WO2016039313A1 - 帯電処理装置及び帯電処理方法 - Google Patents
帯電処理装置及び帯電処理方法 Download PDFInfo
- Publication number
- WO2016039313A1 WO2016039313A1 PCT/JP2015/075407 JP2015075407W WO2016039313A1 WO 2016039313 A1 WO2016039313 A1 WO 2016039313A1 JP 2015075407 W JP2015075407 W JP 2015075407W WO 2016039313 A1 WO2016039313 A1 WO 2016039313A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing
- unit
- electron source
- electrode
- source
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
Definitions
- the present invention relates to a charging processing apparatus and a charging processing method for charging a processing object to a desired potential.
- a charging processing apparatus includes an energy beam source that emits an energy beam having a predetermined wavelength and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident (see, for example, Patent Document 1). .
- the charging device described in Patent Document 1 charges a processing object to a desired potential by photoelectrons emitted from a photoelectron emitter.
- the present inventors have newly found the following facts as a result of research.
- a charging apparatus that charges a processing object to a desired potential by photoelectrons emitted from the photoelectron emitter
- the processing object is an electrical insulator
- the effect of being able to be charged to the desired potential is poor.
- the above-described electrification apparatus has an extremely low effect of neutralizing the charged charge, that is, eliminating the charge.
- An object of an aspect of the present invention is to provide a charging processing apparatus and a charging processing method that are extremely effective in charging an object to be processed to a desired potential.
- One aspect of the present invention is a charging processing apparatus that charges a processing object to a desired potential, an electron source unit that houses an electron generation source that generates electrons, and that is in communication with the electron source unit.
- a processing unit that surrounds an object to be processed under a predetermined pressure atmosphere containing a particle forming gas, and a space between the electron source unit and the processing unit so as to partition the electron source unit and the processing unit.
- a mesh-like electrode portion that is arranged.
- An acceleration electric field for accelerating electrons generated from the electron generation source toward the electrode unit is formed in the electron source unit, and the potentials of the processing unit and the electrode unit are set to desired potentials.
- an acceleration electric field for accelerating the electrons generated in the electron generation source toward the electrode unit is formed in the electron source unit, so that the electrons generated in the electron generation source are meshed electrodes. Passes through the processing section and is efficiently introduced into the processing section. The electrons introduced into the processing unit excite molecules of the charged particle forming gas in the processing unit. As a result, positive and negative charged particles are generated from the molecules of the charged particle forming gas. Either one of the generated positive and negative charged particles moves to the processing object side according to the electric field formed by the potential of the processing object and the potential of the processing part (desired potential). . One of the generated positive and negative charged particles moves to the processing unit side.
- the processing object Due to the charged particles that have moved to the processing object, the processing object is charged to a desired potential.
- the processing object is charged to a desired potential, an electric field is not formed between the processing object and the processing unit, and the charged particles do not move. Therefore, the object to be processed is reliably charged to a desired potential.
- the charging to a desired potential includes not only charging to a positive or negative potential but also neutralizing the charging of a positive or negative potential, so-called static elimination.
- the electron source unit may include an opening communicating with the processing unit, and the electrode unit may be disposed in the electron source unit so as to cover the opening.
- the electrode unit that suppresses the mutual influence of the acceleration electric field formed in the electron source unit and the electric field formed in the processing unit is reliably and easily disposed between the electron source unit and the processing unit. be able to.
- the processing unit may include an opening at a position facing at least the electron source unit, and the electrode unit may be disposed in the processing unit so as to cover the opening. Also in this case, an electrode part that suppresses the mutual influence of the accelerating electric field formed in the electron source part and the electric field formed in the processing part can be reliably and easily provided between the electron source part and the processing part. Can be arranged.
- the housing part may further include an exhaust part for bringing the inside of the processing part into a predetermined pressure atmosphere containing a charged particle forming gas.
- the pressure in the processing unit can be easily adjusted so that electrons and charged particles function effectively.
- the electron source section may have a longitudinal direction and a short direction in plan view, and the electron generation source may extend along the longitudinal direction of the electron source section. In this case, even if the processing object is a long object, the processing object can be reliably charged to a desired potential.
- the processing unit includes an introduction unit that introduces the processing object into the processing unit, and a derivation unit that is positioned to face the introduction unit and derives the processing object from the processing unit. May be.
- the charging process of the processing object can be performed continuously.
- the processing unit has two members arranged so as to be separated from each other, and the processing member is positioned between the two members, so that the two members surround the processing target. May be. In this case, the charging process of the processing object having a larger size can be continuously performed.
- the two members may be flat electrodes positioned so as to face each other.
- an appropriate processing space can be formed corresponding to the size of the processing object.
- the flat electrode may be movable.
- other processing for example, charged particle processing
- the electron generation source may include a cathode that emits thermal electrons.
- a high-output electron generation source can be easily realized.
- the cathode may include a base material portion made of a material containing iridium and a covering portion made of a material containing yttrium oxide covering the surface of the base material portion.
- a base material portion made of a material containing iridium
- a covering portion made of a material containing yttrium oxide covering the surface of the base material portion.
- the electron generation source may include an energy beam source that emits an energy beam having a predetermined wavelength, and a photoelectron emitter that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident.
- an electron generation source having high stability with respect to the atmosphere in the casing can be realized.
- the energy ray source may be arranged so that the photoelectron incident axis from the electron generation source to the processing unit and the energy ray emission axis of the energy ray source are not coaxial. In this case, it is possible to suppress the energy rays from directly affecting the object to be processed.
- the energy beam source may be arranged such that the photoelectron incident axis and the energy beam output axis intersect, and the photoelectron emitter may include an inclined surface that is inclined with respect to the energy beam output axis.
- the direct influence of the energy beam on the object to be processed can be further suppressed.
- photoelectrons generated efficiently can be guided to the processing chamber.
- the energy beam having a predetermined wavelength may contain vacuum ultraviolet light.
- photoelectrons can be generated more efficiently.
- the electron source unit may further include a mesh-like electrode unit that is disposed between the energy beam source and the photoelectron emitter and has a potential equivalent to the potential of the photoelectron emitter.
- a mesh-like electrode unit that is disposed between the energy beam source and the photoelectron emitter and has a potential equivalent to the potential of the photoelectron emitter.
- the electron source section further includes a window material disposed between the energy beam source and the photoelectron emitter and transmitting an energy beam having a predetermined wavelength.
- the space in which the photoelectron emitter is accommodated may be hermetically sealed. In this case, the work related to the energy beam source can be easily performed without affecting the predetermined pressure atmosphere in the processing unit.
- the electron source part further includes a window material that transmits energy rays of a predetermined wavelength, and a thin film having conductivity is formed on one surface of the window material, and a transmissive photocathode is formed.
- the window material may be disposed between the energy beam source and the photoelectron emitter so that the thin film and the photoelectron emitter have the same potential.
- photoelectrons are also emitted from the thin film, the amount of photoelectrons guided to the processing unit increases.
- the photoelectron emitter may have a bottomed cylindrical shape having a body portion and a bottom portion and having an opening for introducing an energy beam having a predetermined wavelength. In this case, the emission of photoelectrons from the photoelectron emitter and the movement of the emitted photoelectrons to the processing unit side are efficiently performed.
- the above-described one aspect may further include a photoelectron control unit for controlling photoelectrons disposed between the photoelectron emitter and the electrode unit.
- a photoelectron control unit for controlling photoelectrons disposed between the photoelectron emitter and the electrode unit.
- the incident range of photoelectrons in the processing unit can be controlled.
- the energy beam source and the photoelectron emitter may be arranged so as to be separated from each other and face each other.
- the energy beam source and the photoelectron emitter can be disposed at functionally appropriate positions.
- Another aspect of the present invention is a charging processing apparatus that charges a processing target to a desired potential, and the processing target is in a predetermined pressure atmosphere including an electron generation source that generates electrons and a charged particle forming gas.
- a processing unit that surrounds the object and into which electrons generated by the electron generation source are introduced; and a mesh-like electrode unit that is disposed between the electron generation source and the processing unit.
- An acceleration electric field for accelerating electrons generated in the electron generation source toward the electrode unit is formed between the electron generation source and the electrode unit, and the potentials of the processing unit and the electrode unit are set to desired potentials.
- Yet another embodiment of the present invention is a charging method for charging a processing object to a desired potential, wherein the processing is performed under a predetermined pressure atmosphere containing an electron generation source for generating electrons and a charged particle forming gas.
- a processing unit that surrounds the object and into which electrons generated from the electron generation source are introduced, and a mesh-like electrode unit disposed between the electron generation source and the processing unit are used.
- An acceleration electric field for accelerating electrons generated from the electron generation source toward the electrode unit is formed between the electron generation source and the electrode unit, and the processing unit and the electrode unit are set to desired potentials.
- an accelerating electric field for accelerating the electrons generated in the electron generation source toward the electrode portion is formed, so that the electrons generated in the electron generation source are in a mesh form. And efficiently introduced into the processing section.
- the electrons introduced into the processing unit excite molecules of the charged particle forming gas in the processing unit.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas.
- Either one of the generated positive and negative charged particles moves to the processing object side according to the electric field formed by the potential of the processing object and the potential of the processing part (desired potential). .
- One of the generated positive and negative charged particles moves to the processing unit side. Due to the charged particles that have moved to the processing object, the processing object is charged to a desired potential. When the processing object is charged to a desired potential, an electric field is not formed between the processing object and the processing unit, and the charged particles do not move. Therefore, the object to be processed is reliably charged to a desired potential.
- a charging apparatus that has a very high effect of charging a processing object to a desired potential.
- a charging method that has a very high effect of charging a processing object to a desired potential.
- FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment.
- FIG. 2 is a perspective view showing an example of the electron source section.
- FIG. 3 is a perspective view showing an example of the processing chamber.
- FIG. 4 is a diagram for explaining the charging process in the charging apparatus according to the first embodiment.
- FIG. 5 is a view for explaining charging processing in the charging processing apparatus according to the first embodiment.
- FIG. 6 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment.
- FIG. 7 is a diagram for explaining charging processing in the charging processing apparatus according to the first embodiment.
- FIG. 8 is a perspective view showing a charging processing apparatus according to a modification of the first embodiment.
- FIG. 9 is a perspective view showing a charging processing apparatus according to a modification of the first embodiment.
- FIG. 10 is a cross-sectional view showing a modification of the electron source section.
- FIG. 11 is a perspective view showing a charging processing apparatus according to the second embodiment.
- FIG. 12 is a cross-sectional view showing an example of the electron source section.
- FIG. 13 is a plan view showing a modification of the electron source section.
- 14 is a cross-sectional view taken along line XIV-XIV in FIG.
- FIG. 15 is a sectional view taken along line XV-XV in FIG.
- FIG. 16 is a cross-sectional view showing a further modification of the electron source section.
- FIG. 17 is a cross-sectional view showing a further modification of the electron source section.
- FIG. 18 is a cross-sectional view showing a further modification of the electron source section.
- FIG. 19 is a cross-sectional view showing a further modification of the electron source section.
- FIG. 20 is a perspective view showing a further modification of the electron source section.
- FIG. 21 is a perspective view showing a further modification of the electron source section.
- FIG. 22 is a cross-sectional view of the electron source portion shown in FIG.
- FIG. 23 is a perspective view showing a photoelectron emitter.
- FIG. 24 is a diagram for explaining the emission of photoelectrons from the electron source section.
- FIG. 25 is a perspective view showing a modification of the photoelectron emitter.
- FIG. 26 is a diagram for explaining the emission of photoelectrons from the electron source section.
- FIG. 27 is a perspective view showing a charging processing apparatus to which a further modification of the electron source unit is applied.
- FIG. 28 is a perspective view showing a static eliminator according to the fourth embodiment.
- FIG. 29 is a perspective view showing an example of an electron source section.
- FIG. 30 is a perspective view showing a charging processing apparatus according to the fifth embodiment.
- FIG. 31 is a perspective view showing a charging processing apparatus according to the sixth embodiment.
- FIG. 32 is a perspective view showing a charging processing apparatus according to the seventh embodiment.
- FIG. 33 is a diagram for explaining an application example of the charging apparatus.
- FIG. 34 is a diagram for explaining an application example of the charging apparatus.
- FIG. 35 is a diagram for explaining an application example of the charging apparatus.
- FIG. 36 is a perspective view showing the charging unit.
- FIG. 1 is a perspective view showing a charging apparatus according to the first embodiment.
- FIG. 2 is a perspective view showing an example of the electron source section.
- FIG. 3 is a perspective view showing an example of the processing chamber.
- the charging device C1 includes a housing part 1 and an electrode part 40 as shown in FIG.
- the charging processing device C1 is a device that charges the processing object PO to a desired potential.
- the charging processing device C1 can charge an uncharged processing object PO to a positive or negative potential.
- the charging processing device C1 can neutralize the processing object PO charged to a positive or negative potential.
- the charging processing device C1 can change the potential of the processing object PO charged to a positive or negative potential to a desired potential.
- the housing unit 1 includes an electron source unit 3, a processing unit 20, an air supply unit 30, and an exhaust unit 33.
- the housing unit 1 further includes a processing housing 2 that houses the processing unit 20.
- the electron source section 3 is provided in the processing casing 2 so that the casing section 1 is hermetically sealed.
- the electron source unit 3 may be provided integrally with the processing housing 2 or may be provided separately from the processing housing 2.
- the electron source unit 3 is disposed outside the processing unit 20.
- the processing housing 2 and the processing unit 20 are made of, for example, a conductive metal material having a rectangular parallelepiped shape (for example, stainless steel or aluminum).
- the processing housing 2 may be made of an insulating material.
- the electron source section 3 includes an electron generation source 5 that generates electrons and an electron source housing 7 that houses the electron generation source 5.
- the electron generation source 5 includes a cathode 6 that emits thermal electrons.
- the cathode 6 emits thermoelectrons when heated.
- the cathode 6 is a direct heating type electrode such as a filament, for example.
- the filament includes a conductive member 6a (base material portion) made of a material containing iridium, and a coating layer 6b (covering portion) made of a material containing yttrium oxide and covering the surface of the conductive member 6a. Also good. Iridium is chemically stable and hardly reacts with oxygen gas. Yttrium oxide has a low work function and emits thermoelectrons at low temperatures.
- the cathode 6 may be an indirectly heated electrode that emits thermoelectrons when the heater is heated.
- the cathode 6 is not limited to a thermoelectron source that emits thermoelectrons.
- the cathode 6 may be, for example, an electron source such as a field emission electron source (for example, a cold cathode) or a bullet conductor source.
- the electron source housing 7 includes a body portion 7 a that houses the electron generation source 5, and an opening portion 7 b for emitting thermal electrons from the electron source portion 3.
- the electron source unit 3 further includes an electrode 8, a pair of lead electrodes 9, and a glass tube 10.
- the electrode 8 controls the movement of thermoelectrons emitted from the cathode 6.
- the pair of lead electrodes 9 are electrodes for supplying a current to the cathode 6.
- the glass tube 10 insulates and fixes the cathode 6 (a pair of lead electrodes 9).
- the cathode 6 is located in the glass tube 10. One end of the glass tube 10 is open.
- the glass tube 10 is provided in the electron source housing 7 (body portion 7a) so that the inside of the housing portion 1 is maintained in an airtight state.
- the glass tube 10 is not used, and a structure in which the cathode 6 is assembled on an insulating stem provided with the lead electrode 9 or a vacuum flange may be used. Both end portions of the cathode 6 are electrically connected to the lead electrodes 9, respectively.
- the electrode 8 is electrically connected to one lead electrode 9.
- the electrode 8 may be provided with another power supply path. When another power supply path is provided for the electrode 8, a potential different from that of the cathode 6 may be supplied to the electrode 8 through this power supply path.
- an accelerating electric field is formed by the potential supplied to the cathode 6 and the electrode 8.
- the acceleration electric field accelerates the thermoelectrons generated in the electron generation source 5 toward the electrode unit 40.
- the thermoelectrons emitted from the cathode 6 are led out from the electron source section 3 through the opening of the glass tube 10.
- the potential difference that forms the accelerating electric field is set to a size that makes it difficult for the thermoelectrons introduced into the processing chamber 21 to directly reach the processing object PO.
- the potential difference for forming the acceleration electric field is, for example, in the range of 10 to 1000V, and more preferably in the range of 50 to 500V.
- the electron source unit 3 has a vacuum flange VF.
- the vacuum flange VF is attached to the processing housing 2 in an airtight and detachable manner. That is, the electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2.
- An opening 2 a is formed at a position where the electron source 3 is provided in the processing housing 2. That is, the space in the electron source unit 3 (electron source housing 7) communicates with the space in the processing housing 2 through the opening 2a.
- the vacuum flange VF is not necessarily required when the electron source unit 3 is provided integrally with the processing housing 2 by welding or the like, or when disposed in the processing unit 20.
- the vacuum flange VF may be formed integrally with the body portion 7a, or may be formed separately from the body portion 7a.
- the processing unit 20 is disposed inside the processing housing 2.
- the processing unit 20 includes a processing chamber unit 21.
- a processing space is formed inside the processing chamber 21.
- the processing housing 2 and the processing chamber portion 21 have an introduction opening (not shown) for introducing the processing object PO into the processing chamber portion 21.
- the processing object PO introduced into the processing chamber portion 21 through the introduction opening is placed in the processing chamber portion 21 in a state of being electrically insulated from the processing chamber portion 21.
- the process chamber part 21 surrounds the process target object PO.
- the introduction openings of the processing housing 2 and the processing chamber 21 may be closed at least during the charging process. At least the opening of the processing chamber 21 may be closed with a member having the same potential as that of the processing chamber 21.
- the position of the processing object PO is defined by a holding member (not shown).
- the processing chamber 21 has a rectangular parallelepiped shape, for example, as shown in FIG.
- an opening 23 is formed on one surface of the processing housing 2 that faces the surface on which the electron source unit 3 is provided.
- the opening 23 is located so as to face the opening 2 a in the processing housing 2. That is, since the opening 23 is formed in the processing chamber portion 21 at a position facing the electron source portion 3, the space in the electron source portion 3 (electron source casing 7) has the opening portion 2 a and the opening portion. 23, it communicates with the processing space in the processing chamber 21 of the processing unit 20.
- the processing chamber portion 21 is made of a conductive metal material (for example, stainless steel or aluminum).
- the processing chamber portion 21 has an opening formed by opening substantially the entire surface of the processing housing 2 that faces the surface on which the electron source unit 3 is provided. 23 may be formed. As shown in (c) of FIG. 3, substantially the entire six surfaces may be opened in the processing chamber portion 21.
- the processing chamber portion 21 shown in FIG. 3C is a frame structure in which a frame portion is positioned at each ridge of the rectangular parallelepiped, that is, a rectangular parallelepiped frame structure.
- a potential is supplied to the processing casing 2 and the processing chamber 21 independently of each other.
- the processing housing 2 and the processing chamber portion 21 are electrically insulated from each other.
- the processing housing 2 and the processing chamber portion 21 do not necessarily need to be electrically insulated from each other.
- the processing housing 2 and the processing chamber 21 may be electrically connected to each other. In this case, the processing housing 2 and the processing chamber 21 are set to the same potential.
- the charging processing device C1 is used only as a charge removal processing device
- the processing housing 2 and the processing chamber portion 21 may be electrically connected.
- the processing casing 2 and the processing chamber section 21 are electrically connected by disposing the processing chamber section 21 in the processing casing 2 so as to be in contact with the processing casing 2.
- the air supply unit 30 and the exhaust unit 33 are provided in the processing housing 2.
- the air supply unit 30 and the exhaust unit 33 supply and exhaust gas in the housing unit 1 (processing housing 2) in order to set the interior of the housing unit 1 under a predetermined pressure condition.
- the predetermined pressure condition may be under atmospheric pressure or increased pressure as well as under reduced pressure.
- the pressure in the housing 1 is, for example, in the range of several tens to 10 ⁇ 3 Pa, and more preferably in the range of 10 to 10 ⁇ 2 Pa.
- the air supply unit 30 and the exhaust unit 33 supply and exhaust the charged particle forming gas. Thereby, it is possible to make the inside of the housing
- the charged particle forming gas for example, an inert gas such as argon (Ar) gas or the atmosphere can be used.
- the atmosphere surrounding the charging apparatus C1 is a charged particle forming gas
- the atmosphere surrounding the charging apparatus C1 is a charged particle forming gas
- the air supply unit 30 and the exhaust unit 33 do not have to be provided in the processing housing 2, and may be provided directly in the processing chamber unit 21. In this case, it is necessary that the air supply unit 30 and the exhaust unit 33 do not affect the potential of the processing chamber unit 21.
- the electrode unit 40 is a mesh-like conductive member as shown in FIG.
- the mesh includes not only a net-like structure but also a lattice, porous, or multi-stage comb blade.
- the mesh is a structure that two-dimensionally divides a predetermined area into a plurality of areas.
- the electrode part 40 enables transmission of electrons and formation of an electric field.
- the electrode part 40 is provided in the process chamber part 21 so that the opening part 23 may be covered as FIG. 3 shows.
- the electrode unit 40 is disposed between the electron source unit 3 and the processing unit 20 so as to partition the electron source unit 3 and the processing unit 20 (processing space).
- the electrode part 40 is electrically connected to the processing chamber part 21.
- the electrode part 40 is set to the same potential as the processing chamber part 21.
- the electrode part 40 consists of stainless steel, for example.
- the size of the mesh of the electrode unit 40 is set to a size that has a high rate of passage of thermoelectrons and that has very little electric field leakage between the electron source unit 3 and the processing unit 20.
- all surfaces are made of mesh-like conductive members. That is, the conductive member is provided in the frame structure so as to be stretched between the frame portions.
- the conductive member constituting one surface facing the surface on which the electron source unit 3 is provided in the processing housing 2 mainly functions as the electrode unit 40.
- FIGS. 4 to 7 are diagrams for explaining charging processing in the charging processing apparatus according to the first embodiment.
- (A) to (c) in FIG. 4 are diagrams for explaining a process of charging the processing object PO to a negative potential.
- (A) to (c) in FIG. 5 are diagrams for explaining the process of charging the processing object PO to a positive potential.
- (A) to (c) in FIG. 6 are diagrams for explaining the process of neutralizing the processing object PO charged to a positive potential.
- FIG. 7 are diagrams for explaining a process of neutralizing the processing object PO charged to a negative potential.
- 4 and 5 illustrate a case where the processing object PO is an insulator.
- 6 and 7 illustrate a case where the processing object PO is a conductor.
- a processing object PO that is not charged that is, has a potential of 0 V, is disposed in the processing chamber 21 in the charging processing device C1.
- the air supply unit 30 and the exhaust unit 33 place the inside of the housing unit 1 (processing housing 2) in a predetermined pressure atmosphere containing a charged particle forming gas.
- the inside of the casing 1 is in a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
- the processing chamber unit 21 (processing unit 20) is set to a desired negative potential (for example, ⁇ 200 V).
- the processing housing 2 is set to the ground potential.
- an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 21 is formed between the processing object PO and the processing chamber 21. Since the electrode unit 40 and the processing chamber unit 21 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 is formed up to the vicinity of the electrode unit 40.
- the electron source unit 3 (cathode 6) is set to a lower potential (for example, ⁇ 400 V) than the processing chamber unit 21 so that the above-described acceleration electric field is formed. Thereby, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron source unit 3 and the processing chamber unit 21 (electrode unit 40) is formed in the electron source unit 3.
- the electrode unit 40 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 and the electrode unit 40 and the acceleration electric field in the electron source unit 3 from each other.
- the cathode 6 is energized while an accelerating electric field is formed in the electron source section 3 and the electric field is formed between the processing object PO and the processing chamber section 21 (electrode section 40). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 40, and are introduced into the processing chamber portion 21.
- thermoelectrons introduced into the processing chamber portion 21 are for forming charged particles existing between the electrode portion 40 in the processing chamber portion 21 and the processing object PO.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas. That is, the molecules of the charged particle forming gas are dissociated into positive and negative charged particles by the collision of thermoelectrons.
- Ar gas when Ar gas is used, Ar molecule was cleaved into a Ar + ions and electrons, occurs and Ar + ions and electrons.
- the generated negative charged particles move to the processing object PO side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 21 and the electrode part 40.
- the processing object PO is charged to a negative potential by the negatively charged particles that have moved to the processing object PO.
- the generated positive charged particles Ar + ions move toward the processing chamber 21 and the electrode 40 according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber 21 and the electrode 40. .
- the positive charged particles that have reached the processing chamber portion 21 and the electrode portion 40 are neutralized.
- the electric field formed between the processing object PO and the processing chamber part 21 and the electrode part 40 is weakened.
- an electric field is generated between the processing object PO and the processing chamber part 21 and the electrode part 40 as shown in (c) of FIG. Not formed and negatively charged particles do not move.
- the processing object PO is charged to a desired negative potential, and the potential of the processing object PO is stabilized in a charged state.
- a processing object PO that is not charged that is, has a potential of 0 V, is disposed in the processing chamber 21 in the charging processing device C1.
- the air supply unit 30 and the exhaust unit 33 place the inside of the housing 1 (processing housing 2) under a predetermined pressure atmosphere containing a charged particle forming gas.
- the inside of the casing 1 is in a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
- the processing chamber unit 21 (processing unit 20) is set to a desired positive potential (for example, +200 V).
- the processing housing 2 is set to the ground potential.
- an electric field corresponding to a potential difference (for example, 200 V) between the processing object PO and the processing chamber 21 is formed between the processing object PO and the processing chamber 21. Since the electrode unit 40 and the processing chamber unit 21 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 is formed up to the vicinity of the electrode unit 40.
- the electron source unit 3 (cathode 6) is set to a lower potential (for example, ⁇ 100 V) than the processing chamber unit 21 so that the above-described acceleration electric field is formed. Thereby, an acceleration electric field corresponding to a potential difference (for example, 300 V) between the electron source unit 3 and the processing chamber unit 21 (electrode unit 40) is formed in the electron source unit 3.
- the electrode unit 40 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 and the electrode unit 40 and the acceleration electric field in the electron source unit 3 from each other.
- the cathode 6 is energized while an accelerating electric field is formed in the electron source section 3 and the electric field is formed between the processing object PO and the processing chamber section 21 (electrode section 40). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 40, and are introduced into the processing chamber portion 21.
- thermoelectrons introduced into the processing chamber portion 21 are for forming charged particles that exist between the electrode portion 40 in the processing chamber portion 21 and the processing object PO.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas.
- the generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 21 and the electrode part 40.
- the processing object PO is charged to a positive potential by the positive charged particles that have moved to the processing object PO.
- the generated negative charged particles move to the processing chamber portion 21 side and the electrode portion 40 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber portion 21 and the electrode portion 40. Negatively charged particles that have reached the processing chamber 21 and the electrode 40 are neutralized.
- the electric field formed between the processing object PO and the processing chamber part 21 and the electrode part 40 is weakened.
- an electric field is generated between the processing object PO and the processing chamber part 21 and the electrode part 40 as shown in (c) of FIG. Not formed and positively charged particles do not move.
- the processing object PO is charged to a desired positive potential, and the potential of the processing object PO is stabilized in a charged state.
- a processing object PO charged to a positive charge is disposed in the processing chamber portion 21.
- the processing object PO is charged to +1 kV.
- the air supply unit 30 and the exhaust unit 33 place the inside of the housing unit 1 (processing housing 2) in a predetermined pressure atmosphere containing a charged particle forming gas.
- the inside of the casing 1 is in a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
- the processing chamber unit 21 processing unit 20
- the processing case 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 21 is formed between the processing object PO and the processing chamber 21. Since the electrode unit 40 and the processing chamber unit 21 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 is formed up to the vicinity of the electrode unit 40.
- a potential difference for example, 1 kV
- the electron source unit 3 (cathode 6) is set to a lower potential (for example, ⁇ 200 V) than the processing chamber unit 21 so that the above-described acceleration electric field is formed. Thereby, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron source unit 3 and the processing chamber unit 21 (electrode unit 40) is formed in the electron source unit 3.
- the electrode unit 40 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 and the electrode unit 40 and the acceleration electric field in the electron source unit 3 from each other.
- the cathode 6 is energized while an accelerating electric field is formed in the electron source section 3 and the electric field is formed between the processing object PO and the processing chamber section 21 (electrode section 40). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 40, and are introduced into the processing chamber portion 21.
- thermoelectrons introduced into the processing chamber section 21 are for forming charged particles that exist between the electrode section 40 in the processing chamber section 21 and the processing object PO.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas.
- the generated negative charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 21 and the electrode part 40.
- the processing object PO is neutralized with a positive potential by the negatively charged particles that have moved to the processing object PO.
- the generated positive charged particles move to the processing chamber portion 21 side and the electrode portion 40 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber portion 21 and the electrode portion 40.
- the positive charged particles that have reached the processing chamber portion 21 and the electrode portion 40 are neutralized.
- the electric field formed between the processing object PO and the processing chamber part 21 and the electrode part 40 is weakened.
- the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber part 21 and the electrode part 40 as shown in (c) of FIG. Are not formed, and negatively charged particles do not move.
- the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
- a processing object PO charged to a negative charge is disposed in the processing chamber 21 in the charging processing device C1.
- the processing object PO is charged to, for example, ⁇ 1 kV.
- the air supply unit 30 and the exhaust unit 33 place the inside of the housing unit 1 (processing housing 2) under a predetermined pressure atmosphere containing a charged particle forming gas.
- the inside of the casing 1 is in a pressure atmosphere containing Ar gas and 0.7 to 1.3 Pa (for example, 1 Pa).
- the processing chamber unit 21 processing unit 20
- the processing case 2 are set to the ground potential. Thereby, an electric field corresponding to a potential difference (for example, 1 kV) between the processing object PO and the processing chamber 21 is formed between the processing object PO and the processing chamber 21. Since the electrode unit 40 and the processing chamber unit 21 have the same potential, an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 is formed up to the vicinity of the electrode unit 40.
- a potential difference for example, 1 kV
- the electron source unit 3 (cathode 6) is set to a lower potential (for example, ⁇ 200 V) than the processing chamber unit 21 so that the above-described acceleration electric field is formed. Thereby, an accelerating electric field corresponding to a potential difference (for example, 200 V) between the electron source unit 3 and the processing chamber unit 21 (electrode unit 40) is formed in the electron source unit 3.
- the electrode unit 40 suppresses the influence of the electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 and the electrode unit 40 and the acceleration electric field in the electron source unit 3 from each other.
- the cathode 6 is energized while an accelerating electric field is formed in the electron source section 3 and the electric field is formed between the processing object PO and the processing chamber section 21 (electrode section 40). When energized, the cathode 6 emits thermoelectrons. The thermoelectrons emitted from the cathode 6 are accelerated by the accelerating electric field, pass through the electrode portion 40, and are introduced into the processing chamber portion 21.
- thermoelectrons introduced into the processing chamber portion 21 are for forming charged particles existing between the electrode portion 40 in the processing chamber portion 21 and the processing object PO.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas.
- the generated positive charged particles move to the processing object PO side in accordance with the electric field corresponding to the potential difference between the processing object PO and the processing chamber part 21 and the electrode part 40.
- the negatively charged electric charge is neutralized by the positive charged particles that have moved to the processing object PO.
- the generated negative charged particles move to the processing chamber portion 21 side and the electrode portion 40 side according to the electric field corresponding to the potential difference between the processing object PO and the processing chamber portion 21 and the electrode portion 40. Negatively charged particles that have reached the processing chamber 21 and the electrode 40 are neutralized.
- the electric field formed between the processing object PO and the processing chamber part 21 and the electrode part 40 is weakened.
- the processing object PO is neutralized, that is, when the potential becomes 0 V, an electric field is generated between the processing object PO and the processing chamber portion 21 and the electrode portion 40 as shown in (c) of FIG. Are not formed, and positively charged particles do not move.
- the potential of the processing object PO is set to 0 V, and the potential of the processing object PO is stabilized in a state of being neutralized.
- an acceleration electric field for accelerating the thermal electrons generated in the electron generation source 5 toward the electrode portion 40 is formed in the electron source unit 3.
- the generated thermoelectrons pass through the mesh electrode 40 and are efficiently introduced into the processing unit 20 (processing chamber 21).
- the thermoelectrons introduced into the processing chamber 21 excite molecules of the charged particle forming gas in the processing chamber 21.
- positive and negative charged particles are generated from the molecules of the charged particle forming gas.
- the processing object PO Move to the side.
- One of the generated positive and negative charged particles moves to the processing chamber portion 21 side.
- the processing object PO is charged to a desired potential by the charged particles that have moved to the processing object PO.
- an electric field is not formed between the processing object PO and the processing unit, and the charged particles do not move. Therefore, the processing object PO is reliably charged to a desired potential and stabilized in the charged state.
- the electrode part 40 suppresses that the acceleration electric field formed in the electron source part 3 and the electric field formed in the process chamber part 21 (process part 20) mutually influence.
- the processing chamber section 21 includes an opening 23 at a position facing at least the electron source section 3.
- the electrode unit 40 is disposed in the processing chamber unit 21 so as to cover the opening 23. As a result, the above-described electrode unit 40 can be reliably and easily disposed between the electron source unit 3 and the processing chamber unit 21.
- the housing unit 1 includes an air supply unit 30 and an exhaust unit 33.
- the air supply unit 30 and the exhaust unit 33 place the processing unit 20 (processing chamber unit 21) in a predetermined pressure atmosphere containing a charged particle forming gas. Thereby, supply and discharge
- the electron generation source 5 includes a cathode 6 that emits thermal electrons. Thereby, the electron generation source 5 having a high output can be easily realized.
- the molecules of the charged particle forming gas are dissociated according to the pressure of the charged particle forming gas in the casing 1 (processing casing 2) and the acceleration electric field in the electron source 3.
- the position (hereinafter simply referred to as “dissociation position”) changes.
- the acceleration electric field is large, the dissociation position is separated from the electron source unit 3.
- the acceleration electric field is small, the dissociation position approaches the electron source unit 3.
- the pressure of the charged particle forming gas is high, the mean free path of electrons (for example, thermal electrons) entering the processing unit 20 is shortened, so that the dissociation position approaches the electron source unit 3.
- the dissociation position can be optimized by adjusting the pressure of the charged particle forming gas and the acceleration electric field.
- the accelerating electric field may be adjustable.
- the acceleration electric field can be adjusted, for example, by adjusting the potential supplied to the cathode 6 and the electrode 8.
- FIGS. 8 and 9 are perspective views showing a charging processing apparatus according to a modification of the first embodiment.
- FIG. 10 is a perspective view showing a modification of the electron source section.
- the position of the electron source unit 3 is not limited to the position shown in FIG. In the electrification processing device C1 shown in FIG. 1, the electron source unit 3 is provided on the surface of the processing housing 2 that faces the processing object PO. On the other hand, in the charging processing apparatus C1 shown in FIG. 8, the electron source unit 3 is provided on the side surface of the processing housing 2 other than the surface facing the processing object PO.
- the size of the processing chamber 21 is not limited to the size shown in FIG. As shown in (a) to (d) of FIG. 9, the size of the processing chamber portion 21 may be significantly smaller than that of the processing housing 2.
- the position of the electron source unit 3 is a position where the entire electron source unit 3 is located outside the processing case 2 (see (a) in FIG. 9), and a part of the electron source unit 3 is located within the processing case 2. Position (see (b) in FIG. 9), or a position (see (c) and (d) in FIG. 9) where the entire electron source unit 3 is located in the processing housing 2. .
- FIG. 9D the electron source unit 3 is provided in the processing chamber unit 21.
- the processing chamber portion 21 shown in (c) of FIG. 3 is used as the processing chamber portion 21.
- the processing chamber portion 21 When the processing chamber portion 21 is downsized, it is possible to perform processing in a state where a portion where charging processing is desired and a portion where charging processing is not desired are separated.
- the electron source unit 3 When the electron source unit 3 is disposed in the vicinity of the processing chamber unit 21, it is possible to effectively use the thermal electrons from the electron source unit 3, so that the charging process can be performed more efficiently.
- the electron source unit 3 When the electron source unit 3 is provided in the processing chamber unit 21, the electron source unit 3 is set to the same potential as the processing chamber unit 21. For this reason, it is necessary to increase the withstand voltage of the external lead-out portion of the power feeding portion with respect to the cathode 6 and the electrode 8 in the processing housing 2.
- the electrode unit 40 is not necessarily provided in the processing chamber unit 21.
- the electrode unit 40 may be provided in the electron source housing 7 so as to cover the opening 7b. That is, the electron source unit 3 may have the electrode unit 40.
- the electrode unit 40 may be insulated from the electron source housing 7 and a desired potential may be supplied to the electrode unit 40.
- the electrode unit 40 may be fixed to the electron source housing 7 via an insulating member, and a power supply path may be connected to the electrode unit 40.
- the electrode unit 40 may be directly fixed to the electron source housing 7 so as to have the same potential as the electron source housing 7.
- the processing housing 2 and the processing chamber 21 need only have openings 2a and 23 through which the thermoelectrons emitted from the electron source 3 can pass.
- the electron source unit 3 includes the vacuum flange VF and the electrode unit 40, the electron source unit 3 is unitized. Thereby, the application of the electron source unit 3 to various devices provided with the processing object PO can be performed very easily.
- the electrode unit 40 may be provided in both the processing chamber unit 21 and the electron source unit 3. In this case, for example, even when there is a factor such as the proximity of an object having a different potential, the electric field between the electron source unit 3 and the processing chamber unit 21 is formed orderly without being affected by the object. Therefore, the thermoelectrons can be incident on the processing chamber portion 21 stably.
- the electrode unit 40 is provided in both the processing chamber unit 21 and the electron source unit 3
- the same potential may be supplied to both the electrode units 40.
- different potentials may be supplied to both electrode portions 40 such that electrons are accelerated from the electrode portion 40 on the electron source portion 3 side toward the electrode portion 40 on the processing chamber portion 21 side.
- the acceleration of the electrons between the two electrode parts 40 is Smaller is preferable.
- the accelerating electric field in the electron source unit 3 and the electric field between the processing chamber unit 21 and the electron source unit 3 are formed more orderly.
- An accelerating electric field that greatly accelerates the electrons is formed between the cathode 6 and the electrode part 40 on the electron source part 3 side, and an electric field that decelerates the accelerated electrons is applied to both electrode parts 40.
- a potential that is formed between them and finally becomes a desired acceleration electric field when passing through the electrode section 40 on the processing chamber section 21 side may be supplied to both the electrode sections 40.
- FIG. 11 is a perspective view showing a charging processing apparatus according to the second embodiment.
- FIG. 12 is a cross-sectional view showing an example of the electron source section.
- the charge processing device C2 according to the second embodiment is different from the charge processing device C1 according to the first embodiment with respect to the configuration of the electron source unit 3.
- the charging device C2 includes a housing 1 and an electrode 40. Similarly to the charging processing device C1, the charging processing device C2 can charge an uncharged processing object to a positive or negative potential. The electrification processing device C2 can also neutralize the processing object charged to a positive or negative potential. The electrification processing device C2 can change the potential of the processing object charged to a positive or negative potential to a desired potential.
- the electron source section 3 (electron source casing 7) has a longitudinal direction and a short direction in plan view as shown in FIG.
- the electron source unit 3 has a substantially rectangular parallelepiped shape.
- the cathode 6 extends along the longitudinal direction of the electron source section 3.
- the electron source unit 3 has a pair of current introduction terminals 11.
- the pair of current introduction terminals 11 is provided in the electron source housing 7 and is electrically connected to the cathode 6.
- the pair of current introduction terminals 11 are disposed at both ends of the electron source housing 7 in the longitudinal direction.
- the shapes of the opening 2a (not shown in FIG. 11) of the processing housing 2 and the opening 23 (not shown in FIG.
- the electrode unit 40 is fixed to the electron source housing 7 via an insulating member so that the electrode unit 40 is insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 40.
- a power supply path to the electrode unit 40 may be provided.
- the electrode unit 40 may be directly fixed to the electron source housing 7 so as to have the same potential as the electron source housing 7.
- the electron source unit 3 has a longitudinal direction and a short direction in plan view, and the cathode 6 extends along the longitudinal direction of the electron source unit 3.
- the charging apparatus C2 can reliably charge the processing target to a desired potential even if the processing target is a long object or an object having a large area.
- FIG. 13 is a plan view showing a modification of the electron source section.
- 14 is a cross-sectional view taken along line XIV-XIV in FIG.
- FIG. 15 is a sectional view taken along line XV-XV in FIG.
- the electron source unit 3 according to the third embodiment is different from the electron source unit 3 in the first and second embodiments in that photoelectrons are emitted instead of thermal electrons.
- the electron source section 3 includes an electron generation source 50 that emits photoelectrons and an electron source casing 51 that houses the electron generation source 50, as shown in FIGS. Similarly to the electron source unit 3 shown in FIGS. 11 and 12, the electron source unit 3 has a longitudinal direction and a short direction in plan view.
- the electron generation source 50 includes an energy beam source 52 and a photoelectron emitter 53.
- the energy ray source 52 emits energy rays having a predetermined wavelength.
- the photoelectron emitter 53 emits photoelectrons to the outside when an energy beam having a predetermined wavelength is incident.
- As the energy ray source 52 for example, a long excimer lamp or the like is used.
- the electron source unit 3 is provided in the processing casing 2 by attaching the vacuum flange VF to the processing casing 2. Also in the present embodiment, the vacuum flange VF is not necessarily required when the electron source unit 3 is provided integrally with the processing housing 2 by welding or the like, or when disposed in the processing unit 20.
- the vacuum flange VF may be formed integrally with the electron source casing 51 or may be formed separately from the electron source casing 51.
- the energy ray source 52 is an energy ray source that emits energy rays having a wavelength included in a band from X-rays to infrared rays, for example. Considering the ease of producing the photoelectron emitter 53 and the deterioration in the environment exposed to the atmosphere, the energy beam source 52 emits energy rays included in the band from X-rays to UV light. It may be a radiation source. Examples of the energy ray source include an excimer lamp or deuterium lamp that emits UV light or VUV light (vacuum ultraviolet light), a UV laser light source, or an X-ray tube.
- an excimer lamp that emits VUV light having light energy with which the quantum efficiency in the photoelectron emitter 53 is relatively high may be used.
- the energy beam having a predetermined wavelength includes vacuum ultraviolet light, photoelectrons can be generated more efficiently.
- the electron source housing 51 has a pair of end surface portions 51a, a pair of side surface portions 51b, and an upper surface portion 51c.
- the pair of end face parts 51 a are opposed to each other in the longitudinal direction of the electron source part 3.
- the pair of side surface portions 51b extends in the longitudinal direction of the electron source unit 3 so as to connect the pair of end surface portions 51a, and is opposed to each other.
- the upper surface portion 51c is connected to the pair of end surface portions 51a and the pair of side surface portions 51b.
- the electron source casing 51 includes an opening 51d for emitting photoelectrons from the electron source unit 3 at a position facing the upper surface 51c.
- the energy ray source 52 is disposed in the gas introduction pipe 55. Both end portions of the gas introduction tube 55 are hermetically held by the pair of end surface portions 51a of the electron source housing 51 via O-rings.
- the gas introduction tube 55 is disposed so as to penetrate the electron source housing 51 in the longitudinal direction of the electron source unit 3.
- the energy beam source 52 is also disposed so as to penetrate the electron source housing 51 in the longitudinal direction of the electron source unit 3.
- the gas introduction tube 55 is made of a material that transmits energy rays having a predetermined wavelength emitted from the energy ray source 52.
- the gas introduction pipe 55 is made of, for example, quartz glass or MgF 2 .
- the gas introduction pipe 55 may be a tubular member made of metal or the like. In this case, an opening may be provided at a predetermined position of the tubular member, and a window material made of quartz glass or MgF 2 may be provided in the opening.
- a gas introduction part 57 for introducing gas into the gas introduction pipe 55 is connected to one end of the gas introduction pipe 55.
- the other end of the gas introduction pipe 55 functions as a gas discharge part that discharges the gas introduced into the gas introduction pipe 55.
- an inert gas such as nitrogen is used as the gas introduced into the gas introduction pipe 55.
- the gas introduced into the gas introduction pipe 55 cools the energy ray source 52. Since the gas is introduced into the gas introduction pipe 55 from the gas introduction part 57 and is discharged from the gas discharge part, it is possible to suppress a decrease in the transmittance of photons.
- Power supply lines 58 and 59 connected to the electrode of the energy beam source 52 are led out from the other end of the gas introduction pipe 55.
- the introduction and discharge of the gas and the derivation of the power supply lines 58 and 59 may be performed from either end of the gas introduction pipe 55.
- the part where the power lines 58 and 59 are led out is not limited to the open end of the gas introduction pipe 55. Both ends of the gas introduction pipe 55 are hermetically sealed so that gas can be introduced and discharged, and a power supply unit connected to the power supply lines 58 and 59 may be provided so as to penetrate the gas introduction pipe 55.
- the power lines 58 and 59 are led out from the gas introduction pipe 55 by being connected to the power feeding unit.
- the photoelectron emitter 53 is provided in the electron source housing 51 via an insulating substrate 56.
- the photoelectron emitter 53 is electrically insulated from the electron source housing 51.
- the photoelectron emitter 53 has five surface portions extending along the surface portions 51 a to 51 c of the electron source casing 51.
- the inner surface of the five surface portions is a photoelectron emission surface.
- a position corresponding to the opening 51d of the electron source casing 51 is open.
- the five surface portions of the photoelectron emitter 53 are positioned so as to surround the energy beam source 52 via the gas introduction tube 55.
- the photoelectron emitter 53 is electrically connected to a current introduction terminal 54 provided in the electron source housing 51.
- the photoelectron emitter 53 is detachably attached to the electron source housing 51. As a result, the photoelectron emitter 53 can be replaced.
- the number of surface portions of the photoelectron emitter 53 is not limited to five.
- the surface portion of the photoelectron emitter 53 may be a polyhedral structure in which photoelectrons are easily emitted to the processing chamber portion 21 side.
- the photoelectron emitter 53 is a material that has little deterioration even in an environment exposed to the atmosphere and that has high quantum efficiency with respect to energy rays (for example, UV light or VUV light) emitted from the energy ray source 52. Is used.
- Examples of the material of the photoelectron emitter 53 include Au, Ni, stainless steel, Al, diamond thin film, DLC (Diamond-Like Carbon) thin film, and Al 2 O 3 thin film.
- a material having a high quantum efficiency with respect to UV light or VUV light is generally Au.
- Al, Al 2 O 3 thin film, or diamond thin film is a material with relatively high quantum efficiency.
- Each thin film is formed on the surface of a metal substrate.
- the photoelectron emission surface of the photoelectron emitter 53 may be subjected to a mirror surface treatment.
- the electrode part 40 is provided in the opening 51d so as to cover the opening 51d of the electron source casing 51.
- the electrode unit 40 is fixed to the electron source housing 51 via an insulating member so that the electrode unit 40 is insulated from the electron source housing 51 and a desired potential is supplied to the electrode unit 40.
- the power supply path may be connected to the electrode unit 40.
- the electrode unit 40 may be directly fixed to the electron source housing 51 so as to have the same potential as the electron source housing 51.
- the electrode unit 40 forms an accelerating electric field in the electron source unit 3 that accelerates the photoelectrons generated in the photoelectron emitter 53 toward the processing unit 20 due to a difference from the potential supplied to the photoelectron emitter 53.
- the electrode unit 40 forms an electric field corresponding to the potential difference between the processing object PO and the processing chamber unit 21 up to the vicinity of the boundary between the electron source unit 3 and the processing unit 20.
- the electrode unit 40 suppresses the influence of an accelerating electric field formed in the electron source unit 3 and an electric field corresponding to a potential difference between the processing object PO and the processing chamber unit 21 and the electrode unit 40 from each other.
- the electron source unit 3 includes an energy beam source 52 that emits an energy beam having a predetermined wavelength, and a photoelectron emitter 53 that emits photoelectrons to the outside when the energy beam having a predetermined wavelength is incident.
- an energy ray source for example, a lamp
- the charging device electrospray housing 51
- Can do As a result, it is possible to realize an electron generation source having high stability with respect to the atmosphere in the charging processing device C1.
- the electron source unit 3 has a longitudinal direction and a short direction in plan view, and the energy beam source 52 extends along the longitudinal direction of the electron source unit 3.
- FIGS. 16 and 17 are cross-sectional views showing further modifications of the electron source section.
- the cross-sectional configurations shown in FIGS. 16 and 17 correspond to the cross-sectional configurations when cut along a plane perpendicular to the short direction of the electron source section 3.
- the electron source unit 3 shown in FIGS. 16 and 17 is located entirely within the processing housing 2 like the electron source unit 3 included in the charging processing device C1 shown in FIG. 9C. ing.
- the electrode unit 40 is insulated from the electron source housing 51 via an insulating member so that the electrode unit 40 is insulated from the electron source housing 51 and a desired potential is supplied to the electrode unit 40. While being fixed to the body 51, the electric power feeding path to the electrode part 40 may be provided. Depending on the value of the desired potential, the electrode unit 40 may be directly fixed to the electron source housing 51 so as to have the same potential as the electron source housing 51.
- the gas introduction part 57 is provided at the other end of the gas introduction pipe 55.
- the gas introduction part 57 has a flange 57a that defines a gas introduction space.
- the flange 57a is airtightly provided with a current introduction terminal 60 to which a power line 58 is electrically connected.
- the power line 59 is electrically connected to the flange 57a and grounded.
- the power supply line 59 may be connected to the current introduction terminal in the same manner as the power supply line 58. In this case, the power line 59 may be supplied with a potential other than the ground potential through the current introduction terminal.
- the current introduction terminal 60 is electrically connected to the current introduction terminal 62 through the power line 61.
- the current introduction terminal 62 is airtightly provided on the flange 63.
- the flange 63 is detachably attached to the processing housing 2 and is airtight.
- a gas introduction port 65 connected to the gas introduction portion 57 via the gas introduction pipe 64 is disposed in the flange 63.
- a gas discharge part 68 is provided at one end of the gas introduction pipe 55.
- the gas discharge unit 68 is connected to a gas discharge port 67 through a gas discharge pipe 66.
- the gas discharge port 67 is airtightly provided in the flange 69.
- the flange 69 is detachably attached to the processing housing 2 and is airtight.
- the gas is introduced from the gas introduction port 65, passes through the gas introduction pipe 64, the gas introduction part 57, the gas introduction pipe 55, the gas discharge part 68, and the gas discharge pipe 66 and is discharged from the gas discharge port 67.
- a current introduction terminal 71 is disposed on the flange 69. The current introduction terminal 71 is electrically connected to the current introduction terminal 54 through the power supply line 70.
- the power lines 58 and 59 connected to the electrodes of the energy beam source 52 pass through the flexible tube constituting the gas introduction pipe 64 and pass through the processing casing 2 (processing section 20 ) Has been derived out.
- the gas discharge part 68 Similar to the gas introduction part 57, the gas discharge part 68 has a flange 68 a that defines a gas introduction space.
- a flexible tube constituting a gas discharge pipe 66 is connected to the gas discharge unit 68.
- the gas introduction port 65, the current introduction terminal 71, and the gas discharge port 67 are provided in one flange 72.
- the flange 72 is detachably attached to the processing housing 2 and is airtight.
- positioning of the electron source part 3 can be raised, for example, the electron source part 3 can be arrange
- the electron source unit 3 may be directly fixed to the processing housing 2 without using the flange 72.
- FIGS. 18 to 20 are cross-sectional views showing further modifications of the electron source section.
- the cross-sectional configurations shown in FIGS. 18 to 20 correspond to the cross-sectional configurations when cut along a plane perpendicular to the longitudinal direction of the electron source section 3.
- the electrode unit 40 is fixed to the electron source housing 51 via an insulating member so that the electrode unit 40 is insulated from the electron source housing 51 and a desired potential is supplied to the electrode unit 40.
- the power supply path may be connected to the electrode unit 40.
- the electrode unit 40 may be directly fixed to the electron source housing 51 so as to have the same potential as the electron source housing 51.
- the energy ray source 52 is disposed on the side surface 51b side. That is, the energy beam source 52 is arranged so that the photoelectron incident axis A1 from the electron source unit 3 to the processing unit 20 and the energy beam output axis A2 of the energy beam source 52 are not coaxial. Specifically, the energy beam source 52 is arranged so that the photoelectron incident axis A1 and the energy beam emitting axis A2 are substantially orthogonal. An opening for guiding the energy beam from the energy beam source 52 to the inner space of the photoelectron emitter 53 is formed in one side surface portion 51 b and the surface of the photoelectron emitter 53 facing the one side surface portion 51 b. Yes.
- the photoelectron emitter 53 has an inclined surface so that photoelectrons are emitted toward the opening 51 d in a cross section orthogonal to the longitudinal direction of the electron source unit 3. That is, the photoelectron emitter 53 includes an inclined surface that is inclined with respect to the energy ray emission axis A ⁇ b> 2 of the energy ray source 52.
- the inclined surface may consist of a plurality of inclined surfaces having different angles.
- the electron source unit 3 includes a mesh-like electrode unit 73.
- the electrode unit 73 is disposed between the energy beam source 52 and the photoelectron emitter 53 and has the same potential as the photoelectron emitter 53. In this modification, the electrode portion 73 is provided on the photoelectron emitter 53.
- the electrode portion 73 is made of a material having high photoelectron emission characteristics such as Au or Al.
- the electrode part 73 may be a mesh made of stainless steel, for example. A thin film made of Au, Al, Al 2 O 3 or the like is formed on the surface of the mesh made of stainless steel.
- the electron source unit 3 does not necessarily include the electrode unit 73, and the electron source unit 3 may not include the electrode unit 73.
- the electrode unit 73 suppresses the photoelectrons emitted from the photoelectron emitter 53 from moving toward the energy beam source 52 side, so that the photoelectrons are efficiently directed toward the processing unit 20 (not shown in FIG. 18). Can lead.
- the electrode unit 73 prevents the energy ray source 52 and the like from being charged.
- the energy beam source 52 is disposed on the one side surface 51b side so that the photoelectron incident axis A1 and the energy beam emitting axis A2 are not coaxial. It is difficult for the energy rays emitted from the radiation source 52 to be directly applied to the processing unit 20 (not shown in FIG. 18). If the processing unit 20 is irradiated with energy rays emitted from the energy ray source 52, there is a possibility that dissociation of the substance may occur. As described above, in the electron source unit 3, it is difficult to directly irradiate the processing unit 20 with the energy beam emitted from the energy beam source 52.
- the energy ray source 52 is arranged so that the photoelectron incident axis A1 and the energy ray emission axis A2 are substantially orthogonal, so that the energy rays emitted from the energy ray source 52 are transmitted by the processing unit 20. It is difficult to irradiate more directly.
- the photoelectron emitter 53 has an inclined surface so that photoelectrons are emitted toward the opening 51 d in a cross section orthogonal to the longitudinal direction of the electron source unit 3. That is, since the photoelectron emitter 53 includes an inclined surface that is inclined with respect to the energy ray emission axis A2 of the energy ray source 52, the photoelectrons generated can be efficiently guided to the processing unit 20.
- the electron source unit 3 includes a window material 74.
- the window member 74 is disposed between the energy beam source 52 and the photoelectron emitter 53 and transmits energy beams having a predetermined wavelength.
- the window member 74 is made of an X-ray transmissive material such as a thin film of Be or Ti.
- the window member 74 is made of quartz glass, MgF 2 or the like.
- the window member 74 hermetically seals the space in the electron source unit 3 (electron source housing 51) in which the photoelectron emitter 53 is accommodated.
- the window material 74 is provided in the electron source housing 51 via an O-ring 75.
- the energy ray source 52 is accommodated in the accommodating portion 76.
- the accommodating portion 76 is detachably attached to the electron source housing 51 and is provided in an airtight manner.
- the window member 74 is provided in the electron source housing 51 by being sandwiched between the housing portion 76 and the electron source housing 51 when the housing portion 76 is attached to the electron source housing 51.
- an inert gas such as nitrogen gas may be circulated in the internal space of the housing portion 76.
- the electrode unit 73 efficiently guides photoelectrons toward the processing unit 20 and prevents charging of the energy beam source 52, the window material 74, and the like.
- the 19 further includes a window material 74 that is disposed between the energy beam source 52 and the photoelectron emitter 53 and transmits energy beams having a predetermined wavelength.
- the window member 74 hermetically seals the space in the electron source unit 3 in which the photoelectron emitter 53 is accommodated. Therefore, work such as replacement and maintenance regarding the energy beam source 52 can be easily performed without affecting the predetermined pressure atmosphere in the processing unit 20. Since the energy beam source 52 is disposed on the side surface 51b side, the energy beam emitted from the energy beam source 52 is difficult to be directly irradiated onto the processing unit 20. For this reason, it can suppress that dissociation of a substance, etc. arise in the site
- the window member 74 is provided on the photoelectron emitter 53.
- the window member 74 is provided in the photoelectron emitter 53 by being sandwiched between the housing portion 76 and the photoelectron emitter 53 when the housing portion 76 is attached to the electron source housing 51.
- the accommodating portion 76 is provided in the electron source housing 51 via the O-ring 75.
- the photoelectron emitter 53 has a curved surface so that photoelectrons are emitted toward the opening 51 d in a cross section orthogonal to the longitudinal direction of the electron source unit 3.
- a thin film 77 that forms a transmissive photocathode and has conductivity is formed on the surface of the window member 74 on the photoelectron emitter 53 side.
- the thin film 77 has a thickness of, for example, several nm to several hundred nm, and is made of Au, Al, Al 2 O 3 or the like.
- the thin film 77 is in contact with the photoelectron emitter 53 so as to have the same potential as that of the photoelectron emitter 53 in a state where the window member 74 is provided on the photoelectron emitter 53. That is, the window material 74 is disposed between the energy beam source 52 and the photoelectron emitter 53 so that the thin film 77 and the photoelectron emitter 53 are in contact with each other.
- the thin film 77 is brought to the same potential as the photoelectron emitter 53 by contact with the photoelectron emitter 53.
- the thin film 77 and the photoelectron emitter 53 may have the same potential by being brought into electrical contact through a conductive member or the like without being in physical contact. Further, the same potential as that of the photoelectron emitter 53 may be supplied to the thin film 77 by a separately provided power supply member.
- the potentials of the photoelectron emitter 53 and the thin film 77 may be changed as necessary. In this case, the distribution of emitted photoelectrons can be changed.
- FIG. 21 is a perspective view showing an electron source section.
- FIG. 22 is a cross-sectional view of the electron source portion shown in FIG.
- FIG. 23 is a perspective view showing a photoelectron emitter.
- the electron source unit 3 includes an electron source casing 51, an energy beam source 52, a photoelectron emitter 53, and an electrode unit 40.
- the energy ray source 52 for example, an excimer lamp or a deuterium lamp is used.
- the energy ray source 52 includes a light emitting unit assembly 78 and a glass sealed container 79.
- the sealed container 79 has a side tube portion 79a and a protruding portion 79b.
- the side tube portion 79 a accommodates the light emitting portion assembly 78.
- the protruding portion 79b protrudes from the side tube portion 79a and communicates with the side tube portion 79a.
- the tip of the protruding portion 79b is sealed by a light emission window that emits energy rays (VUV light).
- the electron source casing 51 has a cylindrical shape with both ends opened.
- a vacuum flange VF is provided at one end of the electron source housing 51.
- the electrode part 40 is provided on the vacuum flange VF so as to cover the opening of the vacuum flange VF.
- the electrode unit 40 is fixed to the electron source housing 51 via an insulating member so that the electrode unit 40 is insulated from the electron source housing 51 and a desired potential is supplied to the electrode unit 40.
- a power supply path to the electrode unit 40 may be provided.
- the electrode unit 40 may be directly fixed to the electron source housing 51 so as to have the same potential as the electron source housing 51.
- An electrically insulating substrate 80 is disposed at the other end of the electron source casing 51 so as to close the opening at the other end.
- the other end of the electron source casing 51 is hermetically sealed with a quick-coupling coupling 81 in a state where the substrate 80 is disposed.
- the quick coupling 81 has a clamp 81a.
- a current introduction terminal 82 is airtightly provided on the substrate 80.
- the current introduction terminal 82 is fixed to the substrate 80 by, for example, welding.
- the substrate 80 functions as a blank flange of the quick coupling 81.
- the photoelectron emitter 53 is disposed in the electron source housing 51. As shown in FIG. 23, the photoelectron emitter 53 has a trunk portion 53a and a bottom portion 53b, and has a bottomed cylindrical shape with one end facing the bottom portion 53b opened.
- the trunk portion 53a has a cylindrical shape with a circular cross section.
- the cross section of the trunk portion 53a is not limited to a circle and may be a polygon.
- the inner surface of the bottom 53b is a flat surface.
- the photoelectron emitter 53 is provided on the substrate 80 via the fixed substrate 83 and the insulating substrate 84.
- the fixed substrate 83 has conductivity.
- the fixed substrate 83 is detachably provided on the insulating substrate 84 by screwing or the like.
- the insulating substrate 84 is detachably provided on the substrate 80 by screwing or the like.
- the photoelectron emitter 53 is fixed to the fixed substrate 83 by the protrusions formed on the bottom 53 b being screwed with the fixed substrate 83. That is, the photoelectron emitter 53 is detachably provided on the fixed substrate 83. Thereby, replacement
- a sleeve 85 is provided at the tip of the current introduction terminal 82. By providing the sleeve 85 on the fixed substrate 83 by screwing or the like, the photoelectron emitter 53 is electrically connected to the current introduction terminal 82 through the fixed substrate 83 and the sleeve 85.
- the body 53a of the photoelectron emitter 53 is formed with an opening through which the protruding portion 79b of the sealed container 79 included in the energy ray source 52 is inserted.
- the protruding portion 79 b is also inserted into a cylindrical portion 86 formed integrally with the electron source housing 51, and is airtightly provided on the cylindrical portion 86 via an O-ring 87.
- the energy beam source 52 is detachably provided on the electron source housing 51. If the energy beam from the energy beam source 52 is introduced into the photoelectron emitter 53 through the opening of the body portion 53a and is irradiated on the photoelectron emission surface of the photoelectron emitter 53, the protruding portion 79b of the sealed container 79 is used.
- the electron source housing 51 may include a window material that transmits energy rays at a position facing the opening of the trunk portion 53a.
- the energy beam source 52 is disposed outside the internal atmosphere of the electron source housing 51.
- the photoelectron emitter 53 emits photoelectrons when irradiated with energy rays from the energy ray source 52.
- an accelerating electric field for example, 200 V
- the emitted photoelectrons are emitted from the electron source unit 3, as shown in FIG.
- FIG. 24 is a diagram for explaining the emission of photoelectrons from the electron source section. In FIG. 24, the flight trajectory of photoelectrons is shown. While the photoelectrons spread over a wide range, they fly so as to concentrate toward the center of the processing chamber 21. Actually, the photoelectrons hardly reach the processing object PO by colliding with molecules of the charged particle forming gas.
- the emission of photoelectrons from the photoelectron emitter 53 and the movement of the emitted photoelectrons to the processing unit 20 side are efficiently performed.
- the projecting portion 79 b of the energy beam source 52 is inserted into the opening formed in the body portion 53 a of the photoelectron emitter 53, so that the energy emitted from the energy beam source 52 is It is difficult for the line to be directly irradiated on the processing unit 20. For this reason, it can suppress that dissociation of a substance, etc. arise in the site
- FIG. 25 is a perspective view showing a modification of the photoelectron emitter.
- FIG. 26 is a diagram for explaining the emission of photoelectrons from the electron source section.
- the inner surface of the bottom 53b includes a flat surface portion and an inclined surface portion.
- the plane portion has a smaller diameter than the inner diameter of the trunk portion 53a.
- the inclined surface portion is inclined in a tapered shape from the end of the trunk portion 53a toward the flat surface portion. That is, the space formed by the inner surface of the bottom 53b has a truncated cone shape.
- the inner surface of the bottom 53b has a concave spherical surface.
- the photoelectron emitter 53 shown in FIG. 25A When the photoelectron emitter 53 shown in FIG. 25A is used, as shown in FIG. 26A, the photoelectron emitter 53 shown in FIG. 23 is used. However, the photoelectrons fly so as to concentrate more toward the central portion of the processing housing 2.
- the photoelectron emitter 53 shown in (b) of FIG. 25 is used, as shown in (b) of FIG. 26, compared to the case where the photoelectron emitter 53 shown in FIG. 23 is used. However, the photoelectrons fly toward a wider area in the central portion of the processing housing 2.
- the photoelectron emitter 53 shown in (c) of FIG. 25 has a plurality of electrode portions (first, second, and third electrode portions 88a, 88b, 88c in this modification).
- the first electrode portion 88 a includes a photoelectron emission portion and is a main body portion of the photoelectron emitter 53.
- An electrical insulator 89a is disposed between the first electrode portion 88a and the second electrode portion 88b, and the first electrode portion 88a and the second electrode portion 88b are electrically insulated by the electrical insulator 89a. Has been.
- An electrical insulator 89b is disposed between the second electrode portion 88b and the third electrode portion 88c, and the second electrode portion 88b and the third electrode portion 88c are electrically insulated by the electrical insulator 89b.
- the first electrode portion 88a and the third electrode portion 88c are set to a negative potential
- the second electrode portion 88b is set to the ground potential.
- the second electrode portion 88b may have a mesh shape.
- the first electrode portion 88a is formed with an opening through which the protruding portion 79b of the sealed container 79 included in the energy ray source 52 is inserted. At the bottom of the first electrode portion 88a, a protrusion that is screwed with the fixed substrate 83 is formed.
- the photoelectron emitter 53 shown in (c) of FIG. 25 When the photoelectron emitter 53 shown in (c) of FIG. 25 is used, as shown in (c) of FIG. 26, it is shown in (a) and (b) of FIG. 23 and FIG. As compared with the case where the photoelectron emitter 53 is used, it flies so as to concentrate on the whole toward the central portion of the processing housing 2.
- the electron source unit 3 In the photoelectron emitter 53 shown in (c) of FIG. 25, the electron source unit 3 is provided in a protruding portion that protrudes from the main body of the processing housing 2 as shown in (c) of FIG. Is useful in certain configurations. In this case, absorption of photoelectrons at the protrusion is suppressed, and photoelectrons can be efficiently guided to the electron source unit 3.
- a second electrode portion 88b and a third electrode portion 88c as a photoelectron control unit for controlling photoelectrons are disposed between the first electrode portion 88a and the electrode portion 40, which are main body portions of the photoelectron emitter 53. Therefore, the incident range of photoelectrons in the processing unit 20 can be controlled. By changing the potentials of the first, second, and third electrode portions 88a, 88b, 88c, the photoelectrons can be caused to diverge without being concentrated.
- FIG. 27 is a perspective view showing a charging processing apparatus to which a further modification of the electron source unit is applied.
- the electron source housing 51, the photoelectron emitter 53, the structure 4 including the electrode unit 40, and the energy beam source 52 are configured separately. Yes.
- the energy beam source 52 and the structure 4 are provided in the processing housing 2 so as to face each other. That is, the energy beam source 52 and the structure 4 (the photoelectron emitter 53) are arranged so as to be separated from each other and face each other with the processing chamber portion 21 interposed therebetween.
- the energy beam emitted from the energy beam source 52 passes through the processing unit 20 (processing chamber unit 21), enters the structure 4, and is irradiated to the photoelectron emitter 53.
- the energy ray source 52 is provided in the processing housing 2 and the energy ray source 52 and the structure 4 are separated from each other.
- the energy beam source 52 and the photoelectron emitter 53 can be disposed at functionally appropriate positions.
- the energy beam source 52 is disposed outside the processing housing 2
- the energy beam source 52 is suppressed while suppressing the influence of the heat generated by the energy beam source 52 on the internal space of the processing housing 2 and the photoelectron emitter 53. 52 can be easily dissipated.
- the energy source 52 can be easily replaced.
- the energy beam source 52 and the photoelectron emitter 53 are separated from each other, so that the energy beam source 52 may emit energy beams with high directivity.
- an optical lens system or a light guide member for condensing may be disposed in the energy ray source 52, and the energy ray source 52 emits an energy ray with high directivity (for example, , UV laser light source, etc.).
- the position where the energy ray source 52 is arranged is not limited to the position described above.
- the energy beam source 52 may be provided on a surface orthogonal to the surface on which the photoelectron emitter 53 is disposed. Even in this case, the energy beam source 52 and the photoelectron emitter 53 are arranged so as to be separated from each other and face each other.
- openings are provided in the side surfaces of the electron source casing 51 and the photoelectron emitter 53, and the opening is formed in the space between the processing casing 2 and the processing section 20.
- the structure 4 may be disposed so as to be positioned, and energy rays may be irradiated into the photoelectron emitter 53 through the opening.
- FIG. 28 is a perspective view showing a static eliminator according to the fourth embodiment.
- FIG. 29 is a perspective view showing an example of an electron source section.
- the neutralization processing device NA is a so-called neutralizing device that neutralizes the charge of the processing object PO charged to a positive or negative potential, in the charging processing device.
- the static eliminator NA includes a housing unit 1.
- the housing unit 1 includes an electron source unit 3, a processing housing 2, an air supply unit 30, and an exhaust unit 33.
- the processing housing 2 also functions as the processing chamber unit 21.
- the electron source unit 3 is provided with an electrode unit 40 disposed so as to cover the opening 2a of the processing housing 2.
- the charge removal processing apparatus NA is configured such that the processing casing 2 (at least the inner surface of the processing casing 2) and the electrode unit 40 are set to a desired charge neutralization level (for example, ground potential). Thereby, according to the static elimination processing apparatus NA, even if it is the processing target PO charged to positive or negative, it can be made a desired charge neutralization level (for example, ground potential).
- the charge removal treatment is a charge treatment to a desired charge neutralization level.
- the operation mechanism of the charge removal processing device NA is the same as the operation mechanism of the above-described charging processing device C1. Since the electrode portion 40 has the same potential as the inner surface of the processing housing 2, the electrode portion 40 may be provided directly on the processing housing 2 so as to cover the opening 2 a. When the desired charge neutralization level is the ground potential, the electrode unit 40 may be provided directly on the electron source housing 7 or the vacuum flange VF.
- FIG. 30 is a perspective view showing a charging processing apparatus according to the fifth embodiment.
- the charge processing device C3 according to the fifth embodiment is different from the charge processing device C2 according to the second embodiment with respect to the configuration of the processing unit 20.
- the charging device C3 includes a housing unit 1 and an electrode unit 40 as shown in FIG. Similarly to the charging processing devices C1 and C2, the charging processing device C3 can charge an uncharged processing object to a positive or negative potential. The electrification processing device C3 can also neutralize the processing target charged to a positive or negative potential. The electrification processing device C3 can also change the potential of the processing object charged to a positive or negative potential to a desired potential.
- the processing unit 20 includes an opening (introducing unit) 24 for introducing the processing object PO into the processing unit 20 (processing chamber unit 21), and the processing object 20 (processing chamber unit 21). And an opening (leading part) 25 led out from.
- the pair of openings 24 and 25 are positioned so as to face each other. In the present embodiment, the pair of openings 24 and 25 are respectively provided on a pair of opposed surfaces in the processing chamber 21.
- the continuous processing object PO or the processing object PO mounted on a continuous base (not shown) may move between the pair of openings 24 and 25. Thereby, the charging process of the processing object PO can be continuously performed.
- the size (opening area) of the openings 24 and 25 may be set as close as possible to the size of the processing object PO.
- the sizes of the openings 24 and 25 may be set as close as possible to the size including the pedestal.
- another electric field existing around the processing unit 20 is prevented from entering the processing unit 20 (processing chamber unit 21) from the openings 24 and 25. Thereby, it can suppress that another electric field mentioned above affects the electric field of the process area
- the number of openings 24 and 25 is not limited to a pair.
- the processing unit 20 (processing chamber unit 21) may have a plurality of pairs of openings 24 and 25.
- the plurality of pairs of openings 24 and 25 can be positioned so as to be lined up on the left and right when viewed from the introduction direction (derivation direction) of the processing object PO. In this case, a plurality of processing objects PO can be charged in parallel.
- FIG. 31 is a perspective view showing a charging processing apparatus according to the sixth embodiment.
- the charging processing device C4 according to the sixth embodiment is different from the charging processing devices C2 and C3 according to the second and fifth embodiments with respect to the configuration of the processing unit 20.
- the charging processing device C4 includes a housing unit 1 and an electrode unit 40. Similarly to the charging processing devices C1 to C3, the charging processing device C4 can charge an uncharged processing target to a positive or negative potential. The electrification processing device C4 can also neutralize the processing object charged to a positive or negative potential. The electrification processing device C4 can also change the potential of the processing object charged to a positive or negative potential to a desired potential.
- the processing unit 20 (processing chamber unit 21) has two members 26 and 27 arranged so as to be separated from each other.
- the two members 26 and 27 are, for example, box-shaped members that are open on one side, and have the same potential.
- the continuous processing object PO or the processing object PO mounted on the continuous base moves between the two members 26 and 27. That is, by positioning the processing object PO between the two members 26 and 27, the two members 26 and 27 surround the processing object PO. Thereby, the charging process of the processing object PO having a larger size can be continuously performed.
- the distance between the two members 26 and 27 may be set as close as possible to the size (thickness) of the processing object PO.
- the distance between the two members 26 and 27 may be set as close as possible to the size (thickness) including the pedestal.
- the width of the two members 26 and 27 may be set larger than the width of the processing object PO.
- the distance between the casing unit 1 and the processing unit 20 is sufficiently large. It may be vacant. In the space between the two members 26 and 27, a plurality of processing objects PO may be arranged in the horizontal direction, and the plurality of processing objects PO may be charged simultaneously.
- FIG. 32 is a perspective view showing a charging processing apparatus according to the seventh embodiment.
- the charge processing device C5 according to the seventh embodiment is different from the charge processing devices C1 and C4 according to the first and sixth embodiments with respect to the configuration of the processing unit 20.
- the charging processing device C5 includes a housing 1 and an electrode unit 40. Similarly to the charging processing devices C1 to C4, the charging processing device C5 can charge an uncharged processing object to a positive or negative potential. The electrification processing device C5 can also neutralize the processing object charged to a positive or negative potential. The electrification processing device C5 can change the potential of the processing target charged to a positive or negative potential to a desired potential.
- the processing unit 20 (processing chamber unit 21) has two members 28 and 29 arranged so as to be separated from each other.
- the two members 28 and 29 are flat electrodes having a mesh-like region, and are set to the same potential.
- the two members 28 and 29 are positioned so as to face each other.
- a continuous processing object PO or a processing object PO mounted on a continuous base moves between the two members 28 and 29. That is, by positioning the processing object PO between the two members 28 and 29, the two members 28 and 29 surround the processing object PO.
- a space between the two members 28 and 29 becomes a processing space. Thereby, it is possible to form an appropriate processing space corresponding to the size of the processing object.
- the interval between the two members 28 and 29 may be set as close as possible to the size (thickness) of the processing object PO.
- the distance between the two members 28 and 29 may be set as close as possible to the size (thickness) including the pedestal.
- another electric field existing around the processing unit 20 is prevented from entering the processing unit 20 (processing chamber unit 21) from the space between the two members 28 and 29.
- the width of the two members 28 and 29 may be set larger than the width of the processing object PO.
- the distance between the casing unit 1 and the processing unit 20 (two members 28 and 29) is sufficiently large. It may be vacant.
- the two members 28 and 29 may be movable. For example, the whole members 28 and 29 may move.
- the members 28 and 29 may be composed of a plurality of blade-shaped members like a lens shutter, and the plurality of blade-shaped members may be opened and closed radially around the central axis. In this case, each of the plurality of blade-like members is provided with a mesh-like opening. Since the two members 28 and 29 are movable, other processing can be performed in addition to the charging processing of the processing object PO. Other processing includes, for example, charged particle processing. In the charged particle processing, a state in which the electromagnetic field of the processing unit 20 is not affected is formed around the processing object PO.
- FIGS. 33 to 35 are diagrams for explaining application examples of the charging processing apparatus.
- the charging apparatus is applied to an apparatus 90 for forming a functional film (for example, an antireflection film or a gas barrier film) on the surface of the film F.
- the device 90 is located in the processing housing 2.
- the electron source unit 3 and the processing chamber unit 21 are arranged in the previous stage of the film forming unit 91 and remove the static electricity from the film F before film formation.
- the charging apparatus is applied to a sputtering apparatus 92.
- the sputtering apparatus 92 includes a target holder 93 that holds the target T, a magnet 94 for generating a magnetic field, and an electrode 95 that holds a film formation target (for example, a Si wafer).
- the charging apparatus according to the present embodiment neutralizes the film formation target before performing sputtering.
- the electrification processing apparatus is applied to a static elimination processing apparatus 97 for a substrate 96 for hard disk media.
- the substrate 96 is made of, for example, Al or glass.
- the charge removal processing apparatus 97 the substrate 96 is held by the media holder 98.
- a thin film made of a magnetic material or the like is formed on the substrate 96 that has been neutralized by the neutralization processing apparatus 97 by the film deposition apparatus.
- the electron source unit 3 may have a plurality of electron generation sources 5.
- the housing unit 1 may include a plurality of electron source units 3.
- the electron generation source 50 may include a plurality of energy beam sources 52.
- the housing unit 1 does not necessarily have to include the air supply unit 30 and the exhaust unit 33.
- the electron source unit 3 and the processing unit 20 may constitute a charging processing unit CU in which they are integrated.
- FIG. 36 is a perspective view showing the charging unit.
- the electron source unit 3 is fixed to one end side of the processing unit 20, and an opening 20 a is formed on the other end side of the processing unit 20.
- the opening 20 a is an introduction unit for introducing the processing object PO into the processing unit 20.
- the charging processing unit CU is used, for example, in the housing unit 1.
- the charging process is performed, for example, in a state where the processing object PO is covered with the processing object PO such that the processing object PO is covered by the processing part 20 in the housing unit 1.
- the opening 20a is covered with a member having the same potential as the processing unit 20.
- the processing object PO may be disposed on a processing table having the same potential as the processing unit 20, and the processing unit 20 may be put on the processing table.
- the processing unit 20 and the processing table may be sufficiently close to each other so that an electric field can be stably formed in the processing unit 20 or may be in contact with each other.
- the opening 20a serving as the introduction portion is not limited to the surface facing the electron generation source 5, and may be provided in a portion other than the joint portion with the electron source housing 7 such as a side surface. In this case, the surface facing the electron generation source 5 (the surface corresponding to the opening 20a in FIG. 36) may be covered with a member having the same potential as the processing unit 20.
- the internal space of the processing unit 20 In order for the internal space of the processing unit 20 to be in a predetermined pressure atmosphere containing a charged particle forming gas, the internal space itself of the housing unit 1 in which the charging processing unit CU is disposed is set to a predetermined pressure atmosphere. It may be. Further, the inside of the processing unit 20 may be placed in a predetermined pressure atmosphere by a charged particle forming gas supply unit (and an exhaust unit) (not shown). In the former case, the processing unit 20 may be provided with a mesh unit so as to easily communicate with the internal space of the housing unit 1. In the latter case, as shown in FIG. 36, the processing unit 20 has a wall shape surrounding the inner space so that a space partitioned from the inner space of the housing unit 1 is formed inside the processing unit 20. It may consist of members.
- the electrode unit 40 and the processing unit 20 are at the same potential, and may be in direct contact with each other, or may be electrically connected through a conductive member.
- the electrode unit 40 and the processing unit 20 may be supplied with the same potential through separate power feeding paths.
- the electrode unit 40 may be connected to the electron source housing 7 by being formed integrally with the processing unit 20.
- the electrode unit 40 and the processing unit 20 are made of an insulating member so that the electrode unit 40 and the processing unit 20 are insulated from the electron source housing 7 and a desired potential is supplied to the electrode unit 40 and the processing unit 20.
- the power supply path to the electrode unit 40 and the processing unit 20 may be provided.
- the electrode unit 40 and the processing unit 20 may be directly fixed to the electron source housing 7 so as to have the same potential as the electron source housing 7.
- the electron source unit 3 and the processing unit 20 are hermetically sealed with each other, the electron source unit 3 and the processing unit 20 define a space under a predetermined pressure atmosphere containing a charged particle forming gas. If it exists, the housing
- the processing unit 20 processing casing 2 is electrically insulated from a part where the charging processing apparatus is installed (hereinafter simply referred to as “installation part”). May be.
- the processing unit 20 may be electrically connected to the installation site when the installation site is at ground potential.
- the present invention can be used in a charging processing apparatus and a charging processing method for charging a processing object to a desired potential.
- SYMBOLS 1 Housing
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Elimination Of Static Electricity (AREA)
- Physical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
帯電処理装置C1は、処理対象物POを所望の電位に帯電させる。帯電処理装置C1は、電子を発生させる電子発生源を収容する電子源部3と、電子源部3と連通し、かつ、荷電粒子形成用ガスを含む所定の圧力雰囲気下で処理対象物POを包囲する処理部20と、を有する筐体部1と、電子源部3と処理部20とを仕切るように電子源部3と処理部20との間に配置されているメッシュ状の電極部40と、を備えている。電子源部3内には、電子発生源5にて発生した電子を電極部40に向けて加速させる加速電界が形成される。処理部20及び電極部40の電位が、上記所望の電位とされる。
Description
本発明は、処理対象物を所望の電位に帯電させる帯電処理装置及び帯電処理方法に関する。
所定波長のエネルギー線を出射するエネルギー線源と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を備える帯電処理装置が知られている(たとえば、特許文献1参照)。特許文献1に記載された帯電処理装置は、光電子放出体から放出された光電子により、処理対象物を所望の電位に帯電させる。
本発明者らは、調査研究の結果、次のような事実を新たに見出した。光電子放出体から放出された光電子により、処理対象物を所望の電位に帯電させる帯電処理装置では、処理対象物が電気絶縁物である場合、所望の電位に帯電させ得る効果が乏しい。処理対象物が負の電位に帯電している電気絶縁物である場合、上記帯電処理装置では、帯電電荷を中和する、すなわち除電する効果は極めて低い。
本発明の態様は、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置及び帯電処理方法を提供することを目的とする。
本発明の一つ態様は、処理対象物を所望の電位に帯電させる帯電処理装置であって、電子を発生させる電子発生源を収容する電子源部と、電子源部と連通し、かつ、荷電粒子形成用ガスを含む所定の圧力雰囲気下で処理対象物を包囲する処理部と、を有する筐体部と、電子源部と処理部とを仕切るように電子源部と処理部との間に配置されているメッシュ状の電極部と、を備えている。電子源部内には、電子発生源にて発生した電子を電極部に向けて加速させる加速電界が形成され、処理部及び電極部の電位が、所望の電位とされる。
上記一つの態様では、電子源部内には、電子発生源にて発生した電子を電極部に向けて加速させる加速電界が形成されるため、電子発生源にて発生した電子は、メッシュ状の電極部を通過し、効率よく処理部内に導入される。処理部に導入された電子は、処理部内の荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正及び負の荷電粒子のうちいずれか一方の荷電粒子が、処理対象物の電位と処理部の電位(所望の電位)とで形成される電界に応じて、処理対象物側に移動する。生じた正及び負の荷電粒子のうちいずれか他方の荷電粒子は、処理部側に移動する。処理対象物に移動してきた荷電粒子により、処理対象物は、所望の電位に帯電する。処理対象物が所望の電位に帯電すると、処理対象物と処理部との間に電界が形成されず、荷電粒子は移動しない。したがって、処理対象物は、確実に所望の電位に帯電する。
所望の電位に帯電させるとは、正又は負の電位に帯電させることだけでなく、正又は負の電位の帯電を中和する、いわゆる除電することも含む。
上記一つの態様では、電子源部は、処理部と連通する開口部を含んでおり、電極部は、開口部を覆うように電子源部に配置されていてもよい。この場合、電子源部内に形成される加速電界と処理部内に形成される電界とが相互に影響するのを抑制する電極部を、電子源部と処理部との間に確実かつ容易に配置することができる。
上記一つの態様では、処理部は、少なくとも電子源部と対向する位置に開口部を含んでおり、電極部は、開口部を覆うように処理部に配置されていてもよい。この場合にも、電子源部内に形成される加速電界と処理部内に形成される電界とが相互に影響するのを抑制する電極部を、電子源部と処理部との間に確実かつ容易に配置することができる。
上記一つの態様では、筐体部は、処理部内を荷電粒子形成用ガスを含む所定の圧力雰囲気下とするための排気部を更に有していてもよい。この場合、電子及び荷電粒子が有効に機能するように、処理部内の圧力調整を容易に行うことができる。
上記一つの態様では、電子源部は、平面視で長手方向と短手方向とを有しており、電子発生源は、電子源部の長手方向に沿って延びていてもよい。この場合、処理対象物が長尺状の物体であっても、処理対象物を確実に所望の電位に帯電させることができる。
上記一つの態様では、処理部は、処理対象物を処理部に導入する導入部と、導入部と対向するように位置し、処理対象物を処理部から導出する導出部と、を有していてもよい。この場合、処理対象物の帯電処理を連続して行うことができる。
上記一つの態様では、処理部は、互いに離間するように配置された二つの部材を有し、二つの部材の間に処理対象物を位置させることにより、二つの部材が処理対象物を包囲してもよい。この場合、より大きなサイズを有する処理対象物の帯電処理を連続して行うことができる。
上記一つの態様では、二つの部材は、互いに対向するように位置する平板状の電極であってもよい。この場合、処理対象物のサイズに対応させて適切な処理空間を形成することができる。
上記一つの態様では、平板状の電極は、移動可能であってもよい。この場合、帯電処理に加え、他の処理(たとえば荷電粒子処理など)を行うことができる。
上記一つの態様では、電子発生源は、熱電子を放出するカソードを含んでいてもよい。この場合、出力の高い電子発生源を容易に実現することができる。
上記一つの態様では、カソードは、イリジウムを含む材料からなる基材部と、基材部の表面を覆う、イットリウム酸化物を含む材料からなる被覆部と、を含んでいてもよい。この場合、出力が高く、かつ、安定性の高い電子発生源を容易に実現することができる。
上記一つの態様では、電子発生源は、所定波長のエネルギー線を出射するエネルギー線源と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を含んでいてもよい。この場合、筐体部内の雰囲気に対して安定度の高い電子発生源を実現することができる。
上記一つの態様では、エネルギー線源は、電子発生源から処理部への光電子入射軸とエネルギー線源のエネルギー線出射軸とが同軸とならないように、配置されていてもよい。この場合、エネルギー線が、処理対象物に直接、影響を及ぼすことを抑制することができる。
上記一つの態様では、エネルギー線源は、光電子入射軸とエネルギー線出射軸とが交わるように配置され、光電子放出体は、エネルギー線出射軸に対して傾斜する傾斜面を含んでいてもよい。この場合、エネルギー線の処理対象物への直接的な影響をより抑制することができる。また、効率よく発生した光電子を処理室へ導くことができる。
上記一つの態様では、所定波長のエネルギー線は真空紫外光を含んでいてもよい。この場合、より効率よく光電子を発生することができる。
上記一つの態様では、電子源部は、エネルギー線源と光電子放出体との間に配置され、光電子放出体の電位と同等の電位とされるメッシュ状の電極部を更に含んでいてもよい。この場合、光電子放出体から放出された光電子がエネルギー線源側に向かうのが抑制されるので、光電子を処理部に向けて効率よく導くことができる。
上記一つの態様では、電子源部は、エネルギー線源と光電子放出体との間に配置され、かつ、所定波長のエネルギー線を透過する窓材を更に含んでおり、窓材により、電子発生源における光電子放出体が収容されている空間が気密に封止されていてもよい。この場合、エネルギー線源に関する作業を、処理部内の所定の圧力雰囲気に影響を与えることなく、容易に行うことができる。
上記一つの態様では、電子源部は、所定波長のエネルギー線を透過する窓材を更に含み、窓材の一方の面には、透過型光電面を構成し、かつ、導電性を有する薄膜が形成されており、窓材は、薄膜と光電子放出体とが同等の電位となるように、エネルギー線源と光電子放出体との間に配置されていてもよい。この場合、薄膜からも光電子が放出されるため、処理部に導かれる光電子の量が増加する。また、光電子放出体から放出された光電子がエネルギー線源側に向かうのが抑制されるので、光電子を処理部に向けて効率よく導くことができる。これらの結果、帯電処理の効果を高めることができる。
上記一つの態様では、光電子放出体は、胴部と底部とを有し、所定波長のエネルギー線を導入するための開口が形成された有底筒形状を呈していてもよい。この場合、光電子放出体からの光電子の放出と、放出された光電子の処理部側への移動と、が効率よく行われる。
上記一つの態様は、光電子放出体と電極部との間に配置されている、光電子を制御するための光電子制御部を更に備えていてもよい。この場合、たとえば、処理部内における光電子の入射範囲を制御することができる。
上記一つの態様では、エネルギー線源と光電子放出体とが、互いに離間し、かつ、対向するように配置されていてもよい。この場合、エネルギー線源と光電子放出体とを機能上、適切な位置に配置することができる。
本発明のもう一つの態様は、処理対象物を所望の電位に帯電させる帯電処理装置であって、電子を発生させる電子発生源と、荷電粒子形成用ガスを含む所定の圧力雰囲気下で処理対象物を包囲し、かつ、電子発生源にて発生される電子が導入される処理部と、電子発生源と処理部との間に配置されているメッシュ状の電極部と、を備えている。電子発生源と電極部との間に、電子発生源にて発生した電子を電極部に向けて加速させる加速電界が形成され、処理部及び電極部の電位が、所望の電位とされる。
本発明の更にもう一つの態様は、処理対象物を所望の電位に帯電させる帯電処理方法であって、電子を発生させる電子発生源と、荷電粒子形成用ガスを含む所定の圧力雰囲気下で処理対象物を包囲し、かつ、電子発生源にて発生される電子が導入される処理部と、電子発生源と処理部との間に配置されているメッシュ状の電極部と、を用いる。電子発生源と電極部との間に、電子発生源にて発生した電子を電極部に向けて加速させる加速電界を形成すると共に、処理部及び電極部の電位を所望の電位とする。
上記もう一つの態様及び上記更にもう一つの態様では、電子発生源にて発生した電子を電極部に向けて加速させる加速電界が形成されるため、電子発生源にて発生した電子は、メッシュ状の電極部を通り、効率よく処理部内に導入される。処理部に導入された電子は、処理部内の荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正及び負の荷電粒子のうちいずれか一方の荷電粒子が、処理対象物の電位と処理部の電位(所望の電位)とで形成される電界に応じて、処理対象物側に移動する。生じた正及び負の荷電粒子のうちいずれか他方の荷電粒子は、処理部側に移動する。処理対象物に移動してきた荷電粒子により、処理対象物は、所望の電位に帯電する。処理対象物が所望の電位に帯電すると、処理対象物と処理部との間に電界が形成されず、荷電粒子は移動しない。したがって、処理対象物は、確実に所望の電位に帯電する。
本発明の上記一つ態様及び上記もう一つの態様によれば、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理装置を提供することができる。本発明の上記更にもう一つ態様によれば、処理対象物を所望の電位に帯電させ得る効果が極めて高い帯電処理方法を提供することができる。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
図1~図3を参照して、第1実施形態に係る帯電処理装置C1の構成を説明する。図1は、第1実施形態に係る帯電処理装置を示す斜視図である。図2は、電子源部の一例を示す斜視図である。図3は、処理室部の一例を示す斜視図である。
図1~図3を参照して、第1実施形態に係る帯電処理装置C1の構成を説明する。図1は、第1実施形態に係る帯電処理装置を示す斜視図である。図2は、電子源部の一例を示す斜視図である。図3は、処理室部の一例を示す斜視図である。
帯電処理装置C1は、図1に示されるように、筐体部1及び電極部40を備えている。帯電処理装置C1は、処理対象物POを所望の電位に帯電させる装置である。帯電処理装置C1は、たとえば、帯電していない処理対象物POを正又は負の電位に帯電させることが可能である。帯電処理装置C1は、たとえば、正又は負の電位に帯電している処理対象物POを除電することも可能である。帯電処理装置C1は、たとえば、正又は負の電位に帯電している処理対象物POの電位を所望の電位に変えることも可能である。
筐体部1は、電子源部3と、処理部20と、給気部30、及び排気部33を有している。筐体部1は、処理部20を収容する処理筐体2を更に有している。電子源部3は、筐体部1内が気密に封止されるように、処理筐体2に設けられている。電子源部3は、処理筐体2と一体的に設けられていてもよく、処理筐体2と別体に設けられていてもよい。電子源部3は、処理部20外に配置されている。処理筐体2及び処理部20は、たとえば、直方体形状を呈する導電性金属材料(たとえば、ステンレス鋼又はアルミニウムなど)からなる。処理部20が導電性金属材料からなる場合、処理筐体2は、絶縁性材料からなっていてもよい。
電子源部3は、図2にも示されているように、電子を発生させる電子発生源5と、電子発生源5を収容する電子源筐体7と、を有している。電子発生源5は、熱電子を放出するカソード6を含んでいる。カソード6は、加熱されることにより熱電子を放出する。カソード6は、たとえば、フィラメントなどの直熱型電極である。フィラメントは、イリジウムを含む材料からなる導電性部材6a(基材部)と、導電性部材6aの表面を覆う、イットリウム酸化物を含む材料からなるコーティング層6b(被覆部)と、を含んでいてもよい。イリジウムは、化学的に安定しており、酸素ガスなどと反応し難い。イットリウム酸化物は、仕事関数が低く、低温で熱電子を放出する。
カソード6は、ヒータの加熱により熱電子を放出する傍熱型電極であってもよい。カソード6は、熱電子を放出する熱電子源に限られない。カソード6は、たとえば、電界放出型電子源(たとえば、冷陰極など)又は弾導電子源などの電子源であってもよい。電子源筐体7は、電子発生源5を収容する胴部7aと、電子源部3から熱電子を放出するための開口部7bと、を含んでいる。
電子源部3は、電極8と、一対のリード電極9と、ガラス管10と、を更に有している。電極8は、カソード6から放出された熱電子の運動を制御する。一対のリード電極9は、カソード6に電流を供給するための電極である。ガラス管10は、カソード6(一対のリード電極9)を絶縁固定する。カソード6は、ガラス管10内に位置している。ガラス管10は、一端が開口している。ガラス管10は、筐体部1内が気密状態に維持されるように、電子源筐体7(胴部7a)に設けられている。電子源部3では、ガラス管10が用いられることなく、リード電極9を備えた絶縁ステム又は真空フランジ上にカソード6が組み上げられた構造体が用いられてもよい。カソード6の両端部は、リード電極9にそれぞれ電気的に接続されている。電極8は、一方のリード電極9に電気的に接続されている。電極8には、別の給電経路が設けられていてもよい。電極8に別の給電経路が設けられている場合、この給電経路を通して、カソード6とは別の電位を電極8に供給してもよい。
電子源部3内には、カソード6及び電極8に供給される電位によって、加速電界が形成される。加速電界は、電子発生源5にて発生した熱電子を電極部40に向けて加速させる。カソード6から放出された熱電子は、ガラス管10の開口を通して、電子源部3から導出される。加速電界を形成する電位差は、処理室部21内に導入された熱電子が、処理対象物POに直接到達し難い大きさに設定される。加速電界を形成する電位差は、たとえば、10~1000Vの範囲内とされ、50~500Vの範囲内であることがより好ましい。
電子源部3は、真空フランジVFを有している。真空フランジVFは、処理筐体2に、気密かつ着脱自在に装着される。すなわち、電子源部3は、真空フランジVFが処理筐体2に装着されることにより、処理筐体2に設けられている。処理筐体2における電子源部3が設けられる位置には、開口部2aが形成されている。すなわち、電子源部3(電子源筐体7)内の空間は、開口部2aを通して、処理筐体2内の空間と連通している。電子源部3が、溶接などにより処理筐体2と一体的に設けられている場合、又は、処理部20内に配置される場合は、真空フランジVFは必ずしも必要ではない。真空フランジVFは、胴部7aと一体形成されていてもよく、胴部7aと別体に形成されていてもよい。
処理部20は、処理筐体2の内部に配置されている。処理部20は、処理室部21を含んでいる。処理室部21の内部には、処理空間が形成される。処理筐体2及び処理室部21は、処理室部21内に処理対象物POを導入するための導入開口(図示せず)を有している。導入開口を介して処理室部21内に導入された処理対象物POは、処理室部21と電気的に絶縁された状態で、処理室部21内に置かれる。これにより、処理室部21(処理部20)は、処理対象物POを包囲する。処理筐体2及び処理室部21の導入開口は、少なくとも帯電処理時には閉塞されてもよい。少なくとも処理室部21の開口は、処理室部21と同電位の部材で閉塞されてもよい。処理対象物POの位置は、保持部材(不図示)によって規定される。
処理室部21は、図3中の(a)に示されるように、たとえば、直方体形状を呈している。処理室部21には、処理筐体2における電子源部3が設けられる面に対向する一つの面に開口部23が形成されている。開口部23は、処理筐体2における開口部2aと対向するように位置している。すなわち、処理室部21には、電子源部3と対向する位置に開口部23が形成されているため、電子源部3(電子源筐体7)内の空間は、開口部2a及び開口部23を通して、処理部20の処理室部21内の処理空間と連通している。処理室部21は、導電性金属材料(たとえば、ステンレス鋼又はアルミニウムなど)からなる。
処理室部21には、図3中の(b)に示されるように、処理筐体2における電子源部3が設けられる面に対向する一つの面の略全体が開口することにより、開口部23が形成されていてもよい。処理室部21には、図3中の(c)に示されるように、六つの面の略全体が開口していてもよい。図3中の(c)に示された処理室部21は、直方体の各稜に枠部が位置する枠構造体、すなわち、直方体形状の枠構造体である。
処理筐体2と処理室部21とには、それぞれ独立して、電位が供給される。この場合、処理筐体2と処理室部21とは、互いに電気的に絶縁されている。処理筐体2と処理室部21とは、必ずしも、互いに電気的に絶縁されている必要はない。処理筐体2と処理室部21とは、互いに電気的に接続されていてもよい。この場合、処理筐体2と処理室部21とは、同じ電位に設定される。帯電処理装置C1が除電処理装置のみとして用いられる場合には、処理筐体2と処理室部21とは、電気的に接続されていてもよい。処理筐体2と処理室部21とは、処理室部21を処理筐体2と接触するように処理筐体2内に配置することにより、電気的に接続される。
給気部30及び排気部33は、処理筐体2に設けられている。給気部30及び排気部33は、筐体部1内を所定の圧力条件下に設定するために、筐体部1(処理筐体2)内のガスの給排気を行う。所定の圧力条件下とは、減圧下はもちろんのこと、大気圧下又は加圧下であってもよい。筐体部1内の圧力は、たとえば、数十~10-3Paの範囲内とされ、より好ましくは10~10-2Paの範囲内とされる。給気部30及び排気部33は、荷電粒子形成用ガスの給排気を行う。これにより、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とすることが可能である。荷電粒子形成用ガスには、たとえば、アルゴン(Ar)ガスなどの不活性ガス又は大気を用いることができる。帯電処理装置C1を取り巻く雰囲気が荷電粒子形成用ガスである場合、筐体部1内を減圧雰囲気とするには、排気部33のみで実現することもできる。給気部30及び排気部33は、処理筐体2に設けられている必要はなく、処理室部21に直接設けられていてもよい。この場合、給気部30及び排気部33が処理室部21の電位に影響しないようにする必要がある。
電極部40は、図3に示されるように、メッシュ状の導電性部材である。メッシュには、網状の構造体だけでなく、格子状、多孔状、又は多段櫛刃状などの構造体が含まれる。メッシュは、所定の領域を複数の領域に二次元的に分割する構造体である。メッシュ状の導電性部材が電極部40として用いられた際には、電極部40は、電子の透過と電界の形成とを可能とする。電極部40は、図3に示されるように、開口部23を覆うように処理室部21に設けられている。電極部40は、電子源部3と処理部20(処理空間)とを仕切るように電子源部3と処理部20との間に配置される。電極部40は、処理室部21と電気的に接続されている。すなわち、電極部40は、処理室部21と同じ電位とされる。電極部40は、たとえば、ステンレス鋼からなる。電極部40のメッシュの大きさは、熱電子の通過率が高く、かつ、電子源部3と処理部20との間で電界の染み出しが極めて少ない大きさに設定される。
図3中の(c)に示された処理室部21では、すべての面がメッシュ状の導電性部材で構成されている。すなわち、導電性部材は、各枠部間に張られるように枠構造体に設けられている。この場合、処理筐体2における電子源部3が設けられる面に対向する一つの面を構成する導電性部材が、主として、電極部40として機能する。
次に、図4~図7を参照して、帯電処理装置C1による帯電処理について説明する。図4~図7は、第1実施形態に係る帯電処理装置での帯電処理を説明するための図である。図4中の(a)~(c)は、処理対象物POを負の電位に帯電させる処理を説明するための図である。図5中の(a)~(c)は、処理対象物POを正の電位に帯電させる処理を説明するための図である。図6中の(a)~(c)は、正の電位に帯電している処理対象物POを除電する処理を説明するための図である。図7中の(a)~(c)は、負の電位に帯電している処理対象物POを除電する処理を説明するための図である。図4及び図5は、処理対象物POが絶縁体である場合を例示する。図6及び図7は、処理対象物POが導電体である場合を例示する。
[負の電位への帯電処理]
図4中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部21内に配置されている。給気部30及び排気部33(図4では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
図4中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部21内に配置されている。給気部30及び排気部33(図4では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
帯電処理装置C1では、処理室部21(処理部20)が、所望の負の電位(たとえば、-200V)に設定される。処理筐体2は、グラウンド電位に設定される。これにより、処理対象物POと処理室部21との間に、処理対象物POと処理室部21との電位差(たとえば、200V)に対応する電界が形成される。電極部40と処理室部21とが同じ電位とされているため、処理対象物POと処理室部21との電位差に対応する電界は、電極部40の近傍まで形成される。
電子源部3(カソード6)は、上述した加速電界が形成されるように、処理室部21よりも低い電位(たとえば、-400V)に設定される。これにより、電子源部3内には、電子源部3と処理室部21(電極部40)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部40は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界と、電子源部3内の加速電界と、が互いに影響し合うのを抑制する。
電子源部3内に加速電界が形成され、かつ、処理対象物POと処理室部21(電極部40)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部40を通過し、処理室部21内に導入される。
図4中の(b)に示されるように、処理室部21内に導入された熱電子は、処理室部21内の電極部40と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。すなわち、荷電粒子形成用ガスの分子は、熱電子の衝突により、正及び負の荷電粒子に解離する。荷電粒子形成用ガスとして、Arガスが用いられる場合、Ar分子が、Ar+イオンと電子とに開裂し、Ar+イオンと電子とが生じる。
生じた負の荷電粒子(電子)は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた負の荷電粒子により、負の電位に帯電する。生じた正の荷電粒子(Ar+イオン)は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理室部21側及び電極部40側に移動する。処理室部21及び電極部40に到達した正の荷電粒子は、中和される。
処理対象物POの帯電状態に応じ、処理対象物POと処理室部21及び電極部40との間に形成される電界が弱まる。処理対象物POが、上述した所望の負の電位に帯電すると、図4中の(c)に示されるように、処理対象物POと処理室部21及び電極部40との間には電界が形成されず、負の荷電粒子は移動しない。これにより、処理対象物POは、所望の負の電位に帯電され、処理対象物POの電位は、帯電した状態で安定する。
[正の電位への帯電処理]
図5中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部21内に配置されている。給気部30及び排気部33(図5では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
図5中の(a)に示されるように、帯電処理装置C1には、帯電していない、すなわち電位が0Vである処理対象物POが処理室部21内に配置されている。給気部30及び排気部33(図5では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
帯電処理装置C1では、処理室部21(処理部20)が、所望の正の電位(たとえば、+200V)に設定される。処理筐体2は、グラウンド電位に設定される。これにより、処理対象物POと処理室部21との間に、処理対象物POと処理室部21との電位差(たとえば、200V)に対応する電界が形成される。電極部40と処理室部21とが同じ電位とされているため、処理対象物POと処理室部21との電位差に対応する電界は、電極部40の近傍まで形成される。
電子源部3(カソード6)は、上述した加速電界が形成されるように、処理室部21よりも低い電位(たとえば、-100V)に設定される。これにより、電子源部3内には、電子源部3と処理室部21(電極部40)との電位差(たとえば、300V)に対応する加速電界が形成される。電極部40は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界と、電子源部3内の加速電界と、が互いに影響し合うのを抑制する。
電子源部3内に加速電界が形成され、かつ、処理対象物POと処理室部21(電極部40)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部40を通過し、処理室部21内に導入される。
図5中の(b)に示されるように、処理室部21内に導入された熱電子は、処理室部21内の電極部40と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた正の荷電粒子により、正の電位に帯電する。生じた負の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理室部21側及び電極部40側に移動する。処理室部21及び電極部40に到達した負の荷電粒子は、中和される。
処理対象物POの帯電状態に応じ、処理対象物POと処理室部21及び電極部40との間に形成される電界が弱まる。処理対象物POが、上述した所望の正の電位に帯電すると、図5中の(c)に示されるように、処理対象物POと処理室部21及び電極部40との間には電界が形成されず、正の荷電粒子は移動しない。これにより、処理対象物POは、所望の正の電位に帯電され、処理対象物POの電位は、帯電した状態で安定する。
[正の電荷の除電処理]
図6中の(a)に示されるように、帯電処理装置C1には、正の電荷に帯電している処理対象物POが処理室部21内に配置されている。処理対象物POは、たとえば、+1kVに帯電している。給気部30及び排気部33(図6では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
図6中の(a)に示されるように、帯電処理装置C1には、正の電荷に帯電している処理対象物POが処理室部21内に配置されている。処理対象物POは、たとえば、+1kVに帯電している。給気部30及び排気部33(図6では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
帯電処理装置C1では、処理室部21(処理部20)及び処理筐体2が、グラウンド電位に設定される。これにより、処理対象物POと処理室部21との間に、処理対象物POと処理室部21との電位差(たとえば、1kV)に対応する電界が形成される。電極部40と処理室部21とが同じ電位とされているため、処理対象物POと処理室部21との電位差に対応する電界は、電極部40の近傍まで形成される。
電子源部3(カソード6)は、上述した加速電界が形成されるように、処理室部21よりも低い電位(たとえば、-200V)に設定される。これにより、電子源部3内には、電子源部3と処理室部21(電極部40)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部40は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界と、電子源部3内の加速電界と、が互いに影響し合うのを抑制する。
電子源部3内に加速電界が形成され、かつ、処理対象物POと処理室部21(電極部40)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部40を通過し、処理室部21内に導入される。
図6中の(b)に示されるように、処理室部21内に導入された熱電子は、処理室部21内の電極部40と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた負の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた負の荷電粒子により、正の電位の帯電が中和される。生じた正の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理室部21側及び電極部40側に移動する。処理室部21及び電極部40に到達した正の荷電粒子は、中和される。
処理対象物POの帯電状態に応じ、処理対象物POと処理室部21及び電極部40との間に形成される電界が弱まる。処理対象物POが、除電されると、すなわち電位が0Vとなると、図6中の(c)に示されるように、処理対象物POと処理室部21及び電極部40との間には電界が形成されず、負の荷電粒子は移動しない。これにより、処理対象物POは、電位が0Vとされ、処理対象物POの電位は、除電された状態で安定する。
[負の電荷の除電処理]
図7中の(a)に示されるように、帯電処理装置C1には、負の電荷に帯電している処理対象物POが処理室部21内に配置されている。処理対象物POは、たとえば、-1kVに帯電している。給気部30及び排気部33(図7では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
図7中の(a)に示されるように、帯電処理装置C1には、負の電荷に帯電している処理対象物POが処理室部21内に配置されている。処理対象物POは、たとえば、-1kVに帯電している。給気部30及び排気部33(図7では不図示)は、筐体部1(処理筐体2)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。たとえば、筐体部1内は、Arガスを含み、かつ、0.7~1.3Pa(たとえば1Pa)とされた圧力雰囲気下とされる。
帯電処理装置C1では、処理室部21(処理部20)及び処理筐体2が、グラウンド電位に設定される。これにより、処理対象物POと処理室部21との間に、処理対象物POと処理室部21との電位差(たとえば、1kV)に対応する電界が形成される。電極部40と処理室部21とが同じ電位とされているため、処理対象物POと処理室部21との電位差に対応する電界は、電極部40の近傍まで形成される。
電子源部3(カソード6)は、上述した加速電界が形成されるように、処理室部21よりも低い電位(たとえば、-200V)に設定される。これにより、電子源部3内には、電子源部3と処理室部21(電極部40)との電位差(たとえば、200V)に対応する加速電界が形成される。電極部40は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界と、電子源部3内の加速電界と、が互いに影響し合うのを抑制する。
電子源部3内に加速電界が形成され、かつ、処理対象物POと処理室部21(電極部40)との間に上記電界が形成されている状態で、カソード6が通電される。通電により、カソード6は熱電子を放出する。カソード6から放出された熱電子は、加速電界により加速され、電極部40を通過し、処理室部21内に導入される。
図7中の(b)に示されるように、処理室部21内に導入された熱電子は、処理室部21内の電極部40と処理対象物POとの間に存在する荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理対象物PO側に移動する。処理対象物POは、処理対象物POに移動してきた正の荷電粒子により、負の電位の帯電が中和される。生じた負の荷電粒子は、処理対象物POと処理室部21及び電極部40との電位差に対応する電界に応じて、処理室部21側及び電極部40側に移動する。処理室部21及び電極部40に到達した負の荷電粒子は、中和される。
処理対象物POの帯電状態に応じ、処理対象物POと処理室部21及び電極部40との間に形成される電界が弱まる。処理対象物POが、除電されると、すなわち電位が0Vとなると、図7中の(c)に示されるように、処理対象物POと処理室部21及び電極部40との間には電界が形成されず、正の荷電粒子は移動しない。これにより、処理対象物POは、電位が0Vとされ、処理対象物POの電位は、除電された状態で安定する。
以上のように、本実施形態では、電子源部3内には、電子発生源5にて発生した熱電子を電極部40に向けて加速させる加速電界が形成されるため、電子発生源5にて発生した熱電子は、メッシュ状の電極部40を通過し、効率よく処理部20(処理室部21)内に導入される。処理室部21に導入された熱電子は、処理室部21内の荷電粒子形成用ガスの分子を励起する。これにより、荷電粒子形成用ガスの分子から、正及び負の荷電粒子が生じる。生じた正及び負の荷電粒子のうちいずれか一方の荷電粒子が、処理対象物POの電位と処理室部21の電位(所望の電位)とで形成される電界に応じて、処理対象物PO側に移動する。生じた正及び負の荷電粒子のうちいずれか他方の荷電粒子は、処理室部21側に移動する。処理対象物POに移動してきた荷電粒子により、処理対象物POは、所望の電位に帯電する。処理対象物POが所望の電位に帯電すると、処理対象物POと処理部との間に電界が形成されず、荷電粒子は移動しない。したがって、処理対象物POは、確実に所望の電位に帯電し、帯電状態で安定する。
電極部40は、電子源部3内に形成される加速電界と処理室部21(処理部20)内に形成される電界とが相互に影響するのを抑制する。本実施形態では、処理室部21は、少なくとも電子源部3と対向する位置に開口部23を含んでいる。電極部40は、開口部23を覆うように処理室部21に配置されている。これらにより、上述した電極部40を、電子源部3と処理室部21との間に確実かつ容易に配置することができる。
筐体部1は、給気部30及び排気部33を有している。給気部30及び排気部33は、処理部20(処理室部21)内を、荷電粒子形成用ガスを含む所定の圧力雰囲気下とする。これにより、荷電粒子形成用ガスの供給及び排出を容易に行うことができる。また、電子及び荷電粒子が有効に機能するように、処理室部21内の圧力調整を容易に行うことができる。
電子発生源5は、熱電子を放出するカソード6を含んでいる。これにより、出力の高い電子発生源5を容易に実現することができる。
帯電処理装置C1では、筐体部1(処理筐体2)内の荷電粒子形成用ガスの圧力と、電子源部3内の加速電界と、に応じ、荷電粒子形成用ガスの分子が解離する位置(以下、単に「解離位置」と称する)が変化する。加速電界が大きい場合、解離位置は電子源部3から離れる。加速電界が小さい場合、解離位置は電子源部3に近づく。荷電粒子形成用ガスの圧力が高い場合、処理部20内に入った電子(たとえば、熱電子)の平均自由行程が短くなるため、解離位置は電子源部3に近づく。荷電粒子形成用ガスの圧力が低い場合、電子の平均自由行程が長くなるため、解離位置は電子源部3から離れる。これらのことから、荷電粒子形成用ガスの圧力と加速電界とを調節することにより、解離位置を最適化することができる。したがって、加速電界は調整可能であってもよい。加速電界は、たとえば、カソード6及び電極8に供給される電位を調整することによって、調整することができる。
次に、図8~図10を参照して、本実施形態の変形例を説明する。図8及び図9は、第1実施形態の変形例に係る帯電処理装置を示す斜視図である。図10は、電子源部の変形例を示す斜視図である。
図8に示されるように、電子源部3の位置は、図1に示された位置に限られない。図1に示された帯電処理装置C1では、電子源部3は、処理筐体2における処理対象物POと対向する面に設けられている。これに対し、図8に示された帯電処理装置C1では、電子源部3は、処理筐体2における処理対象物POと対向する面以外の側面に設けられている。
処理室部21の大きさは、図1に示された大きさに限られない。図9中の(a)~(d)に示されるように、処理室部21の大きさは、処理筐体2よりも大幅に小型化されていてもよい。電子源部3の位置は、電子源部3の全体が処理筐体2外に位置する位置(図9中の(a)参照)、電子源部3の一部が処理筐体2内に位置する位置(図9中の(b)参照)、又は、電子源部3の全体が処理筐体2内に位置する位置(図9中の(c)及び(d)参照)であってもよい。図9中の(d)では、電子源部3が処理室部21に設けられている。図9では、処理室部21として、たとえば、図3中の(c)に示された処理室部21が用いられている。
処理室部21が小型化されている場合、帯電処理を施したい部位と、帯電処理を施したくない部位とを分別した状態で処理を行うことが可能である。電子源部3が処理室部21に近接して配置される場合、電子源部3からの熱電子を有効利用することが可能であるため、帯電処理をより一層効率よく行うことができる。電子源部3が処理室部21に設けられる場合、電子源部3が処理室部21と同じ電位とされる。このため、処理筐体2におけるカソード6及び電極8などに対する給電部の外部導出部の耐圧を高めておく必要がある。
電極部40は、必ずしも処理室部21に設けられている必要はない。たとえば、図10に示されるように、電極部40は、開口部7bを覆うように電子源筐体7に設けられていてもよい。すなわち、電子源部3が、電極部40を有していてもよい。この場合、電極部40は、電子源筐体7とは絶縁され、かつ、電極部40に所望の電位が供給されてもよい。電極部40は、電極部40は、絶縁部材を介して電子源筐体7に固定されると共に、電極部40に給電経路が接続されていてもよい。所望の電位の値によっては、電極部40は、電子源筐体7と同電位になるように、電子源筐体7と直接固定されていてもよい。処理筐体2と処理室部21には、電子源部3から放出された熱電子が通過可能な開口部2a,23が形成されていればよい。電子源部3が、真空フランジVF及び電極部40を備えている場合、電子源部3がユニット化される。これにより、処理対象物POが備えられる各種装置への電子源部3の適用を極めて簡易に行うことができる。
電極部40は、処理室部21と電子源部3との両方に設けられていてもよい。この場合、たとえば、異なる電位を有する物体の近接などの要因がある場合でも、電子源部3と処理室部21との間の電界は、上記物体の影響を受けることなく、整然と形成される。したがって、安定して熱電子を処理室部21に入射させることができる。電極部40が処理室部21と電子源部3との両方に設けられる場合には、両方の電極部40に同じ電位が供給されてもよい。また、両方の電極部40が、電子源部3側の電極部40から処理室部21側の電極部40に向けて電子が加速されるような異なる電位が供給されてもよい。この場合、カソード6と電子源部3側の電極部40との間で電子が十分に加速されているので、電子の利用効率の観点からは、両電極部40の間での電子の加速は小さい方が好ましい。これにより、電子源部3内の加速電界、及び、処理室部21と電子源部3との間の電界が、より一層整然と形成される。また、電子を一端大きく加速するような加速電界が、カソード6と電子源部3側の電極部40との間に形成され、加速された電子を減速するような電界が、両電極部40の間に形成され、最終的に処理室部21側の電極部40を通過する際に所望の加速電界になるような電位が、上記両方の電極部40に供給されてもよい。
(第2実施形態)
図11及び図12を参照して、第2実施形態に係る帯電処理装置C2の構成を説明する。図11は、第2実施形態に係る帯電処理装置を示す斜視図である。図12は、電子源部の一例を示す断面図である。第2実施形態に係る帯電処理装置C2は、電子源部3の構成に関して、第1実施形態に係る帯電処理装置C1と相違する。
図11及び図12を参照して、第2実施形態に係る帯電処理装置C2の構成を説明する。図11は、第2実施形態に係る帯電処理装置を示す斜視図である。図12は、電子源部の一例を示す断面図である。第2実施形態に係る帯電処理装置C2は、電子源部3の構成に関して、第1実施形態に係る帯電処理装置C1と相違する。
帯電処理装置C2は、図11及び図12に示されるように、筐体部1と、電極部40と、を備えている。帯電処理装置C2も、帯電処理装置C1と同じく、帯電していない処理対象物を正又は負の電位に帯電させることが可能である。帯電処理装置C2は、正又は負の電位に帯電している処理対象物を除電することも可能である。帯電処理装置C2は、正又は負の電位に帯電している処理対象物の電位を所望の電位に変えることも可能である。
電子源部3(電子源筐体7)は、図12にも示されているように、平面視で長手方向と短手方向とを有している。電子源部3は、略直方体形状を呈している。カソード6は、電子源部3の長手方向に沿って延びている。電子源部3は、一対の電流導入端子11を有している。一対の電流導入端子11は、電子源筐体7に設けられ、かつ、カソード6に電気的に接続されている。一対の電流導入端子11は、電子源筐体7の長手方向での両端部に配置されている。処理筐体2の開口部2a(図11では不図示)及び処理室部21の開口部23(図11では不図示)の形状は、電子源部3の平面形状に対応させて、たとえば、長手方向と短手方向とを有している形状である。電極部40が電子源筐体7と絶縁され、かつ、所望の電位が電極部40に供給されるように、たとえば、電極部40が絶縁部材を介して電子源筐体7に固定されると共に、電極部40への給電経路が設けられていてもよい。所望の電位の値によっては、電極部40は、電子源筐体7と同電位になるように、電子源筐体7と直接固定されていてもよい。
本実施形態では、電子源部3が、平面視で長手方向と短手方向とを有しており、カソード6は、電子源部3の長手方向に沿って延びている。これにより、帯電処理装置C2は、処理対象物が長尺状の物体又は面積が大きな物体であっても、処理対象物を確実に所望の電位に帯電させることができる。
(第3実施形態)
図13~図15を参照して、電子源部3の変形例を説明する。図13は、電子源部の変形例を示す平面図である。図14は、図13におけるXIV-XIV線に沿った断面図である。図15は、図13におけるXV-XV線に沿った断面図である。第3実施形態に係る電子源部3は、熱電子ではなく光電子を放出する点で、第1及び第2実施形態における電子源部3と相違する。
図13~図15を参照して、電子源部3の変形例を説明する。図13は、電子源部の変形例を示す平面図である。図14は、図13におけるXIV-XIV線に沿った断面図である。図15は、図13におけるXV-XV線に沿った断面図である。第3実施形態に係る電子源部3は、熱電子ではなく光電子を放出する点で、第1及び第2実施形態における電子源部3と相違する。
電子源部3は、図13~図15に示されるように、光電子を放出する電子発生源50と、電子発生源50を収容する電子源筐体51と、を有している。電子源部3は、図11及び図12に示された電子源部3と同じく、平面視で長手方向と短手方向とを有している。電子発生源50は、エネルギー線源52と、光電子放出体53と、を含んでいる。エネルギー線源52は、所定波長のエネルギー線を出射する。光電子放出体53は、所定波長のエネルギー線の入射により光電子を外部に放出する。エネルギー線源52は、たとえば、長尺状のエキシマランプなどが用いられる。
電子源部3は、真空フランジVFが処理筐体2に装着されることにより、処理筐体2に設けられている。本実施形態においても、電子源部3が、溶接などにより処理筐体2と一体的に設けられている場合、又は、処理部20内に配置される場合、真空フランジVFは必ずしも必要ではない。真空フランジVFは、電子源筐体51と一体形成されていてもよく、また、電子源筐体51と別体に形成されていてもよい。
エネルギー線源52は、たとえばX線から赤外線までの帯域に含まれる波長のエネルギー線を放出するエネルギー線源である。光電子放出体53の作成し易さ、及び、大気に曝される環境下での劣化などを考慮すると、エネルギー線源52は、X線からUV光までの帯域に含まれるエネルギー線を放出するエネルギー線源であってもよい。このエネルギー線源には、たとえば、UV光又はVUV光(真空紫外光)などを放出するエキシマランプ又は重水素ランプ、UVレーザ光源、若しくは、X線管などがある。エネルギー線源52として、光電子放出体53での量子効率が比較的高くなる光エネルギーを有するVUV光を放出するエキシマランプなどが用いられてもよい。所定波長のエネルギー線が真空紫外光を含んでいる場合、より効率よく光電子を発生することができる。
電子源筐体51は、一対の端面部51aと、一対の側面部51bと、上面部51cと、を有している。一対の端面部51aは、電子源部3の長手方向で対向している。一対の側面部51bは、一対の端面部51aを連結するように電子源部3の長手方向に延び、かつ、互いに対向している。上面部51cは、一対の端面部51aと一対の側面部51bとに接続されている。電子源筐体51は、電子源部3から光電子を放出するための開口部51dを、上面部51cと対向する位置に含んでいる。
エネルギー線源52は、ガス導入管55内に配置されている。ガス導入管55の両端部は、Oリングを介して、電子源筐体51の一対の端面部51aに気密に保持されている。ガス導入管55は、電子源筐体51を電子源部3の長手方向に貫通するように配置されている。エネルギー線源52も、電子源筐体51を電子源部3の長手方向に貫通するように配置されている。ガス導入管55は、エネルギー線源52から出射される所定波長のエネルギー線を透過する材料からなる。ガス導入管55は、たとえば、石英ガラス又はMgF2などからなる。ガス導入管55は、金属などからなる管状部材であってもよい。この場合、管状部材の所定位置に開口が設けられ、開口に石英ガラス又はMgF2などからなる窓材が設けられていてもよい。
ガス導入管55の一端部には、ガス導入管55内にガスを導入するガス導入部57が接続されている。ガス導入管55の他端部は、ガス導入管55内に導入されたガスを排出するガス排出部として機能する。ガス導入管55内に導入されるガスには、窒素などの不活性ガスが用いられる。ガス導入管55内に導入されたガスは、エネルギー線源52を冷却する。ガスは、ガス導入部57からガス導入管55内に導入され、ガス排出部から排出されるため、光子の透過率が低下するのを抑制できる。ガス導入管55の他端部からは、エネルギー線源52の電極に接続された電源線58,59が導出されている。ガスの導入及び排出、並びに、電源線58,59の導出は、ガス導入管55のいずれの端部から行われてもよい。電源線58,59が導出される部位は、ガス導入管55の開放端に限られない。ガス導入管55の両端がガス導排出可能に密閉されていると共に、電源線58,59に接続される給電部が、ガス導入管55を貫通するように設けられてもよい。電源線58,59は、給電部に接続されることにより、ガス導入管55から導出される。
光電子放出体53は、絶縁基板56を介して電子源筐体51に設けられている。光電子放出体53は、電子源筐体51と電気的に絶縁されている。光電子放出体53は、電子源筐体51の各面部51a~51cに沿うように延びている五つの面部を有している。光電子放出体53では、五つの面部の内側表面が、光電子の放出面である。光電子放出体53では、電子源筐体51の開口部51dに対応する位置が開口している。光電子放出体53の五つの面部は、ガス導入管55を介して、エネルギー線源52を囲むように位置している。光電子放出体53は、電子源筐体51に設けられている電流導入端子54と電気的に接続されている。光電子放出体53は、電子源筐体51に対し、着脱自在に設けられている。これにより、光電子放出体53の交換が可能となる。光電子放出体53の面部の数は、五つに限られない。光電子放出体53の面部は、光電子が処理室部21側に放出されやすい多面体構造であればよい。
光電子放出体53には、大気に曝される環境下においても劣化が少なく、かつ、エネルギー線源52から出射されるエネルギー線(たとえば、UV光又はVUV光など)に対して量子効率が高い材料が用いられる。光電子放出体53の材料として、たとえば、Au、Ni、ステンレス鋼、Al、ダイヤモンド薄膜、DLC(Diamond-Like Carbon)薄膜、又はAl2O3薄膜などが挙げられる。UV光又はVUV光に対し、量子効率が高い材料は、Auが一般的である。VUV光に対しては、Al、Al2O3薄膜、又はダイヤモンド薄膜が、量子効率が比較的高い材料である。各薄膜は、金属基体の表面に成膜される。光電子放出体53の光電子の放出面は、鏡面処理が施されていてもよい。
電極部40は、電子源筐体51の開口部51dを覆うように、開口部51dに設けられている。電極部40が電子源筐体51と絶縁され、かつ、電極部40に所望の電位が供給されるように、たとえば、電極部40が絶縁部材を介して電子源筐体51に固定されると共に、電極部40に給電経路が接続されていてもよい。所望の電位の値によっては、電極部40は、電子源筐体51と同電位になるように、電子源筐体51と直接固定されていてもよい。電極部40は、光電子放出体53に供給される電位との差により、光電子放出体53にて発生した光電子を処理部20に向けて加速させる加速電界を電子源部3内に形成する。電極部40は、処理対象物POと処理室部21との電位差に対応する電界を電子源部3と処理部20との境界近傍まで形成する。電極部40は、電子源部3内に形成される加速電界と、処理対象物POと処理室部21及び電極部40との電位差に対応する電界と、が互いに影響し合うのを抑制する。
本実施形態では、電子源部3は、所定波長のエネルギー線を出射するエネルギー線源52と、所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体53と、を含んでいる。これにより、帯電処理装置(電子源筐体51)内の雰囲気(圧力及び真空度など)によって性能及び寿命などに影響を受けることが少ない、密封構造のエネルギー線源(たとえばランプなど)を用いることができる。この結果、帯電処理装置C1内の雰囲気に対して安定度の高い電子発生源を実現することができる。
本実施形態では、電子源部3が、平面視で長手方向と短手方向とを有しており、エネルギー線源52は、電子源部3の長手方向に沿って延びている。これにより、処理対象物POが長尺状の物体又は面積が大きな物体であっても、処理対象物POを確実に所望の電位に帯電させることができる。
図16及び図17を参照して、電子源部3の更なる変形例を説明する。図16及び図17は、電子源部の更なる変形例を示す断面図である。図16及び図17に示された断面構成は、電子源部3の短手方向に直交する面で切断した際の断面構成に相当する。図16及び図17に示された電子源部3は、図9中の(c)に示された帯電処理装置C1が備える電子源部3のように、全体が処理筐体2内に位置している。いずれの変形例においても、電極部40が電子源筐体51と絶縁され、かつ、電極部40に所望の電位が供給されるように、たとえば、電極部40が絶縁部材を介して電子源筐体51に固定されると共に、電極部40への給電経路が設けられていてもよい。所望の電位の値によっては、電極部40は、電子源筐体51と同電位になるように、電子源筐体51と直接固定されていてもよい。
図16に示された電子源部3では、ガス導入部57は、ガス導入管55の他端部に設けられている。ガス導入部57は、ガス導入空間を画成するフランジ57aを有している。フランジ57aには、電源線58が電気的に接続されている電流導入端子60が気密に設けられている。電源線59は、フランジ57aと電気的に接続され、接地されている。電源線59は、電源線58と同様に、電流導入端子に接続されていてもよい。この場合、電源線59には、電流導入端子を通してグラウンド電位以外の電位が供給されてもよい。電流導入端子60は、電源線61を通して、電流導入端子62と電気的に接続されている。電流導入端子62は、フランジ63に気密に設けられている。フランジ63は、処理筐体2に着脱自在でかつ気密に設けられる。フランジ63には、ガス導入管64を介してガス導入部57に接続されるガス導入口65が配置されている。
ガス導入管55の一端部には、ガス排出部68が設けられている。ガス排出部68は、ガス排出管66を介してガス排出口67に接続されている。ガス排出口67は、フランジ69に気密に設けられている。フランジ69は、処理筐体2に着脱自在でかつ気密に設けられる。ガスは、ガス導入口65から導入され、ガス導入管64、ガス導入部57、ガス導入管55、ガス排出部68、及びガス排出管66を通り、ガス排出口67から排出される。フランジ69には、電流導入端子71が配置されている。電流導入端子71は、電源線70を通して電流導入端子54と電気的に接続されている。
図17に示された電子源部3では、エネルギー線源52の電極に接続された電源線58,59は、ガス導入管64を構成するフレキシブルチューブ内を通り、処理筐体2(処理部20)外に導出されている。ガス排出部68は、ガス導入部57と同様に、ガス導入空間を画成するフランジ68aを有している。ガス排出部68には、ガス排出管66を構成するフレキシブルチューブが接続されている。ガス導入口65、電流導入端子71、及びガス排出口67は、一つのフランジ72に設けられている。フランジ72は、処理筐体2に着脱可自在でかつ気密に設けられる。フレキシブルチューブが使用されることにより、電子源部3の配置の自由度を高め、たとえば、処理室部21により近接させて電子源部3を配置することができる。電子源部3は、フランジ72を介することなく、処理筐体2に直接固定されていてもよい。
図18~図20を参照して、電子源部3の更なる変形例を説明する。図18~図20は、電子源部の更なる変形例を示す断面図である。図18~図20に示された断面構成は、電子源部3の長手方向に直交する面で切断した際の断面構成に相当する。電極部40が電子源筐体51と絶縁され、かつ、電極部40に所望の電位が供給されるように、たとえば、電極部40が絶縁部材を介して電子源筐体51に固定されると共に、電極部40に給電経路が接続されていてもよい。所望の電位の値によっては、電極部40は、電子源筐体51と同電位になるように、電子源筐体51と直接固定されていてもよい。
図18に示された変形例では、エネルギー線源52は、一方の側面部51b側に配置されている。すなわち、エネルギー線源52は、電子源部3から処理部20への光電子入射軸A1と、エネルギー線源52のエネルギー線出射軸A2とが同軸とならないように配置されている。詳細には、エネルギー線源52は、光電子入射軸A1とエネルギー線出射軸A2とが略直交するように配置されている。一方の側面部51bと、光電子放出体53における一方の側面部51bに対向する面とには、エネルギー線源52からのエネルギー線を光電子放出体53の内側空間に導くための開口が形成されている。光電子放出体53は、電子源部3の長手方向に直交する断面において、光電子が開口部51dに向けて放出されるように傾斜面を有している。すなわち、光電子放出体53は、エネルギー線源52のエネルギー線出射軸A2に対して傾斜する傾斜面を含んでいる。傾斜面は、それぞれ角度が異なる複数の傾斜面からなっていてもよい。
電子源部3は、メッシュ状の電極部73を含んでいる。電極部73は、エネルギー線源52と光電子放出体53との間に配置され、光電子放出体53と同じ電位とされる。本変形例では、電極部73は、光電子放出体53に設けられている。電極部73は、たとえば、Au又はAlなどの光電子放出特性が高い材料からなる。電極部73は、たとえば、ステンレス鋼からなるメッシュであってもよい。ステンレス鋼からなるメッシュの表面には、Au、Al、又はAl2O3などからなる薄膜が形成されている。電子源部3は、必ずしも電極部73を含んでいる必要はなく、電子源部3は、電極部73を含んでいなくてもよい。
本変形例では、電極部73が、光電子放出体53から放出された光電子がエネルギー線源52側に向かうのを抑制するので、光電子を処理部20(図18では不図示)に向けて効率よく導くことができる。電極部73は、エネルギー線源52などの帯電を防ぐ。
図18に示された電子源部3では、エネルギー線源52は、光電子入射軸A1とエネルギー線出射軸A2とが同軸とならないように、一つの側面部51b側に配置されているので、エネルギー線源52から放出されたエネルギー線が、処理部20(図18では不図示)に直接照射され難い。エネルギー線源52から放出されたエネルギー線が処理部20に照射されると、物質の解離などが生じるおそれがある。上述したように、電子源部3では、エネルギー線源52から放出されたエネルギー線が処理部20に直接照射され難いので、物質の解離などが生じるのを抑制することができる。本変形例では、エネルギー線源52が、光電子入射軸A1とエネルギー線出射軸A2とが略直交するように配置されているので、エネルギー線源52から放出されたエネルギー線が、処理部20により一層直接照射され難い。光電子放出体53は、電子源部3の長手方向に直交する断面において、光電子が開口部51dに向けて放出されるように傾斜面を有している。すなわち、光電子放出体53は、エネルギー線源52のエネルギー線出射軸A2に対して傾斜する傾斜面を含んでいるので、効率よく発生した光電子を処理部20へ導くことができる。
図19に示された変形例では、電子源部3は、窓材74を含んでいる。窓材74は、エネルギー線源52と光電子放出体53との間に配置され、かつ、所定波長のエネルギー線を透過する。エネルギー線源52がたとえば軟X線源である場合には、窓材74は、Be又はTiの薄膜などのX線透過性材料からなる。エネルギー線源52がたとえばUV光源又はVUV光源である場合には、窓材74は、石英ガラス又はMgF2などからなる。
窓材74は、電子源部3(電子源筐体51)における光電子放出体53が収容されている空間を気密に封止する。窓材74は、Oリング75を介して、電子源筐体51に設けられている。エネルギー線源52は、収容部76内に収容されている。収容部76は、電子源筐体51に着脱可自在でかつ気密に設けられている。窓材74は、収容部76を電子源筐体51に取り付ける際に、収容部76と電子源筐体51とで挟持されることにより、電子源筐体51に設けられる。エネルギー線源52の冷却及びエネルギー線量の低下を抑制するため、収容部76の内部空間には、たとえば窒素ガスなどの不活性ガスを流通させてもよい。
本変形例でも、電極部73は、光電子を処理部20に向けて効率よく導くと共に、エネルギー線源52及び窓材74などの帯電を防ぐ。
図19に示された電子源部3では、エネルギー線源52と光電子放出体53との間に配置され、かつ、所定波長のエネルギー線を透過する窓材74を更に含んでいる。窓材74は、電子源部3における光電子放出体53が収容されている空間を気密に封止する。このため、エネルギー線源52に関する交換及び保守などの作業を、処理部20内の所定の圧力雰囲気に影響を与えることなく、容易に行うことができる。エネルギー線源52が一つの側面部51b側に配置されているので、エネルギー線源52から放出されたエネルギー線が、処理部20に直接照射され難い。このため、処理部20におけるエネルギー線が照射された部位に物質の解離などが生じるのを抑制することができる。
図20に示された変形例では、窓材74は、光電子放出体53に設けられている。窓材74は、収容部76を電子源筐体51に取り付ける際に、収容部76と光電子放出体53とで挟持されることにより、光電子放出体53に設けられる。収容部76は、Oリング75を介して、電子源筐体51に設けられている。光電子放出体53は、電子源部3の長手方向に直交する断面において、光電子が開口部51dに向けて放出されるように湾曲面を有している。
窓材74における光電子放出体53側の面に、透過型光電面を構成し、かつ、導電性を有する薄膜77が形成されている。薄膜77は、たとえば、厚みが数nm~数百nmであり、かつ、Au、Al、又はAl2O3などからなる。薄膜77は、窓材74が光電子放出体53に設けられている状態で、光電子放出体53と同等の電位となるように接触している。すなわち、窓材74は、薄膜77と光電子放出体53とが接触するように、エネルギー線源52と光電子放出体53との間に配置されている。薄膜77は、光電子放出体53との接触により、光電子放出体53と同じ電位とされる。薄膜77と光電子放出体53とは、物理的に接触することなく、導電部材などを介して電気的に接触させることにより、同電位としてもよい。また、別途設けた給電部材によって光電子放出体53と同じ電位を薄膜77に供給してもよい。必要に応じて光電子放出体53と薄膜77の電位を変えてもよい。この場合、放出される光電子の分布を変えることができる。
本変形例では、薄膜77からも光電子が放出されるため、処理部20に導かれる光電子の量が増加する。薄膜77は、光電子を処理部20に向けて効率よく導く。これらの結果、本変形例によれば、帯電処理の効果を高めることができる。
図21~図23を参照して、電子源部3の更なる変形例を説明する。図21は、電子源部を示す斜視図である。図22は、図20に示された電子源部の断面図である。図23は、光電子放出体を示す斜視図である。
電子源部3は、電子源筐体51、エネルギー線源52、光電子放出体53、及び電極部40を含んでいる。エネルギー線源52は、たとえば、エキシマランプ又は重水素ランプなどが用いられる。エネルギー線源52は、発光部組立体78とガラス製の密封容器79とを備えている。密封容器79は、側管部79aと、突出部79bと、を有している。側管部79aは、発光部組立体78を収容する。突出部79bは、側管部79aから突出すると共に側管部79aに連通している。突出部79bの先端は、エネルギー線(VUV光)を出射する光出射窓によって封止されている。
電子源筐体51は、両端が開口した筒形状を呈している。電子源筐体51の一方の端部には、真空フランジVFが設けられている。電極部40は、真空フランジVFの開口を覆うように真空フランジVFに設けられている。電極部40が電子源筐体51と絶縁され、かつ、電極部40に所望の電位が供給されるように、たとえば、電極部40が絶縁部材を介して電子源筐体51に固定されると共に、電極部40への給電経路が設けられていてもよい。所望の電位の値によっては、電極部40は、電子源筐体51と同電位になるように、電子源筐体51と直接固定されていてもよい。
電子源筐体51の他方の端部には、他方の端部の開口を塞ぐように、電気絶縁性の基板80が配置されている。電子源筐体51の他方の端部は、基板80が配置された状態で、クイックカップリング(Quick-release Coupling)81により気密に封止されている。クイックカップリング81は、クランプ81aを有している。基板80には、電流導入端子82が気密に設けられている。電流導入端子82は、たとえば、溶接などにより、基板80に固定される。基板80は、クイックカップリング81のブランクフランジとして機能する。
光電子放出体53は、電子源筐体51内に配置されている。光電子放出体53は、図23にも示されるように、胴部53aと底部53bとを有しており、底部53bと対向する一端が開口した有底筒形状を呈している。胴部53aは、断面が円形の円筒形状を呈している。胴部53aの断面は、円形に限られず、多角形であってもよい。底部53bの内側面は、平面とされている。光電子放出体53は、固定基板83及び絶縁性基板84を介して、基板80に設けられている。固定基板83は、導電性を有している。固定基板83は、ねじ止めなどにより、絶縁性基板84に着脱自在に設けられる。絶縁性基板84は、ねじ止めなどにより、基板80に着脱自在に設けられる。
光電子放出体53は、底部53bに形成された突部が固定基板83と螺合することにより、固定基板83に固定される。すなわち、光電子放出体53は、固定基板83に着脱自在に設けられる。これにより、光電子放出体53の交換を容易に行うことができる。電流導入端子82の先端には、スリーブ85が設けられている。スリーブ85が螺合などにより固定基板83に設けられることにより、光電子放出体53は、固定基板83及びスリーブ85を通して、電流導入端子82に電気的に接続される。
光電子放出体53の胴部53aには、図23にも示されるように、エネルギー線源52が備える密封容器79の突出部79bが挿通される開口が形成されている。突出部79bは、電子源筐体51に一体的に形成された筒状部86にも挿通されており、Oリング87を介して、筒状部86に気密に設けられている。エネルギー線源52は、電子源筐体51に着脱自在に設けられている。エネルギー線源52からのエネルギー線が、胴部53aの開口を介して光電子放出体53内に導入され、光電子放出体53の光電子放出面に照射されるのであれば、密封容器79の突出部79bは、光電子放出体53の胴部53aの開口に挿通されていなくてもよい。電子源筐体51は、胴部53aの開口を臨む位置に、エネルギー線を透過する窓材を備えていてもよい。この場合、エネルギー線源52は電子源筐体51の内部雰囲気外に配置される。
光電子放出体53は、エネルギー線源52からのエネルギー線が照射されることにより、光電子を放出する。このとき、電子源部3内に加速電界(たとえば、200V)が形成されている場合、図24に示されるように、放出された光電子が、電子源部3から放出される。図24は、電子源部からの光電子の放出を説明するための図である。図24では、光電子の飛行軌跡が示されている。光電子は、広範囲に拡がりながらも、処理室部21の中央部に向けて集中するように飛行している。実際には、光電子は、荷電粒子形成用ガスの分子に衝突することにより、処理対象物POには殆ど到達しない。
本変形例では、光電子放出体53からの光電子の放出と、放出された光電子の処理部20側への移動と、が効率よく行われる。図22に示された電子源部3では、エネルギー線源52の突出部79bが光電子放出体53の胴部53aに形成された開口に挿通されているため、エネルギー線源52から放出されたエネルギー線が、処理部20に直接照射され難い。このため、処理部20におけるエネルギー線が照射された部位に物質の解離などが生じるのを抑制することができる。
図25及び図26を参照して、光電子放出体53の変形例を説明する。図25は、光電子放出体の変形例を示す斜視図である。図26は、電子源部からの光電子の放出を説明するための図である。
図25中の(a)に示された光電子放出体53では、底部53bの内側面は、平面部分と、傾斜面部分と、を含んでいる。平面部分は、胴部53aの内径より小さい直径を有している。傾斜面部分は、胴部53aの端から平面部分に向けてテーパ状に傾斜している。すなわち、底部53bの内側面により形成される空間は、円錐台形状を呈する。図25中の(b)に示された光電子放出体53では、底部53bの内側面は、凹状球面を呈している。
図25中の(a)に示された光電子放出体53が用いられた場合、図26中の(a)に示されるように、図23に示された光電子放出体53が用いられた場合よりも、光電子は、処理筐体2の中央部に向けてより集中するように飛行する。図25中の(b)に示された光電子放出体53が用いられた場合、図26中の(b)に示されるように、図23に示された光電子放出体53が用いられた場合よりも、光電子は、処理筐体2の中央部のより広い範囲に向けて飛行する。
図25中の(c)に示された光電子放出体53は、複数の電極部分(本変形例では、第一、第二、及び第三電極部分88a,88b,88c)を有している。第一電極部分88aは、光電子放出部を備えており、光電子放出体53の本体部である。第一電極部分88aと第二電極部分88bとの間には、電気絶縁体89aが配置されており、第一電極部分88aと第二電極部分88bとは、電気絶縁体89aにより電気的に絶縁されている。第二電極部分88bと第三電極部分88cとの間には、電気絶縁体89bが配置されており、第二電極部分88bと第三電極部分88cとは、電気絶縁体89bにより電気的に絶縁されている。たとえば、第一電極部分88aと第三電極部分88cとが負の電位とされ、第二電極部分88bがグラウンド電位とされる。第二電極部分88bは、メッシュ形状を呈していてもよい。第一電極部分88aには、エネルギー線源52が備える密封容器79の突出部79bが挿通される開口が形成されている。第一電極部分88aの底部には、固定基板83と螺合する突部が形成されている。
図25中の(c)に示された光電子放出体53が用いられた場合、図26中の(c)に示されるように、図23並びに図25中の(a)及び(b)に示された光電子放出体53が用いられた場合よりも、処理筐体2の中央部に向けて全体的に集中するように飛行する。図25中の(c)に示された光電子放出体53は、図26中の(c)に示されるように、電子源部3が、処理筐体2の本体部分から突出する突出部に設けられる構成において、有用である。この場合、突出部での光電子の吸収などが抑制され、光電子を効率よく、電子源部3に導くことができる。すなわち、光電子放出体53の本体部である第一電極部分88aと電極部40との間に、光電子を制御するための光電子制御部としての第二電極部分88b及び第三電極部分88cが配置されているので、処理部20内における光電子の入射範囲を制御することができる。第一、第二、及び第三電極部分88a,88b,88cの電位を変更することにより、光電子を集中させることなく、発散するように飛行させることができる。
次に、図27を参照して、電子源部3の更なる変形例を説明する。図27は、電子源部の更なる変形例が適用された帯電処理装置を示す斜視図である。
図27に示された変形例の電子源部3では、電子源筐体51、光電子放出体53、及び電極部40を含む構造体4と、エネルギー線源52と、が別体に構成されている。エネルギー線源52と構造体4とは、互いに対向するように、処理筐体2に設けられている。すなわち、エネルギー線源52と構造体4(光電子放出体53)とは、処理室部21を挟むように、互いに離間し、かつ、対向するように配置されている。エネルギー線源52から出射されたエネルギー線は、処理部20(処理室部21)内を通り、構造体4に入射して、光電子放出体53に照射される。
本変形例では、エネルギー線源52が、処理筐体2に設けられており、エネルギー線源52と構造体4とは離間している。このため、エネルギー線源52及び光電子放出体53を、機能上、適切な位置に配置することができる。たとえば、エネルギー線源52が処理筐体2の外側に配置されている場合、エネルギー線源52の発熱による処理筐体2の内部空間や光電子放出体53への影響を抑制しつつ、エネルギー線源52の放熱を容易に行うことができる。また、エネルギー線源52の交換を容易に行うことができる。本変形例では、エネルギー線源52と光電子放出体53とが離間しているので、エネルギー線源52は指向性の高いエネルギー線を放出してもよい。この場合、集光のための光学レンズ系又は導光部材がエネルギー線源52に配置されていてもよく、また、エネルギー線源52が、指向性の高いエネルギー線を放出するエネルギー線源(たとえば、UVレーザ光源など)であってもよい。
エネルギー線源52が配置される位置は、上述した位置に限られない。エネルギー線源52は、光電子放出体53を配置した面と直交する面に設けられていてもよい。この場合でも、エネルギー線源52と光電子放出体53とは、互いに離間し、かつ、対向するように配置される。たとえば、図21~図23に示される変形例のように、電子源筐体51及び光電子放出体53の側面部に開口が設けられ、開口が処理筐体2と処理部20の間の空間に位置するように構造体4が配置され、開口を介して光電子放出体53内にエネルギー線が照射されてもよい。
(第4実施形態)
次に、図28及び図29を参照して、第4実施形態に係る除電処理装置NAの構成を説明する。図28は、第4実施形態に係る除電処理装置を示す斜視図である。図29は、電子源部の一例を示す斜視図である。除電処理装置NAは、帯電処理装置において、特に、正又は負の電位に帯電した処理対象物POの帯電を中和する、いわゆる除電するための装置である。
次に、図28及び図29を参照して、第4実施形態に係る除電処理装置NAの構成を説明する。図28は、第4実施形態に係る除電処理装置を示す斜視図である。図29は、電子源部の一例を示す斜視図である。除電処理装置NAは、帯電処理装置において、特に、正又は負の電位に帯電した処理対象物POの帯電を中和する、いわゆる除電するための装置である。
除電処理装置NAは、筐体部1を備えている。筐体部1は、電子源部3と、処理筐体2と、給気部30、及び排気部33を有している。除電処理装置NAでは、処理筐体2が処理室部21としても機能する。電子源部3には、処理筐体2の開口部2aを覆うように配置される電極部40が設けられている。除電処理装置NAは、処理筐体2(少なくとも処理筐体2の内表面)及び電極部40が所望の帯電中和レベル(たとえば、グラウンド電位)に設定されるように、構成されている。これにより、除電処理装置NAによれば、正負いずれに帯電した処理対象物POであっても、所望の帯電中和レベル(たとえば、グラウンド電位)にすることができる。除電処理とは、所望の帯電中和レベルへの帯電処理である。除電処理装置NAの動作機構は、前述の帯電処理装置C1の動作機構と同様である。電極部40は、処理筐体2の内表面と同電位であるため、開口部2aを覆うように処理筐体2に直接設けられていてもよい。所望の帯電中和レベルがグラウンド電位である場合には、電極部40は、電子源筐体7又は真空フランジVFに直接設けられていてもよい。
(第5実施形態)
次に、図30を参照して、第5実施形態に係る帯電処理装置C3の構成を説明する。図30は、第5実施形態に係る帯電処理装置を示す斜視図である。第5実施形態に係る帯電処理装置C3は、処理部20の構成に関して、第2実施形態に係る帯電処理装置C2と相違する。
次に、図30を参照して、第5実施形態に係る帯電処理装置C3の構成を説明する。図30は、第5実施形態に係る帯電処理装置を示す斜視図である。第5実施形態に係る帯電処理装置C3は、処理部20の構成に関して、第2実施形態に係る帯電処理装置C2と相違する。
帯電処理装置C3は、図30に示されるように、筐体部1と、電極部40と、を備えている。帯電処理装置C3も、帯電処理装置C1,C2と同じく、帯電していない処理対象物を正又は負の電位に帯電させることが可能である。帯電処理装置C3は、正又は負の電位に帯電している処理対象物を除電することも可能である。帯電処理装置C3は、正又は負の電位に帯電している処理対象物の電位を所望の電位に変えることも可能である。
処理部20(処理室部21)は、処理対象物POを処理部20(処理室部21)に導入する開口部(導入部)24と、処理対象物を処理部20(処理室部21)から導出する開口部(導出部)25と、を有している。一対の開口部24,25は、互いに対向するように位置している。本実施形態では、一対の開口部24,25は、処理室部21における対向する一対の面にそれぞれ設けられている。帯電処理装置C3では、一対の開口部24,25の間において、連続した処理対象物PO、又は、連続した台座(図示せず)に搭載された処理対象物POが移動してもよい。これにより、処理対象物POの帯電処理を連続して行うことができる。
開口部24,25の大きさ(開口面積)は、処理対象物POの大きさに極力近い大きさに設定されてもよい。処理対象物POが台座に搭載される場合には、開口部24,25の大きさは、上記台座を含んだ大きさに極力近い大きさに設定されてもよい。この場合、処理部20の周辺に存在する別の電界が開口部24,25から処理部20(処理室部21)内に浸入するのが抑制される。これにより、上述された別の電界が処理部20内の処理領域の電界に影響を与えることを抑制することができる。
開口部24,25の数は、一対に限られない。処理部20(処理室部21)は、複数対の開口部24,25を有していてもよい。複数対の開口部24,25は、処理対象物POの導入方向(導出方向)から見て、左右に並ぶように位置させることができる。この場合、複数の処理対象物POを並列して帯電処理することができる。
(第6実施形態)
次に、図31を参照して、第6実施形態に係る帯電処理装置C4の構成を説明する。図31は、第6実施形態に係る帯電処理装置を示す斜視図である。第6実施形態に係る帯電処理装置C4は、処理部20の構成に関して、第2及び第5実施形態に係る帯電処理装置C2,C3と相違する。
次に、図31を参照して、第6実施形態に係る帯電処理装置C4の構成を説明する。図31は、第6実施形態に係る帯電処理装置を示す斜視図である。第6実施形態に係る帯電処理装置C4は、処理部20の構成に関して、第2及び第5実施形態に係る帯電処理装置C2,C3と相違する。
帯電処理装置C4は、図31に示されるように、筐体部1と、電極部40と、を備えている。帯電処理装置C4も、帯電処理装置C1~C3と同じく、帯電していない処理対象物を正又は負の電位に帯電させることが可能である。帯電処理装置C4は、正又は負の電位に帯電している処理対象物を除電することも可能である。帯電処理装置C4は、正又は負の電位に帯電している処理対象物の電位を所望の電位に変えることも可能である。
処理部20(処理室部21)は、互いに離間するように配置された二つの部材26,27を有している。二つの部材26,27は、たとえば、一面が開口した箱状の部材であり、同電位とされる。帯電処理装置C4では、二つの部材26,27間において、連続した処理対象物PO、又は、連続した台座に搭載された処理対象物POが移動する。すなわち、二つの部材26,27の間に処理対象物POを位置させることにより、二つの部材26,27が処理対象物POを包囲する。これにより、より大きなサイズを有する処理対象物POの帯電処理を連続して行うことができる。
二つの部材26,27の間隔(二つの部材26,27の間の空間の厚み)は、処理対象物POの大きさ(厚み)に極力近い大きさに設定されてもよい。処理対象物POが台座に搭載される場合には、二つの部材26,27の間隔は、上記台座を含んだ大きさ(厚み)に極力近い大きさに設定されてもよい。この場合、処理部20の周辺に存在する別の電界が二つの部材26,27間の空間から処理部20(処理室部21)内に浸入するのが抑制される。これにより、上述された別の電界が処理部20内の処理領域の電界に影響を与えることを抑制することができる。処理対象物POの幅に対し、二つの部材26,27の幅が大きく設定されていてもよい。筐体部1(処理筐体2)からの電界の影響が処理部20に及び難くするために、筐体部1と処理部20(二つの部材26,27)との間の距離が十分に空いていてもよい。二つの部材26,27の間の空間において、複数の処理対象物POを横方向に並べて、複数の処理対象物POを同時に帯電処理してもよい。
(第7実施形態)
次に、図32を参照して、第7実施形態に係る帯電処理装置C5の構成を説明する。図32は、第7実施形態に係る帯電処理装置を示す斜視図である。第7実施形態に係る帯電処理装置C5は、処理部20の構成に関して、第1及び第6実施形態に係る帯電処理装置C1,C4と相違する。
次に、図32を参照して、第7実施形態に係る帯電処理装置C5の構成を説明する。図32は、第7実施形態に係る帯電処理装置を示す斜視図である。第7実施形態に係る帯電処理装置C5は、処理部20の構成に関して、第1及び第6実施形態に係る帯電処理装置C1,C4と相違する。
帯電処理装置C5は、図32に示されるように、筐体部1と、電極部40と、を備えている。帯電処理装置C5も、帯電処理装置C1~C4と同じく、帯電していない処理対象物を正又は負の電位に帯電させることが可能である。帯電処理装置C5は、正又は負の電位に帯電している処理対象物を除電することも可能である。帯電処理装置C5は、正又は負の電位に帯電している処理対象物の電位を所望の電位に変えることも可能である。
処理部20(処理室部21)は、互いに離間するように配置された二つの部材28,29を有している。二つの部材28,29は、メッシュ状の領域を有する平板状の電極であり、同電位とされる。二つの部材28,29は、互いに対向するように位置している。帯電処理装置C5では、二つの部材28,29の間において、連続した処理対象物PO、又は、連続した台座に搭載された処理対象物POが移動する。すなわち、二つの部材28,29の間に処理対象物POを位置させることにより、二つの部材28,29が処理対象物POを包囲する。二つの部材28,29の間の空間が、処理空間となる。これにより、処理対象物のサイズに対応させて適切な処理空間を形成することができる。
二つの部材28,29の間隔(二つの部材28,29の間の空間の厚み)は、処理対象物POの大きさ(厚み)に極力近い大きさに設定されていてもよい。処理対象物POが台座に搭載される場合には、二つの部材28,29の間隔は、上記台座を含んだ大きさ(厚み)に極力近い大きさに設定されていてもよい。この場合、処理部20の周辺に存在する別の電界が二つの部材28,29の間の空間から処理部20(処理室部21)内に浸入するのが抑制される。これにより、上述された別の電界が処理部20内の処理領域の電界に影響を与えることを抑制することができる。処理対象物POの幅に対し、二つの部材28,29の幅が大きく設定されていてもよい。筐体部1(処理筐体2)からの電界の影響が処理部20に及び難くするために、筐体部1と処理部20(二つの部材28,29)との間の距離が十分に空いていてもよい。
二つの部材28,29は、移動可能であってもよい。たとえば、部材28,29全体が移動してもよい。部材28,29は、レンズシャッターのように、複数の羽根状の部材から構成されていてもよく、複数の羽根状の部材が、中心軸で放射状に開閉してもよい。この場合、複数の羽根状の部材それぞれに、メッシュ状の開口が設けられる。二つの部材28,29が移動可能であるので、処理対象物POの帯電処理に加え、他の処理を行うことができる。他の処理には、たとえば荷電粒子処理などがある。荷電粒子処理では、処理対象物POの周辺に処理部20の電磁界が影響しない状態を形成する。
続いて、図33~図35を参照して、本実施形態に係る帯電処理装置の適用例を説明する。図33~図35は、帯電処理装置の適用例を説明するための図である。
図33では、本実施形態に係る帯電処理装置が、フィルムFの表面に機能性膜(たとえば、反射防止膜又はガスバリア膜など)を成膜する装置90に適用されている。装置90は、処理筐体2内に位置している。電子源部3と処理室部21とは、成膜部91の前段に配置されており、成膜前のフィルムFを除電する。
図34では、本実施形態に係る帯電処理装置が、スパッタリング装置92に適用されている。スパッタリング装置92は、ターゲットTを保持するターゲットホルダー93、磁場発生用のマグネット94、及び成膜対象物(たとえば、Siウェハなど)を保持する電極95を備えている。本実施形態に係る帯電処理装置は、スパッタリングを行う前に、成膜対象物を除電する。
図35では、本実施形態に係る帯電処理装置が、ハードディスクメディア用の基板96の除電処理装置97に適用されている。基板96は、たとえばAl又はガラスなどからなる。除電処理装置97では、基板96は、メディアホルダ98に保持されている。除電処理装置97で除電された基板96には、成膜装置により、磁性体などからなる薄膜が形成される。
以上、本発明の実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
たとえば、電子源部3は、複数の電子発生源5を有していてもよい。筐体部1は、複数の電子源部3を備えていてもよい。電子発生源50は、複数のエネルギー線源52を含んでいてもよい。筐体部1は、必ずしも給気部30及び排気部33を有している必要はない。
図36に示されるように、電子源部3と処理部20とは、これらが一体化された帯電処理ユニットCUを構成していてもよい。図36は、帯電処理ユニットを示す斜視図である。処理部20の一端側には電子源部3が固定されるとともに、処理部20の他端側には開口部20aが形成されている。開口部20aは、処理対象物POを処理部20内に導入するための導入部である。帯電処理ユニットCUは、たとえば、筐体部1内で用いられる。帯電処理は、たとえば、筐体部1内において処理対象物POが処理部20によって覆われるように、処理対象物POに処理部20が被せられた状態で行われる。
この場合、処理対象物POの周囲が処理部20と同電位であり、処理対象物POに処理部20を被せることで、開口部20aが処理部20と同電位の部材で覆われていてもよい。たとえば、処理対象物POが処理部20と同電位である処理台上に配置され、この処理台に対して処理部20を被せてもよい。処理部20と処理台とは、処理部20内において電界が安定に形成できるように十分に近接していればよく、また、接触していてもよい。導入部となる開口部20aは、電子発生源5と対向する面に限らず、たとえば側面等の電子源筐体7との接合部以外の部位に設けられていてもよい。この場合、電子発生源5と対向する面(図36における開口部20aに相当する面)は、処理部20と同電位の部材によって覆われていてもよい。
処理部20の内部空間が、荷電粒子形成用ガスを含む所定の圧力雰囲気下であるためには、帯電処理ユニットCUが配置される筐体部1の内部空間自体が所定の圧力雰囲気下とされていてもよい。また、図示しない荷電粒子形成用ガス供給部(及び排気部)によって処理部20内が所定の圧力雰囲気下とされていてもよい。前者の場合、処理部20は、筐体部1の内部空間と連通しやすいようにメッシュ部が設けられていてもよい。後者の場合、図36にも示されるように、処理部20は、処理部20の内側に筐体部1の内部空間とは区画された空間が形成されるように、内側空間を囲む壁状部材からなっていてもよい。
電極部40と処理部20とは同電位とされており、直接接触していてもよく、また、導電性部材を介することで電気的に接続されていてもよい。電極部40と処理部20とは、互いに個別の給電経路を通して同電位が供給されていてもよい。電極部40は、処理部20と一体に形成されることにより、電子源筐体7と接続されていてもよい。電極部40及び処理部20が電子源筐体7と絶縁され、かつ、電極部40及び処理部20に所望の電位が供給されるように、たとえば、電極部40及び処理部20が絶縁部材を介して電子源筐体7に固定されると共に、電極部40及び処理部20への給電経路が設けられていてもよい。所望の電位の値によっては、電極部40及び処理部20は、電子源筐体7と同電位になるように、電子源筐体7と直接固定されていてもよい。
電子源部3と処理部20とが互いに気密とされており、電子源部3と処理部20とで、荷電粒子形成用ガスを含む所定の圧力雰囲気下とされる空間が画成されるのであれば、筐体部1は、必ずしも必要ではない。帯電処理装置が筐体部1を備えない場合、処理部20(処理筐体2)は、帯電処理装置が設置される部位(以下、単に「設置部位」と称する)と電気的に絶縁されていてもよい。帯電処理装置が除電処理装置としてのみ用いられる場合、設置部位がグラウンド電位であるときには、処理部20(処理筐体2)は、設置部位と電気的に接続されていてもよい。
本発明は、処理対象物を所望の電位に帯電させる帯電処理装置及び帯電処理方法に利用できる。
1…筐体部、2…処理筐体、2a…開口部、3…電子源部、5…電子発生源、6…カソード、20…処理部、21…処理室部、23…開口部、30…給気部、33…排気部、40…電極部、50…電子発生源、52…エネルギー線源、53…光電子放出体、73…電極部、74…窓材、77…薄膜、C1,C2,C3,C4,C5…帯電処理装置、NA…除電処理装置、CU…帯電処理ユニット、PO…処理対象物。
Claims (23)
- 処理対象物を所望の電位に帯電させる帯電処理装置であって、
電子を発生させる電子発生源を収容する電子源部と、前記電子源部と連通し、かつ、荷電粒子形成用ガスを含む所定の圧力雰囲気下で前記処理対象物を包囲する処理部と、を有する筐体部と、
前記電子源部と前記処理部とを仕切るように前記電子源部と前記処理部との間に配置されているメッシュ状の電極部と、を備え、
前記電子源部内には、前記電子発生源にて発生した電子を前記電極部に向けて加速させる加速電界が形成され、
前記処理部及び前記電極部の電位が、前記所望の電位とされる。 - 請求項1に記載の帯電処理装置であって、
前記電子源部は、前記処理部と連通する開口部を含んでおり、
前記電極部は、前記開口部を覆うように前記電子源部に配置されている。 - 請求項1に記載の帯電処理装置であって、
前記処理部は、少なくとも前記電子源部と対向する位置に開口部を含んでおり、
前記電極部は、前記開口部を覆うように前記処理部に配置されている。 - 請求項1~3のいずれか一項に記載の帯電処理装置であって、
前記筐体部は、前記処理部内を荷電粒子形成用ガスを含む所定の圧力雰囲気下とするための排気部を更に有している。 - 請求項1~4のいずれか一項に記載の帯電処理装置であって、
前記電子源部は、平面視で長手方向と短手方向とを有しており、
前記電子発生源は、前記電子源部の長手方向に沿って延びている。 - 請求項1~5のいずれか一項に記載の帯電処理装置であって、
前記処理部は、前記処理対象物を前記処理部に導入する導入部と、前記導入部と対向するように位置し、前記処理対象物を前記処理部から導出する導出部と、を有している。 - 請求項1~5のいずれか一項に記載の帯電処理装置であって、
前記処理部は、互いに離間するように配置された二つの部材を有し、
前記二つの部材の間に前記処理対象物を位置させることにより、前記二つの部材が前記処理対象物を包囲する。 - 請求項7に記載の帯電処理装置であって、
前記二つの部材は、互いに対向するように位置する平板状の電極である。 - 請求項8に記載の帯電処理装置であって、
前記平板状の電極は、移動可能である。 - 請求項1~9のいずれか一項に記載の帯電処理装置であって、
前記電子発生源は、熱電子を放出するカソードを含んでいる。 - 請求項10に記載の帯電処理装置であって、
前記カソードは、イリジウムを含む材料からなる基材部と、前記基材部の表面を覆う、イットリウム酸化物を含む材料からなる被覆部と、を含んでいる。 - 請求項1~9のいずれか一項に記載の帯電処理装置であって、
前記電子発生源は、所定波長のエネルギー線を出射するエネルギー線源と、前記所定波長のエネルギー線の入射により光電子を外部に放出する光電子放出体と、を含んでいる。 - 請求項12に記載の帯電処理装置であって、
前記エネルギー線源は、前記電子発生源から前記処理部への光電子入射軸と前記エネルギー線源のエネルギー線出射軸とが同軸とならないように、配置されている。 - 請求項13に記載の帯電処理装置であって、
前記エネルギー線源は、前記光電子入射軸と前記エネルギー線出射軸とが交わるように配置され、
前記光電子放出体は、前記エネルギー線出射軸に対して傾斜する傾斜面を含んでいる。 - 請求項12に記載の帯電処理装置であって、
前記所定波長のエネルギー線は真空紫外光を含んでいる。 - 請求項12に記載の帯電処理装置であって、
前記電子源部は、前記エネルギー線源と前記光電子放出体との間に配置され、前記光電子放出体の電位と同等の電位とされるメッシュ状の電極部を更に含んでいる。 - 請求項12又は16に記載の帯電処理装置であって、
前記電子源部は、前記エネルギー線源と前記光電子放出体との間に配置され、かつ、前記所定波長のエネルギー線を透過する窓材を更に含んでおり、
前記窓材により、前記電子源部における前記光電子放出体が収容されている空間が気密に封止される。 - 請求項12に記載の帯電処理装置であって、
前記電子源部は、前記所定波長のエネルギー線を透過する窓材を更に含み、
前記窓材の一方の面には、透過型光電面を構成し、かつ、導電性を有する薄膜が形成されており、
前記窓材は、前記薄膜と前記光電子放出体とが同等の電位となるように、前記エネルギー線源と前記光電子放出体との間に配置されている。 - 請求項12に記載の帯電処理装置であって、
前記光電子放出体は、胴部と底部とを有し、前記所定波長のエネルギー線を導入するための開口が形成された有底筒形状を呈している。 - 請求項12に記載の帯電処理装置であって、
前記光電子放出体と前記電極部との間に配置されている、前記光電子を制御するための光電子制御部を更に備えている。 - 請求項12に記載の帯電処理装置であって、
前記エネルギー線源と前記光電子放出体とが、互いに離間し、かつ、対向するように配置されている。 - 処理対象物を所望の電位に帯電させる帯電処理装置であって、
電子を発生させる電子発生源と、
荷電粒子形成用ガスを含む所定の圧力雰囲気下で前記処理対象物を包囲し、かつ、前記電子発生源にて発生される電子が導入される処理部と、
前記電子発生源と前記処理部との間に配置されているメッシュ状の電極部と、を備え、
前記電子発生源と前記電極部との間に、前記電子発生源にて発生した電子を前記電極部に向けて加速させる加速電界が形成され、
前記処理部及び前記電極部の電位が、前記所望の電位とされる。 - 処理対象物を所望の電位に帯電させる帯電処理方法であって、
電子を発生させる電子発生源と、荷電粒子形成用ガスを含む所定の圧力雰囲気下で前記処理対象物を包囲し、かつ、前記電子発生源にて発生される電子が導入される処理部と、前記電子発生源と前記処理部との間に配置されているメッシュ状の電極部と、を用い、
前記電子発生源と前記電極部との間に、前記電子発生源にて発生した電子を前記電極部に向けて加速させる加速電界を形成すると共に、前記処理部及び前記電極部を前記所望の電位とする。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-186555 | 2014-09-12 | ||
JP2014186555A JP6352743B2 (ja) | 2014-09-12 | 2014-09-12 | 帯電処理装置及び帯電処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039313A1 true WO2016039313A1 (ja) | 2016-03-17 |
Family
ID=55459059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075407 WO2016039313A1 (ja) | 2014-09-12 | 2015-09-08 | 帯電処理装置及び帯電処理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6352743B2 (ja) |
TW (1) | TW201626484A (ja) |
WO (1) | WO2016039313A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0582075A (ja) * | 1991-09-20 | 1993-04-02 | Nissin Electric Co Ltd | イオン照射装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841146A (en) * | 1987-08-03 | 1989-06-20 | Xerox Corporation | Self-cleaning scorotron with focused ion beam |
JP2977098B2 (ja) * | 1990-08-31 | 1999-11-10 | 忠弘 大見 | 帯電物の中和装置 |
JP2599602Y2 (ja) * | 1993-10-26 | 1999-09-13 | 日新ハイボルテージ株式会社 | エリアビーム型電子線照射装置のビーム電流制御装置 |
-
2014
- 2014-09-12 JP JP2014186555A patent/JP6352743B2/ja not_active Expired - Fee Related
-
2015
- 2015-09-08 WO PCT/JP2015/075407 patent/WO2016039313A1/ja active Application Filing
- 2015-09-11 TW TW104130150A patent/TW201626484A/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0582075A (ja) * | 1991-09-20 | 1993-04-02 | Nissin Electric Co Ltd | イオン照射装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6352743B2 (ja) | 2018-07-04 |
JP2016056441A (ja) | 2016-04-21 |
TW201626484A (zh) | 2016-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102427119B1 (ko) | 캐소드 어레인지먼트, 전자총, 및 그런 전자총을 포함하는 리소그래피 시스템 | |
US10840054B2 (en) | Charged-particle source and method for cleaning a charged-particle source using back-sputtering | |
US8837678B2 (en) | Long-lasting pulseable compact X-ray tube with optically illuminated photocathode | |
US6629508B2 (en) | Ionizer for gas cluster ion beam formation | |
JP6346532B2 (ja) | 電子源ユニット及び帯電処理ユニット | |
US8933415B2 (en) | Laser ion source and heavy particle beam therapy equipment | |
EP3518268B1 (en) | Charged-particle source and method for cleaning a charged-particle source using back-sputtering | |
KR101844537B1 (ko) | 전자 집속 개선용 x선관 | |
KR20220072418A (ko) | 엑시머 램프를 이용한 정전기 제거 장치 | |
JP4829734B2 (ja) | イオン移動度計およびイオン移動度計測方法 | |
JP6352743B2 (ja) | 帯電処理装置及び帯電処理方法 | |
US5623183A (en) | Diverging beam electron gun for a toxic remediation device with a dome-shaped focusing electrode | |
JP6649812B2 (ja) | 帯電処理装置及び電子源ユニット | |
JP6343212B2 (ja) | 帯電処理装置 | |
US10916402B2 (en) | Electron beam irradiation device and electron beam irradiation method | |
KR20140043671A (ko) | X선관 | |
JP5775047B2 (ja) | X線発生装置及び除電装置 | |
JP6752449B2 (ja) | イオンビーム中和方法と装置 | |
RU2796630C2 (ru) | Источник пучка электронов с лазерным подогревом катода, устройство поворота электронного пучка | |
US20230239970A1 (en) | Active Cooling Of Quartz Enveloped Heaters In Vacuum | |
EP1255277B1 (en) | Ionizer for gas cluster ion beam formation | |
JPH10269981A (ja) | 電子/イオンビーム照射装置,該電子/イオンビーム照射装置を備える走査型電子顕微鏡,及び該電子/イオンビーム照射装置を備えるfib装置 | |
JP2006092879A (ja) | X線管 | |
JPS60202642A (ja) | X線管球 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840281 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15840281 Country of ref document: EP Kind code of ref document: A1 |