WO2016043498A2 - 이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법 - Google Patents

이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법 Download PDF

Info

Publication number
WO2016043498A2
WO2016043498A2 PCT/KR2015/009673 KR2015009673W WO2016043498A2 WO 2016043498 A2 WO2016043498 A2 WO 2016043498A2 KR 2015009673 W KR2015009673 W KR 2015009673W WO 2016043498 A2 WO2016043498 A2 WO 2016043498A2
Authority
WO
WIPO (PCT)
Prior art keywords
image
correction pattern
image correction
image sensor
photoelectric conversion
Prior art date
Application number
PCT/KR2015/009673
Other languages
English (en)
French (fr)
Other versions
WO2016043498A3 (ko
Inventor
장성은
김재철
Original Assignee
(주)바텍이우홀딩스
주식회사 레이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바텍이우홀딩스, 주식회사 레이언스 filed Critical (주)바텍이우홀딩스
Priority to US15/511,633 priority Critical patent/US10044951B2/en
Publication of WO2016043498A2 publication Critical patent/WO2016043498A2/ko
Publication of WO2016043498A3 publication Critical patent/WO2016043498A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/672Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction between adjacent sensors or output registers for reading a single image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an image sensor having a bending characteristic, and more particularly, to an image sensor having a means for correcting image distortion, an image system and an image processing method using the same.
  • the image sensor having such a bending characteristic may be particularly useful when the photographing target part has a curve such as in the oral cavity.
  • distortion of an image may occur in a plane image photographed using an image sensor having a bending characteristic according to a part. That is, for the bent portion of the image sensor, an image having a different actual size or position can be obtained.
  • An object of the present invention is to provide a method for effectively correcting distortion of an image captured by using an image sensor having a bending characteristic.
  • the present invention provides an image sensor having a bending characteristic, comprising: a plurality of pixels which are configured in an active region for detecting incident light and are provided with a photoelectric conversion element; It provides an image sensor positioned in front of the photoelectric conversion element in the direction of the incident surface where the light is incident, comprising an image correction pattern made of a material for shielding the light.
  • the image compensation pattern may be located in at least one of a peripheral area of the active area and an area inside the peripheral area.
  • the image correction pattern may be formed on an image sensor panel in which the photoelectric conversion element is formed.
  • the image correction pattern may be formed on a sheet attached to the front of the image sensor panel in which the photoelectric conversion element is formed.
  • the image compensation pattern positioned in the peripheral area may be configured to be arranged along at least one of a transverse direction and a column direction in which the pixels are arranged.
  • the present invention is configured in the active region for detecting the incident light and a plurality of pixels provided with a photoelectric conversion element, located in front of the photoelectric conversion element in the direction of the incident surface where the light is incident and shields the light
  • An image sensor comprising an image correction pattern made of a material and having a bending characteristic;
  • a video system including an image processor configured to perform image correction on an image acquired through the image sensor by matching an image correction pattern displayed on the obtained image with an actual image correction pattern.
  • the image processor may determine an image distortion degree by comparing at least one of an image correction pattern displayed on the obtained image and a position and an interval of the actual image correction pattern, and determine the degree of image distortion and determine the acquired image according to the determined image distortion degree.
  • the image compensation pattern may be located in at least one of a peripheral area of the active area and an area inside the peripheral area.
  • the image correction pattern may be formed on an image sensor panel in which the photoelectric conversion element is formed.
  • the image correction pattern may be formed on a sheet attached to the front of the image sensor panel in which the photoelectric conversion element is formed.
  • the present invention is configured in the active region for detecting the incident light and a plurality of pixels provided with a photoelectric conversion element, and positioned in front of the photoelectric conversion element in the direction of the incident surface where the light is incident, Obtaining an image using an image sensor including an image correction pattern made of a shielding material and having a bending characteristic;
  • the image processing unit includes: matching an image correction pattern displayed on the obtained image with an actual image correction pattern, and performing image correction on the obtained image.
  • the performing of the image correction may include determining an image distortion degree by comparing at least one of an image correction pattern displayed on the obtained image and a position and an interval of the actual image correction pattern, and according to the determined image distortion degree.
  • the acquired image may be corrected.
  • the image correction pattern is configured in the image sensor having the bending characteristic. Accordingly, image distortion may be effectively corrected by performing image processing by matching the image correction pattern displayed on the obtained image with the actual image correction pattern.
  • FIG. 1 is a block diagram schematically illustrating an imaging system including an image sensor according to an exemplary embodiment of the present invention.
  • FIG 2 schematically illustrates an image sensor according to an embodiment of the invention.
  • 3 to 5 schematically illustrate several examples of sheets on which an image correction pattern of an image sensor according to an embodiment of the present invention is formed.
  • FIG. 6 is a view schematically showing an image sensor panel in which an image correction pattern of an image sensor according to an embodiment of the present invention is formed.
  • FIG. 7 is a diagram schematically illustrating a process of performing image correction by matching an image correction pattern displayed on an image acquired according to an embodiment of the present invention with an actual image correction pattern.
  • FIG. 8 is a flowchart schematically illustrating an image processing method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram schematically illustrating an image system including an image sensor according to an exemplary embodiment of the present invention
  • FIG. 2 is a diagram schematically illustrating an image sensor according to an exemplary embodiment of the present invention
  • the imaging system 10 is a system for generating an image by irradiating light such as X-rays, and the like, or an industrial or medical imaging system may be used.
  • the dental, in particular, the oral X-ray imaging system 10 is taken as an example.
  • the imaging system 10 includes a light irradiator 50 for generating and irradiating light such as X-rays for imaging, and an image sensor for detecting light irradiated from the light irradiator 50 and passing through the subject 60. And an image processor 200 that receives image data from the image sensor 100 and processes the image data to generate an image.
  • a light irradiator 50 for generating and irradiating light such as X-rays for imaging
  • an image sensor for detecting light irradiated from the light irradiator 50 and passing through the subject 60.
  • an image processor 200 that receives image data from the image sensor 100 and processes the image data to generate an image.
  • the image sensor 100 has a bending characteristic. As such, by using the image sensor 100 having the bending characteristic, it is possible to effectively perform the X-ray imaging of the curved object, in particular it can minimize the foreign body feeling or discomfort for the patient during intraoral imaging.
  • the image sensor 100 may include an image sensor panel 110 having a photoelectric conversion element such as a photodiode on a substrate and a driving circuit for driving the image sensor panel 110.
  • a plurality of pixels are arranged in a matrix form in an effective area, ie, an active area, for acquiring an image, along the transverse direction and the column direction.
  • Each pixel includes a photoelectric conversion element such as a photodiode to convert incident light into an electrical signal.
  • a direct conversion type sensor that directly converts incident X-rays into an electrical signal
  • an indirect conversion type sensor that converts incident X-rays into visible light and converts it into an electrical signal
  • a phosphor for converting X-rays into visible light may be provided on the light incident surface of the image sensor panel 110.
  • the driving circuit of the image sensor 100 reads out an electrical signal accumulated in the pixel, that is, image data.
  • the read image data is transmitted to the image processor 200 through the transmission line 130.
  • a sheet 150 having an image correction pattern 160 may be attached to the incident surface of the image sensor 100, that is, the front surface of the image sensor panel 110.
  • the sheet 150 may be configured to have a removable property.
  • silicon may be used as a material having a soft property, but is not limited thereto.
  • the image correction pattern 160 formed on the sheet 150 is made of a material that shields X-rays.
  • a material that shields X-rays For example, barium sulfate may be used as a material harmless to a human body, but is not limited thereto.
  • the image correction pattern 160 is formed to correspond to the active area AA of the image sensor 100 in plan view, and thus the image correction pattern 160 may exist in the captured image.
  • the image correction pattern 160 may be formed on at least a portion of the sheet 150. For example, as shown in FIG. 3, it may be formed along the peripheral area of the sheet 150.
  • the image correction pattern 160 is preferably disposed along the transverse direction and the column direction in four peripheral regions of up, down, left and right, but is not limited thereto. It may be formed in part.
  • the image correction pattern 160 may be formed to have a vertical straight form from the corresponding outer side of the sheet 150, the shape is not limited.
  • the image correction pattern 160 may be formed to have a straight line shape inclined from a corresponding outer side of the sheet 150.
  • the image correction pattern 160 may be formed not only in the peripheral region of the sheet 150 but also in the region inside the peripheral region. As such, when the image correction pattern 160 is formed in the inner region, the accuracy of image correction for the inner region may be further improved.
  • the image compensation pattern 160 positioned in the inner region may be formed to have a cross shape, but is not limited thereto.
  • the image correction pattern 160 may be disposed at various positions, and in view of improving accuracy of image correction, the image correction pattern 160 may be formed in various areas.
  • the image correction pattern 160 may be spaced apart at regular intervals, but is not limited thereto. In order to improve the accuracy of image correction, the interval between the image correction patterns 160 is preferably arranged to be narrow.
  • the image correction pattern 160 may be formed directly on the image sensor panel 110.
  • the image correction pattern 160 may be formed at any position in front of the photoelectric conversion element in the direction of the incident surface of light in cross-sectional view.
  • the image correction pattern 160 may be configured to be formed on the foremost surface of the image sensor panel 110, and further, the light incident of the inside of the image sensor panel 110, for example, the image sensor panel 110. It may be formed on the inner and outer surfaces of the substrate in the surface direction.
  • the image correction pattern 160 is configured to be positioned at the front side of the photoelectric conversion element in the direction of the incident surface in the image sensor 100, so that it can be reflected in the captured image.
  • an image correction pattern is present in an image captured by performing image capturing using the image sensor 100 having the image correction pattern 160, and the image processing unit 200 performs an image on the image. Calibration will be performed.
  • the image sensor 100 may be photographed in a curved state according to a photographing environment. In such a case, distortion occurs in the acquired image Io.
  • the degree of distortion may be confirmed through the image correction pattern 161 displayed on the obtained image Io. That is, since the position or interval of the image correction pattern 160 configured therein is changed and displayed on the image Io according to the bending of the image sensor 100, the position or interval of the image correction pattern 161 displayed on the image Io.
  • the degree of distortion of the corresponding portion can be confirmed through the change of.
  • the image processing unit 200 compares the image correction pattern 161 displayed on the image Io with the actual image correction pattern 160 as a reference, and thus the degree of distortion of the corresponding region. Will be identified and corrected.
  • the image processor 200 may generate the corrected image Ic by matching the image correction pattern 161 displayed on the captured image Io with the actual image correction pattern 160.
  • the corrected image Ic is transmitted from the image processor 200 to a display device such as a monitor, and thus accurate diagnosis can be performed using the corrected image Ic.
  • an image Io is obtained by performing X-ray imaging using the image sensor 100 provided with the image correction pattern 160 (S1).
  • the degree of distortion for each position of the image Io is determined by comparing the image correction pattern 161 displayed on the obtained image with the actual image correction pattern 160 (S2). That is, the change of the position and / or the size of the corresponding image region is grasped according to the degree of change of the position and / or the interval of the displayed image correction pattern 161.
  • the corrected image Ic is generated by correcting the image based on the determined distortion level (S3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

본 발명은 휘는 특성을 갖는 이미지센서에 있어서, 입사된 광을 검출하는 액티브영역에 구성되며, 광전변환소자가 구비된 다수의 화소와; 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며, 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하는 이미지센서를 제공한다.

Description

이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법
본 발명은 휘는 특성을 갖는 이미지센서에 관한 것으로서, 보다 상세하게는, 영상 왜곡을 보정하는 수단을 구비한 이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법에 관한 것이다.
기존에는, 의료나 공업용 X선 촬영에서 필름과 스크린을 이용한 방식이 사용되었다. 이와 같은 경우에는, 촬영된 필름의 현상 및 보관상의 문제 등에 기인하여 비용 및 시간 측면에서 비효율적이었다. 이를 개선하기 위해, 디지털 방식의 이미지센서가 현재 널리 사용되고 있다.
한편, 현재는 휘어지는 특성을 갖는 플렉서블(flexible) 또는 벤더블(bendable) 형태의 이미지센서에 대한 연구 개발이 진행되고 있다. 이처럼 휘어지는 특성을 갖는 이미지센서는 촬영 대상 부위가 구강 내와 같이 굴곡을 갖는 경우에 특히 유용하게 활용될 수 있다.
그런데, 휘어지는 특성을 갖는 이미지센서를 사용하여 촬영된 평면 영상에는 부위에 따라 영상의 왜곡이 발생하게 된다. 즉, 이미지센서가 휘어진 부분에 대해서는, 실제 크기나 위치가 다른 영상이 획득될 수 있게 된다.
그런데, 현재에는 이와 같은 영상 왜곡을 보정할 수 있는 방안이 존재하지 않는바, 이에 대한 요구가 절실하다.
본 발명은 휘어지는 특성을 갖는 이미지센서를 사용하여 촬영된 영상의 왜곡을 효과적으로 보정할 수 있는 방안을 제공하는 것에 과제가 있다.
전술한 바와 같은 과제를 달성하기 위해, 본 발명은 휘는 특성을 갖는 이미지센서에 있어서, 입사된 광을 검출하는 액티브영역에 구성되며, 광전변환소자가 구비된 다수의 화소와; 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며, 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하는 이미지센서를 제공한다.
상기 영상보정패턴은, 상기 액티브영역의 주변영역과 상기 주변영역 내부의 영역 중 적어도 하나에 위치할 수 있다. 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널에 형성될 수 있다. 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널의 전방 상에 부착되는 시트에 형성될 수 있다. 상기 주변영역에 위치하는 상기 영상보정패턴은, 상기 화소가 배열된 횡방향과 열방향 중 적어도 하나의 방향을 따라 배열되도록 구성될 수 있다.
다른 측면에서, 본 발명은 입사된 광을 검출하는 액티브영역에 구성되며 광전변환소자가 구비된 다수의 화소와, 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하고, 휘는 특성을 갖는 이미지센서와; 상기 이미지센서를 통해 획득된 영상에 대해, 상기 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여, 영상 보정을 수행하는 영상처리부를 포함하는 영상 시스템을 제공한다.
상기 영상처리부는, 상기 획득된 영상에 표시된 영상보정패턴과 상기 실제 영상보정패턴의 위치와 간격 중 적어도 하나를 비교하여 영상 왜곡 정도를 파악하고, 상기 파악된 영상 왜곡 정도에 따라 상기 획득된 영상을 보정하도록 구성될 수 있다. 상기 영상보정패턴은, 상기 액티브영역의 주변영역과 상기 주변영역 내부의 영역 중 적어도 하나에 위치할 수 있다. 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널에 형성될 수 있다. 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널의 전방 상에 부착되는 시트에 형성될 수 있다.
또 다른 측면에서, 본 발명은 입사된 광을 검출하는 액티브영역에 구성되며 광전변환소자가 구비된 다수의 화소와, 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하고, 휘어지는 특성을 갖는 이미지센서를 사용하여 영상을 획득하는 단계와; 영상처리부에서, 상기 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여, 상기 획득된 영상에 대한 영상 보정을 수행하는 단계를 포함하는 영상 처리 방법을 제공한다.
상기 영상 보정을 수행하는 단계는, 상기 획득된 영상에 표시된 영상보정패턴과 상기 실제 영상보정패턴의 위치와 간격 중 적어도 하나를 비교하여 영상 왜곡 정도를 파악하고, 상기 파악된 영상 왜곡 정도에 따라 상기 획득된 영상을 보정할 수 있다.
본 발명에 따르면, 휘는 특성을 갖는 이미지센서에 영상보정패턴을 구성하게 된다. 이에 따라, 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여 영상 처리를 수행함으로써, 영상 왜곡을 효과적으로 보정할 수 있게 된다.
도 1은 본 발명의 실시예에 따른 이미지센서를 포함한 영상 시스템을 개략적으로 도시한 블록도.
도 2는 본 발명의 실시예에 따른 이미지센서를 개략적으로 도시한 도면.
도 3 내지 5는 본 발명의 실시예에 따른 이미지센서의 영상보정패턴이 형성된 시트의 여러 예를 개략적으로 도시한 도면.
도 6은 본 발명의 실시예에 따른 이미지센서의 영상보정패턴이 형성된 이미지센서패널을 개략적으로 도시한 도면.
도 7은 본 발명의 실시예에 따라 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여 영상 보정을 수행하는 과정을 개략적으로 도시한 도면.
도 8은 본 발명의 실시예에 따른 영상 처리 방법을 개략적으로 도시한 흐름도.
이하, 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 이미지센서를 포함한 영상 시스템을 개략적으로 도시한 블록도이고, 도 2는 본 발명의 실시예에 따른 이미지센서를 개략적으로 도시한 도면이고, 도 3은 본 발명의 실시예에 따른 이미지센서의 영상보정패턴이 형성된 시트를 개략적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 영상 시스템(10)은 X선 등과 같은 광을 조사하여 영상을 발생시키는 시스템으로서, 산업용이나 의료용 영상 시스템이 사용될 수 있다. 본 발명의 실시예에서는, 설명의 편의를 위해, 치과용 특히 구강내 X선 촬영 영상 시스템(10)을 예로 든다.
영상 시스템(10)은, 영상 촬영을 위해 X선 등의 광을 발생시켜 조사하는 광조사기(50)와, 광조사기(50)로부터 조사되어 피검체(60)를 통과한 광을 검출하는 이미지센서(100)와, 이미지센서(100)로부터 영상데이터를 전송받고 이를 처리하여 영상을 생성하는 영상처리부(200)를 포함할 수 있다.
이미지센서(100)는 휘어지는 특성을 갖게 된다. 이처럼, 휘어지는 특성을 갖는 이미지센서(100)를 사용함으로써, 굴곡이 있는 대상체에 대한 X선 촬영을 효과적으로 수행할 수 있으며, 특히 구강내 촬영시 환자에 대한 이물감이나 불편감을 최소화할 수 있다.
이미지센서(100)는 기판 상에 포토다이오드와 같은 광전변환소자가 구성된 이미지센서패널(110)과 이를 구동하기 위한 구동회로가 구성될 수 있다.
이미지센서패널(110)에는, 영상을 획득하기 위한 유효 영역 즉, 액티브 영역에 횡방향과 열방향을 따라 다수의 화소가 매트릭스 형태로 배치된다. 각 화소에는 포토다이오드와 같은 광전변환소자가 구성되어, 입사된 광을 전기적 신호로 변환하게 된다.
한편, 이미지센서(100)로서 입사된 X선을 전기적 신호로 직접 변환하는 직접 변환 방식의 센서나, 입사된 X선을 가시광선으로 변환하고 이를 전기적 신호로 변환하는 간접 변환 방식의 센서가 사용될 수 있다.
여기서, 간접 변환 방식의 센서가 사용되는 경우에, 이미지센서패널(110)의 광입사면 상에는 X선을 가시광선으로 변환하기 위한 형광체(scintillator)가 구비될 수 있다.
이미지센서(100)의 구동회로는 화소에 축적된 전기적 신호 즉 영상 데이터를 독출(read out)하게 된다. 이와 같이 독출된 영상 데이터는 전송배선(130)을 통해 영상처리부(200)에 전송된다.
한편, 이미지센서(100)의 입사면 즉, 이미지센서패널(110)의 전면 상에는 영상보정패턴(160)을 갖는 시트(sheet; 150)가 부착될 수 있다. 여기서, 시트(150)는 탈부착 가능한 특성을 갖도록 구성될 수 있다.
영상보정패턴(160)을 갖는 시트(150)에 대해, 소프트(soft) 특성을 갖는 재질로서, 예를 들면, 실리콘이 사용될 수 있는데, 이에 한정되지는 않는다.
시트(150)에 형성된 영상보정패턴(160)은 X선을 차폐하는 물질로 이루어지며, 예를 들면, 인체에 무해한 물질로서 황산바륨이 사용될 수 있는데, 이에 한정되지는 않는다.
영상보정패턴(160)은, 평면적으로 볼 때, 이미지센서(100)의 액티브 영역(AA)에 대응하여 형성되며, 이에 따라 촬영된 영상에 영상보정패턴(160)이 존재할 수 있게 된다.
한편, 영상보정패턴(160)은 시트(150)의 적어도 일부에 형성될 수 있다. 예를 들면, 도 3에 도시한 바와 같이, 시트(150)의 주변영역을 따라 형성될 수 있다. 여기서, 영상 보정의 정확도 향상을 위한 측면에서, 영상보정패턴(160)은 상하좌우의 4개의 주변영역에서 횡방향과 열방향을 따라 배치되는 것이 바람직한데, 이에 한정되지는 않으며 4개의 주변영역 중 일부에 형성될 수 있다.
한편, 영상보정패턴(160)은 시트(150)의 대응되는 외변으로부터 수직한 직선 형태를 갖도록 형성될 수 있는데, 그 형태가 한정되지는 않는다. 예를 들면, 도 4에 도시한 바와 같이, 영상보정패턴(160)은 시트(150)의 대응되는 외변으로부터 경사진 직선 형태를 갖도록 형성될 수 있다.
다른 예로서, 영상보정패턴(160)은, 도 5에 도시한 바와 같이, 시트(150)의 주변영역뿐만 아니라 주변영역 내부의 영역에도 형성될 수 있다. 이와 같이, 내부영역에 영상보정패턴(160)이 형성되는 경우에는, 내부영역에 대한 영상 보정의 정확도가 보다 더 향상될 수 있게 된다. 여기서, 내부영역에 위치하는 영상보정패턴(160)의 경우에는 크로스(cross) 형태를 갖도록 형성할 수 있으나, 이에 한정되지는 않는다.
이처럼, 영상보정패턴(160)은 다양한 위치에 배치될 수 있으며, 영상 보정의 정확도 향상을 위한 측면에서, 영상보정패턴(160)은 여러 영역에 형성되는 것이 바람직하다.
그리고, 영상보정패턴(160)은 일정한 간격으로 이격되어 배치될 수 있는데, 이에 한정되지는 않는다. 영상 보정의 정확도 향상을 위한 측면에서, 영상보정패턴(160)의 간격은 좁게 배치되는 것이 바람직하다.
한편, 전술한 바에서는, 영상보정패턴(160)이 시트(150)에 구성된 경우를 설명하였는데, 이와 다른 예로서 이미지센서패널(110)에 직접 형성될 수도 있다.
이와 같은 경우에, 영상보정패턴(160)은, 단면적으로 볼 때, 광의 입사면 방향으로 광전변환소자 전방의 어느 위치에나 형성될 수 있다. 일예로, 도 6에 도시한 바와 같이, 이미지센서패널(110)의 최전방면에 형성되도록 구성될 수 있고, 더 나아가 이미지센서패널(110)의 내부, 일례로 이미지센서패널(110)의 광입사면 방향의 기판 내외면 등에 형성될 수도 있다.
위와 같이, 영상보정패턴(160)은 이미지센서(100)에서 입사면 방향으로 광전변환소자의 전방측에 위치하도록 구성하여, 촬영 영상에 반영될 수 있게 된다.
전술한 바와 같이, 영상보정패턴(160)을 구비한 이미지센서(100)를 사용하여 영상 촬영을 수행함으로써 촬영된 영상에는 영상보정패턴이 존재하게 되며, 해당 영상에 대해 영상처리부(200)에서 영상 보정을 수행하게 된다.
이와 관련하여 도 7을 참조할 수 있는데, 휘는 특성을 갖는 이미지센서(100)를 사용함에 있어, 촬영 환경에 따라 이미지센서(100)는 휘어진 상태에서 영상 촬영이 수행될 수 있다. 이와 같은 경우에는 획득된 영상(Io)에는 왜곡이 발생하게 된다. 이와 같은 왜곡 발생 정도는 획득된 영상(Io)에 표시된 영상보정패턴(161)을 통해 확인될 수 있다. 즉, 이미지센서(100)의 휨에 따라 이에 구성된 영상보정패턴(160)의 위치나 간격이 변동되어 영상(Io)에 표시되므로, 영상(Io)에 표시된 영상보정패턴(161)의 위치나 간격의 변화를 통해 대응되는 부분의 왜곡 정도가 확인될 수 있다.
이와 같이 왜곡된 영상(Io)에 대해, 영상처리부(200)는 해당 영상(Io)에 표시된 영상보정패턴(161)을 기준이 되는 실제 영상보정패턴(160)과 비교하여 대응되는 영역의 왜곡 정도를 파악하고 이를 보정하게 된다.
이처럼, 영상처리부(200)는, 촬영된 영상(Io)에 표시된 영상보정패턴(161)과 실제 영상보정패턴(160)을 매칭하여 보정된 영상(Ic)를 생성할 수 있다.
한편, 이와 같이 보정된 영상(Ic)은 영상처리부(200)에서 모니터와 같은 표시장치에 전송되고, 이에 따라 왜곡이 보정된 영상(Ic)을 사용하여 정확한 진단을 할 수 있게 된다.
전술한 바와 같은 영상보정패턴을 사용한 영상 처리 방법을 도 8을 참조하여 설명한다.
먼저, 영상보정패턴(160)이 구비된 이미지센서(100)를 사용하여 X선 영상 촬영을 수행하여 영상(Io)을 획득한다 (S1).
다음으로, 획득된 영상에 표시된 영상보정패턴(161)과 실제 영상보정패턴(160)을 비교하여 영상(Io)의 위치별 왜곡 정도를 파악한다 (S2). 즉, 표시된 영상보정패턴(161)의 위치 및/또는 간격의 변화 정도에 따라, 대응되는 영상 영역의 위치 및/또는 크기의 변화를 파악한다.
다음으로, 파악된 왜곡 정도를 통해 영상에 대한 보정을 수행하여, 보정된 영상(Ic)을 생성하게 된다 (S3).
전술한 바와 같이, 휘는 특성을 갖는 이미지센서를 통해 획득된 영상에 대해 영상보정패턴을 사용하여 영상 처리를 수행함으로써, 영상 왜곡을 효과적으로 보정할 수 있게 된다.

Claims (12)

  1. 휘는 특성을 갖는 이미지센서에 있어서,
    입사된 광을 검출하는 액티브영역에 구성되며, 광전변환소자가 구비된 다수의 화소와;
    상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며, 상기 광을 차폐하는 물질로 이루어진 영상보정패턴
    을 포함하는 이미지센서.
  2. 제 1 항에 있어서, 상기 영상보정패턴은, 상기 액티브영역의 주변영역과 상기 주변영역 내부의 영역 중 적어도 하나에 위치하는 이미지센서.
  3. 제 1 항에 있어서, 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널에 형성되는 이미지센서.
  4. 제 1 항에 있어서, 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널의 전방 상에 부착되는 시트에 형성된 이미지센서.
  5. 제 2 항에 있어서, 상기 주변영역에 위치하는 상기 영상보정패턴은, 상기 화소가 배열된 횡방향과 열방향 중 적어도 하나의 방향을 따라 배열되도록 구성된 이미지센서.
  6. 입사된 광을 검출하는 액티브영역에 구성되며 광전변환소자가 구비된 다수의 화소와, 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하고, 휘는 특성을 갖는 이미지센서와;
    상기 이미지센서를 통해 획득된 영상에 대해, 상기 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여, 영상 보정을 수행하는 영상처리부
    를 포함하는 영상 시스템.
  7. 제 6 항에 있어서, 상기 영상처리부는, 상기 획득된 영상에 표시된 영상보정패턴과 상기 실제 영상보정패턴의 위치와 간격 중 적어도 하나를 비교하여 영상 왜곡 정도를 파악하고, 상기 파악된 영상 왜곡 정도에 따라 상기 획득된 영상을 보정하도록 구성된 영상 시스템.
  8. 제 6 항에 있어서, 상기 영상보정패턴은, 상기 액티브영역의 주변영역과 상기 주변영역 내부의 영역 중 적어도 하나에 위치하는 영상 시스템.
  9. 제 6 항에 있어서, 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널에 형성되는 영상 시스템.
  10. 제 6 항에 있어서, 상기 영상보정패턴은, 상기 광전변환소자가 형성된 이미지센서패널의 전방 상에 부착되는 시트에 형성된 영상 시스템.
  11. 입사된 광을 검출하는 액티브영역에 구성되며 광전변환소자가 구비된 다수의 화소와, 상기 광이 입사되는 입사면 방향으로 상기 광전변환소자 전방에 위치하며 상기 광을 차폐하는 물질로 이루어진 영상보정패턴을 포함하고, 휘어지는 특성을 갖는 이미지센서를 사용하여 영상을 획득하는 단계와;
    영상처리부에서, 상기 획득된 영상에 표시된 영상보정패턴과 실제 영상보정패턴을 매칭하여, 상기 획득된 영상에 대한 영상 보정을 수행하는 단계
    를 포함하는 영상 처리 방법.
  12. 제 11 항에 있어서, 상기 영상 보정을 수행하는 단계는, 상기 획득된 영상에 표시된 영상보정패턴과 상기 실제 영상보정패턴의 위치와 간격 중 적어도 하나를 비교하여 영상 왜곡 정도를 파악하고, 상기 파악된 영상 왜곡 정도에 따라 상기 획득된 영상을 보정하는 영상 처리 방법.
PCT/KR2015/009673 2014-09-15 2015-09-15 이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법 WO2016043498A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,633 US10044951B2 (en) 2014-09-15 2015-09-15 Image system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140122205A KR102278163B1 (ko) 2014-09-15 2014-09-15 이미지센서와 이를 사용한 영상 시스템
KR10-2014-0122205 2014-09-15

Publications (2)

Publication Number Publication Date
WO2016043498A2 true WO2016043498A2 (ko) 2016-03-24
WO2016043498A3 WO2016043498A3 (ko) 2016-05-06

Family

ID=55533983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009673 WO2016043498A2 (ko) 2014-09-15 2015-09-15 이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법

Country Status (3)

Country Link
US (1) US10044951B2 (ko)
KR (1) KR102278163B1 (ko)
WO (1) WO2016043498A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10825855B2 (en) * 2018-12-13 2020-11-03 Palo Alto Research Center Incorporated Flexible x-ray sensor with integrated strain sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023334A (ja) * 1996-06-30 1998-01-23 Shimadzu Corp X線映像装置
DE19856537A1 (de) * 1998-12-08 2000-06-15 Philips Corp Intellectual Pty Verfahren zur intraoperativen Kalibration von C-Bogen Röntgenanordnungen
DE10136756C2 (de) * 2001-07-27 2003-07-31 Siemens Ag Röntgendiagnostikeinrichtung mit einem flexiblen Festkörper-Röntgendetektor
JP4496354B2 (ja) * 2004-06-18 2010-07-07 独立行政法人 宇宙航空研究開発機構 カメラ校正のための透過型校正器具とその校正法
US20060044463A1 (en) * 2004-08-30 2006-03-02 Micheal Talley Method and thin image sensor with strain deformation
GB0504415D0 (en) * 2005-03-03 2005-04-06 E2V Tech Uk Ltd Non-planar x-ray sensor
US7297926B2 (en) * 2005-08-18 2007-11-20 Em4, Inc. Compound eye image sensor design
US7521685B2 (en) * 2006-01-18 2009-04-21 General Electric Company Structured scintillator and systems employing structured scintillators
KR100809351B1 (ko) * 2006-04-03 2008-03-05 삼성전자주식회사 투사 영상을 보정하는 방법 및 장치
JP2007295375A (ja) * 2006-04-26 2007-11-08 Nippon Telegr & Teleph Corp <Ntt> 投影映像補正装置及び投影映像補正プログラム
JP2009213673A (ja) * 2008-03-11 2009-09-24 Fujinon Corp 内視鏡システム及び内視鏡の検査方法
CN101576707B (zh) * 2008-05-06 2012-07-18 鸿富锦精密工业(深圳)有限公司 镜头长度量测系统及量测方法
JP2010078415A (ja) * 2008-09-25 2010-04-08 Fujifilm Corp 放射線検出装置及び放射線画像撮影システム
KR20120098544A (ko) * 2011-02-28 2012-09-05 김숙향 디스플레이 장치
KR101420250B1 (ko) * 2012-11-26 2014-07-17 한국전기연구원 플렉서블 엑스레이 디텍터의 제조 방법 및 플렉서블 엑스레이 디텍터를 갖는 방사선 검출 장치
CN105264877B (zh) * 2013-04-08 2017-08-18 豪威科技股份有限公司 用于360度摄像机系统的校准的系统和方法

Also Published As

Publication number Publication date
KR102278163B1 (ko) 2021-07-19
US20170264837A1 (en) 2017-09-14
KR20160031876A (ko) 2016-03-23
US10044951B2 (en) 2018-08-07
WO2016043498A3 (ko) 2016-05-06

Similar Documents

Publication Publication Date Title
WO2011059234A2 (ko) 파노라마 영상 획득 방법 및 장치
US9423513B2 (en) Radiation imaging apparatus and radiation imaging system
US6652141B1 (en) Intraoral sensor
WO2003045246A3 (en) X-ray fluoroscopic imaging
US20060257816A1 (en) Arrangement for dental imaging
JP7079113B2 (ja) 放射線撮像装置及び放射線撮像システム
US10498997B2 (en) Image sensing apparatus and driving method thereof
JP2011500147A5 (ko)
WO2016032256A1 (ko) 맘모그래피 시스템 및 맘모그래피 촬영 방법
WO2018230800A1 (ko) 근적외선 기반 치아 진단 영상 획득 장치 및 방법
US20130022175A1 (en) Sealed sensor systems, apparatuses and methods
WO2016064257A1 (ko) 구강 내 엑스선 촬영용 엑스선 발생장치, 가이드홀더 및 이를 포함하는 구강 내 엑스선 촬영 시스템
JP3527381B2 (ja) X線ct装置
WO2016043498A2 (ko) 이미지센서와 이를 사용한 영상 시스템 및 영상 처리 방법
WO2013162218A1 (ko) 방사선투시시스템
US20060287580A1 (en) Capsule type endoscope and method for fabricating the same
JPH06277213A (ja) 医療用x線画像検出装置及びこれを用いたx線断層撮影装置
JP2011183021A (ja) 放射線画像撮影システム及び放射線画像の表示方法
JP4068369B2 (ja) X線画像診断装置
JP6643038B2 (ja) 放射線撮影システム、画像処理装置及び画像処理方法
JP2018201685A (ja) 放射線撮影装置、放射線撮影方法およびプログラム
WO2016018059A1 (ko) 2차원 단층 영상 촬영장치 및 그 방법
JP2020065727A (ja) 放射線撮影装置、放射線撮影方法及びプログラム
JP2022158892A (ja) 放射線撮影システム、放射線撮影方法、及び、プログラム
WO2016064072A1 (ko) X선 촬영장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841349

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15511633

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15841349

Country of ref document: EP

Kind code of ref document: A2