WO2016037511A1 - 一种电源保护控制方法 - Google Patents

一种电源保护控制方法 Download PDF

Info

Publication number
WO2016037511A1
WO2016037511A1 PCT/CN2015/084177 CN2015084177W WO2016037511A1 WO 2016037511 A1 WO2016037511 A1 WO 2016037511A1 CN 2015084177 W CN2015084177 W CN 2015084177W WO 2016037511 A1 WO2016037511 A1 WO 2016037511A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
fault
protection
control
module
Prior art date
Application number
PCT/CN2015/084177
Other languages
English (en)
French (fr)
Inventor
唐盛斌
余凤兵
符威
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2016037511A1 publication Critical patent/WO2016037511A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers

Definitions

  • the invention relates to a power protection control method.
  • Switching power supply has the characteristics of small size, light weight and high efficiency, and has been widely used in industrial control, communication office, household consumption and other fields.
  • power supplies have different technical specifications and indicators, especially various protection functions, and short-circuit protection is the most important function.
  • the control IC detects the signal related to the output voltage and determines whether a short circuit condition occurs to stop the output or output the driving signal.
  • many power supplies reduce the power supply voltage VDD of the control IC. Below the specified threshold, even if the control IC is undervoltage to stop the output drive signal, the power is turned off to achieve short-circuit protection.
  • the output voltage is reduced to the minimum value.
  • the control IC pulls down the voltage of the bypass capacitor C2 through its own power consumption, causing the control IC supply voltage VDD to drop until the control IC is undervoltage, and stops outputting.
  • the driving signal at this time, the entire power system returns to the unstarted state, the starting circuit can recharge the bypass capacitor C2, let the control IC restart, and output the driving signal; if the short circuit fault is not eliminated, the control IC will lower the bypass capacitor. C2 voltage, return to the above process, the power supply works intermittently until the short circuit fault is eliminated.
  • the startup circuit There are many implementations of the startup circuit here, as long as the startup circuit does not charge the bypass capacitor C2 or affect the undervoltage of the control IC until the supply voltage VDD of the control IC does not reach the set threshold.
  • the short-circuit protection control method has strict requirements on the value of the bypass capacitor C2, and the value thereof cannot be too large. If the value is too large, the power supply "starting time” and “starting power consumption” may not be completed. And it will cause too long to enter the short-circuit protection, the short-circuit power consumption is too large; it should not be too small, if it is too small, when the power supply with capacitive load starts, the short-circuit protection may be triggered by mistake; this will increase the system. The complexity of the design and the difficulty of debugging the short-circuit protection performance.
  • the power supply needs to integrate multiple protection functions, then the control IC needs to stop outputting the driving signal according to the fault condition.
  • the short-circuit protection control method described above becomes more unsuitable. The following is an explanation of the power supply input undervoltage fault as an example.
  • the output voltage is reduced to a minimum value. Similar to the above case, the bypass capacitor C2 is discharged to maintain the control IC operating normally. If the input undervoltage fault lasts for a long time, the bypass capacitor C2 continues to discharge until the control IC is undervoltage. When the control IC is restarted, there will be an initialization time to ensure that the trigger and important node signals inside the control IC can be reset. The initial value required. Generally, the protection signal is reset to a non-faulty state to meet specific protection function requirements. More generally, in order to prevent protection from false triggering, each protection module has a built-in detection delay.
  • the IC may output a drive signal.
  • the output voltage of the power supply will rise very high, and the power supply cannot meet the function specifications of the input undervoltage protection.
  • the improved control method can overcome the contradiction of the value of the bypass capacitor C2, under the premise that the power supply is charged and the control IC is not under voltage, if the signal of the original port output is high, it is necessary to “Ground” draws current, which inevitably introduces power consumption, and in summary, in the case of power supply integration of multiple protection functions, this power consumption will run through all protection modes because of trigger protection. After that, the reduction of the output voltage will cause the short circuit protection circuit to work.
  • the power system is required to be protected for a long time without being struck by lightning; after being struck by lightning, the power system is quickly started to supply power to the load, completing the application. Claim.
  • the protection state triggers the operation of the improved short circuit protection circuit, resulting in an additional current of about 1 mA to the "ground", and in the application, the power supply voltage of the power system is 220V.
  • the power system consists of 100 power supplies that use this type of protection control method, so the standby power consumption of the entire power system without lightning strikes will be as high as 22 watts.
  • the object of the present invention is to provide a power protection control method, which avoids the problem of large power consumption as described above and reduces the complexity of system design under the premise of normal realization of various power protection functions. Sex.
  • the output voltage described below refers to the output voltage of the power supply, and the flip refers to a high-low level flip or a low-level flip.
  • the power protection control circuit includes a soft start module, a short circuit protection module, a driver, a narrow pulse generator, and a first input and output port FB and a first output port GATE.
  • the short circuit protection module includes a voltage detecting module and a counting control module connected in sequence, and the voltage detecting module is connected to the first input/output port FB, and the voltage detecting module detects the output of the optocoupler and is related to the output voltage.
  • the feedback signal is connected to determine whether a short circuit condition occurs, and outputs or stops outputting the short circuit protection signal to the counting control module, and the counting control module outputs a corresponding control signal and a shutdown signal according to the state of the short circuit protection signal;
  • a power protection control method includes a short circuit protection control method, and the steps of implementing protection control are as follows:
  • Step 1 The power is turned on and the control IC is started.
  • Step 2 The soft start module controls the feedback signal of the first input/output port to rise slowly from 0V, the power supply is normally soft-started, and the duty ratio of the driving signal is slowly increased;
  • Step 3 After the power soft start is completed, the voltage detecting module detects the feedback signal, and compares the feedback signal with a preset reference voltage. If the feedback signal is higher than the reference voltage, The voltage detecting module outputs a short-circuit protection signal to the counting control module, and proceeds to step four. Otherwise, the short-circuit protection signal is not output, the power supply works normally, and the feedback signal is detected again, and the power self-detection is started;
  • Step 4 The counting control module receives the short circuit protection signal, detects a delay time to start timing, determines whether the short circuit protection signal duration exceeds a detection delay time, and if so, outputs a shutdown signal to the driver, and stops outputting the driving signal. Turn off the power, and turn the state of the control signal to step 5, otherwise, return to step 3;
  • Step 5 The short-circuit rest time starts to count, after the timing is completed, the shutdown signal is cancelled, and the state of the control signal is flipped again. At this time, the inversion edge of the control signal triggers a narrow pulse generator, and the narrow pulse generator Outputting a narrow pulse reset signal to the soft start module, resetting a soft start state, and pulling down the feedback signal;
  • Step 6 After the narrow pulse duration ends, the narrow pulse reset signal is inverted into an initial state, and the Go back to step two.
  • the power protection control circuit further includes a first protection module, an edge generator, a first input port VIN and a second input port VDD, and the first protection module includes a first input port VIN An input undervoltage protection module and a VDD overvoltage protection module connected to the second input port VDD, wherein the output ends of the two are respectively connected to the two input ends of the first AND gate, and the output ends of the first AND gate respectively An input of the driver is coupled to the first input of the edge generator for outputting a fault signal.
  • the input undervoltage protection module can detect the power supply voltage VDC and determine whether an input undervoltage fault condition occurs.
  • the VDD overvoltage protection module can detect the voltage on the auxiliary winding, and indirectly detect the output voltage to determine whether it appears. An overvoltage fault condition is output, and if any of the above faults occurs, the first protection module outputs a fault signal.
  • a power protection control method is characterized in that: another protection control method is further included, which can avoid the short circuit protection control method caused by the first protection module detecting the fault, and the process of implementing the protection control is as follows :
  • Step A The power is turned on, and the control IC is started.
  • Step B The first protection module detects whether a fault occurs. If a fault is detected, the first protection module outputs a fault signal to directly turn off the driver, and the fault signal is also sent to the edge generator, so that the edge The generator "shields" the control signal from the counting control module, and proceeds to step C; if the first protection module does not detect the fault, the fault signal is not output, the output voltage is not established, the optocoupler is turned off, and the process proceeds to step C1;
  • Step C the soft start module control feedback signal slowly rises from 0V, if the fault is not eliminated, the driver does not output a drive signal, the feedback signal continues to rise, proceeds to step D; if the fault is eliminated, proceeds to step G;
  • Step D the feedback signal exceeds the set reference voltage, the voltage detection module outputs a short circuit protection signal to the counting control module, if the fault has not been eliminated at this time, proceeds to step E; otherwise, proceeds to step G;
  • Step E The counting control module receives the short circuit protection signal, and detects a delay time to start timing. If the fault is still not eliminated within the detection delay time, the drive signal is not outputted, the state of the control signal is reversed after the detection delay time is completed, and the process proceeds to step F; if the fault is detected during the detection delay time, the process proceeds to Step G;
  • Step F the short-circuit rest time begins to count, after the time is completed, the control signal is flipped again, if the fault is still not eliminated, the control signal is still in the "shielded" state, returning to step D, otherwise, proceeds to step G;
  • the soft start module controls the feedback signal to rise slowly from 0V, the power supply starts soft start, and the duty ratio of the drive signal increases slowly.
  • the first protection module detects whether a fault occurs, if Yes, output a fault signal, turn off the driver, stop outputting the drive signal, the output voltage of the power supply drops, the feedback signal rises, proceeds to step D; otherwise, the power supply works normally, proceeds to step D1;
  • the first protection module detects whether a fault has occurred. If a fault is detected, the fault signal is output, the driver is turned off, the output drive signal is stopped, the output voltage of the power supply is decreased, and the feedback signal rises. Step D; if the first protection module does not detect that the fault occurs, the voltage detection module detects whether the feedback signal is greater than the reference voltage. If the feedback signal is less than the reference voltage, the voltage detection module does not output the short circuit protection signal, and the power supply works normally, and enters the E1 step; The feedback signal is greater than the reference voltage, and the voltage detection module outputs a short circuit protection signal to the counting control module, and enters the E2 step;
  • the power supply works normally, the first protection module detects whether a fault occurs, and if it is not detected, returns to step D1; if a fault is detected, the fault signal is output, the driver is directly turned off, and the output drive signal is stopped, and at the same time The fault signal is also sent to the edge generator, "shield" the above control signal, after stopping the output of the drive signal, the output voltage of the power supply drops, the feedback signal rises, proceeds to step D;
  • the counting control module receives the short circuit protection signal, and the detection delay time starts counting. If the first protection module detects the failure occurs within the detection delay time, the fault signal is output, the driver is turned off, the output driving signal is stopped, and the detection delay time continues. Timing, after stepping, enter step F; if no fault is detected within the detection delay time, determine whether the short circuit protection signal duration exceeds the detection delay time, if the short circuit protection signal duration is greater than the detection delay time, the counting control module outputs one Turn off the signal to the driver, stop outputting the drive signal, turn off the power, and turn the state of the control signal, go to step F1, otherwise return to step D1;
  • the short-circuit rest time starts counting. If the first protection module detects a fault during the short-circuit rest time, the first protection module outputs a fault signal, and the short-circuit rest time continues to count. After the timing is completed, the control signal is flipped again, and the process proceeds to step D. Otherwise, as in the above short-circuit protection control method, after the short-circuit rest time is completed, the shutdown signal is cancelled, and the control signal is flipped again, and the process proceeds to step G;
  • Step G The edge generator outputs a side edge signal to trigger a narrow pulse generator, and the narrow pulse generator outputs a narrow pulse reset signal to the soft start module to reset the soft start state and pull down the feedback signal;
  • Step H After the narrow pulse reset signal duration ends, the narrow pulse reset signal is inverted to an initial state, and the power source is self-recovery, and returns to step B.
  • the detecting delay time and the short-circuit rest time are preset by the counting control module, and the short-circuit rest time is started after the end of the detecting delay time.
  • the fault may be an input undervoltage fault, an output overvoltage fault, or a special condition such as a lead floating fault, as long as the first protection module outputs a fault signal, thereby causing the short circuit protection module to work.
  • the method of controlling the same as the present invention is within the scope of the claims of the present invention.
  • the narrow pulse reset signal duration is preset by the narrow pulse generator to ensure that the soft start module can be completely reset.
  • the power protection control method has high reliability and wide application range. It can realize the detection delay time setting without external capacitors, effectively avoiding the false trigger short circuit protection with capacitive load start, and having a long enough short circuit break. Time to ensure that the power supply can be fully dissipated after the output is short-circuited, improving the reliability of the power supply.
  • the digital control circuit such as the counting control module generates a shutdown signal, directly turns off the driver, and stops outputting the driving signal.
  • This shutdown mode does not continuously draw current, and does not introduce additional power consumption;
  • the fault signal can also directly turn off the driver, and is not affected by the shutdown signal, ensuring other faults other than short-circuit faults in the power supply, such as input undervoltage faults, resulting in a decrease in output voltage and short-circuit protection.
  • the power supply does not work intermittently, so that the static power consumption of the power supply is further reduced compared with the prior art when the input is under voltage;
  • control circuits such as edge generators to ensure that when the power supply has other faults other than short-circuit faults, such as input undervoltage faults, resulting in a decrease in output voltage and causing the short-circuit protection circuit to operate, the feedback signal does not occur intermittently. High and low oscillations reduce unnecessary power consumption.
  • FIG. 1 is a circuit diagram of implementing short circuit protection by using a power supply terminal of a control IC in the prior art
  • FIG. 2 is an application circuit diagram of a control IC to which the power supply protection control method according to the present invention is applied;
  • FIG. 3 is a schematic block diagram of a power protection control circuit according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic block diagram of a power protection control circuit according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic block diagram of a short circuit protection module in the power protection control circuit of the present invention.
  • FIG. 6 is a schematic block diagram of a first protection module in a power protection control circuit according to the present invention.
  • FIG. 7 is a schematic block diagram of a driver in a power protection control circuit according to the present invention.
  • Embodiment 8 is a flowchart of a power protection control method in Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of signals according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram of signals according to Embodiment 2 of the present invention.
  • FIG. 11 is a flowchart of a power protection control method according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic diagram of signals according to Embodiment 3 of the present invention.
  • This embodiment is based on the application of FIG. 2 and is applied to an off-line flyback converter for optocoupler feedback.
  • the first input/output port FB of the control IC2 is respectively connected with one end of the first capacitor C1 and the pin 3 of the optocoupler PC1 to form a node A, and the feedback signal VFB of the control IC 2 is passed through the section.
  • Point A is transmitted to the FB port;
  • the first input port VIN is connected to the power supply voltage VDC through the first resistor R1 for detecting the power supply voltage VDC in real time;
  • the second input port VDD is the power supply terminal of the control IC2, the VDD port Connected to one end of the second capacitor C2, the output end of the linear power supply, and the second diode D2, respectively,
  • the linear power supply includes a first resistor R2, a first Zener diode ZD1, a first transistor Q1, and a first diode Tube D1, it can be seen that when the auxiliary winding cannot supply power to the control IC2, the second capacitor C2 and the linear power supply can maintain the normal power supply of the control IC2 when the power source is charged;
  • the third input port CS and the first NMOS transistor M1 respectively
  • the source is connected to one end of the fourth resistor R4 for sampling the primary peak current of each switching cycle, and inputting a sampling signal to the control IC;
  • the third input/output port RI is connected to one end of the third resistor R3 for setting the built-in clock frequency;
  • the fourth input/output port GND is connected to a reference potential, such as "ground” potential;
  • the port GATE is connected to the gate of the first NMOS transistor M1, and the output driving signal controls the switching state of the first NMOS transistor M1.
  • the feedback signal VFB and the output voltage described in this embodiment are connected through devices such as the optocouplers PC1 and TL431.
  • the pin 3 of the optocoupler PC1 is connected to the first input/output port FB, and the pin 4 is connected to the "ground" potential.
  • the output voltage of the TL431 is divided by the resistors R5 and R6.
  • the sampled value is compared with the reference voltage built in the TL431 to obtain an error signal, which is converted into the feedback signal VFB by the optocoupler PC1 and sent to the first input/output port FB.
  • the feedback signal VFB is related to the loop parameter setting, and a person skilled in the art can establish a precise relationship between the feedback signal VFB and the output voltage through a simple loop design, which is not described in detail in the present invention.
  • the power protection control circuit includes a soft start module 1, a short circuit protection module 2, a driver 4, a narrow pulse generator 6, and a first input/output port FB, a third input port CS, and a first output port GATE.
  • the trigger condition of the narrow pulse generator 6 is set to "rising edge trigger" in the first embodiment.
  • the short circuit protection module 2 includes a voltage detecting module 21 and a counting control module 22 connected in sequence.
  • the voltage detecting module 21 detects the feedback signal VFB, determines whether a short circuit condition occurs, and outputs or stops outputting the short circuit protection signal to the counting.
  • the control module 22, the counting control module 22 outputs a corresponding control signal Ctrl and a shutdown signal according to the state of the short circuit protection signal;
  • the driver 4 includes a second AND gate 41, a level shift circuit 42, a buffer 43, and a PWM. Modulator 44. It should be understood by those skilled in the art that the driver 4 of the embodiment is the simplest driving circuit, wherein the level shifting circuit 42 and the buffer 43 are powered by the second input port VDD of the control IC, generally controlling the maximum power consumption of the IC. Two submodules.
  • the two input ends of the PWM modulator 44 are respectively connected to the feedback signal VFB and the third input port CS, and the PWM modulator 44 compares the feedback signal VFB with the sampling signal input by the third input port CS, and outputs a pulse width modulation signal Drive to a first input of the second AND gate 41, the turn-off signal is coupled to a second input of the second AND gate 41, and an output of the second AND gate 41 is coupled to an input of the level shifting circuit;
  • the circuit 42 is sequentially connected to the buffer 43 and outputs a driving signal from the buffer 43. If the off signal is inactive at a high level, the pulse width modulation signal Drive can control the level shifting circuit 42 to further output the buffer 43.
  • the pulse width modulation signal drives the drive signal GATE of the same phase.
  • the second AND gate 41 when the turn-off signal is active low, regardless of the level of the pulse width modulation signal Drive of the first input terminal of the second AND gate 41, the second AND gate 41 outputs a low output.
  • the level-off level shifting circuit 42 further turns off the buffer 43, and stops the output driving signal GATE, that is, the driving signal GATE is at a low level during the time when the off signal is low, as shown in FIG.
  • the first NMOS transistor M1 is in an off state such that the sampling signal input by the third input port CS is at a low level ("ground” level in this embodiment), and the feedback signal VFB is higher than the sampling signal.
  • the pulse width modulation signal Drive output from the PWM modulator 44 is at a fixed level (high level in this embodiment). Therefore, when the shutdown signal is active low, no signal in the entire driver 4 exhibits high and low level oscillations, no current is drawn, and no power consumption is generated.
  • the fault signal Fault submitted below is the same as the shutdown signal, and the second AND gate 41 has a third input connected to the fault signal Fault.
  • FIG. 8 is a flowchart of a short circuit protection control method according to the first embodiment, and the process of implementing the protection control is as follows:
  • Step 1 The power is turned on and the control IC is started.
  • Step 2 The soft start module 1 controls the feedback signal VFB of the first input/output port FB to rise slowly from 0V, the power supply is normally soft-started, and the duty ratio of the driving signal is slowly increased;
  • Step 3 After the maximum soft start time T1 ends, the voltage detecting module 21 detects the feedback signal. VFB, the feedback signal VFB is associated with the output voltage, and the feedback signal VFB is compared with the reference voltage Vref set in the control IC. If the power supply has an output short-circuit fault, the output voltage is too low and falls out of the operating point of the TL431.
  • the optocoupler is turned off, the current is not extracted, so that the feedback signal VFB is higher than the reference voltage Vref, and a short-circuit protection signal is output to the counting control module 22, and proceeds to step 4; if the feedback signal VFB is lower than the reference voltage Vref, the power supply is not An output short-circuit fault occurs, the power supply enters a normal working state, and the feedback signal is detected again, and the power self-test is started;
  • Step 4 The counting control module 22 receives the short circuit protection signal, and the detection delay time T2 starts counting. If the short circuit fault is eliminated during the T2 time, the short circuit protection signal is eliminated, and then returns to step 3; after the T2 time ends, the feedback signal VFB remains. Above the reference voltage Vref, the short-circuit fault is not eliminated, and the counting control module 22 outputs a turn-off signal to the driver 4, turns off the driver 4, stops outputting the driving signal, turns off the power, and controls the high level after the control IC is started. The state of the signal Ctrl is turned to a low level, and the process proceeds to step 5; as shown in FIG.
  • Step 5 The short-circuit rest time T3 starts counting. After the timing is completed, the shutdown signal is cancelled, and the state of the control signal Ctrl is once again turned to a high level. At this time, the rising edge of the control signal Ctrl is inverted. a trigger condition of the narrow pulse generator 6, the narrow pulse generator 6 sends a low-level narrow pulse reset signal RST to the soft start module 1, resetting the soft start state, and pulling down the feedback signal VFB, which The low level duration of a narrow pulse reset signal RST is T4.
  • the set time is 290ns to ensure that the soft start module 1 can be completely reset, and the feedback signal VFB is pulled down to the "ground” potential to ensure soft start.
  • the time is consistent with the design value; this short-circuit rest time T3 needs to be long enough, such as 1.6s, to ensure that the power supply can fully dissipate heat after the output is short-circuited, improving the reliability of the power supply;
  • Step 6 After the T4 time, the narrow pulse reset signal RST is turned to a high level, and returns to step 2.
  • the voltage detecting module 21 starts detecting the feedback signal VFB again. If the output short circuit fault is eliminated within the time T1+T2, the power supply is self-recovering and starts normal operation; otherwise, the above will be repeated.
  • the short-circuit protection process allows the power supply to operate intermittently until the short-circuit fault is removed.
  • the feedback signal VFB is fully pulled down only during the T4 time before the power supply needs to be soft-started, which further reduces the power consumption of the power supply during the short-circuit protection time T3 when the power supply has a short-circuit fault, thereby reducing the power supply. Power consumption during each intermittent duty cycle.
  • the time parameters are all set by the counting control module 22, and no external capacitor is needed.
  • the linear power supply of FIG. 2 can maintain the normal power supply of the control IC2, and the control IC2 does not undervoltage, so
  • the peripheral parameters such as the road capacitance do not affect the setting of the above time parameters, which greatly reduces the requirement for the value of the bypass capacitor, facilitates debugging, and reduces the complexity of the system design.
  • the power protection control circuit adds a first NAND gate 5, a first protection module 3, a first input port VIN, and a second input port VDD.
  • the first input end of the first NAND gate 5 is connected to the fault signal Fault outputted by the first protection module 3, and the second input end is connected to the control signal Ctrl outputted by the short circuit protection module 2, and the output end is The input terminals of the narrow pulse generator 6 are connected.
  • the trigger condition of the narrow pulse generator 6 is set to a falling edge trigger.
  • the first protection module 3 includes an input undervoltage protection module 32 connected to the port VIN and a VDD overvoltage protection module 33 connected to the port VDD, and the outputs of the two are respectively associated with the first AND gate.
  • the two inputs of 31 are connected, and the output of the first AND gate 31 is connected to the driver 4 for outputting a fault signal Fault.
  • the input undervoltage protection module 32 can detect the power supply voltage VDC and determine whether an input undervoltage fault condition occurs.
  • the VDD overvoltage protection module 33 can detect the voltage on the auxiliary winding, thereby indirectly detecting the output voltage, and determining whether an output occurs. In the event of an overvoltage fault, if any of the above faults occurs, the first protection module 3 outputs a fault signal Fault, and the fault signal Fault is active low.
  • a power protection control circuit further includes another protection control method, which can avoid the short circuit protection control method caused by the first protection module detecting a fault, thereby avoiding intermittent operation of the power supply, and the steps of implementing the protection process are as follows:
  • Step A The power is turned on, and the control IC is started.
  • Step B The first protection module 3 does not detect the fault, does not output the fault signal Fault, the output voltage is not established, the optocoupler is cut off, and the process proceeds to step C1;
  • the soft start module 1 controls the feedback signal VFB to rise slowly from 0V, the power supply starts soft start, the duty ratio of the drive signal increases slowly, and the first protection module 3 detects whether a fault occurs during the soft start process, if any Then output a fault signal fault, turn off the driver 4, stop outputting the drive signal, and lose When the output voltage drops, the feedback signal VFB rises and proceeds to step D; if no fault is detected, the normal soft start proceeds to step D1;
  • the first protection module detects whether a fault occurs. If a fault is detected, the fault signal Fault is output, the driver is turned off, the output drive signal is stopped, the output voltage is decreased, and the feedback signal is raised, and the process proceeds to step D. If the first protection module does not detect that the fault occurs, the voltage detecting module 21 detects whether the feedback signal VFB is greater than the reference voltage Vref. If the feedback signal VFB is less than the reference voltage Vref, the optocoupler PC1 extracts the current, and the voltage detecting module 21 does not.
  • the short-circuit protection signal will be output, the power supply works normally, and enters the E1 step; if the feedback signal VFB is greater than the reference voltage Vref, the voltage detection module outputs a short-circuit protection signal to the counter module, and enters the E2 step;
  • the power supply works normally.
  • the first protection module 3 detects whether a fault has occurred. If it is not detected, it returns to step D1. If a fault occurs, such as an input undervoltage fault, the fault signal Fault is output, that is, the fault signal Fault. When the level is low, the driver 4 is directly turned off, the output driving signal is stopped, and the fault signal Fault is also sent to the first input end of the first NAND gate 5 to "shield" the control signal Ctrl to stop the output driving. After the signal, the output voltage drops, the feedback signal VFB rises, proceeds to step D;
  • the counting control module receives the short circuit protection signal, and the detection delay time T2 starts counting. If the first protection module detects the failure occurs within the T2 time, the fault signal Fault is output, the driver is turned off, the output driving signal is stopped, and the delay time is detected.
  • T2 continues to count, after the timing is completed, the state of the above control signal Ctrl is turned to a low level, and proceeds to step F; if no fault is detected within the detection delay time, it is determined whether the short-circuit signal duration exceeds the detection delay time T2, if If the short-circuit protection signal lasts longer than T2, the short-circuit protection module outputs a shutdown signal to the driver, stops outputting the drive signal, turns off the power, and flips the state of the control signal from high level to low level, and proceeds to step F1, otherwise returns Step D1;
  • the short-circuit rest time T3 starts counting. If the first protection module detects a fault during the T3 time, the first protection module outputs a fault signal Fault, and the short-circuit rest time T3 continues to count. After the timing is completed, the control signal Ctrl is low. Level flips to a high level, enters step D; otherwise, after T3 is finished, the shutdown signal is cancelled, and the control signal is turned from a low level to a high level, and proceeds to step G;
  • Step D The voltage detecting module 21 detects that the feedback signal VFB exceeds the set reference voltage Vref, and the voltage detecting module 21 outputs a short circuit protection signal to the counting control module 22, If the input undervoltage fault has not been eliminated, go to step E; if the input undervoltage fault is eliminated, the fault signal Fault is flipped from low level to high level, and proceeds to step G;
  • Step E The detection delay time T2 starts counting. If the input undervoltage fault is still not eliminated during the T2 time, the driving signal is not outputted. After the timing is completed, the state of the control signal Ctrl is turned to a low level, and the process proceeds to step F; If the input undervoltage fault is removed, the fault signal Fault is flipped from low level to high level, and proceeds to step G;
  • Step F the short-circuit rest time T3 starts counting, and after the timing is completed, the above control signal Ctrl is flipped to a high level again. If the input under-voltage fault is still not eliminated, the above control signal Ctrl is “shielded”, the narrow pulse generator 6 will not send the above narrow pulse reset signal RST, the soft start module 1 will not reset, the feedback signal VFB will continue to be high level, will not cause additional power consumption, return to step D; if the input undervoltage fault is removed within T3 time, then The fault signal Fault is flipped from a low level to a high level, and proceeds to step G;
  • step G the fault signal Fault is at a high level (the high level is an inactive state), and the second input end of the first NAND gate 5 receives the control signal Ctrl that is already at a high level, so the first and the second are The gate 5 outputs a falling edge signal Edge that satisfies the trigger condition of the narrow pulse generator 6, and the narrow pulse generator 6 outputs a narrow pulse reset signal RST to the soft start module 1, resetting the soft start state, and pulling down The feedback signal VFB;
  • step H After the end of step H and time T4, the narrow pulse reset signal RST is turned to a high level, and the power source is self-recovery, and returns to the detection process of step B.
  • shield in the present invention should be interpreted as: using the characteristics of the NAND gate, when any input of the NAND gate receives a low level, regardless of the level of the signal of the other input of the NAND gate. Both NAND and NAND gates only output a high level, which is equivalent to shielding the signal at the other input. Therefore, the term “shielded” is used in the text to describe this characteristic of NAND gate, such as the first and second mentioned in the text.
  • the first input end of the gate 5 receives the fault signal Fault to a low level
  • shielding the control signal Ctrl received by the second input terminal, and the first NAND gate 5 can only output high regardless of the level of the control signal Ctrl. Level.
  • step F returning to step D, proceeding to step E, before the time T2 is completed, the input undervoltage fault is eliminated, the fault signal Fault is flipped to a high level, and the process proceeds to step G, after step H.
  • the power supply is self-recovering and starts to work normally.
  • a detection delay time T2 which can effectively avoid the false contact of the power supply with capacitive load when starting the machine. Short-circuit protection is issued, and this detection delay time T2 starts timing after the short-circuit protection signal is generated after the maximum soft-start time T1, and the capability of carrying the capacitive load can be enhanced by appropriately increasing the maximum soft-start time T1;
  • the difference from the second embodiment is that after the power is turned on, after the control IC is started, the first protection module detects a fault, and the process of implementing the protection control as shown in FIG. 11 is as follows:
  • Step A The power is turned on, and the control IC is started.
  • Step B The first protection module 3 detects an input undervoltage fault, and the output fault signal Fault directly turns off the driver 4, and the fault signal Fault is also sent to the first input end of the first NAND gate 5, “shielded”
  • the control signal Ctrl of the second input end of the first NAND gate 5 proceeds to step C; if the first protection module 3 does not detect the fault, it enters the same working mode as the second embodiment;
  • Step C The soft start module 1 controls the feedback signal VFB to rise slowly from 0V, the input undervoltage fault is not eliminated, the driver 4 does not output a driving signal, the feedback signal VFB continues to rise, and the maximum soft start time T1 After the end, proceed to step D; if the input undervoltage fault is eliminated, the fault signal Fault is flipped from a low level to a high level, and proceeds to step G;
  • Step D The voltage detecting module 21 detects that the feedback signal VFB exceeds the set reference voltage Vref, and the voltage detecting module 21 outputs a short circuit protection signal to the counting control module 22, and the input undervoltage fault has not been eliminated. , enter step E; if the input undervoltage fault is eliminated, the fault signal Fault is flipped from low level to high level, and proceeds to step G;
  • Step E The detection delay time T2 starts counting. If the input undervoltage fault is still not eliminated during the T2 time, the driving signal is not outputted. After the timing is completed, the state of the control signal Ctrl is turned to a low level, and the process proceeds to step F; If the input undervoltage fault is removed, the fault signal Fault is flipped from low to high. Level, enter step G;
  • Step F the short-circuit rest time T3 starts counting, and after the timing is completed, the above control signal Ctrl is flipped to a high level again. If the input under-voltage fault is still not eliminated, the above control signal Ctrl is “shielded”, the narrow pulse generator 6 will not output the above narrow pulse reset signal RST, the soft start module 1 will not reset, the feedback signal VFB will continue to be high level, will not cause additional power consumption, return to step D; if the input undervoltage fault is removed within T3 time, then The fault signal Fault is flipped from a low level to a high level, and proceeds to step G;
  • step G the fault signal Fault is at a high level (the high level is an inactive state), and the second input end of the first NAND gate 5 receives the control signal Ctrl that is already at a high level, so the first and the second are The gate 5 outputs a falling edge signal Edge that satisfies the trigger condition of the narrow pulse generator 6, and the narrow pulse generator 6 outputs a narrow pulse reset signal RST to the soft start module 1, resetting the soft start state, and pulling down The feedback signal VFB;
  • step H After the end of step H and time T4, the narrow pulse reset signal RST is turned to a high level, the power source is self-recovery, and the process returns to step B again.
  • the input undervoltage fault duration is greater than 2 ⁇ (T2+T3), so the above process cycles between steps D and F. Twice, in the third time T2, the input undervoltage fault is eliminated, the fault signal Fault is flipped to a high level, and proceeds to step G.
  • the power supply is self-recovery, soft-start, and the power supply does not output. Short circuit, the power supply starts to work normally after the soft start is over.
  • the embodiments of the present invention are not limited thereto, and although the above embodiments are applied to an optocoupler feedback flyback power converter, it should be appreciated that the present invention can be applied to other broader ranges, such as may be applied according to actual applications.
  • the pin suspension protection module is added, the trigger form of the control signal is modified, and the like.
  • the present invention can also be used in various other forms without departing from the basic technical idea of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种电源保护控制方法,包括一种短路保护控制方法,其实现保护控制的步骤如下:步骤一、电源上电,控制IC启动;步骤二、软启动模块控制第一输入输出端口的反馈信号从0V开始缓慢上升,电源正常软启动,驱动信号占空比缓慢增加;步骤三、电源软启动结束后,电压检测模块检测反馈信号,并将反馈信号与预先设定的基准电压进行比较,若反馈信号高于基准电压,则电压检测模块输出短路保护信号给计数控制模块,进入步骤四,否则,不输出短路保护信号,电源正常工作,又开始检测反馈信号,开始电源自检测;步骤四、计数控制模块接收短路保护信号,检测延迟时间开始计时,判断短路保护信号持续时间是否超过检测延迟时间,如是则输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态翻转,进入步骤五,否则,返回步骤三;步骤五、短路休息时间开始计时,计时完毕后撤销关断信号,再一次翻转控制信号的状态,此时控制信号的翻转边沿触发窄脉冲发生器,窄脉冲发生器输出窄脉冲复位信号至软启动模块,重置软启动状态,拉低反馈信号;步骤六、窄脉冲持续时间结束后,窄脉冲复位信号翻转成初始状态,返回步骤二。该电源保护控制方法可以避免电源在触发保护后,带来功耗大的问题,同时降低系统设计的复杂性。

Description

一种电源保护控制方法 技术领域
本发明涉及一种电源保护控制方法。
背景技术
开关电源具有体积小、重量轻、效率高等特点,已经广泛地应用于工业控制、通信办公、家庭消费等领域中。但随着电子技术的不断发展,电源有了不同的技术规格和指标,尤其是各种保护功能,短路保护作为其中最重要的功能更加倍受关注。
为了达到短路保护目的,通常,控制IC会对与输出端电压相关的信号进行检测,并判断是否出现短路状况,以停止输出或输出驱动信号,而目前很多电源通过使控制IC的供电电压VDD下降到规定的阈值以下,即使控制IC欠压来停止输出驱动信号,从而关闭电源,实现短路保护。如图1所示,电源输出短路后,输出电压就会降低至最小值,控制IC通过自身功耗拉低旁路电容C2的电压,使控制IC供电电压VDD下降直至控制IC欠压,停止输出驱动信号;此时整个电源系统恢复到未启动状态,启动电路能够重新给旁路电容C2充电,让控制IC重新启动,输出驱动信号;若短路故障未排除,控制IC又会拉低旁路电容C2电压,回到上述过程,电源间歇工作直至短路故障排除。这里的启动电路实施方式有很多种,只要满足在控制IC的供电电压VDD未达到设定阈值前,启动电路不给旁路电容C2充电或是不影响控制IC实现欠压的目的即可。
但是上述短路保护控制方法对旁路电容C2的取值要求较为严格,其取值不能太大,太大的话与启动电路配合后可能无法完成电源“启动时间”、“启动功耗”等参数指标,并且还会导致进入短路保护的时间太长,短路功耗太大;也不能太小,太小的话在电源带容性负载起机时,可能会误触发短路保护;这样就加大了系统设计的复杂性和短路保护性能的调试难度。
而且随着电子技术的发展,为了满足越来越高的电源功能指标的要求,电源需要集成多种保护功能,那么控制IC就需要根据故障情况停止输出驱动信号。在这种背景下,上述短路保护控制方法变得更加不适用,下面以电源输入欠压故障为例进行解释。
当检测到电源输入欠压故障,控制IC停止输出驱动信号后,输出电压就会降低至最小值,与上述情况类似,旁路电容C2放电以维持控制IC正常工作。若输入欠压故障持续时间很长,旁路电容C2持续放电直至控制IC欠压,那么当控制IC重启后,会有一段初始化时间,以保证控制IC内部的触发器和重要节点信号能够复位成所需要的初始值。一般的会将保护信号复位成无故障状态以满足特定的保护功能要求,更一般的为了防止保护误触发,各保护模块都会内置一个检测延时,那么初始化结束后,在检测延时内,控制IC可能会输出驱动信号,那么在高输入电压、轻载的情况下,电源的输出电压会升得很高,电源无法满足输入欠压保护的功能指标。
针对上述问题,目前还存在另一种改进型控制方法,在电源带电时,保证控制IC不欠压的前提下,在检测到输出短路故障后,通过拉低一电源或控制IC的特定控制端口的电位,停止输出驱动信号,关闭电源以实现短路保护。这种控制方法的一种实施方式在2014年7月23日公开的公开号为CN203734296的中国专利中有详细的说明。
虽然所述改进型控制方法能够克服旁路电容C2取值的矛盾,但是在电源带电,控制IC不欠压的前提下,要想拉低一原本端口输出为高电平的信号,就需要对“地”抽取电流,这就必不可少地会引进功耗,而且综上所述,在电源集成多种保护功能的情况下,这一功耗会贯穿在所有的保护模式中,因为触发保护后,输出电压的减小会引发短路保护电路工作。
特别的,在某些高压应用下,如某些防雷电源系统中,要求电源系统在不遭受雷击的情况下,长时间处于保护状态;遭受雷击后,电源系统迅速启动给负载供电,完成应用要求。此时若采用上述保护控制方法,保护状态触发上述改进型短路保护电路工作,导致对“地”额外地抽取1mA左右的电流,而在所述应用下,电源系统的供电电压为220V,且所述电源系统由100个使用此类保护控制方法的电源组成,那么整个电源系统在不遭受雷击时的待机功耗将高达22瓦特。
发明内容
本发明的目的在于提供一种电源保护控制方法,在正常实现各项电源保护功能的前提下,避免电源在触发保护后,带来如上所述的功耗大的问题,同时降低系统设计的复杂性。
下面所述输出电压,若没有特别强调,指的是电源的输出端电压,所述翻转指的是高低电平翻转或者是低高电平翻转。
为了更清楚的描述本发明所述的电源保护控制方法,以下借助于一个电源保护控制电路来说明。所述的电源保护控制电路包括一个软启动模块、一个短路保护模块、一个驱动器、一个窄脉冲发生器,以及第一输入输出端口FB和第一输出端口GATE。
进一步的,所述短路保护模块包括依次连接的电压检测模块和计数控制模块,电压检测模块连接到所述的第一输入输出端口FB,所述电压检测模块检测光耦器输出的与输出电压相关联的反馈信号,判断是否出现短路状况,输出或停止输出短路保护信号至所述计数控制模块,所述计数控制模块根据短路保护信号的状态输出对应的一控制信号和一关断信号;
一种电源保护控制方法,包括一种短路保护控制方法,实现保护控制的步骤如下:
步骤一、电源上电,控制IC启动;
步骤二、软启动模块控制第一输入输出端口的反馈信号从0V开始缓慢上升,电源正常软启动,驱动信号占空比缓慢增加;
步骤三、电源软启动结束后,电压检测模块检测所述的反馈信号,并将所述反馈信号与预先设定的基准电压进行比较,若所述的反馈信号高于所述的基准电压,则所述电压检测模块输出短路保护信号给计数控制模块,进入步骤四,否则,不输出短路保护信号,电源正常工作,又开始检测反馈信号,开始电源自检测;
步骤四、所述计数控制模块接收所述短路保护信号,检测延迟时间开始计时,判断所述短路保护信号持续时间是否超过检测延迟时间,如是则输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态翻转,进入步骤五,否则,返回步骤三;
步骤五、短路休息时间开始计时,计时完毕后撤销所述关断信号,再一次翻转所述控制信号的状态,此时所述控制信号的翻转边沿触发窄脉冲发生器,所述窄脉冲发生器输出窄脉冲复位信号至所述软启动模块,重置软启动状态,拉低所述的反馈信号;
步骤六、窄脉冲持续时间结束后,所述窄脉冲复位信号翻转成初始状态,返 回步骤二。
终上所述,若能够在所述电源软启动开始至所述检测延迟时间内排除短路故障,则电源将快速恢复正常工作状态,否则将重复步骤二~六的过程,使得电源间歇工作直至故障排除。
优选的,所述的电源保护控制电路还包括一个第一保护模块、边沿产生器、第一输入端口VIN和第二输入端口VDD,所述第一保护模块包括,与第一输入端口VIN连接的一输入欠压保护模块、与第二输入端口VDD连接的一VDD过压保护模块,两者的输出端分别与第一与门的两输入端连接,第一与门的输出端分别与所述驱动器的输入端和所述边沿产生器的第一输入端连接,用于输出一故障信号。所述输入欠压保护模块可以对电源供电电压VDC进行检测,并判断是否出现输入欠压故障状况,所述VDD过压保护模块可以检测辅助绕组上的电压,进而间接检测输出电压,判断是否出现输出过压故障状况,若出现上述任一故障,则所述第一保护模块输出一个故障信号。
优选的,一种电源保护控制方法,其特征在于:还包括另外一种保护控制方法,能够避免因第一保护模块检测到故障而引发所述的短路保护控制方法,其实现保护控制的过程如下:
步骤A、电源上电,控制IC启动;
步骤B、第一保护模块检测是否有故障发生,如果检测到有故障发生,则所述的第一保护模块输出一个故障信号直接关断驱动器,同时故障信号还会发送给边沿产生器,使得边沿产生器“屏蔽”掉来自计数控制模块的控制信号,进入步骤C;如果所述第一保护模块没有检测到故障,则不输出故障信号,输出电压未建立,光耦器截止,进入C1步骤;
步骤C、软启动模块控制反馈信号从0V缓慢上升,若所述故障未排除,则驱动器不输出驱动信号,所述反馈信号持续上升,进入步骤D;若所述故障排除,则进入步骤G;
步骤D、所述反馈信号超过设定的基准电压,则所述的电压检测模块输出短路保护信号至计数控制模块,若此时所述故障还未排除,进入步骤E;否则,进入步骤G;
步骤E、所述计数控制模块接收所述短路保护信号,检测延迟时间开始计时, 若所述故障在所述检测延迟时间内仍未排除,则一直不输出驱动信号,检测延迟时间计时完毕后所述控制信号的状态翻转,并进入步骤F;若检测延迟时间内故障排除,进入步骤G;
步骤F、短路休息时间开始计时,计时完毕后再次翻转所述控制信号,若所述故障仍未排除,则上述控制信号仍处于被“屏蔽”状态,返回步骤D,否则,进入步骤G;
C1、所述的软启动模块控制所述反馈信号从0V缓慢上升,电源开始软启动,驱动信号占空比缓慢增加,在软启动过程中,所述第一保护模块检测是否有故障发生,如果有,则输出故障信号,关断所述驱动器,停止输出驱动信号,电源的输出电压下降,所述反馈信号上升,进入步骤D;否则,电源正常工作,进入步骤D1;
D1、电源软启动结束后,第一保护模块检测是否有故障发生,如果检测到有故障发生,则输出故障信号,关断驱动器,停止输出驱动信号,电源的输出电压下降,反馈信号上升,进入步骤D;如果第一保护模块没有检测故障发生,则电压检测模块检测反馈信号是否大于基准电压,如果反馈信号小于基准电压,电压检测模块不输出短路保护信号,电源正常工作,进入E1步骤;如果反馈信号大于基准电压,电压检测模块输出短路保护信号给计数控制模块,进入E2步骤;
E1、电源正常工作,所述第一保护模块检测是否有故障发生,如果没检测到则返回步骤D1;如果检测到了故障发生,将输出故障信号,直接关断驱动器,停止输出驱动信号,同时所述故障信号还会发送给边沿产生器,“屏蔽”上述控制信号,停止输出驱动信号后,电源的输出电压下降,所述反馈信号上升,进入步骤D;
E2、计数控制模块接收短路保护信号,检测延迟时间开始计时,如果在检测延迟时间内,第一保护模块检测到故障发生,则输出故障信号,关断驱动器,停止输出驱动信号,检测延迟时间继续计时,计时完毕后进入步骤F;如果在检测延迟时间内没检测到故障发生,判断短路保护信号持续时间是否超过检测延迟时间,如果短路保护信号持续时间大于检测延迟时间,则计数控制模块输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态翻转,进入步骤F1,否则返回步骤D1;
F1、短路休息时间开始计时,如果在短路休息时间内,第一保护模块检测到故障发生,则第一保护模块输出故障信号,短路休息时间继续计时,计时完毕后再次翻转控制信号,进入步骤D;否则与上述短路保护控制方法一样,短路休息时间计时完毕后撤销关断信号,再次翻转控制信号,进入步骤G;
步骤G、边沿产生器输出一边沿信号,触发窄脉冲发生器,所述窄脉冲发生器输出窄脉冲复位信号至软启动模块,重置软启动状态,拉低反馈信号;
步骤H、窄脉冲复位信号持续时间结束后,所述窄脉冲复位信号翻转成初始状态,电源自恢复,返回步骤B。
进一步的,所述的检测延迟时间和短路休息时间是计数控制模块预先设定的,所述的短路休息时间是在所述的检测延迟时间计时结束之后开始计时的。
进一步的,所述的故障可以是输入欠压故障,也可以是输出过压故障,还可以是引脚悬空故障等特殊情况,只要能触发第一保护模块输出故障信号,进而引起短路保护模块工作,其控制方法都是与与本发明类似,皆属于本发明的权利要求范围。
进一步的,所述的窄脉冲复位信号持续时间是由所述的窄脉冲发生器预设的,以保证所述的软启动模块能够完全复位。
终上所述,本发明具有如下的优点及效果:
1、电源保护控制方法可靠性高,适用范围广,不需要外置电容即可实现检测延迟时间的设定,有效的避免了带容性负载启动误触发短路保护,同时有足够长的短路休息时间以确保电源在输出短路后能够充分散热,提高电源的可靠性。
2、上述保护的时间参数不会受旁路电容等外围参数影响,便于调试,减小系统设计的复杂性。
3、当电源发生短路故障时,由计数控制模块等数字电路产生关断信号,直接关断驱动器,停止输出驱动信号,这种关断方式不会持续抽取电流,不引入额外的功耗;
4、所述故障信号也能够直接关断驱动器,不受所述关断信号的影响,确保当电源发生除短路故障外的其他故障,例如输入欠压故障,导致输出电压减小而引发短路保护电路工作时,电源不会间歇工作,使得在输入欠压时,电源的静态功耗较现有技术进一步降低;
5、增加窄脉冲发生器等控制电路,实现只在电源需要重新软启动前拉低反馈信号,大幅减少短路保护时间内的电源功耗,进而减少电源每一间歇工作周期内的功耗;
6、增加边沿产生器等控制电路,确保当电源发生除短路故障外的其他故障,例如输入欠压故障,导致输出电压减小而引发短路保护电路工作时,所述反馈信号不会发生间歇式高低电平震荡,减少不必要的功耗。
附图说明
图1为现有技术中利用控制IC供电端实现短路保护的电路图;
图2为应用了本发明所述的电源保护控制方法的控制IC的应用电路图;
图3为本发明实施例一中所述的电源保护控制电路的原理框图
图4为本发明实施例二中所述的电源保护控制电路的原理框图;
图5为本发明所述电源保护控制电路中短路保护模块的原理框图;
图6为本发明所述电源保护控制电路中第一保护模块的原理框图;
图7为本发明所述电源保护控制电路中驱动器的原理框图;
图8本发明实施例一中电源保护控制方法的流程图;
图9为本发明实施例一的信号示意图;
图10为本发明实施例二的信号示意图;
图11为本发明实施例三中电源保护控制方法的流程图;
图12为本发明实施例三的信号示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
本实施例是基于图2的应用提出的,应用于光耦反馈的离线式反激变换器中。如图2所示,控制IC2的第一输入输出端口FB分别与第一电容C1一端及光耦器PC1的引脚3连接形成一节点A,控制IC2的反馈信号VFB就是通过节 点A传输给FB端口的;第一输入端口VIN通过第一电阻R1与电源供电电压VDC连接,用于实时检测电源供电电压VDC;第二输入端口VDD为所述控制IC2的供电端,VDD端口分别与第二电容C2的一端、线性电源的输出端和第二二极管D2阴极连接,所述线性电源包括第一电阻R2、第一稳压管ZD1、第一晶体管Q1和第一二极管D1,可见当辅助绕组无法给控制IC2供电时,在电源带电的情况下,第二电容C2和所述线性电源能够维持控制IC2的正常供电;第三输入端口CS分别与第一NMOS管M1源极和第四电阻R4一端连接,用于采样每一开关周期的原边峰值电流,给控制IC输入采样信号;第二输入输出端口SS与第三电容C3的一端连接,用于设置电源软启动时间;第三输入输出端口RI与第三电阻R3的一端连接,用于设置内置时钟频率;第四输入输出端口GND接一参考电位,如“地”电位;第一输出端口GATE与第一NMOS管M1栅极连接,输出驱动信号控制第一NMOS管M1的开关状态。
如图2所示,本领域的技术人员可以知道在本实施例中所述的反馈信号VFB与输出电压之间是通过光耦器PC1和TL431等器件建立联系的。可见,光耦器PC1的引脚3与所述第一输入输出端口FB连接,引脚4与“地”电位连接,在电源输出正常时,TL431将由电阻R5和R6分压得到的输出电压的采样值与TL431内置的基准电压进行比较,得到一误差信号,所述的误差信号经光耦器PC1转换成所述的反馈信号VFB输送给第一输入输出端口FB。可见,所述的反馈信号VFB与环路参数设置有关,本领域的技术人员可以通过简单的环路设计建立起所述反馈信号VFB与输出电压的精确联系,本发明不再赘述此原理。
如图3所示,电源保护控制电路包括软启动模块1、短路保护模块2、驱动器4、窄脉冲发生器6,以及第一输入输出端口FB、第三输入端口CS和第一输出端口GATE。所述窄脉冲发生器6的触发条件在实施例一中被设置为“上升沿触发”。
如图5所示,短路保护模块2包括依次连接的电压检测模块21和计数控制模块22,电压检测模块21检测反馈信号VFB,判断是否出现短路状况,输出或停止输出短路保护信号至所述计数控制模块22,计数控制模块22根据短路保护信号的状态输出对应的一控制信号Ctrl和一关断信号;
如图7所示,驱动器4包括第二与门41、电平移位电路42、缓冲器43、PWM 调制器44。本领域的技术人员应该知道,本实施例的驱动器4是最简单的驱动电路,其中电平移位电路42、缓冲器43由控制IC的第二输入端口VDD供电,一般是控制IC功耗最大的两个子模块。PWM调制器44的两输入端分别与反馈信号VFB和第三输入端口CS连接,PWM调制器44将反馈信号VFB与第三输入端口CS输入的采样信号进行比较,输出一脉宽调制信号Drive给第二与门41的第一输入端,所述关断信号与第二与门41的第二输入端连接,第二与门41的输出端与电平移位电路的输入端连接;电平移位电路42与缓冲器43依次连接,由缓冲器43输出驱动信号;若所述关断信号为高电平无效,则脉宽调制信号Drive能够控制电平移位电路42,进而让缓冲器43输出与脉宽调制信号Drive同相的驱动信号GATE。
本领域的技术人员应该知道,当所述关断信号为低电平有效时,不论第二与门41的第一输入端的脉宽调制信号Drive为何种电平,第二与门41都会输出低电平关断电平移位电路42,进而关断缓冲器43,停止输出驱动信号GATE,即在所述关断信号为低电平的时间内,驱动信号GATE为低电平,则如图2所示,第一NMOS管M1处于关断状态,使得第三输入端口CS输入的采样信号为低电平(本实施例中为“地”电平),反馈信号VFB高于所述采样信号,PWM调制器44输出的脉宽调制信号Drive为固定电平(本实施例中为高电平)。因此在关断信号为低电平有效时,整个驱动器4中没有一个信号出现高低电平振荡,不会抽取电流,不产生功耗。
下文提交的故障信号Fault与所述关断信号同效,第二与门41会多出一个第三输入端与故障信号Fault连接,下文提及的“关断驱动器4”、“直接关断驱动器4”皆代表的是上述关断过程,驱动器不再产生功耗,下文不再赘述上述原理。
图8为本实施例一中短路保护控制方法的流程图,其实现保护控制的过程如下:
步骤一、电源上电,控制IC启动;
步骤二、软启动模块1控制第一输入输出端口FB的反馈信号VFB从0V开始缓慢上升,电源正常软启动,驱动信号占空比缓慢增加;
步骤三、最大软启动时间T1结束后,电压检测模块21检测所述的反馈信号 VFB,反馈信号VFB与输出电压相关联,并将所述反馈信号VFB与控制IC内设定的基准电压Vref进行比较,如果电源发生输出短路故障,输出电压过低,跌出TL431的工作点,使得光耦器截止,不抽取电流,从而使得反馈信号VFB高于基准电压Vref,输出一短路保护信号给计数控制模块22,进入步骤四;如果反馈信号VFB低于基准电压Vref,则表示电源没有发生输出短路故障,电源进入正常工作状态,又开始检测反馈信号,开始电源自检测;
步骤四、计数控制模块22接收短路保护信号,检测延迟时间T2开始计时,如果在T2时间内短路故障排除,短路保护信号消除,则返回步骤三;在T2时间结束后,所述反馈信号VFB仍然高于基准电压Vref,短路故障未排除,计数控制模块22输出一个关断信号给驱动器4,关断驱动器4,停止输出驱动信号,关闭电源,并将在控制IC启动后为高电平的控制信号Ctrl的状态翻转成低电平,进入步骤五;如图9所示,为短路故障发生后各个信号的示意图;显然在所述检测延迟时间T2内,所述驱动器4是有驱动信号输出的,这样可以避免电源带容性负载起机时误触发短路保护;
步骤五、短路休息时间T3开始计时,计时完毕后撤销所述关断信号,再一次将所述控制信号Ctrl的状态翻转成高电平,此时的控制信号Ctrl的上升沿翻转信号满足所述窄脉冲发生器6的触发条件,所述窄脉冲发生器6发送一个低电平窄脉冲复位信号RST至所述软启动模块1,重置软启动状态,拉低所述的反馈信号VFB,这一窄脉冲复位信号RST的低电平持续时间为T4,本实施例中设定时间为290ns,以保证软启动模块1能够完全复位,将反馈信号VFB拉低至“地”电位,确保软启动时间与设计值相符;这个短路休息时间T3需要足够长,如1.6s,以确保电源在输出短路后能够充分散热,提高电源的可靠性;
步骤六、T4时间后,所述窄脉冲复位信号RST翻转成高电平,返回步骤二。
可见当最大软启动时间T1再一次结束后,电压检测模块21又开始检测反馈信号VFB,若在T1+T2时间内,排除输出短路故障,则电源自恢复,开始正常工作;否则,将重复上述短路保护过程,从而使得电源间歇式工作,直至短路故障排除。
可见只在电源需要软启动前T4时间内充分拉低反馈信号VFB,进一步减少了当电源发生短路故障时,在短路保护时间T3内的电源功耗,进而减少了电源 每一间歇工作周期内的功耗。
上述时间参数皆由计数控制模块22进行设定,不需要外置电容,且在本实施例的应用中,图2的线性电源能够维持控制IC2的正常供电,控制IC2不会欠压,因此旁路电容等外围参数不会影响上述时间参数的设置,大大降低了对旁路电容取值的要求,便于调试,减小系统设计的复杂性。
实施例二
与实施例一不同的是:还包括另外一种保护控制方法,能够避免因第一保护模块检测到故障而引发所述的短路保护控制方法。如图4所示,电源保护控制电路增加了第一与非门5、第一保护模块3、第一输入端口VIN和第二输入端口VDD。所述第一与非门5的第一输入端与所述第一保护模块3输出的故障信号Fault连接,第二输入端与所述短路保护模块2输出的控制信号Ctrl连接,输出端与所述窄脉冲发生器6的输入端连接,在实施例二中,所述窄脉冲发生器6的触发条件被设置为下降沿触发。
如图6所示,所述的第一保护模块3包括与端口VIN连接的输入欠压保护模块32和与端口VDD连接的VDD过压保护模块33,两者的输出端分别与第一与门31的两个输入端连接,第一与门31输出端与驱动器4连接,用于输出故障信号Fault。输入欠压保护模块32可以对电源供电电压VDC进行检测,并判断是否出现输入欠压故障状况,VDD过压保护模块33可以检测辅助绕组上的电压,进而间接检测输出电压,并判断是否出现输出过压故障状况,若出现上述任一故障,则第一保护模块3输出故障信号Fault,故障信号Fault低电平有效。
一种电源保护控制电路,还包括另外一种保护控制方法,能够避免因第一保护模块检测到故障而引发所述的短路保护控制方法,进而避免电源间歇工作,其实现保护过程的步骤如下:
步骤A、电源上电,控制IC启动;
步骤B、第一保护模块3没有检测到故障,不输出故障信号Fault,输出电压未建立,光耦器截止,进入C1步骤;
C1、所述的软启动模块1控制所述反馈信号VFB从0V缓慢上升,电源开始软启动,驱动信号占空比缓慢增加,软启动过程中第一保护模块3检测是否有故障发生,如果有则输出故障信号fault,关断驱动器4,停止输出驱动信号,输 出电压下降,反馈信号VFB上升,进入步骤D;如果没检测到故障发生,正常软启动,进入D1步骤;
D1、电源软启动结束后,第一保护模块检测是否故障发生,如果检测到有故障发生,则输出故障信号Fault,关断驱动器,停止输出驱动信号,输出电压下降,反馈信号上升,进入步骤D;如果第一保护模块没有检测到故障发生,则电压检测模块21会检测反馈信号VFB是否大于基准电压Vref,如果反馈信号VFB小于基准电压Vref,光耦器PC1会抽取电流,电压检测模块21不会输出短路保护信号,电源正常工作,进入E1步骤;如果反馈信号VFB大于基准电压Vref,电压检测模块输出短路保护信号给计数器模块,进入E2步骤;
E1、电源正常工作,第一保护模块3检测是否有故障发生,如果没检测到则返回步骤D1;如果检测到了故障发生,例如输入欠压故障,将输出所述故障信号Fault,即故障信号Fault为低电平,直接关断上述驱动器4,停止输出驱动信号,同时所述故障信号Fault还会发送给第一与非门5的第一输入端,“屏蔽”上述控制信号Ctrl,停止输出驱动信号后,输出电压下降,所述反馈信号VFB上升,进入步骤D;
E2、计数控制模块接收短路保护信号,检测延迟时间T2开始计时,如果在T2时间内,第一保护模块检测到故障发生,则输出故障信号Fault,关断驱动器,停止输出驱动信号,检测延迟时间T2继续计时,计时完毕后将上述控制信号Ctrl的状态翻转成低电平,进入步骤F;如果在检测延迟时间内没检测到故障发生,就判断短路信号持续时间是否超过检测延迟时间T2,如果短路保护信号持续时间大于T2,则短路保护模块输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态从高电平翻转为低电平,进入步骤F1,否则返回步骤D1;
F1、短路休息时间T3开始计时,如果在T3时间内,第一保护模块检测到故障发生,则第一保护模块输出故障信号Fault,短路休息时间T3继续计时,计时完毕后将控制信号Ctrl由低电平翻转为高电平,进入步骤D;否则T3计时完毕后撤销关断信号,控制信号由低电平翻转为高电平,进入步骤G;
步骤D、所述的电压检测模块21检测到所述反馈信号VFB超过设定的基准电压Vref,则电压检测模块21输出短路保护信号至计数控制模块22,此时所述 输入欠压故障仍未排除,进入步骤E;若输入欠压故障排除了,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤E、检测延迟时间T2开始计时,如在T2时间内输入欠压故障仍然未排除,一直不输出驱动信号,计时完毕后上述控制信号Ctrl的状态翻转成低电平,并进入步骤F;若输入欠压故障排除了,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤F、短路休息时间T3开始计时,计时完毕后再次将上述控制信号Ctrl翻转成高电平,如果所述输入欠压故障仍未排除,上述控制信号Ctrl被“屏蔽”,上述窄脉冲发生器6不会发送上述窄脉冲复位信号RST,软启动模块1不会复位,反馈信号VFB持续为高电平,不会造成额外功耗,返回步骤D;如果T3时间内输入欠压故障排除,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤G、所述故障信号Fault为高电平(高电平为无效状态),第一与非门5的第二输入端接收已为高电平的控制信号Ctrl,因此此时第一与非门5输出下降沿信号Edge,满足所述窄脉冲发生器6的触发条件,所述窄脉冲发生器6输出一窄脉冲复位信号RST至所述软启动模块1,重置软启动状态,拉低所述的反馈信号VFB;
步骤H、时间T4结束后,所述窄脉冲复位信号RST翻转成高电平,电源自恢复,返回步骤B的检测过程。
本发明中“屏蔽”的意思,应当解释为:利用与非门的特点,当与非门的任一输入端接收到低电平后,不论与非门的另一输入端的信号为何种电平,与非门都只会输出高电平,就相当于是屏蔽了另一输入端的信号,所以文中采用“屏蔽”一词来形容与非门的这一特性,例如文中提及的第一与非门5的第一输入端接收到故障信号Fault为低电平时,“屏蔽”第二输入端接收到的控制信号Ctrl,不论控制信号Ctrl为何种电平,第一与非门5只能输出高电平。
如图10所示,在步骤F返回步骤D,进行到步骤E,上述时间T2计时完毕前,输入欠压故障被排除,故障信号Fault被翻转成高电平,进入步骤G,经历步骤H后,电源自恢复,开始正常工作。
综上所述,显而易见的是:
1、预设一个检测延迟时间T2,能够有效地避免电源带容性负载起机时误触 发短路保护,而且这个检测延迟时间T2在最大软启动时间T1后,产生短路保护信号时才开始计时,可以通过适当地增加最大软启动时间T1来增强带容性负载的能力;
2、为了在图2的应用中,实现电源在故障排除后快速自恢复的功能,同时还要保证电源在短路保护时能够充分散热,提高电源的可靠性,设置一短路休息时间T3,在T3时间内无驱动信号输出,可大幅减少短路功耗,让电源充分散热;
3、为了避免在直接或间接触发短路保护工作模式时,长时间拉低光耦反馈信号VFB造成功耗,加入了一窄脉冲发生器6,并相应的修改控制逻辑,实现只在电源需要软启动前T4时间内充分拉低反馈信号VFB,在满足电源各项指标的同时,进一步减少保护状态下的功耗。
实施例三
与实施例二不同的是:电源上电,控制IC启动后,第一保护模块就检测到了一个故障,如图11所示其实现保护控制的过程如下:
步骤A、电源上电,控制IC启动;
步骤B、第一保护模块3检测到输入欠压故障,输出故障信号Fault直接关断驱动器4,同时所述故障信号Fault还会发送给第一与非门5的第一输入端,“屏蔽”第一与非门5的第二输入端的控制信号Ctrl,进入步骤C;如果第一保护模块3没检查到故障,则进入与实施例二相同的工作模式;
步骤C、所述的软启动模块1控制所述反馈信号VFB从0V缓慢上升,所述输入欠压故障未排除,驱动器4不输出驱动信号,所述反馈信号VFB持续上升,最大软启动时间T1结束后,进入步骤D;若输入欠压故障排除了,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤D、所述的电压检测模块21检测到所述反馈信号VFB超过设定的基准电压Vref,电压检测模块21输出短路保护信号至计数控制模块22,此时所述输入欠压故障还未排除,进入步骤E;若输入欠压故障排除了,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤E、检测延迟时间T2开始计时,如在T2时间内输入欠压故障仍然未排除,一直不输出驱动信号,计时完毕后上述控制信号Ctrl的状态翻转成低电平,并进入步骤F;若输入欠压故障排除了,则故障信号Fault从低电平翻转为高电 平,进入步骤G;
步骤F、短路休息时间T3开始计时,计时完毕后再次将上述控制信号Ctrl翻转成高电平,如果所述输入欠压故障仍未排除,上述控制信号Ctrl被“屏蔽”,上述窄脉冲发生器6不会输出上述窄脉冲复位信号RST,软启动模块1不会复位,反馈信号VFB持续为高电平,不会造成额外功耗,返回步骤D;如果T3时间内输入欠压故障排除,则故障信号Fault从低电平翻转为高电平,进入步骤G;
步骤G、所述故障信号Fault为高电平(高电平为无效状态),第一与非门5的第二输入端接收已为高电平的控制信号Ctrl,因此此时第一与非门5输出下降沿信号Edge,满足所述窄脉冲发生器6的触发条件,所述窄脉冲发生器6输出一窄脉冲复位信号RST至所述软启动模块1,重置软启动状态,拉低所述的反馈信号VFB;
步骤H、时间T4结束后,所述窄脉冲复位信号RST翻转成高电平,电源自恢复,重新返回步骤B的检测过程。
如图12所示,如果输入欠压故障在第2个T3计时结束后仍未排除,则输入欠压故障持续时间大于2·(T2+T3),因此上述过程在步骤D~F间循环了两次,在第三个时间T2中,输入欠压故障被排除,故障信号Fault被翻转成高电平,进入步骤G,经历步骤H后,电源自恢复,重新软启动,同时电源未发生输出短路,软启动结束后电源开始正常工作。
本发明的实施方式不限于此,虽然上述实施例应用于光耦反馈反激式电源变换器中,但应认识到,本发明可应用于其它更为广泛的范围中,如可以根据实际应用情况,在第一保护模块中增加引脚悬空保护模块,修改控制信号的触发形式等等。对于本技术领域的普通技术人员来说,按照本发明的上述内容,利用本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,本发明还可以做出其它多种形式的修改、替换或变更,如改变信号的有效状态,或者对逻辑做简单的替换,如将第一与门替换成与非门,将故障信号设置为高电平有效或是上升沿有效等,这些都应属于本发明的思想,均落在本发明权利保护范围之内。

Claims (4)

  1. 一种电源保护控制方法,其特征在于:包括一种短路保护控制方法,其实现保护控制的步骤如下:
    步骤一、电源上电,控制IC启动;
    步骤二、软启动模块控制第一输入输出端口的反馈信号从0V开始缓慢上升,电源正常软启动,驱动信号占空比缓慢增加;
    步骤三、电源软启动结束后,电压检测模块检测所述的反馈信号,并将所述反馈信号与预先设定的基准电压进行比较,若所述的反馈信号高于所述的基准电压,则所述电压检测模块输出短路保护信号给计数控制模块,进入步骤四,否则,不输出短路保护信号,电源正常工作,又开始检测反馈信号,开始电源自检测;
    步骤四、所述计数控制模块接收所述短路保护信号,检测延迟时间开始计时,判断所述短路保护信号持续时间是否超过检测延迟时间,如是则输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态翻转,进入步骤五,否则,返回步骤三;
    步骤五、短路休息时间开始计时,计时完毕后撤销所述关断信号,再一次翻转所述控制信号的状态,此时所述控制信号的翻转边沿触发窄脉冲发生器,所述窄脉冲发生器输出窄脉冲复位信号至所述软启动模块,重置软启动状态,拉低所述的反馈信号;
    步骤六、窄脉冲持续时间结束后,所述窄脉冲复位信号翻转成初始状态,返回步骤二。
  2. 根据权利要求1所述的电源保护控制方法,其特征在于:还包括另外一种保护控制方法,能够避免因第一保护模块检测到故障而引发所述的短路保护控制方法,其实现保护控制的步骤如下:
    步骤A、电源上电,控制IC启动;
    步骤B、第一保护模块检测是否有故障发生,如果检测到有故障发生,则所述的第一保护模块输出一个故障信号直接关断驱动器,同时故障信号还会发送给边沿产生器,使得边沿产生器“屏蔽”掉来自计数控制模块的控制信号,进入步骤C;如果所述第一保护模块没有检测到故障,则不输出故障信号,输出电压未建立,光耦器截止,进入C1步骤;
    步骤C、软启动模块控制反馈信号从0V缓慢上升,若所述故障未排除,则驱动器不输出驱动信号,所述反馈信号持续上升,进入步骤D;若所述故障排除,则进入步骤G;
    步骤D、所述反馈信号超过设定的基准电压,则所述的电压检测模块输出短路保护信号至计数控制模块,若此时所述故障还未排除,进入步骤E;否则,进入步骤G;
    步骤E、所述计数控制模块接收所述短路保护信号,检测延迟时间开始计时,若所述故障在所述检测延迟时间内仍未排除,则一直不输出驱动信号,检测延迟时间计时完毕后所述控制信号的状态翻转,并进入步骤F;若检测延迟时间内故障排除,进入步骤G;
    步骤F、短路休息时间开始计时,计时完毕后再次翻转所述控制信号,若所述故障仍未排除,则上述控制信号仍处于被“屏蔽”状态,返回步骤D,否则,进入步骤G;
    C1、所述的软启动模块控制所述反馈信号从0V缓慢上升,电源开始软启动,驱动信号占空比缓慢增加,在软启动过程中,所述第一保护模块检测是否有故障发生,如果有,则输出故障信号,关断所述驱动器,停止输出驱动信号,电源的输出电压下降,所述反馈信号上升,进入步骤D;否则,电源正常工作,进入步骤D1;
    D1、电源软启动结束后,第一保护模块检测是否有故障发生,如果检测到有故障发生,则输出故障信号,关断驱动器,停止输出驱动信号,电源的输出电压下降,反馈信号上升,进入步骤D;如果第一保护模块没有检测故障发生,则电压检测模块检测反馈信号是否大于基准电压,如果反馈信号小于基准电压,电压检测模块不输出短路保护信号,电源正常工作,进入E1步骤;如果反馈信号大于基准电压,电压检测模块输出短路保护信号给计数控制模块,进入E2步骤;
    E1、电源正常工作,所述第一保护模块检测是否有故障发生,如果没检测到则返回步骤D1;如果检测到了故障发生,将输出故障信号,直接关断驱动器,停止输出驱动信号,同时所述故障信号还会发送给边沿产生器,“屏蔽”上述控制信号,停止输出驱动信号后,电源的输出电压下降,所述反馈信号上升,进入步骤D;
    E2、计数控制模块接收短路保护信号,检测延迟时间开始计时,如果在检测延迟时间内,第一保护模块检测到故障发生,则输出故障信号,关断驱动器,停止输出驱动信号,检测延迟时间继续计时,计时完毕后进入步骤F;如果在检测延迟时间内没检测到故障发生,判断短路保护信号持续时间是否超过检测延迟时间,如果短路保护信号持续时间大于检测延迟时间,则计数控制模块输出一个关断信号给驱动器,停止输出驱动信号,关闭电源,并将控制信号的状态翻转,进入步骤F1,否则返回步骤D1;
    F1、短路休息时间开始计时,如果在短路休息时间内,第一保护模块检测到故障发生,则第一保护模块输出故障信号,短路休息时间继续计时,计时完毕后再次翻转控制信号,进入步骤D;否则与上述短路保护控制方法一样,短路休息时间计时完毕后撤销关断信号,再次翻转控制信号,进入步骤G;
    步骤G、边沿产生器输出一边沿信号,触发窄脉冲发生器,所述窄脉冲发生器输出窄脉冲复位信号至软启动模块,重置软启动状态,拉低反馈信号;
    步骤H、窄脉冲复位信号持续时间结束后,所述窄脉冲复位信号翻转成初始状态,电源自恢复,返回步骤B。
  3. 根据权利要求1或2所述的电源保护控制方法,其特征在于:所述的检测延迟时间和短路休息时间是由所述计数控制模块预设的,所述的短路休息时间是在所述的检测延迟时间计时结束之后开始计时的。
  4. 根据权利要求2所述的电源保护控制方法,其特征在于:所述的窄脉冲复位信号持续时间是由所述的窄脉冲发生器预设的,以保证所述的软启动模块能够完全复位。
PCT/CN2015/084177 2014-09-10 2015-07-16 一种电源保护控制方法 WO2016037511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410458180.8 2014-09-10
CN201410458180.8A CN104201652B (zh) 2014-09-10 2014-09-10 一种电源保护控制方法

Publications (1)

Publication Number Publication Date
WO2016037511A1 true WO2016037511A1 (zh) 2016-03-17

Family

ID=52086905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084177 WO2016037511A1 (zh) 2014-09-10 2015-07-16 一种电源保护控制方法

Country Status (2)

Country Link
CN (1) CN104201652B (zh)
WO (1) WO2016037511A1 (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289042A (zh) * 2018-02-05 2018-07-17 国网浙江杭州市余杭区供电有限公司 一种用于发电厂调制解调器的控制系统及控制方法
CN108418186A (zh) * 2018-05-08 2018-08-17 广州金升阳科技有限公司 一种输出欠压及短路保护电路
CN108565843A (zh) * 2018-05-24 2018-09-21 无锡硅动力微电子股份有限公司 母线电压检测及保护模块、开关电源控制单元和用于开关电源母线电压检测及保护的电路
CN108649525A (zh) * 2018-03-22 2018-10-12 帝奥微电子有限公司 防串扰电源保护电路
CN108712113A (zh) * 2018-05-04 2018-10-26 云南兆富科技有限公司 一种电机在线软启动装置
CN108757175A (zh) * 2018-08-01 2018-11-06 郑州森鹏电子技术有限公司 一种can总线发动机监控仪及其控制方法
CN108820768A (zh) * 2018-06-28 2018-11-16 山东钢铁股份有限公司 皮带机传动系统失效检测保护系统及方法
CN109067161A (zh) * 2018-08-09 2018-12-21 中国铁道科学研究院集团有限公司 一种电源安全启动系统
CN110198125A (zh) * 2019-06-27 2019-09-03 上海新进芯微电子有限公司 一种开关电源及其系统输出短路保护电路和方法
CN110213136A (zh) * 2019-06-24 2019-09-06 山信软件股份有限公司 一种通讯控制方法及系统
CN111130535A (zh) * 2019-12-26 2020-05-08 Tcl华星光电技术有限公司 电平位移器电路、电平位移器电路控制方法及显示面板
CN111555240A (zh) * 2020-05-26 2020-08-18 宁波奥克斯电气股份有限公司 一种空调线控器保护方法及保护系统
CN111856173A (zh) * 2019-04-26 2020-10-30 中国北方车辆研究所 一种用于电磁兼容系统的故障检测装置和方法
CN112147874A (zh) * 2020-11-05 2020-12-29 北京航天发射技术研究所 基于卫星授时和cpt原子钟守时的时频基准生成装置和方法
CN112255524A (zh) * 2020-12-06 2021-01-22 中车永济电机有限公司 一种电传动牵引系统的保护方法及检测装置
CN112436488A (zh) * 2020-11-26 2021-03-02 广州金升阳科技有限公司 一种dc-dc自举电源的欠压保护电路
TWI721701B (zh) * 2019-12-10 2021-03-11 產晶積體電路股份有限公司 動態多功能電源控制器
CN112611928A (zh) * 2020-11-30 2021-04-06 中国航空工业集团公司洛阳电光设备研究所 一种针对模具保护器检测的信号源装置及其实现方法
CN112671243A (zh) * 2020-11-23 2021-04-16 珠海格力电器股份有限公司 反激式开关电源及其控制方法和装置
CN112670964A (zh) * 2020-12-30 2021-04-16 深圳市科陆电子科技股份有限公司 用于配电馈线终端的残压检测方法、系统及存储介质
CN112816804A (zh) * 2019-11-15 2021-05-18 中车株洲电力机车研究所有限公司 一种高集成度的脉冲测试装置
CN113270848A (zh) * 2021-03-31 2021-08-17 漳州科华技术有限责任公司 一种目标电路的故障保护的触发控制方法、装置、控制器及电源
CN113690853A (zh) * 2021-08-11 2021-11-23 成都启臣微电子股份有限公司 一种输出电压反馈端异常状态检测保护电路及主控芯片
CN113872148A (zh) * 2020-06-30 2021-12-31 比亚迪半导体股份有限公司 一种欠压保护电路、装置及方法
CN113939063A (zh) * 2021-12-17 2022-01-14 深圳市明微电子股份有限公司 Led系统供电电源控制方法及供电电源可控的led系统
CN114167970A (zh) * 2021-12-09 2022-03-11 深圳市海浦蒙特科技有限公司 一种过流保护方法及相关组件
CN115037193A (zh) * 2022-06-09 2022-09-09 常熟理工学院 具有保护功能的直流无刷电机驱动板
CN115963769A (zh) * 2023-02-20 2023-04-14 临工重机股份有限公司 高空作业车遥控系统和高空作业车

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201652B (zh) * 2014-09-10 2017-02-15 广州金升阳科技有限公司 一种电源保护控制方法
CN105471248B (zh) * 2015-12-23 2017-10-31 广州三晶电气股份有限公司 一种开关电源启动电路
CN105655983B (zh) * 2016-03-23 2019-01-15 深圳南云微电子有限公司 输出短路的保护方法及保护电路
US10050540B2 (en) * 2016-06-07 2018-08-14 Semiconductor Components Industries, Llc Protection circuit and method for flyback power converter
CN106298760B (zh) * 2016-09-14 2019-03-08 青岛海信电器股份有限公司 电源芯片及其过流保护恢复的方法
CN109802581A (zh) * 2017-11-16 2019-05-24 核工业西南物理研究院 一种电源单元驱动保护控制器
CN109839603B (zh) * 2017-11-27 2021-07-16 中国航空工业集团公司西安航空计算技术研究所 一种地面电源数字化监控方法
CN109410878B (zh) * 2018-12-18 2024-05-03 惠科股份有限公司 一种驱动电路、驱动装置以及显示装置
CN109412567A (zh) * 2018-12-28 2019-03-01 上海南芯半导体科技有限公司 一种功率开关器件故障过程的保护方法
CN110829576B (zh) * 2019-11-06 2021-04-09 漳州科华技术有限责任公司 不间断电源输入异常检测方法、系统及终端设备
TWI717965B (zh) * 2020-01-08 2021-02-01 敦泰電子股份有限公司 面板模組、顯示驅動積體電路以及其之異常電壓的重新啓動方法
CN114256807B (zh) * 2021-12-17 2022-08-19 珠海格力电器股份有限公司 一种实现过热保护的控制方法、装置、介质和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997423A (zh) * 2010-10-29 2011-03-30 广州金升阳科技有限公司 一种带输出短路保护功能的自振荡反激变换器
CN102280861A (zh) * 2011-08-01 2011-12-14 广州金升阳科技有限公司 一种开关电源输出短路保护电路
CN203734296U (zh) * 2013-11-01 2014-07-23 欧姆龙株式会社 电源短路保护电路
CN104201652A (zh) * 2014-09-10 2014-12-10 广州金升阳科技有限公司 一种电源保护控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997423A (zh) * 2010-10-29 2011-03-30 广州金升阳科技有限公司 一种带输出短路保护功能的自振荡反激变换器
CN102280861A (zh) * 2011-08-01 2011-12-14 广州金升阳科技有限公司 一种开关电源输出短路保护电路
CN203734296U (zh) * 2013-11-01 2014-07-23 欧姆龙株式会社 电源短路保护电路
CN104201652A (zh) * 2014-09-10 2014-12-10 广州金升阳科技有限公司 一种电源保护控制方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289042A (zh) * 2018-02-05 2018-07-17 国网浙江杭州市余杭区供电有限公司 一种用于发电厂调制解调器的控制系统及控制方法
CN108649525B (zh) * 2018-03-22 2024-01-16 江苏帝奥微电子股份有限公司 防串扰电源保护电路
CN108649525A (zh) * 2018-03-22 2018-10-12 帝奥微电子有限公司 防串扰电源保护电路
CN108712113A (zh) * 2018-05-04 2018-10-26 云南兆富科技有限公司 一种电机在线软启动装置
CN108418186A (zh) * 2018-05-08 2018-08-17 广州金升阳科技有限公司 一种输出欠压及短路保护电路
CN108565843A (zh) * 2018-05-24 2018-09-21 无锡硅动力微电子股份有限公司 母线电压检测及保护模块、开关电源控制单元和用于开关电源母线电压检测及保护的电路
CN108565843B (zh) * 2018-05-24 2023-10-03 无锡硅动力微电子股份有限公司 母线电压检测及保护模块、开关电源控制单元和开关电源电路
CN108820768A (zh) * 2018-06-28 2018-11-16 山东钢铁股份有限公司 皮带机传动系统失效检测保护系统及方法
CN108757175A (zh) * 2018-08-01 2018-11-06 郑州森鹏电子技术有限公司 一种can总线发动机监控仪及其控制方法
CN108757175B (zh) * 2018-08-01 2023-07-04 郑州森鹏电子技术股份有限公司 一种can总线发动机监控仪的控制方法
CN109067161A (zh) * 2018-08-09 2018-12-21 中国铁道科学研究院集团有限公司 一种电源安全启动系统
CN111856173A (zh) * 2019-04-26 2020-10-30 中国北方车辆研究所 一种用于电磁兼容系统的故障检测装置和方法
CN111856173B (zh) * 2019-04-26 2023-07-25 中国北方车辆研究所 一种用于电磁兼容系统的故障检测装置和方法
CN110213136A (zh) * 2019-06-24 2019-09-06 山信软件股份有限公司 一种通讯控制方法及系统
CN110198125A (zh) * 2019-06-27 2019-09-03 上海新进芯微电子有限公司 一种开关电源及其系统输出短路保护电路和方法
CN112816804A (zh) * 2019-11-15 2021-05-18 中车株洲电力机车研究所有限公司 一种高集成度的脉冲测试装置
CN112816804B (zh) * 2019-11-15 2024-04-26 中车株洲电力机车研究所有限公司 一种高集成度的脉冲测试装置
TWI721701B (zh) * 2019-12-10 2021-03-11 產晶積體電路股份有限公司 動態多功能電源控制器
CN111130535A (zh) * 2019-12-26 2020-05-08 Tcl华星光电技术有限公司 电平位移器电路、电平位移器电路控制方法及显示面板
CN111130535B (zh) * 2019-12-26 2023-05-02 Tcl华星光电技术有限公司 电平位移器电路、电平位移器电路控制方法及显示面板
CN111555240A (zh) * 2020-05-26 2020-08-18 宁波奥克斯电气股份有限公司 一种空调线控器保护方法及保护系统
CN113872148A (zh) * 2020-06-30 2021-12-31 比亚迪半导体股份有限公司 一种欠压保护电路、装置及方法
CN112147874A (zh) * 2020-11-05 2020-12-29 北京航天发射技术研究所 基于卫星授时和cpt原子钟守时的时频基准生成装置和方法
CN112671243A (zh) * 2020-11-23 2021-04-16 珠海格力电器股份有限公司 反激式开关电源及其控制方法和装置
CN112671243B (zh) * 2020-11-23 2023-10-03 珠海格力电器股份有限公司 反激式开关电源及其控制方法和装置
CN112436488A (zh) * 2020-11-26 2021-03-02 广州金升阳科技有限公司 一种dc-dc自举电源的欠压保护电路
CN112436488B (zh) * 2020-11-26 2023-05-16 广州金升阳科技有限公司 一种dc-dc自举电源的欠压保护电路
CN112611928A (zh) * 2020-11-30 2021-04-06 中国航空工业集团公司洛阳电光设备研究所 一种针对模具保护器检测的信号源装置及其实现方法
CN112255524A (zh) * 2020-12-06 2021-01-22 中车永济电机有限公司 一种电传动牵引系统的保护方法及检测装置
CN112255524B (zh) * 2020-12-06 2024-02-06 中车永济电机有限公司 一种电传动牵引系统的保护方法及检测装置
CN112670964B (zh) * 2020-12-30 2023-05-12 深圳市科陆电子科技股份有限公司 用于配电馈线终端的残压检测方法、系统及存储介质
CN112670964A (zh) * 2020-12-30 2021-04-16 深圳市科陆电子科技股份有限公司 用于配电馈线终端的残压检测方法、系统及存储介质
CN113270848B (zh) * 2021-03-31 2024-03-26 漳州科华技术有限责任公司 一种目标电路的故障保护的触发控制方法、装置、控制器及电源
CN113270848A (zh) * 2021-03-31 2021-08-17 漳州科华技术有限责任公司 一种目标电路的故障保护的触发控制方法、装置、控制器及电源
CN113690853A (zh) * 2021-08-11 2021-11-23 成都启臣微电子股份有限公司 一种输出电压反馈端异常状态检测保护电路及主控芯片
CN113690853B (zh) * 2021-08-11 2024-04-30 成都启臣微电子股份有限公司 一种输出电压反馈端异常状态检测保护电路及主控芯片
CN114167970A (zh) * 2021-12-09 2022-03-11 深圳市海浦蒙特科技有限公司 一种过流保护方法及相关组件
CN113939063B (zh) * 2021-12-17 2022-03-22 深圳市明微电子股份有限公司 Led系统供电电源控制方法及供电电源可控的led系统
CN113939063A (zh) * 2021-12-17 2022-01-14 深圳市明微电子股份有限公司 Led系统供电电源控制方法及供电电源可控的led系统
CN115037193A (zh) * 2022-06-09 2022-09-09 常熟理工学院 具有保护功能的直流无刷电机驱动板
CN115963769A (zh) * 2023-02-20 2023-04-14 临工重机股份有限公司 高空作业车遥控系统和高空作业车

Also Published As

Publication number Publication date
CN104201652B (zh) 2017-02-15
CN104201652A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2016037511A1 (zh) 一种电源保护控制方法
US7310251B2 (en) Control circuit having two-level under voltage lockout threshold to improve the protection of power supply
US9444353B2 (en) Isolated power converter and associated switching power supply
TWI553984B (zh) 短路保護電路及其開關電源和保護方法
US8680837B2 (en) Driver for driving power switch element
US8064231B2 (en) Short circuit protection circuit for a pulse width modulation (PWM) unit
WO2016015566A1 (zh) 软启动方法及电路
CN108964426B (zh) 一种同步整流管的控制芯片及ac-dc系统
US20060227476A1 (en) Over-power protection circuit for power converter
JPWO2013146339A1 (ja) スイッチング電源装置
CN108093528B (zh) 一种应用于led驱动芯片的过压保护电路
JP6814219B2 (ja) スイッチング電源装置および半導体装置
CN106129968A (zh) 谐振变换器及其过流保护电路和过流保护方法
TWI646767B (zh) 電源控制裝置及電源控制系統
US20170338811A1 (en) High voltage power system with enable control
TWI381618B (zh) 交換式電源電路及電腦系統
JPWO2018042937A1 (ja) スイッチング電源装置および半導体装置
KR20170123275A (ko) Dcdc 컨버터
JP5533313B2 (ja) レベルシフト回路及びスイッチング電源装置
JP6503964B2 (ja) スイッチング電源の制御装置
JP2018113811A (ja) スイッチング電源装置
CN109164746A (zh) 一种下电时序控制电路及电源电路
JP5471862B2 (ja) レベルシフト回路及びスイッチング電源装置
US10700595B2 (en) Controller for extending a protection period of a power converter and operational method thereof
CN109546623B (zh) 一种电荷泵升压电路短路保护电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840592

Country of ref document: EP

Kind code of ref document: A1