(通信処理部353)は、上記停止期間内で、上記共用帯域における無線LANの通信を行う(S589)。そして、処理はステップS583へ戻る。
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 また、例えば、アクセスポイント300は、ルータ機能を有し又はルータ機能を有しない無線LANアクセスポイント(無線基地局ともいう)として実現されてもよい。また、アクセスポイント300は、モバイル無線LANルータとして実現されてもよい。さらに、アクセスポイント300の少なくとも一部の構成要素は、これら装置に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 また、例えば、ステーション400は、スマートフォン、タブレットPC、ノートPC、携帯型ゲーム端末若しくはデジタルカメラなどのモバイル端末、テレビジョン受像機、プリンタ、デジタルスキャナ若しくはネットワークストレージなどの固定端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、ステーション400は、スマートメータ、自動販売機、遠隔監視装置又はPOS(Point Of Sale)端末などの、M2M通信を行う端末(MTC端末ともいう)として実現されてもよい。さらに、ステーション400の少なくとも一部の構成要素は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 <7.1.基地局に関する応用例>
 (1)第1の応用例
 図31は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図31に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図31にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図31に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図31に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図31には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 さらに、無線通信インタフェース825は、セルラー通信方式に加えて、無線LAN通信方式(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上)をサポートしてもよい。その場合に、無線通信インタフェース825は、無線LAN通信方式のBBプロセッサ826(及びRF回路827)を含んでもよい。
 図31に示したeNB800において、図8を参照して説明した情報取得部151及び/又は通信処理部153は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び/又は通信処理部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び/又は通信処理部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、情報取得部151及び/又は通信処理部153を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図31に示したeNB800において、図8を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。
 (2)第2の応用例
 図32は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図32に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図32にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図31を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図31を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図32に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図32には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 さらに、無線通信インタフェース855は、セルラー通信方式に加えて、無線LAN通信方式(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上)をサポートしてもよい。その場合に、無線通信インタフェース855は、無線LAN通信方式のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図32に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図32には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図32に示したeNB830において、図8を参照して説明した説明した情報取得部151及び/又は通信処理部153は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて情報取得部151及び/又は通信処理部153が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラム(換言すると、プロセッサに情報取得部151及び/又は通信処理部153の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、情報取得部151及び/又は通信処理部153を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを情報取得部151及び/又は通信処理部153として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図32に示したeNB830において、例えば、図8を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。
 <7.2.端末装置及びステーションに関する応用例>
 (1)第1の応用例
 図33は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図33に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図33には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、無線LAN通信方式(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上)をサポートしてもよい。その場合に、無線通信インタフェース912は、無線LAN通信方式のBBプロセッサ913(及びRF回路914)を含んでもよい。また、無線通信インタフェース912は、近距離無線通信方式又は近接無線通信方式などのさらに他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913(及びRF回路914)を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図33に示したように複数のアンテナ916を有してもよい。なお、図33にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図33に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図33に示したスマートフォン900において、図9を参照して説明した処理部240に含まれる1つ以上の構成要素(情報取得部241、測定部243及び/又は通信処理部245)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図11を参照して説明した情報取得部441及び/又は通信処理部443も、処理部240に含まれる上記1つ以上の構成要素と同様である。
 また、図33に示したスマートフォン900において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。これらの点については、図11を参照して説明したアンテナ部410及び無線通信部420も、アンテナ部210及び無線通信部220と同様である。
 (2)第2の応用例
 図34は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図34に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図34には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、無線LAN通信方式(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上)をサポートしてもよい。その場合に、無線通信インタフェース933は、無線LAN通信方式のBBプロセッサ934(及びRF回路935)を含んでもよい。また、無線通信インタフェース933は、近距離無線通信方式又は近接無線通信方式などのさらに他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934(及びRF回路935)を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図34に示したように複数のアンテナ937を有してもよい。なお、図34にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図34に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図34に示したカーナビゲーション装置920において、図9を参照して説明した処理部240に含まれる1つ以上の構成要素(情報取得部241、測定部243及び/又は通信処理部245)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図11を参照して説明した情報取得部441及び/又は通信処理部443も、処理部240に含まれる上記1つ以上の構成要素と同様である。
 また、図34に示したカーナビゲーション装置920において、例えば、図9を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。これらの点については、図11を参照して説明したアンテナ部410及び無線通信部420も、アンテナ部210及び無線通信部220と同様である。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、処理部240に含まれる1つ以上の構成要素(情報取得部241、測定部243及び/若しくは通信処理部245)を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。これらの点については、図11を参照して説明した情報取得部441及び/又は通信処理部443も、処理部240に含まれる上記1つ以上の構成要素と同様である。
 <7.3.アクセスポイントに関する応用例>
 図35は、本開示に係る技術が適用され得る無線アクセスポイント1050の概略的な構成の一例を示すブロック図である。無線アクセスポイント1050は、コントローラ1051、メモリ1052、入力デバイス1054、表示デバイス1055、ネットワークインタフェース1057、無線通信インタフェース1063、アンテナスイッチ1064及びアンテナ1065を備える。
 コントローラ1051は、例えばCPU又はDSP(Digital Signal Processor)であってよく、無線アクセスポイント1050のIP(Internet Protocol)レイヤ及びより上位のレイヤの様々な機能(例えば、アクセス制限、ルーティング、暗号化、ファイアウォール及びログ管理など)を動作させる。メモリ1052は、RAM及びROMを含み、コントローラ1051により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、ルーティングテーブル、暗号鍵、セキュリティ設定及びログなど)を記憶する。
 入力デバイス1054は、例えば、ボタン又はスイッチなどを含み、ユーザからの操作を受け付ける。表示デバイス1055は、LEDランプなどを含み、無線アクセスポイント1050の動作ステータスを表示する。
 ネットワークインタフェース1057は、無線アクセスポイント1050が有線通信ネットワーク1058に接続するための有線通信インタフェースである。ネットワークインタフェース1057は、複数の接続端子を有してもよい。有線通信ネットワーク1058は、イーサネット(登録商標)などのLANであってもよく、又はWAN(Wide Area Network)であってもよい。
 無線通信インタフェース1063は、IEEE802.11a、11b、11g、11n、11ac及び11adなどの無線LAN標準のうちの1つ以上をサポートし、近傍の端末へアクセスポイントとして無線接続を提供する。無線通信インタフェース1063は、典型的には、ベースバンドプロセッサ、RF回路及びパワーアンプなどを含み得る。無線通信インタフェース1063は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を集積したワンチップのモジュールであってもよい。アンテナスイッチ1064は、無線通信インタフェース1063に含まれる複数の回路の間でアンテナ1065の接続先を切り替える。アンテナ1065は、単一の又は複数のアンテナ素子を有し、無線通信インタフェース1063による無線信号の送信及び受信のために使用される。
 図35に示した無線アクセスポイント1050において、図10を用いて説明した情報取得部351及び通信処理部353は、コントローラ1051において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、無線通信インタフェース1063において実装されてもよい。一例として、無線アクセスポイント1050は、コントローラ1051及び/又は無線通信インタフェース1063を含むモジュールを搭載し、当該モジュールにおいて情報取得部351及び通信処理部353が実装されてもよい。この場合に、上記モジュールは、プロセッサを情報取得部351及び通信処理部353として機能させるためのプログラム(換言すると、プロセッサに情報取得部351及び通信処理部353の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを情報取得部351及び通信処理部353として機能させるためのプログラムが無線アクセスポイント1050にインストールされ、コントローラ1051及び/又は無線通信インタフェース1063が当該プログラムを実行してもよい。以上のように、情報取得部351及び通信処理部353を備える装置として無線アクセスポイント1050又は上記モジュールが提供されてもよく、プロセッサを情報取得部351及び通信処理部353として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 <<8.まとめ>>
 ここまで、図6~図35を参照して、本開示の実施形態に係る各装置及び各処理を説明した。
 (1)第1の実施形態
 第1の実施形態によれば、基地局100は、第1の期間(即ち、実行期間)内で、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)における上記セルラーシステムの通信を行い、第2の期間内(即ち、停止期間)で、上記周波数帯域における上記セルラーシステムの通信を停止する通信処理部153、を備える。上記第1の期間は、上セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、上記第2の期間は、上記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)おけるセルラーシステムの通信のための同期を端末装置がより容易に維持することが可能になる。
 (2)第2の実施形態
 第2の実施形態によれば、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるビーコンフレームの送信を行う通信処理部153、を備える。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む上記パラメータを含む。通信処理部153は、上記ビーコンフレームの送信後に、上記持続時間情報に対応する期間内に、上記周波数帯域における上記セルラーシステムの通信を行う。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。
 (3)第3の実施形態
 第3の実施形態によれば、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)において基地局100が通信を行う第1の期間(即ち、実行期間)、又は、上記周波数帯域において基地局100が通信を停止する第2の期間(即ち、停止帯域)に関する情報(即ち、期間関連情報)を取得する情報取得部151と、上記第1の期間又は上記第2の期間を、PCF動作をサポートする無線LANのアクセスポイント300に通知する通信処理部153と、を備える。
 第3の実施形態によれば、アクセスポイント300は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)において基地局100が通信を行う第1の期間(即ち、実行期間)、又は、上記周波数帯域において基地局100が通信を停止する第2の期間(即ち、停止期間)に関する情報(即ち、期間関連情報)を取得する情報取得部351と、上記第1の期間又は上記第2の期間の開始に合わせて、上記周波数帯域におけるビーコンフレームの送信を行う通信処理部353と、を備える。上記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む上記パラメータを含む。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)におけるセルラーシステムと無線LANとの間での干渉をより小さくすることが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、通信システムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、通信システムは、他の通信規格に準拠したシステムであってもよい。
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、端末装置若しくは端末装置のためのモジュール、アクセスポイント若しくはアクセスポイントのためのモジュール、又は、ステーション若しくはステーションのためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、情報取得部、通信処理部及び/又は測定部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、基地局、基地局装置若しくは基地局装置のためのモジュール、端末装置若しくは端末装置のためのモジュール、アクセスポイント若しくはアクセスポイントのためのモジュール、又は、ステーション若しくはステーションのためのモジュール)も提供されてもよい。また、上記装置の構成要素(例えば、情報取得部、通信処理部及び/又は測定部など)の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信を行い、第2の期間内で、前記周波数帯域における前記セルラーシステムの通信を停止する通信処理部、
を備え、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
装置。
(2)
 前記1つ以上のサブフレームは、所定のサブフレーム番号を有するサブフレームであり、
 前記1つ以上の他のサブフレームは、他の所定のサブフレーム番号を有するサブフレームである、
前記(1)に記載の装置。
(3)
 前記第1の期間及び前記第2の期間の各々は、無線フレームの周期で繰り返される期間である、前記(1)又は(2)に記載の装置。
(4)
 前記通信処理部は、前記第1の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行い、
 前記無線LANフレームは、NAV(Network Allocation Vector)を設定するための持続時間情報であって、前記第1の期間の長さに対応する持続時間を示す前記持続時間情報を含む、
前記(1)~(3)のいずれか1項に記載の装置。
(5)
 前記無線LANフレームは、PCF(Point Control Function)動作のためのCFP(Control Free Period)に関するパラメータを含むビーコンフレームであり、
 前記パラメータは、前記持続時間情報を含む、
前記(4)に記載の装置。
(6)
 前記無線LANフレームは、RTS(Request To Send)フレーム又はCTS(Clear To Send)フレームである、前記(4)に記載の装置。
(7)
 前記通信処理部は、無線フレームの間隔で、前記周波数帯域における前記無線LANフレームの送信を行う、前記(4)~(6)のいずれか1項に記載の装置。
(8)
 前記通信処理部は、前記第1の期間又は前記第2の期間を無線LANノードに通知する、前記(1)~(7)のいずれか1項に記載の装置。
(9)
 前記無線LANノードは、PCF動作をサポートするアクセスポイントである、前記(8)に記載の装置。
(10)
 前記通信処理部は、前記第1の期間又は前記第2の期間を示す情報を、前記セルラーシステムの通信を行う端末装置へ送信する、前記(1)~(9)のいずれか1項に記載の装置。
(11)
 前記通信処理部は、前記1つ以上の他のサブフレームをMBSFN(MBMS(Multimedia Broadcast Multicast Service) over Single Frequency Network)サブフレームとして使用する、前記(1)~(9)のいずれか1項に記載の装置。
(12)
 前記周波数帯域は、無線LANのチャネルである、前記(1)~(11)のいずれか1項に記載の装置。
(13)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間に関する情報を取得する取得部と、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行う通信処理部と、
を備え、
 前記無線LANフレームは、NAVを設定するための持続時間情報を含む、
装置。
(14)
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
前記(13)に記載の装置。
(15)
 前記通信処理部は、前記第2の期間の開始に合わせて、前記周波数帯域における前記無線LANフレームの送信を行い、
 前記無線LANフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、
 前記パラメータは、前記持続時間情報を含み、
 前記持続時間情報は、前記第2の期間の長さに対応する持続時間を示す、
前記(13)又は(14)に記載の装置。
(16)
 前記通信処理部は、前記第1の期間の開始に合わせて、前記周波数帯域における前記無線LANフレームの送信を行い、
 前記持続時間情報は、前記第1の期間の長さに対応する持続時間を示す、
前記(13)又は(14)に記載の装置。
(17)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間を示す情報を取得する取得部と、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行う測定部と、
を備え、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
装置。
(18)
 前記測定は、前記周波数帯域のチャネル状態の測定、又は、前記周波数帯域において送信されるリファレンス信号の受信電力若しくは受信品質の測定を含む、前記(17)に記載の装置。
(19)
 前記第1の期間又は前記第2の期間に関する情報を無線LANノードへ送信する通信処理部をさらに備える、前記(17)又は(18)に記載の装置。
(20)
 セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得する取得部と、
 前記持続時間情報に基づいて、前記周波数帯域についてのNAVを設定する通信処理部と、
を備える装置。
(21)
 装置であって、
 セルラーシステムと無線LANとの間で共用される周波数帯域におけるビーコンフレームの送信を行う通信処理部、
を備え、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含み、
 前記通信処理部は、前記ビーコンフレームの送信後に、前記持続時間情報に対応する期間内に、前記周波数帯域における前記セルラーシステムの通信を行う、
装置。
(22)
 前記通信処理部は、前記期間を除き、前記周波数帯域における前記セルラーシステムの通信を停止する、前記(21)に記載の装置。
(23)
 前記通信処理部は、前記期間の長さよりも長いビーコン間隔で、前記ビーコンフレームの送信を行う、前記(21)又は(22)に記載の装置。
(24)
 前記通信処理部は、前記期間の長さと同程度のビーコン間隔で、前記ビーコンフレームの送信と他のビーコンフレームの送信とを交互に行う、前記(21)又は(22)に記載の装置。
(25)
 前記通信処理部は、前記期間、又は前記周波数帯域における前記セルラーシステムの通信が停止される他の期間を示す情報を、前記セルラーシステムの通信を行う端末装置へ送信する、前記(21)~(24)のいずれか1項に記載の装置。
(26)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される他の期間を示す情報を取得する取得部と、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行う測定部と、
を備える装置。
(27)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得する取得部と、
 前記第1の期間又は前記第2の期間を、PCF動作をサポートする無線LANのアクセスポイントに通知する通信処理部と、
を備える装置。
(28)
 前記第1の期間及び前記第2の期間の各々は、周期的に繰り返される期間である、前記(27)に記載の装置。
(29)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得する取得部と、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域におけるビーコンフレームの送信を行う通信処理部と、
を備え、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含む、
装置。
(30)
 前記第1の期間及び前記第2の期間の各々は、周期的に繰り返される期間である、前記(29)に記載の装置。
(31)
 前記通信処理部は、前記第1の期間の長さと前記第2の期間の長さとの和と同程度のビーコン間隔で、前記第1の期間及び前記第2の期間のうちの一方の開始に合わせて、前記周波数帯域における前記ビーコンフレームの送信を行う、前記(29)又は(30)に記載の装置。
(32)
 前記第1の期間と前記第2の期間は、同程度の長さを有し、
 前記通信処理部は、前記第1の期間及び前記第2の期間の各々の長さと同程度のビーコン間隔で、前記第1の期間及び前記第2の期間の各々の開始に合わせて、前記周波数帯域における前記ビーコンフレームの送信を行う、
前記(29)又は(30)に記載の装置。
(33)
 前記装置は、前記セルラーシステムの基地局、当該基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(1)~(12)、(21)~(25)、(27)及び(28)のいずれか1項に記載の装置。
(34)
 前記装置は、端末装置、又は端末装置のためのモジュールである、前記(17)~(19)及び(26)のいずれか1項に記載の装置。
(35)
 前記装置は、無線LANノード、又は無線LANノードのためのモジュールである、前記(13)~(16)及び(20)のいずれか1項に記載の装置。
(36)
 前記装置は、無線LANのアクセスポイント、又は当該アクセスポイントのためのモジュールである、前記(29)~(32)のいずれか1項に記載の装置。
(37)
 プロセッサにより、
 第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信を行うことと、
 第2の期間内で、前記周波数帯域における前記セルラーシステムの通信を停止することと、
を含み、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
方法。
(38)
 第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信を行うことと、
 第2の期間内で、前記周波数帯域における前記セルラーシステムの通信を停止することと、
をプロセッサに実行させるためのプログラムであり、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
プログラム。
(39)
 第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信を行うことと、
 第2の期間内で、前記周波数帯域における前記セルラーシステムの通信を停止することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
記録媒体。
(40)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行うことと、
を含み、
 前記無線LANフレームは、NAVを設定するための持続時間情報を含む、
方法。
(41)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行うことと、
をプロセッサに実行させるためのプログラムであり、
 前記無線LANフレームは、NAVを設定するための持続時間情報を含む、
プログラム。
(42)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記無線LANフレームは、NAVを設定するための持続時間情報を含む、
記録媒体。
(43)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
を含み、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
方法。
(44)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
をプロセッサに実行させるためのプログラムであり、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
プログラム。
(45)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
 前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
記録媒体。
(46)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得することと、
 前記持続時間情報に基づいて、前記周波数帯域についてのNAVを設定することと、
を含む方法。
(47)
 セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得することと、
 前記持続時間情報に基づいて、前記周波数帯域についてのNAVを設定することと、
をプロセッサに実行させるためのプログラム。
(48)
 セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得することと、
 前記持続時間情報に基づいて、前記周波数帯域についてのNAVを設定することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(49)
 方法であって、プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域におけるビーコンフレームの送信を行うこと、
を含み、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含み、
 前記方法は、
 前記ビーコンフレームの送信後に、前記持続時間情報に対応する期間内に、前記周波数帯域における前記セルラーシステムの通信を行うこと、
をさらに含む、方法。
(50)
 セルラーシステムと無線LANとの間で共用される周波数帯域におけるビーコンフレームの送信を行うこと、
をプロセッサに実行させるためのプログラムであり、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含み、
 前記プログラムは、
 前記ビーコンフレームの送信後に、前記持続時間情報に対応する期間内に、前記周波数帯域における前記セルラーシステムの通信を行うこと、
をプロセッサにさらに実行させるためのプログラムである、プログラム。
(51)
 セルラーシステムと無線LANとの間で共用される周波数帯域におけるビーコンフレームの送信を行うこと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含み、
 前記プログラムは、
 前記ビーコンフレームの送信後に、前記持続時間情報に対応する期間内に、前記周波数帯域における前記セルラーシステムの通信を行うこと、
 をプロセッサにさらに実行させるためのプログラムである、
記録媒体。
(52)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される他の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
を含む方法。
(53)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される他の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
をプロセッサに実行させるためのプログラム。
(54)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される他の期間を示す情報を取得することと、
 前記情報に基づいて、前記周波数帯域を対象とする測定を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(55)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間を、PCF動作をサポートする無線LANのアクセスポイントに通知することと、
を含む方法。
(56)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間を、PCF動作をサポートする無線LANのアクセスポイントに通知することと、
をプロセッサに実行させるためのプログラム。
(57)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間を、PCF動作をサポートする無線LANのアクセスポイントに通知することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 
 
(58)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域におけるビーコンフレームの送信を行うことと、
を含み、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含む、
方法。
(59)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域におけるビーコンフレームの送信を行うことと、
をプロセッサに実行させるためのプログラムであり、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含む、
プログラム。
(60)
 セルラーシステムと無線LANとの間で共用される周波数帯域において基地局が通信を行う第1の期間、又は、前記周波数帯域において前記基地局が通信を停止する第2の期間に関する情報を取得することと、
 前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域におけるビーコンフレームの送信を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記ビーコンフレームは、PCF動作のためのCFPに関するパラメータであって、NAVを設定するための持続時間情報を含む前記パラメータを含む、
記録媒体。
 1        システム
 21、53、63 実行期間
 23、55、67 停止期間
 31、51    ビーコンフレーム
 35、61    第1のビーコンフレーム
 39、65    第2のビーコンフレーム
 100      基地局
 151      情報取得部
 153      通信処理部
 200      端末装置
 241      情報取得部
 243      測定部
 245      通信処理部
 300      アクセスポイント
 351      情報取得部
 353      通信処理部
 400      ステーション
 441      情報取得部
 443      通信処理部
 

Claims (20)

  1.  第1の期間内で、セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信を行い、第2の期間内で、前記周波数帯域における前記セルラーシステムの通信を停止する通信処理部、
    を備え、
     前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
     前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
    装置。
  2.  前記1つ以上のサブフレームは、所定のサブフレーム番号を有するサブフレームであり、
     前記1つ以上の他のサブフレームは、他の所定のサブフレーム番号を有するサブフレームである、
    請求項1に記載の装置。
  3.  前記第1の期間及び前記第2の期間の各々は、無線フレームの周期で繰り返される期間である、請求項1に記載の装置。
  4.  前記通信処理部は、前記第1の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行い、
     前記無線LANフレームは、NAV(Network Allocation Vector)を設定するための持続時間情報であって、前記第1の期間の長さに対応する持続時間を示す前記持続時間情報を含む、
    請求項1に記載の装置。
  5.  前記無線LANフレームは、PCF(Point Control Function)動作のためのCFP(Control Free Period)に関するパラメータを含むビーコンフレームであり、
     前記パラメータは、前記持続時間情報を含む、
    請求項4に記載の装置。
  6.  前記無線LANフレームは、RTS(Request To Send)フレーム又はCTS(Clear To Send)フレームである、請求項4に記載の装置。
  7.  前記通信処理部は、無線フレームの間隔で、前記周波数帯域における前記無線LANフレームの送信を行う、請求項4に記載の装置。
  8.  前記通信処理部は、前記第1の期間又は前記第2の期間を無線LANノードに通知する、請求項1に記載の装置。
  9.  前記無線LANノードは、PCF動作をサポートするアクセスポイントである、請求項8に記載の装置。
  10.  前記通信処理部は、前記第1の期間又は前記第2の期間を示す情報を、前記セルラーシステムの通信を行う端末装置へ送信する、請求項1に記載の装置。
  11.  前記通信処理部は、前記1つ以上の他のサブフレームをMBSFN(MBMS(Multimedia Broadcast Multicast Service) over Single Frequency Network)サブフレームとして使用する、請求項1に記載の装置。
  12.  前記周波数帯域は、無線LANのチャネルである、請求項1に記載の装置。
  13.  セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間に関する情報を取得する取得部と、
     前記第1の期間又は前記第2の期間の開始に合わせて、前記周波数帯域における無線LANフレームの送信を行う通信処理部と、
    を備え、
     前記無線LANフレームは、NAVを設定するための持続時間情報を含む、
    装置。
  14.  前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
     前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
    請求項13に記載の装置。
  15.  前記通信処理部は、前記第2の期間の開始に合わせて、前記周波数帯域における前記無線LANフレームの送信を行い、
     前記無線LANフレームは、PCF動作のためのCFPに関するパラメータを含むビーコンフレームであり、
     前記パラメータは、前記持続時間情報を含み、
     前記持続時間情報は、前記第2の期間の長さに対応する持続時間を示す、
    請求項13に記載の装置。
  16.  前記通信処理部は、前記第1の期間の開始に合わせて、前記周波数帯域における前記無線LANフレームの送信を行い、
     前記持続時間情報は、前記第1の期間の長さに対応する持続時間を示す、
    請求項13に記載の装置。
  17.  セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの通信が行われる第1の期間、又は、前記周波数帯域における前記セルラーシステムの通信が停止される第2の期間を示す情報を取得する取得部と、
     前記情報に基づいて、前記周波数帯域を対象とする測定を行う測定部と、
    を備え、
     前記第1の期間は、前記セルラーシステムの同期信号が送信されるサブフレームを含む1つ以上のサブフレームであり、
     前記第2の期間は、前記同期信号が送信されるサブフレームを含まない1つ以上の他のサブフレームである、
    装置。
  18.  前記測定は、前記周波数帯域のチャネル状態の測定、又は、前記周波数帯域において送信されるリファレンス信号の受信電力若しくは受信品質の測定を含む、請求項17に記載の装置。
  19.  前記第1の期間又は前記第2の期間に関する情報を無線LANノードへ送信する通信処理部をさらに備える、請求項17に記載の装置。
  20.  セルラーシステムと無線LANとの間で共用される周波数帯域において当該セルラーシステムの基地局により送信される無線LANフレームの受信に応じて、当該無線LANフレームに含まれる持続時間情報を取得する取得部と、
     前記持続時間情報に基づいて、前記周波数帯域についてのNAVを設定する通信処理部と、
    を備える装置。
     
PCT/JP2015/072150 2014-09-25 2015-08-04 装置 WO2016047279A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15845336.5A EP3200518B1 (en) 2014-09-25 2015-08-04 Device
US15/501,027 US10306626B2 (en) 2014-09-25 2015-08-04 Device
JP2016550014A JP6572901B2 (ja) 2014-09-25 2015-08-04 基地局装置及びユーザ装置
EP20167642.6A EP3735055A1 (en) 2014-09-25 2015-08-04 Device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014194970 2014-09-25
JP2014-194970 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047279A1 true WO2016047279A1 (ja) 2016-03-31

Family

ID=55580812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072150 WO2016047279A1 (ja) 2014-09-25 2015-08-04 装置

Country Status (4)

Country Link
US (1) US10306626B2 (ja)
EP (2) EP3200518B1 (ja)
JP (2) JP6572901B2 (ja)
WO (1) WO2016047279A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537878A (ja) * 2016-10-25 2019-12-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 自律送信システムのための衝突回避適応

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160255644A1 (en) * 2015-02-27 2016-09-01 Qualcomm Incorporated Methods and apparatus for redundant waveform protection in a mixed wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532393A (ja) * 2005-03-04 2008-08-14 松下電器産業株式会社 異種の移動通信ネットワークの物理層の同期化のための方法及び装置
JP2011004003A (ja) * 2009-06-16 2011-01-06 Ntt Docomo Inc 無線通信システム間の周波数共用方法及び周波数共用通信システム
JP2014506077A (ja) * 2011-01-10 2014-03-06 クゥアルコム・インコーポレイテッド 接続セットアップ中のマルチ・ラジオ共存のためのサポート

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024204B2 (en) * 2002-07-10 2006-04-04 Kabushiki Kaisha Toshiba Wireless communication scheme with communication quality guarantee and copyright protection
JP2006094001A (ja) 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
US8761813B2 (en) * 2008-11-26 2014-06-24 Alcatel Lucent Fast signaling services for E-UTRAN based wireless systems
JP5253229B2 (ja) * 2009-02-24 2013-07-31 株式会社東芝 無線通信装置
US8125952B2 (en) * 2009-05-08 2012-02-28 Qualcomm Incorporated Synchronious multi-channel transmissions in wireless local area networks
US9578649B2 (en) 2011-01-20 2017-02-21 Qualcomm Incorporated Method and apparatus to facilitate support for multi-radio coexistence
JP5890435B2 (ja) * 2011-02-14 2016-03-22 トムソン ライセンシングThomson Licensing 異なる変調速度で送信されるパケットの往復時間を測定することによるWi−Fiコネクティビティのトラブルシューティング
US20130046410A1 (en) * 2011-08-18 2013-02-21 Cyber Power Systems Inc. Method for creating virtual environmental sensor on a power distribution unit
CN102958079B (zh) * 2011-08-19 2017-04-26 华为技术有限公司 小区测量方法、信息处理方法、终端、基站和网络系统
US9203592B2 (en) * 2011-09-29 2015-12-01 Kyocera Corporation Mobile communication system, base station, and user terminal
WO2013116662A1 (en) * 2012-02-03 2013-08-08 Interdigital Patent Holdings, Inc. Method and apparatus for coexistence among wireless transmit/receive units (wtrus) operating in the same spectrum
US20130324113A1 (en) 2012-05-30 2013-12-05 Bruno Jechoux Radio communication device and method for operating a radio communication device
WO2014081421A1 (en) * 2012-11-20 2014-05-30 Nokia Corporation Apparatus and method for robust sequence design to enable cross technology signal detection
US20150195849A1 (en) * 2014-01-06 2015-07-09 Intel IP Corporation Systems, methods and devices for multiple signal co-existence in multiple-use frequency spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532393A (ja) * 2005-03-04 2008-08-14 松下電器産業株式会社 異種の移動通信ネットワークの物理層の同期化のための方法及び装置
JP2011004003A (ja) * 2009-06-16 2011-01-06 Ntt Docomo Inc 無線通信システム間の周波数共用方法及び周波数共用通信システム
JP2014506077A (ja) * 2011-01-10 2014-03-06 クゥアルコム・インコーポレイテッド 接続セットアップ中のマルチ・ラジオ共存のためのサポート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200518A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537878A (ja) * 2016-10-25 2019-12-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 自律送信システムのための衝突回避適応
JP2020205605A (ja) * 2016-10-25 2020-12-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 自律送信システムのための衝突回避適応
JP6994091B2 (ja) 2016-10-25 2022-01-14 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 自律送信システムのための衝突回避適応
US11363521B2 (en) 2016-10-25 2022-06-14 Telefonaktiebolaget Lm Ericsson (Publ) Collision avoidance adaptation for autonomous transmission systems
US11812368B2 (en) 2016-10-25 2023-11-07 Telefonaktiebolaget Lm Ericsson (Publ) Collision avoidance adaptation for autonomous transmission systems

Also Published As

Publication number Publication date
EP3200518A1 (en) 2017-08-02
EP3200518B1 (en) 2020-07-29
US20170223707A1 (en) 2017-08-03
JP2019208278A (ja) 2019-12-05
EP3735055A1 (en) 2020-11-04
JP6572901B2 (ja) 2019-09-11
JPWO2016047279A1 (ja) 2017-07-06
EP3200518A4 (en) 2018-08-08
US10306626B2 (en) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6559863B2 (ja) 非ライセンス帯域を介したlte(登録商標)チャネルアクセス
JP6432655B2 (ja) 通信装置、通信方法、及び通信システム
JP6677331B2 (ja) 端末装置
US10028152B2 (en) Device and method for performing communication via a plurality of component carriers
JP2019208278A (ja) 基地局装置、ユーザ装置、基地局装置の制御方法及びユーザ装置の制御方法
JP6496938B2 (ja) 装置
JP6705378B2 (ja) 装置及びシステム
WO2016031367A1 (ja) 装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550014

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15501027

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015845336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845336

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE