WO2016031367A1 - 装置及び方法 - Google Patents

装置及び方法 Download PDF

Info

Publication number
WO2016031367A1
WO2016031367A1 PCT/JP2015/067913 JP2015067913W WO2016031367A1 WO 2016031367 A1 WO2016031367 A1 WO 2016031367A1 JP 2015067913 W JP2015067913 W JP 2015067913W WO 2016031367 A1 WO2016031367 A1 WO 2016031367A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink data
retransmission
base station
frequency band
shared
Prior art date
Application number
PCT/JP2015/067913
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/505,133 priority Critical patent/US10225857B2/en
Priority to EP15834941.5A priority patent/EP3197204B1/en
Publication of WO2016031367A1 publication Critical patent/WO2016031367A1/ja
Priority to US16/274,377 priority patent/US20190182858A1/en
Priority to US16/885,744 priority patent/US11096205B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present disclosure relates to an apparatus and a method.
  • CA Carrier Aggregation
  • Patent Document 1 discloses a registered frequency band that can be used by a registered operator, and an unlicensed license that can be used when a predetermined condition is satisfied, in addition to a dedicated frequency band that is dedicated to each operator. A technique that enables the use of bands is disclosed.
  • the base station transmits downlink data using the frequency band. I do.
  • the base station can also retransmit the downlink data using the frequency band.
  • the frequency band is also used for other wireless communication systems, even if it can be used in the cellular system when transmitting downlink data, it can be used in the cellular system when retransmitting the downlink data. Not always. There may be cases where use of the frequency band for a long time is not permitted.
  • the frequency band (for example, a wireless LAN channel) is also used for other wireless communication systems (for example, a wireless LAN). Therefore, when a signal of a cellular system is transmitted using the frequency band, There is also a possibility of collision with a signal of the other wireless communication system. Therefore, downlink data may not be transmitted / received properly.
  • transmission of the downlink data is controlled such that transmission of the downlink data is performed using a first frequency band shared between a plurality of wireless communication systems including a cellular system.
  • An apparatus comprising a control unit is provided. The control unit controls retransmission of the downlink data so that the downlink data is retransmitted using the second frequency band for the cellular system.
  • the downlink data is transmitted by the processor using the first frequency band shared between a plurality of wireless communication systems including the cellular system. And controlling the retransmission of the downlink data such that the downlink data is retransmitted using a second frequency band for the cellular system.
  • An apparatus in the retransmission control process according to the downlink data transmission performed by the base station using the first frequency band shared between a plurality of wireless communication systems including the cellular system.
  • An apparatus includes a control unit that performs processing on the reception side. The control unit performs processing on the reception side in the retransmission control process in response to retransmission of the downlink data performed by the base station using the second frequency band for the cellular system.
  • the processor retransmits the downlink data transmitted by the base station using the first frequency band shared among a plurality of wireless communication systems including the cellular system.
  • Processing on the receiving side in the control process, and processing on the receiving side in the retransmission control process in response to retransmission of the downlink data performed by the base station using the second frequency band for the cellular system And a method comprising:
  • the present disclosure it is possible to more reliably retransmit downlink data when a frequency band shared between a plurality of wireless communication systems is used in a cellular system.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment.
  • the 5 GHz band is also used in wireless LAN. Therefore, when the 5 GHz band is used in the cellular system, for example, the 5 GHz band is shared between the cellular system and the wireless LAN. Specifically, for example, a frequency band of 5 GHz band (for example, a wireless LAN channel) is used in a wireless LAN at a certain time and used in a cellular system at another time. Thereby, the frequency utilization efficiency of 5 GHz band improves.
  • the wireless LAN standards include IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad. These standards are characterized by adopting IEEE802.11 as a MAC layer.
  • C Use as a Component Carrier
  • the shared band will be used as a component carrier (CC), for example.
  • CC component carrier
  • the frequency band for the cellular system is used as PCC and the shared band is used as SCC.
  • the control signal and the data signal can be transmitted / received using the frequency band for the cellular system, and the data signal can be transmitted / received using the shared band.
  • fair sharing may be defined as “an opportunity to use a shared band in a wireless LAN and an opportunity to use the shared band in a cellular system are given as well”. That is, it can be regarded as fair sharing that the actual communication amount is not the same between the cellular system and the wireless LAN, but the communication opportunity is the same between the cellular system and the wireless LAN.
  • a shared band is used for a certain period in a cellular system, then the shared band is released from use of the cellular system for a similar period.
  • FIG. 1 is an explanatory diagram for explaining a frame format of IEEE 802.11.
  • DATA frames and ACK frames are basic frames.
  • the ACK frame is a frame for notifying the transmission side of the successful reception of the DATA frame when the DATA frame is correctly received.
  • wireless communication can be performed using only a DATA frame and an ACK frame.
  • two frames that is, an RTS (Request To Send) frame and a CTS (Clear To Send) frame are used.
  • the wireless LAN node confirms that the signal is not transmitted for a period of DIFS (DCF (Distributed Coordination Function) InterFrame Space) before transmitting the RTS frame. This is called carrier sense. If the nodes start transmitting signals at the same time when DIFS has passed, the signals will collide. Therefore, each node waits for a back-off time that is randomly set for each node, and transmits a signal if no signal is transmitted during the back-off time.
  • DIFS Distributed Coordination Function
  • a node cannot transmit a signal while detecting any signal.
  • an RTS frame and a CTS frame including a duration field for setting a value called NAV have been added.
  • a NAV is set based on the value included in the duration field. The node that has set the NAV refrains from transmitting signals over the period of the NAV.
  • the first node that transmits the DATA frame transmits the RTS frame.
  • other nodes located around the first node receive the RTS frame and acquire the value included in the duration field in the RTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the RTS frame to the end of the ACK frame.
  • the second node that receives the DATA frame transmits a CTS frame only SIFS (Short InterFrame Space) after the end of the RTS frame in response to the reception of the RTS frame.
  • SIFS Short InterFrame Space
  • other nodes located around the second node receive the CTS frame and acquire the value included in the duration field in the CTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the CTS frame to the end of the ACK frame.
  • another node that is not close to the first node but is close to the second node ie, a hidden node for the first node It is possible to prevent a signal from being transmitted during communication between one node and the second node.
  • the RTS frame includes a frame control field, a reception address field, a transmission address field, and an FCS (Frame Check Sequence) in addition to the duration field.
  • the CTS frame includes a frame control field, a reception address field, and an FCS.
  • DIFS and SIFS in the IEEE 802.11 series standard have the following lengths, for example.
  • FIG. 2 is an explanatory diagram for explaining an LTE frame format.
  • radio frame a unit of time called a radio frame is used.
  • One radio frame is 10 ms.
  • Each radio frame is identified by an SFN (System Frame Number) which is any one of 0 to 1023.
  • the radio frame includes 10 subframes identified by # 0 to # 9. Each subframe is 1 ms. Further, each subframe includes two slots, and each slot includes, for example, seven OFDM (Orthogonal Frequency Division Multiplexing) symbols. That is, each subframe includes 14 OFDM symbols.
  • the frame format shown in FIG. 2 is a downlink frame format, and the uplink frame format includes SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols instead of OFDM symbols.
  • CC component carriers
  • UE user equipment
  • Each CC is a band having a maximum width of 20 MHz.
  • carrier aggregation there are cases where CCs that are continuous in the frequency direction are used and CCs that are separated in the frequency direction are used.
  • carrier aggregation it is possible to set the CC to be used for each UE.
  • one of a plurality of CCs used by the UE is a special CC.
  • the one special CC is called a PCC (Primary Component Carrier).
  • the remainder of the plurality of CCs is called SCC (Secondary Component Carrier).
  • the PCC may vary from UE to UE.
  • the PCC is the most important CC among a plurality of CCs, it is desirable that the communication quality is the most stable CC. Note that which CC is used as a PCC actually depends on how it is mounted.
  • SCC is added to PCC. Further, the added existing SCC can be deleted.
  • the SCC is changed by deleting an existing SCC and adding a new SCC.
  • the CC used by the UE when establishing the connection Becomes the PCC for the UE. More specifically, the connection is established through a connection establishment procedure. In that case, the state of UE changes from RRC Idle to RRC Connected. Moreover, CC used for the said procedure turns into PCC for the said UE.
  • the above procedure is a procedure started from the UE side.
  • the PCC is changed by inter-frequency handover. More specifically, when a handover is instructed in the connection reconfiguration procedure, the PCC is handed over and the PCC is changed.
  • the above procedure is a procedure started from the network side.
  • the SCC is added to the PCC.
  • the SCC is attached to the PCC.
  • the SCC is subordinate to the PCC.
  • the addition of the SCC can be performed through a connection reconfiguration procedure. This procedure is a procedure started from the network side.
  • the SCC can be deleted.
  • the deletion of the SCC can be performed through a connection reconfiguration procedure. Specifically, a specific SCC specified in the message is deleted.
  • the above procedure is a procedure started from the network side.
  • deletion of all SCCs can be performed through a connection re-establishment procedure.
  • PCC Connection establishment procedure transmission / reception of non-access stratum (NAS) signaling, and transmission / reception of uplink control signal on physical uplink control channel (PUCCH) are not performed in SCC. This is done only by PCC.
  • NAS non-access stratum
  • PUCCH physical uplink control channel
  • radio link failure RLF
  • the subsequent connection re-establishment procedure are not performed by the SCC, but only by the PCC.
  • an ACK (Acknowledgement) for an SCC downlink signal is transmitted on the PUCCH of the PCC. Since the ACK is used for retransmission of data by an eNB (evolved Node B), the delay of the ACK is not allowed. Therefore, when the first eNB that uses the CC that is the PCC for the UE is different from the second eNB that uses the CC that is the SCC for the UE, the first eNB and the second eNB It is desirable that the delay in the backhaul between and is about 10 ms at most.
  • HARQ Hybrid automatic repeat request
  • the eNB transmits data and the UE receives the data.
  • CRC Cyclic Redundancy Check
  • the UE transmits NACK (Negative Acknowledgment) on the uplink.
  • NACK Negative Acknowledgment
  • the UE receives the NACK, it retransmits the data, and the UE receives the data.
  • ACK Acknowledgement
  • the eNB transmits new data.
  • SAW Stop And Wait
  • the SAW process is also called a HARQ process.
  • no new data is transmitted until the data is correctly received by the UE.
  • several HARQ processes exist simultaneously about one UE.
  • the timing at which ACK / NACK for downlink data is transmitted is not determined by the LTE standard, and can be said to be flexible. However, if retransmission is delayed, data delay occurs, so it is desirable that ACK / NACK be performed as soon as possible.
  • HARQ entity In the carrier aggregation case, there is a HARQ entity for each component carrier (CC). The HARQ entity handles multiple HARQ processes for the corresponding CC.
  • ACK / NACK is transmitted on PUCCH (Physical Uplink Control Channel).
  • PUCCH Physical Uplink Control Channel
  • the UE can transmit ACK / NACK on the PUCCH of the primary component carrier (PCC), but cannot transmit ACK / NACK on the PUCCH of the secondary component carrier (SCC). Therefore, ACK / NACK for downlink data transmitted using SCC is transmitted on PUCCH of PCC. Note that the retransmission of the downlink data itself that is transmitted using the SCC is performed using the SCC. Of course, the retransmission of the downlink data transmitted using the PCC is performed using the PCC.
  • PUCCH Physical Uplink Control Channel
  • FIG. 3 is an explanatory diagram for explaining an example of retransmission control in the case of carrier aggregation.
  • PCC and SCC are shown.
  • the eNB transmits downlink data using the PCC, and the UE transmits ACK / NACK for the downlink data using the PCC. If the eNB does not receive an ACK for the downlink data, the eNB retransmits the downlink data using the PCC. Also, the eNB transmits downlink data using the SCC, and the UE transmits ACK / NACK for the downlink data using the PCC instead of the SCC. When the eNB does not receive the ACK for the downlink data, the eNB retransmits the downlink data using the SCC.
  • the UE may send ACK / NACK using each of the two CCs.
  • ACK / NACK using each of the two CCs.
  • FIG. 4 is an explanatory diagram for explaining an example of retransmission control in the case of dual connectivity.
  • a first CC and a second CC are shown.
  • the UE supports dual connectivity, for example, using each of the first CC and the second CC as a PCC.
  • the eNB transmits downlink data using the first CC, and the UE transmits ACK / NACK for the downlink data using the first CC. If the eNB does not receive an ACK for the downlink data, the eNB retransmits the downlink data using the first CC. Also, the eNB transmits downlink data using the second CC, and the UE transmits ACK / NACK for the downlink data using the second CC. If the eNB does not receive an ACK for the downlink data, the eNB retransmits the downlink data using the second CC.
  • the same frequency band (for example, CC) is used for downlink data transmission and retransmission.
  • D Downlink control information
  • the eNB transmits downlink control information (Downlink Control Information: DCI) regarding the transmission / retransmission of the downlink data along with the transmission / retransmission of the downlink data.
  • DCI Downlink Control Information
  • each DCI is information according to one of a plurality of DCI formats. Hereinafter, an example of the DCI format will be described.
  • FIG. 5 is an explanatory diagram for explaining an example of the DCI format.
  • the DCI format has fields such as a carrier indicator (Carrier Indicator), resource block allocation (Resource Block Allocation), HARQ process number (HARQ Process Number), and NDI (New Data Indicator).
  • the carrier indicator field (CIF) is a field for indicating a component carrier in the case of carrier aggregation.
  • the resource block allocation field is a field for indicating a resource block allocated to the UE (that is, a resource block allocated for transmission of downlink data).
  • the HARQ process number field is a field for indicating a HARQ process for downlink data.
  • the NDI field is a field for indicating whether resource allocation is for transmission of new data or retransmission.
  • FIG. 6 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to the embodiment of the present disclosure.
  • the system 1 includes a base station 100 and a terminal device 200.
  • Base station 100 is a base station of a cellular system.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 100 performs radio communication using the above-described cellular system frequency band (hereinafter referred to as “cellular band”).
  • cellular band is a component carrier (CC) for the cellular system.
  • CC component carrier
  • the cellular band is a licensed band or a frequency band included in the license band.
  • the base station 100 further uses a frequency band shared between a plurality of wireless communication systems including the cellular system (hereinafter referred to as "shared band"). Perform wireless communication.
  • shared band a frequency band shared between a plurality of wireless communication systems including the cellular system
  • the plurality of wireless communication systems include a wireless LAN
  • the shared band is a wireless LAN channel.
  • the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the shared band is not limited to this example, and may be another frequency band shared by a plurality of wireless communication systems.
  • the shared band can be said to be an unlicensed band or a frequency band included in the unlicensed band.
  • the base station 100 performs wireless communication with a terminal device (for example, the terminal device 200).
  • the base station 100 performs wireless communication with a terminal device located in the cell 10 of the base station 100. More specifically, for example, the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the terminal device 200 performs wireless communication with a base station (for example, the base station 100). For example, when the terminal device 200 is located in a cell of a base station (for example, the cell 10 of the base station 100), the terminal device 200 performs wireless communication with the base station. More specifically, for example, the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • a base station for example, the base station 100
  • the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • the terminal device 200 performs wireless communication with the base station 100 using the cellular band.
  • the terminal device 200 further performs wireless communication with the base station 100 using the shared band.
  • the terminal device 200 supports carrier aggregation. That is, the terminal device 200 can perform wireless communication using two or more component carriers (CC) simultaneously.
  • CC component carriers
  • FIG. 7 is a block diagram illustrating an exemplary configuration of the base station 100 according to the embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the wireless communication unit 120 transmits and receives signals in a cellular band (that is, a frequency band for a cellular system) and / or a shared band (that is, a frequency band shared between a plurality of wireless communication systems).
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • the storage unit 140 temporarily or permanently stores programs and data for the operation of the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes an information acquisition unit 151 and a control unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • the information acquisition unit 151 acquires information for the control unit 153. For example, the information acquisition unit 151 acquires downlink data.
  • Control unit 153 The control unit 153 controls transmission of downlink data by the base station 100.
  • FIG. 8 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • the antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 transmits and receives signals in a cellular band (that is, a frequency band for a cellular system) and / or a shared band (that is, a frequency band shared among a plurality of wireless communication systems).
  • the radio communication unit 120 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • the storage unit 230 temporarily or permanently stores a program and data for the operation of the terminal device 200.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes an information acquisition unit 241 and a control unit 243. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • the information acquisition unit 241 acquires information for the control unit 243.
  • Control unit 243 The control unit 243 performs processing on the receiving side in the retransmission control process.
  • the retransmission control process is a HARQ process.
  • Base station 100 transmits downlink data using a shared band (that is, a frequency band shared among a plurality of wireless communication systems including a cellular system).
  • the control unit 153 controls the transmission of the downlink data so that the downlink data is transmitted using the shared band.
  • the base station 100 retransmits the downlink data using a cellular band (that is, a frequency band for a cellular system).
  • the control unit 153 controls the retransmission of the downlink data so that the downlink data is retransmitted using the cellular band.
  • the base station 100 transmits downlink data using the shared band and retransmits the downlink data using the cellular band.
  • the downlink data is downlink data to the terminal device 200.
  • the downlink data is a transport block.
  • the downlink data is not limited to this example, and may be other data.
  • the base station 100 transmits the first bit sequence generated by encoding the downlink data in the transmission of the downlink data, and transmits the first bit string by the encoding of the downlink data in the retransmission of the downlink data.
  • the generated second bit string is transmitted.
  • the second bit string may be the same bit string as the first bit string, or may be a bit string different from the first bit string.
  • chase combining is applied in the HARQ process
  • the second bit string may be the same bit string as the first bit string.
  • incremental redundancy is applied in the HARQ process, and the second bit string may be a bit string different from the first bit string.
  • the cellular band and the shared band are component carriers (CC) for the terminal device 200, respectively.
  • CC component carriers
  • the cellular band is a license band or a frequency band included in the license band, it can be called an L-CC (Licensed Component Carrier).
  • the shared band is an unlicensed band or a frequency band included in the unlicensed band, it can be called a U-CC (Unlicensed Component Carrier).
  • the shared band is a secondary component carrier (SCC) for the terminal device 200
  • the cellular band is a primary component carrier (PCC) or SCC for the terminal device 200. That is, the terminal device 200 transmits the downlink data using the shared band that is the SCC, and retransmits the downlink data using the cellular band that is the PCC or the SCC.
  • SCC secondary component carrier
  • PCC primary component carrier
  • the shared band is a channel of a wireless LAN. More specifically, for example, the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the shared band is not limited to this example, and may be another frequency band shared by a plurality of wireless communication systems.
  • FIG. 9 is an explanatory diagram for describing an example of transmission and retransmission of downlink data according to the embodiment of the present disclosure.
  • L-CC cellular band
  • U-CC shared band
  • the base station 100 transmits downlink data using the L-CC.
  • the base station 100 does not receive an ACK for the downlink data
  • the base station 100 retransmits the downlink data using the L-CC.
  • the base station 100 transmits downlink data using the U-CC.
  • the base station 100 does not receive an ACK for the downlink data
  • the base station 100 retransmits the downlink data using the L-CC instead of the U-CC. In this way, downlink data is transmitted using U-CC, and retransmission of the downlink data is performed using L-CC.
  • control unit 153 controls transmission of the downlink data so that downlink data is transmitted using the shared band. .
  • control unit 153 controls transmission of the downlink data by allocating radio resources (for example, resource blocks) of the shared band to the terminal device 200 for transmission of the downlink data.
  • radio resources for example, resource blocks
  • control unit 153 controls retransmission of the downlink data so that the downlink data is retransmitted using the cellular band.
  • control unit 153 controls retransmission of the downlink data by assigning radio resources (for example, resource blocks) of the cellular band to the terminal device 200 for retransmission of the downlink data.
  • radio resources for example, resource blocks
  • the base station 100 uses the cellular band without a period restriction and transmits the downlink (the transmission was performed using the shared band). Resend data. That is, the control unit 153 controls the retransmission of the downlink data so that the downlink data is retransmitted using the cellular band without any restriction on the period.
  • the base station 100 retransmits the downlink data (transmitted using the shared band) using the cellular band within a limited period. May be. That is, the control unit 153 may control the retransmission of the downlink data so that the downlink data is retransmitted using the cellular band within a limited period.
  • the limited period may be a period corresponding to the end of use of the shared band by the base station 100.
  • the base station 100 performs wireless communication using the shared band for a certain period, and then releases the shared band for other wireless communication systems.
  • the base station 100 performs wireless communication using the shared band for a certain period, and then releases the shared band for other wireless communication systems.
  • FIG. 10 is an explanatory diagram for explaining an example of use of the shared band by the base station 100.
  • the U-CC shared band
  • the base station 100 secures a U-CC (wireless LAN channel) through carrier sense, and performs wireless communication using the U-CC over a period 31. Thereafter, the base station 100 releases the U-CC for at least the period 33. That is, the base station 100 does not use the U-CC for at least the period 33.
  • the period 31 and the period 33 have the same length.
  • the period 31 and the period 33 are periods of 500 ms. This maintains fairness between the cellular system and the wireless LAN.
  • the end point of use of the shared band by the base station 100 is determined according to the start point of use of the shared band. That is, the end point can be predicted.
  • the limited period may be a period starting from a predetermined time before the end point.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 11 is an explanatory diagram for explaining a first example of a limited period during which downlink data is retransmitted using a cellular band.
  • the base station 100 performs wireless communication using a U-CC (shared band) that is a wireless LAN channel over a period 31, and then performs the communication over at least a period 33. Wireless communication is not performed using U-CC.
  • the base station 100 determines that the L- CC (cellular band) is used to retransmit the downlink data transmitted using the U-CC.
  • the base station 100 uses the U-CC to retransmit downlink data transmitted using the U-CC within a period not included in the period 37 of the period 31. Do.
  • the limited period may be a period starting from the end point.
  • the limited period may be a period starting from the end point.
  • FIG. 12 is an explanatory diagram for explaining a second example of a limited period during which downlink data is retransmitted using a cellular band.
  • the base station 100 performs wireless communication using a U-CC (shared band), which is a channel of the wireless LAN, over a period 31, and then performs the communication over at least a period 33. Wireless communication is not performed using U-CC.
  • the base station 100 uses the L-CC instead of the U-CC within the period 39 starting from the end point of use of the U-CC (that is, the end point of the period 31).
  • the downlink data transmitted using the U-CC is retransmitted. Note that, within the period 31, the base station 100 retransmits the downlink data transmitted using the U-CC using the U-CC.
  • the base station 100 retransmits downlink data using the cellular band instead of the shared band within a period corresponding to the end of use of the shared band by the base station 100. Also good. As a result, for example, it is possible to avoid a situation in which the base station 100 cannot use the shared band and cannot retransmit the downlink data. Further, for example, compared to a case where the cellular band is used for all retransmissions of downlink data transmitted using the shared band, consumption of radio resources in the cellular band is suppressed.
  • the limited period is not limited to the period corresponding to the end point.
  • the limited period may be another period.
  • the terminal apparatus 200 transmits ACK / NACK for the downlink data. For example, it is transmitted using the PCC of the ACK / NACK terminal device 200.
  • the shared band is an SCC and the cellular band is a PCC.
  • ACK / NACK for the downlink data is transmitted using the cellular band.
  • FIG. 13 is an explanatory diagram for explaining a first example of transmission of ACK / NACK for downlink data.
  • an L-CC cellular band
  • a U-CC shared band
  • the terminal device 200 transmits ACK / NACK for downlink data transmitted by the base station 100 using the L-CC using the L-CC (PCC).
  • the terminal device 200 transmits ACK / NACK for downlink data transmitted by the base station 100 using the U-CC using the L-CC (PCC).
  • the base station 100 retransmits downlink data transmitted by the base station 100 using the U-CC using the L-CC.
  • the shared band and the cellular band may be SCC, and the other cellular band may be PCC.
  • ACK / NACK for the downlink data may be transmitted using the other cellular band.
  • FIG. 14 is an explanatory diagram for explaining a second example of transmission of ACK / NACK for downlink data.
  • a first L-CC first cellular band
  • second L-CC second cellular band
  • U-CC shared band
  • the terminal device 200 transmits ACK / NACK for downlink data transmitted by the base station 100 using the second L-CC using the first L-CC (PCC).
  • the terminal apparatus 200 transmits ACK / NACK for downlink data transmitted by the base station 100 using the U-CC, using the first L-CC (PCC).
  • the base station 100 retransmits downlink data transmitted by the base station 100 using the U-CC using the second L-CC.
  • the base station 100 transmits downlink data using the shared band, and retransmits the downlink data using the cellular band.
  • downlink data can be retransmitted more reliably.
  • a situation in which the base station 100 cannot use the shared band and cannot retransmit the downlink data is avoided.
  • collision with a signal of another wireless communication system is avoided.
  • the base station 100 transmits downlink data using the shared band, and retransmits the downlink data using the cellular band. Further, for example, the base station 100 transmits downlink control information (DCI) for the retransmission of the downlink data.
  • DCI downlink control information
  • the control unit 153 controls transmission of the DCI for the retransmission of the downlink data.
  • the DCI indicates the shared band as a shared frequency band used for transmitting the downlink data. Accordingly, for example, in response to the retransmission of the downlink data performed by the base station 100 using the cellular band, the terminal apparatus transmits the retransmission in which the retransmission is performed using the shared band. It is possible to recognize that the link data is being retransmitted.
  • the terminal device since transmission and retransmission of downlink data are usually performed using the same frequency band, it is not assumed that different frequency bands are used for transmission and retransmission of downlink data. . Therefore, if no information is provided to the terminal device, the terminal device performs transmission of the downlink data performed using the shared band and retransmission of the downlink data performed using the cellular band. , Can not be associated. Therefore, by indicating the shared band as the shared frequency band used for the transmission of the downlink data in the DCI for the retransmission of the downlink data, the terminal device can The retransmission and the transmission for the downlink data can be associated. That is, it becomes possible for the terminal device to recognize that the retransmission is a retransmission of the downlink data transmitted using the shared band in response to the retransmission.
  • the DCI for the retransmission of the downlink data is information according to a predetermined format. That is, the DCI for the retransmission is information according to a predetermined DCI format.
  • the predetermined format includes a field for indicating a shared frequency band used for transmitting downlink data (hereinafter referred to as a "shared band field"). ").
  • the shared band field includes any of two or more bit pattern candidates each corresponding to a shared frequency band.
  • the shared band field is a 2-bit field, and the shared band field includes any one of four bit pattern candidates (00, 01, 10, 00) respectively corresponding to the shared frequency band. It is.
  • the control unit 153 notifies the terminal device of two or more bit pattern candidates included in the shared band field and a shared frequency band corresponding to each of the two or more bit patterns.
  • the control unit 153 broadcasts system information indicating the two or more bit pattern candidates and the shared frequency band.
  • the control unit 153 may notify the terminal device 200 of the two or more bit pattern candidates and the shared frequency band by signaling to the individual terminal device 200. Thereby, for example, the terminal device 200 can specify a specific shared frequency band from the bit pattern included in the shared band field.
  • the shared band field is a U-CC indicator field for indicating the U-CC used for downlink data transmission.
  • the CIF in the DCI format only indicates which frequency band the DCI is for. In other words, the CIF in the DCI format indicates which frequency band is used for transmission / retransmission of downlink data that is the target of DCI. Therefore, it should be noted that CIF cannot be used in place of the shared band field (eg, U-CC indicator field). Specifically, when the downlink data is transmitted using the shared band and the downlink data is retransmitted using the cellular band, the DCI for the retransmission is the CIF, It indicates the cellular band and cannot indicate the shared band.
  • the shared band field eg, U-CC indicator field
  • the predetermined format has a field for indicating a retransmission control process for downlink data (hereinafter referred to as "retransmission control process field").
  • the retransmission control process is a HARQ process
  • the retransmission control process field is a HARQ process number field.
  • the terminal device 200 may specify a retransmission control process for the downlink data according to the retransmission for the downlink data performed by the base station 100 using the cellular band. It becomes possible.
  • the predetermined format does not have a field for indicating whether the resource allocation is for transmission of new data or for retransmission. More specifically, for example, the predetermined format does not include an NDI (New Data Indicator) field.
  • NDI New Data Indicator
  • the terminal device 200 determines that the DCI resource allocation is for retransmission based on the fact that the DCI is information according to the predetermined format (that is, the format including the shared band field). be able to.
  • FIG. 15 is an explanatory diagram for explaining an example of a predetermined DCI format.
  • the DCI format is shown.
  • the DCI format has a HARQ process number field and a U-CC indicator field.
  • the HARQ process number field is a field for indicating a HARQ process for downlink data
  • the U-CC indicator field is a field for indicating a U-CC used for transmission of downlink data.
  • the DCI format may further include other fields such as carrier indicator and resource block assignment.
  • the DCI format does not have an NDI field.
  • the base station 100 transmits downlink data using the shared band, and retransmits the downlink data using the cellular band. Do. Also, the base station 100 transmits DCI for the retransmission of the downlink data using any frequency band.
  • the base station 100 transmits the DCI for the retransmission of the downlink data using the cellular band.
  • the base station 100 transmits the DCI for the retransmission of the downlink data using the cellular band.
  • FIG. 16 is an explanatory diagram for describing a first example of DCI transmission for retransmission of downlink data.
  • L-CC cellular band
  • U-CC shared band
  • the base station 100 transmits downlink data using the U-CC, and retransmits the downlink data using the L-CC.
  • the base station 100 transmits DCI for the retransmission of the downlink data using the L-CC.
  • the DCI U-CC indicator indicates the U-CC.
  • the DCI for the retransmission of the downlink data is transmitted using the cellular band. Thereby, for example, the DCI is transmitted more reliably as in the downlink data.
  • the base station 100 may transmit the DCI for the retransmission of the downlink data using another cellular band different from the cellular band. That is, cross carrier scheduling may be performed.
  • cross carrier scheduling may be performed.
  • FIG. 17 is an explanatory diagram for describing a second example of DCI transmission for retransmission of downlink data.
  • a first L-CC first cellular band
  • a second L-CC second L-CC
  • a U-CC shared band
  • the base station 100 transmits downlink data using the U-CC, and retransmits the downlink data using the second L-CC.
  • the base station 100 transmits the DCI for the retransmission of the downlink data using the first L-CC. That is, cross carrier scheduling is performed.
  • the DCI carrier indicator (CI) indicates the second L-CC
  • the DCI U-CC indicator indicates the U-CC.
  • the DCI for the retransmission of the downlink data may be transmitted using another cellular band. Thereby, for example, the DCI is transmitted more reliably as in the downlink data.
  • the base station 100 may transmit the DCI for the retransmission of the downlink data using the shared band. That is, cross carrier scheduling may be performed.
  • cross carrier scheduling may be performed.
  • FIG. 18 is an explanatory diagram for explaining a third example of DCI transmission for retransmission of downlink data.
  • L-CC cellular band
  • U-CC shared band
  • the base station 100 transmits downlink data using the U-CC, and retransmits the downlink data using the L-CC.
  • the base station 100 transmits DCI for the retransmission of the downlink data using the U-CC. That is, cross carrier scheduling is performed.
  • the DCI carrier indicator (CI) indicates the L-CC
  • the DCI U-CC indicator indicates the U-CC.
  • (C) Control Example As described above, the base station 100 transmits DCI for the retransmission of the downlink data, and the control unit 153 controls transmission of the DCI for the retransmission of the downlink data. To do.
  • control unit 153 controls the transmission of the DCI by performing the DCI generation and / or the DCI transmission process (for example, mapping to a radio resource).
  • the terminal device 200 (the control unit 243) responds to the transmission of downlink data performed by the base station 100 using a shared band (that is, a frequency band shared among a plurality of wireless communication systems including a cellular system). Thus, processing on the receiving side in the retransmission control process is performed.
  • a shared band that is, a frequency band shared among a plurality of wireless communication systems including a cellular system.
  • the terminal device 200 uses the cellular band (that is, the frequency band for the cellular system) in the retransmission control process according to the retransmission of the downlink data performed by the base station 100. Performs processing on the receiving side.
  • the cellular band that is, the frequency band for the cellular system
  • the retransmission control process is a HARQ process.
  • the retransmission control process is a HARQ process of the HARQ entity in the shared band.
  • the above process on the receiving side includes an error check of the received bit string and an ACK / NACK transmission process.
  • the above-described processing on the reception side includes synthesis of received bit strings (for example, chase combining or incremental redundancy).
  • (B) Identification of retransmission control process For example, the terminal device 200 (control unit 243) identifies the retransmission control process based on the DCI for the retransmission of the downlink.
  • the DCI indicates the shared band as a shared frequency band used for transmission of the downlink data.
  • the terminal device 200 transmits the retransmission using the shared band. It becomes possible to recognize that it is retransmission of downlink data.
  • the DCI indicates the retransmission control process as a retransmission control process for the downlink data.
  • the terminal device 200 can specify the retransmission control process for the downlink data.
  • the downlink data can be appropriately processed in the retransmission control process.
  • the DCI is information according to a predetermined format.
  • the predetermined format is as described in relation to the base station 100. Therefore, the overlapping description is omitted here.
  • the terminal device 200 determines that the DCI conforms to the predetermined format (that is, a format having a shared band field and a retransmission control process field). Therefore, it is determined that the DCI resource allocation is for retransmission.
  • the predetermined format that is, a format having a shared band field and a retransmission control process field. Therefore, it is determined that the DCI resource allocation is for retransmission.
  • the DCI does not have to include NDI (or similar information)
  • the number of bits of the DCI can be further reduced.
  • radio resources required for DCI transmission can be saved.
  • the terminal device 200 When the DCI is information according to a format other than the predetermined format, the terminal device 200 (the control unit 243) transmits the new data based on the NDI of the DCI. To determine whether it is for retransmission or for retransmission.
  • FIG. 19 is a flowchart illustrating an example of a schematic flow of a process of the base station 100 according to the embodiment of the present disclosure. This process is a process that focuses on transmission and retransmission of downlink data.
  • the information acquisition unit 151 acquires downlink data (S301).
  • the base station 100 transmits DCI for the transmission of the downlink data (S303). Further, the base station 100 transmits the downlink data using a shared band (that is, a frequency band shared among a plurality of wireless communication systems including a cellular system) (S305).
  • the control unit 153 controls transmission of the DCI and transmission of the downlink data.
  • step S301 If the ACK for the downlink data is received (S307: YES), the process returns to step S301.
  • the base station 100 transmits DCI for retransmission of the downlink data (S309). Further, the base station 100 retransmits the downlink data using a cellular band (that is, a frequency band for the cellular system) (S311).
  • the control unit 153 controls transmission of the DCI and retransmission of the downlink data.
  • step S313 If the ACK for the downlink data is received (S313: YES), the process returns to step S301. Otherwise (S313: NO), the process returns to step S309.
  • FIG. 20 is a flowchart illustrating an example of a schematic flow of a first process of the terminal device 200 according to the embodiment of the present disclosure.
  • the first process is a process that focuses on downlink data that is transmitted using the shared band (that is, downlink data that is retransmitted using the cellular band).
  • the terminal device 200 (the control unit 243) responds to the transmission of downlink data performed by the base station 100 using a shared band (that is, a frequency band shared among a plurality of wireless communication systems including a cellular system). Then, processing on the receiving side in the retransmission control process is performed (S321).
  • a shared band that is, a frequency band shared among a plurality of wireless communication systems including a cellular system.
  • step S323 If the terminal device 200 has transmitted an ACK for the downlink data (S323: YES), the process returns to step S321.
  • the terminal device 200 responds to the retransmission of the downlink data performed by the base station 100 using the cellular band (that is, the frequency band for the cellular system). Then, processing on the receiving side in the retransmission control process is performed (S323). Then, the process returns to step S323.
  • the cellular band that is, the frequency band for the cellular system.
  • FIG. 21 is a flowchart illustrating an example of a schematic flow of a second process of the terminal device 200 according to the embodiment of the present disclosure.
  • the second process is a process that focuses on downlink data that is transmitted / retransmitted using the cellular band.
  • the terminal device 200 acquires DCI for downlink data transmission / retransmission using the cellular band (S331).
  • the DCI is information according to a predetermined format having a shared band field (for example, U-CC indicator field) and a retransmission control process field (for example, HARQ process number field) (S333: YES).
  • the terminal device 200 determines that the DCI resource allocation is for retransmission of downlink data transmitted using the shared band (S335). Further, the terminal device 200 (the control unit 243) specifies a retransmission control process for the downlink data based on the shared band field information and the retransmission control process field information in the DCI (S337). . Then, the terminal device 200 (the control unit 243) performs processing on the receiving side in the retransmission control process (S339). Then, the process ends.
  • a shared band field for example, U-CC indicator field
  • a retransmission control process field for example, HARQ process number field
  • the terminal device 200 when the DCI is not information according to the predetermined format (S333: NO), the terminal device 200 (control unit 243) transmits the DCI resource using the shared band. It is determined that the received downlink data is not for retransmission (S341). In other words, the terminal apparatus 200 (the control unit 243) determines that the DCI resource allocation is for retransmission of a downlink transmitted using the cellular band or transmission of new downlink data. To do. Further, the terminal device 200 (the control unit 243) specifies a retransmission control process for the downlink data based on information in the retransmission control process field in the DCI (S343). Then, the terminal device 200 (the control unit 243) performs processing on the receiving side in the retransmission control process (S345). Then, the process ends.
  • steps S331 to S339 in the second process correspond to step S325 in the first process.
  • one base station transmits downlink data using a shared band, and retransmits the downlink data using a cellular band. I do.
  • carrier aggregation (for example, Inter-eNB Carrier Aggregation) is performed between the first base station and the second base station. More specifically, for example, the terminal device performs wireless communication with the first base station using the cellular band and performs wireless communication with the second base station using the shared band. . In this case, the second base station transmits downlink data using the shared band, and the first base station retransmits the downlink data using the cellular band.
  • the shared band is an SCC for the terminal device 200
  • the cellular band is an SCC or PCC for the terminal device 200.
  • the first base station is a macro cell base station
  • the second base station is a small cell base station overlapping the macro cell.
  • FIG. 22 is an explanatory diagram for describing an example of a base station according to a modification of the embodiment of the present disclosure.
  • a base station 400 is a base station of macro cell 40
  • base station 500 is a base station of small cell 50.
  • the terminal device 200 performs wireless communication with the base station 400 using the cellular band, and performs wireless communication with the base station 500 using the shared band.
  • the base station 500 transmits downlink data to the terminal device 200 using the shared band, and the base station 400 retransmits the downlink data using the cellular band.
  • Each of the first base station and the second base station includes an antenna unit, a wireless communication unit, a network communication unit, a storage unit, and a processing unit, for example, as with the base station 100.
  • the processing unit includes an information acquisition unit and a control unit, as with the processing unit 150.
  • (Technical features related to the second base station) (A) Transmission of downlink data The second base station transmits downlink data using the shared band. The control unit of the second base station controls transmission of the downlink data so that the downlink data is transmitted using the shared band.
  • control unit controls transmission of the downlink data by allocating radio resources (for example, resource blocks) in the shared band to the terminal device 200 for transmission of the downlink data.
  • radio resources for example, resource blocks
  • (B) Retransmission of downlink data For example, the first base station retransmits the downlink data using the cellular band.
  • the control unit of the second base station controls the transmission of the downlink data so that the downlink data is transmitted using the cellular band.
  • control unit controls retransmission of the downlink data by requesting the first base station to retransmit the downlink data. Further / or the control unit provides the first base station with the downlink data or data generated from the downlink data (for example, data generated by encoding the downlink data). Thus, retransmission of the downlink data is controlled. As a result, the first base station retransmits the downlink data using the cellular band.
  • the control unit of the second base station controls transmission of DCI for the retransmission of the downlink data.
  • the first base station transmits the DCI.
  • the control unit controls transmission of the DCI by providing information (for example, HARQ process number) for generating the DCI to the other base station.
  • the second base station may transmit the DCI.
  • the control unit may control transmission of the DCI by performing generation of the DCI and / or transmission processing of the DCI (for example, mapping to a radio resource).
  • (Technical features related to the first base station) (Technical features related to the first base station)
  • (A) Retransmission of downlink data For example, the first base station retransmits the downlink data using the cellular band.
  • the control unit of the first base station controls retransmission of the downlink data so that the downlink data is retransmitted using the cellular band.
  • control unit controls retransmission of the downlink data by assigning radio resources (for example, resource blocks) in the cellular band to the terminal device 200 for retransmission of the downlink data.
  • radio resources for example, resource blocks
  • the first base station retransmits the downlink data using the shared band.
  • the information acquisition unit of the first base station acquires the downlink data or data generated from the downlink data (for example, data generated by encoding the downlink data). .
  • the control unit of the first base station controls transmission of DCI for the retransmission of the downlink data.
  • the first base station transmits the DCI.
  • the control unit controls the transmission of the DCI by performing the DCI generation and / or the DCI transmission process (for example, mapping to a radio resource).
  • the base station 100 (or the base station 400 or the base station 500) may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 (or the base station 400 or the base station 500) may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station 100 (or the base station 400 or the base station 500) includes a main body (also referred to as a base station apparatus) that controls wireless communication and one or more RRHs (Remote Radio Heads) arranged at a location different from the main body. And may be included. Further, various types of terminals to be described later may operate as the base station 100 (or the base station 400 or the base station 500) by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 (or the base station 400 or the base station 500) may be realized in a base station apparatus or a module for the base station apparatus.
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 23 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 23, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 23 shows an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 23, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 23, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 23 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the control unit 153 (and the information acquisition unit 151) described with reference to FIG. 7 may be implemented in the wireless communication interface 825.
  • at least a part of the control unit 153 (and the information acquisition unit 151) may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the control unit 153 (and the information acquisition unit 151) is mounted in the module. May be.
  • the module is a program for causing the processor to function as the control unit 153 (and information acquisition unit 151) (in other words, a program for causing the processor to execute the operation of the control unit 153 (and information acquisition unit 151)).
  • the program may be executed.
  • a program for causing the processor to function as the control unit 153 (and the information acquisition unit 151) is installed in the eNB 800, and the radio communication interface 825 (for example, the BB processor 826) and / or the controller 821 executes the program. May be.
  • the eNB 800, the base station device 820, or the module may be provided as a device including the control unit 153 (and information acquisition unit 151), and the processor functions as the control unit 153 (and information acquisition unit 151).
  • a program may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the control units (and information acquisition units) of the base station 400 and the base station 500 described with reference to FIG. 22 are the same as the control unit 153 (and information acquisition unit 151).
  • the radio communication unit 120 described with reference to FIG. 7 may be implemented in the radio communication interface 825 (for example, the RF circuit 827) in the eNB 800 illustrated in FIG. Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823. Regarding these points, the antenna unit, the wireless communication unit, and the network communication unit of each of the base station 400 and the base station 500 described with reference to FIG. It is the same.
  • FIG. 24 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 24, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 24 shows an example in which the eNB 830 has a plurality of antennas 840, but the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 23 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 24 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 24, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 24 shows an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • the control unit 153 (and the information acquisition unit 151) described with reference to FIG. 7 may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863.
  • at least a part of the control unit 153 (and the information acquisition unit 151) may be mounted in the controller 851.
  • the eNB 830 includes a part of the wireless communication interface 855 (for example, the BB processor 856) or a module including the controller 851, and the controller 153 (and the information acquisition unit 151) is mounted in the module. May be.
  • the module is a program for causing the processor to function as the control unit 153 (and information acquisition unit 151) (in other words, a program for causing the processor to execute the operation of the control unit 153 (and information acquisition unit 151)).
  • the program may be executed.
  • a program for causing a processor to function as the control unit 153 (and the information acquisition unit 151) is installed in the eNB 830, and the wireless communication interface 855 (for example, the BB processor 856) and / or the controller 851 executes the program. May be.
  • the eNB 830, the base station device 850, or the module may be provided as a device including the control unit 153 (and information acquisition unit 151), and the processor functions as the control unit 153 (and information acquisition unit 151).
  • a program may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the control units (and information acquisition units) of the base station 400 and the base station 500 described with reference to FIG. 22 are the same as the control unit 153 (and information acquisition unit 151).
  • the radio communication unit 120 described with reference to FIG. 7 may be implemented in the radio communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853. Regarding these points, the antenna unit, the wireless communication unit, and the network communication unit of each of the base station 400 and the base station 500 described with reference to FIG. It is the same.
  • FIG. 25 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 25 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 25 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, memory 902, storage 903, external connection interface 904, camera 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, and auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 25 via a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the control unit 243 (and the information acquisition unit 241) described with reference to FIG. 8 may be implemented in the wireless communication interface 912.
  • the smartphone 900 illustrated in FIG. at least a part of the control unit 243 (and the information acquisition unit 241) may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the control unit 243 (and information acquisition) in the module. Part 241) may be implemented.
  • the module is a program for causing the processor to function as the control unit 243 (and the information acquisition unit 241) (in other words, a program for causing the processor to execute the operation of the control unit 243 (and the information acquisition unit 241)).
  • the program may be executed.
  • a program for causing the processor to function as the control unit 243 (and the information acquisition unit 241) is installed in the smartphone 900, and the wireless communication interface 912 (for example, the BB processor 913), the processor 901, and / or the auxiliary controller is installed. 919 may execute the program.
  • the smartphone 900 or the module may be provided as a device including the control unit 243 (and the information acquisition unit 241), and a program for causing the processor to function as the control unit 243 (and the information acquisition unit 241) is provided. May be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • FIG. 26 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 26 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 26 shows an example in which the car navigation apparatus 920 includes a plurality of antennas 937. However, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 26 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the control unit 243 (and the information acquisition unit 241) described with reference to FIG.
  • at least a part of the control unit 243 (and the information acquisition unit 241) may be implemented in the processor 921.
  • the car navigation device 920 includes a module including a part (for example, the BB processor 934) or all and / or the processor 921 of the wireless communication interface 933, and the control unit 243 (and the information acquisition unit 241) in the module. May be implemented.
  • the module is a program for causing the processor to function as the control unit 243 (and the information acquisition unit 241) (in other words, a program for causing the processor to execute the operation of the control unit 243 (and the information acquisition unit 241)).
  • the program may be executed.
  • a program for causing the processor to function as the control unit 243 (and the information acquisition unit 241) is installed in the car navigation device 920, and the wireless communication interface 933 (for example, the BB processor 934) and / or the processor 921 The program may be executed.
  • the car navigation device 920 or the module may be provided as a device including the control unit 243 (and the information acquisition unit 241), and the processor functions as the control unit 243 (and the information acquisition unit 241).
  • a program may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the control unit 243 (and the information acquisition unit 241). The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station 100 transmits downlink data using a shared band (that is, a frequency band shared among a plurality of wireless communication systems including a cellular system).
  • a control unit 153 that controls transmission of the downlink data is provided.
  • the controller 153 controls retransmission of the downlink data so that the downlink data is retransmitted using a cellular band (that is, the frequency band for the cellular system).
  • the terminal device 200 uses the shared band (that is, the frequency band shared among a plurality of wireless communication systems including the cellular system), and is performed by the base station.
  • a control unit 243 that performs processing on the receiving side in the retransmission control process in response to transmission of link data is provided.
  • the control unit 243 performs processing on the reception side in the retransmission control process according to the retransmission of the downlink data performed by the base station using the cellular band (that is, the frequency band for the cellular system).
  • a shared band that is, a frequency band shared between a plurality of wireless communication systems
  • downlink data can be retransmitted more reliably.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example.
  • the cellular system may be compliant with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a processor for example, a CPU, a DSP, or the like included in a device (for example, a base station, a base station device, a module for a base station device, or a terminal device, or a module for a terminal device) of the present specification.
  • a device for example, a base station, a base station device, a module for a base station device, or a terminal device, or a module for a terminal device of the present specification.
  • a recording medium on which the computer program is recorded may be provided.
  • An apparatus for example, a base station, a base station apparatus, a module for a base station apparatus, or a terminal apparatus
  • a memory for storing the computer program and one or more processors capable of executing the computer program Or a module for a terminal device.
  • a method including the operation of the components (for example, a control unit) of the apparatus is also included in the technology according to the present disclosure.
  • the control unit controls transmission of downlink control information for the retransmission of the downlink data; The downlink control information indicates the first frequency band as a shared frequency band used for transmission of the downlink data.
  • the downlink control information is information according to a predetermined format,
  • the predetermined format includes a field for indicating a shared frequency band used for transmission of the downlink data.
  • the control unit notifies the terminal device of two or more bit pattern candidates included in the field and a shared frequency band corresponding to each of the two or more bit patterns.
  • Equipment. (5) The apparatus according to (3) or (4), wherein the predetermined format includes a field for indicating a retransmission control process for the downlink data.
  • the retransmission control process is a HARQ (Hybrid Automatic Repeat Request) process,
  • the field for indicating the retransmission control process is a HARQ process number field;
  • the control unit controls retransmission of the downlink data such that retransmission of the downlink data is performed using the second frequency band within a limited period.
  • the apparatus according to (8), wherein the limited period is a period corresponding to an end point of use of the second frequency band.
  • the apparatus according to (9), wherein the limited period is a period starting from a predetermined time before the end time.
  • the limited period is a period starting from the end point.
  • the downlink data is downlink data to a terminal device that supports carrier aggregation,
  • the first frequency band is a secondary component carrier for the terminal device,
  • the second frequency band is a primary component carrier or a secondary component carrier for the terminal device.
  • the apparatus according to any one of (1) to (11).
  • the apparatus according to any one of (1) to (12), wherein the first frequency band is a channel of a wireless local area network (LAN).
  • LAN wireless local area network
  • Controlling transmission of the downlink data such that transmission of the downlink data is performed using a first frequency band shared between a plurality of wireless communication systems including a cellular system; Controlling the retransmission of the downlink data such that the downlink data is retransmitted using a second frequency band for the cellular system; Including methods.
  • a control unit that performs processing on the receiving side in a retransmission control process in response to transmission of downlink data performed by a base station using a first frequency band shared between a plurality of wireless communication systems including a cellular system , With The control unit performs processing on the reception side in the retransmission control process in response to retransmission of the downlink data performed by a base station using the second frequency band for the cellular system.
  • apparatus (16) The apparatus according to (15), wherein the retransmission control process is a HARQ (Hybrid Automatic Repeat Request) process.
  • HARQ Hybrid Automatic Repeat Request
  • the control unit identifies the retransmission control process based on downlink control information for the retransmission of the downlink data,
  • the downlink control information indicates the first frequency band as a shared frequency band used for transmission of the downlink data, and indicates the retransmission control process as a retransmission control process for the downlink data.
  • the downlink control information is information according to a predetermined format,
  • the predetermined format includes a field for indicating a shared frequency band used for transmission of the downlink data, and a field for indicating a retransmission control process for the downlink data.
  • the predetermined format does not have a field for indicating whether the resource allocation is for transmission of new data or for retransmission;
  • the control unit determines that the resource allocation of the downlink control information is for retransmission based on the downlink control information being information according to the predetermined format.
  • the apparatus according to (18) above. (20) Depending on the processor Performing reception side processing in the retransmission control process in response to transmission of downlink data performed by the base station using a first frequency band shared between a plurality of wireless communication systems including a cellular system; , Performing processing on the receiving side in the retransmission control process in response to retransmission of the downlink data performed by a base station using the second frequency band for the cellular system; Including methods.
  • (21) Controlling transmission of the downlink data such that transmission of the downlink data is performed using a first frequency band shared between a plurality of wireless communication systems including a cellular system; Controlling the retransmission of the downlink data such that the downlink data is retransmitted using a second frequency band for the cellular system; A program that causes a processor to execute.
  • (22) Controlling transmission of the downlink data such that transmission of the downlink data is performed using a first frequency band shared between a plurality of wireless communication systems including a cellular system; Controlling the retransmission of the downlink data such that the downlink data is retransmitted using a second frequency band for the cellular system;
  • a readable recording medium on which a program for causing a processor to execute is recorded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】複数の無線通信システムの間で共用される周波数帯域がセルラーシステムにおいて使用される場合にダウンリンクデータをより確実に再送することを可能にする。 【解決手段】セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、上記ダウンリンクデータの送信を制御する制御部、を備える装置が提供される。上記制御部は、上記セルラーシステム用の第2の周波数帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。

Description

装置及び方法
 本開示は、装置及び方法に関する。
 3GPP(3rd Generation Partnership Project)において、システムスループットを向上させる様々な技術が議論されている。システムスループットを向上するためには、使用する周波数を増やすことが一番の近道と言える。3GPPでは、リリース10及びリリース11において、キャリアアグリゲーション(Carrier Aggregation:CA)という技術が検討された。CAは、20MHzの帯域幅を有するコンポーネントキャリアを束ねて使用することにより、システムスループット及び最大のデータレートを向上させる技術である。このCAの技術を採用するためには、CCとして使用可能な周波数帯域が必要である。そのため、セルラーシステムの無線通信に使用可能なさらなる周波数帯域が求められている。
 例えば、特許文献1には、事業者ごとに専用に割り当てられる専用周波数帯域に加えて、登録した事業者が使用可能な登録制周波数帯域と、所定の条件が満たされる場合に使用可能なアンライセンスバンドとを使用することを可能にする技術が開示されている。
特開2006-094001号公報
 複数の無線通信システムにより共用される周波数帯域(即ち、アンライセンスバンドの周波数帯域)が、セルラーシステムにおいて使用される場合に、例えば、基地局は、当該周波数帯域を使用してダウンリンクデータの送信を行う。また、当該基地局は、当該周波数帯域を使用して上記ダウンリンクデータの再送も行い得る。
 しかし、複数の無線通信システムの間で共用される周波数帯域が使用される場合には、ダウンリンクデータの再送が困難になり得る。一例として、上記周波数帯域は、他の無線通信システムにも使用されるので、ダウンリンクデータの送信時にセルラーシステムにおいて使用可能であっても、当該ダウンリンクデータの再送時に当該セルラーシステムにおいて使用可能であるとは限らない。上記周波数帯域の長時間にわたる使用が許されないケースもあり得る。別の例として、上記周波数帯域(例えば、無線LANのチャネル)は、他の無線通信システム(例えば、無線LAN)にも使用されるので、上記周波数帯域を使用してセルラーシステムの信号を送信すると、上記他の無線通信システムの信号と衝突する可能性もある。そのため、ダウンリンクデータが適切に送受信されない可能性がある。
 そこで、複数の無線通信システムの間で共用される周波数帯域がセルラーシステムにおいて使用される場合にダウンリンクデータをより確実に再送することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、上記ダウンリンクデータの送信を制御する制御部、を備える装置が提供される。上記制御部は、上記セルラーシステム用の第2の周波数帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 また、本開示によれば、プロセッサにより、セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、上記ダウンリンクデータの送信を制御することと、上記セルラーシステム用の第2の周波数帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御することと、を含む方法が提供される。
 また、本開示によれば、セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う制御部、を備える装置が提供される。上記制御部は、上記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる上記ダウンリンクデータの再送に応じて、上記再送制御プロセスにおける受信側の処理を行う。
 また、本開示によれば、プロセッサにより、セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行うことと、上記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる上記ダウンリンクデータの再送に応じて、上記再送制御プロセスにおける受信側の処理を行うことと、を含む方法が提供される。
 以上説明したように本開示によれば、複数の無線通信システムの間で共用される周波数帯域がセルラーシステムにおいて使用される場合にダウンリンクデータをより確実に再送することが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
IEEE 802.11のフレームフォーマットを説明するための説明図である。 LTEのフレームフォーマットを説明するための説明図である。 キャリアアグリゲーションのケースにおける再送制御の一例を説明するための説明図である。 デュアルコネクティビティのケースにおける再送制御の一例を説明するための説明図である。 DCIフォーマットの一例を説明するための説明図である。 本開示の実施形態に係るシステムの概略的な構成の一例を示す説明図である。 同実施形態に係る基地局の構成の一例を示すブロック図である。 同実施形態に係る端末装置の構成の一例を示すブロック図である。 同実施形態に係るダウンリンクデータの送信及び再送の例を説明するための説明図である。 基地局による共用帯域の使用の一例を説明するための説明図である。 セルラー帯域を使用してダウンリンクデータの再送が行われる限定された期間の第1の例を説明するための説明図である。 セルラー帯域を使用してダウンリンクデータの再送が行われる限定された期間の第2の例を説明するための説明図である。 ダウンリンクデータについてのACK/NACKの送信の第1の例を説明するための説明図である。 ダウンリンクデータについてのACK/NACKの送信の第2の例を説明するための説明図である。 所定のDCIフォーマットの一例を説明するための説明図である。 ダウンリンクデータの再送についてのDCIの送信の第1の例を説明するための説明図である。 ダウンリンクデータの再送についてのDCIの送信の第2の例を説明するための説明図である。 ダウンリンクデータの再送についてのDCIの送信の第3の例を説明するための説明図である。 同実施形態に係る基地局の処理の概略的な流れの一例を示すフローチャートである。 同実施形態に係る端末装置の第1の処理の概略的な流れの一例を示すフローチャートである。 同実施形態に係る端末装置の第2の処理の概略的な流れの一例を示すフローチャートである。 同実施形態の変形例に係る基地局の例を説明するための説明図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.システムの概略的な構成
 3.各装置の構成
  3.1.基地局の構成
  3.2.端末装置の構成
 4.本開示の実施形態に係る技術的特徴
  4.1.基地局に係る技術的特徴
  4.2.端末装置に係る技術的特徴
 5.処理の流れ
 6.変形例
 7.応用例
  7.1.基地局に関する応用例
  7.2.端末装置に関する応用例
 8.まとめ
 <<1.はじめに>>
 まず、図1~図5を参照して、周波数帯域の共用、無線LANに関する技術、及びセルラーシステムに関する技術を説明する。
 (周波数帯域の共用)
 (a)周波数共用の背景
 セルラーシステムにおいて使用可能なさらなる周波数帯域が求められている。例えば、セルラーシステムにおいて使用可能なさらなる周波数帯域として、5GHz帯が考えられる。
 しかし、5GHz帯は、無線LANでも使用されている。そのため、セルラーシステムにおいて5GHz帯が使用される場合には、例えば、5GHz帯は、セルラーシステムと無線LANとの間で共用(share)される。具体的には、例えば、5GHz帯の周波数帯域(例えば、無線LANのチャネル)が、ある時間には無線LANにおいて使用され、別の時間にはセルラーシステムにおいて使用される。これにより、5GHz帯の周波数利用効率が向上する。なお、無線LAN規格には、IEEE802.11a、11b、11g、11n、11ac及び11adなどがあり、これらの規格は、MAC層としてIEEE802.11を採用することを特徴とする。
 (b)共用の手法
 無線LANのノード(アクセスポイント及びステーション)は、世の中に既に広く普及している。そのため、後方互換性(Backward Compatibility)の観点から、無線LANのノードの動作が変更されるのではなく、セルラーシステムと無線LANとの間で周波数帯域を共用するための仕組みが、LTE(Long Term Evolution)の技術として検討され、LTEの新たな規格として定められることが望ましい。なお、上記新たな規格に準拠した端末装置は、セルラーシステムと無線LANとの間で共用される周波数帯域(以下、「共用帯域」と呼ぶ)を使用するが、上記新たな規格に準拠しない端末装置は、共用帯域を使用しないと考えられる。
 (c)コンポーネントキャリアとしての使用
 LTE、LTE-Advanced又はこれらに準ずる通信規格に準拠したセルラーシステムでは、共用帯域は、例えば、コンポーネントキャリア(CC:Component Carrier)として使用されるであろう。さらに、セルラーシステム用の周波数帯域がPCCとして使用され、共用帯域はSCCとして使用されることが、想定される。また、セルラーシステム用の周波数帯域を使用して制御信号及びデータ信号が送受信され、共用帯域を使用してデータ信号が送受信され得る。
 (d)フェアな共用
 共用帯域はセルラーシステムと無線LANとの間でフェアに共用されることが望ましい。無線LANでは、CSMA(Carrier Sense Multiple Access)に従ってチャネル(共用帯域)がフェアに共用されているので、例えば、セルラーシステムと無線LANとの間でも、CSMAを考慮した手法で、チャネル(共用帯域)がフェアに共用されることが望ましい。
 フェアな共用として、様々な共用が考え得る。例えば、フェアな共用は、「無線LANで共用帯域を使用する機会と、セルラーシステムで当該共用帯域を使用する機会とが、同様に与えられること」と定義され得る。即ち、実際の通信量がセルラーシステムと無線LANとの間で同じであることではなく、通信の機会がセルラーシステムと無線LANとの間で同じであることが、フェアな共用とみなされ得る。
 一例として、共用帯域が、セルラーシステムにおいて一定期間使用されると、その後、当該共用帯域は、同程度の期間当該セルラーシステムの使用から解放される。
 (無線LANに関する技術)
 図1を参照して、無線LANに関する技術として、IEEE 802.11のフレームフォーマットを説明する。図1は、IEEE 802.11のフレームフォーマットを説明するための説明図である。
 IEEE 802.11では、DATAフレーム及びACKフレームが基本のフレームである。ACKフレームは、DATAフレームが正しく受信された時に、DATAフレームの受信の成功を送信側に知らせるためのフレームである。無線LANでは、DATAフレーム及びACKフレームのみにより無線通信が行われ得るが、一般的に、さらにRTS(Request To Send)フレーム及びCTS(Clear To Send)フレームという2つのフレームが使用される。
 無線LANのノードは、RTSフレームを送信する前に、DIFS(DCF (Distributed Coordination Function) InterFrame Space)という期間の間、信号が送信されていないことを確認する。これは、キャリアセンスと呼ばれる。DIFSが経過した時点で各ノードが同時に信号を送信し始めると、信号が衝突してしまう。そのため、各ノードは、ノードごとにランダムに設定されるバックオフ時間だけ待機し、バックオフ時間の間にも信号が送信されていなければ信号を送信する。
 基本的には、ノードは、いずれかの信号を検出している間は、信号を送信できない。しかし、隠れ端末問題(hidden node problem)というものが存在するので、NAV(Network Allocation Vector)という値の設定のための持続時間(Duration)フィールドを含むRTSフレーム及びCTSフレームが追加された。当該持続時間フィールドに含まれる値に基づいて、NAVが設定される。NAVを設定したノードは、当該NAVの期間にわたって信号の送信を控える。
 まず、DATAフレームを送信する第1のノードがRTSフレームを送信する。すると、当該第1のノードの周囲に位置する他のノードは、RTSフレームを受信し、RTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。例えば、当該NAVの期間は、RTSフレームの終了からACKフレームの終了までの期間である。
 また、DATAフレームを受信する第2のノードが、RTSフレームの受信に応じて、RTSフレームの終了からSIFS(Short InterFrame Space)だけ後に、CTSフレームを送信する。すると、上記第2のノードの周囲に位置する他のノードは、CTSフレームを受信し、CTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。当該NAVの期間は、CTSフレームの終了からACKフレームの終了までの期間である。これにより、例えば、上記第1のノードの近くにはいないが、上記第2のノードの近くにいる他のノード(即ち、上記第1のノードにとっての隠れ端末(hidden node))が、上記第1のノードと上記第2のノードとの通信の間に信号を送信することを、防ぐことができる。
 なお、RTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド、送信アドレスフィールド及びFCS(Frame Check Sequence)を含む。また、CTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド及びFCSを含む。
 また、IEEE802.11シリーズの規格におけるDIFS及びSIFSは、例えば以下のような長さを有する。
Figure JPOXMLDOC01-appb-T000001
 (セルラーシステムに関する技術)
 (a)フレームフォーマット
 図2を参照して、LTEのフレームフォーマットを説明する。図2は、LTEのフレームフォーマットを説明するための説明図である。
 まず、LTEでは、無線フレーム(Radio Frame)という時間の単位が用いられる。1無線フレームは、10msである。個々の無線フレームは、0~1023のいずれかであるSFN(System Frame Number)により識別される。
 無線フレームは、#0~#9により各々識別される10個のサブフレームを含む。各サブフレームは、1msである。さらに、各サブフレームは、2個のスロットを含み、各スロットは、例えば7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボルを含む。即ち、各サブフレームは、14個のOFDMシンボルを含む。なお、図2に示されるフレームフォーマットは、ダウンリンクのフレームフォーマットであり、アップリンクのフレームフォーマットは、OFDMシンボルの代わりに、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルを含む。
 (b)キャリアアグリゲーション
 -コンポーネントキャリア
 リリース10のキャリアアグリゲーションでは、最大で5つのコンポーネントキャリア(CC)が束ねられて、UE(User Equipment)により使用される。各CCは、最大20MHz幅の帯域である。キャリアアグリゲーションでは、周波数方向で連続するCCが使用される場合と、周波数方向で離れたCCが使用される場合とがある。キャリアアグリゲーションでは、使用されるCCをUE毎に設定することが可能である。
 -PCCとSCC
 キャリアアグリゲーションでは、UEにより使用される複数のCCのうちの1つが特別なCCである。当該1つの特別なCCは、PCC(Primary Component Carrier)と呼ばれる。また、上記複数のCCのうちの残りは、SCC(Secondary Component Carrier)と呼ばれる。PCCは、UEによって異なり得る。
 PCCは、複数のCCの中で最も重要なCCであるので、通信品質が最も安定しているCCであることが望ましい。なお、どのCCをPCCとするかは、実際には、どのように実装するかに依存する。
 SCCは、PCCに追加される。また、追加された既存のSCCは、削除されることが可能である。なお、SCCの変更は、既存のSCCの削除と新たなSCCの追加により行われる。
 -PCCの決定手法及び変更手法
 UEの接続が最初に確立され、UEの状態が、RRC(Radio Resource Control) IdleからRRC Connectedに遷移する場合には、UEが接続の確立の際に使用するCCが、当該UEにとってのPCCとなる。より具体的には、接続確立(Connection Establishment)の手続きを通じて接続が確立される。その際に、UEの状態は、RRC IdleからRRC Connectedに遷移する。また、上記手続きに使用されるCCが、上記UEにとってのPCCとなる。なお、上記手続きは、UE側から開始される手続きである。
 また、PCCの変更は、周波数間ハンドオーバにより行われる。より具体的には、接続再構成(Connection Reconfiguration)の手続きにおいてハンドオーバが指示されると、PCCのハンドオーバが行われ、PCCが変更される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 -SCCの追加
 上述したように、SCCは、PCCに追加される。その結果、SCCは、PCCに付随する。換言すると、SCCは、PCCに従属する。SCCの追加は、接続再構成の手続きを通じて行われることが可能である。なお、当該手続きは、ネットワーク側から開始される手続きである。
 -SCCの削除
 上述したように、SCCは、削除されることができる。SCCの削除は、接続再構成の手続きを通じて行われることが可能である。具体的には、メッセージの中で指定される特定のSCCが削除される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 また、全てのSCCの削除は、接続再確立(Connection Re-establishment)の手続きを通じて行われることが可能である。
 -PCCの特別な役割
 接続確立の手続き、NAS(Non-Access Stratum)シグナリングの送受信、及び物理アップリンク制御チャネル(PUCCH:Physical Uplink Control Channel)でのアップリンク制御信号の送受信は、SCCでは行われず、PCCのみで行われる。
 また、無線リンク障害(RLF:Radio Link Failure)の検出及びその後の接続再確立の手続きも、SCCでは行われず、PCCのみで行われる。
 -キャリアアグリゲーションのためのバックホールの条件
 例えば、SCCのダウンリンク信号に対するACK(Acknowledgement)は、PCCのPUCCHで送信される。上記ACKは、eNB(evolved Node B)によるデータの再送に使用されるので、上記ACKの遅延は許容されない。したがって、UEにとってのPCCであるCCを使用する第1のeNBと、UEにとってのSCCであるCCを使用する第2のeNBとが異なる場合には、当該第1のeNBと当該第2のeNBとの間のバックホールでの遅延はせいぜい10ms程度であることが望まれる。
 (c)HARQ
 LTEでは、再送制御の仕組みとしてHARQ(Hybrid automatic repeat request)が使用されている。
 -HARQプロセス
 例えば、eNBがデータを送信し、UEが当該データを受信する。UEは、CRC(Cyclic Redundancy Check)などにより誤りを検出した場合には、アップリンクでNACK(Negative Acknowledgement)を送信する。eNBは、当該NACKを受信するとデータを再送し、UEは、当該データを受信する。UEは、CRCなどにより誤りを検出しなかった場合には(即ち、ダウンリンクデータが正しく受信された場合には)、アップリンクでACK(Acknowledgement)を送信する。eNBは、当該ACKを受信すると、新たなデータを送信する。このようなデータの送受信のプロセスは、SAW(Stop And Wait)プロセスと呼ばれる。とりわけ、HARQのケースでは、SAWプロセスは、HARQプロセスとも呼ばれる。1つのHARQプロセスでは、データが正しくUEにより受信されるまで、新たなデータが送信されない。なお、1つのUEについて、複数のHARQプロセスが同時に存在する。
 ダウンリンクデータについてのACK/NACKをどのタイミングで送信するかは、LTEの規格では決められていないので、柔軟性があると言える。しかし、再送が遅れると、データの遅延が起こってしまうので、ACK/NACKは、なるべく早く行われることが望ましい。
 -キャリアアグリゲーションのケース
 キャリアアグリゲーションのケースでは、コンポーネントキャリア(CC)ごとにHARQエンティティが存在する。HARQエンティティは、対応するCCについての複数のHARQプロセスをハンドリングする。
 ACK/NACKは、PUCCH(Physical Uplink Control Channel)上で送信される。キャリアアグリゲーションのケースでは、UEは、プライマリコンポーネントキャリア(PCC)のPUCCHで、ACK/NACKを送信できるが、セカンダリコンポーネントキャリア(SCC)のPUCCHで、ACK/NACKを送信することはできない。そのため、SCCを使用して送信が行われるダウンリンクデータについてのACK/NACKは、PCCのPUCCH上で送信される。なお、SCCを使用して送信が行われるダウンリンクデータの再送自体は、当該SCCを使用して行われる。また、当然ながら、PCCを使用して送信が行われるダウンリンクデータの再送は、当該PCCを使用して行われる。以下、この点について図3を参照して具体例を説明する。
 図3は、キャリアアグリゲーションのケースにおける再送制御の一例を説明するための説明図である。図3を参照すると、PCC及びSCCが示されている。eNBは、上記PCCを使用してダウンリンクデータの送信を行い、UEは、上記PCCを使用して、当該ダウンリンクデータについてのACK/NACKを送信する。eNBは、上記ダウンリンクデータについてのACKを受信しない場合には、上記PCCを使用して上記ダウンリンクデータの再送を行う。また、eNBは、上記SCCを使用してダウンリンクデータの送信を行い、UEは、当該SCCではなく上記PCCを使用して、当該ダウンリンクデータについてのACK/NACKを送信する。eNBは、上記ダウンリンクデータについてのACKを受信しない場合には、上記SCCを使用して上記ダウンリンクデータの再送を行う。
 なお、将来、デュアルコネクティビティが導入され得る。この場合に、UEは、2つのCCの各々を使用して、ACK/NACKを送信し得る。以下、この点について図4を参照して具体例を説明する。
 図4は、デュアルコネクティビティのケースにおける再送制御の一例を説明するための説明図である。図4を参照すると、第1のCC及び第2のCCが示されている。UEは、デュアルコネクティビティをサポートし、例えば、第1のCC及び第2のCCの各々をPCCとして使用する。eNBは、上記第1のCCを使用してダウンリンクデータの送信を行い、UEは、上記第1のCCを使用して、当該ダウンリンクデータについてのACK/NACKを送信する。eNBは、上記ダウンリンクデータについてのACKを受信しない場合には、上記第1のCCを使用して上記ダウンリンクデータの再送を行う。また、eNBは、上記第2のCCを使用してダウンリンクデータの送信を行い、UEは、上記第2のCCを使用して、当該ダウンリンクデータについてのACK/NACKを送信する。eNBは、上記ダウンリンクデータについてのACKを受信しない場合には、上記第2のCCを使用して上記ダウンリンクデータの再送を行う。
 上述したように、いずれにせよ、ダウンリンクデータの送信及び再送には、同一の周波数帯域(例えば、CC)が使用される。
 (d)ダウンリンク制御情報
 eNBは、ダウンリンクデータの送信/再送に伴い、当該ダウンリンクデータの送信/再送についてのダウンリンク制御情報(Downlink Control Information:DCI)を送信する。LTEでは、各DCIは、複数のDCIフォーマットのうちのいずれかに従った情報である。以下、DCIフォーマットの例を説明する。
 図5は、DCIフォーマットの一例を説明するための説明図である。図5を参照すると、DCIフォーマットが示されている。例えば、DCIフォーマットは、キャリアインディケータ(Carrier Indicator)、リソースブロク割当て(Resource Block Allocation)、HARQプロセス番号(HARQ Process Number)、及びNDI(New Data Indicator)などのフィールドを有する。キャリアインディケータフィールド(Carrier Indicator Field:CIF)は、キャリアアグリゲーションのケースにおいて、コンポーネントキャリアを示すためのフィールドである。リソースブロック割当てフィールドは、UEに割り当てられたリソースブロック(即ち、ダウンリンクデータの送信のために割り当てられたリソースブロック)を示すためのフィールドである。HARQプロセス番号フィールドは、ダウンリンクデータのためのHARQプロセスを示すためのフィールドである。NDIフィールドは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドである。
 <<2.システムの概略的な構成>>
 続いて、図6を参照して、本開示の実施形態に係るシステムの概略的な構成を説明する。図6は、本開示の実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図6を参照すると、システム1は、基地局100及び端末装置200を含む。
 (基地局100)
 基地局100は、セルラーシステムの基地局である。例えば、当該セルラーシステムは、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 (a)周波数帯域
 -セルラー帯域
 基地局100は、上記セルラーシステム用の周波数帯域(以下、「セルラー帯域」と呼ぶ)を使用して無線通信を行う。例えば、当該セルラー帯域は、上記セルラーシステム用のコンポーネントキャリア(CC)である。
 なお、上記セルラー帯域は、ライセンスバンド(licensed band)、又はライセンスバンドに含まれる周波数帯域と言える。
 -共用帯域
 とりわけ本開示の実施形態では、基地局100は、さらに、上記セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域(以下、「共用帯域」と呼ぶ)を使用して無線通信を行う。
 一例として、上記複数の無線通信システムは、無線LANを含み、上記共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。当然ながら、上記共用帯域は、この例に限定されず、複数の無線通信システムにより共用される他の周波数帯域であってもよい。
 なお、上記共用帯域は、アンライセンスバンド(unlicensed band)、又はアンライセンスバンドに含まれる周波数帯域であると言える。
 (b)端末装置との無線通信
 基地局100は、端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、基地局100のセル10内に位置する端末装置との無線通信を行う。より具体的には、例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (端末装置200)
 端末装置200は、基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局のセル(例えば、基地局100のセル10)内に位置する場合に、当該基地局との無線通信を行う。より具体的には、例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 端末装置200は、上記セルラー帯域を使用して基地局100との無線通信を行う。とりわけ本開示の実施形態では、端末装置200は、さらに、上記共用帯域を使用して基地局100との無線通信を行う。
 例えば、端末装置200は、キャリアアグリゲーションをサポートする。即ち、端末装置200は、2つ以上のコンポーネントキャリア(CC)を同時に使用して無線通信を行うことが可能である。
 <<3.各装置の構成>>
 続いて、図7及び図8を参照して、本開示の実施形態に係る基地局100及び端末装置200の構成の例を説明する。
 <3.1.基地局の構成>
 まず、図7を参照して、本開示の実施形態に係る基地局100の構成の一例を説明する。図7は、本開示の実施形態に係る基地局100の構成の一例を示すブロック図である。図7を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、セルラー帯域(即ち、セルラーシステム用の周波数帯域)、及び/又は共用帯域(即ち、複数の無線通信システムの間で共用される周波数帯域)で、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (ネットワーク通信部130)
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (処理部150)
 処理部150は、基地局100の様々な機能を提供する。処理部150は、情報取得部151及び制御部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 (情報取得部151)
 情報取得部151は、制御部153のために情報を取得する。例えば、情報取得部151は、ダウンリンクデータを取得する。
 (制御部153)
 制御部153は、基地局100によるダウンリンクデータの送信を制御する。
 <3.2.端末装置の構成>
 次に、図8を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図8は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図8を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (アンテナ部210)
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (無線通信部220)
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、セルラー帯域(即ち、セルラーシステム用の周波数帯域)、及び/又は共用帯域(即ち、複数の無線通信システムの間で共用される周波数帯域)で、信号を送受信する。例えば、無線通信部120は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 (記憶部230)
 記憶部230は、端末装置200の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (処理部240)
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、情報取得部241及び制御部243を含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
 (情報取得部241)
 情報取得部241は、制御部243のために情報を取得する。
 (制御部243)
 制御部243は、再送制御プロセスにおける受信側の処理を行う。例えば、当該再送制御プロセスは、HARQプロセスである。
 <<4.本開示の実施形態に係る技術的特徴>>
 続いて、図9~図18を参照して、本開示の実施形態に係る技術的特徴を説明する。
 <4.1.基地局に係る技術的特徴>
 まず、図9~図18を参照して、基地局100に係る技術的特徴を説明する。
 (ダウンリンクデータの再送)
 基地局100は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用してダウンリンクデータの送信を行う。制御部153は、上記共用帯域を使用してダウンリンクデータの送信が行われるように、当該ダウンリンクデータの送信を制御する。
 さらに、基地局100は、セルラー帯域(即ち、セルラーシステム用の周波数帯域)を使用して上記ダウンリンクデータの再送を行う。制御部153は、上記セルラー帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 即ち、基地局100は、共用帯域を使用してダウンリンクデータの送信を行い、セルラー帯域を使用して当該ダウンリンクデータの再送を行う。
 (a)ダウンリンクデータ
 例えば、上記ダウンリンクデータは、端末装置200へのダウンリンクデータである。
 一例として、上記ダウンリンクデータは、トランスポートブロックである。なお、上記ダウンリンクデータは、この例に限られず、他のデータであってもよい。
 例えば、基地局100は、上記ダウンリンクデータの送信において、上記ダウンリンクデータの符号化により生成される第1のビット列を送信し、上記ダウンリンクデータの再送において、上記ダウンリンクデータの符号化により生成される第2のビット列を送信する。上記第2のビット列は、上記第1のビット列と同一のビット列であってもよく、又は上記第1のビット列とは異なるビット列であってもよい。具体的には、HARQプロセスにおいてチェイス結合(chase combining)が適用され、上記第2のビット列は、上記第1のビット列と同じビット列であってもよい。あるいは、HARQプロセスにおいて増加的冗長性(incremental redundancy)が適用され、上記第2のビット列は、上記第1のビット列とは異なるビット列であってもよい。
 (b)セルラー用帯域及び共用帯域
 -L-CC及びU-CC
 例えば、上記セルラー帯域及び上記共用帯域は、それぞれ端末装置200にとってのコンポーネントキャリア(CC)である。上述したように、上記セルラー帯域は、ライセンスバンド、又はライセンスバンドに含まれる周波数帯域であるので、L-CC(Licensed Component Carrier)と呼ばれ得る。また、上述したように、上記共用帯域は、アンライセンスバンド、又はアンライセンスバンドに含まれる周波数帯域であるので、U-CC(Unlicensed Component Carrier)と呼ばれ得る。
 -キャリアアグリゲーション
 例えば、上記共用帯域は、端末装置200にとってのセカンダリコンポーネントキャリア(SCC)であり、上記セルラー帯域は、端末装置200にとってのプライマリコンポーネントキャリア(PCC)又はSCCである。即ち、端末装置200は、SCCである上記共用帯域を使用して、上記ダウンリンクデータの送信を行い、PCC又はSCCである上記セルラー帯域を使用して、上記ダウンリンクデータの再送を行う。
 -共用帯域の例
 上述したように、一例として、上記共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。
 なお、当然ながら、上記共用帯域は、この例に限定されず、複数の無線通信システムにより共用される他の周波数帯域であってもよい。
 (c)送信及び再送の例
 図9は、本開示の実施形態に係るダウンリンクデータの送信及び再送の例を説明するための説明図である。図9を参照すると、L-CC(セルラー帯域)及びU-CC(共用帯域)が示されている。基地局100は、上記L-CCを使用してダウンリンクデータの送信を行う。基地局100は、上記ダウンリンクデータについてのACKを受信しない場合には、上記L-CCを使用して上記ダウンリンクデータの再送を行う。また、基地局100は、上記U-CCを使用してダウンリンクデータの送信を行う。基地局100は、上記ダウンリンクデータについてのACKを受信しない場合には、上記U-CCではなく上記L-CCを使用して上記ダウンリンクデータの再送を行う。このように、U-CCを使用してダウンリンクデータの送信が行われるが、当該ダウンリンクデータの再送は、L-CCを使用して行われる。
 (d)制御の例
 -共用帯域を使用した送信
 上述したように、制御部153は、上記共用帯域を使用してダウンリンクデータの送信が行われるように、当該ダウンリンクデータの送信を制御する。
 一例として、制御部153は、上記ダウンリンクデータの送信のために端末装置200に上記共用帯域の無線リソース(例えば、リソースブロック)を割り当てることにより、上記ダウンリンクデータの送信を制御する。その結果、基地局100は、上記共用帯域を使用して上記ダウンリンクデータの送信を行う。
 -セルラー帯域を使用した再送
 上述したように、制御部153は、上記セルラー帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 一例として、制御部153は、上記ダウンリンクデータの再送のために端末装置200に上記セルラー帯域の無線リソース(例えば、リソースブロック)を割り当てることにより、上記ダウンリンクデータの再送を制御する。その結果、基地局100は、上記セルラー帯域を使用して上記ダウンリンクデータの再送を行う。
 (e)期間
 -期間の制約なしでの再送
 例えば、基地局100は、期間の制約なしで、上記セルラー帯域を使用して、(上記共用帯域を使用して送信が行われた)上記ダウンリンクデータの再送を行う。即ち、制御部153は、期間の制約なしで、上記セルラー帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 -限定された期間での再送
 基地局100は、限定された期間内で、上記セルラー帯域を使用して、(上記共用帯域を使用して送信が行われた)上記ダウンリンクデータの再送を行ってもよい。即ち、制御部153は、限定された期間内で、上記セルラー帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御してもよい。
 さらに、上記限定された期間は、基地局100による上記共用帯域の使用の終了時点に対応する期間であってもよい。
  --基地局100による共用帯域の使用
 例えば、基地局100は、一定期間にわたって上記共用帯域を使用して無線通信を行い、その後、上記共用帯域を他の無線通信システムのために解放する。以下、この点について図10を参照して具体例を説明する。
 図10は、基地局100による共用帯域の使用の一例を説明するための説明図である。この例では、U-CC(共用帯域)は、無線LANのチャネルである。基地局100は、キャリアセンスを通じてU-CC(無線LANのチャネル)を確保し、期間31にわたって上記U-CCを使用して無線通信を行う。その後、基地局100は、少なくとも期間33にわたって上記U-CCを解放する。即ち、基地局100は、少なくとも期間33にわたって上記U-CCを使用しない。例えば、期間31及び期間33は、同様の長さを有する。一例として、期間31及び期間33は、500msの期間である。これにより、セルラーシステムと無線LANとの間の公平性が保たれる。
 このように、基地局100が一定期間にわたって上記共用帯域を使用する場合には、基地局100による上記共用帯域の使用の終了時点は、上記共用帯域の使用の開始時点に応じて決まる。即ち、当該終了時点は予測可能である。
  --限定された期間の第1の例
 第1の例として、上記限定された期間は、上記終了時点の所定時間前から開始する期間であってもよい。以下、この点について図11を参照して具体例を説明する。
 図11は、セルラー帯域を使用してダウンリンクデータの再送が行われる限定された期間の第1の例を説明するための説明図である。図11を参照すると、図10と同様に、基地局100は、期間31にわたって、無線LANのチャネルであるU-CC(共用帯域)を使用して無線通信を行い、その後、少なくとも期間33にわたって当該U-CCを使用して無線通信を行わない。この場合に、基地局100は、上記U-CCの使用の終了時点(即ち、期間31の終了時点)から所定時間35だけ前から開始する期間37内で、上記U-CCの代わりにL-CC(セルラー帯域)を使用して、上記U-CCを使用して送信が行われたダウンリンクデータの再送を行う。なお、基地局100は、期間31のうちの期間37に含まれない期間内では、上記U-CCを使用して、上記U-CCを使用して送信が行われたダウンリンクデータの再送を行う。
  --限定された期間の第2の例
 第2の例として、上記限定された期間は、上記終了時点から開始する期間であってもよい。以下、この点について図12を参照して具体例を説明する。
 図12は、セルラー帯域を使用してダウンリンクデータの再送が行われる限定された期間の第2の例を説明するための説明図である。図12を参照すると、図10と同様に、基地局100は、期間31にわたって、無線LANのチャネルであるU-CC(共用帯域)を使用して無線通信を行い、その後、少なくとも期間33にわたって当該U-CCを使用して無線通信を行わない。この場合に、基地局100は、上記U-CCの使用の終了時点(即ち、期間31の終了時点)から開始する期間39内で、上記U-CCの代わりにL-CCを使用して、上記U-CCを使用して送信が行われたダウンリンクデータの再送を行う。なお、基地局100は、期間31内では、上記U-CCを使用して、上記U-CCを使用して送信が行われたダウンリンクデータの再送を行う。
 以上のように、基地局100は、基地局100による上記共用帯域の使用の終了時点に対応する期間内で、上記共用帯域の代わりに上記セルラー帯域を使用してダウンリンクデータの再送を行ってもよい。これにより、例えば、基地局100が共用帯域を使用できなくなるためにダウンリンクデータの再送を行えなくなるという事態を回避することが可能になる。また、例えば、共用帯域を使用して送信が行われるダウンリンクデータの全ての再送に上記セルラー帯域が使用されるケースと比べて、セルラー帯域の無線リソースの消費が抑えられる。
 なお、本開示の実施形態では、上記限定された期間は、上記終了時点に対応する期間に限られない。上記限定された期間は、他の期間であってもよい。
 (f)ACK/NACKの受信
 基地局100によるダウンリンクデータの送信に応じて、端末装置200は、当該ダウンリンクデータについてのACK/NACKを送信する。例えば、ACK/NACK端末装置200のPCCを使用して送信される。
 -第1の例
 第1の例として、上記共用帯域はSCCであり、上記セルラー帯域はPCCである。この場合に、上記ダウンリンクデータについてのACK/NACKは、上記セルラー帯域を使用して送信される。以下、図13を参照して具体例を説明する。
 図13は、ダウンリンクデータについてのACK/NACKの送信の第1の例を説明するための説明図である。図13を参照すると、PCCであるL-CC(セルラー帯域)及び、SCCであるU-CC(共用帯域)が示されている。端末装置200は、上記L-CCを使用して基地局100により送信が行われるダウンリンクデータについてのACK/NACKを、上記L-CC(PCC)を使用して送信する。また、端末装置200は、上記U-CCを使用して基地局100により送信が行われるダウンリンクデータについてのACK/NACKを、上記L-CC(PCC)を使用して送信する。なお、基地局100は、上記U-CCを使用して基地局100により送信が行われるダウンリンクデータの再送を、上記L-CCを使用して行う。
 -第2の例
 第2の例として、上記共用帯域及び上記セルラー帯域はSCCであり、他のセルラー帯域がPCCであってもよい。この場合に、上記ダウンリンクデータについてのACK/NACKは、上記他のセルラー帯域を使用して送信されてもよい。以下、図14を参照して具体例を説明する。
 図14は、ダウンリンクデータについてのACK/NACKの送信の第2の例を説明するための説明図である。図14を参照すると、PCCである第1のL-CC(第1のセルラー帯域)、SCCである第2のL-CC(第2のセルラー帯域)、及びSCCであるU-CC(共用帯域)が示されている。端末装置200は、上記第2のL-CCを使用して基地局100により送信が行われるダウンリンクデータについてのACK/NACKを、上記第1のL-CC(PCC)を使用して送信する。また、端末装置200は、上記U-CCを使用して基地局100により送信が行われるダウンリンクデータについてのACK/NACKを、上記第1のL-CC(PCC)を使用して送信する。なお、基地局100は、上記U-CCを使用して基地局100により送信が行われるダウンリンクデータの再送を、上記第2のL-CCを使用して行う。
 以上のように、基地局100は、上記共用帯域を使用してダウンリンクデータの送信を行い、セルラー帯域を使用して当該ダウンリンクデータの再送を行う。これにより、例えば、共用帯域がセルラーシステムにおいて使用される場合にダウンリンクデータをより確実に再送することが可能になる。例えば、基地局100が共用帯域を使用できなくなるためにダウンリンクデータの再送を行えなくなるという事態が回避される。また、例えば、ダウンリンクデータの再送の際に、他の無線通信システムの信号との衝突が回避される。
 (ダウンリンク制御情報の送信)
 上述したように、基地局100は、上記共用帯域を使用してダウンリンクデータの送信を行い、セルラー帯域を使用して当該ダウンリンクデータの再送を行う。さらに、例えば、基地局100は、上記ダウンリンクデータの上記再送についてのダウンリンク制御情報(Downlink Control Information:DCI)を送信する。制御部153は、上記ダウンリンクデータの上記再送についての当該DCIの送信を制御する。
 例えば、上記DCIは、上記ダウンリンクデータの送信に使用された共用の周波数帯域として、上記共用帯域を示す。これにより、例えば、上記セルラー帯域を使用して基地局100により行われる上記ダウンリンクデータの上記再送に応じて、端末装置は、上記再送が、上記共用帯域を使用して送信が行われたダウンリンクデータの再送であることを、認識することが可能になる。
 より具体的には、通常、ダウンリンクデータの送信及び再送は同一の周波数帯域を使用して行われるため、ダウンリンクデータの送信と再送とで異なる周波数帯域が使用されることは想定されていない。そのため、端末装置に何ら情報が提供されなければ、端末装置は、共用帯域を使用して行われたダウンリンクデータの送信と、セルラー帯域を使用して行われた当該ダウンリンクデータの再送とを、関連付けることができない。そこで、上記ダウンリンクデータの上記再送についてのDCIの中で、上記ダウンリンクデータの上記送信に使用された共用の周波数帯域として、上記共用帯域を示すことにより、端末装置は、上記ダウンリンクデータの上記再送と、上記ダウンリンクデータについての上記送信とを、関連付けることができる。即ち、端末装置が、上記再送に応じて、上記再送が、上記共用帯域を使用して送信が行われたダウンリンクデータの再送であることを、認識することが可能になる。
 (a)フォーマット
 上記ダウンリンクデータの上記再送についての上記DCIは、所定のフォーマットに従った情報である。即ち、上記再送についての上記DCIは、所定のDCIフォーマットに従った情報である。
 -ダウンリンクデータが送信された共用の周波数帯域
 例えば、上記所定のフォーマットは、ダウンリンクデータの送信に使用された共用の周波数帯域(shared frequency band)を示すためのフィールド(以下、「共用帯域フィールド」と呼ぶ)を有する。
 より具体的には、例えば、上記共用帯域フィールドには、共用の周波数帯域に各々対応する2つ以上のビットパターン候補のいずれかが含まれる。一例として、4つの共用の周波数帯域がある。この場合に、上記共用帯域フィールドは2ビットのフィールドであり、上記共用帯域フィールドには、共用の周波数帯域に各々対応する4つのビットパターン候補(00、01、10、00)のいずれかが含まれる。
 例えば、制御部153は、上記共用帯域フィールドに含まれる2つ以上のビットパターン候補と、当該2つ以上のビットパターンの各々に対応する共用の周波数帯域とを、端末装置に通知する。一例として、制御部153は、上記2つ以上のビットパターン候補と上記共用の周波数帯域とを示すシステム情報を報知する。別の例として、制御部153は、個別の端末装置200へのシグナリングにより、上記2つ以上のビットパターン候補と上記共用の周波数帯域とを端末装置200に通知してもよい。これにより、例えば、端末装置200は、共用帯域フィールドに含まれるビットパターンから具体的な共用の周波数帯域を特定することが可能になる。
 例えば、上記共用帯域フィールドは、ダウンリンクデータの送信に使用されたU-CCを示すためのU-CCインディケータフィールドである。
 なお、DCIフォーマットのCIFは、あくまで、DCIがどの周波数帯域のためのものかを示す。換言すると、DCIフォーマットのCIFは、DCIの対象であるダウンリンクデータの送信/再送のためのどの周波数帯域が使用されるかを示す。そのため、上記共用帯域フィールド(例えば、U-CCインディケータフィールド)の代わりにCIFを使用することはできないということに留意すべきである。具体的には、上記共用帯域を使用してダウンリンクデータの送信が行われ、上記セルラー帯域を使用して当該ダウンリンクデータの再送が行われる場合に、当該再送についてのDCIは、CIFにおいて、上記セルラー帯域を示し、上記共用帯域を示すことはできない。
 -再送制御プロセス
 例えば、上記所定のフォーマットは、ダウンリンクデータのための再送制御プロセスを示すためのフィールド(以下、「再送制御プロセスフィールド」と呼ぶ)を有する。
 より具体的には、例えば、上記再送制御プロセスは、HARQプロセスであり、上記再送制御プロセスフィールドは、HARQプロセス番号フィールドである。
 これにより、例えば、端末装置200は、上記セルラー帯域を使用して基地局100により行われる上記ダウンリンクデータについての上記再送に応じて、上記ダウンリンクデータのための再送制御プロセスを特定することが可能になる。
 -新たなデータの送信/再送
 例えば、上記所定のフォーマットは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドを有しない。より具体的には、例えば、上記所定のフォーマットは、NDI(New Data Indicator)フィールドを含まない。
 これにより、例えば、DCIのビット数をより小さくすることが可能になる。その結果、DCIの送信に要する無線リソースが節約され得る。なお、端末装置200は、DCIが上記所定のフォーマット(即ち、上記共用帯域フィールドなどを含むフォーマット)に従った情報であることに基づいて、当該DCIのリソース割当てが再送のためであると判定することができる。
 -フォーマットの具体例
 図15は、所定のDCIフォーマットの一例を説明するための説明図である。図15を参照すると、DCIフォーマットが示されている。当該DCIフォーマットは、HARQプロセス番号フィールド及びU-CCインディケータフィールドを有する。HARQプロセス番号フィールドは、ダウンリンクデータのためのHARQプロセスを示すためのフィールドであり、U-CCインディケータフィールドは、ダウンリンクデータの送信に使用されたU-CCを示すためのフィールドである。上記DCIフォーマットは、キャリアインディケータ及びリソースブロク割当てなどの他のフィールドをさらに有し得る。また、上記DCIフォーマットは、NDIフィールドを有しない。
 (b)送信に用いられる周波数帯域
 上述したように、基地局100は、上記共用帯域を使用して、ダウンリンクデータの送信を行い、上記セルラー帯域を使用して、当該ダウンリンクデータの再送を行う。また、基地局100は、いずれかの周波数帯域を使用して、上記ダウンリンクデータの上記再送についてのDCIを送信する。
 -第1の例
 第1の例として、基地局100は、上記セルラー帯域を使用して、上記ダウンリンクデータの上記再送についての上記DCIを送信する。以下、この点について図16を参照して具体例を説明する。
 図16は、ダウンリンクデータの再送についてのDCIの送信の第1の例を説明するための説明図である。図16を参照すると、L-CC(セルラー帯域)及びU-CC(共用帯域)が示されている。基地局100は、上記U-CCを使用してダウンリンクデータの送信を行い、上記L-CCを使用して当該ダウンリンクデータの再送を行う。この例では、基地局100は、上記L-CCを使用して、上記ダウンリンクデータの上記再送についてのDCIを送信する。なお、当該DCIのU-CCインディケータは、上記U-CCを示す。
 以上のように、上記ダウンリンクデータの上記再送についてのDCIが、セルラー帯域を使用して送信される。これにより、例えば、上記ダウンリンクデータと同様に、上記DCIもより確実に送信される。
 -第2の例
 第2の例として、基地局100は、上記セルラー帯域とは異なる他のセルラー帯域を使用して、上記ダウンリンクデータの上記再送についての上記DCIを送信してもよい。即ち、クロスキャリアスケジューリングが行われてもよい。以下、この点について図17を参照して具体例を説明する。
 図17は、ダウンリンクデータの再送についてのDCIの送信の第2の例を説明するための説明図である。図17を参照すると、第1のL-CC(第1のセルラー帯域)、第2のL-CC及びU-CC(共用帯域)が示されている。基地局100は、上記U-CCを使用してダウンリンクデータの送信を行い、上記第2のL-CCを使用して当該ダウンリンクデータの再送を行う。この例では、基地局100は、上記第1のL-CCを使用して、上記ダウンリンクデータの上記再送についてのDCIを送信する。即ち、クロスキャリアスケジューリングが行われる。なお、上記DCIのキャリアインディケータ(CI)は、上記第2のL-CCを示し、上記DCIのU-CCインディケータは、上記U-CCを示す。
 以上のように、上記ダウンリンクデータの上記再送についてのDCIが、他のセルラー帯域を使用して送信されてもよい。これにより、例えば、上記ダウンリンクデータと同様に、上記DCIもより確実に送信される。
 -第3の例
 第3の例として、基地局100は、上記共用帯域を使用して、上記ダウンリンクデータの上記再送についての上記DCIを送信してもよい。即ち、クロスキャリアスケジューリングが行われてもよい。以下、この点について図18を参照して具体例を説明する。
 図18は、ダウンリンクデータの再送についてのDCIの送信の第3の例を説明するための説明図である。図18を参照すると、L-CC(セルラー帯域)及びU-CC(共用帯域)が示されている。基地局100は、上記U-CCを使用してダウンリンクデータの送信を行い、上記L-CCを使用して当該ダウンリンクデータの再送を行う。この例では、基地局100は、上記U-CCを使用して、上記ダウンリンクデータの上記再送についてのDCIを送信する。即ち、クロスキャリアスケジューリングが行われる。なお、上記DCIのキャリアインディケータ(CI)は、上記L-CCを示し、上記DCIのU-CCインディケータは、上記U-CCを示す。
 (c)制御の例
 上述したように、基地局100は、上記ダウンリンクデータの上記再送についてのDCIを送信し、制御部153は、上記ダウンリンクデータの上記再送についての当該DCIの送信を制御する。
 一例として、制御部153は、上記DCIの生成、及び/又は上記DCIの送信処理(例えば、無線リソースへのマッピングなど)を行うことにより、上記DCIの送信を制御する。
 <4.2.端末装置に係る技術的特徴>
 次に、端末装置200に係る技術的特徴を説明する。
 (再送制御)
 端末装置200(制御部243)は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用して基地局100により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う。
 さらに、端末装置200(制御部243)は、セルラー帯域(即ち、上記セルラーシステム用の周波数帯域)を使用して基地局100により行われる上記ダウンリンクデータの再送に応じて、上記再送制御プロセスにおける受信側の処理を行う。
 (a)再送制御プロセス及び受信側の処理
 例えば、上記再送制御プロセスは、HARQプロセスである。例えば、上記再送制御プロセスは、上記共用帯域のHARQエンティティのHARQプロセスである。
 例えば、受信側の上記処理は、受信されたビット列のエラーチェック及びACK/NACKの送信処理を含む。さらに、例えば、受信側の上記処理は、受信されたビット列の合成(例えば、チェイス結合(chase combining)、又は増加的冗長性(incremental redundancy))などを含む。
 (b)再送制御プロセスの特定
 例えば、端末装置200(制御部243)は、上記ダウンリンクの上記再送についてのDCIに基づいて、上記再送制御プロセスを特定する。
 (b-1)DCI
 例えば、上記DCIは、上記ダウンリンクデータの送信に使用された共用の周波数帯域として、上記共用帯域を示す。これにより、例えば、上記セルラー帯域を使用して基地局100により行われる上記ダウンリンクデータの上記再送に応じて、端末装置200は、上記再送が、上記共用帯域を使用して送信が行われたダウンリンクデータの再送であることを、認識することが可能になる。
 例えば、上記DCIは、上記ダウンリンクデータのための再送制御プロセスとして、上記再送制御プロセスを示す。これにより、例えば、端末装置200は、上記ダウンリンクデータのための再送制御プロセスを特定することが可能になる。その結果、上記ダウンリンクデータが当該再送制御プロセスにおいて適切に処理され得る。
 (b-2)所定のフォーマット
 上記DCIは、所定のフォーマットに従った情報である。当該所定のフォーマットは、基地局100に関連して説明したとおりである。よって、ここでは重複する記載を省略する。
 (c)新たなデータの送信/再送の判定
 例えば、端末装置200(制御部243)は、上記DCIが上記所定のフォーマット(即ち、共用帯域フィールド及び再送制御プロセスフィールドを有するフォーマット)に従った情報であることに基づいて、上記DCIのリソース割当てが再送のためであると判定する。
 これにより、例えば、上記DCIがNDI(又は同様の情報)を含まなくてもよいので、上記DCIのビット数をより小さくすることが可能になる。その結果、DCIの送信に要する無線リソースが節約され得る。
 なお、端末装置200(制御部243)は、DCIが上記所定のフォーマット以外のフォーマットに従った情報である場合には、当該DCIのNDIに基づいて、上記DCIのリソース割当てが新たなデータの送信のためであるか又は再送のためであるかを判定する。
 <<5.処理の流れ>>
 続いて、図19~図21を参照して、本開示の実施形態に係る処理の流れを説明する。
 (基地局100の処理)
 図19は、本開示の実施形態に係る基地局100の処理の概略的な流れの一例を示すフローチャートである。当該処理は、ダウンリンクデータの送信及び再送に着目した処理である。
 情報取得部151は、ダウンリンクデータを取得する(S301)。
 基地局100は、上記ダウンリンクデータの送信についてのDCIを送信する(S303)。また、基地局100は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用して、上記ダウンリンクデータの送信を行う(S305)。制御部153は、当該DCIの送信及び上記ダウンリンクデータの送信を制御する。
 上記ダウンリンクデータについてのACKを受信した場合には(S307:YES)、処理はステップS301へ戻る。
 そうでなければ(S307:NO)、基地局100は、上記ダウンリンクデータの再送についてのDCIを送信する(S309)。また、基地局100は、セルラー帯域(即ち、セルラーシステム用の周波数帯域)を使用して、上記ダウンリンクデータの再送を行う(S311)。制御部153は、当該DCIの送信及び上記ダウンリンクデータの再送を制御する。
 上記ダウンリンクデータについてのACKを受信した場合には(S313:YES)、処理はステップS301へ戻る。そうでなければ(S313:NO)、処理はステップS309へ戻る。
 (端末装置200の処理)
 (a)第1の処理
 図20は、本開示の実施形態に係る端末装置200の第1の処理の概略的な流れの一例を示すフローチャートである。当該第1の処理は、共用帯域を使用して送信が行われるダウンリンクデータ(即ち、セルラー帯域を使用して再送が行われるダウンリンクデータ)に着目した処理である。
 端末装置200(制御部243)は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用して基地局100により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う(S321)。
 端末装置200が、上記ダウンリンクデータについてのACKを送信した場合には(S323:YES)、処理はステップS321へ戻る。
 そうでなければ(S323:NO)、端末装置200(制御部243)は、セルラー帯域(即ち、セルラーシステム用の周波数帯域)を使用して基地局100により行われる上記ダウンリンクデータの再送に応じて、上記再送制御プロセスにおける受信側の処理を行う(S323)。そして、処理はステップS323へ戻る。
 (b)第2の処理
 図21は、本開示の実施形態に係る端末装置200の第2の処理の概略的な流れの一例を示すフローチャートである。当該第2の処理は、セルラー帯域を使用して送信/再送が行われるダウンリンクデータに着目した処理である。
 端末装置200(制御部243)は、セルラー帯域を使用したダウンリンクデータの送信/再送についてのDCIを取得する(S331)。
 例えば、上記DCIが、共用帯域フィールド(例えば、U-CCインディケータフィールド)及び再送制御プロセスフィールド(例えば、HARQプロセス番号フィールド)を有する所定のフォーマットに従った情報である(S333:YES)。この場合に、端末装置200(制御部243)は、上記DCIのリソース割当てが、共用帯域を使用して送信が行われたダウンリンクデータについての再送のためであると、判定する(S335)。さらに、端末装置200(制御部243)は、上記DCIの中の、共用帯域フィールドの情報及び再送制御プロセスフィールドの情報に基づいて、上記ダウンリンクデータのための再送制御プロセスを特定する(S337)。そして、端末装置200(制御部243)は、当該再送制御プロセスにおける受信側の処理を行う(S339)。そして、処理は終了する。
 例えば、上記DCIが、上記所定のフォーマットに従った情報ではない場合には(S333:NO)、端末装置200(制御部243)は、上記DCIのリソース割当てが、共用帯域を使用して送信が行われたダウンリンクデータについての再送のためではないと、判定する(S341)。換言すると、端末装置200(制御部243)は、上記DCIのリソース割当てが、上記セルラー帯域を使用して送信が行われたダウンリンクの再送又は新たなダウンリンクデータの送信のためであると判定する。さらに、端末装置200(制御部243)は、上記DCIの中の再送制御プロセスフィールドの情報に基づいて、上記ダウンリンクデータのための再送制御プロセスを特定する(S343)。そして、端末装置200(制御部243)は、当該再送制御プロセスにおける受信側の処理を行う(S345)。そして、処理は終了する。
 なお、第2の処理におけるステップS331~S339は、第1の処理におけるステップS325に対応する。
 <<6.変形例>>
 続いて、図22を参照して、本開示の実施形態の変形例を説明する。
 (変形例の概略)
 上述した本開示の実施形態の例では、1つの基地局(基地局100)が、共用帯域を使用してダウンリンクデータの送信を行い、且つ、セルラー帯域を使用して当該ダウンリンクデータの再送を行う。
 一方、本開示の実施形態の変形例では、第1の基地局と第2の基地局との間でのキャリアアグリゲーション(例えば、Inter-eNB Carrier Aggregation)が行われる。より具体的には、例えば、端末装置は、セルラー帯域を使用して上記第1の基地局との無線通信を行い、且つ、共用帯域を使用して第2の基地局との無線通信を行う。この場合に、上記第2の基地局が、上記共用帯域を使用してダウンリンクデータの送信を行い、上記第1の基地局が、上記セルラー帯域を使用して当該ダウンリンクデータの再送を行う。例えば、上記共用帯域は、端末装置200にとってのSCCであり、上記セルラー帯域は、端末装置200にとってのSCC又はPCCである。
 (第1の基地局及び第2の基地局の例)
 一例として、上記第1の基地局は、マクロセルの基地局であり、上記第2の基地局は、当該マクロセルと重なるスモールセルの基地局である。以下、図22を参照して具体例を説明する。
 図22は、本開示の実施形態の変形例に係る基地局の例を説明するための説明図である。図22を参照すると、基地局400、基地局500及び端末装置200が示されている。基地局400は、マクロセル40の基地局であり、基地局500は、スモールセル50の基地局である。端末装置200は、セルラー帯域を使用して、基地局400との無線通信を行い、共用帯域を使用して、基地局500との無線通信を行う。例えば、基地局500は、上記共用帯域を使用して、端末装置200へのダウンリンクデータの送信を行い、基地局400は、上記セルラー帯域を使用して、上記ダウンリンクデータの再送を行う。
 (第1の基地局及び第2の基地局の構成)
 上記第1の基地局及び上記第2の基地局の各々は、例えば、基地局100と同様に、アンテナ部、無線通信部、ネットワーク通信部、記憶部及び処理部を備える。また、例えば、当該処理部は、処理部150と同様に、情報取得部及び制御部を含む。
 (第2の基地局に係る技術的特徴)
 (a)ダウンリンクデータの送信
 上記第2の基地局は、上記共用帯域を使用してダウンリンクデータの送信を行う。上記第2の基地局の制御部は、上記共用帯域を使用してダウンリンクデータの送信が行われるように、当該ダウンリンクデータの送信を制御する。
 一例として、上記制御部は、上記ダウンリンクデータの送信のために端末装置200に上記共用帯域の無線リソース(例えば、リソースブロック)を割り当てることにより、上記ダウンリンクデータの送信を制御する。その結果、上記第2の基地局は、上記共用帯域を使用して上記ダウンリンクデータの送信を行う。
 (b)ダウンリンクデータの再送
 例えば、上記第1の基地局は、上記セルラー帯域を使用して上記ダウンリンクデータの再送を行う。上記第2の基地局の上記制御部は、上記セルラー帯域を使用して上記ダウンリンクデータの送信が行われるように、上記ダウンリンクデータの送信を制御する。
 一例として、上記制御部は、上記ダウンリンクデータの再送を上記第1の基地局に要求することにより、上記ダウンリンクデータの再送を制御する。さらに/あるいは、上記制御部は、上記ダウンリンクデータ、又は上記ダウンリンクデータから生成されるデータ(例えば、上記ダウンリンクデータの符号化により生成されるデータ)を上記第1の基地局に提供することにより、上記ダウンリンクデータの再送を制御する。その結果、上記第1の基地局は、上記セルラー帯域を使用して上記ダウンリンクデータの再送を行う。
 (c)ダウンリンク制御情報の送信
 例えば、上記第2の基地局の上記制御部は、上記ダウンリンクデータの上記再送についてのDCIの送信を制御する。
 例えば、上記第1の基地局が、上記DCIを送信する。この場合に、一例として、上記制御部は、上記DCIの生成のための情報(例えば、HARQプロセス番号など)を上記他の基地局に提供することにより、上記DCIの送信を制御する。
 上記第2の基地局が、上記DCIを送信してもよい。この場合に、上記制御部は、上記DCIの生成、及び/又は上記DCIの送信処理(例えば、無線リソースへのマッピングなど)を行うことにより、上記DCIの送信を制御してもよい。
 (第1の基地局に係る技術的特徴)
 (a)ダウンリンクデータの再送
 例えば、上記第1の基地局は、上記セルラー帯域を使用して上記ダウンリンクデータの再送を行う。上記第1の基地局の制御部は、上記セルラー帯域を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 一例として、上記制御部は、上記ダウンリンクデータの再送のために端末装置200に上記セルラー帯域の無線リソース(例えば、リソースブロック)を割り当てることにより、上記ダウンリンクデータの再送を制御する。その結果、上記第1の基地局は、上記共用帯域を使用して上記ダウンリンクデータの再送を行う。なお、例えば、上記第1の基地局の情報取得部は、上記ダウンリンクデータ、又は上記ダウンリンクデータから生成されるデータ(例えば、上記ダウンリンクデータの符号化により生成されるデータ)を取得する。
 (b)ダウンリンク制御情報の送信
 例えば、上記第1の基地局の上記制御部は、上記ダウンリンクデータの上記再送についてのDCIの送信を制御する。
 例えば、上記第1の基地局が、上記DCIを送信する。この場合に、一例として、上記制御部は、上記DCIの生成、及び/又は上記DCIの送信処理(例えば、無線リソースへのマッピングなど)を行うことにより、上記DCIの送信を制御する。
 <<7.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100(又は基地局400若しくは基地局500)は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100(又は基地局400若しくは基地局500)は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100(又は基地局400若しくは基地局500)は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100(又は基地局400若しくは基地局500)として動作してもよい。さらに、基地局100(又は基地局400若しくは基地局500)の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
 <7.1.基地局に関する応用例>
 (第1の応用例)
 図23は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図23に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図23にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図23に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図23に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図23には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図23に示したeNB800において、図7を参照して説明した制御部153(及び情報取得部151)は、無線通信インタフェース825において実装されてもよい。あるいは、制御部153(及び情報取得部151)の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて制御部153(及び情報取得部151)が実装されてもよい。この場合に、上記モジュールは、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラム(換言すると、プロセッサに制御部153(及び情報取得部151)の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、制御部153(及び情報取得部151)を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図22を参照して説明した基地局400及び基地局500の各々の制御部(及び情報取得部)も、制御部153(及び情報取得部151)と同様である。
 また、図23に示したeNB800において、図7を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。これらの点については、図22を参照して説明した基地局400及び基地局500の各々のアンテナ部、無線通信部及びネットワーク通信部も、アンテナ部110、無線通信部120及びネットワーク通信部130と同様である。
 (第2の応用例)
 図24は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図24に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図24にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図23を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図23を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図24に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図24には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図24に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図24には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図24に示したeNB830において、図7を参照して説明した制御部153(及び情報取得部151)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、制御部153(及び情報取得部151)の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて制御部153(及び情報取得部151)が実装されてもよい。この場合に、上記モジュールは、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラム(換言すると、プロセッサに制御部153(及び情報取得部151)の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、制御部153(及び情報取得部151)を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを制御部153(及び情報取得部151)として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図22を参照して説明した基地局400及び基地局500の各々の制御部(及び情報取得部)も、制御部153(及び情報取得部151)と同様である。
 また、図24に示したeNB830において、例えば、図7を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。これらの点については、図22を参照して説明した基地局400及び基地局500の各々のアンテナ部、無線通信部及びネットワーク通信部も、アンテナ部110、無線通信部120及びネットワーク通信部130と同様である。
 <7.2.端末装置に関する応用例>
 (第1の応用例)
 図25は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図25に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図25には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図25に示したように複数のアンテナ916を有してもよい。なお、図25にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図25に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図25に示したスマートフォン900において、図8を参照して説明した制御部243(及び情報取得部241)は、無線通信インタフェース912において実装されてもよい。あるいは、制御部243(及び情報取得部241)の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて制御部243(及び情報取得部241)が実装されてもよい。この場合に、上記モジュールは、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラム(換言すると、プロセッサに制御部243(及び情報取得部241)の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、制御部243(及び情報取得部241)を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図25に示したスマートフォン900において、例えば、図8を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。
 (第2の応用例)
 図26は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図26に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図26には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図26に示したように複数のアンテナ937を有してもよい。なお、図26にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図26に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図26に示したカーナビゲーション装置920において、図8を参照して説明した制御部243(及び情報取得部241)は、無線通信インタフェース933において実装されてもよい。あるいは、制御部243(及び情報取得部241)の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて制御部243(及び情報取得部241)が実装されてもよい。この場合に、上記モジュールは、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラム(換言すると、プロセッサに制御部243(及び情報取得部241)の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、制御部243(及び情報取得部241)を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを制御部243(及び情報取得部241)として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図26に示したカーナビゲーション装置920において、例えば、図8を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、制御部243(及び情報取得部241)を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<8.まとめ>>
 ここまで、図6~図26を参照して、本開示の実施形態に係る通信装置及び各処理を説明した。
 本開示に係る実施形態によれば、基地局100は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用してダウンリンクデータの送信が行われるように、上記ダウンリンクデータの送信を制御する制御部153、を備える。制御部153は、セルラー帯域(即ち、上記セルラーシステム用の周波数帯域)を使用して上記ダウンリンクデータの再送が行われるように、上記ダウンリンクデータの再送を制御する。
 また、本開示に係る実施形態によれば、端末装置200は、共用帯域(即ち、セルラーシステムを含む複数の無線通信システムの間で共用される周波数帯域)を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う制御部243、を備える。制御部243は、セルラー帯域(即ち、上記セルラーシステム用の周波数帯域)を使用して基地局により行われる上記ダウンリンクデータの再送に応じて、上記再送制御プロセスにおける受信側の処理を行う。
 これにより、例えば、共用帯域(即ち、複数の無線通信システムの間で共用される周波数帯域)がセルラーシステムにおいて使用される場合にダウンリンクデータをより確実に再送することが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、セルラーシステムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、セルラーシステムは、他の通信規格に準拠したものであってもよい。
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、基地局、基地局装置、若しくは基地局装置のためのモジュール、又は、端末装置、若しくは端末装置のためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置の構成要素(例えば、制御部など)として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、基地局、基地局装置、若しくは基地局装置のためのモジュール、又は、端末装置、若しくは端末装置のためのモジュール)も提供されてもよい。また、上記装置の構成要素(例えば、制御部など)の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御する制御部、
を備え、
 前記制御部は、前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御する、
装置。
(2)
 前記制御部は、前記ダウンリンクデータの前記再送についてのダウンリンク制御情報の送信を制御し、
 前記ダウンリンク制御情報は、前記ダウンリンクデータの送信に使用された共用の周波数帯域として、前記第1の周波数帯域を示す、
前記(1)に記載の装置。
(3)
 前記ダウンリンク制御情報は、所定のフォーマットに従った情報であり、
 前記所定のフォーマットは、前記ダウンリンクデータの送信に使用された共用の周波数帯域を示すためのフィールドを有する、
前記(2)に記載の装置。
(4)
 前記制御部は、前記フィールドに含まれる2つ以上のビットパターン候補と、当該2つ以上のビットパターンの各々に対応する共用の周波数帯域とを、端末装置に通知する、前記(3)に記載の装置。
(5)
 前記所定のフォーマットは、前記ダウンリンクデータのための再送制御プロセスを示すためのフィールドを有する、前記(3)又は(4)に記載の装置。
(6)
 前記再送制御プロセスは、HARQ(Hybrid Automatic Repeat Request)プロセスであり、
 前記再送制御プロセスを示すための前記フィールドは、HARQプロセス番号フィールドである、
前記(5)に記載の装置。
(7)
 前記所定のフォーマットは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドを有しない、前記(3)~(6)のいずれか1項に記載の装置。
(8)
 前記制御部は、限定された期間内で、前記第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御する、前記(1)~(7)のいずれか1項に記載の装置。
(9)
 前記限定された期間は、前記第2の周波数帯域の使用の終了時点に対応する期間である、前記(8)に記載の装置。
(10)
 前記限定された期間は、前記終了時点の所定時間前から開始する期間である、前記(9)に記載の装置。
(11)
 前記限定された期間は、前記終了時点から開始する期間である、前記(9)に記載の装置。
(12)
 前記ダウンリンクデータは、キャリアアグリゲーションをサポートする端末装置へのダウンリンクデータであり、
 前記第1の周波数帯域は、前記端末装置にとってのセカンダリコンポーネントキャリアであり、
 前記第2の周波数帯域は、前記端末装置にとってのプライマリコンポーネントキャリア又はセカンダリコンポーネントキャリアである、
前記(1)~(11)のいずれか1項に記載の装置。
(13)
 前記第1の周波数帯域は、無線LAN(Local Area Network)のチャネルである、前記(1)~(12)のいずれか1項に記載の装置。
(14)
 プロセッサにより、
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御することと、
 前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御することと、
を含む方法。
(15)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う制御部、
を備え、
 前記制御部は、前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行う、
装置。
(16)
 前記再送制御プロセスは、HARQ(Hybrid Automatic Repeat Request)プロセスである、前記(15)に記載の装置。
(17)
 前記制御部は、前記ダウンリンクデータの前記再送についてのダウンリンク制御情報に基づいて、前記再送制御プロセスを特定し、
 前記ダウンリンク制御情報は、前記ダウンリンクデータの送信に使用された共用の周波数帯域として、前記第1の周波数帯域を示し、前記ダウンリンクデータのための再送制御プロセスとして、前記再送制御プロセスを示す、
前記(15)又は(16)に記載の装置。
(18)
 前記ダウンリンク制御情報は、所定のフォーマットに従った情報であり、
 前記所定のフォーマットは、前記ダウンリンクデータの送信に使用された共用の周波数帯域を示すためのフィールドと、前記ダウンリンクデータのための再送制御プロセスを示すためのフィールドとを有する、
前記(17)に記載の装置。
(19)
 前記所定のフォーマットは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドを有さず、
 前記制御部は、前記ダウンリンク制御情報が前記所定のフォーマットに従った情報であることに基づいて、前記ダウンリンク制御情報のリソース割当てが再送のためであると判定する、
前記(18)に記載の装置。
(20)
 プロセッサにより、
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行うことと、
 前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行うことと、
を含む方法。
(21)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御することと、
 前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御することと、
をプロセッサに実行させるためのプログラム。
(22)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御することと、
 前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(23)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行うことと、
 前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行うことと、
をプロセッサに実行させるためのプログラム。
(24)
 セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行うことと、
 前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 1    システム
 10   セル
 40   マクロセル
 50   スモールセル
 100  基地局
 153  制御部
 200  端末装置
 243  制御部
 400  基地局
 500  基地局

Claims (20)

  1.  セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御する制御部、
    を備え、
     前記制御部は、前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御する、
    装置。
  2.  前記制御部は、前記ダウンリンクデータの前記再送についてのダウンリンク制御情報の送信を制御し、
     前記ダウンリンク制御情報は、前記ダウンリンクデータの送信に使用された共用の周波数帯域として、前記第1の周波数帯域を示す、
    請求項1に記載の装置。
  3.  前記ダウンリンク制御情報は、所定のフォーマットに従った情報であり、
     前記所定のフォーマットは、前記ダウンリンクデータの送信に使用された共用の周波数帯域を示すためのフィールドを有する、
    請求項2に記載の装置。
  4.  前記制御部は、前記フィールドに含まれる2つ以上のビットパターン候補と、当該2つ以上のビットパターンの各々に対応する共用の周波数帯域とを、端末装置に通知する、請求項3に記載の装置。
  5.  前記所定のフォーマットは、前記ダウンリンクデータのための再送制御プロセスを示すためのフィールドを有する、請求項3に記載の装置。
  6.  前記再送制御プロセスは、HARQ(Hybrid Automatic Repeat Request)プロセスであり、
     前記再送制御プロセスを示すための前記フィールドは、HARQプロセス番号フィールドである、
    請求項5に記載の装置。
  7.  前記所定のフォーマットは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドを有しない、請求項3に記載の装置。
  8.  前記制御部は、限定された期間内で、前記第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御する、請求項1に記載の装置。
  9.  前記限定された期間は、前記第2の周波数帯域の使用の終了時点に対応する期間である、請求項8に記載の装置。
  10.  前記限定された期間は、前記終了時点の所定時間前から開始する期間である、請求項9に記載の装置。
  11.  前記限定された期間は、前記終了時点から開始する期間である、請求項9に記載の装置。
  12.  前記ダウンリンクデータは、キャリアアグリゲーションをサポートする端末装置へのダウンリンクデータであり、
     前記第1の周波数帯域は、前記端末装置にとってのセカンダリコンポーネントキャリアであり、
     前記第2の周波数帯域は、前記端末装置にとってのプライマリコンポーネントキャリア又はセカンダリコンポーネントキャリアである、
    請求項1に記載の装置。
  13.  前記第1の周波数帯域は、無線LAN(Local Area Network)のチャネルである、請求項1に記載の装置。
  14.  プロセッサにより、
     セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用してダウンリンクデータの送信が行われるように、前記ダウンリンクデータの送信を制御することと、
     前記セルラーシステム用の第2の周波数帯域を使用して前記ダウンリンクデータの再送が行われるように、前記ダウンリンクデータの再送を制御することと、
    を含む方法。
  15.  セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行う制御部、
    を備え、
     前記制御部は、前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行う、
    装置。
  16.  前記再送制御プロセスは、HARQ(Hybrid Automatic Repeat Request)プロセスである、請求項15に記載の装置。
  17.  前記制御部は、前記ダウンリンクデータの前記再送についてのダウンリンク制御情報に基づいて、前記再送制御プロセスを特定し、
     前記ダウンリンク制御情報は、前記ダウンリンクデータの送信に使用された共用の周波数帯域として、前記第1の周波数帯域を示し、前記ダウンリンクデータのための再送制御プロセスとして、前記再送制御プロセスを示す、
    請求項15に記載の装置。
  18.  前記ダウンリンク制御情報は、所定のフォーマットに従った情報であり、
     前記所定のフォーマットは、前記ダウンリンクデータの送信に使用された共用の周波数帯域を示すためのフィールドと、前記ダウンリンクデータのための再送制御プロセスを示すためのフィールドとを有する、
    請求項17に記載の装置。
  19.  前記所定のフォーマットは、リソース割当てが新たなデータの送信のためか又は再送のためかを示すためのフィールドを有さず、
     前記制御部は、前記ダウンリンク制御情報が前記所定のフォーマットに従った情報であることに基づいて、前記ダウンリンク制御情報のリソース割当てが再送のためであると判定する、
    請求項18に記載の装置。
  20.  プロセッサにより、
     セルラーシステムを含む複数の無線通信システムの間で共用される第1の周波数帯域を使用して基地局により行われるダウンリンクデータの送信に応じて、再送制御プロセスにおける受信側の処理を行うことと、
     前記セルラーシステム用の第2の周波数帯域を使用して基地局により行われる前記ダウンリンクデータの再送に応じて、前記再送制御プロセスにおける受信側の処理を行うことと、
    を含む方法。
PCT/JP2015/067913 2014-08-29 2015-06-22 装置及び方法 WO2016031367A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/505,133 US10225857B2 (en) 2014-08-29 2015-06-22 Device and method
EP15834941.5A EP3197204B1 (en) 2014-08-29 2015-06-22 Device and method
US16/274,377 US20190182858A1 (en) 2014-08-29 2019-02-13 Device and method
US16/885,744 US11096205B2 (en) 2014-08-29 2020-05-28 Device and method for controlling communication of downlink data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174905 2014-08-29
JP2014174905 2014-08-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/505,133 A-371-Of-International US10225857B2 (en) 2014-08-29 2015-06-22 Device and method
US16/274,377 Continuation US20190182858A1 (en) 2014-08-29 2019-02-13 Device and method

Publications (1)

Publication Number Publication Date
WO2016031367A1 true WO2016031367A1 (ja) 2016-03-03

Family

ID=55399272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067913 WO2016031367A1 (ja) 2014-08-29 2015-06-22 装置及び方法

Country Status (3)

Country Link
US (3) US10225857B2 (ja)
EP (1) EP3197204B1 (ja)
WO (1) WO2016031367A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10812230B2 (en) * 2018-01-19 2020-10-20 Kt Corporation Method and apparatus for controlling data transmission using interworking interface between NR and LTE base station
US20230328752A1 (en) * 2020-08-07 2023-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Data indicator for dci scheduling multiple cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094003A (ja) * 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
EP2384074A1 (en) * 2010-04-27 2011-11-02 Vodafone IP Licensing limited Improving data rate in mobile communication networks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094001A (ja) 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
US8239721B2 (en) 2008-04-25 2012-08-07 Interdigital Patent Holdings, Inc. HARQ process utilization in multiple carrier wireless communications
US9729283B2 (en) * 2014-05-08 2017-08-08 Intel IP Corporation Systems, methods and devices for flexible retransmissions
CN105162557B (zh) 2014-05-30 2019-03-15 中兴通讯股份有限公司 混合自动重传进程指示方法、装置及系统
US9917676B2 (en) * 2014-06-11 2018-03-13 Samsung Electronics Co., Ltd. Harq procedure and frame structure for LTE cells on unlicensed spectrum

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094003A (ja) * 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
EP2384074A1 (en) * 2010-04-27 2011-11-02 Vodafone IP Licensing limited Improving data rate in mobile communication networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197204A4 *

Also Published As

Publication number Publication date
US20170257880A1 (en) 2017-09-07
EP3197204A4 (en) 2018-04-25
EP3197204B1 (en) 2020-01-15
US20190182858A1 (en) 2019-06-13
US20200296748A1 (en) 2020-09-17
US10225857B2 (en) 2019-03-05
US11096205B2 (en) 2021-08-17
EP3197204A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
JP6677331B2 (ja) 端末装置
US20220116147A1 (en) Electronic device, wireless communication method, and computer readable medium
CN114009124A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP2018046586A (ja) 装置及び方法
US11096205B2 (en) Device and method for controlling communication of downlink data
JP2019208278A (ja) 基地局装置、ユーザ装置、基地局装置の制御方法及びユーザ装置の制御方法
JP6265139B2 (ja) 通信制御装置、通信制御方法及び端末装置
JP6496938B2 (ja) 装置
JPWO2020145056A1 (ja) 通信装置、通信方法、及びプログラム
JP6705378B2 (ja) 装置及びシステム
WO2021233212A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834941

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15505133

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015834941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834941

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP