WO2016039237A1 - 機能素子及び機能素子の製造方法 - Google Patents

機能素子及び機能素子の製造方法 Download PDF

Info

Publication number
WO2016039237A1
WO2016039237A1 PCT/JP2015/074965 JP2015074965W WO2016039237A1 WO 2016039237 A1 WO2016039237 A1 WO 2016039237A1 JP 2015074965 W JP2015074965 W JP 2015074965W WO 2016039237 A1 WO2016039237 A1 WO 2016039237A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
gas barrier
organic
gas
Prior art date
Application number
PCT/JP2015/074965
Other languages
English (en)
French (fr)
Inventor
保彦 高向
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016547402A priority Critical patent/JPWO2016039237A1/ja
Publication of WO2016039237A1 publication Critical patent/WO2016039237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Definitions

  • the present invention relates to a functional element and a method for manufacturing the functional element. More specifically, the present invention relates to a functional element having both sealing properties and flexibility and a method for manufacturing the functional element.
  • a functional element made of an organic material such as an organic EL (Electroluminescence) element or an organic thin film solar cell is expected to be a flexible functional element that can be bent and folded and wound. Very sensitive to oxygen and moisture. For example, when a display or a lighting device is configured using an organic EL element, there is a drawback that the organic material itself is altered by oxygen or moisture, resulting in a decrease in luminance or eventually no light emission.
  • a dam is provided around the substrate on which the organic EL element is formed on one side, a flattening resin layer is formed in contact therewith, and then sealed with an inorganic film so as to cover the entire surface of the dam and the flattening resin layer.
  • a sealing technology that has an excellent barrier property against oxygen and water vapor due to the sealing structure to be stopped (see Patent Document 1).
  • the present invention has been made in view of the above-described problems and situations, and a problem to be solved is to provide a functional element having both sealing properties and flexibility. Moreover, it is providing the manufacturing method of the functional element.
  • the present inventor has found that the gas of the sealing film passes through the inorganic layer surrounding the electronic element covered with the organic planarizing resin layer on the substrate. It has been found that the flexibility of the functional element is remarkably improved by joining the barrier layer and the inorganic layer at room temperature under vacuum, and the present invention has been achieved.
  • a dam covered with an inorganic layer is provided around the electronic element, an organic planarizing resin layer covering the electronic element is provided inside the dam, and the height of the organic planarizing resin layer is
  • the gas barrier layer of the sealing film which is in a range of 0 to ⁇ 2 ⁇ m with respect to the height of the dam, and further includes the dam or the entire surface of the dam and the organic flattening resin layer and a gas barrier layer.
  • the electronic device and the surrounding substrate are coated with an organic planarizing resin layer and an inorganic layer in this order, and further, the gas barrier layer and the inorganic layer of the sealing film having a gas barrier layer containing SiOC 2.
  • Step of preparing an electronic device (2) Step of covering the electronic device and the surrounding substrate with an organic planarizing resin layer and an inorganic layer in this order (3) Sealing having a gas barrier layer 5. Step of bonding the gas barrier layer and the inorganic layer of the film by vacuum room temperature bonding
  • Step of preparing an electronic device (2) Step of providing a dam covered with an inorganic layer around the electronic device (3) An organic flattening resin layer covering the electronic device inside the dam Step (4) Step of bonding the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having a gas barrier layer by vacuum room temperature bonding
  • the above-mentioned means of the present invention can provide a functional element having both sealing properties and flexibility.
  • a method for manufacturing the functional element can be provided.
  • the sealing member has been thickened on the electronic element to improve the gas barrier properties.
  • the bonding member is bonded to a thickness of about 20 ⁇ m.
  • the bonding portion has a thickness of about 10 to 20 nm and is vacuumed at room temperature through an inorganic layer. It is considered that the flexibility is significantly improved because the bonding strength is much greater than that of using an adhesive rather than bonding.
  • FIG. 1 is a schematic cross-sectional view showing a functional element according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view showing a functional element according to a first embodiment of the present invention.
  • Schematic cross section showing a functional element according to a second embodiment of the present invention Schematic cross section showing a functional element according to a second embodiment of the present invention.
  • the figure which shows an example of the plasma CVD apparatus which can be utilized suitably in order to produce a gas barrier film
  • FIG. 1 Schematic cross-section showing a pressurized state for vacuum room temperature bonding in a vacuum room temperature bonding apparatus according to the present invention
  • FIG. 1 The perspective view which shows the further example of the vacuum room temperature bonding apparatus which concerns on this invention
  • the functional element of the present invention is a functional element having an electronic element on a flexible substrate, and the functional element can be bent with a curvature radius of 2 mm or less. This feature is a technical feature common to the inventions according to claims 1 to 6.
  • the electronic element and the surrounding substrate are coated in this order with an organic planarizing resin layer and an inorganic layer, and further, a gas barrier layer. It is preferable that the gas barrier layer of the sealing film which has and the said inorganic layer are the functional elements joined by vacuum normal temperature joining.
  • a dam covered with an inorganic layer is provided around the electronic element, and an organic flattening resin layer covering the electronic element is provided inside the dam, and the dam or the dam is further provided.
  • the functional element in which the entire surface of the organic flattening resin layer and the gas barrier layer of the sealing film having the gas barrier layer are bonded by vacuum room temperature bonding is preferable from the viewpoint of manifesting the effects of the present invention.
  • the height of the organic planarizing resin layer is in the range of 0 to ⁇ 2 ⁇ m with respect to the height of the dam.
  • the gas barrier layer contains SiOC in order to improve excellent gas barrier properties and flexibility.
  • the method for producing a functional element of the present invention is a method for producing a functional element having an electronic element on a flexible substrate, wherein the functional element is produced through at least the following three steps. It is preferable that it is a manufacturing method.
  • (1) Step of preparing an electronic device (2) Step of covering the electronic device and the surrounding substrate with an organic planarizing resin layer and an inorganic layer in this order (3) Sealing having a gas barrier layer
  • the method for producing a functional element of the present invention is a method for producing a functional element having an electronic element on a flexible substrate. Thus, it is preferable that the functional element is manufactured through at least the following four steps.
  • Step of preparing an electronic device (2) Step of providing a dam covered with an inorganic layer around the electronic device (3) An organic flattening resin layer covering the electronic device inside the dam Step (4) Step of bonding the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having a gas barrier layer by vacuum room temperature bonding
  • Step of preparing an electronic device (2) Step of providing a dam covered with an inorganic layer around the electronic device (3) An organic flattening resin layer covering the electronic device inside the dam Step (4) Step of bonding the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having a gas barrier layer by vacuum room temperature bonding
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the functional element of the present invention is a functional element having an electronic element on a flexible substrate, and the functional element can be bent with a curvature radius of 2 mm or less.
  • the electronic element and the surrounding substrate are coated with the organic planarizing resin layer and the inorganic layer in this order, and further, the sealing film having a gas barrier layer.
  • a functional element is provided in which the gas barrier layer and the inorganic layer are bonded by vacuum room temperature bonding.
  • a dam covered with an inorganic layer is provided around the electronic element, and an organic flattening resin layer covering the electronic element is provided inside the dam. Furthermore, the functional element in which the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having the gas barrier layer are bonded by vacuum room temperature bonding is provided.
  • the present invention is characterized in joining a sealing film and an electronic element in order to provide a functional element having both sealing properties and flexibility. That is, the flexibility of the functional element is markedly improved by vacuum room temperature bonding of the gas barrier layer and the inorganic layer of the sealing film through the inorganic layer surrounding the electronic element covered with the organic planarizing resin layer on the substrate. It has been found that it is improved and has led to the present invention.
  • the term “surround” means that the entire surface of the electronic element covered with the organic planarizing resin layer may be covered with an inorganic layer, or an inorganic layer around the electronic element covered with the organic planarizing resin layer. A covered dam may be provided.
  • the inorganic layer covering the organic planarizing resin layer and the gas barrier layer of the sealing film are bonded to each other by vacuum room temperature bonding on the substrate and the surrounding substrate.
  • an organic flattening resin layer that covers the electronic element is provided inside the dam, and includes the dam or the entire surface of the dam and the organic flattening resin layer and a gas barrier layer.
  • the gas barrier layer of the sealing film is bonded by vacuum room temperature bonding.
  • the inorganic layer surrounding the electronic element and the gas barrier layer of the sealing film are firmly bonded, and the sealing member covering the electronic element can be thinned. It is considered that a functional element having excellent flexibility can be provided.
  • vacuum room temperature bonding refers to contaminants such as a natural oxide film or organic matter on the surface by irradiating the bonding surfaces of two objects to be bonded with Ar atoms or the like in a vacuum or exposing them to Ar plasma or the like. This is a method of joining by joining and pressurizing the joining surfaces of two objects in a vacuum after removing. Details will be described in “Functional Element Manufacturing Method”.
  • the electronic element refers to the main body of the functional element, and specifically refers to the functional element before sealing sandwiched between two electrodes on the substrate.
  • the functional element of the present invention may be, for example, an organic EL element.
  • an organic EL element In the following description, a case where the functional element of the present invention is an organic EL element will be described as a representative embodiment, but the technical scope of the present invention is not limited to the following form.
  • FIG. 1A is an example of a schematic cross-sectional view of a functional element 10 according to the first embodiment of the present invention.
  • 1A includes a base material 11, a sealing film 12, an electronic element 13 positioned between the base material 11 and the sealing film 12, an organic flattening resin layer 15 covering the electronic element 13, and an inorganic element. It has a layer 16.
  • the sealing film has a gas barrier layer on the surface on the electronic element side.
  • An electrode (extraction electrode) 14 for controlling the electronic element from the outside is formed on the substrate 11.
  • the electronic element 13 covered with the organic planarizing resin layer 15 and the inorganic layer 16 is sealed with the sealing film 12 by vacuum room temperature bonding.
  • FIG. 1B is a diagram schematically showing a cross section of 1b in FIG. 1A. That is, the extraction electrode 14 is formed on the base material 11, and the unevenness on the base material 11 caused by the formation of the electrode 14 is absorbed by forming the inorganic layer 16 on the electrode 14. can do.
  • FIG. 1C is an example of a schematic cross-sectional view of a functional element 10 according to the second embodiment of the present invention.
  • a dam 23 covered with an inorganic layer 16 is provided around the electronic element 13, and an organic flattening resin layer 15 covering the electronic element 13 is provided inside the dam 23.
  • the entire surface of the dam 23 and the organic flattening resin layer 15 and the gas barrier layer of the sealing film 12 having the gas barrier layer are sealed by being bonded by vacuum room temperature bonding.
  • FIG. 1D is a diagram schematically showing a cross section 1d of FIG. 1C. That is, the extraction electrode 14 is formed on the base material 11, and the dam 23 and the sealing film 12 in which the organic layer (dam body) 22 is covered with the inorganic layer 16 are formed on the electrode 14.
  • the electronic element 13 is an organic EL element body, and includes a first electrode (anode) 17, a hole transport layer 18, a light emitting layer 19, an electron transport layer 20, and a second electrode ( Cathode) 21 is sequentially laminated.
  • a method for evaluating flexibility a method for evaluating durability against repeated bending with a radius of curvature fixed is adopted. According to this method, it is possible to determine whether or not bending can be performed at a predetermined curvature radius, and to evaluate durability of flexibility.
  • the repeated bending test method defined in the mechanical stress test (IEC62715-6-1 Ed.1) of the flexible display element can be mentioned. This can be bent repeatedly by repeatedly sliding both ends of the functional element back and forth when the functional element is bent into a U shape so as to have a constant radius of curvature.
  • An example of the apparatus is a U-shaped folding tester manufactured by Yuasa System Equipment Co., Ltd. Other test conditions include bending speed, but in the present invention, the test is performed at a repetition rate of 60 times per minute in consideration of the test period and the actual use site.
  • the functional element 10 further includes other layers. May be.
  • the other layer is not particularly limited, and examples thereof include an electrode, a stabilization layer for stabilizing an electronic element, a gas absorption layer, and an intermediate layer.
  • Base material with flexibility As a base material having flexibility according to the present invention, it is necessary to use a flexible base material capable of giving flexibility to the organic EL element, for example, a resin film.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyether Cycloolefin resins such as Luimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Apel (trade name
  • the water vapor permeability of the substrate according to the present invention is preferably 5 ⁇ 10 ⁇ 3 g / m 2 ⁇ day or less at 40 ° C. and 90% RH, preferably 5 ⁇ 10 ⁇ 4 g / m 2 ⁇ day or less. More preferably, it is 5 ⁇ 10 ⁇ 5 g / m 2 ⁇ day or less.
  • gas barrier film that is suitably used as a sealing film will be described below.
  • the support used for the gas barrier film is long, and can hold a gas barrier layer having a gas barrier property (also simply referred to as “barrier property”) described below.
  • a gas barrier property also simply referred to as “barrier property”.
  • the present invention is not particularly limited to these.
  • the support examples include, for example, polyacrylate ester, polymethacrylate ester, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, polyvinyl chloride (PVC).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PVC polyarylate
  • PVC polyvinyl chloride
  • PE Polyethylene
  • PP polypropylene
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • TAC triacetate cellulose
  • PS polystyrene
  • nylon nylon
  • aromatic polyamide polyether ether ketone
  • heat-resistant transparent films based on silsesquioxane having an organic-inorganic hybrid structure for example, the product name Sila-DEC; manufactured by Chisso Corporation, and the product name Sylplus (registered trademark); manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • a resin film constituted by laminating two or more layers of the resin. be able to.
  • polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), polycarbonate (PC), etc. are preferably used, and are cast because of their optical transparency and low birefringence.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • TAC, COC, COP, PC, etc. produced by the above method are preferably used, and in terms of optical transparency, heat resistance, and adhesion to the gas barrier layer, silsesquioxy having an organic-inorganic hybrid structure.
  • a sun heat-resistant transparent film is preferably used.
  • the process temperature may exceed 200 ° C. in the array manufacturing process.
  • the support temperature exceeds the glass transition point.
  • the elastic modulus of the support is suddenly reduced and the support is stretched by tension, and the gas barrier layer is damaged. Therefore, in such applications, it is preferable to use a heat resistant material having a glass transition point of 150 ° C. or higher as the support.
  • a heat-resistant transparent film having polyimide, polyetherimide, or silsesquioxane having an organic / inorganic hybrid structure as a basic skeleton.
  • the heat resistant resin represented by these is non-crystalline, the water absorption is larger than that of crystalline PET or PEN, and the dimensional change of the support due to humidity becomes larger, resulting in a gas barrier layer. There is a concern of damaging it.
  • these heat-resistant materials are used as a support, by forming a gas barrier layer on both sides, the dimensional change due to moisture absorption and desorption of the support film itself under severe conditions of high temperature and high humidity is suppressed. And damage to the gas barrier layer can be suppressed.
  • a heat resistant material is used as a support and a gas barrier layer is formed on both sides.
  • the support body containing glass fiber, a cellulose, etc. is also used preferably.
  • the thickness of the support is preferably about 5 to 500 ⁇ m, more preferably 10 to 250 ⁇ m.
  • the support is preferably transparent.
  • the support is transparent means that the light transmittance of visible light (with a light wavelength of 400 to 700 nm) is 80% or more.
  • the support is transparent and the gas barrier layer formed on the support is also transparent, a transparent gas barrier film can be obtained, so that it can be used as a transparent substrate such as an organic EL element. Because it becomes.
  • the support using the above-mentioned resins or the like may be an unstretched film or a stretched film.
  • the support used for the gas barrier film according to the present invention can be produced by a conventionally known general method.
  • an unstretched support that is substantially amorphous and not oriented can be produced by melting a resin as a material with an extruder, extruding it with an annular die or a T-die, and quenching.
  • the unstretched support is uniaxially stretched, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, tubular simultaneous biaxial stretching, and other known methods, such as the flow (vertical axis) direction of the support, or A stretched support can be produced by stretching in the direction perpendicular to the flow direction of the support (horizontal axis).
  • the stretching ratio in this case can be appropriately selected according to the resin as the raw material of the support, but is preferably 2 to 10 times in the vertical axis direction and the horizontal axis direction. Furthermore, in order to improve the dimensional stability of the substrate in the stretched film, it is preferable to perform a relaxation treatment after stretching.
  • the surface of the support may be subjected to corona treatment before forming the gas barrier layer.
  • the 10-point average roughness Rz defined by JIS B0601: 2001 is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 400 nm. Preferably, it is in the range of 300 to 350 nm.
  • the center surface average surface roughness (Ra) defined by JIS B0601: 2001 is preferably in the range of 0.5 to 12 nm, and more preferably in the range of 1 to 8 nm.
  • the material for the gas barrier layer used in the present invention is not particularly limited, and various inorganic barrier materials can be used.
  • inorganic barrier materials include, for example, silicon (Si), aluminum (Al), indium (In), tin (Sn), zinc (Zn), titanium (Ti), copper (Cu), cerium (Ce) and Examples include simple substances of at least one metal selected from the group consisting of tantalum (Ta), and metal compounds such as oxides, nitrides, carbides, oxynitrides, and oxycarbides of the above metals.
  • the metal compound include silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide (ITO), tantalum oxide, zirconium oxide, niobium oxide, aluminum silicate (SiAlO x ), Boron carbide, tungsten carbide, silicon carbide, oxygen-containing silicon carbide, aluminum nitride, silicon nitride, boron nitride, aluminum oxynitride, silicon oxynitride, boron oxynitride, zirconium boride, titanium boride, and composites thereof
  • inorganic barrier materials such as metal oxides such as metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, diamond-like carbon (DLC), and combinations thereof.
  • ITO Indium tin oxide
  • silicon oxide aluminum oxide
  • silicon nitride silicon oxynitride and combinations thereof are particularly preferred inorganic barrier materials.
  • ITO is an example of a special member of ceramic material that can be made conductive by appropriately selecting the respective elemental components.
  • the method for forming the gas barrier layer is not particularly limited, and includes, for example, a sputtering method (for example, magnetron cathode sputtering, flat-plate magnetron sputtering, 2-pole AC flat-plate magnetron sputtering, 2-pole AC rotary magnetron sputtering), a vapor deposition method (for example, resistance Heat deposition, electron beam deposition, ion beam deposition, plasma assisted deposition, etc.), thermal CVD (Chemical Vapor Deposition) method, catalytic chemical vapor deposition (Cat-CVD), capacitively coupled plasma CVD method (CCP-CVD), light Examples thereof include chemical vapor deposition such as CVD, plasma CVD (PE-CVD), epitaxial growth, atomic layer growth, and reactive sputtering.
  • a sputtering method for example, magnetron cathode sputtering, flat-plate magnetron sputtering, 2-pole AC flat-plate magnetron
  • the gas barrier layer may include an organic layer containing an organic polymer. That is, the gas barrier layer may be a laminate of an inorganic barrier layer containing the inorganic barrier material and an organic layer.
  • the organic layer can be polymerized and required using, for example, an electron beam device, a UV light source, a discharge device, or other suitable device, for example, by applying an organic monomer or oligomer to the support to form a layer. It can be formed by crosslinking according to the above.
  • the organic layer can also be formed, for example, by depositing an organic monomer or organic oligomer capable of flash evaporation and radiation crosslinking and then forming a polymer from the organic monomer or organic oligomer. Coating efficiency can be improved by cooling the support.
  • Examples of the method for applying the organic monomer or organic oligomer include roll coating (for example, gravure roll coating) and spray coating (for example, electrostatic spray coating).
  • the laminated body of an inorganic barrier layer and an organic layer the laminated body of the international publication 2012/003198, international publication 2011/013341, etc. are mentioned, for example.
  • the thickness of each layer may be the same or different.
  • the thickness of the inorganic barrier layer is preferably in the range of 3 to 1000 nm, more preferably 10 to 300 nm.
  • the thickness of the organic layer is preferably in the range of 100 nm to 100 ⁇ m, more preferably 1 to 50 ⁇ m.
  • a coating liquid containing an inorganic precursor such as polysilazane and tetraethyl orthosilicate (TEOS) is wet-coated on a support and then subjected to a modification treatment by irradiation with vacuum ultraviolet light, etc., and a gas barrier layer is formed,
  • the gas barrier layer is also formed by metallization techniques such as metal plating on a resin support, adhesion of a metal foil and a resin support, and the like.
  • the gas barrier layer is formed by modifying a layer containing polysilazane, contains SiOC, or an inorganic barrier layer.
  • a laminate with an organic layer is preferred.
  • a gas barrier layer contains SiOC.
  • a gas barrier layer containing SiOC generated by a plasma CVD method or a sputtering method is preferable.
  • Such a configuration is preferable from the viewpoint of achieving both gas barrier properties and flexibility.
  • SiOC is strictly a SiO x C y, deposition method, Si of various compositions by deposition conditions, O, the gas barrier layer having a C can be formed, referred to as SiOC they are collectively in the following description .
  • the gas barrier layer may be a single layer or a laminated structure of two or more layers.
  • the material of each layer may be the same or different.
  • the gas barrier layer formed using the plasma CVD method will be described in detail.
  • FIG. 2 is a schematic view schematically showing an embodiment of a plasma CVD apparatus that can be used for forming a gas barrier layer.
  • a film forming chamber 52 for forming a film by plasma CVD discharge is provided.
  • an upper electrode 53 and a lower electrode 54 are installed at positions facing each other.
  • the lower electrode 54 is connected to a power supply device 55 for applying predetermined power (for example, input power: 300 W) having a predetermined frequency (for example, 90 kHz).
  • predetermined power for example, input power: 300 W
  • a predetermined frequency for example, 90 kHz
  • the plasma CVD apparatus 51 is provided with film forming gas storage units 56a, 56b, and 56c. Further, each of these film forming gas storage units 56a to 56c is connected to a gas inlet 58 provided in the vicinity of the electrode through a pipe 57. With this configuration, a mixed gas in which each film forming gas is adjusted to a desired composition (component concentration) from the gas inlet 58 through the pipe 57 from each film forming gas storage unit 56 a, 56 b, 56 c is supplied to the upper electrode 53 in the chamber 52.
  • the plasma discharge region 59 can be formed by supplying a space between the first electrode 54 and the lower electrode 54.
  • a desired gas barrier layer 3 carbon-containing silicon oxide (SiOC) film
  • SiOC silicon oxide
  • a barrier film (sealing film having a gas barrier layer) 1 can be formed.
  • an opening / closing mechanism and a flow rate (flow velocity) of each film forming gas are adjusted on the pipe 57 from each film forming gas storage unit 56a to 56c to the gas inlet 58 in order to supply and stop each film forming gas.
  • Valves 60a, 60b and 60c having the adjusting mechanism are provided.
  • a film forming gas for example, an organosilicon compound gas (raw material gas) such as HMDSO (hexamethyldisiloxane) gas, a reaction gas such as oxygen gas, and a carrier gas such as helium gas
  • a vacuum pump for example, an oil rotary pump, a turbo molecular pump, etc.
  • a valve 62 is provided between the vacuum pump 61 and the chamber 52.
  • the gas barrier film 1 can be formed by forming the barrier layer 3.
  • a sheet having a predetermined size and thickness is used as the support 2.
  • a film-like support (preferably a colorless and transparent resin support) is prepared and attached to the lower electrode 54 side in the chamber 52 of the plasma CVD apparatus 51.
  • the inside of the chamber 52 of the CVD apparatus 51 is depressurized to an ultimate vacuum (for example, about 4.0 ⁇ 10 ⁇ 3 Pa) by a vacuum pump 61 (for example, an oil rotary pump and a turbo molecular pump).
  • an organic silicon compound gas for example, HMDSO gas
  • an oxygen gas as a reactive gas
  • an inert gas for example, helium gas
  • power having a predetermined frequency for example, 90 kHz
  • a predetermined frequency for example, 90 kHz
  • An organosilicon compound gas for example, HMDSO gas
  • oxygen gas is supplied at a predetermined flow rate (for example, 10 sccm) from a gas inlet 58 provided in the vicinity of the electrode in the chamber 52.
  • Standard conditions helium gas is introduced at a predetermined flow rate (for example, 30 sccm standard conditions)
  • the organosilicon compound gas (HMDSO) flow rate, the oxygen gas flow rate, and the input power amount are adjusted, and the carbon concentration ratio is adjusted.
  • the gas barrier film 1 (support 2 + gas barrier layer 3) can be obtained by performing film formation until the film thickness of the gas barrier layer 3 as a vapor deposition film reaches a predetermined film thickness (for example, about 100 nm). it can.
  • the support 2 is passed through the plasma CVD apparatus 51 only once.
  • the desired gas barrier layer may be formed, but if necessary, the desired gas barrier layer 3 may be formed by passing the support 2 through the plasma CVD apparatus 51 two or more times.
  • the atomic ratio of silicon, oxygen, and carbon in the composition of the gas barrier layer 3 is controlled by adjusting the type of source gas and the flow rate (or flow rate ratio) of the organosilicon compound gas and oxygen gas that are the source gas. It can be performed.
  • the power supply device 55 a known power source of a plasma generator can be used as appropriate.
  • a power supply device 55 can supply power to the lower electrode 54 connected to the power supply device 55 to generate plasma discharge in the space between the upper electrode 53 and the lower electrode 54.
  • an AC power supply or the like is preferably used because the plasma CVD method can be performed more efficiently.
  • the applied power can be in the range of 100 W to 10 kW, and the AC frequency is 50 Hz to 500 kHz. It is more preferable that it is possible to be within the range.
  • the pressure in the chamber 52 during plasma discharge is 0.1 Pa or more, preferably 0.5 Pa or more, and 50 Pa or less, preferably 10 Pa or less. This is excellent in that plasma discharge can be efficiently generated in the space between the upper electrode 53 and the lower electrode 54, and excellent film forming properties can be obtained.
  • the film forming gas (raw material gas or the like) supplied from the gas inlet 58
  • a raw material gas, a reaction gas, a carrier gas, or a discharge gas is used alone or in combination.
  • the source gas in the film-forming gas used for forming the gas barrier layer can be appropriately selected and used according to the material of the gas barrier layer to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • Silane, methylsilane, dimethylsilane, trimethylsilane, tetramethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), etc. can do.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting gas barrier layer.
  • these organosilicon compounds can be used individually by 1 type or in combination of 2 or more types.
  • the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the gas barrier layer.
  • a reactive gas may be used in addition to the source gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, the reaction gas for forming an oxide and a nitride are formed. Can be used in combination with the reaction gas for
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon, etc .; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By making the ratio of the reaction gas not excessive, the formed gas barrier layer is excellent in that excellent gas barrier properties and bending resistance can be effectively expressed. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • the gas barrier layer is preferably formed on the surface of the support by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when producing a gas barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between the film rollers. For example, when the manufacturing apparatus shown in FIG. 3 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
  • FIG. 3 is a schematic diagram showing an example of a manufacturing apparatus that can be suitably used for manufacturing a gas barrier layer.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the 3 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And 40, and magnetic field generators 43 and 44 installed inside 40, and a take-up roller 45.
  • a manufacturing apparatus at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generation power source 42, and the magnetic field generators 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • the gas barrier layer (dry barrier layer) 3 can be formed on the surface of the support 2 by the CVD method, and the surface of the support 2 is formed on the film forming roller 39. Since the gas barrier layer component can be deposited on the surface of the support 2 while depositing the gas barrier layer component on the film forming roller 40, the gas barrier layer 3 is formed on the surface of the support 2. It can be formed efficiently.
  • magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generator 43 provided in one film forming roller 39 and a magnetic field generator provided in the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so the wide support wrapped around the roller width direction It is excellent in that the gas barrier layer 3 that is a vapor deposition film can be efficiently formed using the body 2.
  • the film forming roller 39 and the film forming roller 40 known rollers can be appropriately used. As such film forming rollers 39 and 40, it is preferable to use ones having the same diameter from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so there is no deterioration in productivity, and it can be avoided that the total amount of heat of the plasma discharge is applied to the support 2 in a short time. It is preferable because damage to the body 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the support 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the support 2 face each other.
  • the support 2 By disposing the support 2 in this manner, the support that exists between the pair of film forming rollers is generated when the plasma is generated by performing discharge in the facing space between the film forming roller 39 and the film forming roller 40.
  • Each surface of the body 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the gas barrier layer component is deposited on the surface of the support 2 on the film forming roller 39 by the plasma CVD method, and the gas barrier layer component is further formed on the film forming roller 40. Therefore, a gas barrier layer can be efficiently formed on the surface of the support 2.
  • the take-up roller 45 is not particularly limited as long as it can take up the gas barrier film 1 in which the gas barrier layer 3 is formed on the support 2, and a known roller is appropriately used. be able to.
  • gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • the support 2 in addition to the support used in the present invention, a support in which the gas barrier layer 3 is formed in advance can be used. As described above, the thickness of the gas barrier layer 3 can be increased by using the support 2 on which the gas barrier layer 3 is previously formed.
  • a gas barrier layer can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 31 shown in FIG. 3, a discharge is generated between a pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas or the like) into the vacuum chamber.
  • the film-forming gas (raw material gas or the like) is decomposed by plasma, and the gas barrier layer 3 is formed on the surface of the support 2 on the film-forming roller 39 and on the surface of the support 2 on the film-forming roller 40. It is formed by the CVD method.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. Therefore, when the support 2 passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG. 3, the maximum value of the carbon distribution curve is formed in the gas barrier layer.
  • the minimum value of the carbon distribution curve in the gas barrier layer. Is formed. For this reason, five extreme values are usually generated for the two film forming rollers. Further, the distance between extreme values of the gas barrier layer (distance from the surface of the gas barrier layer in the thickness direction of the gas barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value (L) (The absolute value of the difference) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (the conveyance speed of the support).
  • the support 2 is transported by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the film is formed on the surface of the support 2 by a roll-to-roll continuous film formation process. Then, the gas barrier layer 3 is formed.
  • the film forming gas (source gas etc.) supplied from the gas supply pipe 41 to the facing space the source gas, reaction gas, carrier gas, and discharge gas described in the plasma CVD apparatus shown in FIG. It can be used similarly.
  • hexamethyldisiloxane organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • a source gas is used as the film forming gas.
  • a material containing oxygen (O 2 ) as a reaction gas, and a suitable ratio of the source gas and the reaction gas in the film formation gas is taken as an example in the case of producing a silicon-oxygen-based thin film Etc.
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • Reaction Formula 1 (CH 3 ) 6 Si 2 O + 12O 2 ⁇ 6CO 2 + 9H 2 O + 2SiO 2
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, in the present invention, when the gas barrier layer is formed, the stoichiometric amount of oxygen is determined with respect to 1 mol of hexamethyldisiloxane so that the reaction of the above reaction formula 1 does not proceed completely.
  • the ratio is preferably less than 12 moles.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated during film formation can be suppressed, and the support during film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the support to lose heat.
  • the conveyance speed (line speed) of the support 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat on the support can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient thickness as a gas barrier layer, without impairing productivity.
  • the gas barrier layer according to the present invention is formed by the plasma CVD method using the plasma CVD apparatus (roll to roll method) having the counter roll electrode shown in FIG. It is characterized by forming a film.
  • This is superior in flexibility when mass-produced using a plasma CVD apparatus having a counter roll electrode (roll-to-roll method), mechanical strength, especially durability during transport by roll-to-roll, and gas barrier performance. This is because it is possible to efficiently produce a gas barrier layer that is compatible with the above.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce a gas barrier film that is required for durability against temperature changes used in solar cells and electronic components.
  • the polysilazane that is preferably used for forming the gas barrier layer according to the present invention is a polymer having a silicon-nitrogen bond, and SiO 2 , Si 3 N 4 having a bond such as Si—N, Si—H, or N—H. , And both intermediate solid solutions SiO x N y and other ceramic precursor inorganic polymers.
  • R 1 , R 2 and R 3 each represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group. At this time, R 1 , R 2 and R 3 may be the same or different.
  • n is an integer, and it is preferable that the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol.
  • PHPS perhydropolysilazane
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), is a liquid or solid substance, and varies depending on the molecular weight.
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and the commercially available product can be used as it is as a coating solution for forming a polysilazane layer.
  • Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.
  • the solvent for preparing a coating liquid containing polysilazane (hereinafter also simply referred to as a polysilazane-containing coating liquid) is not particularly limited as long as it can dissolve polysilazane, but water and reaction that easily react with polysilazane.
  • An organic solvent that does not contain a functional group (such as a hydroxy group or an amine group) and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
  • an aprotic solvent for example, an aliphatic hydrocarbon such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, and turben, an alicyclic hydrocarbon Hydrocarbon solvents such as aromatic hydrocarbons; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatics such as dibutyl ether, dioxane and tetrahydrofuran Examples of ethers such as ethers and alicyclic ethers include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like.
  • the solvent is selected according to
  • the concentration of polysilazane in the polysilazane-containing coating solution is not particularly limited and varies depending on the film thickness of the target gas barrier layer and the pot life of the coating solution, but is preferably 0.1 to 30% by mass, more preferably 0.8. It is in the range of 5 to 20% by mass, more preferably 1 to 15% by mass.
  • the polysilazane-containing coating solution preferably contains a catalyst together with polysilazane in order to promote modification to silicon oxynitride.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ', N'-tetramethyl-1,3-diaminopropane, N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, and still more preferably 0.5 to 2% by mass, based on polysilazane. It is. By setting the amount of the catalyst to be in this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.
  • the following additives can be used as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • a conventionally known appropriate wet coating method can be employed as a method of applying the polysilazane-containing coating solution.
  • a conventionally known appropriate wet coating method can be employed. Specific examples include spin coating method, die coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, gravure printing method and the like. It is done.
  • the thickness of the coating film can be appropriately set according to the purpose.
  • the thickness of the coating film is preferably about 10 nm to 10 ⁇ m after drying, more preferably 15 nm to 1 ⁇ m, and even more preferably 20 to 500 nm. If the thickness of the polysilazane layer is 10 nm or more, sufficient gas barrier properties can be obtained, and if it is 10 ⁇ m or less, stable coating properties can be obtained when forming the polysilazane layer, and high light transmittance can be realized. .
  • the modification treatment in the present invention refers to a reaction in which part or all of the polysilazane compound is converted into silicon oxide or silicon oxynitride.
  • an inorganic thin film of a level that can contribute to the development of gas barrier properties water vapor permeability of 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ day or less at 40 ° C. and 90% RH) as a whole is formed. can do.
  • heat treatment plasma treatment, active energy ray irradiation treatment and the like can be mentioned.
  • plasma treatment active energy ray irradiation treatment and the like.
  • treatment by active energy ray irradiation is preferable.
  • Heat treatment As a heat treatment method, for example, a method of heating a coating film by heat conduction by bringing a substrate into contact with a heating element such as a heat block, a method of heating an environment in which the coating film is placed by an external heater such as a resistance wire, Although the method using the light of infrared region, such as IR heater, is mentioned, It is not limited to these. What is necessary is just to select suitably the method which can maintain the smoothness of a coating film, when performing heat processing.
  • the temperature for heating the coating film is preferably in the range of 40 to 250 ° C, more preferably in the range of 60 to 150 ° C.
  • the heating time is preferably in the range of 10 seconds to 100 hours, and more preferably in the range of 30 seconds to 5 minutes.
  • a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or Group 18 atom of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • active energy ray irradiation treatment for example, infrared rays, visible rays, ultraviolet rays, X rays, electron rays, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used, but electron rays or ultraviolet rays are preferable, and ultraviolet rays are more preferable.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and it is possible to form a gas barrier layer having high density and insulating properties at low temperatures.
  • any commonly used ultraviolet ray generator can be used.
  • the coating film containing the polysilazane compound from which moisture has been removed is modified by treatment with ultraviolet light irradiation.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures. It is.
  • This ultraviolet light irradiation excites and activates O 2 and H 2 O, UV absorbers, and polysilazane itself that contribute to ceramicization. And the ceramicization of the excited polysilazane is promoted, and the resulting ceramic film becomes dense. Irradiation with ultraviolet light is effective at any time after the formation of the coating film.
  • Any ultraviolet ray generator that is commonly used can be used for the vacuum ultraviolet light irradiation treatment in the present invention.
  • the irradiation intensity and the irradiation time in such a range that the support carrying the layer containing the polysilazane compound before modification is not damaged.
  • a lamp of 2 kW (80 W / cm ⁇ 25 cm) is used, and the strength of the support surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • support at 2 - set the distance between the ultraviolet irradiation lamp it is possible to perform the irradiation of 0.1 seconds to 10 minutes.
  • the temperature of the support during the ultraviolet irradiation treatment is 150 ° C. or higher, the characteristics of the support are impaired in the case of a plastic film or the like, such as the support being deformed or its strength deteriorated. Become.
  • a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Therefore, there is no general upper limit as to the temperature of the support during the ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of support.
  • ultraviolet ray generating means examples include, but are not particularly limited to, metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, excimer lamps, and UV light lasers.
  • the polysilazane layer before modification is irradiated with the generated ultraviolet light, the polysilazane before modification is reflected after reflecting the ultraviolet light from the generation source with a reflector from the viewpoint of improving efficiency and uniform irradiation. It is desirable to hit the layer.
  • UV irradiation is applicable to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the support used.
  • the support having a coating layer containing a polysilazane compound is in the form of a long film, it is converted into ceramics by continuously irradiating with ultraviolet rays in a drying zone equipped with an ultraviolet ray generation source as described above while being conveyed. can do.
  • the time required for ultraviolet irradiation is generally from 0.1 second to 10 minutes, preferably from 0.5 second to 3 minutes, although it depends on the composition and concentration of the support and the coating layer containing the polysilazane compound.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • dry inert gas is preferably used, and dry nitrogen gas is particularly preferable from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the method for modifying the layer containing the polysilazane compound before modification in the present invention is treatment by irradiation with vacuum ultraviolet light.
  • the treatment by vacuum ultraviolet light irradiation uses light energy of 100 to 200 nm, preferably light energy having a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and the bonding of atoms is a photon called photon process.
  • This is a method in which a silicon oxide film is formed at a relatively low temperature by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by only the action.
  • a vacuum ultraviolet light source required for this a rare gas excimer lamp is preferably used.
  • rare gas atoms such as Xe, Kr, Ar, and Ne are called inert gases because they are chemically bonded and do not form molecules.
  • rare gas atoms excited atoms
  • the rare gas is xenon, e + Xe ⁇ e + Xe * Xe * + Xe + Xe ⁇ Xe 2 * + Xe
  • excimer light vacuum ultraviolet light
  • ⁇ Excimer lamps are characterized by high efficiency because radiation concentrates on one wavelength and almost no other light is emitted. Further, since no extra light is emitted, the temperature of the object can be kept low. Furthermore, since no time is required for starting and restarting, instantaneous lighting and blinking are possible.
  • the illuminance of the vacuum ultraviolet ray on the coating surface received by the coating containing the polysilazane compound is preferably 1 mW / cm 2 to 10 W / cm 2 , and preferably 30 to 200 mW / cm 2 . More preferably, it is more preferably 50 to 160 mW / cm 2 . If it is 1 mW / cm 2 or more, sufficient reforming efficiency can be obtained. Moreover, if it is 10 W / cm ⁇ 2 > or less, the ablation of a coating film will not arise easily and it will be hard to damage a support body.
  • Irradiation energy amount of the VUV in the layer containing a polysilazane compound is preferably 10 ⁇ 10000mJ / cm 2, more preferable to be 100 ⁇ 8000mJ / cm 2, further preferable to be 200 ⁇ 6000mJ / cm 2, 500 ⁇ 5000mJ / Cm 2 is particularly preferable. If 10 mJ / cm 2 or more sufficient reforming efficiency is obtained, 10000 mJ / cm 2 or less thermal deformation of the cracks and the support is less likely to occur if.
  • the oxygen concentration at the time of irradiation with vacuum ultraviolet light (VUV) is preferably 300 to 10000 volume ppm (1 volume%), more preferably 500 to 5000 volume ppm.
  • VUV vacuum ultraviolet light
  • Dielectric barrier discharge refers to lightning generated in a gas space by placing a gas space between both electrodes via a dielectric (transparent quartz in the case of an excimer lamp) and applying a high frequency high voltage of several tens of kHz to the electrode. It is a similar very thin discharge called micro discharge.
  • electrodeless field discharge is also known as a method for efficiently obtaining excimer light emission.
  • the electrodeless field discharge is a discharge due to capacitive coupling, and is also called an RF discharge.
  • the lamp and electrodes and their arrangement may be basically the same as those of the dielectric barrier discharge, but the high frequency applied between the two electrodes is lit at several MHz.
  • a spatially and temporally uniform discharge can be obtained in this way.
  • the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability.
  • the coating layer containing the polysilazane compound can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
  • the excimer lamp since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy of a single wavelength is irradiated in the ultraviolet region, so that an increase in the surface temperature of the irradiation object is suppressed. For this reason, it is suitable for irradiation to a gas barrier film using a resin film such as polyethylene terephthalate which is considered to be easily affected by heat as a support.
  • the layer formed by the above coating has a composition of SiO x N y C z as a whole layer by modifying at least part of the polysilazane in the step of irradiating the coating film containing the polysilazane compound with vacuum ultraviolet rays.
  • a silicon-containing film is formed comprising the silicon oxynitride shown.
  • the film composition can be measured by measuring the atomic composition ratio using an XPS surface analyzer.
  • the silicon-containing film can be cut and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
  • the film density can be appropriately set according to the purpose.
  • the film density of the silicon-containing film is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film can be improved and deterioration of gas barrier properties and film deterioration under high temperature and high humidity conditions can be prevented.
  • An intermediate layer in the gas barrier film may be further formed between the support for the gas barrier film and the gas barrier layer.
  • the intermediate layer preferably has a function of improving the adhesion between the support surface and the gas barrier layer.
  • a commercially available support with an easy-adhesion layer can also be preferably used.
  • the intermediate layer may be a smooth layer.
  • the smooth layer used in the present invention is for flattening the rough surface of the support having protrusions or the like, or filling the unevenness and pinholes generated in the gas barrier layer by the protrusions existing on the support.
  • Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.
  • the gas barrier film according to the present invention may have a bleed-out preventing layer on the support surface opposite to the surface on which the gas barrier layer is provided.
  • a bleed-out prevention layer can be provided.
  • the bleed-out prevention layer is used for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers migrate from the film support to the surface and contaminate the contact surface. It is provided on the opposite surface of the supporting body.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • An overcoat layer may be provided on the gas barrier layer according to the present invention.
  • organic resins such as organic monomers, oligomers, and polymers, and organic-inorganic composite resins using monomers, oligomers, and polymers of siloxane and silsesquioxane having an organic group are preferably used. it can.
  • Organic planarizing resin layer covers the electronic device during vacuum room temperature bonding, increases the flatness of the surface, and includes an organic flattening resin layer or an inorganic layer formed thereabove and a gas barrier layer of the sealing film. Used to increase adhesion.
  • the specific material (coating material) of the organic planarizing resin layer will be described.
  • the raw material main component before curing must be an organic compound material that is excellent in fluidity and does not have a solvent component, and is an organic compound material that is a raw material for the polymer skeleton, and is preferably an epoxy group. It is an epoxy monomer or oligomer having a molecular weight of 3000 or less. Here, the monomer has a molecular weight of 1000 or less, and the oligomer has a molecular weight in the range of 1000 to 3000.
  • bisphenol A type epoxy oligomer bisphenol F type epoxy oligomer, phenol novolac type epoxy oligomer, polyethylene glycol diglycidyl ether, alkyl glycidyl ether, 3,4-epoxycyclohexenylmethyl-3 ', 4'-epoxycyclohexene carboxylate, There are ⁇ -caprolactone-modified 3,4-epoxycyclohexylmethyl 3 ′, 4′-epoxycyclohexanecarboxylate and the like, which are used alone or in combination.
  • addition polymerization type with excellent transparency and little variation in curing Is good.
  • 3-methyl-1,2,3,6-tetrahydrophthalic anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, 1,2,4,5-benzene Acid anhydride curing agents such as tetracarboxylic dianhydride and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride are preferred.
  • low-temperature curing is facilitated by adding alcohols having a large molecular weight and less volatilization such as 1,6-hexanediol as reaction accelerators that promote the reaction (ring opening) of acid anhydrides.
  • reaction accelerators that promote the reaction (ring opening) of acid anhydrides.
  • aliphatic amines such as diethylenetriamine and triethylenetetraamine
  • aromatic amines such as diaminodiphenylmethane and diaminodiphenylsulfone
  • photopolymerization initiators can be added as auxiliary curing agents to facilitate curing at lower temperatures. Also good.
  • a silane coupling agent that improves adhesion to the cathode and inorganic layers a water trapping agent such as an isocyanate compound, a planarizing agent that lowers the surface energy of coating materials such as a fluorine compound and increases wettability, Additives such as fine particles that prevent shrinkage may be added in a small amount to 1% by mass or less of the total amount.
  • the thickness of the organic flattening resin layer is preferably in the range of 1 to 10 ⁇ m from the viewpoint of covering and flattening the electronic element portion.
  • the organic planarizing resin layer preferably has a height within a range of 0 to ⁇ 2 ⁇ m from the height of the dam.
  • the height of the organic flattening resin layer and the height of the dam refer to the height of the surface in the vertical direction from the base material. If both heights are in the range of 0 to ⁇ 2 ⁇ m, the dam and organic flattening resin Since it is difficult to form a step in the surface portion in contact with the layer, it is preferable because the subsequent vacuum room temperature bonding step is sufficiently performed.
  • the inorganic layer is firmly bonded at room temperature with the gas barrier layer of the sealing film to improve flexibility and prevent oxygen and moisture from entering the organic planarizing resin layer and the cathode and organic light emitting layer inside it.
  • the function of the gas barrier layer is assisted to prevent the entry of oxygen and moisture into the cathode and the organic light emitting layer, thereby suppressing the deterioration of light emission.
  • the inorganic layer is made of, for example, an inorganic compound having excellent water resistance and heat resistance, and is preferably formed of a silicon compound, that is, silicon nitride, silicon oxynitride, silicon oxide, or the like. Thereby, an inorganic layer is formed as a transparent thin film. Furthermore, it is necessary to form a dense and defect-free film in order to shut off gas such as water vapor, and preferably a plasma CVD method or ECR (Electron Cyclotron Resonance) which is a high-density plasma film forming method capable of forming a dense film at a low temperature. ) It is formed by plasma sputtering or ion plating.
  • a plasma CVD method or ECR Electro Cyclotron Resonance
  • the inorganic layer By forming the inorganic layer from the silicon compound in this manner, the inorganic layer becomes a dense layer having no defects excellent in water resistance and heat resistance, and the barrier property against oxygen and moisture is further improved.
  • the inorganic layer preferably has a film quality with a film density of 2.3 to 3.0 g / cm 3 .
  • materials other than silicon compounds may be employed for the inorganic layer, and for example, it may be made of alumina, tantalum oxide, titanium oxide, and other ceramics.
  • the thickness of the inorganic layer is preferably set in the range of 100 to 700 nm. In the present embodiment, it is particularly 200 nm. If the film thickness of the gas barrier layer is 100 nm or more, sufficient gas barrier properties can be obtained, and if it is 700 nm or less, internal stress accumulates in the inorganic layer and does not cause cracks. Therefore, by defining the film thickness within the above range, an inorganic layer that achieves both gas barrier properties and crack resistance is obtained. In particular, the gas barrier property and flexibility can be improved by setting the layer thickness to 150 to 400 nm.
  • a dam covered with an inorganic layer is provided around the electronic element, and an organic flattening resin layer covering the electronic element is provided inside the dam.
  • the functional element in which the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having the gas barrier layer are bonded by vacuum room temperature bonding is provided.
  • the periphery of the electronic element may include a peripheral portion of the electronic element.
  • a dam may be formed in a so-called frame region outside the image display unit. By setting it as such a structure, the effect of this invention can be improved more.
  • the formation region of the organic flattening resin layer can be partitioned by the dam portion.
  • the range of the so-called frame region is determined by the position of the dam portion. Can be adjusted. Thereby, the frame area can be made narrower than before and the display area can be widened.
  • the gas barrier property does not vary depending on the location, and the sealing reliability can be improved.
  • the dam has a structure covered with an inorganic layer.
  • it has a structure in which an organic layer of the dam body is coated with an inorganic layer.
  • the organic layer may be formed from a common resist such as an acrylic resin or a polyimide resin, which is the same as the organic bank layer prepared for forming a pixel that is partitioned to form a light emitting portion.
  • the inorganic layer those described above can be used.
  • the subsequent vacuum room temperature bonding step is that the height of the dam is higher than that of the electronic element portion and the height of the organic planarizing resin layer is in the range of 0 to ⁇ 2 ⁇ m with respect to the height of the dam. This is preferable because it is sufficient.
  • the width of the dam portion is not particularly limited as long as an organic planarizing resin layer can be formed, but is preferably in the range of 10 to 1000 ⁇ m.
  • the height of the dam is preferably the same as the height of the organic flattening resin layer from the viewpoint of adhesiveness with the sealing film.
  • the difference (step) between the height of the organic planarizing resin layer and the height of the dam can be measured, for example, with a laser microscope.
  • the electronic element is the main body of the functional element.
  • the electronic element is an organic EL element body.
  • the electronic element of the present invention is not limited to such a form, and a known functional element body to which sealing with a gas barrier film can be applied can be used.
  • a solar cell (PV) a liquid crystal display element (LCD), electronic paper, a thin film transistor, a touch panel, and the like can be given.
  • the configuration of the main body of these functional elements is not particularly limited and may have a known configuration.
  • an electronic device (organic EL device body) 13 includes a first electrode (anode) 17, a hole transport layer 18, a light emitting layer 19, an electron transport layer 20, and a second electrode (cathode) 21. Etc. Further, if necessary, a hole injection layer may be provided between the first electrode 17 and the hole transport layer 18, or an electron injection layer may be provided between the electron transport layer 20 and the second electrode 21. May be provided. In the organic EL element, the hole injection layer, the hole transport layer 18, the electron transport layer 20, and the electron injection layer are arbitrary layers provided as necessary.
  • First electrode anode
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • a hole injection layer (anode buffer layer) may be present between the first electrode (anode) and the light emitting layer or the hole transport layer.
  • the hole injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the light emission luminance.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the light emitting layer refers to a blue light emitting layer, a green light emitting layer, a red light emitting layer, or a white light emitting layer that emits white light mixed with blue, green, and red.
  • a lamination order in the case of laminating
  • the electron transport layer is made of a material having a function of transporting electrons and is included in the electron transport layer in a broad sense.
  • An electron injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • the electron injection layer (cathode buffer layer) formed in the electron injection layer forming step is made of a material having a function of transporting electrons and is included in the electron transport layer in a broad sense.
  • An electron injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Electrode As the second electrode (cathode), a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound and a mixture thereof as an electrode material is used.
  • the functional element of the present invention may have a protective layer on the electronic element as necessary.
  • the protective layer has a function of preventing the deterioration of the electronic device such as moisture and oxygen from entering the device, a function of making the electronic device disposed on the base material 11 insulative, or the electronic device It has a function to eliminate the step due to.
  • the protective layer may be a single layer or a plurality of layers may be stacked.
  • the manufacturing method of the functional element 10 of the present invention is not particularly limited, and conventionally known knowledge can be referred to as appropriate.
  • a method for manufacturing a functional element manufactured through at least the following three steps is provided.
  • Step of preparing an electronic device (2) Step of covering the electronic device and the surrounding substrate with an organic planarizing resin layer and an inorganic layer in this order (3) Sealing having a gas barrier layer Step of bonding the gas barrier layer and the inorganic layer of the film by vacuum room temperature bonding
  • Step of preparing an electronic device (2) Step of covering the electronic device and the surrounding substrate with an organic planarizing resin layer and an inorganic layer in this order (3) Sealing having a gas barrier layer Step of bonding the gas barrier layer and the inorganic layer of the film by vacuum room temperature bonding
  • Step of preparing an electronic device The step of preparing an electronic device on a base material is usually a layer constituting the electronic device on the base material, for example, an organic EL device, a first electrode layer, hole injection It is formed by laminating a layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a second electrode layer and the like in this order.
  • These forming methods are not particularly limited, and can be produced by appropriately referring to known methods.
  • a protective layer is formed as necessary.
  • the method for forming the protective layer is not particularly limited, and can be manufactured by appropriately referring to known methods.
  • the organic flattening resin layer formation in the present invention comprises a monomer / oligomer material and a curing agent. It is preferable to include a coating process in which a coating material having the above is applied without using a solvent in a vacuum atmosphere, and a thermosetting process in which the coating material is cured to form the organic planarizing resin layer.
  • the buffer layer can be formed by curing the monomer / oligomer material and the curing agent applied in the application process by the thermosetting process.
  • the coating process is performed in a vacuum atmosphere, the coating process is performed in an atmosphere from which moisture and oxygen have been removed, thereby suppressing the penetration of moisture and oxygen into the organic planarizing resin layer. can do.
  • coating process is performed without using a solvent, a solvent does not remain in an organic planarization resin layer. Therefore, almost no moisture or oxygen remains in the organic flattening resin layer, and since no solvent molecules are present, the emission characteristics are deteriorated and the emission lifetime due to the penetration of these into the light emitting functional layer. The lifetime can be shortened and the occurrence of non-light emitting regions can be suppressed.
  • the monomer / oligomer material is cured by a curing agent, so that the monomer or oligomer is cross-linked, and an organic planarizing resin layer made of a polymer organic material (polymer) can be formed.
  • the thermosetting method by heat processing is preferable. In this way, not only the coating material is cured to form the organic planarizing resin layer, but also the peripheral portion of the organic planarizing resin layer is melted (softened) by heat, and is applied to the side edge of the organic planarizing resin layer. An inclined portion can be formed. Thereby, since the inorganic layer formed above the organic flattening resin layer is gently formed following the shape of the organic flattening resin layer, the gas barrier property can be improved.
  • the viscosity of the material for forming such an organic planarizing resin layer is preferably in the range of 500 to 20000 mPa ⁇ s at room temperature (25 ° C.) from the viewpoint of surface smoothness, and 2000 to 5000 mPa ⁇ s. It is more preferable that the viscosity range is.
  • the periphery of the electronic element means the periphery from the periphery of the electronic element 13 to the distance d.
  • the distance d is not particularly limited as long as the gas barrier property can be maintained, but may be, for example, about 10 to 1000 ⁇ m.
  • the formation method of the inorganic layer is not particularly limited, and can be manufactured by appropriately referring to known methods. Specifically, it can be formed using a plasma CVD method, an ECR plasma sputtering method, or an ion plating method which is a high-density plasma film forming method capable of forming a dense film at a low temperature.
  • vacuum room-temperature bonding is to remove contaminants such as natural oxide film and organic matter on the surface by irradiating the bonding surfaces of two objects to be bonded with Ar atoms or the like in a vacuum or by exposing them to Ar plasma or the like. After that, it means a method of joining by joining and pressurizing the joining surfaces of two objects in a vacuum.
  • vacuum room temperature bonding not only removes the contamination layer on the surface to be bonded, but also activates the surface to be bonded, and then increases the bonding strength by interposing another substance (metal film) on the surface to be bonded. It is preferable to make it.
  • the metal film can be formed by irradiating the target with energy rays and performing sputtering.
  • the target is a material for an intermediate material formed on the bonded surface by sputtering.
  • This metal film can be used as a bonding portion to more firmly bond the gas barrier layer of the sealing film and the inorganic layer surrounding the electronic element.
  • the target one that can easily chemically bond to both the gas barrier layer and the inorganic layer can be selected.
  • sputtering of a plurality of metals can be facilitated by using an alloy as the target.
  • the thickness of the intermediate material can be 1 to 100 nm.
  • FIG. 4 is a schematic cross-sectional view showing an example of a vacuum room temperature bonding apparatus.
  • the vacuum room temperature bonding apparatus 130 includes a vacuum chamber 131, an ion gun (sputtering source) 132, a target stage 1 (133), and a target stage 2 (134).
  • the vacuum chamber 131 is a container that seals the inside from the environment, and further includes a vacuum pump (not shown) for discharging gas from the inside of the vacuum chamber 131 and a gate that connects the outside and the inside of the vacuum chamber 131.
  • a lid (not shown) for opening and closing is provided.
  • the vacuum pump include a turbo molecular pump that exhausts gas blades by blowing a plurality of metal blades inside. The degree of vacuum in the vacuum chamber 131 can be adjusted by a vacuum pump.
  • the target stages 133 and 134 as metal emitters are arranged so as to face each other. Each opposing surface has a dielectric layer.
  • the target stage 133 applies a voltage between the dielectric layer and the sealing film 12, and adsorbs and fixes the sealing film 12 to the dielectric layer by an electrostatic force with the gas barrier layer facing outside.
  • the target stage 134 is adsorbed and fixed with the bonding surface of the electronic element 24 covered with the organic planarizing resin layer and the inorganic layer facing outside through a dielectric layer.
  • the target stage 133 can be formed in a columnar shape or a cubic shape, and can be translated in the vertical direction with respect to the vacuum chamber 131.
  • the parallel movement is performed by a pressure contact mechanism (not shown) provided in the target stage 133.
  • the target stage 134 can be translated in the vertical direction with respect to the vacuum chamber 131 and can be rotated around a rotation axis parallel to the vertical direction. The parallel movement and rotation are performed by a transfer mechanism (not shown) provided in the target stage 134.
  • the ion gun (also referred to as “sputtering source”) 132 is directed to the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer.
  • the ion gun 132 emits charged particles accelerated in the direction in which the ion gun 132 is directed. Examples of charged particles include rare gas ions such as argon ions.
  • an electron gun may be provided in the vacuum chamber 131 (not shown) in order to neutralize the object that is positively charged by the charged particles emitted by the ion gun 132.
  • metal is released from the target stages 133 and 134 in the apparatus by sputtering, and sputtering is performed on the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer, A metal film is formed.
  • the sputtering range can be determined by a known metal mask technique.
  • activation conditions are performed to change the irradiation conditions of charged particles by adjusting the operating parameters of the ion gun 132 and to join the respective joining surfaces. Then, the irradiation of the charged particles is terminated, the pressure contact mechanism of the target stage 1 is operated, the target stage 133 is lowered in the vertical direction, and the organic flattening resin layer and the inorganic layer are coated as shown in FIG. The electronic element 24 and the sealing film 12 are brought into contact with each other.
  • the electronic element 24 covered with the organic flattening resin layer and the inorganic layer and the sealing film 2 are bonded, and the electronic element 24 covered with the organic flattening resin layer and the inorganic layer A joint portion 25 is formed at the interface 127 with the sealing film 12. Thereby, the electronic element can be sealed.
  • the vacuum room temperature bonding apparatus 140 shown in FIG. 6 when used, a plurality of metals can be sputtered simultaneously or continuously.
  • the bonding part according to the present invention further contains silicon as an intermediate material, the vacuum room temperature bonding apparatus 140 shown in FIG. 6 is more preferably used.
  • the vacuum room temperature bonding apparatus 140 will be briefly described.
  • the sputtering element 132 In the vacuum chamber (not shown) of the vacuum room temperature bonding apparatus 140, the sputtering element 132, the target substrates 136a, 136b, and 136c, and the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer.
  • a pressure contact mechanism (not shown) for supporting
  • a metal target 135 to be sputtered is previously placed on the target substrates 136a, 136b, and 136c.
  • a silicon target can be installed as the metal target of the target substrates 136a, 136b, and 136c.
  • the bonding surfaces of the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer to be bonded are determined in advance using a metal mask, and a base material holder (not shown) of the pressure-contacting mechanism in the vacuum chamber. ).
  • fixation is not specifically limited, It can fix via an electrostatic layer similarly to the case of the vacuum room temperature bonding apparatus 130 mentioned above.
  • the vacuum chamber here is the same as the vacuum chamber 131 of the vacuum room temperature bonding apparatus 130 described above, and thus the description thereof is omitted.
  • the sputtering source 132 is activated, and a rare gas ion beam such as argon ions (similar to the “charged particles” in the vacuum room temperature bonding apparatus 130 described above). Like the incident line 137, it can be incident (irradiated) on the target substrates 136a, 136b, and 136c, the electronic element 24 covered with the organic planarizing resin layer and the inorganic layer, or the sealing film 12.
  • a rare gas ion beam such as argon ions
  • a silicon film can be formed by reaching and depositing the joint surface of the coated electronic element 24 and the sealing film 2. Before forming the silicon film, impurities, adsorbed gas, oxide film, etc. adhering to the respective bonding surfaces of the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer are removed.
  • Inverse sputtering is to cause sputtering by irradiating a certain target object with some energy beam, and as a result, the irradiated part is physically scraped.
  • reverse sputtering is performed as activation of the metal film formed on the electronic element 24 and the sealing film 12 covered with the organic planarizing resin layer and the inorganic layer using an argon ion beam not incident on the metal target.
  • the deposition of the metal atoms and the activation of the junction by reverse sputtering are performed simultaneously.
  • the magnitude of the action of the deposition and activation depends on the arrangement of the metal target, the intensity of energy rays from the sputtering source 132, and the energy density distribution in the direction perpendicular to the incident line 137. be able to. Of course, no adjustment is made that would result in a reverse sputtering effect over deposition.
  • the metal mask is removed, and similarly to the description of the vacuum room temperature bonding apparatus 130 described above, the pressure welding mechanism is operated to form the bonding portion 25. Thereby, the electronic element can be sealed.
  • the joint surface is uneven, the smoothness of the surface of the joint portion is lowered, and sufficient contact may not be achieved, resulting in incomplete joining.
  • the surface which has the electronic element of the base material used, and the sealing film surface can be flattened by performing mirror polishing.
  • the viscosity of the coating solution is lowered when the gas barrier layer is formed by the coating method described above (that is, the solid content concentration in the coating solution). It is also possible to make the surface flat.
  • the surface center line average roughness (Ra) of the base material surface and the sealing film of each joint is preferably 10 nm or less, more preferably 5 nm or less, and 2 nm or less. It is more preferable that it is 0.5 nm or less.
  • the cleaning and the post-operation are preferably performed in a vacuum so that moisture, oxygen, and the like are not contained in the sealed functional element.
  • the cleaning is preferably performed in an environment where the degree of vacuum is 10 ⁇ 4 to 10 ⁇ 6 Pa.
  • the cleaning can be performed by a known method, and examples thereof include reverse sputtering, ion beam, ion beam sputtering and the like.
  • Reverse sputtering as an example for cleaning can be performed as follows. Using an inert gas such as argon, the acceleration voltage is set in the range of 0.1 to 10 kV, preferably 0.5 to 5 kV, the current value is set in the range of 10 to 1000 mA, preferably in the range of 100 to 500 mA, and 1 to 30 minutes. It can be carried out by irradiating preferably in the range of 1 to 5 minutes.
  • an inert gas such as argon
  • the metal target before sputtering the metal target, it is preferable to form a silicon film, a titanium film, an Al film, a Mo film, or the like on each bonding surface of the base material and the sealing film, It is more preferable to form a film.
  • the silicon film can be formed by sputtering a silicon target.
  • the acceleration voltage is 0.1 to 10 kV, preferably 0.5 to 5.0 kV, and the current value is 10 to 10 in an environment where the degree of vacuum is 10 ⁇ 4 to 10 ⁇ 7 Pa.
  • the irradiation can be performed at 1000 mA, preferably 100 to 500 mA, for 1 to 30 minutes, preferably 1 to 5 minutes.
  • the thickness of the silicon film formed on the bonding surface is not particularly limited as long as the effects of the present invention are not impaired, and is preferably 1 to 100 nm, and more preferably 10 to 50 nm.
  • the bonding surface is more preferably formed by sputtering using the following metal target.
  • sputtering may be performed by ion beam irradiation, neutral particle beam irradiation, plasma irradiation, laser beam irradiation, or the like.
  • the sputtering metal target is at least one selected from the group consisting of iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum from the viewpoint of improving the sealing property and the repeated flexibility. Including at least one species selected from the group consisting of iron, cobalt and nickel.
  • the metal film surface of each joint surface is activated.
  • the activation is performed in an ion beam of an inert gas such as argon in a high vacuum environment with a degree of vacuum of 10 ⁇ 4 to 10 ⁇ 7 Pa, and an acceleration voltage of 0.1 to 10 kV, preferably 0.5 to It can be carried out by irradiating in the range of 5.0 kV, the current value in the range of 10 to 1000 mA, preferably in the range of 100 to 500 mA, and in the range of 1 to 30 minutes, preferably in the range of 1 to 5 minutes.
  • the metal mask is removed, and the activated bonding surfaces can be bonded to each other even under no pressure at room temperature in a vacuum, but a pressure of 1 to 100 MPa is applied for 1 to 10 minutes from the viewpoint of bonding more firmly. It is preferable.
  • a functional element in which the electronic element is sealed can be manufactured.
  • the surface layer of the metal film of each bonding surface is activated, and the atoms exposed on the surface are in a state in which some of the bonding hands forming the chemical bond have lost their bonding partner, It is expected to have a strong bonding force with respect to atoms of the metal film, and when bonded, a metal bond is formed.
  • the joint formed in this way is a metal itself having no metal interface and having a metal bond, and has high sealing properties (adhesion) and flexibility, that is, excellent sealing properties and repeated bending.
  • a functional element having excellent resistance can be achieved.
  • a method of manufacturing a functional device having an electronic device on a flexible substrate and the method of manufacturing a functional device manufactured through at least the following four steps: To do. (1) Step of preparing an electronic device (2) Step of providing a dam covered with an inorganic layer around the electronic device (3) An organic flattening resin layer covering the electronic device inside the dam (4) A step of bonding the dam or the entire surface of the dam and the organic flattening resin layer and the gas barrier layer of the sealing film having a gas barrier layer by vacuum room temperature bonding. The process will be described below.
  • Step of Preparing Electronic Device The step of preparing the electronic device can be performed in the same manner as in the first embodiment.
  • the dam has a structure covered with an inorganic layer.
  • the organic layer has a structure coated with an inorganic layer.
  • the organic layer may be formed of a common photosensitive resist such as an acrylic resin or a polyimide resin which is the same as the organic bank layer formed for forming a pixel partitioned so as to separate the light emitting portion. It is preferable to apply a photosensitive resist, and then expose and develop through a photomask having a pattern to produce a target dam pattern.
  • the photosensitive resist may be a positive type or a negative type.
  • the inorganic layer those described above can be used.
  • a method for coating the dam pattern with the inorganic layer a known adhesion method, sputtering method or the like can be used.
  • Example 1 ⁇ Manufacture of sealing film 1 >> A 50 ⁇ m thick PET support with a clear hard coat manufactured by Kimoto Co., Ltd. is set in the vacuum chamber of a sputtering device manufactured by ULVAC, Inc. (DC magnetron sputtering device SRV150), and evacuated to 10 ⁇ 4 Pa level. Argon was introduced as a discharge gas at a partial pressure of 0.5 Pa. When the atmospheric pressure was stabilized, discharge was started, plasma was generated on the silicon oxide (SiOx) target, and a sputtering process was started. When the process was stabilized, the shutter was opened and formation of a silicon oxide film (SiOx) on the film was started. When the 300 nm film was deposited, the shutter was closed to complete the film formation.
  • a PET support having a thickness of 50 ⁇ m and provided with Kimoto's clear hard coat was set in a plasma CVD apparatus 31 as shown in FIG. 3 and conveyed. Next, a magnetic field is applied between the film forming roller 39 and the film forming roller 40, and electric power is supplied to the film forming roller 39 and the film forming roller 40, respectively. Was discharged to generate plasma.
  • a film forming gas (a mixed gas of hexamethyldisiloxane (HMDSO) as a source gas and oxygen gas (which also functions as a discharge gas) as a source gas) is supplied to the formed discharge region,
  • a gas barrier SiO x C y film layer having a thickness of 150 nm was formed by plasma CVD.
  • the film formation conditions were as follows.
  • the coating solution obtained above was formed on the SiO x C y film layer of the sealing film 2 with a spin coater so as to have a thickness of 300 nm, allowed to stand for 2 minutes, and then heated on a hot plate at 80 ° C. for 1 A heat treatment was performed for a minute to form a polysilazane coating film. After forming the polysilazane coating film, an irradiation treatment of 6000 mJ / cm 2 was performed with a Xe excimer lamp to further form a gas barrier layer.
  • the cleaning surface modification treatment of the substrate on which the first electrode is formed is performed using a low-pressure mercury lamp with a wavelength of 184.9 nm, an irradiation intensity of 15 mW / cm 2 , The distance was 10 mm.
  • the charge removal treatment was performed using a static eliminator with weak X-rays.
  • the following hole transport layer forming coating solution was applied with a spin coater in an environment of 25 ° C. and 50% RH, and then the following: Drying and heat treatment were performed under conditions to form a hole transport layer.
  • the coating solution for forming the hole transport layer was applied so that the thickness after drying was 50 nm.
  • ⁇ Drying and heat treatment conditions After applying the hole transport layer forming coating solution, the solvent is removed at a height of 100 mm toward the film formation surface, a discharge air velocity of 1 m / s, a wide air velocity distribution of 5%, and a temperature of 100 ° C., followed by heat treatment.
  • the back surface heat transfer type heat treatment was performed at a temperature of 150 ° C. using an apparatus to form a hole transport layer.
  • the following coating solution for forming a white light emitting layer was applied with a spin coater under the following conditions, followed by drying and heat treatment under the following conditions to form a light emitting layer. .
  • the white light emitting layer forming coating solution was applied so that the thickness after drying was 40 nm.
  • ⁇ White luminescent layer forming coating solution> As a host material, 1.0 g of a compound represented by the following chemical formula HA, 100 mg of a compound represented by the following chemical formula DA as a dopant material, and 0.1 mg of a compound represented by the following chemical formula DB as a dopant material. 2 mg of a compound represented by the following chemical formula DC as a dopant material was dissolved in 0.2 mg and 100 g of toluene to prepare a white light emitting layer forming coating solution.
  • the coating process was performed in an atmosphere having a nitrogen gas concentration of 99% or more and the coating temperature was 25 ° C.
  • ⁇ Drying and heat treatment conditions After applying the white light emitting layer forming coating solution, the solvent was removed at a height of 100 mm toward the film formation surface, a discharge wind speed of 1 m / s, a wide wind speed distribution of 5%, and a temperature of 60 ° C., and then a temperature of 130 ° C. A heat treatment was performed to form a light emitting layer.
  • the following coating liquid for forming an electron transport layer was applied with a spin coater under the following conditions, and then dried and heated under the following conditions to form an electron transport layer.
  • the coating solution for forming an electron transport layer was applied so that the thickness after drying was 30 nm.
  • the coating process was performed in an atmosphere with a nitrogen gas concentration of 99% or more, and the coating temperature of the electron transport layer forming coating solution was 25 ° C.
  • the electron transport layer was prepared by dissolving a compound represented by the following chemical formula EA in 2,2,3,3-tetrafluoro-1-propanol to obtain a 0.5 mass% solution as a coating solution for forming an electron transport layer.
  • An electron injection layer was formed on the electron transport layer formed above. First, the substrate was put into a vacuum chamber and the pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa. In advance, cesium fluoride prepared in a tantalum vapor deposition boat was heated in a vacuum chamber to form an electron injection layer having a thickness of 3 nm.
  • Formation of second electrode Using the aluminum as the second electrode forming material under the vacuum of 5 ⁇ 10 ⁇ 4 Pa on the portion of the electron injection layer formed above except for the portion that becomes the extraction electrode of the first electrode, the extraction is performed A mask pattern was formed by a vapor deposition method so as to have an electrode so as to form a rectangle with a light emission area of 40 mm ⁇ 30 mm, and a second electrode having a thickness of 100 nm was laminated to produce an electronic element 202.
  • the produced sealing film 1 was cut into 50 mm ⁇ 100 mm and used.
  • a thermosetting adhesive was uniformly applied at a thickness of 20 ⁇ m using a dispenser on the gas barrier layer side of the sealing film to form an adhesive layer.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used as the thermosetting adhesive.
  • a sealing film is closely attached and arranged so as to cover the joint between the take-out electrode and the electrode lead, and pressure bonding conditions using a pressure roller, pressure roller temperature 120 ° C., pressure 0. Close sealing was performed at 5 MPa and an apparatus speed of 0.3 m / min. Thus, the comparative organic EL element 1 was produced.
  • the organic planarizing resin composition 203 described below is coated on the second electrode at a thickness of 5 ⁇ m on the laminate formed up to the second electrode by a screen printing method. It apply
  • an inorganic layer made of a silicon oxynitride film (SiON) was formed thereon with a thickness of 200 nm by a plasma CVD method.
  • the sealing film 1 produced as described above is cut into a size of 50 mm ⁇ 100 mm and used as a sealing film. These were vacuum bonded at room temperature.
  • a base material is placed on a hot plate on a joining apparatus having a hot plate (built in 134) as shown in FIG. 4, and the side on which the organic planarizing resin composition is formed and a gas barrier layer of a sealing film are formed. It was installed so that the opposite side was opposite. Thereafter, the bonding surface and the entire sealing film on the electronic element side were each subjected to reverse sputtering with an Ar ion gun under a vacuum of 1 ⁇ 10 ⁇ 6 Pa to clean the surface. In reverse sputtering, irradiation was performed for 1 to 10 minutes at an acceleration voltage of 0.1 to 2 kV and a current value of 1 to 20 mA. Thereby, the surface is activated.
  • the acceleration voltage is set to 0.1 to 2 kV again with an Ar ion gun on the Si film,
  • the surface was reverse sputtered for 1 to 10 minutes at a current value of 1 to 20 mA to activate the surface.
  • the sputtering of Si was performed for 3 minutes at an acceleration voltage of 1.5 kV and a current value of 100 mA.
  • the degree of vacuum was set to 1 ⁇ 10 ⁇ 7 Pa
  • the hot plate was heated to 90 ° C.
  • the bonding surface on the electronic element side and the sealing film were brought into contact, and pressurized at 20 MPa for 3 minutes to perform vacuum room temperature bonding and sealing. Then, it took out in air
  • the organic EL element 4 was produced.
  • Photopolymerization initiator-1 Irgacure 907 (BASF Japan)
  • Applicability adjusting agent-1 Polyether-modified polydimethylsiloxane BYK-330 (by Big Chemie)
  • Megafuck RS-102 manufactured by DIC
  • Solvent-1 Propylene glycol monomethyl ether acetate (formation of dam)
  • the photosensitive composition is applied on a glass surface of a substrate 201 (50 mm ⁇ 100 mm) obtained by combining a thin film glass having a thickness of 30 ⁇ m and a PET having a thickness of 50 ⁇ m so as to have a dry film thickness of 5 ⁇ m. A physical layer was formed. Drying was performed by vacuum drying for 10 minutes, and further, using a hot plate at 80 ° C. for 1 minute.
  • the photosensitive composition layer forming surface was subjected to laser exposure under an exposure condition of 300 mJ / cm 2 so that the line width was 60 ⁇ m and the center line was 48 mm ⁇ 98 mm.
  • the second electrode of the organic EL element was laminated in a 40 mm ⁇ 30 mm rectangular shape on the substrate having the dam 204 obtained above in the same manner as in Example 1.
  • the organic flattening resin composition prepared in the manufacture of the organic EL element 4 is covered with a laminate in which the organic EL element is stacked up to the second electrode of the organic EL element by a screen printing method so as to have the same height as the height of the dam. It was applied so that it was formed inside the dam pattern, and heat-cured at 80 ° C. for 60 minutes.
  • the luminescence intensity was measured every 10,000 times.
  • the organic EL elements 1 to 3 were bent at the stage where they were bent into a U-shape and set in a testing machine, and repeated tests with a curvature radius of 2 mm were not achieved. In the table, it was written as 0 times.
  • the organic EL elements 4 to 13 of the present invention cannot be bent with a curvature radius of 2 mm. Is good and has excellent sealing properties and flexibility. Furthermore, it can be seen that the organic EL elements 7 to 13 having dams have good durability.
  • the functional element of the present invention can be folded with a radius of curvature of 2 mm or less, and is a functional element having flexibility that can be folded or wound and used as a functional element such as an organic EL element or an organic thin film solar cell. It can be preferably applied.
  • Gas barrier film (sealing film) 2 Support 3 Gas barrier layer 10 Functional element 11 Base material 12 Sealing film 13 Electronic element 14 Electrode (extraction electrode) 15 Organic planarization resin layer 16 Inorganic layer 17 First electrode (anode) 18 Hole transport layer 19 Light emitting layer 20 Electron transport layer 21 Second electrode (cathode) 22 Organic layer 23 Dam 24 Electronic element 25 Joining part 31 Manufacturing apparatus 32 Delivery rollers 33, 34, 35, 36 Transport rollers 39, 40 Film forming roller 41 Gas supply pipe 42 Power source for plasma generation 43, 44 Magnetic field generator 45 Winding Roller 51 Plasma CVD apparatus 52 Chamber 53 Upper electrode 54 Lower electrode 55 Power supply apparatus 56a, 56b, 56c Film forming gas storage part 57 Pipe 58 Gas inlet 60a, 60b, 60c Valve 61 Vacuum pump 127 Bonding interface 130 Vacuum room temperature bonding apparatus 131 Vacuum chamber 132 Ion gun (sputtering source) 133 Target stage 1 134 Target stage 2 135 Target 136a, 136b, 136c Target substrate 137 Incident

Abstract

 本発明の課題は、封止性とフレキシブル性を兼ね備えた機能素子を提供することである。また、その機能素子の製造方法を提供することである。 本発明の機能素子は、フレキシブル性を有する基材上に電子素子を有する機能素子であって、該機能素子が、曲率半径2mm以下で折り曲げることができることを特徴とする。

Description

機能素子及び機能素子の製造方法
 本発明は機能素子及び機能素子の製造方法に関する。より詳しくは、封止性とフレキシブル性を兼ね備えた機能素子及びその機能素子の製造方法に関する。
 有機EL(Electroluminescence)素子や有機薄膜太陽電池等の有機材料からなる機能素子は、曲げることが可能で折りたたんだり、巻きつけたりして使用することができるフレキシブル性を有する機能素子として期待されているが、酸素や水分に極めて弱い。例えば、有機EL素子を用いてディスプレイや照明装置を構成する場合に、有機材料自体が酸素や水分によって変質して、輝度が低下したり、ひいては、発光しなくなるといった欠点がある。
 このため、その片面に有機EL素子を形成した基板の周囲にダムを設け、それに接して内部に平坦化樹脂層を形成後に、該ダム及び平坦化樹脂層の全面を覆うように無機膜で封止する封止構造により酸素及び水蒸気の遮断性に優れた封止技術が知られている(特許文献1参照。)。
 しかしながら上記技術では十分な封止性を確保するために無機膜を厚くしたり、さらにその上に平坦化樹脂層と無機膜層を複数設ける必要があり封止部材が厚くなり、フレキシブル性を有するディスプレイの実現に対して不十分であることが分かった。
特開2012-253036号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、封止性とフレキシブル性を兼ね備えた機能素子を提供することである。また、その機能素子の製造方法を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、基材上の有機平坦化樹脂層で覆われた電子素子を取り囲む無機層を介して、封止フィルムのガスバリアー層と無機層とを真空常温接合することで機能素子のフレキシブル性が格段に改善されることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.フレキシブル性を有する基材上に電子素子を有する機能素子であって、該機能素子が、曲率半径2mm以下で折り曲げることができることを特徴とする機能素子。
 2.前記電子素子の周囲に、無機層で被覆されたダムが設けられ、該ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、前記有機平坦化樹脂層の高さが、前記ダムの高さに対して0~±2μmの範囲内にあり、さらに、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが接合された機能素子であることを特徴とする第1項に記載の機能素子。
 3.前記ガスバリアー層が、SiOCを含有することを特徴とする第2項に記載の機能素子。
 4.前記電子素子とその周囲の基材とが、有機平坦化樹脂層と無機層とでこの順で被覆され、さらに、SiOCを含有するガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とが、接合された機能素子であることを特徴とする第1項に記載の機能素子。
 5.第1項又は第4項に記載の機能素子を製造する機能素子の製造方法であって、少なくとも以下の三つの工程を経て製造することを特徴とする機能素子の製造方法。
(1)電子素子を準備する工程
(2)前記電子素子とその周囲の基材とを、有機平坦化樹脂層と無機層とでこの順で被覆する工程
(3)ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する工程
 6.第1項から第3項までのいずれか一項に記載の機能素子を製造する機能素子の製造方法であって、少なくとも以下の四つの工程を経て製造することを特徴とする機能素子の製造方法。
(1)電子素子を準備する工程
(2)前記電子素子の周囲に、無機層で被覆されたダムを設ける工程
(3)前記ダムで囲われた内部に電子素子を覆う有機平坦化樹脂層を設ける工程
(4)前記ダム、又は前記ダム及び前記有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とを真空常温接合により接合する工程
 本発明の上記手段により、封止性とフレキシブル性を兼ね備えた機能素子を提供することができる。また、その機能素子の製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 従来、十分な封止性を確保するために電子素子上に封止部材を厚くしてガスバリアー性の改善をしてきたが、フレキシブル性を阻害する要因として、この厚さだけでなく、封止部材を電子素子に接合するための接着剤の厚さも大きく影響していたと考えられる。通常接着材により封止部材を電子素子と接合する場合20μm程度の厚さで接合するが、本発明の場合、接合部は10~20nm程度の厚さで、かつ、無機層を介して真空常温接合することより接合の強さも接着剤を使用するよりはるかに大きいことからフレキシブル性が格段に向上したものと考えられる。
本発明の第1の実施形態による機能素子を示す断面概略図 本発明の第1の実施形態による機能素子を示す断面概略図 本発明の第2の実施形態による機能素子を示す断面概略図 本発明の第2の実施形態による機能素子を示す断面概略図 ガスバリアー性フィルムを作製するために好適に利用できるプラズマCVD装置の一例を示す図 ガスバリアー性フィルムを作製するために好適に利用できるプラズマCVD装置の一例を示す図 本発明に係る真空常温接合装置の一例を示す断面概略図 本発明に係る真空常温接合装置における真空常温接合のための加圧状態を示す断面概略図 本発明に係る真空常温接合装置のさらなる一例を示す斜視図 本発明の機能素子の製造工程を模式的に示す図 本発明の機能素子の製造工程を模式的に示す図 本発明の機能素子の製造工程を模式的に示す図
 本発明の機能素子は、フレキシブル性を有する基材上に電子素子を有する機能素子であって、該機能素子が、曲率半径2mm以下で折り曲げることができることを特徴とする。この特徴は、請求項1から請求項6までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記電子素子とその周囲の基材とが、有機平坦化樹脂層と無機層とでこの順で被覆され、さらに、ガスバリアー層を有する封止フィルムのガスバリアー層と前記無機層とが、真空常温接合により接合された機能素子であることが好ましい。
 また、前記電子素子の周囲に、無機層で被覆されたダムが設けられ、該ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、さらに、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが真空常温接合により接合された機能素子であることが、本発明の効果発現の観点から好ましい。また、本発明においては、前記有機平坦化樹脂層の高さが、ダムの高さに対して0~±2μmの範囲内にあることが好ましい。
 さらに、前記ガスバリアー層が、SiOCを含有することが、優れたガスバリアー性とフレキシブル性とを高める上で好ましい。
 また、本発明の機能素子の製造方法は、フレキシブル性を有する基材上に電子素子を有する機能素子の製造方法であって、少なくとも以下の三つの工程を経て製造することを特徴とする機能素子の製造方法であることが好ましい。
(1)電子素子を準備する工程
(2)前記電子素子とその周囲の基材とを、有機平坦化樹脂層と無機層とでこの順で被覆する工程
(3)ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する工程
 さらに、本発明の機能素子の製造方法は、フレキシブル性を有する基材上に電子素子を有する機能素子の製造方法であって、少なくとも以下の四つの工程を経て製造することを特徴とする機能素子の製造方法であることが好ましい。
(1)電子素子を準備する工程
(2)前記電子素子の周囲に、無機層で被覆されたダムを設ける工程
(3)前記ダムで囲われた内部に電子素子を覆う有機平坦化樹脂層を設ける工程
(4)前記ダム、又は前記ダム及び前記有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とを真空常温接合により接合する工程
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 〔機能素子〕
 本発明の機能素子は、フレキシブル性を有する基材上に電子素子を有する機能素子であって、該機能素子が、曲率半径2mm以下で折り曲げることができることを特徴とする。
 本発明の第1の実施形態によれば、電子素子とその周囲の基材とが、有機平坦化樹脂層と無機層とでこの順で被覆され、さらに、ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とが、真空常温接合により接合された機能素子が提供される。
 本発明の第2の実施形態によれば、電子素子の周囲に、無機層で被覆されたダムが設けられ、該ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、さらに、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが真空常温接合により接合された機能素子が提供される。
 本発明は、封止性とフレキシブル性を兼ね備えた機能素子を提供するために、封止フィルムと電子素子との接合において特徴がある。すなわち基材上の有機平坦化樹脂層で覆われた電子素子を取り囲む無機層を介して、封止フィルムのガスバリアー層と無機層とを真空常温接合することで機能素子のフレキシブル性が格段に改善されることを見いだし本発明に至った。ここで取り囲むとは、具体的には有機平坦化樹脂層で覆われた電子素子の全面を無機層で覆ってもよいし、有機平坦化樹脂層で覆われた電子素子の周囲に無機層で被覆されたダムが設けられていてもよい。
 第1の実施形態においては、基材とその周囲の基材上で、有機平坦化樹脂層を被覆する無機層と封止フィルムのガスバリアー層とが真空常温接合で接合され、本発明の第2の実施形態によれば、ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが真空常温接合により接合される。
 このような構成により、電子素子を取り囲む無機層と封止フィルムのガスバリアー層とが強固に接合され、かつ電子素子を覆う封止部材を薄くすることができるため、酸素及び水分の電子素子への侵入を防止することができ、フレキシブル性にも優れた機能素子を提供することができると考えられる。
 なお、本発明において真空常温接合とは、接合する二つの対象物の接合面に真空中でAr原子などを照射する、又はArプラズマなどに曝すことで表面の自然酸化膜や有機物などの汚染物を除去した後、真空中で二つの対象物の接合面を接触、加圧することにより接合する方法のことをいう。詳細は「機能素子の製造方法」において説明する。
 また、電子素子とは、機能素子の本体をいい、具体的には基材上の二つの電極で挟まれた封止前の機能素子をいう。
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、本発明は、以下の実施形態のみには制限されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 本発明の機能素子は、例えば、有機EL素子であってもよい。以下の説明では、代表的な実施形態として本発明の機能素子が、有機EL素子である場合を例に挙げて説明するが、本発明の技術的範囲は下記の形態のみに制限されない。
 図1Aは本発明の第1の実施形態に係る機能素子10の断面概略図の一例である。すなわち、図1Aに示す機能素子10は、基材11、封止フィルム12、基材11と封止フィルム12との間に位置する電子素子13、それを被覆する有機平坦化樹脂層15及び無機層16を有する。封止フィルムは電子素子側の面にガスバリアー層を有している。そして、基材11上には、電子素子を外部から制御するための電極(取り出し電極)14が形成されている。有機平坦化樹脂層15と無機層16に被覆された電子素子13は、封止フィルム12と、真空常温接合されることにより封止されている。
 図1Bは、図1Aの1bの断面を模式的に表した図である。すなわち、基材11上に、取り出し電極14が形成されており、電極14の上に、無機層16が形成されることによって、電極14が形成されることによって生じる基材11上の凹凸を吸収することができる。
 図1Cは本発明の第2の実施形態に係る機能素子10の断面概略図の一例である。電子素子13の周囲には無機層16で被覆されたダム23が設けられ、このダムに囲われた内部に電子素子13を覆う有機平坦化樹脂層15が設けられている。ダム23及び有機平坦化樹脂層15の全面とガスバリアー層を有する封止フィルム12のガスバリアー層とは、真空常温接合で接合されることにより封止されている。
 図1Dは、図1Cの1dの断面を模式的に表した図である。すなわち、基材11に、取り出し電極14が形成されており、電極14の上に、有機層(ダム本体)22を無機層16で被覆したダム23及び封止フィルム12が形成されている。
 上記図1A~1Dに示す実施形態において、電子素子13は有機EL素子本体であり、第一電極(陽極)17、正孔輸送層18、発光層19、電子輸送層20、及び第二電極(陰極)21が順に積層されることにより形成される。
 <折り曲げ試験方法>
 本発明ではフレキシブル性の評価方法として曲率半径を固定して繰り返し折り曲げすることに対する耐久性を評価する方法を採用する。この方法により、所定の曲率半径において、折り曲げることができるか否かの判定と、さらにフレキシブル性の耐久性を評価することができる。具体的にはフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に規定されている繰り返し屈曲テスト法が挙げられる。これは機能素子を一定の曲率半径になるようにU字型に折り曲げたところで素子の両端を前後に繰り返しスライドすることによって繰り返し折り曲げすることができる。装置例としてはユアサシステム機器株式会社製のU字折り返し試験機等が挙げられる。その他の試験条件としては屈曲速度が挙げられるが、本発明においては、試験期間や実際の使用現場を考慮して1分間に60回の繰り返し速度で行う。
 曲率半径2mm以下で折り曲げることが可能か否かのフレキシブル性の判定と、さらにフレキシブル性の耐久性は、上記試験を行ったあとに、例えば85℃・85%RHの環境に24時間放置して発光試験を行うことにより、封止性を評価して行うことができる。
 〔機能素子の構成部材〕
 以下、本実施形態の機能素子を構成する部材について、詳細に説明する。
 機能素子10は、上記で説明した基材11、封止フィルム12、電子素子13、電極14、有機平坦化樹脂層15、無機層23及びダム22に加えて、さらに他の層を有していてもよい。ここで、他の層とは、特に制限されないが、例えば、電極、電子素子の安定化のための安定化層、ガス吸収層、中間層等が挙げられる。
 [フレキシブル性を有する基材]
 本発明に係るフレキシブル性を有する基材としては、有機EL素子にフレキシブル性を与えることが可能なフレキシブル性を有する基材、例えば、樹脂フィルムを用いることを要する。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名、JSR社製)又はアペル(商品名、三井化学社製)といったシクロオレフィン系樹脂等のフィルムが挙げられる。
 本発明に係る基材の水蒸気透過度は、40℃・90%RHで5×10-3g/m・day以下であることが好ましく、5×10-4g/m・day以下であることがより好ましく、5×10-5g/m・day以下であることがさらに好ましい。
 さらに、封止フィルムとして好適に用いられるガスバリアー性フィルムについて、以下で説明する。
 <支持体>
 ガスバリアー性フィルムに用いられる支持体は、長尺なものであって、後述のガスバリアー性(単に「バリアー性」とも称する)を有するガスバリアー層を保持することができるものであり、下記のような材料で形成されるが、特にこれらに限定されるものではない。
 支持体の例としては、例えば、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、トリアセテートセルロース(TAC)、ポリスチレン(PS)、ナイロン(Ny)、芳香族ポリアミド、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等の各樹脂のフィルム、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルム(例えば、製品名Sila-DEC;チッソ株式会社製、及び製品名シルプラス(登録商標);新日鉄住金化学株式会社製等)、さらには前記樹脂を2層以上積層して構成される樹脂フィルム等を挙げることができる。
 コストや入手の容易性の点では、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)等が好ましく用いられ、光学的透明性、複屈折の小ささから流延法で製造される、TAC、COC、COP、PCなどが好ましく用いられ、また、光学的透明性、耐熱性、ガスバリアー層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサン耐熱透明フィルムが好ましく用いられる。
 一方で、例えば、フレキシブルディスプレイの機能素子用途でガスバリアー性フィルムを用いる場合、アレイ作製工程でプロセス温度が200℃を超える場合がある。ロールtoロールによる製造の場合、支持体には常にある程度の張力が印加されているため、支持体が高温下に置かれて支持体温度が上昇した際、支持体温度がガラス転移点を超えると支持体の弾性率は急激に低下して張力により支持体が伸び、ガスバリアー層にダメージを与える懸念がある。したがって、このような用途においては、ガラス転移点が150℃以上の耐熱性材料を支持体として用いることが好ましい。すなわち、ポリイミドやポリエーテルイミド、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムを用いることが好ましい。ただし、これらに代表される耐熱性樹脂は非結晶性のため、結晶性のPETやPENと比較して吸水率は大きな値となり、湿度による支持体の寸法変化がより大きくなって、ガスバリアー層にダメージを与える懸念がある。しかし、これらの耐熱性材料を支持体として用いたときでも、両面にガスバリアー層を形成することにより、高温高湿の過酷な条件下での支持体フィルム自身の吸脱湿による寸法変化を抑制することができ、ガスバリアー層へのダメージを抑制することができる。したがって、耐熱性材料を支持体として用い、かつ、両面にガスバリアー層を形成することがより好ましい態様のひとつである。また、高温時の支持体の伸縮を低減するために、ガラス繊維、セルロースなどを含む支持体も好ましく用いられる。
 支持体の厚さは5~500μmの程度が好ましく、10~250μmの範囲がより好ましい。
 また、支持体は透明であることが好ましい。ここでいう支持体が透明とは、可視光(光波長400~700nmの範囲)の光透過率が80%以上であることを示す。
 支持体が透明であり、支持体上に形成するガスバリアー層も透明であることにより、透明なガスバリアー性フィルムとすることが可能となるため、有機EL素子等の透明基板とすることも可能となるからである。
 また、上記に挙げた樹脂等を用いた支持体は、未延伸フィルムでもよく、延伸フィルムでもよい。
 本発明に係るガスバリアー性フィルムに用いられる支持体は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押出機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の支持体を製造することができる。
 また、未延伸の支持体を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、支持体の流れ(縦軸)方向、又は支持体の流れ方向と直角(横軸)方向に延伸することにより延伸支持体を製造することができる。
 この場合の延伸倍率は、支持体の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2~10倍が好ましい。さらには、延伸フィルムにおいて基板の寸法安定性を向上するために、延伸後の緩和処理をすることが好ましい。
 また、本発明に係る支持体においては、ガスバリアー層を形成する前に、その表面にコロナ処理を施してもよい。
 本発明に用いられる支持体の表面粗さとしては、JIS B0601:2001で規定される10点平均粗さRzが1~500nmの範囲にあることが好ましく、5~400nmの範囲にあることがより好ましく、300~350nmの範囲にあることがさらに好ましい。
 また、支持体表面において、JIS B0601:2001で規定される中心線平均表面粗さ(Ra)が0.5~12nmの範囲にあることが好ましく、1~8nmの範囲にあることがより好ましい。
 <ガスバリアー層>
 本発明で用いられるガスバリアー層の材料としては、特に制限されず、様々な無機バリアー材料を使用することができる。無機バリアー材料の例としては、例えば、ケイ素(Si)、アルミニウム(Al)、インジウム(In)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、銅(Cu)、セリウム(Ce)及びタンタル(Ta)からなる群より選択される少なくとも1種の金属の単体、上記金属の酸化物、窒化物、炭化物、酸窒化物又は酸化炭化物等の金属化合物が挙げられる。
 前記金属化合物のさらに具体的な例としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化インジウム、酸化スズ、酸化インジウムスズ(ITO)、酸化タンタル、酸化ジルコニウム、酸化ニオビウム、アルミニウムシリケート(SiAlO)、炭化ホウ素、炭化タングステン、炭化ケイ素、酸素含有炭化ケイ素、窒化アルミニウム、窒化ケイ素、窒化ホウ素、酸窒化アルミニウム、酸窒化ケイ素、酸窒化ホウ素、酸化ホウ化ジルコニウム、酸化ホウ化チタン、及びこれらの複合体等の金属酸化物、金属窒化物、金属炭化物、金属酸窒化物、金属酸化ホウ化物、ダイヤモンドライクカーボン(DLC)、並びにこれらの組み合わせ等の無機バリアー材料が挙げられる。酸化インジウムスズ(ITO)、酸化ケイ素、酸化アルミニウム、アルミニウムシリケート(SiAlO)、窒化ケイ素、酸窒化ケイ素及びこれらの組み合わせは、特に好ましい無機バリアー材料である。ITOは、それぞれの元素成分を適切に選択することによって導電性になり得るセラミック材料の特殊部材の一例である。
 ガスバリアー層の形成方法は、特に制限されず、例えば、スパッタリング法(例えば、マグネトロンカソードスパッタリング、平板マグネトロンスパッタリング、2極AC平板マグネトロンスパッタリング、2極AC回転マグネトロンスパッタリングなど)、蒸着法(例えば、抵抗加熱蒸着、電子ビーム蒸着、イオンビーム蒸着、プラズマ支援蒸着など)、熱CVD(Chemical Vapor Deposition)法、触媒化学気相成長法(Cat-CVD)、容量結合プラズマCVD法(CCP-CVD)、光CVD法、プラズマCVD法(PE-CVD)、エピタキシャル成長法、原子層成長法、反応性スパッタ法等の化学蒸着法等が挙げられる。
 また、前記ガスバリアー層は、有機ポリマーを含む有機層を含んでいてもよい。すなわち、前記ガスバリアー層は、上記無機バリアー材料を含む無機バリアー層と有機層との積層体であってもよい。
 有機層は、例えば、有機モノマー又は有機オリゴマーを支持体に塗布し、層を形成し、続いて例えば、電子ビーム装置、UV光源、放電装置、又はその他の好適な装置を使用して重合及び必要に応じて架橋することにより形成することができる。また、例えば、フラッシュ蒸発及び放射線架橋可能な有機モノマー又は有機オリゴマーを蒸着した後、前記有機モノマー又は前記有機オリゴマーからポリマーを形成することによっても、有機層は形成されうる。コーティング効率は、支持体を冷却することにより改善され得る。有機モノマー又は有機オリゴマーの塗布方法としては、例えば、ロールコーティング(例えば、グラビアロールコーティング)、スプレーコーティング(例えば、静電スプレーコーティング)等が挙げられる。また、無機バリアー層と有機層との積層体の例としては、例えば、国際公開第2012/003198号、国際公開第2011/013341号に記載の積層体などが挙げられる。
 無機バリアー層と有機層との積層体である場合、各層の厚さは同じでもよいし異なっていてもよい。無機バリアー層の厚さは、好ましくは3~1000nm、より好ましくは10~300nmの範囲である。有機層の厚さは、好ましくは100nm~100μm、より好ましくは1~50μmの範囲である。
 さらに、ポリシラザン、オルトケイ酸テトラエチル(TEOS)などの無機前駆体を含む塗布液を支持体上にウェットコーティングした後真空紫外光の照射などにより改質処理を行い、ガスバリアー層を形成する方法や、樹脂支持体への金属めっき、金属箔と樹脂支持体とを接着させる等のフィルム金属化技術などによっても、ガスバリアー層は形成される。
 高いガスバリアー性と本発明の効果をより効果的に得るという観点から、前記ガスバリアー層は、ポリシラザンを含む層を改質処理して形成されるか、SiOCを含有するか又は無機バリアー層と有機層との積層体であることが好ましい。
 この中では、ガスバリアー層は、SiOCを含有することが好ましい。具体的には、例えば、プラズマCVD法又はスパッタリング法により生成するSiOCを含有するガスバリアー層であることが好ましい。このような構成は、ガスバリアー性とフレキシブル性を両立する観点から好ましい。SiOCは厳密にはSiOであり、堆積方法、堆積条件によって様々な組成のSi、O、Cを有するガスバリアー層が形成できるが、以下の説明ではこれらを総称してSiOCと表記する。
 前記ガスバリアー層は、単層でもよいし2層以上の積層構造であってもよい。2層以上の積層構造である場合、各層の材料は同じものであってもよいし、異なるものであってもよい。以下、プラズマCVD法を用いて形成されるガスバリアー層について、詳細に説明する。
 図2は、ガスバリアー層の形成に用いることのできるプラズマCVD装置の一実施形態を模式的に表した概略図である。
 図2に示すプラズマCVD装置51の構成としては、プラズマCVD放電により成膜を形成するための製膜用チャンバー52が設置されている。このチャンバー52内には、上部電極53と下部電極54が対向する位置に設置されている。また、下部電極54には所定の周波数(例えば、90kHz)を有する所定の電力(例えば、投入電力:300W)を印加するための電源装置55に接続されている。電源装置55による電力印加により、上部電極53と下部電極54の間の空間にプラズマ放電を発生させることができる。なお、図2に示すように、チャンバー52と、上部電極53と、電源装置55は、いずれもアース(接地)されている。
 また、プラズマCVD装置51には、各成膜ガス貯蔵部56a、56b、56cが設けられている。さらに、これら各成膜ガス貯蔵部56a~56cは、配管57によりの電極近傍に設けられたガス導入口58と連結されている。かかる構成により、各成膜ガス貯蔵部56a、56b、56cから配管57を通じて、ガス導入口58から各成膜ガスを所望の組成(成分濃度)に調整した混合ガスをチャンバー52内の上部電極53と下部電極54との間の空間に供給し、プラズマ放電領域59を形成することができる。この際、支持体2を下部電極54側に装着することで、支持体2上に蒸着膜として所望のガスバリアー層3(炭素含有の酸化ケイ素(SiOC)膜)の成膜を行うことでガスバリアー性フィルム(ガスバリアー層を有する封止フィルム)1を形成することができる。
 さらに各成膜ガス貯蔵部56a~56cからガス導入口58までの配管57上には、各成膜ガスの供給・停止のために開閉機構及び各成膜ガスの流量(流速)を調整するための調節機構を有するバルブ60a、60b、60cが設けられている。
 また、成膜ガス(例えば、HMDSO(ヘキサメチルジシロキサン)ガスなどの有機ケイ素化合物ガス(原料ガス)と、酸素ガスなどの反応ガスと、ヘリウムガスなどのキャリアガス)を供給しつつ、チャンバー52内をプラズマCVDを行うのに必要なレベルの減圧(真空)状態を保持するための真空ポンプ(例えば、油回転ポンプ、ターボ分子ポンプ等)61が設けられている。この真空ポンプ61とチャンバー52との間には、バルブ62が設けられている。このバルブ62の開閉度、更にはバルブ60a、60b、60cの開閉度、電源装置55による電力印加度を制御することにより、チャンバー52内の圧力(真空度)、ガス組成(有機ケイ素化合物ガスと酸素ガスの流量又は流量比)、プラズマ放電量(有機ケイ素化合物ガスの単位流量当たりの投入電力の大きさ)を所定の範囲内で調整することで、支持体2上に蒸着膜として所望のガスバリアー層3の成膜を行うことでガスバリアー性フィルム1を形成することができる。
 上記した図2に示すプラズマCVD装置51を用いて支持体の片面(又は両面)にプラズマCVD法によってバリアー層を形成するには、まず、支持体2として、所定の大きさ及び厚さのシート状又はフィルム状の支持体(好ましくは無色透明な樹脂支持体)を準備し、プラズマCVD装置51のチャンバー52内の下部電極54側に装着する。次に、CVD装置51のチャンバー52内を、真空ポンプ61(例えば、油回転ポンプ及びターボ分子ポンプ)により、到達真空度(例えば、4.0×10-3Pa程度)まで減圧する。また、原料ガスとして有機ケイ素化合物ガス(例えば、HMDSOガス)、反応ガスとして酸素ガス、キャリアガスとして、不活性ガス(例えば、ヘリウムガス)を成膜ガス貯蔵部56a、56b、56cにそれぞれ充填し、準備する。
 次に、下部電極54に所定(例えば、90kHz)の周波数を有する電力(投入電力として、例えば、300W程度)を電源装置55により印加する。そして、チャンバー52内の電極近傍に設けられたガス導入口58から、有機ケイ素化合物ガス(例えば、HMDSOガス)を所定流量(例えば、1.5sccm標準条件)、酸素ガスを所定流量(例えば、10sccm標準条件)、ヘリウムガスを所定流量(例えば、30sccm標準条件)として導入し、有機ケイ素化合物ガス(HMDSO)流量、酸素ガス流量、投入電力量を調整し、炭素濃度比率を調節する。
 また真空ポンプ61とチャンバー52との間にあるバルブ62の開閉度を制御することにより、成膜用チャンバー52内の圧力を所定圧力(例えば、0.25Torr=33.325Pa程度)に保ち、シート状又はフィルム状の支持体2上に蒸着膜として所望のガスバリアー層3の成膜を行うことでガスバリアー性フィルム1を形成する。蒸着膜であるガスバリアー層3の膜厚が所定の膜厚(例えば、100nm程度)になるまで成膜を行うことで、ガスバリアー性フィルム1(支持体2+ガスバリアー層3)を得ることができる。
 なお、図2に示すプラズマCVD装置51を用いて支持体の片面(又は両面)にプラズマCVD法によってガスバリアー層を形成する場合には、当該プラズマCVD装置51に支持体2を1回だけ通して所望のガスバリアー層を形成してもよいが、必要に応じて、当該プラズマCVD装置51に支持体2を2回以上通して所望のガスバリアー層3を形成するようにしてもよい。
 ガスバリアー層3の組成におけるケイ素、酸素、炭素の原子比は、上記したように、原料ガスの種類、原料ガスである有機ケイ素化合物ガスと酸素ガスの流量(又は流量比)を調節して制御を行うことができる。
 ここで、前記電源装置55としては、適宜公知のプラズマ発生装置の電源を用いることができる。このような電源装置55は、これに接続された下部電極54に電力を供給して、上部電極53と下部電極54の間の空間にプラズマ放電を発生させることができる。このような電源装置55としては、より効率よくプラズマCVD法を実施することが可能となることから、交流電源などを利用することが好ましい。また、このような電源装置55としては、より効率よくプラズマCVD法を実施することが可能となることから、印加電力を100W~10kWの範囲とすることができ、かつ交流の周波数を50Hz~500kHzの範囲とすることが可能なものであることがより好ましい。
 また、プラズマ放電中のチャンバー52内の圧力を0.1Pa以上、好ましくは0.5Pa以上であり、50Pa以下、好ましくは10Pa以下とすることが好ましい。これにより、上部電極53と下部電極54の間の空間にプラズマ放電を効率よく発生させることができ、優れた成膜性が得られる点で優れている。
 前記ガス導入口58から供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスを単独又は混合して用いられる。ガスバリアー層の形成に用いる前記成膜ガス中の原料ガスとしては、形成するガスバリアー層の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、シラン、メチルシラン、ジメチルシラン、トリメチルシラン、テトラメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)などを例示することができる。これらの有機ケイ素化合物の中でも、化合物の取扱い性及び得られるガスバリアー層のガスバリアー性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。また、これらの有機ケイ素化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。また炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、ガスバリアー層の種類に応じて適切な原料ガスが選択される。
 また、前記成膜ガスとしては、前記原料ガスのほかに反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、1種を単独で又は2種以上を組み合わせて使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。
 前記成膜ガスとしては、前記原料ガスを真空チャンバー内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガス及び放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成されるガスバリアー層において、優れたガスバリアー性や耐屈曲性を有効に発現することができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。
 また、前記ガスバリアー層は、生産性の観点から、ロールtoロール方式で前記支持体の表面上に前記ガスバリアー層を形成させることが好ましい。また、このようなプラズマCVD法によりガスバリアー層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図3に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールtoロール方式で製造することも可能となる。
 以下、図3を参照しながら、プラズマCVD法によるガスバリアー層の形成方法について、より詳細に説明する。なお、図3は、ガスバリアー層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明及び図面中、同一又は相当する要素には同一の符号を付し、重複する説明は省略する。
 図3に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39及び40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバー内に配置されている。さらに、このような製造装置31において前記真空チャンバーは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39及び40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39及び40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により支持体2の表面上にガスバリアー層(乾式バリアー層)3を形成することが可能であり、成膜ローラー39上において支持体2の表面上にガスバリアー層成分を堆積させつつ、さらに成膜ローラー40上においても支持体2の表面上にガスバリアー層成分を堆積させることもできるため、支持体2の表面上にガスバリアー層3を効率よく形成することができる。
 成膜ローラー39及び成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43及び44がそれぞれ設けられている。
 成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43及び44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。
 また、成膜ローラー39及び成膜ローラー40にそれぞれ設けられた磁場発生装置43及び44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の支持体2を用いて効率的に蒸着膜であるガスバリアー層3を形成することができる点で優れている。
 成膜ローラー39及び成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39及び40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39及び40の直径としては、放電条件、チャンバーのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が支持体2にかかることを回避できることから、支持体2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。
 このような製造装置31においては、支持体2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、支持体2が配置されている。このようにして支持体2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する支持体2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて支持体2の表面上にガスバリアー層成分を堆積させ、さらに成膜ローラー40上にてガスバリアー層成分を堆積させることができるため、支持体2の表面上にガスバリアー層を効率よく形成することが可能となる。
 このような製造装置に用いる送り出しローラー32及び搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、支持体2上にガスバリアー層3を形成したガスバリアー性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。
 また、ガス供給管41及び真空ポンプとしては、原料ガス等を所定の速度で供給又は排出することが可能なものを適宜用いることができる。
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、支持体2としては、本発明で用いられる支持体のほかに、ガスバリアー層3をあらかじめ形成させたものを用いることができる。このように、支持体2としてガスバリアー層3をあらかじめ形成させたものを用いることにより、ガスバリアー層3の厚さを厚くすることも可能である。
 このような図3に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバー内の圧力、成膜ローラーの直径、並びにフィルム(支持体)の搬送速度を適宜調整することにより、ガスバリアー層を製造することができる。すなわち、図3に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバー内に供給しつつ、一対の成膜ローラー(成膜ローラー39及び40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の支持体2の表面上及び成膜ローラー40上の支持体2の表面上に、ガスバリアー層3がプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、支持体2が、図3中の成膜ローラー39のA地点及び成膜ローラー40のB地点を通過する際に、ガスバリアー層で炭素分布曲線の極大値が形成される。これに対して、支持体2が、図3中の成膜ローラー39のC1及びC2地点、並びに成膜ローラー40のC3及びC4地点を通過する際に、ガスバリアー層で炭素分布曲線の極小値が形成される。このため、二つの成膜ローラーに対して、通常、五つの極値が生成する。また、ガスバリアー層の極値間の距離(炭素分布曲線の有する一つの極値及び該極値に隣接する極値におけるガスバリアー層の膜厚方向におけるガスバリアー層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(支持体の搬送速度)によって調節できる。なお、このような成膜に際しては、支持体2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールtoロール方式の連続的な成膜プロセスにより支持体2の表面上にガスバリアー層3が形成される。
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、図2に示すプラズマCVD装置で説明した際に記載した、原料ガス、反応ガス、キャリアガス、放電ガスを同様にして用いることができる。
 以下、上記図2又は図3の装置を用いたガスバリアー層の製造において、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)を含有するものとを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。
 反応式1  (CHSiO+12O→6CO+9HO+2SiO
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、本発明において、ガスバリアー層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバー内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサン及び酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子がガスバリアー層中に取り込まれ、得られるガスバリアー性フィルムにおいて優れたガスバリアー性及び耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。
 また、真空チャンバー内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5~50Paの範囲とすることが好ましい。
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39及び40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルが発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の支持体表面の温度が上昇するのを抑制できる。そのため支持体が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。
 支持体2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバー内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、支持体に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、ガスバリアー層として十分な厚みを確保することができる点で優れている。
 上記したように、本実施形態のより好ましい態様としては、本発明に係るガスバリアー層を、図3に示す対向ロール電極を有するプラズマCVD装置(ロールtoロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールtoロール方式)を用いて量産する場合に、フレキシブル性に優れ、機械的強度、特にロールtoロールでの搬送時の耐久性と、ガスバリアー性能とが両立するガスバリアー層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリアー性フィルムを、安価でかつ容易に量産することができる点でも優れている。
 次に、ポリシラザンを含む層を改質処理して形成されるガスバリアー層について、詳細に説明する。
 (ポリシラザン)
 本発明に係るガスバリアー層の形成に好ましく用いられるポリシラザンとは、ケイ素-窒素結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si、及び両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。
  一般式(I)
   -[Si(R)(R)-N(R)]
 前記一般式(I)中、R、R、Rは、各々水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表す。この際、R、R及びRは、それぞれ、同じであっても又は異なるものであってもよい。
 また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150~150000g/モルの数平均分子量を有するように定められることが好ましい。
 本発明では、得られるガスバリアー層の膜としての緻密性の観点からは、R、R及びRの全てが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。
 パーヒドロポリシラザンは、直鎖構造と6及び8員環を中心とする環構造が存在した構造と推定されている。その分子量は数平均分子量(Mn)で約600~2000程度(ポリスチレン換算)であり、液体又は固体の物質であり、分子量により異なる。
 ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのままポリシラザン層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のNN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。
 ポリシラザンを含有する塗布液(以下、単にポリシラザン含有塗布液とも称する)を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシ基、又はアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、ポリシラザン含有塗布液を調製するための溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターベン等の脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ-及びポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的に合わせて選択され、単独で使用されても又は2種以上の混合物の形態で使用されてもよい。
 ポリシラザン含有塗布液におけるポリシラザンの濃度は、特に制限されず、目的とするガスバリアー層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.1~30質量%、より好ましくは0.5~20質量%、さらに好ましくは1~15質量%の範囲である。
 ポリシラザン含有塗布液は、酸窒化ケイ素への変性を促進するために、ポリシラザンとともに触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N′,N′-テトラメチル-1,3-ジアミノプロパン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10質量%、より好ましくは0.2~5質量%、さらに好ましくは0.5~2質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、及び膜密度の低下、膜欠陥の増大などを避けることができる。
 本発明に係るポリシラザン含有塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステル若しくは変性ポリエステル、エポキシド、ポリイソシアネート若しくはブロック化ポリイソシアネート、ポリシロキサン等である。
 ポリシラザン含有塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ダイコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法等が挙げられる。
 塗膜の厚さは、目的に応じて適切に設定され得る。例えば、塗膜の厚さは、乾燥後の厚さが10nm~10μm程度であることが好ましく、15nm~1μmであることがより好ましく、20~500nmであることがさらに好ましい。ポリシラザン層の膜厚が10nm以上であれば十分なガスバリアー性を得ることができ、10μm以下であれば、ポリシラザン層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。
 (改質処理)
 本発明における改質処理とは、ポリシラザン化合物の一部又は全部が、酸化ケイ素又は酸化窒化ケイ素へ転化する反応をいう。
 これによって、ガスバリアー層が全体としてガスバリアー性(水蒸気透過率が、40℃・90%RHで1×10-3g/m・day以下)を発現するに貢献できるレベルの無機薄膜を形成することができる。
 具体的には、加熱処理、プラズマ処理、活性エネルギー線照射処理等が挙げられる。中でも、低温で改質可能であり支持体種の選択の自由度が高いという観点から、活性エネルギー線照射による処理が好ましい。
 (加熱処理)
 加熱処理の方法としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより塗膜が載置される環境を加熱する方法、IRヒーターといった赤外領域の光を用いた方法等が挙げられるが、これらに限定されない。加熱処理を行う場合、塗膜の平滑性を維持できる方法を適宜選択すればよい。
 塗膜を加熱する温度としては、40~250℃の範囲が好ましく、60~150℃の範囲がより好ましい。加熱時間としては、10秒~100時間の範囲が好ましく、30秒~5分の範囲が好ましい。
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることができる。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガス又は長周期型周期表の第18族原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。
 (活性エネルギー線照射処理)
 活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等が使用可能であるが、電子線又は紫外線が好ましく、紫外線がより好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性とを有するガスバリアー層を形成することが可能である。
 紫外線照射処理においては、通常使用されているいずれの紫外線発生装置を使用することも可能である。
 本発明におけるガスバリアー層の製造方法において、水分が取り除かれたポリシラザン化合物を含む塗膜は紫外光照射による処理で改質される。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜又は酸化窒化ケイ素膜を形成することが可能である。
 この紫外光照射により、セラミックス化に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化される。そして、励起したポリシラザンのセラミックス化が促進され、得られるセラミックス膜が緻密になる。紫外光照射は、塗膜形成後であればいずれの時点で実施しても有効である。
 本発明での真空紫外光照射処理には、常用されているいずれの紫外線発生装置を使用することが可能である。
 真空紫外光の照射は、照射される改質前のポリシラザン化合物を含む層を担持している支持体がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。
 支持体としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、支持体表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように支持体-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。
 一般に、紫外線照射処理時の支持体の温度が150℃以上になると、プラスチックフィルム等の場合には、支持体が変形したりその強度が劣化したりするなど、支持体の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムなどの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の支持体の温度としては、一般的な上限はなく、支持体の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線を改質前のポリシラザン層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから改質前のポリシラザン層に当てることが望ましい。
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する支持体の形状によって適宜選定することができる。ポリシラザン化合物を含む塗布層を有する支持体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する支持体やポリシラザン化合物を含む塗布層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。
 真空紫外光(VUV)照射時にこれら酸素以外のガスとしては乾燥不活性ガスを用いることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。
 具体的に、本発明における改質前のポリシラザン化合物を含む層の改質処理方法は、真空紫外光照射による処理である。真空紫外光照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光のエネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温で酸化ケイ素膜の形成を行う方法である。これに必要な真空紫外光源としては、希ガスエキシマランプが好ましく用いられる。
 なお、Xe、Kr、Ar、Ne等の希ガスの原子は化学的に結合して分子を作らないため、不活性ガスと呼ばれる。しかし、放電等によりエネルギーを得た希ガスの原子(励起原子)は他の原子と結合して分子を作ることができる。希ガスがキセノンの場合には、
 e+Xe→e+Xe
 Xe+Xe+Xe→Xe +Xe
となり、励起されたエキシマ分子であるXe が基底状態に遷移するときに172nmのエキシマ光(真空紫外光)を発光する。
 エキシマランプの特徴としては、放射が一つの波長に集中し、必要な光以外がほとんど放射されないので効率が高いことが挙げられる。また、余分な光が放射されないので、対象物の温度を低く保つことができる。さらには始動・再始動に時間を要さないので、瞬時の点灯点滅が可能である。
 本発明における真空紫外線照射工程において、ポリシラザン化合物を含む塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30~200mW/cmであることがより好ましく、50~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られうる。また、10W/cm以下であれば、塗膜のアブレーションが生じにくく、支持体にダメージを与えにくい。
 ポリシラザン化合物を含む層における真空紫外線の照射エネルギー量は、10~10000mJ/cmが好ましく、100~8000mJ/cmであるとより好ましく、200~6000mJ/cmであるとさらに好ましく、500~5000mJ/cmであると特に好ましい。10mJ/cm以上であれば十分な改質効率が得られ、10000mJ/cm以下であればクラックや支持体の熱変形が生じにくい。
 また、真空紫外光(VUV)を照射する際の、酸素濃度は300~10000体積ppm(1体積%)とすることが好ましく、更に好ましくは、500~5000体積ppmである。このような酸素濃度の範囲に調整することにより、酸素過多のガスバリアー層の生成を防止してガスバリアー性の劣化を防止することができる。
 エキシマ発光を得るには、誘電体バリアー放電を用いる方法が知られている。誘電体バリアー放電とは、両電極間に誘電体(エキシマランプの場合は透明石英)を介してガス空間を配し、電極に数10kHzの高周波高電圧を印加することによりガス空間に生じる雷に似た非常に細いmicro dischargeと呼ばれる放電である。
 また、効率よくエキシマ発光を得る方法としては、誘電体バリアー放電以外には無電極電界放電も知られている。無電極電界放電とは、容量性結合による放電であり、別名RF放電とも呼ばれる。ランプと電極及びその配置は、基本的には誘電体バリアー放電と同じでよいが、両極間に印加される高周波は数MHzで点灯される。無電極電界放電はこのように空間的にまた時間的に一様な放電が得られる。
 そして、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン化合物を含む塗布層の改質を実現できる。したがって、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。
 また、エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で単一波長のエネルギーを照射するため、照射対象物の表面温度の上昇が抑えられる特徴を有する。このため、熱の影響を受けやすいとされるポリエチレンテレフタレート等の樹脂フィルムを支持体とするガスバリアー性フィルムへの照射に適している。
 上記の塗布によって形成される層は、ポリシラザン化合物を含む塗膜に真空紫外線を照射する工程において、ポリシラザンの少なくとも一部が改質されることで、層全体としてSiOの組成で示される酸化窒化ケイ素を含むケイ素含有膜が形成される。
 なお、膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、シリコン含有膜を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。
 また、膜密度は、目的に応じて適切に設定され得る。例えば、シリコン含有膜の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲内であれば、膜の緻密さが向上しガスバリアー性の劣化や、高温高湿条件下での膜の劣化を防止することができる。
 (中間層)
 ガスバリアー性フィルムの支持体とガスバリアー層との間には、さらにガスバリアー性フィルムにおける中間層を形成してもよい。中間層は、支持体表面とガスバリアー層との接着性を向上させる機能を有することが好ましい。市販の易接着層付き支持体も好ましく用いることができる。
 (平滑層)
 本発明に係るガスバリアー性フィルムにおいては、上記中間層は、平滑層であってもよい。本発明に用いられる平滑層は、突起等が存在する支持体の粗面を平坦化し、又は、支持体に存在する突起によりガスバリアー層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料又は熱硬化性材料を硬化させて作製される。
 (ブリードアウト防止層)
 本発明に係るガスバリアー性フィルムは、ガスバリアー層を設ける面とは反対側の支持体面にブリードアウト防止層を有してもよい。ブリードアウト防止層を設けることができる。ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、フィルム支持体中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染する現象を抑制する目的で、平滑層を有する支持体の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば、基本的に平滑層と同じ構成をとっても構わない。
 (オーバーコート層)
 本発明に係るガスバリアー層上には、オーバーコート層を設けてもよい。
 オーバーコート層に用いられる材料としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂を好ましく用いることができる。
 〔有機平坦化樹脂層〕
 有機平坦化樹脂層は、真空常温接合に際し、電子素子を覆い、表面の平面性を上げ、有機平坦化樹脂層、又はその上方に形成される無機層と、封止フィルムのガスバリアー層との接着性を上げるために用いられる。
 有機平坦化樹脂層の具体的な材料(塗布材料)について説明する。硬化前の原料主成分としては、減圧真空下で塗布形成するために、流動性に優れかつ溶媒成分がない全てが高分子骨格の原料となる有機化合物材料である必要があり、好ましくはエポキシ基を有する分子量3000以下のエポキシモノマー又はオリゴマーである。ここで、モノマーは分子量1000以下であり、オリゴマーは分子量1000~3000の範囲内のものである。例えば、ビスフェノールA型エポキシオリゴマーやビスフェノールF型エポキシオリゴマー、フェノールノボラック型エポキシオリゴマー、ポリエチレングリコールジグリシジルエーテル、アルキルグリシジルエーテル、3,4-エポキシシクロヘキセニルメチル-3′,4′-エポキシシクロヘキセンカルボキシレート、ε-カプロラクトン変性3,4-エポキシシクロヘキシルメチル3′,4′-エポキシシクロヘキサンカルボキシレートなどがあり、これらが単独若しくは複数組み合わされて用いられる。
 また、エポキシモノマーやエポキシオリゴマーと反応する硬化剤としては、電気絶縁性や接着性に優れ、耐熱性に優れる硬化被膜を形成するものが良く、透明性に優れかつ硬化のばらつきの少ない付加重合型がよい。例えば、3-メチル-1,2,3,6-テトラヒドロ無水フタル酸、メチル-3,6-エンドメチレン-1,2,3,6-テトラヒドロ無水フタル酸、1,2,4,5-ベンゼンテトラカルボン酸二無水物、3,3′,4,4′-ベンゾフェノンテトラカルボン酸二無水物などの酸無水物系硬化剤が好ましい。さらに、酸無水物の反応(開環)を促進する反応促進剤として1,6-ヘキサンジオールなど分子量が大きく揮発しにくいアルコール類を添加することで低温硬化しやすくなる。これらの硬化は60~100℃の範囲の加熱で行われ、その硬化被膜はエステル結合を持つ高分子となる。
 また、ジエチレントリアミンやトリエチレンテトラアミンなどの脂肪族アミンや、ジアミノジフェニルメタンやジアミノジフェニルスルホンなどの芳香族アミン、光重合開始剤などを補助硬化剤として添加することで、より低温で硬化しやすくさせてもよい。
 更に、陰極や無機層との密着性を向上させるシランカップリング剤や、イソシアネート化合物などの捕水剤、フッ素化合物など塗布材料の表面エネルギーを低下させて濡れ性を上げる平坦化剤、硬化時の収縮を防ぐ微粒子などの添加剤が全量の1質量%以下に微量添加されていても良い。
 有機平坦化樹脂層の厚さは、電子素子部を覆って平坦化させる観点から電子素子の上部を1~10μmの範囲内で覆うことが好ましい。第2の実施形態で、ダムを設ける場合は、有機平坦化樹脂層の高さはダムの高さと、0~±2μmの範囲内であることが好ましい。有機平坦化樹脂層の高さとダムの高さは、基材から垂直方向のそれぞれ表面の高さをいい、両者の高さが0~±2μmの範囲内である場合、ダムと有機平坦化樹脂層とが接する表面部分に段差ができにくいため、その後の真空常温接合工程を十分に行うため好ましい。
 〔無機層〕
 無機層は、封止フィルムのガスバリアー層と強固に真空常温接合されて、フレキシブル性を向上させるとともに、有機平坦化樹脂層とその内側の陰極や有機発光層に酸素や水分が浸入するのを防止するためのもので、ガスバリアー層の機能を補助して陰極や有機発光層への酸素や水分の浸入を防止し、発光劣化等を抑えるようにしたものである。
 また無機層は、例えば耐水性、耐熱性に優れる無機化合物からなるもので、好ましくはケイ素化合物、すなわちケイ素窒化物やケイ素酸窒化物、ケイ素酸化物などによって形成される。これにより、無機層は、透明な薄膜として形成される。更に、水蒸気などのガスを遮断するため緻密で欠陥の無い被膜にする必要があり、好適には低温で緻密な膜を形成できる高密度プラズマ成膜法であるプラズマCVD法やECR(Electron Cyclotron Resonance)プラズマスパッタ法、イオンプレーティング法を用いて形成する。このように無機層がケイ素化合物から形成されることで、無機層が耐水性、耐熱性に優れる欠陥のない緻密な層となって酸素や水分に対するバリアー性がより良好になる。また無機層は、膜密度が2.3~3.0g/cmの膜質を有していることが好ましい。
 なお無機層に、ケイ素化合物以外の材料を採用してもよく、例えばアルミナや酸化タンタル、酸化チタン、更には他のセラミックスなどからなっていてもよい。
 また、無機層の厚さは、100~700nmの範囲に設定されることが好ましい。本実施形態では、特に200nmとしている。ガスバリアー層の膜厚が100nm以上であれば十分なガスバリアー性を得ることができ、また、700nm以下の場合では無機層に内部応力が蓄積してクラックの発生原因となることがない。したがって、上記の範囲で膜厚を規定することにより、ガスバリアー性と耐クラック性とを共に実現した無機層となる。また、特に150~400nmの層の厚さにすることで、ガスバリアー性とフレキシブル性とを向上させることができる。
 〔ダム〕
 本発明の第2の実施形態によれば、電子素子の周囲に、無機層で被覆されたダムが設けられ、該ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、さらに、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが真空常温接合により接合された機能素子が提供される。ここで電子素子の周囲とは電子素子の周縁部を含んで良い。例えば有機EL素子の場合、画像表示部の外側のいわゆる額縁領域にダムを形成してもよい。このような構成とすることで、本発明の効果をより高めることができる。
 また、有機平坦化樹脂層がダム部の内側に形成されているため、有機平坦化樹脂層の形成領域をダム部によって区画することができ、このためいわゆる額縁領域の範囲をダム部の位置によって調整することができる。これにより、額縁領域を従来より狭くして表示領域を広げることができる。また、有機平坦化樹脂層の形成領域をダム部によって区画することにより、ガスバリアー性が場所によってばらつくことがなく、封止の信頼性を向上することができる。
 ダムは無機層で被覆された構造を有している。好ましくはダム本体の有機層の上に無機層で被覆された構造を有している。有機層は例えば有機EL素子の場合、発光部を隔てるように区画形成した画素形成ために作製される有機物バンク層と同じアクリル樹脂、ポリイミド樹脂等の通常のレジストから形成されてもよい。無機層は前述のものを用いることができる。
 本発明ではダムの高さが電子素子部よりも高く、前記有機平坦化樹脂層の高さがダムの高さに対して0~±2μmの範囲内にあることがその後の真空常温接合工程を十分に行うため好ましい。
 ダム部の幅は、有機平坦化樹脂層が形成できれば、特に制約はないが、好ましくは、10~1000μmの範囲内である。
 またダムの高さは、有機平坦化樹脂層の高さと同じであることが封止フィルムとの接着性の観点から好ましい。なお、有機平坦化樹脂層の高さとダムの高さの差(段差)は、例えば、レーザー顕微鏡により測定することができる。
 [電子素子]
 電子素子は機能素子の本体である。図1A~1Dに示す形態において、電子素子は有機EL素子本体である。ただし、本発明の電子素子は、かような形態に制限されず、ガスバリアー性フィルムによる封止が適用されうる公知の機能素子の本体が使用できる。例えば、太陽電池(PV)、液晶表示素子(LCD)、電子ペーパー、薄膜トランジスタ、タッチパネル等が挙げられる。これらの機能素子の本体の構成についても、特に制限はなく、公知の構成を有しうる。
 図1A~1Dに示す形態において、電子素子(有機EL素子本体)13は、第一電極(陽極)17、正孔輸送層18、発光層19、電子輸送層20、第二電極(陰極)21等を有する。また、必要に応じて、第一電極17と正孔輸送層18との間に正孔注入層を設けてもよいし、又は、電子輸送層20と第二電極21との間に電子注入層を設けてもよい。有機EL素子において、正孔注入層、正孔輸送層18、電子輸送層20、電子注入層は必要に応じて設けられる任意の層である。
 以下、具体的な機能素子の構成の一例として、有機EL素子を説明する。
 (第一電極:陽極)
 第一電極(陽極)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。
 (正孔注入層:陽極バッファ層)
 第一電極(陽極)と発光層又は正孔輸送層の間に、正孔注入層(陽極バッファ層)を存在させてもよい。正孔注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層である。
 (正孔輸送層)
 正孔輸送層とは、正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
 (発光層)
 発光層とは、青色発光層、緑色発光層、赤色発光層、又は青色、緑色、赤色を混色した白色光を発光する白色発光層を指す。発光層を積層する場合の積層順としては、特に制限はなく、また各発光層間に非発光性の中間層を有していてもよい。
 (電子輸送層)
 電子輸送層とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層である。
 (電子注入層:陰極バッファ層)
 電子注入層形成工程で形成される電子注入層(陰極バッファ層)とは、電子を輸送する機能を有する材料からなり広い意味で電子輸送層に含まれる。電子注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層である。
 (第二電極:陰極)
 第二電極(陰極)としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。
 (保護層)
 本発明の機能素子は、必要に応じて、電子素子上に保護層を有してもよい。保護層は、水分や酸素等の電子素子の劣化を促進するものが素子内に侵入することを防止する機能、基材11上に配置された電子素子等を絶縁性とする機能、又は電子素子による段差を解消する機能を有する。保護層は、1層でもよいし、複数の層を積層してもよい。
 〔機能素子の製造方法〕
 本発明の機能素子10の製造方法は特に制限されず、従来公知の知見が適宜参照されうる。
 本発明の第1の実施形態によれば、少なくとも以下の三つの工程を経て製造する機能素子の製造方法が提供される。
(1)電子素子を準備する工程
(2)前記電子素子とその周囲の基材とを、有機平坦化樹脂層と無機層とでこの順で被覆する工程
(3)ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する工程
 以下、上記本発明の第1の実施形態による機能素子の製造方法を説明するが、本発明はこれに何ら限定されるものではない。
 (1)電子素子を準備する工程
 基材上に電子素子を準備する工程は、通常、基材上に、電子素子を構成する層、例えば、有機EL素子では、第一電極層、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、第二電極層等を順に積層させることにより形成される。これらの形成方法は特に制限されず、公知の手法を適宜参照して製造されうる。
 次いで、必要に応じて、保護層を形成させる。保護層の形成方法も特に制限されず、公知の手法を適宜参照して製造されうる。
 (2)前記電子素子とその周囲の基材とを、有機平坦化樹脂層と無機層とでこの順で被覆する工程
 本発明における有機平坦化樹脂層形成は、モノマー/オリゴマー材料と硬化剤とを有する塗布材料を、真空雰囲気下において溶媒を用いずに塗布する塗布工程と、前記塗布材料を硬化させて前記有機平坦化樹脂層を形成する熱硬化工程とを含むことが好ましい。
 このようにすれば、塗布工程によって塗布されたモノマー/オリゴマー材料と硬化剤とを、熱硬化工程によって硬化させて緩衝層を形成することができる。ここで、塗布工程においては、真空雰囲気下にて行われるので、水分や酸素が除去された雰囲気で塗布工程が行われることとなり、有機平坦化樹脂層内に水分や酸素が侵入するのを抑制することができる。また、当該塗布工程は、溶媒を用いずに行われるので、有機平坦化樹脂層内に溶媒が残留することがない。したがって、有機平坦化樹脂層中には、水分や酸素がほとんど残留しておらず、また、溶媒分子が存在しないので、これらが発光機能層に侵入することに起因する発光特性の低下や発光寿命の短寿命化、非発光領域等の発生を抑制できる。
 また、熱硬化工程においては、モノマー/オリゴマー材料を硬化剤によって硬化させるので、モノマーやオリゴマーが架橋し、高分子有機材料(ポリマー)からなる有機平坦化樹脂層を形成することができる。また、熱硬化工程としては、熱処理による熱硬化法が好ましい。このようにすれば、塗布材料を硬化させて有機平坦化樹脂層を形成するだけでなく有機平坦化樹脂層の周辺部を熱によって溶融(軟化)させ、有機平坦化樹脂層の側面端部に傾斜部を形成することができる。これにより、有機平坦化樹脂層の上方に形成される無機層が有機平坦化樹脂層の形状に倣って緩やかに形成されるので、ガスバリアー性の向上を図ることができる。
 このような有機平坦化樹脂層を形成するための材料の粘性は、室温(25℃)で500~20000mPa・sの粘度範囲であることが表面の平滑性の観点から好ましく、2000~5000mPa・sの粘度範囲であることが、より好ましい。
 なお、電子素子の周囲とは、電子素子13の周縁から距離dまでの周囲のことを意味する。間隔dは、ガスバリアー性を保つことができれば特に制限はないが、例えば10~1000μm程度とすることができる。
 無機層の形成方法は特に制限されず、公知の手法を適宜参照して製造されうる。具体的には低温で緻密な膜を形成できる高密度プラズマ成膜法であるプラズマCVD法やECRプラズマスパッタ法、イオンプレーティング法を用いて形成することができる。
 (3)ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する工程
 次いで、封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する。
 本発明において真空常温接合とは、接合する二つの対象物の接合面に真空中でAr原子などを照射する、又はArプラズマなどに曝すことで表面の自然酸化膜や有機物などの汚染物を除去した後、真空中で二つの対象物の接合面を接触、加圧することにより接合する方法のことをいう。真空常温接合においては、被接合面の汚染層を除去するだけでなく、被接合面を活性化した後、対象物の被接合面に他の物質(金属膜)を介在させて接合強度を向上させることが好ましい。具体的には、ターゲットにエネルギー線を照射し、スパッタリングすることによって、金属膜を形成することができる。ここでターゲットとは、スパッタリングにより被接合面上に形成する中間材の材料となるものである。
 この金属膜が接合部として、封止フィルムのガスバリアー層と電子素子を取り囲む無機層とをより強固に接合することができる。ターゲットとしては、ガスバリアー層と無機層の両者に化学結合しやすいものを選ぶことができる。また、ターゲットを合金とすることにより、複数金属のスパッタリングを容易にすることもできる。中間材の厚さは、1~100nmの厚さとすることができる。
 以下に、真空常温接合に用いられる真空常温接合装置を用いてさらに説明する。
 図4は、真空常温接合装置の一例を示す断面概略図である。真空常温接合装置130は、真空チャンバー131、イオンガン(スパッタリング源)132、ターゲットステージ1(133)、及びターゲットステージ2(134)を有する。
 真空チャンバー131は、内部を環境から密閉する容器であり、さらに真空チャンバー131の内部から気体を排出するための真空ポンプ(図示せず)、及び真空チャンバー131の外部と内部とを接続するゲートを開閉するための蓋(図示せず)を備えている。真空ポンプとしては、内部の金属製の複数の羽根が気体分子を弾き飛ばすことにより排気するターボ分子ポンプが挙げられる。真空ポンプによって真空チャンバー131内の所定の真空度に調節することができる。
 金属放出体としてのターゲットステージ133及び134は、対向するように配置されている。それぞれの対向する面には、誘電層を有する。ターゲットステージ133は、誘電層と封止フィルム12との間に電圧を印加し、静電力によってその誘電層に封止フィルム12をガスバリアー層を外側にして吸着し固定する。同様に、ターゲットステージ134は、誘電層を介して有機平坦化樹脂層と無機層で被覆された電子素子24の接合面を外側にして吸着して固定する。
 ターゲットステージ133は、円柱状又は立方体などの形に形成することができ、真空チャンバー131に対して鉛直方向に平行移動することができる。当該平行移動は、ターゲットステージ133に備えられている圧接機構(図示せず)によって行われる。
 ターゲットステージ134は、真空チャンバー131に対して鉛直方向に平行移動、鉛直方向に平行な回転軸を中心に回転することもできる。当該平行移動及び回転は、ターゲットステージ134に備えられている移送機構(図示せず)によって行われる。
 イオンガン(「スパッタリング源」とも称する)132は、有機平坦化樹脂層と無機層で被覆された電子素子24と封止フィルム12とに向けられている。イオンガン132は、その向けられている方向に向けて加速された荷電粒子を放出する。荷電粒子としては、アルゴンイオンなどの希ガスイオンが挙げられる。さらに、イオンガン132により放出された荷電粒子により正に帯電している対象を中和するために、真空チャンバー131に電子銃を備えてもよい(図示せず)。
 荷電粒子の照射を受けて、装置内のターゲットステージ133及び134から、金属がスパッタにより放出され、有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム12にスパッタリングをし、金属膜を形成する。なお、スパッタリングの範囲は、公知の金属マスクの手法などにより決定することができる。
 金属スパッタリング後、イオンガン132の運転パラメーターを調節することによって荷電粒子の照射条件を変え、それぞれの接合面を接合するために活性化を行う。そして、荷電粒子の照射を終了させ、ターゲットステージ1の圧接機構を操作し、ターゲットステージ133を鉛直方向に下降させて、図5に示されるように、有機平坦化樹脂層と無機層で被覆された電子素子24と封止フィルム12とを接触させる。このように真空常温接合することによって、有機平坦化樹脂層と無機層で被覆された電子素子24と封止フィルム2と接合され、有機平坦化樹脂層と無機層で被覆された電子素子24と封止フィルム12との界面127には接合部25が形成される。これによって、電子素子を封止することができる。
 なお、図6に示す真空常温接合装置140を用いると複数の金属を同時に又は連続的にスパッタすることができる。例えば、本発明に係る接合部が中間材としてケイ素をさらに含む場合には、図6に示す真空常温接合装置140がより好ましく用いられる。以下では、真空常温接合装置140について簡単に説明する。
 真空常温接合装置140の真空チャンバー(図示せず)中に、スパッタリング源132、ターゲット基板136a、136b、及び136c、並びに有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム12を支持する圧接機構(図示せず)を有する。
 ターゲット基板136a、136b、及び136cにあらかじめスパッタリングしたい金属ターゲット135を設置する。例えば、本発明の一実施形態において、ターゲット基板136a及び136b、136cの金属ターゲットとして、ケイ素ターゲットを設置することができる。
 接合する有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム12をあらかじめ金属マスクによって、それぞれの接合面を決定し、真空チャンバー内の圧接機構の基材ホルダー(図示せず)に固定する。なお、固定は、特に限定されず、上述した真空常温接合装置130の場合と同様に静電層を介して固定することができる。また、ここでの真空チャンバーは、上述した真空常温接合装置130の真空チャンバー131と同様であるため、説明を省略する。
 真空チャンバー内に所定の真空度に調節できた後、スパッタリング源132を起動し、アルゴンイオンなどの希ガスイオンビーム(上述した真空常温接合装置130でいう「荷電粒子」と同様である。)を入射線137のように、ターゲット基板136a、136b、及び136c、有機平坦化樹脂層と無機層で被覆された電子素子24、又は封止フィルム12に入射(照射)することができる。具体的な例として、アルゴンイオンビームがターゲット基板136cに設置されるケイ素ターゲットを入射(照射)すると、ケイ素元素が出射され、出射線138に沿って、上述した有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム2の接合面に到達し堆積していくと、ケイ素膜を形成することができる。なお、当該ケイ素膜を形成する前に、有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム12のそれぞれの接合面に付着している不純物、吸着ガス、酸化膜などを除去するために、適当のアルゴンイオンビーム照射により、それぞれの接合面の清浄化(及び活性化)として逆スパッタリングを行うことが好ましい。逆スパッタリングとは、ある対象物に何らかのエネルギー線を照射することによってスパッタリングを生じさせ、その結果、照射された部分が物理的に削られることである。
 その後、金属ターゲットに入射していないアルゴンイオンビームを用いて有機平坦化樹脂層と無機層で被覆された電子素子24及び封止フィルム12上に形成された金属膜の活性化として逆スパッタリングを行う。この際、前記金属原子の堆積と接合部の逆スパッタリングによる活性化が同時に行われることになる。なお、前記堆積と活性化との作用の大小は、金属ターゲットの配置、スパッタリング源132からのエネルギー線の強弱及び入射線137に垂直方向のエネルギー密度分布に依存するので、それらの設定によって調節することができる。もちろん、堆積を上回る逆スパッタリングの作用が生じるような調節は採用されない。
 そして、金属マスクを取り除き、上述した真空常温接合装置130の説明と同様に、圧接機構を操作し、接合部25が形成される。これによって、電子素子を封止することができる。
 本発明において、接合面に凹凸があると、接合部の表面の平滑性が低下し、十分な接触が行えず不完全な接合になってしまう場合がある。このため、上記使用する基材の電子素子を有する面及び封止フィルム面を、鏡面研磨を行うことによって平坦化させることができる。又は、例えば基材及び封止フィルムの両方がガスバリアー性フィルムである場合、当該ガスバリアー層を上述した塗布法によって形成する際に、塗布液粘度を下げる(すなわち、塗布液中の固形分濃度を下げる)ことによって平坦化させることも可能である。ここで、それぞれの接合部の、前記基材面、及び前記封止フィルムの表面中心線平均粗さ(Ra)が、10nm以下であることが好ましく、5nm以下であることがより好ましく、2nm以下であることがさらに好ましく、0.5nm以下であることが特に好ましい。
 表面に付着している不純物、吸着ガス、酸化膜などを除去する観点から、それぞれの接合面を清浄化することが好ましい。清浄化及び後作業については、封止された機能素子の内部に水分、酸素などが含まれないようにするために、真空中で行うことが好ましい。清浄化は、真空度が10-4~10-6Paの環境下で行うことが好ましい。
 また清浄化は、公知の手法によって行うことができ、例えば、逆スパッタリング、イオンビーム、イオンビームスパッタリングなどが挙げられる。
 清浄化を行うための一例としての逆スパッタリングは、以下のように行うことができる。アルゴンなどの不活性ガスを用いて、加速電圧を0.1~10kV、好ましくは0.5~5kVの範囲とし、電流値を10~1000mA、好ましくは100~500mAの範囲とし、1~30分間、好ましくは1~5分間の範囲、照射することによって行うことができる。
 また、密着性の観点から、前記金属ターゲットをスパッタリングする前に、基材と封止フィルムのそれぞれの接合面にケイ素膜、チタン膜、Al膜、又はMo膜などを形成することが好ましく、ケイ素膜を形成することがより好ましい。なお、ケイ素膜は、ケイ素ターゲットのスパッタリングによって形成されうる。
 ここで、ケイ素ターゲットのスパッタリングは、真空度が10-4~10-7Paの環境下で、加速電圧を0.1~10kV、好ましくは0.5~5.0kVとし、電流値を10~1000mA、好ましくは100~500mAとし、1~30分間、好ましくは1~5分間、照射することによって行うことができる。
 また、接合面に形成されるケイ素膜の厚さは、本発明の効果を損なわない限り特に限定されず、1~100nmであることが好ましく、10~50nmの範囲であることがより好ましい。
 その後、接合面は、さらに以下の金属ターゲットによるスパッタリングによって形成されることがより好ましい。ここでスパッタリングは、イオンビーム照射によるもの、中性粒子ビーム照射によるもの、プラズマ照射によるもの、レーザビーム照射によるものなどが挙げられる。
 本発明において、スパッタリングの金属ターゲットとしては、封止性及び繰り返し屈曲性を向上させる観点から、鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金からなる群より選択される少なくとも1種を含み、好ましくは鉄、コバルト及びニッケルからなる群より選択される少なくとも1種を含む。
 次に接合面同士を接触させ、真空常温接合によって、接合部を形成する工程を説明する。接触させる前に、それぞれの接合面の金属膜表面を活性化させる。活性化は、真空度が10-4~10-7Paの高真空環境下で、アルゴンなどの不活性ガスのイオンビームなどにより行い、加速電圧を0.1~10kV、好ましくは0.5~5.0kVの範囲とし、電流値を10~1000mA、好ましくは100~500mAの範囲とし、1~30分間、好ましくは1~5分間の範囲、照射することによって行うことができる。
 次に、金属マスクを取り除き、活性化された接合面同士を、真空中の常温無加圧でも接合可能であるが、よりしっかり接合させる観点から、1~10分間、1~100MPaの圧力を加えることが好ましい。
 以上説明した工程(1)~(3)に基づき、電子素子が封止された機能素子を製造することができる。特に、接合面同士のそれぞれの、金属膜の表面層が活性化され、表面に露出した原子は、化学結合を形成する結合手の一部が結合相手を失った状態となり、相手の接合面の金属膜の原子に対して、強い結合力を持つと期待され、接合させると、金属結合が形成される。このように形成された接合部は、接合界面が存在せず、金属結合を有する金属そのものであり、封止性(密着性)及びフレキシブル性が高く、すなわち、封止性に優れ、かつ繰り返し屈曲耐性にも優れる機能素子を達成することができる。
 本発明に係る第2の実施態様においては、フレキシブル性を有する基材上に電子素子を有する機能素子の製造方法であって、少なくとも以下の四つの工程を経て製造する機能素子の製造方法を提供する。
(1)電子素子を準備する工程
(2)前記電子素子の周囲に、無機層で被覆されたダムを設ける工程
(3)前記ダムで囲われた内部に電子素子を覆う有機平坦化樹脂層を設ける工程
(4)前記ダム、又は前記ダム及び前記有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とを真空常温接合により接合する工程。
以下に工程を説明する。
 (1)電子素子を準備する工程
 電子素子を準備する工程は第1の実施態様と同様にして実施することができる。
 (2)前記電子素子の周囲に、無機層で被覆されたダムを設ける工程
 ダムは無機層で被覆された構造を有している。好ましくは有機層の上に無機層で被覆された構造を有している。有機層は例えば有機EL素子の場合、発光部を隔てるように区画形成した画素形成ために作製される有機物バンク層と同じアクリル樹脂、ポリイミド樹脂等の通常の感光性レジストから形成されてもよい。感光性レジストを塗布した後、パターンを有するフォトマスクを介して露光、現像して、目的とするダムのパターンを作製することが好ましい。感光性レジストはポジ型でも、ネガ型でも構わない。無機層は前述のものを用いることができる。ダムのパターンに無機層を被覆する方法は公知の凝着法、スパッタ法などを用いることができる。
 (3)該ダムで囲われた内部に電子素子を覆う有機平坦化樹脂層を設ける工程
 有機平坦化樹脂層をダムの内部に形成する方法は、特に制限されない。公知のスクリーン印刷法、インクジェット法等種々の湿式塗布方式が利用できる。
 (4)該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムのガスバリアー層とを真空常温接合により接合する工程。
 第1の実施態様で説明したと同様な方法により、ダム、又はダム及びダムに囲まれた有機平坦化樹脂層とガスバリアー層を有する封止フィルムのガスバリアー層とを真空常温接合することにより接合することができる。またその後の圧着も第1の実施態様と同様にして、強固に接合することができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 〔実施例1〕
 《封止フィルム1の製造》
 株式会社きもと製のクリアハードコートを施した、厚さ50μmのPET支持体を株式会社アルバック製スパッタ装置(直流マグネトロンスパッタリング装置SRV150)の真空槽内にセットし、10-4Pa台まで真空引きし、放電ガスとしてアルゴンを分圧で0.5Pa導入した。雰囲気圧力が安定したところで放電を開始し酸化ケイ素(SiOx)ターゲット上にプラズマを発生させ、スパッタリングプロセスを開始した。プロセスが安定したところでシャッターを開きフィルムへの酸化ケイ素膜(SiOx)形成を開始した。300nmの膜が堆積したところでシャッターを閉じて成膜を終了した。
 《封止フィルム2の製造》
 株式会社きもと製のクリアハードコートを施した、厚さ50μmのPET支持体を、図3に示されるようなプラズマCVD装置31にセットして、搬送させた。次いで、成膜ローラー39と成膜ローラー40との間に磁場を印加するとともに、成膜ローラー39と成膜ローラー40にそれぞれ電力を供給して、成膜ローラー39と成膜ローラー40との間に放電してプラズマを発生させた。次いで、形成された放電領域に、成膜ガス(原料ガスとしてヘキサメチルジシロキサン(HMDSO)と反応ガスとして酸素ガス(放電ガスとしても機能する)との混合ガスを供給し、支持体2上に、プラズマCVD法にて厚さ150nmのガスバリアー性のSiO膜層を形成した。
 成膜条件は、以下のとおりとした。
 (成膜条件)
 原料ガスの供給量:50sccm(Standard Cubic Centimeter per Minute、0℃、1気圧基準)
 酸素ガスの供給量:500sccm(0℃、1気圧基準)
 真空チャンバー内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 フィルムの搬送速度:1.0m/min。
 《封止フィルム3の製造》
 〈ポリシラザン含有塗布液の調製〉
 無触媒のパーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NN120-20)と、アミン触媒(N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン(TMDAH))5質量%を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、アクアミカ(登録商標)NAX120-20)とを、4:1の割合で混合し、さらにジブチルエーテルと2,2,4-トリメチルペンタンとの質量比が65:35となるように混合した溶媒で、塗布液の固形分が5質量%になるように、塗布液を希釈調製した。
 上記で得られた塗布液を、スピンコーターにて封止フィルム2のSiO膜層上に厚さが300nmになるよう成膜し、2分間放置した後、80℃のホットプレートで1分間加熱処理を行い、ポリシラザン塗膜を形成した。ポリシラザン塗膜を形成した後、Xeエキシマランプにて6000mJ/cmの照射処理を施してさらにガスバリアー層を形成した。
 《機能素子の作製》
 機能素子の一例として有機EL素子を作製した。
 〔有機EL素子1の作製〕
 (第一電極の形成)
 30μmの厚さの薄膜ガラスと50μm厚のPETとを複合化させた基材201(50mm×100mm)上に、図7Aに示すように40mm×30mmの長方形の厚さ150nmのITO(酸化インジウム・スズ(Indiumu Tin Oxide:ITO))をスパッタ法により成膜し、フォトリソグラフィー法によりパターニングを行い、第一電極を形成した。
 (正孔輸送層の形成)
 正孔輸送層形成用塗布液を塗布する前に、第一電極が形成された基材の洗浄表面改質処理を、波長184.9nmの低圧水銀ランプを使用し、照射強度15mW/cm、距離10mmで実施した。帯電除去処理は、微弱X線による除電器を使用して行った。
 第一電極が形成された基材の第一電極の上に、以下に示す正孔輸送層形成用塗布液を、25℃・50%RHの環境下で、スピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、正孔輸送層を形成した。正孔輸送層形成用塗布液は乾燥後の厚さが50nmになるように塗布した。
 〈正孔輸送層形成用塗布液の準備〉
 ポリエチレンジオキシチオフェン・ポリスチレンスルホネート(PEDOT/PSS、Bayer社製 Bytron P AI 4083)を純水65%、メタノール5%で希釈した溶液を正孔輸送層形成用塗布液として準備した。
 〈乾燥及び加熱処理条件〉
 正孔輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度100℃で溶媒を除去した後、引き続き、加熱処理装置を用い温度150℃で裏面伝熱方式の熱処理を行い、正孔輸送層を形成した。
 (発光層の形成)
 上記で形成した正孔輸送層上に、以下に示す白色発光層形成用塗布液を、下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理を行い、発光層を形成した。白色発光層形成用塗布液は乾燥後の厚さが40nmになるように塗布した。
 〈白色発光層形成用塗布液〉
 ホスト材として下記化学式H-Aで表される化合物1.0gと、ドーパント材として下記化学式D-Aで表される化合物を100mg、ドーパント材として下記化学式D-Bで表される化合物を0.2mg、ドーパント材として下記化学式D-Cで表される化合物を0.2mg、100gのトルエンに溶解し白色発光層形成用塗布液として準備した。
Figure JPOXMLDOC01-appb-C000001
 〈塗布条件〉
 塗布工程を窒素ガス濃度99%以上の雰囲気で、塗布温度を25℃とした。
 〈乾燥及び加熱処理条件〉
 白色発光層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、温度130℃で加熱処理を行い、発光層を形成した。
 (電子輸送層の形成)
 上記で形成した発光層の上に、以下に示す電子輸送層形成用塗布液を下記の条件によりスピンコーターで塗布した後、下記の条件で乾燥及び加熱処理し、電子輸送層を形成した。電子輸送層形成用塗布液は、乾燥後の厚さが30nmになるように塗布した。
 〈塗布条件〉
 塗布工程は窒素ガス濃度99%以上の雰囲気で、電子輸送層形成用塗布液の塗布温度を25℃とした。
 〈電子輸送層形成用塗布液〉
 電子輸送層は下記化学式E-Aで表される化合物を2,2,3,3-テトラフルオロ-1-プロパノール中に溶解し0.5質量%溶液とし電子輸送層形成用塗布液とした。
Figure JPOXMLDOC01-appb-C000002
 〈乾燥及び加熱処理条件〉
 電子輸送層形成用塗布液を塗布した後、成膜面に向け高さ100mm、吐出風速1m/s、幅手の風速分布5%、温度60℃で溶媒を除去した後、引き続き、加熱処理部で、温度200℃で加熱処理を行い、電子輸送層を形成した。
 (電子注入層の形成)
 上記で形成した電子輸送層上に、電子注入層を形成した。まず、基板を減圧チャンバーに投入し、5×10-4Paまで減圧した。あらかじめ、真空チャンバーにタンタル製蒸着ボートに用意しておいたフッ化セシウムを加熱し、厚さ3nmの電子注入層を形成した。
 (第二電極の形成)
 上記で形成した電子注入層の上であって、第一電極の取り出し電極になる部分を除く部分に、5×10-4Paの真空下で、第二電極形成材料としてアルミニウムを使用し、取り出し電極を有するように蒸着法にて、発光面積が40mm×30mmの長方形になるようにマスクパターン成膜し、厚さ100nmの第二電極を積層し、電子素子202を作製した。
 (封止)
 封止フィルムとして、上記作製した封止フィルム1を50mm×100mmに切り出し使用した。この封止フィルムのガスバリアー層側に、熱硬化性接着剤を、ディスペンサーを使用して厚さ20μmで均一に塗布し、接着剤層を形成した。
 このとき、熱硬化性接着剤としては、下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 封止フィルムを、取り出し電極及び電極リードの接合部を覆うようにして密着・配置して、圧着ローラーを用いて圧着条件、圧着ローラー温度120℃、圧力0.5MPa、装置速度0.3m/minで密着封止した。このようにして比較の有機EL素子1を作製した。
 〔有機EL素子2及び3の作製〕
 有機EL素子1の作製において、封止フィルムを封止フィルム1から上記作製した封止フィルム2及び3に変えて、有機EL素子1の作製と同様にして比較の有機EL素子2及び3を作製した。
 〔有機EL素子4の作製〕
 有機EL素子1の作製において、第二電極作製までは有機EL素子1と同様にして作製し、その後の工程を以下のように変えて有機EL素子4を作製した。
 (有機平坦化樹脂層の形成)
 有機EL素子1の作製において、第二電極まで形成した積層物の上に、以下に記載する有機平坦化樹脂組成物203を5μmの厚さでスクリーン印刷法によって第二電極上を被覆するように48mm×98mmの範囲(図7B)に形成されるように塗布し、80℃60分で加熱硬化して封止した。
 〈有機平坦化樹脂組成物の調製〉
 エポキシ樹脂として「EP828」(三菱化学社製)100質量部、ポリチオール化合物として「TMTP」(トリメチロールプロパントリス(β-チオプロピオネート);淀化学社製[K;<0.5ppm、Na;2.9ppm])75質量部、硬化促進剤として「アミキュアPN23」(味の素ファインテクノ株式会社製)3質量部、及び、2-エチル-4-メチルイミダゾール(2E4MZ)0.1質量部を混合し、粘度2800mPa・sの有機平坦化樹脂組成物を調製した。
 (無機層の形成)
 さらにその上に酸窒化ケイ素膜(SiON)からなる無機層を、プラズマCVD法により200nmの厚さで形成した。
 次に上記で作製した封止用フィルム1を50mm×100mmの大きさに切りだし、封止フィルムとして。これらを真空常温接合した。
 (真空常温接合)
 図4に示すようなホットプレート(134に内蔵)を具えた接合装置に、基材をホットプレート上に載せ、有機平坦化樹脂組成物を形成した側と封止フィルムのガスバリアー層が形成された側とが対向するように設置した。その後、電子素子側の接合面及び封止フィルム全面を、1×10-6Paの真空下でそれぞれArイオンガンで逆スパッタリングを行って表面を清浄化した。逆スパッタリングは、加速電圧を0.1~2kVとし、電流値を1~20mAとして1~10分間の照射を行った。これにより、表面が活性化される。
 清浄化後、特開2008-62267号公報に記載される方法に準じて、Siを20nmの厚さでスパッタリング後、Si膜の上をArイオンガンで再度、加速電圧を0.1~2kVとし、電流値を1~20mAとして1~10分間、表面を逆スパッタリングして、表面を活性化させた。なお、Siのスパッタリングは、加速電圧1.5kV、電流値100mAで3分間行った。
 次いで真空度を1×10-7Paとして、ホットプレートを90℃に加熱し、電子素子側の接合面及び封止フィルムを接触させ、20MPaで3分間加圧して真空常温接合し封止した。その後、大気中に取り出した。このようにして有機EL素子4を作製した。
 〔有機EL素子5及び6の作製〕
 有機EL素子4の作製において、封止フィルムを封止フィルム1から封止フィルム2及び3にそれぞれ変えて、そのほかは有機EL素子4と同様にして有機EL素子5及び6を作製した。
 〔有機EL素子7の作製〕
 (ダム形成用感光性組成物の調製)
 バインダー樹脂-1を48質量部、エチレン性不飽和化合物-1を20質量部、エチレン性不飽和化合物-2を24質量部、エチレン性不飽和化合物-3を5質量部、光重合開始剤-1を3質量部、塗布性調製剤-1を0.1質量部、撥液性成分-1を0.6質量部、溶剤-1を110質量部混合することにより、ダム本体形成用の感光性組成物を調製した。
 <バインダー樹脂-1>
Figure JPOXMLDOC01-appb-C000003
 <エチレン性不飽和化合物-1>
  ジペンタエリスリトールヘキサアクリレート(DPHA)(日本化薬社製)
 <エチレン性不飽和化合物-2>
  デコナールアクリレートDA-314(ナガセケムテックス社製)
 <エチレン性不飽和化合物-3>
Figure JPOXMLDOC01-appb-C000004
 <光重合開始剤-1>
  イルガキュアー907(BASFジャパン社製)
 <塗布性調整剤-1>
  ポリエーテル変性ポリジメチルシロキサン BYK-330(ビックケミー社製)
 <撥液性成分-1>
  メガファック RS-102(DIC社製)
 <溶剤-1>
  プロピレングリコールモノメチルエーテルアセテート
 (ダムの形成)
 30μmの厚さの薄膜ガラスと50μm厚のPETとを複合化させた基材201(50mm×100mm)のガラス面上に上記感光性組成物を乾燥膜厚5μmになるよう塗布して感光性組成物層を形成した。乾燥は10分間真空乾燥し、さらにホットプレートにて80℃、1分間の条件で実施した。
 その後、感光性組成物層形成面に対して、線幅が60μmで中心線が48mm×98mmの口の字になるように300mJ/cmの露光条件にてレーザー露光を施した。
 次いで、テトラメチルアンモニウムヒドロキシド0.5質量%と特級エタノール2質量%を含有する水溶液を現像液として、23℃において水圧0.1MPaのシャワー現像を30秒間実施したのち、水洗スプレーにて30秒間水洗し、圧空で水気を切った。
 (無機層の形成)
 その後これを110℃のオーブンで60分間ポストベークし、感光性組成物層を用いて形成されたダムを有する基板を得た。さらにこのダム上に酸窒化ケイ素膜(SiON)からなる無機層を200nmの厚さでプラズマCVD法により形成した。
 図7Cに示すように上記で得られたダム204を有する基板上に40mm×30mmの長方形状に、実施例1と同様にして有機EL素子の第二電極まで積層した。
 (有機平坦化樹脂層の形成)
 その後、有機EL素子4の製造で調製した有機平坦化樹脂組成物をダムの高さに対して同じ高さとなるように、スクリーン印刷法によって有機EL素子の第二電極まで積層した積層物を被覆するようにダムパターン内部に形成されるように塗布し、80℃60分で加熱硬化した。
 (真空常温接合)
 次に有機EL素子4の作製と同様にして封止フィルム1を真空常温接合して封止した。このようにして有機EL素子7を作製した。
 〔有機EL素子8~13の作製〕
 有機EL素子7の作製において、有機平坦化樹脂層とダムの高低差、及び封止フィルムの種類を表1のようにそれぞれ変えて、その他は有機EL素子7の作製と同様にして有機EL素子8~13を作製した。
 《評価》
 (フレキシブル性の評価)
 上記で作製した有機EL素子1~13のフレキシブル性をフレキシブルディスプレイ素子の機械的ストレステスト(IEC62715-6-1 Ed.1)に準じて評価した。具体的には、23℃・50%RHの環境下でユアサシステム機器株式会社製のU字折り返し試験機を用いて曲率半径2mm、封止フィルム側が外側になるようにセットし、屈曲速度60回/分で20万回繰り返し屈曲させた。
 その後85℃・85%RHの環境に24時間放置して最大屈曲回数を出した。この評価により曲率半径2mm以下で折り曲げることが可能か否かの判定と、さらにフレキシブル性の耐久性を評価することができる。
 折り曲げることができるかどうかの判定と耐久性の判定は、ストレステスト前の、一定電圧(10V)における発光強度が、テスト後50%未満となったとき、フレキシブル性が失われたと判定した。
 なお、1万回以上折り曲げ可能の場合は、1万回毎に発光強度を測定した。なお、有機EL素子1~3は、U字型に折り曲げて試験機にセットした段階で折れてしまい、曲率半径2mmの繰り返し試験に至らなかった。表では0回と記した。
Figure JPOXMLDOC01-appb-T000005
 表1から分かるように、従来の熱硬化性接着剤を用いた比較の有機EL素子1~3の場合、曲率半径2mmで折り曲げることはできないが、本発明の有機EL素子4~13はフレキシブル性が良好で、封止性とフレキシブル性が優れている。さらに、ダムを有する有機EL素子7~13が耐久性の良いことが分かる。
 本発明の機能素子は、曲率半径2mm以下で折り曲げることができ、折りたたんだり、巻きつけたりして使用することができるフレキシブル性を有する機能素子として、有機EL素子や有機薄膜太陽電池等の機能素子に好ましく適用できる。
1 ガスバリアー性フィルム(封止フィルム)
2 支持体
3 ガスバリアー層
10 機能素子
11 基材
12 封止フィルム
13 電子素子
14 電極(取り出し電極)
15 有機平坦化樹脂層
16 無機層
17 第一電極(陽極)
18 正孔輸送層
19 発光層
20 電子輸送層
21 第二電極(陰極)
22 有機層
23 ダム
24 電子素子
25 接合部
31 製造装置
32 送り出しローラー
33、34、35、36 搬送ローラー
39、40 成膜ローラー
41 ガス供給管
42 プラズマ発生用電源
43、44 磁場発生装置
45 巻取りローラー
51 プラズマCVD装置
52 チャンバー
53 上部電極
54 下部電極
55 電源装置
56a、56b、56c 成膜ガス貯蔵部
57 配管
58 ガス導入口
60a、60b、60c バルブ
61 真空ポンプ
127 接合界面
130 真空常温接合装置
131 真空チャンバー
132 イオンガン(スパッタリング源)
133 ターゲットステージ1
134 ターゲットステージ2
135 ターゲット
136a、136b、136c ターゲット基板
137 入射線
138 出射線(スパッタ粒子)
201 基材
202 電子素子
203 有機平坦化樹脂組成物
204 ダム

Claims (6)

  1.  フレキシブル性を有する基材上に電子素子を有する機能素子であって、該機能素子が、曲率半径2mm以下で折り曲げることができることを特徴とする機能素子。
  2.  前記電子素子の周囲に、無機層で被覆されたダムが設けられ、該ダムで囲われた内部に前記電子素子を覆う有機平坦化樹脂層が設けられ、前記有機平坦化樹脂層の高さが、前記ダムの高さに対して0~±2μmの範囲内にあり、さらに、該ダム、又は該ダム及び該有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とが接合された機能素子であることを特徴とする請求項1に記載の機能素子。
  3.  前記ガスバリアー層が、SiOCを含有することを特徴とする請求項2に記載の機能素子。
  4.  前記電子素子とその周囲の基材とが、有機平坦化樹脂層と無機層とでこの順で被覆され、さらに、SiOCを含有するガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とが、接合された機能素子であることを特徴とする請求項1に記載の機能素子。
  5.  請求項1又は請求項4に記載の機能素子を製造する機能素子の製造方法であって、少なくとも以下の三つの工程を経て製造することを特徴とする機能素子の製造方法。
    (1)電子素子を準備する工程
    (2)前記電子素子とその周囲の基材とを、有機平坦化樹脂層と無機層とでこの順で被覆する工程
    (3)ガスバリアー層を有する封止フィルムの前記ガスバリアー層と前記無機層とを真空常温接合により接合する工程
  6.  請求項1から請求項3までのいずれか一項に記載の機能素子を製造する機能素子の製造方法であって、少なくとも以下の四つの工程を経て製造することを特徴とする機能素子の製造方法。
    (1)電子素子を準備する工程
    (2)前記電子素子の周囲に、無機層で被覆されたダムを設ける工程
    (3)前記ダムで囲われた内部に電子素子を覆う有機平坦化樹脂層を設ける工程
    (4)前記ダム、又は前記ダム及び前記有機平坦化樹脂層の全面とガスバリアー層を有する封止フィルムの前記ガスバリアー層とを真空常温接合により接合する工程
PCT/JP2015/074965 2014-09-08 2015-09-02 機能素子及び機能素子の製造方法 WO2016039237A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547402A JPWO2016039237A1 (ja) 2014-09-08 2015-09-02 機能素子及び機能素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182065 2014-09-08
JP2014-182065 2014-09-08

Publications (1)

Publication Number Publication Date
WO2016039237A1 true WO2016039237A1 (ja) 2016-03-17

Family

ID=55458986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074965 WO2016039237A1 (ja) 2014-09-08 2015-09-02 機能素子及び機能素子の製造方法

Country Status (2)

Country Link
JP (1) JPWO2016039237A1 (ja)
WO (1) WO2016039237A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173758A1 (ja) * 2017-03-23 2018-09-27 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置
JP2018160388A (ja) * 2017-03-23 2018-10-11 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置
WO2018216670A1 (ja) * 2017-05-23 2018-11-29 味の素株式会社 封止体の製造方法
JP2019153534A (ja) * 2018-03-06 2019-09-12 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152663A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
JP2008072087A (ja) * 2006-08-16 2008-03-27 Kyoto Univ 半導体装置および半導体装置の製造方法、ならびに表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152663A (ja) * 2002-10-31 2004-05-27 Seiko Epson Corp 表示パネル及びその表示パネルを備えた電子機器並びに表示パネルの製造方法
JP2008072087A (ja) * 2006-08-16 2008-03-27 Kyoto Univ 半導体装置および半導体装置の製造方法、ならびに表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEAKI OTOMO: "Encapsulation Technology for OLED", GEKKAN DISPLAY, September 2012 (2012-09-01), pages 70 - 76 *
YOSHIIE MATSUMOTO ET AL.: "Atarashii Joon Setsugo Gijutsu -Muki no Secchakuzai to Iu Kangaekata- Glass Joon Setsugo, Film Joon Setsugo no Seiko", CONVERTECH, vol. 40, no. 9, 2012, pages 66 - 69 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173758A1 (ja) * 2017-03-23 2018-09-27 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置
JP2018160388A (ja) * 2017-03-23 2018-10-11 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置
WO2018216670A1 (ja) * 2017-05-23 2018-11-29 味の素株式会社 封止体の製造方法
JPWO2018216670A1 (ja) * 2017-05-23 2020-03-26 味の素株式会社 封止体の製造方法
JP7268596B2 (ja) 2017-05-23 2023-05-08 味の素株式会社 封止体の製造方法
JP2019153534A (ja) * 2018-03-06 2019-09-12 株式会社日本製鋼所 有機el素子用の保護膜の形成方法、表示装置の製造方法および表示装置

Also Published As

Publication number Publication date
JPWO2016039237A1 (ja) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6624257B2 (ja) 電子デバイスおよびその製造方法
JP6504284B2 (ja) ガスバリア性フィルム、その製造方法、およびこれを用いた電子デバイス
JP5761203B2 (ja) ガスバリア性フィルム及び電子デバイス
JP5929775B2 (ja) ガスバリア性フィルムおよびその製造方法、ならびに前記ガスバリア性フィルムを含む電子デバイス
JP5716752B2 (ja) ガスバリアフィルムの製造方法、ガスバリアフィルムおよび電子デバイス
JP5888329B2 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法、および電子デバイス
US20150364720A1 (en) Gas barrier film
US11283043B2 (en) Laminated film and process for manufacturing the same
WO2013172359A1 (ja) ガスバリア性フィルム、ガスバリア性フィルムの製造方法及び電子デバイス
US10535838B2 (en) Laminated film and process for manufacturing the same
WO2014123201A1 (ja) ガスバリア性フィルム、およびその製造方法
WO2011074363A1 (ja) バリアフィルム、その製造方法および有機光電変換素子
WO2014163062A1 (ja) ガスバリアー性フィルムの製造方法、ガスバリアー性フィルム及び電子デバイス
WO2015002156A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
WO2015053405A1 (ja) ガスバリア性フィルムの製造方法
WO2016039237A1 (ja) 機能素子及び機能素子の製造方法
WO2015182623A1 (ja) ガスバリア性フィルムおよびそれを用いた電子デバイス
WO2015119260A1 (ja) 変性ポリシラザン、当該変性ポリシラザンを含む塗布液および当該塗布液を用いて製造されるガスバリア性フィルム
WO2014119754A1 (ja) ガスバリア性フィルムおよびその製造方法、ならびにこれを用いた電子デバイス
JP6582842B2 (ja) ガスバリアーフィルムの製造方法
WO2015029795A1 (ja) ガスバリア性フィルムの製造方法
JP2016171038A (ja) 電子デバイスの製造方法
WO2015133286A1 (ja) 機能素子の封止方法、及びその封止方法により封止された機能素子
WO2014188981A1 (ja) ガスバリア性フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839946

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547402

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839946

Country of ref document: EP

Kind code of ref document: A1