WO2016047112A1 - レンズ系、及び撮像装置 - Google Patents

レンズ系、及び撮像装置 Download PDF

Info

Publication number
WO2016047112A1
WO2016047112A1 PCT/JP2015/004749 JP2015004749W WO2016047112A1 WO 2016047112 A1 WO2016047112 A1 WO 2016047112A1 JP 2015004749 W JP2015004749 W JP 2015004749W WO 2016047112 A1 WO2016047112 A1 WO 2016047112A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
focusing
image
lens system
Prior art date
Application number
PCT/JP2015/004749
Other languages
English (en)
French (fr)
Inventor
智子 飯山
正史 末吉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016549945A priority Critical patent/JPWO2016047112A1/ja
Priority to EP15843623.8A priority patent/EP3199999A4/en
Publication of WO2016047112A1 publication Critical patent/WO2016047112A1/ja
Priority to US15/160,812 priority patent/US20160266350A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145115Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged ++++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -

Definitions

  • the present disclosure relates to a lens system and an imaging apparatus.
  • Patent Document 1 discloses, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive or negative refractive power, and a fourth lens having a positive refractive power.
  • the lens system according to the present disclosure is a lens system including a plurality of lens groups each including at least one lens element, and sequentially changes from an infinite focus state to a close object focus state from the object side to the image side.
  • f2 Focal length of the second lens group
  • f4 Focal length of the fourth lens group
  • f Focal length at the time of focusing on the entire optical system at infinity.
  • the imaging apparatus includes a lens system and an imaging element that receives an optical image formed by the lens system and converts the optical image into an electrical image signal.
  • the lens system is a lens system having a plurality of lens groups each composed of at least one lens element, and focusing from an infinite focus state to a close object focus state in order from the object side to the image side.
  • the fourth lens group that moves in the optical axis direction during focusing and the most image side lens group satisfy the following conditions (1) and (2).
  • f2 focal length of the second lens group
  • f4 focal length of the fourth lens group
  • f focal length at the time of focusing on the entire system at infinity.
  • FIG. 1 is a lens arrangement diagram illustrating a lens system according to Embodiment 1 (Numerical Example 1) from an infinite focus state to a closest focus state.
  • FIG. 2 is a longitudinal aberration diagram of the lens system according to Numerical Example 1 from the infinite focus state to the closest focus state.
  • FIG. 3 is a lateral aberration diagram in a basic state where no image blur correction is performed and in an image blur correction state in the infinitely focused state of the lens system according to Numerical Example 1.
  • FIG. 4 is a lens arrangement diagram illustrating the closest focusing state from the infinity focusing state of the lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 5 is a longitudinal aberration diagram of the lens system according to Numerical Example 2 from the infinite focus state to the closest focus state.
  • FIG. 6 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state in an infinitely focused state of the lens system according to Numerical Example 2.
  • FIG. 7 is a lens arrangement diagram showing the closest focusing state from the infinite focusing state of the lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the lens system according to Numerical Example 3 from the infinite focus state to the closest focus state.
  • FIG. 9 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state in an infinitely focused state of the lens system according to Numerical Example 3.
  • FIG. 7 is a lens arrangement diagram showing the closest focusing state from the infinite focusing state of the lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 8 is a longitudinal aberration diagram of the lens system according to Numerical Example 3 from the infinite focus state to the closest focus state.
  • FIG. 9 is a
  • FIG. 10 is a lens arrangement diagram illustrating the closest focusing state from the infinity focusing state of the lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 11 is a longitudinal aberration diagram of the lens system according to Numerical Example 4 from the infinite focus state to the closest focus state.
  • FIG. 12 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state in an infinitely focused state of the lens system according to Numerical Example 4.
  • FIG. 13 is a schematic configuration diagram of an imaging apparatus according to the fifth embodiment.
  • FIG. 14 is a diagram illustrating lens surface data according to Numerical Example 1.
  • FIG. 15 is a diagram illustrating aspherical data according to Numerical Example 1.
  • FIG. 16 is a diagram illustrating various data according to Numerical Example 1.
  • FIG. 17 is a diagram illustrating lens group data according to Numerical Example 1.
  • FIG. 18 is a diagram illustrating lens surface data according to Numerical Example 2.
  • FIG. 19 is a diagram showing aspheric data according to Numerical Example 2.
  • FIG. 20 is a diagram illustrating various data according to Numerical Example 2.
  • FIG. 21 is a diagram illustrating lens group data according to Numerical Example 2.
  • FIG. 22 is a diagram illustrating lens surface data according to Numerical Example 3.
  • FIG. 23 is a diagram showing aspherical data according to Numerical Example 3.
  • FIG. 24 is a diagram illustrating various data according to Numerical Example 3.
  • FIG. 25 is a diagram illustrating lens group data according to Numerical Example 3.
  • FIG. 25 is a diagram illustrating lens group data according to Numerical Example 3.
  • FIG. 26 is a diagram illustrating lens surface data according to Numerical Example 4.
  • FIG. 27 is a diagram showing aspheric data according to Numerical Example 4.
  • FIG. 28 is a diagram illustrating various data according to Numerical Example 4.
  • FIG. 29 is a diagram illustrating lens group data according to Numerical Example 4.
  • FIGS. 1, 4, 7, and 10 are lens arrangement diagrams of the lens systems according to Embodiments 1 to 4, respectively, and each represents a lens system in an infinitely focused state.
  • the lens system according to the present disclosure has two shooting states corresponding to the object distance. That is, there are a first state M1 in which focusing is performed within the first focusing range, and a second state M2 in which focusing is performed within the second focusing range.
  • the first focusing range is a range from an object at infinity to the first finite object.
  • the second focus range is a range from the second finite distance object closer to the object at infinity to the third finite distance object closer to the object than the first finite distance object.
  • the first lens group G1 to the fourth lens group G4 move integrally to the object side with respect to the first state M1.
  • the first finite object distance in the first state M1 is 0.3 m from the image plane S to the object
  • the second finite object distance is 0.2 mm from the image plane S to the object. 3m
  • the third finite object distance indicates a state in which the distance from the image plane S to the object in the second state M2 is the shortest.
  • the arrows provided in FIGS. 1, 4, 7 and 10 are lines obtained by connecting the positions of the lens groups in the first state M1 and the second state M2.
  • an arrow parallel to the optical axis attached to a specific lens group indicates a lens group during focusing from an infinite focus state to a close object focus state. Indicates the direction of movement.
  • an arrow perpendicular to the optical axis attached to the lens group indicates a direction perpendicular to the optical axis so that the lens group optically corrects image blurring. This indicates that the lens group moves to.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • the first lens group G1 having a positive power includes a biconcave first lens element L1 in order from the object side to the image side, From the convex second lens element L2, the biconcave third lens element L3, the biconvex fourth lens element L4, and the positive meniscus fifth lens element L5 with the convex surface facing the object side become.
  • the second lens group G2 having positive power includes, in order from the object side to the image side, a positive meniscus sixth lens element L6 having a convex surface directed to the image side, and an image It consists only of a cemented lens of the negative meniscus seventh lens element L7 with the convex surface facing the side.
  • An aperture stop A is disposed between the first lens group G1 and the second lens group G2.
  • the third lens group G3 having positive power includes a biconcave eighth lens element L8 and a biconvex ninth lens element in order from the object side to the image side. It consists only of a cemented lens with L9.
  • the fourth lens group G4 having positive power is composed of only a positive meniscus tenth lens element L10 having a convex surface facing the image side.
  • the fifth lens group G5 having negative power consists of only a negative meniscus eleventh lens element L11 with the concave surface facing the object side.
  • the second lens group G2 and the fourth lens group G4 move toward the object side along the optical axis during focusing from the infinitely focused state to the close object focused state. To do.
  • the first lens group G1 having positive power has the same configuration as that of Embodiment 1.
  • the second lens group G2 having a positive power has the same configuration as that of Embodiment 1.
  • An aperture stop A is disposed between the first lens group G1 and the second lens group G2.
  • the third lens group G3 having positive power includes, in order from the object side to the image side, a biconcave eighth lens element L8 and a biconvex ninth lens element. It consists only of a cemented lens with L9.
  • the fourth lens group G4 having positive power has the same configuration as that of Embodiment 1.
  • the fifth lens group G5 having negative power has the same configuration as that of Embodiment 1.
  • the second lens group G2 and the fourth lens group G4 move toward the object side along the optical axis during focusing from the infinitely focused state to the near object point focused state. Moving.
  • the first lens group G1 having positive power has the same configuration as that of Embodiment 1.
  • the second lens group G2 having positive power includes, in order from the object side to the image side, a positive meniscus sixth lens element L6 having a convex surface directed to the image side, and an image It consists only of a cemented lens of a negative meniscus seventh lens element L7 having a flat side.
  • An aperture stop A is disposed between the first lens group G1 and the second lens group G2.
  • the third lens group G3 having positive power includes a biconcave eighth lens element L8 and a biconvex ninth lens element in order from the object side to the image side. It consists only of a cemented lens with L9.
  • the fourth lens group G4 having positive power has the same configuration as that of Embodiment 1.
  • the fifth lens group G5 having negative power has the same configuration as that of Embodiment 1.
  • the second lens group G2 and the fourth lens group G4 move toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state. To do.
  • the first lens group G1 having a positive power includes, in order from the object side to the image side, a biconcave first lens element L1 and an object.
  • a positive meniscus second lens element L2 with a concave surface facing side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a biconvex fifth lens element L5 Become.
  • the third lens element L3 and the fourth lens element L4 are cemented.
  • the second lens group G2 having positive power includes, in order from the object side to the image side, a negative meniscus sixth lens element L6 having a concave surface directed toward the image side, It consists only of a cemented lens of a convex seventh lens element L7.
  • An aperture stop A is disposed between the first lens group G1 and the second lens group G2.
  • the third lens unit G3 having positive power includes, in order from the object side to the image side, a biconcave eighth lens element L8 and a biconvex ninth lens element. It consists only of a cemented lens with L9.
  • the fourth lens group G4 having positive power has the same configuration as that of Embodiment 1.
  • the fifth lens group G5 having negative power has the same configuration as that of Embodiment 1.
  • the second lens group G2 and the fourth lens group G4 move toward the object side along the optical axis during focusing from the infinite focus state to the close object focus state. To do.
  • the first lens group G1 disposed on the most object side is placed on the image plane S during focusing from the infinite focus state to the close object focus state. It is fixed to it. Thereby, the aberration fluctuation
  • the lens systems according to Embodiments 1 to 4 are first focusing lens groups as focusing lens groups that move along the optical axis during focusing from an infinitely focused state to a close object focused state.
  • a second lens group and a fourth lens group which is a second focusing lens group are provided.
  • one of the first focusing lens group and the second focusing lens group has a small power that is less than half of one.
  • Each focusing lens group can be given a different correction role, and correction of field curvature is facilitated.
  • the lens systems according to Embodiments 1 to 4 include a fixed third lens group G3 between the first focusing lens group and the second focusing lens group. Accordingly, it is possible to suppress the aberration generated in the two focusing lens groups when focusing from the infinitely focused state to the close object focused state.
  • each of the first focusing lens group and the second focusing lens group is composed of two or less lens elements. Therefore, since the focusing lens group becomes light, it is possible to perform high-speed and silent focusing.
  • a lens element having an aspherical surface is arranged in the third lens group G3 on the image side of the aperture stop A. Thereby, the spherical aberration generated on the object side with respect to the aperture stop A can be reduced.
  • both the first focusing lens group and the second focusing lens group are configured on the image side from the aperture stop A. Thereby, the aberration of the upper and lower rays can be sufficiently corrected, and high performance can be obtained from infinity to the closest object point.
  • the fifth lens group G5 arranged on the most image side has negative power. Thereby, a back focus can be shortened and the full length of a lens system can be shortened.
  • the first lens group G1 includes a first lens element L1 having negative power, a second lens element L2 having positive power, and negative power.
  • the third lens element L3 includes a fourth lens element L4 having a positive power.
  • the lens systems according to Embodiments 1 to 4 are configured to integrally extend the first lens group G1 to the fourth lens group G4 toward the object side from the second finite distance to the third finite distance. ing. Thereby, very high performance can be obtained from infinity to the closest object point.
  • the first lens group G1 located closer to the object side than the fifth lens group G5 that is the most image side lens group.
  • the aperture stop A is configured to be reduced so that the F value becomes large.
  • the first to fourth embodiments have been described as examples of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • a lens system such as the lens systems according to Embodiments 1 to 4
  • a plurality of possible conditions are defined for the lens system according to each embodiment, but a lens system configuration that satisfies all of the plurality of conditions is most effective.
  • individual conditions it is also possible to obtain lens systems that exhibit corresponding effects.
  • a first lens group G1 fixed with respect to the image plane during focusing from an infinitely focused state to a close object focused state
  • An aperture stop A second lens group G2 that moves in the optical axis direction during focusing
  • a third lens group G3 fixed to the image surface during focusing
  • It consists of a fourth lens group G4 that moves in the optical axis direction during focusing and a fifth lens group G5, The following conditions (1) and (2) are satisfied.
  • f2 focal length of the second lens group G2
  • f4 focal length of the fourth lens group G4
  • f Focal length when focusing on infinity of the entire system, It is.
  • Condition (1) is a condition that defines the absolute value of the ratio of the focal lengths of the second lens group G2 and the fourth lens group G4 which are focus lens groups. When the condition (1) is not satisfied, the focus lens group becomes heavy, and it is difficult to perform high-speed and silent focusing.
  • Condition (2) is a condition that defines the absolute value of the ratio of the focal length of the fourth lens group G4, which is the focus lens group, to the focal length of the entire lens system.
  • the condition (2) is not satisfied, the focus lens group becomes heavy and it is difficult to perform focusing at high speed and silently.
  • a lens system having a basic configuration like the lens systems according to Embodiments 1 to 4 desirably satisfies the following condition (3).
  • ⁇ d Abbe number of the negative lens element constituting the most image side lens unit.
  • Condition (3) is a conditional expression that defines the Abbe number of at least one negative lens element constituting the fifth lens group G5, which is the most image side lens group. If the conditional expression is not satisfied, the lateral chromatic aberration increases, resulting in performance degradation.
  • the lens system having the basic configuration satisfies the following condition (4).
  • Lf distance on the optical axis from the most object side surface of the first lens unit G1 on the object side to the aperture stop from the aperture stop A
  • Lr distance on the optical axis from the aperture stop A on the image side to the image plane from the aperture stop A
  • Condition (4) is a conditional expression that defines the ratio of the distance on the optical axis of the lens group located on the object side from the aperture stop A to the distance on the optical axis of the lens group located on the image side from the aperture stop A. is there. If the lower limit of the condition (4) is not reached, the diameter of the first lens element L1 increases, the spherical aberration generated in the first lens group G1 increases, and the incident angle of the light incident on the image surface becomes steep, and the periphery It becomes difficult to secure the amount of light. If the upper limit of the condition (4) is exceeded, the correction of the aberration of the lower light beam is not sufficiently performed, and the lateral chromatic aberration is caused particularly at a high image height, thereby degrading the performance.
  • the above effect can be further achieved by satisfying at least one of the following conditions (4) -1 and (4) -2 '.
  • Each lens group constituting the lens system according to Embodiments 1 to 4 is a refractive lens element that deflects incident light by refraction (that is, deflection is performed at the interface between media having different refractive indexes).
  • the present invention is not limited to this.
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action, and a refractive index that deflects incident light according to the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element when a diffractive structure is formed at the interface of media having different refractive indexes, the wavelength dependence of diffraction efficiency is improved.
  • Each lens element constituting the lens system according to Embodiments 1 to 4 is a hybrid lens in which a transparent resin layer made of an ultraviolet curable resin is bonded to one surface of a lens element made of glass. May be. In this case, since the power of the transparent resin layer is weak, the lens element made of glass and the transparent resin layer are considered as one lens element. Similarly, when a lens element close to a flat plate is arranged, the power of the lens element close to the flat plate is weak, so it is considered as zero lens elements.
  • FIG. 13 is a schematic configuration diagram of the imaging apparatus 100 according to the fifth embodiment.
  • the imaging apparatus 100 receives an optical image formed by the lens system 101 and displays an image signal converted by the imaging element 102, and an image signal converted by the imaging element 102.
  • Display unit 103 Note that FIG. 13 illustrates a case where the lens system according to Embodiment 1 is used as the lens system 101.
  • the lens system 101 according to any of the first to fourth embodiments since the lens system 101 according to any of the first to fourth embodiments is used, a compact and excellent imaging device can be realized at low cost. In addition, it is possible to reduce the size and cost of the entire imaging apparatus 100 according to the fifth embodiment.
  • the lens system according to the first to fourth embodiments is shown as the lens system 101.
  • these lens systems do not use the entire focusing area. May be. That is, a range in which the optical performance is ensured may be cut out and used according to a desired focusing area.
  • the imaging apparatus 100 including the lens system 101 according to Embodiments 1 to 4 described above and an imaging element such as a CCD or CMOS is used as a portable device such as a digital still camera, a digital video camera, or a smartphone. It can also be applied to cameras of information terminals, surveillance cameras in surveillance systems, web cameras, in-vehicle cameras, and the like.
  • the fifth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • ⁇ d is an Abbe number with respect to the d line.
  • one surface number is assigned to the surface between the cemented lenses.
  • the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • a n is an n-order aspheric coefficient.
  • Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side.
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure)
  • the solid line represents the sagittal plane (indicated by s)
  • the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • FIG. 3 6, 9, and 12 are a basic state in which no image blur correction is performed and an image blur correction state at infinity of the zoom lens system according to Embodiments 1 to 4, respectively.
  • FIG. 3 is a basic state in which no image blur correction is performed and an image blur correction state at infinity of the zoom lens system according to Embodiments 1 to 4, respectively.
  • FIG. 14 shows surface data of the lens system of Numerical Example 1
  • FIG. 15 shows aspheric data
  • FIG. 16 shows various data
  • FIG. 17 shows lens group data.
  • FIG. 18 shows surface data of the lens system of Numerical Example 2
  • FIG. 19 shows aspheric data
  • FIG. 20 shows various data
  • FIG. 21 shows lens group data.
  • FIG. 22 shows surface data of the lens system of Numerical Example 3
  • FIG. 23 shows aspheric data
  • FIG. 24 shows various data
  • FIG. 25 shows lens group data.
  • FIG. 26 shows surface data of the lens system of Numerical Example 4
  • FIG. 27 shows aspheric data
  • FIG. 28 shows various data
  • FIG. 29 shows lens group data.
  • Table 1 shows the corresponding values for each condition in the lens system of each numerical example.
  • the present disclosure can be applied to a digital still camera, a digital video camera, a camera of a portable information terminal such as a smartphone, a PDA (Personal Digital Assistance) camera, a surveillance camera in a surveillance system, a Web camera, an in-vehicle camera, and the like.
  • the present disclosure is applicable to a photographing optical system that requires high image quality, such as a digital still camera system and a digital video camera system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 本開示におけるレンズ系は、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、物体側から像側へと順に、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群と、開口絞りと、フォーカシングの際に光軸方向に移動する第2レンズ群と、フォーカシングの際に像面に対して固定の第3レンズ群と、フォーカシングの際に光軸方向に移動する第4レンズ群と、最像側レンズ群とからなり、以下の条件(1)及び(2)を満足する。  2.5 <|f2/f4|< 6.5 ・・・(1)  0.5 <|f/f4| < 1.5 ・・・(2) ここで、 f2: 第2レンズ群の焦点距離 f4: 第4レンズ群の焦点距離 f: 光学系全体の無限遠合焦時の焦点距離 である。

Description

レンズ系、及び撮像装置
 本開示は、レンズ系、及び撮像装置に関する。
 光電変換を行う撮像素子を持つ撮像装置やカメラシステム等に対するコンパクト化及び高性能化の要求は極めて高く、このような撮像装置やカメラシステムに用いるレンズ系が種々提案されている。
 特許文献1は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正ないし負の屈折力の第3レンズ群と、正屈折力の第4レンズ群とを有し、該第1レンズ群は、フォーカシング時に像面に対して固定され、フォーカシングの際に第2レンズ群と、第4レンズ群とが光軸方向に移動するレンズ系を開示している。
特開2012-168456号公報
 本開示におけるレンズ系は、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、物体側から像側へと順に、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群と、開口絞りと、フォーカシングの際に光軸方向に移動する第2レンズ群と、フォーカシングの際に像面に対して固定の第3レンズ群と、フォーカシングの際に光軸方向に移動する第4レンズ群と、最像側レンズ群とからなり、以下の条件(1)及び(2)を満足する。
   2.5 <|f2/f4|< 6.5 ・・・(1)
   0.5 <|f/f4| < 1.5 ・・・(2)
 ここで、
 f2: 第2レンズ群の焦点距離
 f4: 第4レンズ群の焦点距離
 f: 光学系全体の無限遠合焦時の焦点距離
である。
 また、本開示における撮像装置は、レンズ系と、レンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子とを含む。レンズ系は、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、物体側から像側へと順に、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群と、開口絞りと、フォーカシングの際に光軸方向に移動する第2レンズ群と、フォーカシングの際に像面に対して固定の第3レンズ群と、フォーカシングの際に光軸方向に移動する第4レンズ群と、最像側レンズ群とからなり、以下の条件(1)及び(2)を満足する。
   2.5 <|f2/f4|< 6.5 ・・・(1)
   0.5 <|f/f4| < 1.5 ・・・(2)
 ここで、
 f2: 第2レンズ群の焦点距離
 f4: 第4レンズ群の焦点距離
 f: 全系の無限遠合焦時の焦点距離
である。
図1は、実施の形態1(数値実施例1)に係るレンズ系の無限遠合焦状態から最至近合焦状態を示すレンズ配置図である。 図2は、数値実施例1に係るレンズ系の無限遠合焦状態から最至近合焦状態の縦収差図である。 図3は、数値実施例1に係るレンズ系の無限遠合焦状態における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図4は、実施の形態2(数値実施例2)に係るレンズ系の無限遠合焦状態から最至近合焦状態を示すレンズ配置図である。 図5は、数値実施例2に係るレンズ系の無限遠合焦状態から最至近合焦状態の縦収差図である。 図6は、数値実施例2に係るレンズ系の無限遠合焦状態における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図7は、実施の形態3(数値実施例3)に係るレンズ系の無限遠合焦状態から最至近合焦状態を示すレンズ配置図である。 図8は、数値実施例3に係るレンズ系の無限遠合焦状態から最至近合焦状態の縦収差図である。 図9は、数値実施例3に係るレンズ系の無限遠合焦状態における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図10は、実施の形態4(数値実施例4)に係るレンズ系の無限遠合焦状態から最至近合焦状態を示すレンズ配置図である。 図11は、数値実施例4に係るレンズ系の無限遠合焦状態から最至近合焦状態の縦収差図である。 図12は、数値実施例4に係るレンズ系の無限遠合焦状態における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。 図13は、実施の形態5に係る撮像装置の概略構成図である。 図14は、数値実施例1に係るレンズ面データを示す図である。 図15は、数値実施例1に係る非球面データを示す図である。 図16は、数値実施例1に係る各種データを示す図である。 図17は、数値実施例1に係るレンズ群データを示す図である。 図18は、数値実施例2に係るレンズ面データを示す図である。 図19は、数値実施例2に係る非球面データを示す図である。 図20は、数値実施例2に係る各種データを示す図である。 図21は、数値実施例2に係るレンズ群データを示す図である。 図22は、数値実施例3に係るレンズ面データを示す図である。 図23は、数値実施例3に係る非球面データを示す図である。 図24は、数値実施例3に係る各種データを示す図である。 図25は、数値実施例3に係るレンズ群データを示す図である。 図26は、数値実施例4に係るレンズ面データを示す図である。 図27は、数値実施例4に係る非球面データを示す図である。 図28は、数値実施例4に係る各種データを示す図である。 図29は、数値実施例4に係るレンズ群データを示す図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面及び以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 図1、図4、図7及び図10は、それぞれ実施の形態1~実施の形態4に係るレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるレンズ系を表している。
 本開示に係るレンズ系は、物体距離に応じた2つの撮影状態を有している。すなわち、第1の合焦範囲内で合焦を行う第1状態M1と、第2の合焦範囲内で合焦を行う第2状態M2である。第1の合焦範囲は、無限遠物体から第1の有限物体までの範囲である。第2の合焦範囲は、無限遠物体よりも近距離にある第2の有限距離物体から第1の有限距離物体よりも近距離にある第3の有限距離物体までの範囲である。
 第1状態M1から第2状態M2に変わる際に、第1状態M1に対して第1レンズ群G1から第4レンズ群G4までが一体で物体側に移動する。ここで、第1状態M1における第1の有限物体距離は、像面Sから物体までの距離が0.3mであり、第2の有限物体距離は、像面Sから物体までの距離が0.3mであり、第3の有限物体距離は、第2状態M2の際の像面Sから物体までの距離が最も短い状態を示している。
 図1、図4、図7及び図10において設けられた矢印は、第1状態M1と第2状態M2におけるレンズ群の位置を結んで得られる線である。
 また、図1、図4、図7及び図10において、特定のレンズ群に付された光軸と平行な矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際のレンズ群の移動方向を表す。また図1、図4、図7及び図10において、レンズ群に付された光軸と垂直な矢印は、そのレンズ群が像のぶれを光学的に補正するために光軸に対して垂直方向に移動するレンズ群であることを示す。また、各図において、最も右側に記載された直線は、像面Sの位置を表す。
 (実施の形態1)
 図1に示すように、実施の形態1に係るレンズ系において、正のパワーを有する第1レンズ群G1は、物体側から像側へと順に、両凹形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2と、両凹形状の第3レンズ素子L3と、両凸形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。
 実施の形態1に係るレンズ系において、正のパワーを有する第2レンズ群G2は、物体側から像側へと順に、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6と、像側に凸面を向けた負メニスカス形状の第7レンズ素子L7の接合レンズのみからなる。なお、第1レンズ群G1と、第2レンズ群G2の間には、開口絞りAが配置されている。
 実施の形態1に係るレンズ系において、正のパワーを有する第3レンズ群G3は、物体側から像側へと順に、両凹形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9との接合レンズのみからなる。
 実施の形態1に係るレンズ系において、正のパワーを有する第4レンズ群G4は、像側に凸面を向けた正メニスカス形状の第10レンズ素子L10のみからなる。
 実施の形態1に係るレンズ系において、負のパワーを有する第5レンズ群G5は、物体側に凹面を向けた負メニスカス形状の第11レンズ素子L11のみからなる。
 実施の形態1に係るレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第2レンズ群G2と第4レンズ群G4が、光軸に沿って物体側へ移動する。
 (実施の形態2)
 図4に示すように、実施の形態2に係るレンズ系において、正のパワーを有する第1レンズ群G1は、実施の形態1と同様の構成である。
 実施の形態2に係るレンズ系において、正のパワーを有する第2レンズ群G2は、実施の形態1と同様の構成である。なお、第1レンズ群G1と、第2レンズ群G2の間には、開口絞りAが配置されている。
 実施の形態2に係るレンズ系において、正のパワーを有する第3レンズ群G3は、物体側から像側へと順に、両凹形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9との接合レンズのみからなる。
 実施の形態2に係るレンズ系において、正のパワーを有する第4レンズ群G4は、実施の形態1と同様の構成である。
 実施の形態2に係るレンズ系において、負のパワーを有する第5レンズ群G5は、実施の形態1と同様の構成である。
 実施の形態2に係るレンズ系において、無限遠合焦状態から近接物点合焦状態へのフォーカシングの際に、第2レンズ群G2と第4レンズ群G4が、光軸に沿って物体側へ移動する。
 (実施の形態3)
 図7に示すように、実施の形態3に係るレンズ系において、正のパワーを有する第1レンズ群G1は、実施の形態1と同様の構成である。
 実施の形態3に係るレンズ系において、正のパワーを有する第2レンズ群G2は、物体側から像側へと順に、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6と、像側が平面の負メニスカス形状の第7レンズ素子L7の接合レンズのみからなる。なお、第1レンズ群G1と、第2レンズ群G2の間には、開口絞りAが配置されている。
 実施の形態3に係るレンズ系において、正のパワーを有する第3レンズ群G3は、物体側から像側へと順に、両凹形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9との接合レンズのみからなる。
 実施の形態3に係るレンズ系において、正のパワーを有する第4レンズ群G4は、実施の形態1と同様の構成である。
 実施の形態3に係るレンズ系において、負のパワーを有する第5レンズ群G5は、実施の形態1と同様の構成である。
 実施の形態3に係るレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第2レンズ群G2と第4レンズ群G4が、光軸に沿って物体側へ移動する。
 (実施の形態4)
 図10に示すように、実施の形態4に係るレンズ系において、正のパワーを有する第1レンズ群G1は、物体側から像側へと順に、両凹形状の第1レンズ素子L1と、物体側に凹面を向けた正メニスカス形状の第2レンズ素子L2と、両凸状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、両凸形状の第5レンズ素子L5とからなる。第3レンズ素子L3と、第4レンズ素子L4とは接合されている。
 実施の形態4に係るレンズ系において、正のパワーを有する第2レンズ群G2は、物体側から像側へと順に、像側に凹面を向けた負メニスカス形状の第6レンズ素子L6と、両凸形状の第7レンズ素子L7の接合レンズのみからなる。なお、第1レンズ群G1と、第2レンズ群G2の間には、開口絞りAが配置されている。
 実施の形態4に係るレンズ系において、正のパワーを有する第3レンズ群G3は、物体側から像側へと順に、両凹形状の第8レンズ素子L8と、両凸形状の第9レンズ素子L9との接合レンズのみからなる。
 実施の形態4に係るレンズ系において、正のパワーを有する第4レンズ群G4は、実施の形態1と同様の構成である。
 実施の形態4に係るレンズ系において、負のパワーを有する第5レンズ群G5は、実施の形態1と同様の構成である。
 実施の形態4に係るレンズ系において、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第2レンズ群G2と第4レンズ群G4が、光軸に沿って物体側へ移動する。
 実施の形態1~実施の形態4に係るレンズ系では、最物体側に配置された第1レンズ群G1は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面Sに対して固定である。これにより、製造時の偏心による収差変動を小さく抑えることができる。特に、フォーカシングに伴う球面収差の変動が少なく、優れた結像特性を維持してフォーカシングを行うことができる。
 実施の形態1~実施の形態4に係るレンズ系は、無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に光軸に沿って移動するフォーカシングレンズ群として、第1フォーカシングレンズ群である第2レンズ群と第2フォーカシングレンズ群である第4レンズ群とを備えている。2つのフォーカシングレンズ群を備えることで、近接物体合焦状態におけるフォーカシングレンズ群の収差補正能力を向上させ、より小型なレンズ系を構成することができる。また、フォーカシングレンズ群が2つあることで、フォーカシングに伴う球面収差の補正が容易となる。
 実施の形態1~実施の形態4に係るレンズ系では、第1フォーカシングレンズ群及び第2フォーカシングレンズ群の1つが一方に比べ半分に満たない小さなパワーを有する。それぞれのフォーカシングレンズ群に別々の補正の役割を与えることができ、像面湾曲の補正が容易となる。
 実施の形態1~実施の形態4に係るレンズ系では、第1フォーカシングレンズ群及び第2フォーカシングレンズ群の間に固定の第3レンズ群G3を有する。これにより無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、2つのフォーカシングレンズ群で生じる収差を抑えることができる。
 実施の形態1~実施の形態4に係るレンズ系では、第1フォーカシングレンズ群及び第2フォーカシングレンズ群がいずれも2枚以下のレンズ素子で構成されている。これにより、フォーカシングレンズ群が軽くなるので、高速かつ静音なフォーカシングを行うことができる。
 実施の形態1~実施の形態4に係るレンズ系では、開口絞りAのすぐ像側の第3レンズ群G3に、非球面を有するレンズ素子が配置されている。これにより、開口絞りAよりも物体側で発生する球面収差を小さくすることができる。
 実施の形態1~実施の形態4に係るレンズ系では、第1フォーカシングレンズ群及び第2フォーカシングレンズ群がいずれも開口絞りAより像側に構成されている。これにより、上下光線の収差を十分に補正することができ、無限遠から最至近物点まで高い性能を得ることができる。
 実施の形態1~実施の形態4に係るレンズ系は、最像側に配置された第5レンズ群G5が、負のパワーを有する。これにより、バックフォーカスを短くすることができ、レンズ系の全長を短縮することができる。
 実施の形態1~実施の形態3に係るレンズ系は、第1レンズ群G1が、負のパワーを有する第1レンズ素子L1と、正のパワーを有する第2レンズ素子L2と、負のパワーを有する第3レンズ素子L3と、正のパワーを有する第4レンズ素子L4とで構成される。これにより、第1レンズ群G1で生じる収差を良好に抑えることができる。
 実施の形態1~実施の形態4に係るレンズ系では、第2の有限距離から第3の有限距離において、第1レンズ群G1から第4レンズ群G4までを一体で物体側へ繰り出すよう構成されている。これにより、無限遠から最至近物点まで非常に高い性能を得ることができる。
 実施の形態1~実施の形態4に係るレンズ系では、第1状態M1から第2状態M2において、最像側レンズ群である第5レンズ群G5よりも物体側に位置する第1レンズ群G1から第4レンズ群G4を1つの固まりとして物体側へ繰り出す際、F値が大きくなるように開口絞りAを絞るように構成されている。これにより、無限遠から最至近物点まで画像周辺の収差の変動が少ない画像を得ることができる。
 以上のように、本出願において開示する技術の例示として、実施の形態1~実施の形態4を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、例えば実施の形態1~実施の形態4に係るレンズ系のごときレンズ系が満足することが可能な条件を説明する。なお、各実施の形態に係るレンズ系に対して、複数の可能な条件が規定されるが、これら複数の条件すべてを満足するレンズ系の構成が最も効果的である。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏するレンズ系を得ることも可能である。
 例えば実施の形態1~実施の形態4に係るレンズ系のように、物体側から像側へと順に、
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群G1と、
 開口絞りと、
 フォーカシングの際に光軸方向に移動する第2レンズ群G2と、
 フォーカシングの際に像面に対して固定の第3レンズ群G3と、
 フォーカシングの際に上記光軸方向に移動する第4レンズ群G4と、第5レンズ群G5とからなり、
 以下の条件(1)及び(2)を満足する。
   2.5 < |f2/f4| < 6.5 ・・・(1)
   0.5 < |f/f4| < 1.5 ・・・(2)
 ここで、
  f2: 第2レンズ群G2の焦点距離、
  f4: 第4レンズ群G4の焦点距離、
  f: 全系の無限遠合焦時の焦点距離、
 である。
 条件(1)は、フォーカスレンズ群である第2レンズ群G2と第4レンズ群G4の焦点距離の比の絶対値を規定する条件である。条件(1)を満足しない場合は、フォーカスレンズ群が重くなり、高速かつ静音なフォーカシングを行うことが困難となる。
 条件(2)は、フォーカスレンズ群である第4レンズ群G4の焦点距離とレンズ全系の焦点距離の比の絶対値を規定する条件である。条件(2)を満足しない場合は、フォーカスレンズ群が重くなり、高速かつ静音なフォーカシングを行うことが困難となる。
 さらに以下の条件(1)-1及び(2)-1を満足することにより、上記効果をさらに奏功させることができる。
   2.8 < |f2/f4| < 5.2  ・・・(1)-1
   0.6 < |f/f4| < 0.9  ・・・(2)-1
 例えば実施の形態1~実施の形態4に係るレンズ系のように、基本構成を有するレンズ系は、以下の条件(3)を満足することが望ましい。
   νd < 35・・・(3)
ここで、
 νd:最像側レンズ群を構成する負のレンズ素子のアッベ数
である。
 条件(3)は、最像側レンズ群である第5レンズ群G5を構成する少なくとも1つの負のレンズ素子のアッベ数を規定する条件式である。条件式を満足しない場合は、倍率色収差が大きくなり、性能劣化を生じる。
 例えば実施の形態1~実施の形態4に係るレンズ系のように、基本構成を有するレンズ系は、以下の条件(4)を満足することが有益である。
   1.5 < Lf/Lr < 3.0・・・(4)
ここで、
Lf:開口絞りAより物体側の第1レンズ群G1の最物体側面から絞りまでの光軸上の距離、
Lr:開口絞りAより像側の開口絞りAから像面までの光軸上の距離、
である。
 条件(4)は、開口絞りAより物体側に位置するレンズ群の光軸上の距離と、開口絞りAより像側に位置するレンズ群の光軸上の距離の比を規定する条件式である。条件(4)の下限を下回ると、第1レンズ素子L1の径が大きくなり、第1レンズ群G1で生じる球面収差が大きくなり、また像面に入射する光線の入射角度が急になり、周辺光量を確保するのが困難になる。また、条件(4)の上限を上回ると、下光線の収差補正が十分に行き渡らず、特に像高の高いところにおいて倍率色収差が生じ性能が劣化する。
 さらに以下の条件(4)-1及び(4)-2’の少なくとも1つを満足することにより、上記効果をさらに奏功させることができる。
  1.7<Lf/Lr ・・・(4)-1
  Lf/Lr<2.7 ・・・(4)-2
 実施の形態1~実施の形態4に係るレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善される。
 また、実施の形態1~実施の形態4に係るレンズ系を構成している各レンズ素子は、ガラスからなるレンズ素子の片面に紫外線硬化性樹脂からなる透明樹脂層を接合した、ハイブリッドレンズであってもよい。その場合、透明樹脂層のパワーは弱いので、ガラスからなるレンズ素子と透明樹脂層とを合わせて1枚のレンズ素子と考える。同様に、平板に近いレンズ素子が配置される場合も、平板に近いレンズ素子のパワーは弱いので、0枚のレンズ素子と考える。
 (実施の形態5)
 図13は、実施の形態5に係る撮像装置100の概略構成図である。
 本実施の形態5に係る撮像装置100は、レンズ系101によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102と、撮像素子102によって変換された画像信号を表示する表示部103とを含む。なお、図13においては、レンズ系101として実施の形態1に係るレンズ系を用いた場合を図示している。
 本実施の形態5では、実施の形態1~実施の形態4いずれかに係るレンズ系101を用いているので、コンパクトで結像性能に優れた撮像装置を低コストで実現することができる。また、本実施の形態5に係る撮像装置100全体の小型化及び低コスト化も達成することができる。
 なお、本実施の形態5に係る撮像装置100では、レンズ系101として実施の形態1~実施の形態4に係るレンズ系を示したが、これらのレンズ系は、全てのフォーカシング域を使用しなくてもよい。すなわち、所望のフォーカシング域に応じて、光学性能が確保されている範囲を切り出して使用してもよい。
 また、以上説明した実施の形態1~実施の形態4に係るレンズ系101と、CCDやCMOS等の撮像素子とから構成される撮像装置100を、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。
 以上のように、本出願において開示する技術の例示として、実施の形態5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 以下、実施の形態1~実施の形態4に係るレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、νdはd線に対するアッベ数である。また、各数値実施例中の面データにおいて、接合レンズの間の面には1つの面番号が付与される。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
:n次の非球面係数
である。
 図2、図5、図8及び図11は、それぞれ実施の形態1~実施の形態4に係るレンズ系の無限遠合焦状態の各縦収差図において、(a)は第1状態M1における無限遠合焦状態、(b)は、第1状態M1における第1の有限距離物体合焦状態、(c)は、第2状態M2における第2の有限物体距離合焦状態、(d)は、第2状態M2における第3の有限物体距離合焦状態における各収差を表す。
 各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。
 また図3、図6、図9、及び図12は、それぞれ実施の形態1~実施の形態4に係るズームレンズ系の無限遠における、像ぶれ補正を行っていない基本状態及び像ぶれ補正状態での横収差図である。
 各横収差図から明らかなように、軸上像点における横収差の対称性は良好であることがわかる。また、+70%像点における横収差と-70%像点における横収差とを基本状態で比較すると、いずれも湾曲度が小さく、収差曲線の傾斜がほぼ等しいことから、偏心コマ収差、偏心非点収差が小さいことがわかる。このことは、像ぶれ補正状態であっても充分な結像性能が得られていることを意味している。また、ズームレンズ系の像ぶれ補正角が同じ場合には、ズームレンズ系全体の焦点距離が短くなるにつれて、像ぶれ補正に必要な平行移動量が減少する。したがって、いずれのズーム位置であっても、0.3°までの像ぶれ補正角に対して、結像特性を低下させることなく充分な像ぶれ補正を行うことが可能である。
 (数値実施例1)
 数値実施例1のレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のレンズ系の面データを図14に、非球面データを図15に、各種データを図16に、レンズ群データを図17に示す。
 (数値実施例2)
 数値実施例2のレンズ系は、図4に示した実施の形態2に対応する。数値実施例2のレンズ系の面データを図18に、非球面データを図19に、各種データを図20に、レンズ群データを図21に示す。
 (数値実施例3)
 数値実施例3のレンズ系は、図7に示した実施の形態3に対応する。数値実施例3のレンズ系の面データを図22に、非球面データを図23に、各種データを図24に、レンズ群データを図25に示す。
 (数値実施例4)
 数値実施例4のレンズ系は、図10に示した実施の形態4に対応する。数値実施例4のレンズ系の面データを図26に、非球面データを図27に、各種データを図28に、レンズ群データを図29に示す。
 以下の表1に、各数値実施例のレンズ系における各条件の対応値を示す。
 (条件の対応値)
Figure JPOXMLDOC01-appb-T000001
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。
 したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯情報端末のカメラ、PDA(Personal Digital Assistance)のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用可能である。特に本開示は、デジタルスチルカメラシステム、デジタルビデオカメラシステムといった高画質が要求される撮影光学系に適用可能である。
A   開口絞り
f   全系の無限遠合焦時の焦点距離
f2  第2レンズ群の焦点距離
f4  第4レンズ群の焦点距離
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
G5  第5レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
Lf  開口絞りより物体側の第1レンズ群の最物体側面から絞りまでの光軸上の距離
Lr  開口絞りより像側の開口絞りから像面までの光軸上の距離
S   像面
νd  最像側レンズ群を構成する負のレンズ素子のアッベ数
100 撮像装置
101 レンズ系
102 撮像素子
103 表示部

Claims (9)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、
     物体側から像側へと順に、
     無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群と、
     開口絞りと、
     前記フォーカシングの際に光軸方向に移動する第2レンズ群と、
     前記フォーカシングの際に像面に対して固定の第3レンズ群と、
     前記フォーカシングの際に前記光軸方向に移動する第4レンズ群と、
     最像側レンズ群とからなり、
    以下の条件(1)及び(2)を満足するレンズ系。
       2.5 <|f2/f4|< 6.5 ・・・(1)
       0.5 <|f /f4|< 1.5 ・・・(2)
    ここで、
     f2: 第2レンズ群の焦点距離
     f4: 第4レンズ群の焦点距離
     f: 全系の無限遠合焦時の焦点距離
     である。
  2.  前記第2レンズ群及び前記第4レンズ群は、いずれも2枚以下のレンズ素子で構成される、請求項1に記載のレンズ系。
  3.  前記最像側レンズ群が1枚の負のレンズ素子より構成され、該最像側レンズ群のレンズ素子のアッベ数νdが以下の条件式(3)を満足する、請求項1に記載のレンズ系:
       νd < 35・・・(3)
     である。
  4.  前記第2レンズ群及び前記第4レンズ群は、絞りより像側に位置する、請求項1に記載のレンズ系。
  5.  前記第1レンズ群は、物体側から像側へと順に、
     負のパワーを有する第1レンズ素子と、
     正のパワーを有する第2レンズ素子と、
     負のパワーを有する第3レンズ素子と、
     正のパワーを有する第4レンズ素子と、を備える、請求項1に記載のレンズ系。
  6.  以下の条件(4)を満足する、請求項1に記載のレンズ系: 
      1.5 < Lf/Lr < 2.5 ・・・(4)
     ここで、
    Lf:開口絞りより物体側の第1レンズ群の最物体側面から絞りまでの光軸上の距離、
    Lr:開口絞りより像側の開口絞りから像面までの光軸上の距離、
     である。
  7.  第1の合焦範囲内で合焦を行う第1撮影状態と前記第1の合焦範囲よりも至近の合焦範囲内で合焦を行う第2撮影状態とを有し、
     撮影時における前記第1撮影状態から前記第2撮影状態への変更時において、前記最像側レンズ群よりも物体側に位置するレンズ群は、物体側に一律に移動する、請求項1に記載のレンズ系。
  8.  前記第2撮影状態における開口絞りは、前記第1撮影状態における開口絞りよりも絞られる、請求項7に記載のレンズ系。
  9.  レンズ系と、レンズ系が形成する光学像を受光して電気的な画像信号に変換する撮像素子とを含み、
     レンズ系は、少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するレンズ系であって、
     物体側から像側へと順に、
     無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に像面に対して固定の第1レンズ群と、
     開口絞りと、
     前記フォーカシングの際に光軸方向に移動する第2レンズ群と、
     前記フォーカシングの際に像面に対して固定の第3レンズ群と、
     前記フォーカシングの際に前記光軸方向に移動する第4レンズ群と、
     最像側レンズ群とからなり、
    以下の条件(1)及び(2)を満足する撮像装置。
      2.5 <|f2/f4|<6.5 ・・・(1)
      0.5 <|f/f4|<1.5 ・・・(2)
    ここで、
     f2:第2レンズ群の焦点距離
     f4:第4レンズ群の焦点距離
     f:全系の無限遠合焦時の焦点距離
     である。
PCT/JP2015/004749 2014-09-25 2015-09-17 レンズ系、及び撮像装置 WO2016047112A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016549945A JPWO2016047112A1 (ja) 2014-09-25 2015-09-17 レンズ系、及び撮像装置
EP15843623.8A EP3199999A4 (en) 2014-09-25 2015-09-17 Lens system and image capture device
US15/160,812 US20160266350A1 (en) 2014-09-25 2016-05-20 Lens system and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-195434 2014-09-25
JP2014195434 2014-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/160,812 Continuation US20160266350A1 (en) 2014-09-25 2016-05-20 Lens system and imaging device

Publications (1)

Publication Number Publication Date
WO2016047112A1 true WO2016047112A1 (ja) 2016-03-31

Family

ID=55580659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004749 WO2016047112A1 (ja) 2014-09-25 2015-09-17 レンズ系、及び撮像装置

Country Status (4)

Country Link
US (1) US20160266350A1 (ja)
EP (1) EP3199999A4 (ja)
JP (1) JPWO2016047112A1 (ja)
WO (1) WO2016047112A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106159A (ja) * 2016-12-22 2018-07-05 カール・ツアイス・アーゲー フルフレームセンサを有するカメラの最高撮像品質のコンパクトカメラレンズ
JP2019191502A (ja) * 2018-04-27 2019-10-31 株式会社タムロン インナーフォーカス式撮像レンズ及び撮像装置
WO2021220579A1 (ja) * 2020-05-01 2021-11-04 株式会社ニコン 光学系、光学機器及び光学系の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117547A1 (de) * 2016-09-18 2018-03-22 Leica Camera Ag Objektiv fester Brennweite und konstanter Baulänge für Autofokusanwendungen
CN110383114B (zh) * 2017-02-24 2020-12-29 富士胶片株式会社 透镜、变焦镜头及成像镜头
CN108508572B (zh) * 2017-02-28 2020-10-30 宁波舜宇车载光学技术有限公司 光学镜头
JP7172776B2 (ja) * 2019-03-19 2022-11-16 株式会社リコー 撮影レンズ系
TWI742675B (zh) * 2020-05-20 2021-10-11 大立光電股份有限公司 攝像用光學鏡頭組、取像裝置及電子裝置
TWI768876B (zh) * 2020-05-20 2022-06-21 大立光電股份有限公司 攝像用光學鏡頭組、取像裝置及電子裝置
TWI756013B (zh) * 2020-12-11 2022-02-21 大立光電股份有限公司 成像光學鏡片系統、取像裝置及電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2014052413A (ja) * 2012-09-05 2014-03-20 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014142601A (ja) * 2012-12-27 2014-08-07 Panasonic Corp インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
WO2014118865A1 (ja) * 2013-01-30 2014-08-07 パナソニック株式会社 インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
US20140240554A1 (en) * 2013-02-22 2014-08-28 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2014160229A (ja) * 2013-01-25 2014-09-04 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268619B2 (ja) * 2008-12-19 2013-08-21 キヤノン株式会社 撮影レンズ及びそれを有する撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172705A (ja) * 1997-08-29 1999-03-16 Tochigi Nikon:Kk 2つ以上の合焦レンズ群を備えたズームレンズ
JP2014052413A (ja) * 2012-09-05 2014-03-20 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014142601A (ja) * 2012-12-27 2014-08-07 Panasonic Corp インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
JP2014160229A (ja) * 2013-01-25 2014-09-04 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム
WO2014118865A1 (ja) * 2013-01-30 2014-08-07 パナソニック株式会社 インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
US20140240554A1 (en) * 2013-02-22 2014-08-28 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199999A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018106159A (ja) * 2016-12-22 2018-07-05 カール・ツアイス・アーゲー フルフレームセンサを有するカメラの最高撮像品質のコンパクトカメラレンズ
JP7100448B2 (ja) 2016-12-22 2022-07-13 カール・ツアイス・アーゲー フルフレームセンサを有するカメラの最高撮像品質のコンパクトカメラレンズ
JP2019191502A (ja) * 2018-04-27 2019-10-31 株式会社タムロン インナーフォーカス式撮像レンズ及び撮像装置
JP7178796B2 (ja) 2018-04-27 2022-11-28 株式会社タムロン インナーフォーカス式撮像レンズ及び撮像装置
WO2021220579A1 (ja) * 2020-05-01 2021-11-04 株式会社ニコン 光学系、光学機器及び光学系の製造方法
JPWO2021220579A1 (ja) * 2020-05-01 2021-11-04
JP7396473B2 (ja) 2020-05-01 2023-12-12 株式会社ニコン 光学系及び光学機器

Also Published As

Publication number Publication date
US20160266350A1 (en) 2016-09-15
EP3199999A1 (en) 2017-08-02
JPWO2016047112A1 (ja) 2017-07-13
EP3199999A4 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6210208B2 (ja) インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
WO2016047112A1 (ja) レンズ系、及び撮像装置
JP6260003B2 (ja) レンズ系、交換レンズ装置及びカメラシステム
CN104969109B (zh) 透镜系统、可更换镜头装置以及照相机系统
JP5942193B2 (ja) レンズ系、交換レンズ装置及びカメラシステム
JP6152972B2 (ja) インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
JP5638709B2 (ja) 広角レンズおよび撮像装置
WO2015146067A1 (ja) ズームレンズ系、交換レンズ装置、及びカメラシステム
JP6814931B2 (ja) ズームレンズ系、ズームレンズ系を有する交換レンズ装置及びカメラシステム、ズームレンズ系を有する撮像装置
JP6204852B2 (ja) ズームレンズおよび撮像装置
JP6390907B2 (ja) 単焦点レンズ系、交換レンズ装置及びカメラシステム
JP6150047B2 (ja) インナーフォーカスレンズ系、交換レンズ装置及びカメラシステム
WO2016051672A1 (ja) ズームレンズ系、撮像装置
US10079964B2 (en) Lens system, interchangeable lens apparatus, and camera system
JP2015194714A (ja) 単焦点撮像光学系、レンズ鏡筒、交換レンズ装置及びカメラシステム
JP6745430B2 (ja) ズームレンズ系、撮像装置
CN103728715A (zh) 一种大口径长焦透镜系统
JPWO2014041786A1 (ja) ズームレンズおよび撮像装置
JPWO2013118468A1 (ja) 撮像レンズおよび撮像装置
CN112327468A (zh) 光学系统和光学设备
JP5693352B2 (ja) 撮像レンズ
JP2013007872A (ja) ズームレンズおよび撮像装置
WO2014013648A1 (ja) ズームレンズ系、撮像装置及びカメラ
CN115220180A (zh) 光学系统和具有光学系统的图像拾取装置
JP6597086B2 (ja) ズームレンズ系

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843623

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549945

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015843623

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843623

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE