WO2016038787A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2016038787A1
WO2016038787A1 PCT/JP2015/003937 JP2015003937W WO2016038787A1 WO 2016038787 A1 WO2016038787 A1 WO 2016038787A1 JP 2015003937 W JP2015003937 W JP 2015003937W WO 2016038787 A1 WO2016038787 A1 WO 2016038787A1
Authority
WO
WIPO (PCT)
Prior art keywords
tread
sipe
circumferential
land portion
width direction
Prior art date
Application number
PCT/JP2015/003937
Other languages
English (en)
French (fr)
Inventor
崇 清村
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP15840083.8A priority Critical patent/EP3192673B1/en
Priority to CN201580048435.6A priority patent/CN107074029B/zh
Priority to US15/510,501 priority patent/US20170253087A1/en
Priority to JP2016547665A priority patent/JP6571093B2/ja
Publication of WO2016038787A1 publication Critical patent/WO2016038787A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C11/1281Width of the sipe different within the same sipe, i.e. enlarged width portion at sipe bottom or along its length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0355Circumferential grooves characterised by depth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • B60C2011/1268Depth of the sipe being different from sipe to sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1272Width of the sipe
    • B60C2011/1277Width of the sipe being narrow, i.e. less than 0.3 mm

Definitions

  • the present invention relates to a pneumatic tire.
  • an object of the present invention is to provide a pneumatic tire capable of improving performance on snow, drainage performance and riding comfort performance.
  • the gist configuration of the present invention is as follows.
  • the pneumatic tire of the present invention includes a plurality of circumferential main grooves extending continuously in the tread circumferential direction on the tread tread, and is a designated pneumatic tire in a vehicle mounting direction.
  • the inner circumferential main groove located on the innermost side in the vehicle mounting direction and the land portion defined by the tread end are defined as inner shoulder land portions
  • the inner shoulder land portion substantially does not include the groove
  • the tread circumference An inner circumferential sipe extending in the direction and a plurality of inner width sipe extending in the tread width direction, and the outer shoulder land portion communicates with the outer circumferential main groove and the tread end.
  • Tres A plurality of widthwise grooves that extend in the width direction, is located between the widthwise grooves adjacent to the tread circumferential direction, and having an outer width direction sipes extending in the tread width direction. According to the pneumatic tire of the present invention, the performance on snow, drainage performance, and riding comfort performance can be improved.
  • the “grooves” such as the circumferential main grooves and the width direction grooves are the tread treads when a pneumatic tire is mounted on an applied rim, filled with a specified internal pressure, and in a no-load state.
  • the opening width is 2 mm or more.
  • the inner shoulder land portion does not substantially include a groove means that the length measured along the groove extending direction is the length of the inner shoulder land portion measured along the tread width direction of the land portion. It means that no groove exceeding 30% of the maximum width is included.
  • “Sipe” refers to a thin notch cut into the interior from the surface of the land, which can be closed when touched down. A pneumatic tire is attached to the applicable rim and filled with the specified internal pressure.
  • the width which opens to a tread tread when it is made into a no-load state means the thing below 2 mm.
  • the “tread end” is the outermost position in the tread width direction of the contact surface when the tire is mounted on the applicable rim, the specified internal pressure is filled, and the load corresponding to the maximum load capacity (maximum load load) is applied.
  • “Applicable rim” is an industrial standard that is effective in the area where tires are produced and used. In Japan, JATMA (Japan Automobile Tire Association) JATMA YEAR BOOK, in Europe, ETRTO (The European Tire) and Rim Technical Organization's STANDARDDS MANUAL, in the United States, TRA (The Tire and Rim Association, Inc.) YEAR BOOKOK, etc. Refers to Design Rim), but if the size is not described in the industry standard, the tire bead It refers to the width of the rim corresponding to.
  • “specified internal pressure” refers to the state of air pressure (maximum air pressure) corresponding to the maximum load capacity of a single wheel in the applicable size and ply rating described in JATMA, etc. Refers to the maximum mass allowed to be applied to the tire according to the above standards.
  • the outer shoulder land portion does not have an outer circumferential sipe extending in the tread circumferential direction, or when the outer shoulder land portion has the outer circumferential sipe, It is preferable that the number of rows in the circumferential sipe is larger than the number of rows in the outer circumferential sipe. According to this, riding comfort performance can be improved more.
  • the “number of rows of circumferential sipe” means that when a plurality of sipes arranged in the tread circumferential direction and spaced apart in the tread circumferential direction are arranged, the plurality of sipes are arranged in one row.
  • one circumferential sipe that is continuous in the direction is arranged, it means a value counted in the tread width direction with the one circumferential sipe as one row.
  • the width of the outer shoulder land portion measured along the tread width direction is larger than the width of the inner shoulder land portion measured along the tread width direction. According to this, steering stability can be improved.
  • FIG. 6 is a tread circumferential cross-sectional view of an inner circumferential sipe and an outer circumferential sipe. It is a schematic plan view showing a first example of a belt structure. It is a schematic top view which shows the 2nd example of a belt structure. It is a schematic top view which shows the 3rd example of a belt structure. It is a tire width direction schematic sectional drawing of the tire width direction half part of the pneumatic tire which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a development view showing a tread pattern of a pneumatic tire (hereinafter also referred to as a tire) according to a first embodiment of the present invention.
  • the tire is mounted on an applied rim, filled with a specified internal pressure, and no load is applied.
  • the tread tread 1 and buttress portion of the tire when in a state are developed and shown.
  • about the internal structure of a tire it can be made the same as that of the past.
  • the tire of the present embodiment is a tire in which the mounting direction to the vehicle is specified, and in the drawing, the right side is the vehicle mounting direction inside (indicated as “IN”), and the left side is the vehicle mounting direction outside (“OUT”). Is displayed).
  • the outer diameter of the tire is OD (mm) and the cross-sectional width of the tire is SW (mm)
  • the internal pressure is 250 kPa or more and the cross-sectional width SW of the tire is less than 165 (mm)
  • the ratio SW / OD of the tire cross-sectional width SW to the outer diameter OD is 0.26 or less
  • the tire cross-sectional width SW is 165 (mm) or more
  • the tire cross-sectional width SW (mm) and The outer diameter OD (mm) satisfies the relational expression OD ⁇ 2.135 ⁇ SW + 282.3 (hereinafter also referred to as relational expression (1)).
  • the tire of this embodiment has a plurality of (three in the illustrated example) circumferential main grooves 2 extending continuously in the tread circumferential direction on the tread surface 1.
  • this tire has three circumferential main grooves 2a, 2b, and 2c on the tread tread surface 1.
  • the circumferential main groove 2a and the circumferential main groove 2b are located at the innermost side in the vehicle mounting direction. Is arranged in the tread half part on the inner side in the vehicle mounting direction with respect to the tire equatorial plane CL. Further, the circumferential main groove 2c located on the outermost side in the vehicle mounting direction is disposed in a tread half portion on the outer side in the vehicle mounting direction with respect to the tire equatorial plane CL.
  • these land direction main grooves 2a, 2b, 2c and the tread end TE define four land portions 3a, 3b, 3c, 3d in the illustrated example.
  • the circumferential main groove 2a is referred to as an inner circumferential main groove
  • the circumferential main groove 2c is referred to as an outer circumferential main groove
  • a land portion defined by the circumferential main groove 2a and the tread end TE is referred to as an inner side.
  • a land portion defined by the shoulder land portion 3a, the circumferential main groove 2c, and the tread end TE is referred to as an outer shoulder land portion 3d.
  • the groove widths of the respective circumferential main grooves 2 can be the same or different, but the groove width of the inner circumferential main groove 2a is, for example, 2 to 5 mm.
  • the groove width of the circumferential main groove 2b can be, for example, 5 to 8 mm, and the groove width of the outer circumferential main groove 2c can be, for example, 7 to 10 mm.
  • the groove depths of the respective circumferential main grooves 2 can be the same or different, but the groove depths of the circumferential main grooves 2a, 2b, and 2c can be set to, for example, 6 to 8 mm.
  • groove width and “groove depth”
  • the inner shoulder land portion 3a of the tread pattern shown in FIG. 1 is shown in FIG. 2 (a), and the outer shoulder land portion 3d is shown in FIG. 2 (b) as a partial development view.
  • the inner shoulder land portion 3a is substantially free of grooves, and has an inner circumferential sipe 4a extending in the tread circumferential direction and a plurality of inner sides extending in the tread width direction. Only the width direction sipe 4b is provided.
  • the inner shoulder land portion 3a is not provided with a groove.
  • the inner circumferential sipe 4a is one (one row) sipe extending continuously in the tread circumferential direction, and a plurality of inner width sipe 4b are provided on the inner shoulder land portion 3a (shown in FIG. 1).
  • the inner width direction sipe 4b intersects the inner circumferential direction sipe 4a.
  • each inner width direction sipe 4b extends outward from the inner circumferential main groove 2a in the tread width direction and directly opens to the tread end TE, and the inner width direction sipe 4b has a tread width from the tread end TE.
  • Those connected to the lug groove 5 located in the outer region (buttress portion) and those not connected to the lug groove 5 are alternately arranged in the tread circumferential direction.
  • the outer shoulder land portion 3d includes a plurality of widthwise grooves 6a extending in the tread width direction and communicating with the outer circumferential main groove 2c and the tread end TE, and the tread. It has the outer side width direction sipe 6b extended in the tread width direction located between the said width direction groove
  • a plurality of width direction grooves 6a are provided in the outer shoulder land portion 3d (eight in the range shown in FIG. 1).
  • the outer width direction sipe 6b extends in the tread width direction, communicates with the tread end TE and the outer circumferential main groove 2c, and between the two width direction grooves 6a adjacent in the tread circumferential direction, One is provided in each of the illustrated examples.
  • the inner shoulder land portion 3a includes only the sipe, so that the rigidity of the land portion is made uniform in the tread circumferential direction and the riding comfort performance is improved while maintaining the on-snow performance by the sipe. Can do.
  • the inner shoulder land portion 3a generally has a higher ground pressure than the outer shoulder land portion 3d due to the presence of the camber angle of the tire (particularly in the case of a negative camber), and the tread circumferential direction of the land portion rigidity is increased. Inhomogeneity affected ride performance. Therefore, by providing a sipe without providing a groove in the inner shoulder land portion 3a, the land portion rigidity can be made uniform in the tread circumferential direction, and the riding comfort performance can be improved. Moreover, since the inner circumferential land sipe 4a and the inner width direction sipe 4b are provided on the inner shoulder land portion 3a, both edge components in the traveling direction and the lateral force direction can be ensured. Performance on snow can be maintained.
  • the width connecting the outer circumferential main groove 2c and the tread end TE By providing the directional groove 6a, drainage performance can be improved. Moreover, on-snow performance can also be improved by providing the width direction groove
  • the contact pressure increases, so that the sipe edge effect is easily exhibited. Therefore, the performance on snow can be improved more effectively by using the tire of the present embodiment under the condition of high internal pressure.
  • the vertical spring tends to be strong.
  • the inner shoulder land portion 3a is substantially not provided with a groove, and only the inner width direction sipe 4b and the inner circumferential direction sipe 4a are provided. Since it arrange
  • an internal pressure of the tire of this embodiment it is preferable that it is 250 kPa or more, It is more preferable that it is 280 kPa or more, It is further more preferable that it is 300 kPa or more.
  • the sipe width of the inner circumferential sipe 4a can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 6 to 8 mm, for example. Can do.
  • the sipe width of the inner width direction sipe 4b can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 6 to 8 mm, for example.
  • the interval in the tread circumferential direction of the inner width direction sipe 4b is preferably 10 to 15 mm. By setting it to 10 mm or more, it is possible to secure the rigidity of the land portion 3 a and to ensure steering stability and noise performance.
  • the effect of improving on-snow performance during straight traveling is further improved. This is because it can be obtained more effectively.
  • a straight line connecting both end portions of the inner width direction sipe 4b (the end portion of the inner width direction sipe 4b in the tread width direction at the tread end TL and the end portion in the tread width direction communicating with the inner circumferential main groove 2a). Is the inclination angle of the inner width direction sipe 4b with respect to the tread width direction, the inclination angle of the inner width direction sipe 4b with respect to the tread width direction sufficiently improves the on-snow performance when traveling straight. Therefore, it is preferable to set it to 30 degrees or less.
  • the groove width of the width direction groove 6a can be set to 2 to 4 mm, for example, and the groove depth can be set to 6 to 8 mm.
  • the sipe width of the outer width direction sipe 6b can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 6 to 8 mm.
  • the distance in the tread circumferential direction between two widthwise grooves 6a adjacent in the tread circumferential direction can be set to 17 to 30 mm.
  • the inclination angle of the width direction groove 6a with respect to the tread width direction is less than 10 °.
  • the inclination angle of the outer width direction sipe 6b with respect to the tread width direction is preferably 40 ° or less. This is because, when the angle is 40 ° or less, the above-mentioned performance on snow during straight traveling can be effectively obtained.
  • the outer shoulder land portion 3d is not provided with an outer circumferential sipe extending in the tread circumferential direction, but the second embodiment shown in FIG. As in the form, the outer circumferential sipe 6c can also be provided.
  • the inner circumferential sipe 4a has a larger number of columns than the outer circumferential sipe 6c. According to this configuration, the inner shoulder land portion 3a is likely to affect the riding comfort performance as described above.
  • the tire rigidity is uniform in the tread circumferential direction. The rigidity can be reduced while maintaining the riding performance, and the riding comfort performance can be effectively improved.
  • the outer shoulder land portion 3d can improve steering stability during cornering in which a load is applied to the outer side of the tire by relatively maintaining the rigidity in the tire width direction.
  • variety which measured the outer side shoulder land part 3d along the tread width direction is larger than the width
  • the width of the inner shoulder land portion 3a measured along the tread width direction is preferably 18 to 28% of the tread width, and the width of the outer shoulder land portion 3d measured along the tread width direction is The content is preferably 25 to 35% with respect to the tread width.
  • the “tread width” means a length measured between the tread ends TE on both sides along the tread width direction.
  • the land portion 3c divided by the circumferential main grooves 2b and 2c of this embodiment will be described.
  • the land portion 3 c can be a rib-like land portion 3 c that extends between the circumferential main grooves 2 b and 2 c and does not have a groove extending in the tread width direction.
  • the rib-like land portion 3c has one (one row) central circumferential sipe 7b extending continuously in the tread circumferential direction.
  • the sipe width of the central circumferential sipe 7b can be set to 0.5 to 1.5 mm, for example, and the sipe depth of the central circumferential sipe 7b can be set to 3 to 6 mm, for example.
  • the rib-like land portion 3 c extends from the outer circumferential main groove 2 c to the inside in the vehicle mounting direction (right side in the drawing) to a position communicating with the central circumferential sipe 7 b.
  • a plurality of (four in the range shown in FIG. 1) one-end opening lateral grooves 7a that terminate in the rib-like land portion 3c are provided.
  • the rib-like land portion 3c extends from the circumferential main groove 2b to the vehicle mounting direction outer side (left side in the drawing), and ends in the rib-like land portion 3c without communicating with the central circumferential sipe 7b.
  • the first end opening sipes 7c (16 in the range shown in FIG. 1) are provided.
  • the groove width (maximum width) of the one-end opening lateral groove 7a can be set to 3 to 5 mm, for example, and the groove depth can be set to 6 to 8 mm.
  • the sipe width of the first one-end opening sipe 7c can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 2 to 4 mm.
  • the “rib-shaped land portion” means a portion continuous in the tread circumferential direction without a groove or sipe extending in the tread width direction extending between the two circumferential main grooves defining the rib-shaped land portion. It shall mean the land part having
  • “one-end opening lateral groove” and “one-end opening sipe” mean that one end opens in the circumferential main groove and the other end does not open in the circumferential main groove or lateral groove. Including those communicating with Sipe.
  • the rigidity in the vicinity of the outer circumferential main groove 2c is greatly affected by input from the road surface during cornering.
  • the tread rubber may be deformed by the compressive stress outside the vehicle mounting direction and the tensile stress inside the vehicle mounting direction, the belt may be deformed, and a buckling phenomenon may occur where the ground contact surface is lifted.
  • the one end opening lateral groove 7a is provided, the one end opening lateral groove 7a is closed by the compressive stress on the outer side in the vehicle mounting direction. Can be suppressed.
  • the one-end opening lateral groove 7a terminates in the rib-like land portion 3c, rigidity against tensile stress on the inner side in the vehicle mounting direction is increased, thereby suppressing deformation of the tread and the belt. Therefore, according to this embodiment, the occurrence of buckling can be suppressed first.
  • the tire of this embodiment has the center circumferential direction sipe 7b, an edge component with respect to the lateral force direction can be secured, and the performance on snow during turning can be further improved. Furthermore, since the corner portion of the block is formed in the rib-like land portion 3c by the communication between the central circumferential sipe 7b and the one-end opening lateral groove 7a, the edge effect in the straight traveling direction and the lateral force direction is increased. Thus, it is possible to improve on-snow performance when traveling straight and on-snow performance when turning. Furthermore, since the first end opening sipe 7c is provided, the edge component in the straight traveling direction can be further increased, and the performance on snow during straight traveling can be improved.
  • the rigidity of the rib-like land portion 3c is not excessively lowered, and the steering stability and the noise performance can be ensured. it can. Therefore, it is possible to achieve both steering stability, noise performance, and performance on snow.
  • a plurality of one-end opening lateral grooves 7a are formed in the rib-like land portion 3c at intervals in the tread circumferential direction, but the rib-like land portions 3c are arranged between the one-end opening lateral grooves 7a.
  • One or more (13 in the range shown in FIG. 1) extending from the outer circumferential main groove 2c to the inside of the vehicle mounting direction to a position communicating with the central circumferential sipe 7b and terminating in the rib-like land portion 3c. ) Second end opening sipe 7d.
  • three second one end opening sipes 7d are provided between two one end opening lateral grooves 7a adjacent to each other in the tread circumferential direction.
  • the sipe width of the second one-end opening sipe 7d can be, for example, 0.5 to 1.5 mm, and the sipe depth can be 6 to 8 mm.
  • the one-end opening lateral groove 7a it extends from the outer circumferential main groove 2c to the inner side in the vehicle mounting direction to a position where it communicates with the central circumferential sipe 7b. It is preferable to have one or more second one-end opening sipes 7d that terminate in the land portion 3c.
  • the interval in the tread circumferential direction between the two one-end opening lateral grooves 7a adjacent in the tread circumferential direction is preferably 35 to 70 mm.
  • the interval between the first one end opening sipes 7c in the tread circumferential direction is preferably 10 to 15 mm. By setting the distance to 10 mm or more, the rigidity of the land portion 3c can be secured, and the steering stability and the noise performance can be further secured.
  • the distance is set to 15 mm or less.
  • the interval in the tread circumferential direction of the second one-end opening sipe 7d is preferably 10 to 15 mm.
  • the rigidity of the land portion 3c can be ensured, and steering stability and noise performance can be further ensured.
  • the effect of improving on-snow performance when traveling straight is achieved. This is because it can be obtained more effectively.
  • the 1st one end opening sipe 7c crosses tire equatorial plane CL (it extends beyond tire equatorial plane CL).
  • the first one-end opening sipe 7c is disposed at this position, thereby effectively improving the performance on snow during straight traveling. Because you can. Further, in this case, since the one-end opening lateral groove 7a is located outside when the vehicle is mounted, it is easy to obtain the buckling suppressing effect as described above.
  • the angle formed by the straight line connecting both ends of the one-end opening lateral groove 7a with respect to the tread width direction is the inclination angle with respect to the tread width direction of the one-end opening lateral groove 7a
  • the inclination of the one-end opening lateral groove 7a with respect to the tread width direction is preferably 30 ° or less. This is because the effect of suppressing buckling described above can be obtained more effectively by setting the angle to 30 ° or less.
  • the first one end opening The inclination angle of the sipe 7c is preferably 35 ° or less. This is because by setting the angle to 35 ° or less, it is possible to effectively obtain the above-mentioned performance on snow during straight traveling.
  • the angle formed by the straight line connecting both ends of the second one end opening sipe 7d with respect to the tread width direction is the inclination angle with respect to the tread width direction of the second one end opening sipe 7d
  • the second one end opening The inclination angle of the sipe 7d is preferably 40 ° or less. This is because, when the angle is 40 ° or less, the above-mentioned performance on snow during straight traveling can be effectively obtained.
  • the tire of this embodiment has a plurality of intermediate sipes 8a extending from the inner circumferential main groove 2a to the outside in the vehicle mounting direction and terminating in the land portion 3b (see FIG. 1). 17) within the range shown in FIG.
  • the land portion 3b is a rib-like land portion and has a continuous portion in the tread circumferential direction. Since the rib-like land portion 3b is formed with a continuous portion in the tread circumferential direction on the inner side in the vehicle mounting direction that greatly affects the riding comfort, the riding comfort can be effectively improved.
  • the intermediate sipe 8a can secure an edge component in the straight traveling direction, and can further improve the performance on snow during straight traveling.
  • the sipe width of the intermediate sipe 8a can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 6 to 8 mm, for example.
  • the interval in the tread circumferential direction of the intermediate sipe 8a is preferably 10 to 15 mm.
  • the inclination angle of the intermediate sipe 8a is an example shown in FIG. Then, it is 25 degrees or less.
  • the extending length of the intermediate sipe 8a in the tread width direction is preferably 40 to 80% of the width of the land portion 3b in the tread width direction.
  • a tire with a small number of lateral grooves and a large number of sipes especially when the internal pressure is 250 kPa or more and the tire cross-sectional width SW is less than 165 (mm)
  • the ratio SW / OD between the cross-sectional width SW and the outer diameter OD is 0.26 or less, or when the tire cross-sectional width SW is 165 (mm) or more, the tire cross-sectional width SW and the outer diameter OD.
  • the tire of the present invention is preferably used at an internal pressure of 250 to 350 kPa, particularly suitable for use under a high internal pressure of 280 kPa or higher, and used at a high internal pressure of 300 kPa or higher. Further preferred. This is because, under the condition of narrow width and high internal pressure, the force with which the sipe bites the road surface is large, and the edge effect can be effectively exhibited.
  • the contact length tends to increase, but by increasing the contact length to 250 kPa or more, the increase in the contact length is suppressed, the deformation amount of the tread rubber is reduced, and the rolling resistance is further increased. Can be reduced.
  • the tire is suitable as a radial tire for passenger cars, and preferably has an air volume of 15000 cm 3 or more in order to cope with a load that can be used on public roads.
  • FIG. 3 is a development view showing a tread pattern of a pneumatic tire according to a second embodiment of the present invention, when the tire is mounted on an applied rim, filled with a specified internal pressure, and brought into an unloaded state.
  • 1 shows a tread surface 1 and a buttress portion of the tire.
  • the ratio SW / OD of the tire cross-sectional width SW to the outer diameter OD is 0.
  • the tire cross-sectional width SW is 165 (mm) or more
  • the tire cross-sectional width SW and the outer diameter OD satisfy the relational expression OD ⁇ 2.135 ⁇ SW + 282.3.
  • 4 is a partial perspective view of the tire according to FIG. 3 and a tire having the same tread pattern except for the number of first end opening sipes 7c, second end opening sipes 7d, and intermediate sipes 8a. is there.
  • the tire shown in FIG. 3 is different from the tire shown in FIG. 1 in the following points.
  • the tire according to this embodiment includes one outer circumference extending in the tread circumferential direction between each of the two widthwise grooves 6a adjacent in the tread circumferential direction.
  • a direction sipe 6c is provided.
  • both ends of the outer circumferential sipe 6c terminate in the land portion 3d and do not communicate with the widthwise groove 6a.
  • the block defined by the two widthwise grooves 6a adjacent to the tread circumferential direction, the outer circumferential main groove 2c, and the tread end TE has a length in the tread width direction.
  • 3 has a rectangular shape longer than the length in the tread circumferential direction, but in the second embodiment shown in FIG. 3, since the interval in the tread circumferential direction of the width direction groove 6a is 17 to 30 mm, The length of the tread in the circumferential direction is large, and the block is divided into two blocks by the outer circumferential sipe 6c (strictly speaking, the outer circumferential sipe 6c is formed in the widthwise groove 6a.
  • the shape of the block is close to a square, which suppresses the torsional deformation of the block especially when a longitudinal force is applied to the block. It is possible to improve the resistance. Furthermore, since the outer circumferential sipe 6c intersects with the outer width sipe 6b but does not communicate with the width groove 6a, the steering stability and noise performance are ensured without excessively reducing the rigidity of the block. Can do. For this reason, the outer circumferential sipe 6c is preferably separated from the widthwise groove 6a by 1.5 mm or more.
  • the sipe width of the outer circumferential sipe 6c can be set to 0.5 to 1.5 mm, for example, and the sipe depth can be set to 6 to 8 mm, for example.
  • FIG. 5 is a tread circumferential sectional view of the outer circumferential sipe 6c.
  • the tread circumferential ends of the outer circumferential sipe 6c are sidewalls so that the tread circumferential length of the outer circumferential sipe 6c decreases from the tread tread surface 1 side toward the sipe depth direction. Is an inclined shape. Thereby, on the tread tread surface 1 side, the sipe length can be secured in order to secure the edge component.
  • the corner portion of the sipe bottom is used as an obtuse angle to increase rigidity, and this corner portion becomes a wear nucleus. The wear resistance can be improved.
  • the inclination angle of the width direction groove 6a with respect to the tread width direction is less than 10 °
  • the inclination angle of the width direction groove 6a with respect to the tread width direction is 10 ° or more.
  • a bottom raised portion 6d is provided in the width direction groove 6a.
  • the rigidity of a block can be improved, steering stability and abrasion resistance can be improved, and noise can be reduced further.
  • the bottom raised portion 6d can be set to a height of 30 to 60% of the groove depth of the width direction groove 6a, for example.
  • the bottom raised portion 6d is preferably provided in the vicinity of the outer circumferential main groove 2c, the rigidity of which tends to decrease in the groove bottom of the width direction groove 6a.
  • the inclination angle formed by the straight line connecting both ends of the intermediate sipe 8a formed on the land portion 3b with respect to the tread width direction is 15 ° or more. This is different from the tire of the first embodiment shown in FIG. Since not only the traveling direction but also the edge components in both the traveling direction and the lateral force direction can be ensured, the performance on snow during straight traveling and turning can be further improved comprehensively.
  • the tire of the second embodiment shown in FIG. 3 is different from the tire of the first embodiment shown in FIG. 1 in that one or more bottom raised portions 2d are provided in the inner circumferential main groove 2a. ing.
  • the bottom raised portion 2d can be, for example, 30 to 60% of the depth of the inner circumferential main groove 2a.
  • the tire of the second embodiment shown in FIG. 3 has two rows of inner circumferential sipes in the land portion 3a. Specifically, it has a first inner circumferential sipe 4a1 extending in the tread circumferential direction, and a second inner circumferential sipe 4a2 inside the vehicle inner mounting direction of the first inner circumferential sipe 4a1.
  • the second inner circumferential sipe 4a2 is arranged in the tread circumferential direction between two inner width sipes 4b connected to the lug groove 5 in the region outside the tread end TE in the tread end TE. It extends. Thereby, the edge component with respect to the lateral force direction can be ensured, and the performance on snow during turning can be further improved.
  • the second inner circumferential sipe 4 a 2 intersects the inner width direction sipe 4 b that is not connected to the lug groove 5 in the inner width direction sipe 4 b, but is connected to the lug groove 5. Therefore, it is possible to further ensure steering stability and noise performance without excessively reducing the rigidity of the block. Therefore, the second inner circumferential sipe 4a2 is preferably separated from the inner width direction sipe 4b connected to the lug groove 5 by 1.5 mm or more.
  • the sipe width of the second inner circumferential sipe 4a2 can be 0.5 to 1.5 mm, for example, and the sipe depth can be 6 to 8 mm, for example. Further, as shown in FIG.
  • the tread circumferential ends of the second inner circumferential sipe 4a2 are tread circumferential directions of the second inner circumferential sipe 4a2 from the tread tread surface 1 side toward the sipe depth direction.
  • the side wall is inclined so that the length is shortened.
  • the sipe length can be secured in order to secure the edge component, while the corner portion of the sipe bottom is made obtuse and the rigidity is increased, and this corner portion becomes the wear nucleus. Therefore, it is possible to improve wear resistance.
  • the tire of the second embodiment shown in FIG. 3 is provided with the second inner circumferential sipe 4a2 on the inner shoulder land portion 3a, and the inner circumferential sipe is arranged in two rows, and the outer shoulder land portion 3d.
  • the inner circumferential sipe is arranged in two rows, and the outer shoulder land portion 3d.
  • the groove depth h1 of the inner circumferential main groove 2a, the sipe depth h2 of the first inner circumferential sipe 4a1, and the sipe depth h3 of the second inner circumferential sipe 4a2 are h1> h3. It is preferable to satisfy> h2.
  • the inner circumferential main groove 2a preferably has a certain depth from the viewpoint of drainage. If the sipe depth of the first inner circumferential sipe 4a1 is made too deep under this premise, the rigidity of the land portion between the inner circumferential main groove 2a and the first inner circumferential sipe 4a1 is too low. The steering stability may be reduced.
  • the sipe depth of the first inner circumferential sipe 4a1 is shallower than the groove depth of the inner circumferential main groove 2a.
  • the sipe depth h3 of the second inner circumferential sipe 4a2 is preferably deeper than the sipe depth h2 of the first inner circumferential sipe 4a1.
  • the sipe depth h2 of the first inner circumferential sipe 4a1 is set shallow, even if the sipe depth h3 of the second inner circumferential sipe 4a2 is deeper than h2, the respective inner circumferential directions The rigidity of the land part between sipes does not fall too much.
  • the inner circumferential sipe has less contribution to drainage than the inner circumferential main groove 2a, and the sipe depth of the inner circumferential sipe from the viewpoint of not reducing the rigidity of the land portion 3a too much.
  • Both h2 and h3 are preferably shallower than the groove depth h1 of the inner circumferential main groove 2a.
  • the first inner circumferential sipe 4a1 extends continuously in the tread circumferential direction, and the second inner circumferential sipe 4a2 has a terminal portion in the land portion 3a. Since the corner portion of the first inner circumferential sipe 4a1 has a shallow sipe depth and is not easily deformed, it is preferable to continuously increase the edge component in the tread circumferential direction, while the second inner circumferential sipe In 4a2, since the sipe depth is relatively deep, the corner portion is easily deformed. Therefore, by having the terminal portion, the rigidity of the corner portion can be increased and the edge pressure can be secured. Thereby, the performance on the snow at the time of turning can be improved more as a whole.
  • the interval in the tread circumferential direction of the inner width direction sipe 4b is L (mm)
  • the distance in the tread width direction between the inner circumferential main groove 2a and the first inner circumferential sipe 4a1 is W1 (mm).
  • W2 the distance in the tread width direction between the first inner circumferential sipe 4a1 and the second inner circumferential sipe 4a2
  • 0.7 ⁇ L / W1 ⁇ 1.4, and 0.7 ⁇ L / W2 ⁇ 1.4 is preferably satisfied. This is because by making the ratio L / W1 and the ratio L / W2 close to 1, the torsional rigidity of the land portion defined by the sipe is increased, and the performance on snow during turning can be further improved.
  • the pneumatic tire of this invention is not limited to said example, A change can be added suitably.
  • the land portions 3b and 3c other than the inner shoulder land portion 3a and the outer shoulder land portion 3d are formed in the rib-like land as described above.
  • various grooves and sipes can be provided as well as in the present embodiment, in the present invention, grooves and sipes are arbitrarily provided in land portions other than the inner shoulder land portion 3a and the outer shoulder land portion 3d. Can do.

Abstract

 本発明は、雪上性能、排水性能および乗り心地性能を向上させることのできる空気入りタイヤを提供することを目的とする。 本発明の空気入りタイヤは、複数本の周方向主溝を含む車両装着方向の指定された空気入りタイヤであって、トレッド踏面において、最も車両装着方向内側に位置する周方向主溝と、トレッド端とで区画される陸部を内側ショルダー陸部とし、最も車両装着方向外側に位置する周方向主溝と、トレッド端とで区画される陸部を外側ショルダー陸部とするとき、内側ショルダー陸部は、実質的に溝を含まず、トレッド周方向に延在する内側周方向サイプと、トレッド幅方向に延在する複数本の内側幅方向サイプのみを有し、外側ショルダー陸部は、周方向主溝およびトレッド端を連通し、トレッド幅方向に延在する複数本の幅方向溝と、トレッド周方向に隣接する当該幅方向溝間に位置する、トレッド幅方向に延在する外側幅方向サイプを有することを特徴とする。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 従来、例えば、電気自動車等の低燃費性が要求される空気入りタイヤとして、狭幅・大径の空気入りタイヤが、本出願人により提案されている(例えば、特許文献1参照)。
国際公開第2011/122170号パンフレット
 ここで、特に上記のような狭幅・大径の空気入りタイヤにおいて、オールシーズン向けタイヤとしての適用を考える際には、雪上性能、排水性能および乗り心地性能を高次元で向上させることが望まれていた。具体的には、オールシーズン向けタイヤとしては、様々な路面状況に対応すべく雪上性能や排水性能を向上させる必要があるが、それら性能の向上のために陸部に溝を多く設けると、陸部剛性の不均一等により乗り心地性能に影響するおそれがあった。
 従って、本発明は、雪上性能、排水性能および乗り心地性能を向上させることのできる空気入りタイヤを提供することを目的とする。
 本発明の要旨構成は、以下の通りである。
 本発明の空気入りタイヤは、トレッド踏面に、トレッド周方向に連続して延びる複数本の周方向主溝を含む、車両装着方向の指定された空気入りタイヤであって、前記トレッド踏面において、前記複数本の周方向主溝のうち最も車両装着方向内側に位置する内側周方向主溝と、トレッド端とで区画される陸部を内側ショルダー陸部とし、前記複数本の周方向主溝のうち最も車両装着方向外側に位置する外側周方向主溝と、トレッド端とで区画される陸部を外側ショルダー陸部とするとき、前記内側ショルダー陸部は、実質的に溝を含まず、トレッド周方向に延在する内側周方向サイプと、トレッド幅方向に延在する複数本の内側幅方向サイプのみを有し、前記外側ショルダー陸部は、前記外側周方向主溝およびトレッド端を連通する、トレッド幅方向に延在する複数本の幅方向溝と、トレッド周方向に隣接する当該幅方向溝間に位置する、トレッド幅方向に延在する外側幅方向サイプを有することを特徴とする。
 上記の本発明の空気入りタイヤによれば、雪上性能、排水性能および乗り心地性能を向上させることができる。
 ここで、本発明において、各周方向主溝および幅方向溝などの「溝」とは、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際のトレッド踏面に開口する幅が2mm以上であるものをいう。また、「内側ショルダー陸部は、実質的に溝を含まず」とは、溝の延在方向に沿って測った長さが、陸部のトレッド幅方向に沿って測った内側ショルダー陸部の最大幅の30%を超える溝を含まないことを意味する。
 また、「サイプ」とは、陸部の表面から内部に切り込まれた薄い切込みであって、接地時に閉じることが可能なものをいい、空気入りタイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際のトレッド踏面に開口する幅が2mm未満のものをいう。
 さらに、「トレッド端」とは、タイヤを適用リムに装着し、規定内圧を充填し、最大負荷能力に対応する荷重(最大負荷荷重)を負荷した際の接地面のトレッド幅方向の最外位置をいう。
 またここで、「適用リム」とは、タイヤが生産され、使用される地域に有効な産業規格であって、日本ではJATMA(日本自動車タイヤ協会)のJATMA YEAR BOOK、欧州ではETRTO(The European Tyre and Rim Technical Organization)のSTANDARDS MANUAL、米国ではTRA(The Tire and Rim Association,Inc.)のYEAR BOOK等に記載されている、適用サイズにおける標準リム(ETRTOのSTANDARDS MANUALではMeasuring Rim、TRAのYEAR BOOKではDesign Rim)を指すが、上記産業規格に記載がないサイズの場合には、タイヤのビード幅に対応した幅のリムを指す。また、「規定内圧」とは、上記JATMA等に記載されている、適用サイズ・プライレーティングにおける単輪の最大負荷能力に対応する空気圧(最高空気圧)とした状態を指し、「最大負荷能力」とは、上記の規格でタイヤに負荷されることが許容される最大の質量をいう。
 本発明の空気入りタイヤでは、前記外側ショルダー陸部はトレッド周方向に延在する外側周方向サイプを有しない、或いは、当該外側ショルダー陸部が当該外側周方向サイプを有する場合には、前記内側周方向サイプの列数が、前記外側周方向サイプの列数よりも多いことが好ましい。
 これによれば、乗り心地性能をより向上させることができる。
 なお、「周方向サイプの列数」とは、トレッド周方向に離間してトレッド周方向に並ぶ複数本のサイプが配設される場合には、当該複数本のサイプを1列とし、トレッド周方向に連続する周方向サイプが1本配設される場合には、当該1本の周方向サイプを1列として、トレッド幅方向に数えた値を意味する。
 本発明の空気入りタイヤでは、前記外側ショルダー陸部をトレッド幅方向に沿って測った幅は、前記内側ショルダー陸部をトレッド幅方向に沿って測った幅よりも大きいことが好ましい。
 これによれば、操縦安定性を向上させることができる。
 本発明によれば、雪上性能、排水性能および乗り心地性能を向上させることのできる空気入りタイヤを提供することができる。
本発明の第1の実施形態に係る空気入りタイヤのトレッドパターンを示す展開図である。 図1に示すトレッドパターンの要部を示す部分展開図である。 本発明の第2の実施形態に係る空気入りタイヤのトレッドパターンを示す展開図である。 本発明の第2の実施形態に係る空気入りタイヤの部分斜視図である。 内側周方向サイプおよび外側周方向サイプのトレッド周方向断面図である。 ベルト構造の第1の例を示す概略的な平面図である。 ベルト構造の第2の例を示す概略的な平面図である。 ベルト構造の第3の例を示す概略的な平面図である。 本発明の第3の実施形態に係る空気入りタイヤのタイヤ幅方向半部のタイヤ幅方向概略断面図である。
 以下、本発明の実施形態について図面を参照して詳細に例示説明する。
 図1は、本発明の第1の実施形態に係る空気入りタイヤ(以下、タイヤとも称する)のトレッドパターンを示す展開図であり、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際のタイヤのトレッド踏面1およびバットレス部を展開して示したものである。なお、タイヤの内部構造等については、従来のそれと同様にすることができる。
 また、本実施形態のタイヤは、車両への装着方向が指定されたタイヤであって、図示では右側が車両装着方向内側(「IN」と表示)であり、左側が車両装着方向外側(「OUT」と表示)である。また、このタイヤの外径をOD(mm)、タイヤの断面幅をSW(mm)とするとき、内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下であり、タイヤの断面幅SWが165(mm)以上である場合は、タイヤの断面幅SW(mm)および外径OD(mm)は、関係式OD≧2.135×SW+282.3を満たしている(以下、関係式(1)を満たすとも称す)。
 図1に示すように、本実施形態のタイヤは、トレッド踏面1に、トレッド周方向に連続して延びる複数本(図示例では3本)の周方向主溝2を有している。図示例では、このタイヤは、トレッド踏面1に3本の周方向主溝2a、2b、2cを有しており、最も車両装着方向内側に位置する周方向主溝2aと、周方向主溝2bとは、タイヤ赤道面CLに対して車両装着方向内側のトレッド半部に配置されている。また、最も車両装着方向外側に位置する周方向主溝2cは、タイヤ赤道面CLに対して車両装着方向外側のトレッド半部に配置されている。そして、これらの周方向主溝2a、2b、2cとトレッド端TEとにより、図示例で4つの陸部3a、3b、3c、3dが区画されている。なお、以下、周方向主溝2aを内側周方向主溝、周方向主溝2cを外側周方向主溝と称し、また、周方向主溝2aとトレッド端TEとで区画される陸部を内側ショルダー陸部3a、周方向主溝2cとトレッド端TEとで区画される陸部を外側ショルダー陸部3dと称す。
 ここで、本実施形態のタイヤでは、それぞれの周方向主溝2の溝幅は、同じまたは異なるものにすることができるが、内側周方向主溝2aの溝幅は、例えば2~5mmとすることができ、周方向主溝2bの溝幅は、例えば5~8mmとすることができ、外側周方向主溝2cの溝幅は、例えば7~10mmとすることができる。
 また、それぞれの周方向主溝2の溝深さも、同じまたは異なるものにすることができるが、周方向主溝2a、2b、2cの溝深さは、例えば6~8mmとすることができる。
 なお、「溝幅」、「溝深さ」については、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際の溝のトレッド踏面1への開口幅、および溝の平均深さをそれぞれ意味するものであり、以下、他の溝やサイプについても同様である。
 ここで、図1に示すトレッドパターンの、内側ショルダー陸部3aを図2(a)に、外側ショルダー陸部3dを図2(b)に、部分展開図として示す。
 内側ショルダー陸部3aは、図2(a)に示すように、実質的に溝を含まず、トレッド周方向に延在する内側周方向サイプ4aと、トレッド幅方向に延在する複数本の内側幅方向サイプ4bのみを有している。
 なお、本実施形態のタイヤでは、内側ショルダー陸部3aには、溝が設けられてない。また、内側周方向サイプ4aは、トレッド周方向に連続して延在する1本(1列)のサイプであり、内側幅方向サイプ4bは、内側ショルダー陸部3aに複数本(図1に示す範囲で16本)設けられ、各内側幅方向サイプ4bは内側周方向サイプ4aと交差している。図示の例では、各内側幅方向サイプ4bは、内側周方向主溝2aからトレッド幅方向外側に延びてトレッド端TEに直接開口し、また、内側幅方向サイプ4bは、トレッド端TEよりトレッド幅方向外側の領域(バットレス部)に位置するラグ溝5に接続するものと、ラグ溝5に接続しないものとがトレッド周方向に交互に配置されている。
 また、外側ショルダー陸部3dは、図2(b)に示すように、外側周方向主溝2cおよびトレッド端TEを連通する、トレッド幅方向に延在する複数本の幅方向溝6aと、トレッド周方向に隣接する当該幅方向溝6a間に位置する、トレッド幅方向に延在する外側幅方向サイプ6bを有している。
 なお、本実施形態のタイヤでは、幅方向溝6aは、外側ショルダー陸部3dに複数本(図1に示す範囲で8本)設けられている。また、外側幅方向サイプ6bは、トレッド幅方向に延在し、トレッド端TEおよび外側周方向主溝2cに連通しており、トレッド周方向に隣接する2本の幅方向溝6aの間に、図示の例でそれぞれ1本設けられている。
 上記のタイヤについての作用効果について説明する。
 オールシーズン向けタイヤは、様々な路面状況に対応すべく雪上性能や排水性能を向上させる必要があるが、それら性能の向上のために陸部に溝を多く設けると、陸部剛性の不均一等により乗り心地性能に影響するおそれがあり、雪上性能、排水性能および乗り心地性能を高次元で向上させることが困難であった。
 これに対して、本実施形態のタイヤでは、内側ショルダー陸部3aがサイプのみ備えるので、陸部剛性がトレッド周方向で均一化され、サイプによる雪上性能を維持しつつ乗り心地性能を向上させることができる。具体的には、一般に内側ショルダー陸部3aは、タイヤのキャンバー角の存在によって(特に、ネガティブキャンバーの場合)外側ショルダー陸部3dよりも接地圧が高くなり、陸部剛性のトレッド周方向での不均一性が乗り心地性能に影響していた。したがって、内側ショルダー陸部3aに溝を設けずに、サイプを設けることにより、陸部剛性をトレッド周方向で均一化することができ、乗り心地性能を向上させることができる。また、内側ショルダー陸部3aに内側周方向サイプ4aと内側幅方向サイプ4bとを設けるので、進行方向と横力方向との両方のエッジ成分を確保することができるため、直進時および旋回時の雪上性能を維持することができる。
 一方、外側ショルダー陸部3dでは、上記のキャンバー角の存在により相対的に接地圧が低くなり乗り心地性能に与える影響が小さくなるため、外側周方向主溝2cとトレッド端TEとを連通する幅方向溝6aを設けることにより、排水性能を向上させることができる。また、幅方向溝6aおよび外側幅方向サイプ6bを設けることにより、雪上性能も向上させることができる。なお、外側幅方向サイプbに替えて幅方向溝6aとし、外側ショルダー陸部3dに、幅方向溝6aのみ配設するとした場合には、排水性の観点からは好ましいが、外側ショルダー陸部3dの剛性が過度に低下するおそれがあり、操縦安定性や騒音性能を確保できないおそれがある。
 さらに、一般に、高内圧の条件では、接地圧が高まるのでサイプのエッジ効果が発揮されやすい。したがって、本実施形態のタイヤを高内圧の条件下で使用することにより、雪上性能をより効果的に向上させることができる。一方、高内圧にしたタイヤは、縦バネが強くなる傾向があるところ、内側ショルダー陸部3aには、実質的に溝を配設せず、内側幅方向サイプ4bおよび内側周方向サイプ4aのみを配設して、当該内側ショルダー陸部3aの剛性の均一性を確保しつつ高い剛性となるのを抑えているので、乗り心地性能の向上が妨げられることはない。
 なお、本実施形態のタイヤの内圧としては、250kPa以上であることが好ましく、280kPa以上であることがより好ましく、300kPa以上であることがさらに好ましい。
 ここで、本実施形態のタイヤでは、内側周方向サイプ4aのサイプ幅は、例えば、0.5~1.5mmとすることができ、また、サイプ深さは、例えば、6~8mmとすることができる。また、内側幅方向サイプ4bのサイプ幅は、例えば0.5~1.5mmとすることができ、また、サイプ深さは、例えば6~8mmとすることができる。
 また、内側幅方向サイプ4bのトレッド周方向の間隔は、10~15mmとすることが好ましい。10mm以上とすることにより、陸部3aの剛性を確保して、操縦安定性や騒音性能を確保することができ、一方で、15mm以下とすることにより、直進時の雪上性能の向上効果をより一層有効に得ることができるからである。さらに、内側幅方向サイプ4bの両端部(内側幅方向サイプ4bの、トレッド端TLにおけるトレッド幅方向の端部と、内側周方向主溝2aに連通するトレッド幅方向の端部)を結んだ直線がトレッド幅方向に対してなす角度を、内側幅方向サイプ4bのトレッド幅方向に対する傾斜角度とするとき、内側幅方向サイプ4bのトレッド幅方向に対する傾斜角度は、直進時の雪上性能を十分向上させるためには、30°以下とすることが好ましい。
 また、本実施形態のタイヤでは、幅方向溝6aの溝幅は、例えば2~4mmとすることができ、また、溝深さは、6~8mmとすることができる。また、外側幅方向サイプ6bのサイプ幅は、例えば0.5~1.5mmとすることができ、また、サイプ深さは、6~8mmとすることができる。
 また、トレッド周方向に隣接する2つの幅方向溝6aのトレッド周方向の間隔は、17~30mmとすることができる。さらに、幅方向溝6aのトレッド幅方向内側端部(外側周方向主溝2cへ連通)と、該端部から幅方向溝6aのペリフェリに沿って10mmトレッド幅方向外側の部分とを結んだ直線がトレッド幅方向に対してなす角度を、幅方向溝6aのトレッド幅方向に対する傾斜角度と定義するとき、この例では、該傾斜角度は、10°未満である。
 また、外側幅方向サイプ6bの両端部(外側幅方向サイプ6bの、トレッド端TLにおけるトレッド幅方向の端部と、外側周方向主溝2cに連通するトレッド幅方向の端部)を結んだ直線がトレッド幅方向に対してなす角度を、外側幅方向サイプ6bのトレッド幅方向に対する傾斜角度とするとき、外側幅方向サイプ6bのトレッド幅方向に対する傾斜角度は、40°以下であることが好ましい。40°以下とすることにより、上述した直進時の雪上性能を有効に得ることができるからである。
 また、本実施形態では、図1に示すように、外側ショルダー陸部3dには、トレッド周方向に延在する外側周方向サイプが設けられていないが、後述の図3に示す第2の実施形態のように、当該外側周方向サイプ6cを設けることもできる。なお、当該外側周方向サイプ6cが設けられる場合には、内側周方向サイプ4aの列数が、外側周方向サイプ6cの列数よりも多く設けられることが好ましい。この構成によれば、内側ショルダー陸部3aは、上述のように乗り心地性能に影響を与えやすいところ、内側周方向サイプ4aの列数を多く設けることによりタイヤ剛性のトレッド周方向での均一性を維持しつつ剛性を低減させることができ、乗り心地性能を有効に向上させることができる。また、外側ショルダー陸部3dは、タイヤ幅方向の剛性を相対的に維持することにより、タイヤ外側に荷重が付加するコーナリング時の操縦安定性を向上させることができる。
 ところで、本実施形態では、外側ショルダー陸部3dをトレッド幅方向に沿って測った幅が、内側ショルダー陸部3aをトレッド幅方向に沿って測った幅よりも大きいことが好ましい。この構成によれば、操縦安定性能を向上させることができる。
 また、内側ショルダー陸部3aをトレッド幅方向に沿って測った幅は、トレッド幅に対して18~28%であることが好ましく、外側ショルダー陸部3dをトレッド幅方向に沿って測った幅は、トレッド幅に対して25~35%であることが好ましい。なお、「トレッド幅」とは、両側のトレッド端TEの間をトレッド幅方向に沿って測った長さを意味する。
 続いて、この実施形態の周方向主溝2bおよび2cで区切られる陸部3cについて説明する。
 この実施形態では、図1に示すように、陸部3cは、周方向主溝2bおよび2c間にわたって延在する、トレッド幅方向に延びる溝を有しないリブ状陸部3cとすることができる。そして、このリブ状陸部3cは、トレッド周方向に連続して延びる、図示例で1本(1列)の中央周方向サイプ7bを有している。中央周方向サイプ7bのサイプ幅は、例えば0.5~1.5mmとすることができ、また、中央周方向サイプ7bのサイプ深さは、例えば、3~6mmとすることができる。
 また、この実施形態では、図1に示すように、リブ状陸部3cは、外側周方向主溝2cから車両装着方向内側(図示では右側)に、中央周方向サイプ7bに連通する位置まで延びて、リブ状陸部3c内にて終端する、複数本(図1に示す範囲で4本)の一端開口横溝7aを有している。さらに、リブ状陸部3cは、周方向主溝2bから車両装着方向外側(図示では左側)に延びて、中央周方向サイプ7bに連通せずにリブ状陸部3c内で終端する、複数本(図1に示す範囲で16本)の第1の一端開口サイプ7cを有している。
 ここで、一端開口横溝7aの溝幅(最大幅)は、例えば3~5mmとすることができ、また、溝深さは、6~8mmとすることができる。
 また、第1の一端開口サイプ7cのサイプ幅は、例えば0.5~1.5mmとすることができ、また、サイプ深さは、2~4mmとすることができる。
 なお、「リブ状陸部」とは、該リブ状陸部を区画する2つの周方向主溝間にわたって延在するトレッド幅方向に延びる溝やサイプを有さず、トレッド周方向に連続した部分を有する陸部をいうものとする。
 また、「一端開口横溝」、「一端開口サイプ」とは、一端が周方向主溝に開口し、他端が周方向主溝や横溝に開口しないことを意味するが、該他端が周方向サイプに連通するものは含むものとする。
 上記のタイヤについて、この陸部3cの構成による作用効果について説明する。
 まず、本実施形態のタイヤにおいて、外側周方向主溝2c付近は、剛性が低下するため、コーナリング時に路面からの入力の影響を大きく受けることとなる。具体的には、車両装着方向外側での圧縮応力と車両装着方向内側での引張応力とにより、トレッドゴムが変形し、ベルトが変形して、接地面が浮き上がるバックリング現象が発生するおそれがある。これに対し、本実施形態のタイヤでは、上述の一端開口横溝7aを設けているため、車両装着方向外側においては、圧縮応力により一端開口横溝7aが閉じる構造となるため、トレッドゴムやベルトの変形を抑制することができる。さらに、一端開口横溝7aがリブ状陸部3c内で終端するため、車両装着方向内側での引張応力に対する剛性が高くなり、これによりトレッドやベルトの変形が抑制される。従って、本実施形態によれば、まずバックリングの発生を抑制することができる。
 また、本実施形態のタイヤでは、中央周方向サイプ7bを有するため、横力方向に対するエッジ成分を確保することができ、旋回時の雪上性能をより向上させることができる。
 さらに、中央周方向サイプ7bと一端開口横溝7aとが連通することにより、リブ状陸部3cにブロックの角部が形成されることとなるため、直進方向および横力方向に対するエッジ効果が増大して、直進時の雪上性能および旋回時の雪上性能を向上させることができる。
 さらにまた、上記の第1の一端開口サイプ7cを設けているため、直進方向に対するエッジ成分をさらに増大させて、直進時の雪上性能を向上させることができる。ここで、第1の一端開口サイプ7cは、中央周方向サイプ7bとは連通しないため、リブ状陸部3cの剛性が過度に低下することがなく、操縦安定性および騒音性能も確保することができる。
 従って、操縦安定性、騒音性能、および雪上性能を両立させることができる。
 また、図1に示すように、一端開口横溝7aは、リブ状陸部3cに、トレッド周方向に間隔を設けて複数形成されているが、リブ状陸部3cは、一端開口横溝7a間に、外側周方向主溝2cから車両装着方向内側に、中央周方向サイプ7bに連通する位置まで延びて、リブ状陸部3c内にて終端する、1本以上(図1に示す範囲では13本)の第2の一端開口サイプ7dを有している。図示例では、トレッド周方向に隣接する2本の一端開口横溝7a間に3本ずつの第2の一端開口サイプ7dを有している。
 ここで、第2の一端開口サイプ7dのサイプ幅は、例えば0.5~1.5mmとすることができ、また、サイプ深さは、6~8mmとすることができる。
 このように、この実施形態に係るタイヤにあっては、一端開口横溝7a間に、外側周方向主溝2cから車両装着方向内側に、中央周方向サイプ7bに連通する位置まで延びて、リブ状陸部3c内にて終端する、1本以上の第2の一端開口サイプ7dを有することが好ましい。
 これにより、直進方向に対するエッジ成分をさらに確保して、直進時の雪上性能をさらに向上させることができる。例えば、第2の一端開口サイプ7dの代わりに全て一端開口横溝7aを形成すると、リブ状陸部3cの剛性が低下して、操縦安定性や騒音性能が低下するおそれがあるが、本実施形態のように、一端開口横溝7aと第2の一端開口サイプ7dとを併設することにより、操縦安定性や騒音性能を確保しつつも、直進時の雪上性能を向上させることができる。なお、上述したバックリングの抑制は、一端開口横溝7aの本数を、さほど多くしなくても十分にその効果が得られる。
 より具体的には、トレッド周方向に隣接する2本の一端開口横溝7aのトレッド周方向の間隔は、35~70mmとすることが好ましい。35mm以上とすることにより、陸部3cの剛性を確保して、操縦安定性や騒音性能をより確保することができ、一方で、70mm以下とすることにより、上述したバックリング抑制の効果をより有効に得ることができるからである。
 また、第1の一端開口サイプ7cのトレッド周方向の間隔は、10~15mmとすることが好ましい。10mm以上とすることにより、陸部3cの剛性を確保して、操縦安定性や騒音性能をより確保することができ、一方で、15mm以下とすることにより、上述した直進時の雪上性能の向上効果をより一層有効に得ることができるからである。
 さらに、第2の一端開口サイプ7dのトレッド周方向の間隔は、10~15mmとすることが好ましい。10mm以上とすることにより、陸部3cの剛性を確保して、操縦安定性や騒音性能をより確保することができ、一方で、15mm以下とすることにより、直進時の雪上性能の向上効果をより一層有効に得ることができるからである。
 また、図1に示すように、第1の一端開口サイプ7cと第2の一端開口サイプ7dとは、トレッド周方向に位相差を設けて配置することが好ましい。パターンノイズの発生を抑制することができ、また、陸部3cの剛性バランスを均一化することができるからである。
 ところで、本実施形態では、図1に示すように、第1の一端開口サイプ7cは、タイヤ赤道面CLを横切る(タイヤ赤道面CLを越えて延びる)ことが好ましい。
 一般的に空気入りタイヤでは、タイヤ赤道面CLにおいて接地長が最も長くなるため、この位置に第1の一端開口サイプ7cが配置されていることにより、直進時の雪上性能を効果的に高めることができるからである。また、この場合、一端開口横溝7aが、車両装着時外側に位置することとなるため、上述したようにバックリング抑制効果を得やすくなる。
 ここで、一端開口横溝7aの両端部を結んだ直線がトレッド幅方向に対してなす角度を、一端開口横溝7aのトレッド幅方向に対する傾斜角度とするとき、一端開口横溝7aのトレッド幅方向に対する傾斜角度は、30°以下であることが好ましい。30°以下とすることにより、上述したバックリング抑制の効果をより有効に得ることができるからである。
 また、第1の一端開口サイプ7cの両端部を結んだ直線がトレッド幅方向に対してなす角度を、第1の一端開口サイプ7cのトレッド幅方向に対する傾斜角度とするとき、第1の一端開口サイプ7cの傾斜角度は、35°以下であることが好ましい。35°以下とすることにより、上述した直進時の雪上性能を有効に得ることができるからである。
 さらに、第2の一端開口サイプ7dの両端部を結んだ直線がトレッド幅方向に対してなす角度を、第2の一端開口サイプ7dのトレッド幅方向に対する傾斜角度とするとき、第2の一端開口サイプ7dの傾斜角度は、40°以下であることが好ましい。40°以下とすることにより、上述した直進時の雪上性能を有効に得ることができるからである。
 次に、図1に示すように、この実施形態のタイヤは、陸部3bに、内側周方向主溝2aから車両装着方向外側に延び、陸部3b内で終端する中間サイプ8aを複数本(図1に示す範囲で17本)有している。図1に示すように、中間サイプ8aは、陸部3b内で終端するため、陸部3bはリブ状陸部であり、トレッド周方向に連続した部分を有している。
 リブ状陸部3bは、乗り心地性に大きく影響する車両装着方向内側にトレッド周方向に連続した部分が形成されるため、乗り心地性を効果的に向上させることができる。また、中間サイプ8aにより、直進方向に対するエッジ成分を確保して、直進時の雪上性能をさらに向上させることができる。
 ここで、中間サイプ8aのサイプ幅は、例えば0.5~1.5mmとすることができ、また、サイプ深さは、例えば6~8mmとすることができる。また、中間サイプ8aのトレッド周方向の間隔は、10~15mmとすることが好ましい。10mm以上とすることにより、陸部3bの剛性を確保して、操縦安定性や騒音性能を確保することができ、一方で、15mm以下とすることにより、直進時の雪上性能の向上効果をより一層有効に得ることができるからである。
 さらに、中間サイプ8aの両端部を結んだ直線がトレッド幅方向に対してなす角度を、中間サイプ8aのトレッド幅方向に対する傾斜角度とするとき、中間サイプ8aの傾斜角度は、図1に示す例では、25°以下である。
 さらにまた、中間サイプ8aのトレッド幅方向の延在長さは、陸部3bのトレッド幅方向の幅の40~80%とすることが好ましい。40%以上とすることにより、エッジ成分を十分に確保して直進時の雪上性能をより一層向上させることができ、一方で、80%以下とすることにより、トレッド周方向に連続した部分が十分な幅となり、乗り心地性を向上させることができるからである。
 図1に示すように、横溝の本数が少なく、サイプの本数が多いタイヤは、特に、内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下であり、または、タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径ODは、関係式(1)、OD≧2.135×SW+282.3、を満たす。狭幅・大径のタイヤにおいて好適であり、比OD/SWが3.6以上のタイヤを250kPa以上の内圧で使用する場合にさらに好適である。本発明のタイヤは、250~350kPaの内圧で使用することが好適であり、特に、280kPa以上の高内圧の下に使用する場合に好適であり、300kPa以上の高内圧の下に使用することがさらに好適である。狭幅で高内圧の条件では、サイプが路面を噛む力が大きく、エッジ効果を有効に発揮させることができるからである。また、上記関係式(1)を満たすようなタイヤでは、接地長が増大しやすいが、250kPa以上とすることにより接地長の増大を抑えて、トレッドゴムの変形量を低減し、転がり抵抗をさらに低減することができる。また、上記タイヤは、乗用車用ラジアルタイヤとして好適であり、公道での使用が可能な負荷に対応するため、エアボリュームが15000cm3以上であることが好ましい。
 次に、図3は、本発明の第2の実施形態に係る空気入りタイヤのトレッドパターンを示す展開図であり、タイヤを適用リムに装着し、規定内圧を充填し、無負荷状態とした際のタイヤのトレッド踏面1およびバットレス部を展開して示したものである。本実施形態のタイヤは、内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下であり、タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径ODは、関係式OD≧2.135×SW+282.3を満たしている。
 また、図4は、図3に係るタイヤと、第1の一端開口サイプ7c、第2の一端開口サイプ7d、および、中間サイプ8aの本数以外は同様のトレッドパターンを有するタイヤの部分斜視図である。
 図3に示すタイヤは、以下の点において図1に示すタイヤと異なっている。
 まず、外側ショルダー陸部3dに関し、図3に示すように、この実施形態のタイヤは、トレッド周方向に隣接する2つの幅方向溝6a間のそれぞれに、トレッド周方向に延びる1本の外側周方向サイプ6cを有している。図3に示すように、外側周方向サイプ6cの両端は、陸部3d内で終端しており、幅方向溝6aには連通していない。
 この外側周方向サイプ6cにより、外側ショルダー陸部3dにおいて、横力方向に対するエッジ成分を確保することができ、旋回時の雪上性能をさらに向上させることができる。
 そして、図1に示す第1の実施形態では、トレッド周方向に隣接する2つの幅方向溝6a、外側周方向主溝2c、およびトレッド端TEにより区画されるブロックは、トレッド幅方向の長さがトレッド周方向の長さに比べて長い長方形の形状をしているが、図3に示す第2の実施形態では、幅方向溝6aのトレッド周方向の間隔を17~30mmとしているため、ブロックのトレッド周方向の長さが大きく、また、このブロックは、外側周方向サイプ6cにより、2つのブロックに分断されるような形状(厳密には、外側周方向サイプ6cは、幅方向溝6aに連通していないため完全に分断はされない)となるため、ブロックの形状が正方形に近くなり、これにより、特にブロックに前後力が作用した際のブロックの捩れ変形を抑制して耐摩耗性を向上させることができる。
 さらに、外側周方向サイプ6cは、外側幅方向サイプ6bとは交差するが幅方向溝6aには連通しないため、ブロックの剛性を過度に低下させることなく、操縦安定性や騒音性能を確保することができる。このため、外側周方向サイプ6cは、幅方向溝6aと1.5mm以上離間させることが好ましい。
 なお、外側周方向サイプ6cのサイプ幅は、例えば0.5~1.5mm、サイプ深さは、例えば6~8mmとすることができる。
 ここで、図5は、外側周方向サイプ6cのトレッド周方向断面図である。図5に示すように、外側周方向サイプ6cのトレッド周方向両端部は、トレッド踏面1側からサイプ深さ方向に向かって、外側周方向サイプ6cのトレッド周方向長さが短くなるように側壁が傾斜した形状である。これにより、トレッド踏面1側では、エッジ成分を確保するためにサイプ長さを確保することができ、一方で、サイプ底の角部を鈍角として剛性を高めて、この角部が摩耗核となるのを抑制して、耐摩耗性を向上させることができる。
 さらに、図1に示す第1の実施形態のタイヤでは、幅方向溝6aのトレッド幅方向に対する傾斜角度が、10°未満であるのに対し、図3に示す第2の実施形態のタイヤでは、幅方向溝6aのトレッド幅方向に対する傾斜角度は、10°以上である。これにより、進行方向のみならず、進行方向と横力方向との両方のエッジ成分を確保することができるため、直進時および旋回時の雪上性能を総合的にさらに向上させることができる。
 また、図3に示す第2の実施形態のタイヤでは、幅方向溝6aに底上げ部6dを設けている。これにより、ブロックの剛性を向上させて、操縦安定性および耐摩耗性を向上させ、さらに騒音を低減することができる。ここで、底上げ部6dは、例えば、幅方向溝6aの溝深さの30~60%の高さとすることができる。また、底上げ部6dは、幅方向溝6aの溝底のうち、剛性が低下しがちな外側周方向主溝2c付近に設けることが好ましい。
 次に、図3に示す第2の実施形態のタイヤは、陸部3bに形成した中間サイプ8aの両端部を結んだ直線がトレッド幅方向に対してなす傾斜角度が15°以上である点でも、図1に示す第1の実施形態のタイヤと異なっている。進行方向のみならず、進行方向と横力方向との両方のエッジ成分を確保することができるため、直進時および旋回時の雪上性能を総合的にさらに向上させることができる。
 次に、図3に示す第2の実施形態のタイヤは、内側周方向主溝2aに1つ以上の底上げ部2dを設けている点でも、図1に示す第1の実施形態のタイヤと異なっている。これにより、ブロックの剛性を向上させて、操縦安定性および耐摩耗性を向上させ、さらに騒音を低減することができる。ここで、底上げ部2dは、例えば、内側周方向主溝2aの溝深さの30~60%の高さとすることができる。また、底上げ部2dは、内側幅方向サイプ4bが連通する位置に設けることが、剛性が低下する部分を補強する観点から好ましい。
 なお、図3に示す第2の実施形態では、内圧を250kPa以上とした際に、タイヤの断面幅SWが165(mm)未満である場合は、タイヤの断面幅SWと外径ODとの比SW/ODは、0.26以下であり、タイヤの断面幅SWが165(mm)以上である場合は、前記タイヤの断面幅SWおよび外径ODは、関係式OD≧2.135×SW+282.3、を満たす、狭幅タイヤであるため、底上げ部2dを設けても、ウェット性能を十分に確保することができる。
 また、図3に示す第2の実施形態のタイヤは、陸部3aにおいて、内側周方向サイプを2列としている。具体的には、トレッド周方向に延在する第1の内側周方向サイプ4a1と、第1の内側周方向サイプ4a1の車両装着方向内側に第2の内側周方向サイプ4a2を有している。第2の内側周方向サイプ4a2は、内側幅方向サイプ4bのうち、トレッド端TEよりトレッド幅方向外側の領域でラグ溝5に接続する2本の内側幅方向サイプ4b間に、トレッド周方向に延びている。これにより、横力方向に対するエッジ成分を確保することができ、旋回時の雪上性能をさらに向上させることができる。さらに、第2の内側周方向サイプ4a2は、内側幅方向サイプ4bのうち、ラグ溝5と接続しない内側幅方向サイプ4bとは交差しているが、ラグ溝5に接続する内側幅方向サイプ4bとは連通しておらず、このためブロックの剛性を過度に低下させることなく、操縦安定性や騒音性能をより確保することができる。このため、第2の内側周方向サイプ4a2は、ラグ溝5に接続する内側幅方向サイプ4bと1.5mm以上離間させることが好ましい。第2の内側周方向サイプ4a2のサイプ幅は、例えば0.5~1.5mm、サイプ深さは、例えば6~8mmとすることができる。また、図5に示すように、第2の内側周方向サイプ4a2のトレッド周方向両端部は、トレッド踏面1側からサイプ深さ方向に向かって、第2の内側周方向サイプ4a2のトレッド周方向長さが短くなるように側壁が傾斜した形状である。これにより、トレッド踏面1側では、エッジ成分を確保するためにサイプ長さを確保することができ、一方で、サイプ底の角部を鈍角とし、剛性を高めて、この角部が摩耗核となるのを抑制して、耐摩耗性を向上させることができる。
 このように、図3に示す第2の実施形態のタイヤは、内側ショルダー陸部3aに第2の内側周方向サイプ4a2を設けて、内側周方向サイプを2列としており、外側ショルダー陸部3dに外側周方向サイプ6cを1列設けている。即ち、図3に示す第2の実施形態のタイヤは、内側周方向サイプ4aの列数が、外側周方向サイプ6cの列数よりも多くなっている。
 ここで、内側周方向主溝2aの溝深さh1と、第1の内側周方向サイプ4a1のサイプ深さh2と、第2の内側周方向サイプ4a2のサイプ深さh3とは、h1>h3>h2を満たすことが好ましい。まず、内側周方向主溝2aは、排水性の観点からある程度の深さを有することが好ましい。この前提の下で第1の内側周方向サイプ4a1のサイプ深さを深くし過ぎると、内側周方向主溝2aと第1の内側周方向サイプ4a1との間の陸部の剛性が低下しすぎて操縦安定性が低下するおそれがある。このため、第1の内側周方向サイプ4a1のサイプ深さは、内側周方向主溝2aの溝深さより浅くすることが好ましい。一方で、第2の内側周方向サイプ4a2のサイプ深さまで浅くすると、摩耗時に第2の内側周方向サイプ4a2が早期になくなってしまうため、摩耗時の雪上性能が一気に低下してしまうおそれがある。そこで、第2の内側周方向サイプ4a2のサイプ深さh3は、第1の内側周方向サイプ4a1のサイプ深さh2より深くすることが好ましい。ここで、第1の内側周方向サイプ4a1のサイプ深さh2が浅く設定されているため、第2の内側周方向サイプ4a2のサイプ深さh3をh2より深くしても、それぞれの内側周方向サイプ間の陸部の剛性が低下し過ぎることもない。一方で、内側周方向サイプは、内側周方向主溝2aと比較して、排水性への寄与が少なく、また、陸部3aの剛性を下げすぎない観点から、内側周方向サイプのサイプ深さh2、h3は、いずれも、内側周方向主溝2aの溝深さh1より浅くすることが好ましい。
 また、上述したように、第1の内側周方向サイプ4a1がトレッド周方向に連続して延び、第2の内側周方向サイプ4a2が陸部3a内で終端部を有することが好ましい。第1の内側周方向サイプ4a1の角部は、サイプ深さが浅くて変形しにくいため、トレッド周方向に連続させてエッジ成分を増大させることが好ましく、一方で、第2の内側周方向サイプ4a2は、サイプ深さを比較的深くしているため、角部が変形しやすく、従って、終端部を有することで角部の剛性を高めてエッジ圧を確保することができるからである。これにより、全体として旋回時の雪上性能をより向上させることができる。
 ここで、内側幅方向サイプ4bのトレッド周方向の間隔をL(mm)とし、内側周方向主溝2aと第1の内側周方向サイプ4a1との間のトレッド幅方向の距離をW1(mm)とし、第1の内側周方向サイプ4a1と第2の内側周方向サイプ4a2との間のトレッド幅方向の距離をW2(mm)とするとき、0.7≦L/W1≦1.4、且つ、0.7≦L/W2≦1.4を満たすことが好ましい。
 比L/W1および比L/W2を1に近づけることにより、サイプにより区画される陸部の捩れ剛性が高まり、旋回時の雪上性能をさらに向上させることができるからである。
 以上、図面を参照して本発明の実施形態を説明したが、本発明の空気入りタイヤは、上記の例に限定されることは無く、適宜変更を加えることができる。具体的には、例えば、上述した実施形態では、図1、3に示すように、内側ショルダー陸部3aおよび外側ショルダー陸部3d以外の陸部3bおよび3cは、上述のように、リブ状陸部にするとともに、種々の溝やサイプを配設することができるが、本発明においては、内側ショルダー陸部3aおよび外側ショルダー陸部3d以外の陸部には、任意に溝やサイプを設けることができる。
 本発明によれば、雪上性能、排水性能および乗り心地性能を向上させることのできる空気入りタイヤを提供することができる。
1:トレッド踏面 2、2a:内側周方向主溝 2、2b:周方向主溝 2、2c:外側周方向主溝 2d:底上げ部 3a:内側ショルダー陸部 3b、3c:リブ状陸部 3d:外側ショルダー陸部 4a:内側周方向サイプ 4a1:第1の内側周方向サイプ 4a2:第2の内側周方向サイプ 4b:内側幅方向サイプ 5:ラグ溝 6a:幅方向溝 6b:外側幅方向サイプ 6c:外側周方向サイプ 6d:底上げ部 7a:一端開口横溝 7b:中央周方向サイプ 7c:第1の一端開口サイプ 7d:第2の一端開口サイプ 8a:中間サイプ 101、102:傾斜ベルト層 103、104:周方向ベルト層 111、112:傾斜ベルト層 113:周方向ベルト層 121、122:傾斜ベルト層 123:周方向ベルト層 131:サイド補強ゴム CL:タイヤ赤道面 TE:トレッド端

Claims (3)

  1.  トレッド踏面に、トレッド周方向に連続して延びる複数本の周方向主溝を含む、車両装着方向の指定された空気入りタイヤであって、
     前記トレッド踏面において、前記複数本の周方向主溝のうち最も車両装着方向内側に位置する内側周方向主溝と、トレッド端とで区画される陸部を内側ショルダー陸部とし、前記複数本の周方向主溝のうち最も車両装着方向外側に位置する外側周方向主溝と、トレッド端とで区画される陸部を外側ショルダー陸部とするとき、
     前記内側ショルダー陸部は、実質的に溝を含まず、トレッド周方向に延在する内側周方向サイプと、トレッド幅方向に延在する複数本の内側幅方向サイプのみを有し、
     前記外側ショルダー陸部は、前記外側周方向主溝およびトレッド端を連通する、トレッド幅方向に延在する複数本の幅方向溝と、トレッド周方向に隣接する当該幅方向溝間に位置する、トレッド幅方向に延在する外側幅方向サイプを有することを特徴とする、空気入りタイヤ。
  2.  前記外側ショルダー陸部はトレッド周方向に延在する外側周方向サイプを有しない、或いは、当該外側ショルダー陸部が当該外側周方向サイプを有する場合には、前記内側周方向サイプの列数が、前記外側周方向サイプの列数よりも多い、請求項1に記載の空気入りタイヤ。
  3.  前記外側ショルダー陸部をトレッド幅方向に沿って測った幅は、前記内側ショルダー陸部をトレッド幅方向に沿って測った幅よりも大きい、請求項1または2に記載の空気入りタイヤ。
PCT/JP2015/003937 2014-09-11 2015-08-05 空気入りタイヤ WO2016038787A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15840083.8A EP3192673B1 (en) 2014-09-11 2015-08-05 Pneumatic tire
CN201580048435.6A CN107074029B (zh) 2014-09-11 2015-08-05 充气轮胎
US15/510,501 US20170253087A1 (en) 2014-09-11 2015-08-05 Pneumatic tire
JP2016547665A JP6571093B2 (ja) 2014-09-11 2015-08-05 空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185306 2014-09-11
JP2014-185306 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038787A1 true WO2016038787A1 (ja) 2016-03-17

Family

ID=55458563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003937 WO2016038787A1 (ja) 2014-09-11 2015-08-05 空気入りタイヤ

Country Status (5)

Country Link
US (1) US20170253087A1 (ja)
EP (1) EP3192673B1 (ja)
JP (1) JP6571093B2 (ja)
CN (1) CN107074029B (ja)
WO (1) WO2016038787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151108A1 (ja) * 2017-02-14 2018-08-23 横浜ゴム株式会社 空気入りタイヤ
CN112009174A (zh) * 2019-05-31 2020-12-01 住友橡胶工业株式会社 轮胎

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108560B2 (ja) * 2019-02-14 2022-07-28 株式会社ブリヂストン タイヤ
CN113508041B (zh) * 2019-04-05 2023-09-08 米其林集团总公司 具有带盲微纹沟的周向纹沟的卡车轮胎
JP7152361B2 (ja) * 2019-06-14 2022-10-12 株式会社ブリヂストン 空気入りタイヤ
JP2022159900A (ja) * 2021-04-05 2022-10-18 住友ゴム工業株式会社 タイヤ
DE102021211351A1 (de) * 2021-10-07 2023-04-13 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321240A (ja) * 1997-12-04 1999-11-24 Continental Ag 冬用タイヤのトレッドパターン
JP2009149124A (ja) * 2007-12-18 2009-07-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2010111358A (ja) * 2008-11-10 2010-05-20 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
EP2353884A1 (de) * 2010-01-26 2011-08-10 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
JP2014108653A (ja) * 2012-11-30 2014-06-12 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090729A (ja) * 2002-08-30 2004-03-25 Bridgestone Corp 空気入りタイヤ
DE10352149A1 (de) * 2003-11-04 2005-06-02 Continental Aktiengesellschaft Fahrzeugluftreifen
JP4394161B1 (ja) * 2009-04-17 2010-01-06 横浜ゴム株式会社 空気入りタイヤ
DE102009059169A1 (de) * 2009-12-16 2011-06-22 Continental Reifen Deutschland GmbH, 30165 Fahrzeugluftreifen
JP5320427B2 (ja) * 2011-04-12 2013-10-23 住友ゴム工業株式会社 空気入りタイヤ
EP2594417B1 (en) * 2011-11-15 2015-01-14 Sumitomo Rubber Industries Limited Run-flat tire
CN106414113B (zh) * 2014-05-29 2018-11-16 株式会社普利司通 充气轮胎
EP3150407B1 (en) * 2014-05-29 2018-09-05 Bridgestone Corporation Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11321240A (ja) * 1997-12-04 1999-11-24 Continental Ag 冬用タイヤのトレッドパターン
JP2009149124A (ja) * 2007-12-18 2009-07-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2010111358A (ja) * 2008-11-10 2010-05-20 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
EP2353884A1 (de) * 2010-01-26 2011-08-10 Continental Reifen Deutschland GmbH Fahrzeugluftreifen
JP2014108653A (ja) * 2012-11-30 2014-06-12 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3192673A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151108A1 (ja) * 2017-02-14 2018-08-23 横浜ゴム株式会社 空気入りタイヤ
JP2018131003A (ja) * 2017-02-14 2018-08-23 横浜ゴム株式会社 空気入りタイヤ
CN112009174A (zh) * 2019-05-31 2020-12-01 住友橡胶工业株式会社 轮胎

Also Published As

Publication number Publication date
JPWO2016038787A1 (ja) 2017-06-22
CN107074029B (zh) 2019-04-19
EP3192673A1 (en) 2017-07-19
EP3192673A4 (en) 2017-08-30
JP6571093B2 (ja) 2019-09-04
CN107074029A (zh) 2017-08-18
US20170253087A1 (en) 2017-09-07
EP3192673B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6571093B2 (ja) 空気入りタイヤ
US10226968B2 (en) Pneumatic tire
JP4829994B2 (ja) 空気入りタイヤ
US10343461B2 (en) Heavy duty pneumatic tire
US20160297254A1 (en) Heavy duty tire
CN103895453B (zh) 充气轮胎
US9757991B2 (en) Pneumatic tire
WO2015186443A1 (ja) 空気入りタイヤ
JP6306436B2 (ja) 空気入りタイヤ
WO2014185121A1 (ja) 空気入りタイヤ
JP6139843B2 (ja) 空気入りタイヤ
WO2015182022A1 (ja) 空気入りタイヤ
WO2015097945A1 (ja) 重荷重用空気入りタイヤ
US9302551B2 (en) Pneumatic tire with tread having V-shaped groove
JP2010254049A (ja) 空気入りタイヤ
WO2016017543A1 (ja) 空気入りタイヤ
JP5402531B2 (ja) 空気入りタイヤ
EP3470243A1 (en) Tire
US10232670B2 (en) Pneumatic tire
JP5814042B2 (ja) 空気入りタイヤ
US9446629B2 (en) Pneumatic tire
JP5282479B2 (ja) 空気入りタイヤ
JP6824832B2 (ja) タイヤ
JP5437851B2 (ja) 空気入りタイヤ
JP2015212146A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547665

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015840083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840083

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15510501

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE