WO2016037391A1 - 薄膜晶体管阵列基板及其制造方法、液晶显示器 - Google Patents

薄膜晶体管阵列基板及其制造方法、液晶显示器 Download PDF

Info

Publication number
WO2016037391A1
WO2016037391A1 PCT/CN2014/088305 CN2014088305W WO2016037391A1 WO 2016037391 A1 WO2016037391 A1 WO 2016037391A1 CN 2014088305 W CN2014088305 W CN 2014088305W WO 2016037391 A1 WO2016037391 A1 WO 2016037391A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
thin film
array substrate
film transistor
Prior art date
Application number
PCT/CN2014/088305
Other languages
English (en)
French (fr)
Inventor
吕启标
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to KR1020177009659A priority Critical patent/KR20170055986A/ko
Priority to GB1702752.5A priority patent/GB2543997B/en
Priority to JP2017513130A priority patent/JP2017526978A/ja
Priority to RU2017107744A priority patent/RU2666815C1/ru
Priority to US14/401,105 priority patent/US9536902B2/en
Priority to DE112014006948.5T priority patent/DE112014006948T5/de
Publication of WO2016037391A1 publication Critical patent/WO2016037391A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66765Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78669Amorphous silicon transistors with inverted-type structure, e.g. with bottom gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/103Materials and properties semiconductor a-Si

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a thin film transistor array substrate, a method of manufacturing the same, and a liquid crystal display.
  • LCD Liquid crystal display
  • TFTs Thin film transistors
  • the mainstream of the existing TFT manufacturing method of the bottom gate structure is 4 lithography (4 Mask) and 5 lithography (5 Mask).
  • the 5Mask process mainly includes gate electrode lithography, active layer lithography, source/drain lithography (S/D Mask), via hole lithography (Via Hole Mask) and pixel electrode lithography. (Pixel Mask).
  • a Thin Film Deposition process an etching process including Dry Etch and Wet Etch, and a lift-off process were respectively performed to form 5 times of film deposition ⁇ light.
  • the process of engraving ⁇ etching ⁇ stripping were respectively performed.
  • 4Mask process is based on the 5Mask process, using Gray Tone Mask or Half Tone Mask or SSM (Single Slit Mask) process, active layer lithography (Active Mask)
  • Active Mask active layer lithography
  • S/D Mask The source/drain lithography (S/D Mask) is combined into a Mask, and the original Active Mask and S/D Mask functions are completed by adjusting the Etch process, that is, the Mask process is achieved twice by a Mask process.
  • the thin film transistor array substrate 20 includes a gate wiring region 20a, a data wiring region 20b, and a pixel region 20c.
  • the thin film transistor array substrate 20 includes a gate electrode metal layer 22, a gate electrode insulating layer 23, an active layer 24 formed of amorphous silicon (a-Si), and a source electrode on the active layer 24, which are sequentially formed on the glass substrate 21.
  • a-Si amorphous silicon
  • a metal layer 25a and a drain electrode metal layer 25b a passivation layer 26, a passivation layer via 27 formed over the drain electrode metal layer 25b and formed on the passivation layer 26, and a transparent pixel electrode (ie, ITO (Indium Tin Oxide) Indium tin) electrode layer 28, wherein transparent pixel electrode layer 28 is in contact with drain electrode metal layer 25b through passivation layer via 27.
  • ITO Indium Tin Oxide
  • the data wiring region 20b includes a gate electrode insulating layer 23 sequentially formed on the glass substrate 21, an active layer 24 formed of amorphous silicon (a-Si), a source electrode metal layer 25a on the active layer 24, and a passivation layer
  • the pixel region 20c includes a gate electrode insulating layer 23 sequentially formed on the glass substrate 21, an active layer 24 formed of amorphous silicon (a-Si), a source electrode metal layer 25a on the active layer 24, and blunt
  • the amorphous silicon forming the active layer 24 is a photosensitive semiconductor material, it generates a photocurrent under high-intensity illumination of the backlight provided by the backlight module of the liquid crystal display, thereby providing the transparent pixel electrode layer 28 to the liquid crystal pixel.
  • the pixel voltage changes, eventually causing an abnormality in the display of the liquid crystal display, especially in the performance test when there is a serious image sticking (Image Sticking) phenomenon.
  • an object of the present invention is to provide a thin film transistor array substrate including a pixel region and a data wiring region, wherein the thin film transistor array substrate further includes a transparent layer formed in the pixel region a pixel electrode layer and a first metal layer, a first insulating layer, an amorphous silicon layer, a second metal layer, and a second insulating layer formed in the pixel region and the data wiring region, wherein the first insulation a layer covering the first metal layer, the amorphous silicon layer, the second metal layer and the second insulating layer are sequentially formed on the first insulating layer, and the transparent pixel electrode layer is formed by A via in the second insulating layer of the pixel region is in contact with a second metal layer of the pixel region.
  • the thin film transistor array substrate further includes a color resist layer formed between the first insulating layer and the amorphous silicon layer.
  • the color resist layer is a red color resist layer or a green color resist layer or a blue color resist layer.
  • Another object of the present invention is to provide a method of fabricating a thin film transistor array substrate, comprising the steps of: A) forming a first metal layer in a pixel region and a data wiring region by using a first photolithography mask; B) depositing An insulating layer; C) forming an amorphous silicon layer and a second metal layer on the first insulating layer by using the second photolithographic mask; D) depositing a second insulating layer; and E) using a third photolithographic mask Forming a via hole in the second insulating layer of the pixel region; F) forming a transparent pixel electrode layer on the second insulating layer of the pixel region by using a fourth photolithography mask, wherein the transparent pixel electrode layer passes The via is in contact with the second metal layer of the pixel region.
  • the manufacturing method further includes the step of depositing a color resist layer on the first insulating layer.
  • the color resist layer is a red color resist layer or a green color resist layer or a blue color resist layer.
  • Still another object of the present invention is to provide a liquid crystal display comprising the above-described thin film transistor array substrate.
  • the present invention forms a first metal layer under the amorphous silicon layer formed of amorphous silicon. Since the first metal layer is formed of an opaque metal material, it can block the high intensity of the backlight provided by the backlight module of the liquid crystal display. The light is prevented from directly irradiating onto the amorphous silicon layer formed of amorphous silicon, and the amorphous silicon layer formed of the amorphous silicon does not generate photocurrent, thereby not affecting the pixel voltage supplied to the liquid crystal pixel by the transparent pixel electrode layer. Furthermore, the abnormality of the display screen of the liquid crystal display is not caused, that is, the image sticking phenomenon does not occur on the display screen of the liquid crystal display.
  • a color resist layer is formed between the first insulating layer and the amorphous silicon layer formed of amorphous silicon. Since the dielectric constant of the color resist layer is small, the thickness is thick, thereby increasing the first metal layer and The distance between the second metal layers greatly reduces the capacitance between the first metal layer and the second metal layer, thereby avoiding the phenomenon of insufficient charging or mischarging of the pixels due to the serious delay effect of the resistors and capacitors, thereby improving the display quality.
  • FIG. 1 is a front view of a prior art thin film transistor array substrate fabricated by four-time lithography intention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG. 3 is a front elevational view of a thin film transistor array substrate in accordance with an embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along line B-B of Figure 3;
  • FIG. 5 is a flow chart showing a method of fabricating a thin film transistor array substrate according to an embodiment of the present invention
  • FIG. 6 is a schematic structural view of a liquid crystal display according to an embodiment of the present invention.
  • FIG. 3 is a front elevational view of a thin film transistor array substrate in accordance with an embodiment of the present invention.
  • Figure 4 is a cross-sectional view taken along line B-B of Figure 3.
  • a Thin Film Transistor (TFT) array substrate 100 includes a gate wiring region 100a, a data wiring region 100b, and a pixel region 100c.
  • the thin film transistor array substrate 100 further includes a first metal layer (ie, a gate metal layer) 120 sequentially formed on a substrate (eg, a transparent glass substrate) 110, and a first covering the first metal layer 120
  • a first metal layer ie, a gate metal layer
  • An insulating layer ie, a gate insulating layer 130
  • an amorphous silicon layer ie, an active layer
  • a second metal layer 150 on the amorphous silicon layer 140 wherein
  • the second metal layer 150 in the pixel region 100c is a drain electrode metal layer, and is located in the gate wiring region 100a or data.
  • the second metal layer 150 of the wiring region 100b is a source electrode metal layer), a second insulating layer (or passivation layer) 160, a via 170 formed over the drain electrode metal layer and formed on the second insulating layer 160, and transparent A pixel electrode (ie, an ITO (Indium Tin Oxide)) layer 180, wherein the transparent pixel electrode layer 180 is in contact with the drain electrode metal layer through the via 170.
  • transparent A pixel electrode ie, an ITO (Indium Tin Oxide)
  • the gate wiring region 100a includes a first metal layer 120, a first insulating layer 130, an amorphous silicon layer 140 formed of amorphous silicon, and an amorphous silicon layer 140 which are sequentially formed on the substrate 110.
  • the second metal layer 150 ie, the source electrode metal layer on the amorphous silicon layer 140
  • the data wiring region 100b includes a first metal layer 120 sequentially formed on the substrate 110, a first insulating layer 130, an amorphous silicon layer 140 formed of amorphous silicon, and a second metal layer 150 on the amorphous silicon layer 140 (ie, A source electrode metal layer on the amorphous silicon layer 140) and a second insulating layer 160.
  • the pixel region 100c includes a first metal layer 120 sequentially formed on the substrate 110, a first insulating layer 130, an amorphous silicon layer 140 formed of amorphous silicon, and a second metal layer 150 on the amorphous silicon layer 140 (ie, non- a drain electrode metal layer on the crystalline silicon layer 140), a second insulating layer 160, a via 170 formed over the drain electrode metal layer and formed on the second insulating layer 160, and a transparent pixel electrode layer 180, wherein the transparent pixel electrode layer 180 is in contact with the drain electrode metal layer through via 170.
  • the first metal layer 120 is formed under the amorphous silicon layer 140 formed of amorphous silicon in each region, and since the first metal layer 120 is formed of a light-tight metal material, the liquid crystal can be blocked.
  • the high-intensity light of the backlight provided by the backlight module of the display avoids direct irradiation onto the amorphous silicon layer 140 formed of amorphous silicon, and the amorphous silicon layer 140 formed of amorphous silicon does not generate photocurrent, thereby not affecting
  • the transparent pixel electrode layer 28 supplies the pixel voltage to the liquid crystal pixel, thereby causing no abnormality in the display screen of the liquid crystal display, that is, the image sticking phenomenon does not occur on the liquid crystal display display screen.
  • the thin film transistor array substrate 100 further includes a color resist layer 190 formed between the first insulating layer 130 and the amorphous silicon layer 140 formed of amorphous silicon. That is, a color resist layer 190 is formed between the first insulating layer 130 in each region and the amorphous silicon layer 140 formed of amorphous silicon. Since the dielectric constant of the color resist layer 190 is small, the thickness is thick, thereby increasing the distance between the first metal layer 120 and the second metal layer 150, and between the first metal layer 120 and the second metal layer 150. The capacitance is greatly reduced, and the phenomenon that the pixel is insufficiently charged or mischarged due to the serious delay effect of the resistor and capacitor is avoided, and the display quality is improved.
  • the color resist layer 190 may be one of a red color resist layer, a green color resist layer, and a blue color resist layer.
  • FIG. 5 is a flow chart showing a method of fabricating a thin film transistor array substrate according to an embodiment of the present invention.
  • the first metal layer 120 is formed in the gate wiring region 100a, the pixel region 100c, and the data wiring region 100b by the first photolithography mask.
  • the specific method of step 210 is: depositing a first metal film layer on the substrate 110, exposing, developing, and wet etching and stripping the first metal film layer by using the first photolithography mask to form the first metal layer 120. , that is, the gate electrode metal layer.
  • the metal material used for the first metal film layer may be, for example, tantalum (Ta), molybdenum tantalum (MoTa), molybdenum tungsten (MoW), or aluminum (Al).
  • a first insulating layer 130 is deposited.
  • the first insulating layer 130 is also referred to as a gate electrode insulating layer, which is deposited on the first metal layer 120 of each region and the substrate 110 after the first metal layer 120 is peeled off.
  • the amorphous silicon layer 140 and the second metal layer 150 are sequentially formed on the first insulating layer 130 by using the second photolithography mask.
  • the second metal layer 150 formed in the gate wiring region 100a and the data wiring region 100b is a source electrode metal layer
  • the second metal layer 150 formed in the pixel region 100c is a drain electrode metal layer.
  • the specific method of the step 240 is: sequentially depositing an amorphous silicon film layer and a second metal film layer on the first insulating layer 130, exposing, developing, and wet etching, dry etching using the second photolithography mask. After the peeling, an amorphous silicon layer (ie, active layer) 140 and a second metal layer 150 are formed.
  • a second insulating layer 160 is deposited.
  • the second insulating layer 160 is also referred to as a passivation layer, which is deposited on the second metal layer 150 of each region and the first insulating layer 130 after the amorphous silicon layer 140 and the second metal layer 150 are stripped.
  • step 260 vias 170 are formed in the second insulating layer 160 of the pixel region 100c using a third photolithographic mask.
  • the specific method of the step 260 is that the second insulating layer 160 can be exposed, developed, and dry etched and stripped by using a third photolithography mask to form via holes in the second insulating layer 160 of the pixel region 100c. 170.
  • a transparent pixel electrode (ie, an ITO (Indium Tin Oxide)) layer 180 is formed on the second insulating layer 160 of the pixel region 100c by using a fourth photolithography mask, wherein the transparent pixel electrode Layer 180 is in contact with second metal layer 150 (i.e., drain electrode metal layer) of pixel region 100c through via 170.
  • the specific method of step 270 is: sinking on the second insulating layer 160
  • the transparent pixel electrode film layer is formed, and the transparent pixel electrode film layer of the non-pixel region 100c is removed by exposure, development, wet etching, and stripping using a fourth photolithography mask, and the transparent pixel electrode film layer of the pixel region 100c is retained.
  • the transparent pixel electrode layer 180 is formed on the second insulating layer 160 of the pixel region 100c.
  • the method of manufacturing the thin film transistor array substrate according to the embodiment of the present invention further includes step 230.
  • a color resist layer 190 is deposited on the first insulating layer 130.
  • a color resist layer 190 is deposited on the first insulating layer 130 of each region.
  • the color resist layer 190 may be one of a red color resist layer, a green color resist layer, and a blue color resist layer.
  • FIG. 6 is a schematic structural view of a liquid crystal display according to an embodiment of the present invention.
  • a liquid crystal display includes a liquid crystal display panel and a backlight module 400 disposed opposite to the liquid crystal display panel, wherein the backlight module 400 provides a display light source to the liquid crystal display panel to make the liquid crystal
  • the display panel displays the image by the light provided by the backlight module 400.
  • the liquid crystal display panel has the following configuration: the thin film transistor array substrate 100; the second substrate 200 (ie, the color filter substrate), which includes a black matrix and an alignment layer, and the like; the liquid crystal layer 300 is sandwiched between the thin film transistor array substrate 100. And the second substrate 200; and the thin film transistor array substrate 100 and the second substrate 200 are arranged to face each other.
  • the second substrate 200 used in the present invention is the same as the prior art, the specific structure thereof can be referred to the related prior art, and details are not described herein again.
  • the backlight module 400 of the present embodiment is also the same as the backlight module in the conventional liquid crystal display. Therefore, the specific structure can also refer to the related prior art, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种薄膜晶体管阵列基板(100)、阵列基板(100)的制造方法及液晶显示器,包括像素区域(100c)、数据布线区域(100b)、形成在像素区域(100c)中的透明像素电极层(180)以及形成在像素区域(100c)和数据布线区域(100b)中的第一金属层(120)、第一绝缘层(130)、非晶硅层(140)、第二金属层(150)、第二绝缘层(160),其中,第一绝缘层(130)覆盖第一金属层(120),非晶硅层(140)、第二金属层(150)和第二绝缘层(160)依序形成在第一绝缘层(130)上,透明像素电极层(180)通过形成在像素区域(100c)的第二绝缘层(160)中的过孔(170)与像素区域(100c)的第二金属层(150)接触。通过在非晶硅层(140)的下方形成第一金属层(120),以使非晶硅层(140)不会受到光照的影响而产生光电流,从而不会影响提供给像素的电压,显示画面不会产生异常。

Description

薄膜晶体管阵列基板及其制造方法、液晶显示器 技术领域
本发明属于液晶显示技术领域,具体地讲,涉及一种薄膜晶体管阵列基板及其制造方法、液晶显示器。
背景技术
随着信息社会的发展,人们对平板显示器的需求得到了快速的增长。液晶显示器(Liquid Crystal Display,简称LCD)具有体积小、功耗低、无辐射等特点,在当前的平板显示器市场占据了主导地位。然而,随着各生产厂商之间剧烈的竞争,提升显示品质、降低不良率、降低生产成本成为LCD生产厂商在剧烈竞争中得以生存的重要保证。LCD中一般使用薄膜晶体管(Thin Film Transistor,简称TFT)作为驱动,从而实现高速度、高亮度、高对比度的显示屏幕信息。
现有的底栅结构的TFT的制造方法的主流是4次光刻技术(4Mask)和5次光刻技术(5Mask)。其中,5Mask工艺主要包括栅电极光刻(Gate Mask),有源层光刻(Active Mask),源漏电极光刻(S/D Mask),过孔光刻(Via Hole Mask)和像素电极光刻(Pixel Mask)。在每一个Mask工艺步骤中又分别包括薄膜沉积(Thin Film Deposition)工艺、刻蚀(包括干法刻蚀Dry Etch和湿法刻蚀Wet Etch)工艺和剥离工艺,形成了5次薄膜沉积→光刻→刻蚀→剥离的循环过程。
4Mask工艺是在5Mask工艺的基础上,利用灰色调光刻(Gray Tone Mask)或半色调光刻(Half Tone Mask)或SSM(Single Slit Mask)工艺,将有源层光刻(Active Mask)与源漏电极光刻(S/D Mask)合并成一个Mask,通过调整刻蚀(Etch)工艺,从而完成原来Active Mask和S/D Mask的功能,即通过一次Mask工艺达到两次Mask工艺的效果。
图1是现有技术的利用四次光刻技术制造的薄膜晶体管阵列基板的正视示 意图。图2是图1中沿A-A线的剖切示意图。参照图1和图2,薄膜晶体管阵列基板20包括栅极布线区域20a、数据布线区域20b及像素区域20c。薄膜晶体管阵列基板20包括在玻璃基板21上依次形成的栅电极金属层22、栅电极绝缘层23、由非晶硅(a-Si)形成的有源层24、有源层24上的源电极金属层25a和漏电极金属层25b、钝化层26、位于漏电极金属层25b上方并在钝化层26上形成的钝化层过孔27以及透明像素电极(即ITO(Indium Tin Oxide,氧化铟锡)电极)层28,其中,透明像素电极层28通过钝化层过孔27与漏电极金属层25b接触。
数据布线区域20b包括在玻璃基板21上依次形成的栅电极绝缘层23、由非晶硅(a-Si)形成的有源层24、有源层24上的源电极金属层25a、钝化层26;而像素区域20c包括在玻璃基板21上依次形成的栅电极绝缘层23、由非晶硅(a-Si)形成的有源层24、有源层24上的源电极金属层25a、钝化层26、在钝化层26上形成的钝化层过孔27以及透明像素电极层28,其中,透明像素电极层28通过钝化层过孔27与漏电极金属层25b接触。
由于形成有源层24的非晶硅是一种感光的半导体材料,其会在液晶显示器的背光模块提供的背光的高强度光照下产生光电流,从而使得透明像素电极层28提供给液晶像素的像素电压产生变化,最终造成液晶显示器显示画面的异常,特别是在性能测试时出现严重的残影(Image Sticking)现象。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种薄膜晶体管阵列基板,包括像素区域及数据布线区域,其中,所述薄膜晶体管阵列基板还包括形成在所述像素区域中的透明像素电极层及形成在所述像素区域和所述数据布线区域中的第一金属层、第一绝缘层、非晶硅层、第二金属层、第二绝缘层,其中,所述第一绝缘层覆盖所述第一金属层,所述非晶硅层、所述第二金属层和所述第二绝缘层依序形成在所述第一绝缘层上,所述透明像素电极层通过形成在所述像素区域的第二绝缘层中的过孔与所述像素区域的第二金属层接触。
此外,所述薄膜晶体管阵列基板还包括色阻层,形成在所述第一绝缘层与所述非晶硅层之间。
此外,所述色阻层为红色色阻层或绿色色阻层或蓝色色阻层。
本发明的另一目的还在于提供一种薄膜晶体管阵列基板的制造方法,包括步骤:A)利用第一光刻掩膜板在像素区域和数据布线区域中形成第一金属层;B)沉积第一绝缘层;C)利用第二光刻掩膜板在第一绝缘层上形成非晶硅层及第二金属层;D)沉积第二绝缘层;E)利用第三光刻掩膜板在所述像素区域的第二绝缘层中形成过孔;F)利用第四光刻掩膜板在所述像素区域的第二绝缘层上形成透明像素电极层,其中,所述透明像素电极层通过所述过孔与所述像素区域的第二金属层接触。
进一步地,在执行步骤C)之前,所述制造方法还包括步骤:在所述第一绝缘层上沉积色阻层。
进一步地,所述色阻层为红色色阻层或绿色色阻层或蓝色色阻层。
本发明的又一目的又在于提供一种液晶显示器,包括上述的薄膜晶体管阵列基板。
本发明在由非晶硅形成的非晶硅层的下方形成第一金属层,由于第一金属层是由不透光的金属材料形成,所以能够遮挡液晶显示器的背光模块提供的背光的高强度光线,避免直接照射到由非晶硅形成的非晶硅层上,由非晶硅形成的非晶硅层不会产生光电流,从而不会影响透明像素电极层提供给液晶像素的像素电压,进而不会造成液晶显示器显示画面的异常,即液晶显示器显示画面不会出现残影(Image Sticking)现象。此外,在第一绝缘层与由非晶硅形成的非晶硅层之间均形成色阻层,由于色阻层的介电常数较小,厚度较厚,从而增大了第一金属层与第二金属层之间的距离,使第一金属层与第二金属层之间的电容大幅减小,避免由于电阻电容延迟效应严重而导致像素充电不足或者错充的现象,提高显示质量。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是现有技术的利用四次光刻技术制造的薄膜晶体管阵列基板的正视示 意图;
图2是图1中沿A-A线的剖切示意图;
图3是根据本发明的实施例的薄膜晶体管阵列基板的正视示意图;
图4是图3中沿B-B线的剖切示意图;
图5是根据本发明的实施例的薄膜晶体管阵列基板的制造方法的流程示意图;
图6是根据本发明的实施例的液晶显示器的结构示意图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
将理解的是,尽管在这里可使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元件区分开来。
图3是根据本发明的实施例的薄膜晶体管阵列基板的正视示意图。图4是图3中沿B-B线的剖切示意图。
参照图3和图4,根据本发明的实施例的薄膜晶体管(Thin Film Transistor,简称TFT)阵列基板100包括栅极布线区域100a、数据布线区域100b、像素区域100c。
根据本发明的实施例的薄膜晶体管阵列基板100还包括在基板(例如透明的玻璃基板)110上依次形成的第一金属层(即栅极金属层)120、覆盖第一金属层120的第一绝缘层(即栅极绝缘层)130、由非晶硅(a-Si)形成的非晶硅层(即有源层)140、非晶硅层140上的第二金属层150(其中,位于像素区域100c中的第二金属层150为漏电极金属层,而位于栅极布线区域100a或数据 布线区域100b的第二金属层150为源电极金属层)、第二绝缘层(或称钝化层)160、位于漏电极金属层上方并在第二绝缘层160上形成的过孔170以及透明像素电极(即ITO(Indium Tin Oxide,氧化铟锡)电极)层180,其中,透明像素电极层180通过过孔170与漏电极金属层接触。
在本实施例中,栅极布线区域100a包括在基板110上依次形成的第一金属层120、第一绝缘层130、由非晶硅形成的非晶硅层140、非晶硅层140上的第二金属层150(即非晶硅层140上的源电极金属层)、第二绝缘层160。数据布线区域100b包括在基板110上依次形成的第一金属层120、第一绝缘层130、由非晶硅形成的非晶硅层140、非晶硅层140上的第二金属层150(即非晶硅层140上的源电极金属层)、第二绝缘层160。像素区域100c包括在基板110上依次形成的第一金属层120、第一绝缘层130、由非晶硅形成的非晶硅层140、非晶硅层140上的第二金属层150(即非晶硅层140上的漏电极金属层)、第二绝缘层160、位于漏电极金属层上方并在第二绝缘层160上形成的过孔170以及透明像素电极层180,其中,透明像素电极层180通过过孔170与漏电极金属层接触。
由上述可知,在每个区域中的由非晶硅形成的非晶硅层140的下方形成第一金属层120,由于第一金属层120是由不透光的金属材料形成,所以能够遮挡液晶显示器的背光模块提供的背光的高强度光线,避免直接照射到由非晶硅形成的非晶硅层140上,由非晶硅形成的非晶硅层140不会产生光电流,从而不会影响透明像素电极层28提供给液晶像素的像素电压,进而不会造成液晶显示器显示画面的异常,即液晶显示器显示画面不会出现残影(Image Sticking)现象。
此外,根据本发明的实施例的薄膜晶体管阵列基板100还包括色阻层190,其中,该色阻层190形成在第一绝缘层130与由非晶硅形成的非晶硅层140之间。也就是说,每个区域中的第一绝缘层130与由非晶硅形成的非晶硅层140之间均形成有色阻层190。由于色阻层190的介电常数较小,厚度较厚,从而增大了第一金属层120与第二金属层150之间的距离,使第一金属层120与第二金属层150之间的电容大幅减小,避免由于电阻电容延迟效应严重而导致像素充电不足或者错充的现象,提高显示质量。在本实施例中,色阻层190可是红色色阻层、绿色色阻层和蓝色色阻层中的一种。
下面将对根据本发明的实施例的薄膜晶体管阵列基板的制造方法进行描述。图5是根据本发明的实施例的薄膜晶体管阵列基板的制造方法的流程示意图。
一并参照图3至图5,在步骤210中,利用第一光刻掩膜板在栅极布线区域100a、像素区域100c和数据布线区域100b中形成第一金属层120。步骤210的具体方法为:在基板110上沉积第一金属膜层,利用第一光刻掩膜板对第一金属膜层进行曝光、显影以及湿法刻蚀、剥离后形成第一金属层120,即栅电极金属层。在该步骤中,第一金属膜层采用的金属材料可例如是钽(Ta)、钼钽(MoTa)、钼钨(MoW)或铝(Al)等。
在步骤220中,沉积第一绝缘层130。这里,第一绝缘层130也称栅电极绝缘层,其沉积在每个区域的第一金属层120及被剥离第一金属层120后的基板110上。
在步骤240中,利用第二光刻掩膜板在第一绝缘层130上依序形成非晶硅层140及第二金属层150。这里,形成在栅极布线区域100a和数据布线区域100b中的第二金属层150为源电极金属层,而形成在像素区域100c中的第二金属层150为漏电极金属层。该步骤240的具体方法为:在第一绝缘层130上依次沉积非晶硅膜层及第二金属膜层,利用第二光刻掩膜板曝光、显影以及湿法刻蚀、干法刻蚀、剥离后形成非晶硅层(即有源层)140及第二金属层150。
在步骤250中,沉积第二绝缘层160。这里,第二绝缘层160也称钝化层,其沉积在每个区域的第二金属层150及被剥离非晶硅层140、第二金属层150后的第一绝缘层130上。
在步骤260中,利用第三光刻掩膜板在像素区域100c的第二绝缘层160中形成过孔170。该步骤260的具体方法为:可利用第三光刻掩膜板对第二绝缘层160进行曝光、显影以及干法刻蚀、剥离,以在像素区域100c的第二绝缘层160中形成过孔170。
在步骤270中,利用第四光刻掩膜板在像素区域100c的第二绝缘层160上形成透明像素电极(即ITO(Indium Tin Oxide,氧化铟锡)电极)层180,其中,透明像素电极层180通过过孔170与像素区域100c的第二金属层150(即漏电极金属层)接触。该步骤270的具体方法为:在第二绝缘层160上沉 积透明像素电极膜层,利用第四光刻掩膜板曝光、显影以及湿法刻蚀、剥离后将非像素区域100c的透明像素电极膜层去除,保留像素区域100c的透明像素电极膜层,以在像素区域100c的第二绝缘层160上形成透明像素电极层180。
此外,在本实施例中,在执行步骤240之前,根据本发明的实施例的薄膜晶体管阵列基板的制造方法还包括步骤230。在步骤230中,在第一绝缘层130上沉积色阻层190。这里,色阻层190沉积在每个区域的第一绝缘层130上。在本实施例中,色阻层190可是红色色阻层、绿色色阻层和蓝色色阻层中的一种。
图6是根据本发明的实施例的液晶显示器的结构示意图。
参照图6,根据本发明的实施例的液晶显示器包括液晶显示面板以及与该液晶显示面板相对设置的背光模组400,其中,背光模组400提供显示光源给该液晶显示面板,以使该液晶显示面板借由背光模组400提供的光来显示影像。而液晶显示面板具有如下配置:上述的薄膜晶体管阵列基板100;第二基板200(即彩色滤光片基板),其包括黑色矩阵以及配向层等;液晶层300,夹设在薄膜晶体管阵列基板100和第二基板200之间;并且薄膜晶体管阵列基板100和第二基板200被布置成彼此面对。
鉴于本发明中采用的第二基板200与现有技术相同,因此其具体结构可参照相关的现有技术,在此不再赘述。而本实施例的背光模组400也与现有液晶显示器中的背光模组相同,因此其具体结构也可参照相关的现有技术,在此也不再赘述。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (9)

  1. 一种薄膜晶体管阵列基板,包括像素区域及数据布线区域,其中,所述薄膜晶体管阵列基板还包括形成在所述像素区域中的透明像素电极层及形成在所述像素区域和所述数据布线区域中的第一金属层、第一绝缘层、非晶硅层、第二金属层、第二绝缘层,其中,所述第一绝缘层覆盖所述第一金属层,所述非晶硅层、所述第二金属层和所述第二绝缘层依序形成在所述第一绝缘层上,所述透明像素电极层通过形成在所述像素区域的第二绝缘层中的过孔与所述像素区域的第二金属层接触。
  2. 根据权利要求1所述的薄膜晶体管阵列基板,其中,所述薄膜晶体管阵列基板还包括色阻层,形成在所述第一绝缘层与所述非晶硅层之间。
  3. 根据权利要求2所述的薄膜晶体管阵列基板,其中,所述色阻层为红色色阻层或绿色色阻层或蓝色色阻层。
  4. 一种薄膜晶体管阵列基板的制造方法,其中,包括步骤:
    A)利用第一光刻掩膜板在像素区域和数据布线区域中形成第一金属层;
    B)沉积第一绝缘层;
    C)利用第二光刻掩膜板在第一绝缘层上形成非晶硅层及第二金属层;
    D)沉积第二绝缘层;
    E)利用第三光刻掩膜板在所述像素区域的第二绝缘层中形成过孔;
    F)利用第四光刻掩膜板在所述像素区域的第二绝缘层上形成透明像素电极层,其中,所述透明像素电极层通过所述过孔与所述像素区域的第二金属层接触。
  5. 根据权利要求4所述的制造方法,其中,在执行步骤C)之前,所述制造方法还包括步骤:在所述第一绝缘层上沉积色阻层。
  6. 根据权利要求5所述的制造方法,其中,所述色阻层为红色色阻层或绿色色阻层或蓝色色阻层。
  7. 一种液晶显示器,其中,包括薄膜晶体管阵列基板、与该薄膜晶体管阵列基板相对设置的第二基板以及夹设于所述薄膜晶体管阵列基板与所述第二基板之间的液晶层,其中,所述薄膜晶体管阵列基板包括像素区域、数据布线区域、形成在所述像素区域中的透明像素电极层以及形成在所述像素区域和所述数据布线区域中的第一金属层、第一绝缘层、非晶硅层、第二金属层、第二绝缘层,其中,所述第一绝缘层覆盖所述第一金属层,所述非晶硅层、所述第二金属层和所述第二绝缘层依序形成在所述第一绝缘层上,所述透明像素电极层通过形成在所述像素区域的第二绝缘层中的过孔与所述像素区域的第二金属层接触。
  8. 根据权利要求7所述的液晶显示器,其中,所述薄膜晶体管阵列基板还包括色阻层,形成在所述第一绝缘层与所述非晶硅层之间。
  9. 根据权利要求8所述的液晶显示器,其中,所述色阻层为红色色阻层或绿色色阻层或蓝色色阻层。
PCT/CN2014/088305 2014-09-12 2014-10-10 薄膜晶体管阵列基板及其制造方法、液晶显示器 WO2016037391A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177009659A KR20170055986A (ko) 2014-09-12 2014-10-10 박막 트랜지스터 어레이 기판 및 그 제조 방법, 액정 디스플레이 기기
GB1702752.5A GB2543997B (en) 2014-09-12 2014-10-10 Thin film transistor array substrate and fabricating method thereof, and liquid crystal display
JP2017513130A JP2017526978A (ja) 2014-09-12 2014-10-10 薄膜トランジスタアレイ基板、及びその製造方法、液晶表示装置
RU2017107744A RU2666815C1 (ru) 2014-09-12 2014-10-10 Подложка матрицы тонкопленочных транзисторов и способ ее изготовления, и жидкокристаллический дисплей
US14/401,105 US9536902B2 (en) 2014-09-12 2014-10-10 Method of fabricating a thin film transistor substrate using a plurality of photo masks and liquid crystal display
DE112014006948.5T DE112014006948T5 (de) 2014-09-12 2014-10-10 Dünnschichttransistor-Arraysubstrat, ein entsprechendes Herstellungsverfahren sowie eine entsprechende Flüssigkristallanzeige

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410466954.1 2014-09-12
CN201410466954.1A CN104299972B (zh) 2014-09-12 2014-09-12 薄膜晶体管阵列基板及其制造方法、液晶显示器

Publications (1)

Publication Number Publication Date
WO2016037391A1 true WO2016037391A1 (zh) 2016-03-17

Family

ID=52319637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088305 WO2016037391A1 (zh) 2014-09-12 2014-10-10 薄膜晶体管阵列基板及其制造方法、液晶显示器

Country Status (8)

Country Link
US (2) US9536902B2 (zh)
JP (1) JP2017526978A (zh)
KR (1) KR20170055986A (zh)
CN (1) CN104299972B (zh)
DE (1) DE112014006948T5 (zh)
GB (1) GB2543997B (zh)
RU (1) RU2666815C1 (zh)
WO (1) WO2016037391A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104299972B (zh) * 2014-09-12 2018-07-27 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制造方法、液晶显示器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411304A (en) * 2002-12-24 2004-07-01 Quanta Display Inc TFT LCD and manufacturing method thereof
US20040125262A1 (en) * 2002-12-26 2004-07-01 So-Haeng Cho Array substrate and liquid crystal display device including the same
US6869833B1 (en) * 2004-03-16 2005-03-22 Quanta Display Inc. Method of manufacturing a thin film transistor of a liquid crystal display
TW200517752A (en) * 2003-11-26 2005-06-01 Hannstar Display Corp Manufacturing method of liquid crystal display (LCD)
CN1991465A (zh) * 2005-12-28 2007-07-04 Lg.菲利浦Lcd株式会社 面内切换型液晶显示装置用阵列基板的制造方法
CN103178119A (zh) * 2013-03-25 2013-06-26 京东方科技集团股份有限公司 阵列基板、阵列基板制备方法以及显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551049B2 (ja) * 2002-03-19 2010-09-22 三菱電機株式会社 表示装置
TW594231B (en) * 2002-11-20 2004-06-21 Hannstar Display Corp A method of utilizing color photoresist to form black matrix and spacers on a control circuit substrate
KR100905472B1 (ko) * 2002-12-17 2009-07-02 삼성전자주식회사 박막 트랜지스터 어레이 기판 및 이를 포함하는 액정 표시장치
KR101363714B1 (ko) * 2006-12-11 2014-02-14 엘지디스플레이 주식회사 유기 박막트랜지스터, 그 제조 방법, 이를 이용한 정전기방지 소자, 액정표시장치 및 그 제조 방법
US7808595B2 (en) * 2007-04-02 2010-10-05 Lg Display Co., Ltd. Array substrate for liquid crystal display device and manufacturing method of the same
WO2009104346A1 (ja) * 2008-02-21 2009-08-27 シャープ株式会社 アクティブマトリクス基板及び液晶表示装置
KR101472849B1 (ko) * 2008-05-09 2014-12-15 삼성디스플레이 주식회사 박막트랜지스터 기판, 이의 제조 방법 및 이를 갖는액정표시패널
KR101448000B1 (ko) * 2008-08-26 2014-10-14 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
CN102034750B (zh) * 2009-09-25 2015-03-11 北京京东方光电科技有限公司 阵列基板及其制造方法
KR101719484B1 (ko) * 2010-10-04 2017-03-27 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 표시 장치
JP2013024996A (ja) * 2011-07-19 2013-02-04 Japan Display Central Co Ltd 液晶表示装置
CN102636926A (zh) * 2011-11-02 2012-08-15 深圳市华星光电技术有限公司 液晶显示面板及其制造方法
CN104299972B (zh) * 2014-09-12 2018-07-27 深圳市华星光电技术有限公司 薄膜晶体管阵列基板及其制造方法、液晶显示器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200411304A (en) * 2002-12-24 2004-07-01 Quanta Display Inc TFT LCD and manufacturing method thereof
US20040125262A1 (en) * 2002-12-26 2004-07-01 So-Haeng Cho Array substrate and liquid crystal display device including the same
TW200517752A (en) * 2003-11-26 2005-06-01 Hannstar Display Corp Manufacturing method of liquid crystal display (LCD)
US6869833B1 (en) * 2004-03-16 2005-03-22 Quanta Display Inc. Method of manufacturing a thin film transistor of a liquid crystal display
CN1991465A (zh) * 2005-12-28 2007-07-04 Lg.菲利浦Lcd株式会社 面内切换型液晶显示装置用阵列基板的制造方法
CN103178119A (zh) * 2013-03-25 2013-06-26 京东方科技集团股份有限公司 阵列基板、阵列基板制备方法以及显示装置

Also Published As

Publication number Publication date
KR20170055986A (ko) 2017-05-22
JP2017526978A (ja) 2017-09-14
GB2543997A (en) 2017-05-03
RU2666815C1 (ru) 2018-09-12
CN104299972B (zh) 2018-07-27
RU2017107744A (ru) 2018-09-18
US20160079284A1 (en) 2016-03-17
US9536902B2 (en) 2017-01-03
GB201702752D0 (en) 2017-04-05
DE112014006948T5 (de) 2017-05-24
US20170110593A1 (en) 2017-04-20
GB2543997B (en) 2020-08-19
CN104299972A (zh) 2015-01-21
US9780221B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
US9274368B2 (en) COA substrate, method for fabricating the same and display device
US8305528B2 (en) Liquid crystal display and manufacturing method thereof
US20140091331A1 (en) Display device, thin film transistor, array substrate and manufacturing method thereof
KR101880875B1 (ko) Tft-lcd 디스플레이 기판의 제조방법, 액정 패널 및 액정 디스플레이 장치
KR20110137562A (ko) 평판 표시 장치 및 그 제조 방법
WO2017124673A1 (zh) 阵列基板的制作方法及液晶显示面板
US10241371B2 (en) Thin film transistor, method for manufacturing the same, array substrate and display device
JP2006338008A (ja) 開口率が向上したアレイ基板、その製造方法及びそれを含む表示装置。
WO2018032670A1 (zh) Tft基板的制作方法
WO2014153958A1 (zh) 阵列基板、阵列基板的制造方法以及显示装置
WO2020093442A1 (zh) 阵列基板的制作方法及阵列基板
WO2013159520A1 (zh) 薄膜晶体管阵列基板及其制造方法和液晶显示器
US8357937B2 (en) Thin film transistor liquid crystal display device
US7795057B2 (en) Liquid crystal display device and fabrication method thereof
US9366932B2 (en) TFT-LCD array substrate manufacturing method and LCD panel/device produced by the same
WO2014127573A1 (zh) Tft阵列基板的制造方法、tft阵列基板及显示装置
WO2016037391A1 (zh) 薄膜晶体管阵列基板及其制造方法、液晶显示器
JP3857142B2 (ja) 液晶用マトリクス基板の製造方法
KR101331812B1 (ko) 액정표시장치 및 그 제조방법
KR20110056963A (ko) 박막 트랜지스터 기판의 제조방법
WO2015096395A1 (zh) 一种阵列基板的制作方法、阵列基板和显示装置
US20140001475A1 (en) Manufacturing method of array substrate, array substrate and lcd device
KR20030064975A (ko) 고개구율 액정표시장치의 제조방법
KR101856209B1 (ko) 액정표시장치의 박막트랜지스터 및 그 제조방법
US20150293396A1 (en) Array substrate, fabricating method thereof and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14401105

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201702752

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141010

ENP Entry into the national phase

Ref document number: 2017513130

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017107744

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006948

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177009659

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14901458

Country of ref document: EP

Kind code of ref document: A1