WO2016037329A1 - 一种电极及其制备方法和应用 - Google Patents

一种电极及其制备方法和应用 Download PDF

Info

Publication number
WO2016037329A1
WO2016037329A1 PCT/CN2014/086222 CN2014086222W WO2016037329A1 WO 2016037329 A1 WO2016037329 A1 WO 2016037329A1 CN 2014086222 W CN2014086222 W CN 2014086222W WO 2016037329 A1 WO2016037329 A1 WO 2016037329A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
tin
ruthenium
electrode
titanium alloy
Prior art date
Application number
PCT/CN2014/086222
Other languages
English (en)
French (fr)
Inventor
谭燕
冯瑞芝
Original Assignee
谭燕
冯瑞芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谭燕, 冯瑞芝 filed Critical 谭燕
Priority to ES14901665T priority Critical patent/ES2749619T3/es
Priority to US15/509,380 priority patent/US10329172B2/en
Priority to PCT/CN2014/086222 priority patent/WO2016037329A1/zh
Priority to EP14901665.1A priority patent/EP3202956B1/en
Priority to JP2017533663A priority patent/JP6481986B2/ja
Publication of WO2016037329A1 publication Critical patent/WO2016037329A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/001Details of apparatus, e.g. for transport, for loading or unloading manipulation, pressure feed valves
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3454Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
    • A23L3/3589Apparatus for preserving using liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/102Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration with means for agitating the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/14Removing waste, e.g. labels, from cleaning liquid; Regenerating cleaning liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to an electrode and a preparation method and application thereof, in particular to an electrode capable of generating water hydroxyl groups, a preparation method and application thereof.
  • Food safety is related to the health and safety of the people. It is related to healthy economic development and social stability. Food safety has become an important aspect of measuring people's quality of life, social management and national legal system. At present, China's food safety situation is not optimistic. Microbial pollution such as bacteria and viruses have existed for a long time. Chemical pollutants such as pesticides, hormones and antibiotics have brought huge safety hazards to food. Foodborne diseases are still the biggest health for human beings. Killer. At the same time, the disinfection and sanitation of tableware closely related to diet is also a major safety hazard.
  • the disinfection process is simple and does not meet the requirements, resulting in unsanitary conditions of disinfecting tableware, resulting in tableware surface.
  • Chinese invention patent ZL201110271764.0 discloses a water catalyst sterilization and detoxification device capable of purifying fresh food, water, tableware and clothes, the device comprising a water catalyst generator (1) and a water catalyst generator ( 1) a DC power supply for supplying power, the water catalyst generator (1) comprising two electrodes for use in combination, and the two electrodes are anode electrodes respectively connected to positive and negative outputs of the DC power source and a cathode electrode; the anode electrode and the cathode electrode are both titanium electrodes, and an outer surface of the anode electrode is uniformly coated with a composite coating; the composite coating is applied to the anode
  • the composite material coating liquid on the outer surface of the electrode is subjected to a drying treatment and a coating obtained after the sintering treatment, and the composite material coating liquid is a mixture of six powders and anhydrous ethanol uniformly mixed and having a mass concentration of 2.5% to 4%.
  • Liquid, six kinds of the powders are compound powder of platinum powder or platinum, compound powder of strontium or strontium, compound powder of strontium or strontium, compound powder of strontium or strontium, compound of strontium or strontium Compound powder and a powder of tantalum powder or tantalum.
  • the electrode coating used in the above water-catalyst sterilization and detoxification device is liable to fall off and is unstable.
  • the elements used in the above electrodes are not arranged in an electronic layer similar to the material of the substrate material. After the sintering treatment, the bonding force between the layer electrode and the substrate is not strong and is easy to fall off, and the elements used in the present invention make up for this defect.
  • the coating and the substrate are well bonded during the sintering process.
  • an object of the present invention is to provide an electrode which is not easy to fall off, has strong anti-passivation effect, high electrocatalytic performance, long electrode life and good electrical conductivity.
  • Another object of the present invention is to provide a method of producing the above electrode.
  • the above electrode of the present invention can be used in a food purification device, and the food purification device using the electrode of the present invention has a better purification effect.
  • the present invention provides an electrode comprising titanium or a titanium alloy as a substrate, the outer surface of the substrate being coated with a composite coating, the composite coating being coated, dried, Prepared by sintering, wherein the composite solution is a nano solution formed by dissolving a transition metal element in ethanol, and the nano solution is a solute of particles of a transition metal, and the transition metal elements are platinum, rhodium, ruthenium, gold, rhodium.
  • lanthanum, cerium manganese, nickel, palladium, lanthanum, cerium, cobalt, lanthanum, cerium, lanthanum, zirconium and titanium, transition metal elements in the composite solution, platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium
  • the molar ratio of manganese, nickel, palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is from 5 to 15:23 to 34:14 to 21:1 to 7:9 to 17:3 to 12: 15 to 27: 3 to 6: 2 to 9: 10 to 23: 15 to 27: 2 to 8: 15 to 30: 3 to 12: 4 to 14: 1 to 10: 6 to 15: 20 to 50.
  • the transition metal elements in the composite solution are molars of platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese, nickel, palladium, iridium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium.
  • the ratio is 5 to 13:23 to 31:14 to 20:1 to 6:9 to 15:3 to 10:15 to 25:3 to 6:2 to 8:10 to 21:15 to 25:2 to 7: 15 ⁇ 28:3 ⁇ 11:4 ⁇ 13:1 ⁇ 9:6 ⁇ 13:20 ⁇ 48;
  • it is 6 to 13:24 to 31:16 to 20:2 to 6:10 to 15:4 to 10:17 to 25:4 to 6:3 to 8:11 to 21:17 to 25:3 to 7: 17 ⁇ 28:4 ⁇ 11:6 ⁇ 13:2 ⁇ 9:7 ⁇ 13:22 ⁇ 48;
  • the composite solution has a mass percentage of from 25% to 45%, preferably from 30% to 40%.
  • the transition metal particles in the composite solution have a particle size of 5 to 30 nm.
  • the electrode further comprises a tin-bismuth coating disposed between the substrate and the composite coating, wherein the tin-bismuth coating is coated with a tin-bismuth solution, Prepared by drying and sintering, the tin-bismuth solution is a nano-solution formed by dissolving tin and antimony in ethanol.
  • the nano-solution is a solute of tin and antimony particles, and the molar ratio of tin to antimony in the solution. For 5-10:2-10;
  • the molar ratio of tin to antimony in the solution is 5-9:2-8,
  • the molar ratio of tin to antimony in the solution is 6-9:3-8;
  • the molar ratio of tin to antimony in the solution is 6-8:3-7;
  • the molar ratio of tin to antimony in the solution is 7-8:4-7;
  • the molar ratio of tin to antimony in the solution is 7-8: 4-6;
  • the molar ratio of tin to antimony in the solution is 8:5.
  • the tin and antimony particles in the solution have a particle size of 5 to 30 nm.
  • the tin-bismuth solution has a mass percent volume content of from 5% to 9%, preferably 7%.
  • the composite coating or the tin-bismuth coating has a thickness of from 3 to 8 microns, preferably from 4 to 6 microns.
  • the drying temperature of the composite coating or the tin-bismuth coating is from 100 to 120 ° C, preferably from 110 to 120 ° C.
  • the composite coating or the tin-bismuth coating is prepared at a sintering temperature of from 400 to 680 ° C, preferably from 450 to 600 ° C.
  • the titanium alloy contains, by mass percentage, Al: 4.0% to 4.9%; Sn: 1.1% to 2.5%; Cr: 1.1% to 2.5%; Mo: 1.1% to 2.5%; Zr: 1.1%. 2.5%; Fe: 0.11% to 0.15%; C: 0.08% to 0.16%; O: 0.11% to 0.26%; N: 0.004% to 0.2%; H: 0.06% to 0.28%; Si: 0.02% to 1.0%
  • the rest are titanium and inevitable impurities;
  • Al is from 4.1% to 4.6%; preferably from 4.1% to 4.4%;
  • Sn is 1.2% to 2.1%; preferably 1.4% to 2.1%;
  • Cr is from 1.3% to 2.0%; preferably from 1.4% to 2.1%; more preferably from 1.6% to 2.0%;
  • Mo is 1.2% to 2.1%; preferably 1.3% to 2.0%; more preferably 1.5% to 2.1%;
  • Zr is from 1.3% to 2.1%; preferably from 1.4% to 2.1%; more preferably from 1.5% to 2.1%;
  • Fe is 0.13% to 0.14%: preferably 0.13% or 0.14%;
  • C is from 0.09% to 0.10%; preferably from 0.09% to 0.12%;
  • O is from 0.13% to 0.21%; preferably from 0.16% to 0.21%; more preferably from 0.16% to 0.2%;
  • N is 0.005% to 0.02%; preferably 0.006% to 0.07%; more preferably 0.009% to 0.04%.
  • H is 0.07% to 0.21%; preferably 0.08% to 0.21%;
  • Si is 0.04% to 0.6%, preferably 0.04% to 0.7%.
  • the present invention provides a method of preparing the above electrode, the method comprising the steps of:
  • the composite solution is a nano-solution formed by dissolving a transition metal element in ethanol, the nano-solution being a solute of the transition metal particles.
  • the nano solution has a mass percentage of 25% to 45%, preferably 30% to 40%, wherein the composite solution has platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese, nickel, palladium.
  • the molar ratio of ruthenium, osmium, iridium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is from 5 to 15:23 to 34:14 to 21:1 to 7:9 to 17:3 to 12:15 to 27:3. 6:2 ⁇ 9:10 ⁇ 23:15 ⁇ 27:2 ⁇ 8:15 ⁇ 30:3 ⁇ 12:4 ⁇ 14:1 ⁇ 10:6 ⁇ 15:20 ⁇ 50;
  • the electrode dried in the step (2) is subjected to a sintering treatment at a temperature of 400 to 680 ° C, preferably 450 to 600 ° C, and the sintering treatment time is 8 to 10 hours.
  • the transition metal elements in the composite solution are platinum, rhodium, ruthenium, gold, osmium, tin, antimony, bismuth, antimony, manganese, nickel, palladium, iridium, osmium, cobalt, ⁇ , ⁇ , ⁇ , zirconium
  • the molar ratio to titanium is 5 to 13:23 to 31:14 to 20:1 to 6:9 to 15:5 to 9:2 to 8:3 to 10:15 to 25:3 to 6:2 to 8: 10 ⁇ 21:15 ⁇ 25:2 ⁇ 7:15 ⁇ 28:3 ⁇ 11:4 ⁇ 13:1 ⁇ 9:6 ⁇ 13:20 ⁇ 48;
  • it is 6 to 13:24 to 31:16 to 20:2 to 6:10 to 15:6 to 9:3 to 8:4 to 10:17 to 25:4 to 6:3 to 8:11 to 21: 17 ⁇ 25:3 ⁇ 7:17 ⁇ 28:4 ⁇ 11:6 ⁇ 13:2 ⁇ 9:7 ⁇ 13:22 ⁇ 48;
  • the transition metal particles in the composite solution have a particle diameter of 5 to 30 nm.
  • the method further includes:
  • the tin-bismuth solution Before coating the outer surface of the titanium or titanium alloy, the tin-bismuth solution is uniformly coated on the outer surface of the titanium or titanium alloy, wherein the tin-bismuth solution is formed by dissolving tin and antimony in ethanol.
  • a nano-solution which is a solute of tin and cerium particles, the nano-solution having a mass percentage of 5% to 9%, preferably 7%, wherein the molar ratio of tin to antimony in the solution is 5- 10:2-10;
  • the molar ratio of tin to antimony in the solution is 5-9:2-8,
  • the molar ratio of tin to antimony in the solution is 6-9:3-8;
  • the molar ratio of tin to antimony in the solution is 6-8:3-7;
  • the molar ratio of tin to antimony in the solution is 7-8:4-7;
  • the molar ratio of tin to antimony in the solution is 7-8: 4-6;
  • the molar ratio of tin to antimony in the solution is 8:5;
  • the dried electrode is subjected to a sintering treatment at a temperature of 400 to 680 ° C, preferably 450 to 600 ° C, and the sintering treatment time is 8 to 10 hours.
  • the titanium alloy contains, by mass percentage, Al: 4.0% to 4.9%; Sn: 1.1% to 2.5%; Cr: 1.1% to 2.5%; Mo: 1.1% to 2.5%; Zr: 1.1%. 2.5%; Fe: 0.11% to 0.15%; C: 0.08% to 0.16%; O: 0.11% to 0.26%; N: 0.004% to 0.2%; H: 0.06% to 0.28%; Si: 0.02% to 1.0%, the balance being titanium and unavoidable impurities;
  • Al is from 4.1% to 4.6%; preferably from 4.1% to 4.4%;
  • Sn is 1.2% to 2.1%; preferably 1.4% to 2.1%;
  • Cr is from 1.3% to 2.0%; preferably from 1.4% to 2.1%; more preferably from 1.6% to 2.0%;
  • Mo is 1.2% to 2.1%; preferably 1.3% to 2.0%; more preferably 1.5% to 2.1%;
  • Zr is from 1.3% to 2.1%; preferably from 1.4% to 2.1%; more preferably from 1.5% to 2.1%;
  • Fe is 0.13% to 0.14%: preferably 0.13% or 0.14%;
  • C is from 0.09% to 0.10%; preferably from 0.09% to 0.12%;
  • O is from 0.13% to 0.21%; preferably from 0.16% to 0.21%; more preferably from 0.16% to 0.2%;
  • N is 0.005% to 0.02%; preferably 0.006% to 0.07%; more preferably 0.009% to 0.04%.
  • H is 0.07% to 0.21%; preferably 0.08% to 0.21%;
  • Si is 0.04% to 0.6%, preferably 0.04% to 0.7%.
  • the present invention provides a device comprising the aforementioned electrode; preferably, the device is a food purification device, a water purification device or a medical article purification device, preferably a food purification device.
  • the present invention provides a food purification device comprising a water tank, a generator, and a water catalyst generator, wherein
  • a side wall of the water tank has a water flow passage, and the generator ⁇ is fixed to the outside of the water flow passage on the side wall of the water tank;
  • a porous protective plate separates the generator ⁇ into two chambers, the water catalyst generator is disposed in a chamber near the bottom of the generator ,, and the aeration tube is transversely disposed at the bottom of the chamber near the side wall of the tank, the aeration tube wall has Rowing aeration holes, the aeration pipe interface of the aeration pipe leads to the outside of the generator;
  • a generator chamber is connected to the water flow passage opening of the side wall of the water tank in an arc shape above the porous shield plate;
  • the anode electrode of the water catalyst generator is the aforementioned electrode.
  • the present invention has at least the following beneficial technical effects:
  • the ruthenium element is added to the composite coating of the present invention, and after the ruthenium element is added, the coating structure is honeycomb-shaped, and the crack is not obvious.
  • both the mechanical action and the chemical action between the titanium and the titanium can increase the effective geometrical area of the substrate and increase the bonding force between the coating and the substrate, while the chemical action causes the surface to form a Ta-Ti mixed compound, further increasing the coating resistance. Passivation.
  • the addition of niobium can increase the internal active point of the coating and enhance the catalytic effect of the coating.
  • the cobalt coating is added to the composite coating of the invention, and the cobalt crystal is added to refine the crystal grains of the coating. Under the condition that the molar content of cobalt is less than 30%, increasing the cobalt can significantly improve the electrocatalytic performance of the coating. When the molar content of cobalt is higher than 15%, the strengthening life of the coating can be increased by 40%.
  • the tin-bismuth coating may also be added in the present invention.
  • the addition of tin and antimony makes it difficult for the electrolyte to penetrate the surface of the titanium or titanium alloy substrate, thereby improving the coating's ability to resist solution erosion and prolonging the service life.
  • Titanium dioxide and tin in the coating form titanium dioxide and tin dioxide, while titanium dioxide and tin dioxide are tetragonal rutile structure, the lattice constant is similar, forming a good solid solution, and the bonding between the coating and the titanium matrix is enhanced. The coating is not easy to fall off.
  • the tin dioxide band has a wide range of properties, good chemical stability and electrochemical stability.
  • the Sn 4+ ionic radius is 0.071 nm, which can be firmly bonded to the substrate.
  • Figure 1 is a cross-sectional view of the food purification device of the present invention
  • Figure 2 is a left perspective view of the food purification device of the present invention.
  • Figure 3 is a right isometric view of the food purification device of the present invention.
  • Example 1 Electrode of the invention and preparation method
  • An electrode comprising a titanium alloy as a substrate, the outer surface of the substrate is coated with a composite coating, the composite coating is prepared by coating, drying and sintering a composite solution, wherein
  • the composite solution is a nano solution formed by dissolving a transition metal element in ethanol.
  • the nano solution is a solute of particles of a transition metal, and the transition metal elements are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel.
  • the mass percentage of the composite solution is 30%.
  • the composite solution transition metal particles have a particle diameter of 20 nm.
  • the composite coating has a thickness of 5 um.
  • the drying temperature is 115 °C.
  • the sintering temperature is 550 °C.
  • the titanium alloy contains, by mass percentage, Al: 4.2%; Sn: 1.9%; Cr: 2.1%; Mo: 1.1%; Zr: 1.8%; Fe: 0.11%; C: 0.12%; O: 0.19 %; N: 0.09%; H: 0.12%; Si: 0.8%, the balance being titanium and unavoidable impurities;
  • the electrode is prepared as follows:
  • the composite material solution is applied to the outer surface of the titanium alloy in multiple times and uniformly, and the number of paintings is about 10 times, wherein the composite material solution is a nano solution formed by dissolving a transition metal element in ethanol.
  • the nano-solution is a solute of particles of a transition metal having a mass percentage of 30%, wherein the transition metal elements are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, rhodium, iridium.
  • the molar ratio of cobalt, ruthenium, osmium, iridium, zirconium and titanium is 12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8: 45;
  • the electrode dried in the step (2) was subjected to a sintering treatment at a temperature of 500 ° C, and the sintering treatment time was 8 hours, thereby obtaining the electrode of the present invention.
  • the substrate may also be titanium.
  • Example 2 Electrode of the invention and preparation method
  • An electrode comprising a titanium alloy as a substrate, the outer surface of the substrate is coated with a composite coating, the composite coating is prepared by coating, drying and sintering a composite solution, wherein
  • the composite solution is a nano solution formed by dissolving a transition metal element in ethanol.
  • the nano solution is a solute of particles of a transition metal, and the transition metal elements are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel.
  • the mass percentage of the composite solution is 30%.
  • the transition metal particles in the composite solution have a particle diameter of 20 nm.
  • the electrode further comprises a tin-bismuth coating disposed between the substrate and the composite coating, wherein the tin-bismuth coating is coated and baked by a tin-bismuth solution
  • the tin-bismuth solution is prepared by dissolving tin and antimony in a nano solution formed by dissolving tin and antimony in ethanol.
  • the nano solution is a solute of tin and antimony particles, and the molar ratio of tin to antimony in the solution is 6:7.
  • the tin and antimony particles in the tin-bismuth solution have a particle diameter of 20 nm.
  • the composite coating or the tin-bismuth coating has a thickness of 5 ⁇ m.
  • the drying temperature at the time of preparing the composite coating or the tin-bismuth coating is 115 °C.
  • the sintering temperature at the time of preparing the composite coating or the tin-bismuth coating is 500 °C.
  • the electrode is prepared as follows:
  • the tin-bismuth solution is applied to the outer surface of the titanium alloy in multiple times and uniformly, and the number of paintings is about 10 times, wherein the tin-bismuth solution is a nanometer formed by dissolving tin and antimony in ethanol.
  • the nano-solution is a solute of tin and bismuth particles, the nano-solution has a mass percentage of 10%, wherein the molar ratio of tin to antimony in the solution is 6:7;
  • An electrode coated with a tin-bismuth solution which is dried at a temperature of 115 ° C after each application until the outer surface of the electrode has no liquid state;
  • the dried electrode was sintered at a temperature of 500 ° C, and the sintering treatment time was 8 hours.
  • the composite material solution is a transition metal element.
  • a nano-solution formed by dissolving in ethanol the nano-solution being dissolved in particles of transition metal
  • the mass percentage of the nano-solution is 30%, wherein the transition metal elements are platinum, rhodium, ruthenium, gold, rhodium, iridium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, osmium, iridium, osmium,
  • the molar ratio of zirconium to titanium is 12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8:45;
  • the electrode dried in the step (2) was subjected to a sintering treatment at a temperature of 500 ° C, and the sintering treatment time was 8 hours, thereby obtaining the electrode of the present invention.
  • the substrate may also be titanium.
  • the food purification device of the present invention is also referred to as a longitudinal swirling purification water tank, and the main components comprise a water tank 1, a generator 8 and a water catalyst generator 7 (which are prepared using the second embodiment of the present invention).
  • Electrode wherein: a side wall 3 of the water tank 1 has a water flow channel 2, and the generator ⁇ 8 is fixed on the outer side of the water flow channel 2 of the side wall 3 of the water tank 1, and the generator ⁇ 8 may be welded to the outside of the water tank 1, or The generator ⁇ 8 is fixedly connected to the outside of the water tank 1 by bolts.
  • the porous protective plate 5 will be a generator ⁇ 8 Divided into two chambers, the water catalyst generator 7 is disposed in the chamber near the bottom of the generator ⁇ 8, and the aeration tube 9 is transversely disposed near the bottom of the chamber on the side of the side wall 3 of the tank 1, and the wall of the aeration tube 9 has The exhaust aeration hole 10 is arranged, the aeration pipe port 11 of the aeration pipe 9 leads to the outside of the generator ⁇ 8, and the air pump is connected to the aeration pipe port 11 through the pipeline; the other hopper chamber wall of the generator ⁇ 8 is porous
  • the upper side of the shield plate 5 is connected in an arc shape to the water flow passage 2 of the side wall 3 of the water tank 1.
  • a longitudinal swirl is formed, so that the laundry is tumbling and washed under the impact of the longitudinal swirling flow and a large number of bubbles, and the blasting action of the bubbles sprayed into the water further enhances the cleaning effect, while the swirling water is partially
  • the hole in the lower part of the porous protective plate 5 enters the bottom chamber of the generator ,8, and flows through the water catalyst generator 7 to generate hydroxyl radicals under the action of the electrode, and enters the water in the water tank 1 from the hole above the porous protective plate 5 with the water flow.
  • the mixture is further cleaned, disinfected, and sterilized, and the porous protective plate 5 prevents the object to be washed from colliding with the water catalyst generator 7.
  • the residual amount of pesticide (mg/kg) on the surface of fruits and vegetables after purification using the above food purifying device is shown in the following table:
  • An electrode was prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, iridium.
  • the molar ratio of ruthenium, osmium, zirconium and titanium is: 11:23:15:3:12:9:19:4:6:17:19:2:18:7:12:4:14:35, tin - the molar ratio of tin to antimony in the bismuth solution is 7:6;
  • the transition metal elements in the composite solution of the electrode B are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, rhodium, iridium,
  • the molar ratios of cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:12:9:19:4:6:17:19:3:18:7:12:4:14: 35.
  • the molar ratio of tin to antimony in the tin-bismuth solution is 7:6; the transition metal elements in the composite solution of the electrode C are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium.
  • the molar ratios of ruthenium, cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:12:9:19:4:6:17:19:4:18:7:12:4 : 14:35, the tin to bismuth molar ratio in the tin-bismuth solution is 7:6.
  • the remaining conditions are the same as in the second embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy was used as a cathode, 5 L of tap water was added to the water tank, and 1.5 ml of chlorpyrifos pesticide having a concentration of 2.4 mg/L was placed in the water, and the mixture was uniformly mixed. After that, some water samples were taken as unpurified samples for detection; when the power was turned on, the adjustment voltage was 18V, and after 10 minutes of time purification, the purified water samples were taken for detection and data comparison was performed.
  • An electrode was prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, iridium.
  • the molar ratio of ruthenium, osmium, zirconium and titanium is: 11:23:15:3:9:9:19:4:6:17:19:2:18:7:12:4:14:35, tin - the molar ratio of tin to antimony in the bismuth solution is 7:6;
  • the transition metal elements in the composite solution of the electrode B are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, rhodium, iridium,
  • the molar ratios of cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:10:9:19:4:6:17:19:2:18:7:12:4:14: 35.
  • the molar ratio of tin to antimony in the tin-bismuth solution is 7:6; the transition metal elements in the composite solution of the electrode C are platinum, rhodium, ruthenium, gold, iridium, tin, antimony, bismuth, antimony, manganese, nickel.
  • the molar ratios of palladium, rhodium, ruthenium, cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:12:9:19:4:6:17:19:2:18:7 :12:4:14:35, the tin to bismuth molar ratio in the tin-bismuth solution is 7:6.
  • the remaining conditions are the same as in the second embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy was used as a cathode, tap water was used as a medium, and the current intensity was 10-20 mA/cm 2 , and other element contents were unchanged, and only ⁇ was changed.
  • the content of the elements, the titanium anode operating voltage values of the three schemes are as follows:
  • An electrode was prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, iridium.
  • the molar ratio of ruthenium, osmium, zirconium and titanium is: 11:23:15:3:9:9:19:4:6:17:19:2:18:7:12:4:14:35, tin - the molar ratio of tin to antimony in the bismuth solution is 7:6;
  • the transition metal elements in the composite solution of the electrode B are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, rhodium, iridium,
  • the molar ratios of cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:9:9:19:4:6:17:21:2:18:7:12:4:14: 35.
  • the molar ratio of tin to antimony in the tin-bismuth solution is 7:6; the transition metal elements in the composite solution of the electrode C are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium.
  • the molar ratios of ruthenium, cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4 : 14:35, the tin to bismuth molar ratio in the tin-bismuth solution is 7:6.
  • the remaining conditions are the same as in the second embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy was used as a cathode, 5 L of tap water was added to the water tank, 2 ml of dichlorvos pesticide having a concentration of 2 mg/L was placed in the water, and the mixture was uniformly mixed. Some water samples were tested as unpurified samples; when the power was turned on, the adjustment voltage was 18V, and after 10 minutes of time purification, the purified water samples were taken for testing and data comparison:
  • Electrodes A, B, C, D, and E were prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese, nickel,
  • the molar ratio of palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19:4:21:7: 8:5:9:29, the molar ratio of tin to antimony in the tin-bismuth solution is: 8:5;
  • the transition metal elements in the composite solution of electrode B are platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese.
  • the molar ratio of nickel, palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19:4:15 :7:8:5:9:29, the molar ratio of tin to antimony in the tin-bismuth solution is: 8:5; the transition metal elements in the composite solution of electrode C are platinum, rhodium, ruthenium, gold, rhodium, iridium,
  • the molar ratio of bismuth, manganese, nickel, palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19: 4:30:7:8:5:9:29, the molar ratio
  • the electrode F was prepared by the method described in Example 1, wherein the transition metal elements in the composite solution in the electrode F were platinum, rhodium, ruthenium, gold, rhodium, iridium, ruthenium, manganese, nickel, palladium, iridium, osmium, cobalt.
  • the molar ratios of ruthenium, osmium, iridium, zirconium and titanium are: 8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29
  • the remaining conditions are the same as in the first embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy as a cathode, tap water as a medium, and a current intensity of 10-20 mA/cm 2 , operating voltage values and energy consumption of six schemes.
  • the reduction levels are shown in the following table:
  • the electrode A can be seen that, when the content of other elements is the same, the operating voltage of the electrode F without adding the intermediate layer of tin and antimony is higher than that of the electrode A, indicating that the intermediate layer of tin and antimony can effectively reduce the output. Voltage, reducing the operating energy consumption of the electrode.
  • Electrodes A, B, C, and D were prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, rhodium, ruthenium, manganese, nickel, palladium, iridium,
  • the molar ratios of bismuth, cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 8:26:17:3:11:6:4:5:15:19:4:21:7:8:5:9: 29.
  • the molar ratio of tin to antimony in the tin-bismuth solution is: 8:5; the transition metal elements in the composite solution of the electrode B are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium.
  • the molar ratios of ruthenium, cobalt, ruthenium, osmium, iridium, zirconium and titanium are: 8:26:17:3:11:6:15:4:5:15:19:4:21:7:8:5 :9:29, the molar ratio of tin to antimony in the tin-bismuth solution is: 8:5;
  • the transition metal elements in the composite solution of electrode C are platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese, nickel,
  • the molar ratio of palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19:4:21:7: 8:5:9:29, the molar ratio of tin to anti
  • the electrode E was prepared by the method described in Example 1, wherein the transition metal elements in the composite solution of the electrode E were platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt,
  • the molar ratios of lanthanum, cerium, lanthanum, zirconium and titanium are: 8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29, The remaining conditions are the same as in the first embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy as a cathode, tap water as a medium, and a current intensity of 10-20 mA/cm 2 , and a titanium anode fatigue test running time of five schemes. As shown in the following table:
  • Electrodes A, B, C, D, and E were prepared by the method described in Example 2, wherein the transition metal elements in the composite solution of the electrode A were platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese, nickel,
  • the molar ratio of palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19:4:21:7: 8:5:9:29, the molar ratio of tin to antimony in the tin-bismuth solution is: 0:5;
  • the transition metal elements in the composite solution of electrode B are platinum, rhodium, ruthenium, gold, ruthenium, osmium, iridium, manganese.
  • the molar ratio of nickel, palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19:4:15 :7:8:5:9:29, the molar ratio of tin to antimony in the tin-bismuth solution is: 2:5; the transition metal elements in the composite solution of electrode C are platinum, rhodium, ruthenium, gold, rhodium, iridium,
  • the molar ratio of bismuth, manganese, nickel, palladium, ruthenium, osmium, cobalt, ruthenium, osmium, iridium, zirconium and titanium is: 8:26:17:3:11:6:20:4:5:15:19: 4:30:7:8:5:9:29, the molar ratio
  • the electrode F was prepared by the method described in Example 1, wherein the transition metal elements in the composite solution in the electrode F were platinum, rhodium, ruthenium, gold, rhodium, iridium, ruthenium, manganese, nickel, palladium, iridium, osmium, cobalt.
  • the molar ratios of ruthenium, osmium, iridium, zirconium and titanium are: 8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29
  • the remaining conditions are the same as in the first embodiment.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy as a cathode, and a 0.5 mol/L H 2 SO 4 solution was used as a medium to carry out a rapid life test under the condition of 2000 A/m 2 .
  • the runtime is shown in the following table:
  • Electrode 1 of the present invention an electrode is prepared by the method of Example 1, wherein the transition metal elements in the composite solution are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, iridium.
  • the molar ratio of lanthanum, cerium, zirconium and titanium is 11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4:14:35, and the rest of the conditions The same as in the first embodiment.
  • Electrode 2 of the present invention an electrode is prepared by the method of Example 2, wherein the transition metal elements in the composite solution are platinum, rhodium, ruthenium, gold, rhodium, ruthenium, osmium, manganese, nickel, palladium, iridium, osmium, cobalt, iridium.
  • the molar ratio of ruthenium, osmium, zirconium and titanium is: 11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4:14:35, tin
  • the molar ratio of tin to cerium in the cerium solution was 7:6, and the remaining conditions were the same as in Example 2.
  • Control electrode 1 the electrode in ZL201110271764.0, wherein the six powders are platinum powder, strontium powder, strontium powder, strontium powder, strontium powder, strontium powder, strontium powder, and the mass concentration of the six powders mixed with anhydrous ethanol is 3%,
  • the molar ratio of platinum, antimony, antimony, antimony, antimony and antimony in the solution is 28: 36:15:30:8:12
  • the composite coating layer was 3 microns thick and was prepared by the method of Example 1.
  • the above electrode was mounted on the food purification water tank of Example 3 as an anode, a stainless steel alloy or a titanium alloy was used as a cathode, 5 L of tap water was added to the water tank, and 3 ml of dichlorvos pesticide having a concentration of 2 mg/L was placed in the water, and the mixture was uniformly mixed. Take some water samples as unpurified samples for testing; turn on the power, adjust the voltage to 18V, after 10 minutes of time purification, take the purified water samples for testing, and compare the data, the results are shown in the following table:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电极及其制备方法和应用,该电极以钛或钛合金为基材,该基材外表面涂覆有一层复合材料涂层,该复合材料涂层经复合材料溶液涂覆、烘干、烧结制备而成,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,纳米级过渡金属的乙醇溶液,所述过渡金属元素为铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~15:23~34:14~21:1~7:9~17:3~12:15~27:3~6:2~9:10~23:15~27:2~8:15~30:3~12:4~14:1~10:6~15:20~50。

Description

一种电极及其制备方法和应用 技术领域
本发明涉及一种电极及其制备方法和应用,尤其是涉及一种可生成水羟基的电极及其制备方法和应用。
背景技术
食品安全关系到广大人民的身体健康和生命安全,关系到经济健康发展和社会稳定,食品安全已成为衡量人民生活质量、社会管理水平和国家法制建设的一个重要方面。目前我国食品安全状况并不乐观,长期以来存在的细菌、病毒等微生物污染,农药、激素、抗生素等化学污染物给食品带来了巨大的安全隐患,食源性疾病仍是人类面临的最大健康杀手。同时,与饮食密切相关的餐具的消毒卫生问题也是较大的安全隐患,目前由于部分消毒企业的自律性差,消毒工艺简单,不符合要求,导致消毒餐具不卫生的状况时有发生,导致餐具表面成为细菌滋生的温床,给消费者的健康生命带来威胁。
由于食品污染环节众多,源头治理难度较大,仅仅依靠强有力的政府监管和职能部门检测,还不能在短时间内彻底解决食品的污染问题,因此,食品净化消毒成为缓解食品安全压力、减少食物中毒风险、保障人民群众饮食安全的必要手段。
中国发明专利ZL201110271764.0公开了一种水触媒杀菌解毒装置,该装置能够对生鲜食品、水、餐具及衣物进行净化处理,该装置包括水触媒发生器(1)和为水触媒发生器(1)进行供电的直流电源,所述水触媒发生器(1)包括两个相配合使用的电极,且两个所述电极为分别与所述直流电源的正负输出端相接的阳极电极和阴极电极;所述阳极电极和所述阴极电极均为钛电极,且所述阳极电极的外表面上均匀涂覆有一层复合材料涂层;所述复合材料涂层为对涂刷在所述阳极电极外表面上的复合材料涂液进行烘干处理及烧结处理后获得的涂层,复合材料涂液为由六种粉剂和无水乙醇均匀混合而成且质量浓度为2.5%~4%的混合液,六种所述粉剂分别为铂粉或铂的化合物粉末、铱粉或铱的化合物粉末、钇粉或钇的化合物粉末、钌粉或钌的化合物粉末、铌粉或铌的化合物粉末和钽粉或钽的化合物粉末。
然而,上述水触媒杀菌解毒装置中使用的电极涂层易脱落,不稳定。上述电极中所用的元素并无与基材材料元素相似电子层排布,在烧结处理后图层电极与基材的结合力不强,容易脱落,而本发明中所用元素弥补了这一缺陷,烧结过程中能使涂层与基材很好的结合在一起。
发明内容
基于本发明人研究的诸多有益效果,本发明的一个目的是提供一种电极,该电极涂层不易脱落,抗钝化作用强,电催化性能高,电极使用寿命长,导电性能好。
本发明的另一个目的是提供一种上述电极的制备方法。
本发明的又一个目的是提供一种上述电极的应用。例如本发明的上述电极可以用于食品净化装置中,使用本发明电极的食品净化装置,净化效果更佳。
本发明的上述目的是采用如下技术方案来实现的。
一方面,本发明提供一种电极,该电极以钛或钛合金为基材,该基材外表面涂覆有一层复合材料涂层,该复合材料涂层经复合材料溶液涂覆、烘干、烧结制备而成,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,所述过渡金属元素为铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~15:23~34:14~21:1~7:9~17:3~12:15~27:3~6:2~9:10~23:15~27:2~8:15~30:3~12:4~14:1~10:6~15:20~50。
优选地,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~13:23~31:14~20:1~6:9~15:3~10:15~25:3~6:2~8:10~21:15~25:2~7:15~28:3~11:4~13:1~9:6~13:20~48;
优选为6~13:24~31:16~20:2~6:10~15:4~10:17~25:4~6:3~8:11~21:17~25:3~7:17~28:4~11:6~13:2~9:7~13:22~48;
更优选为6~11:24~29:16~19:2~5:10~13:4~8:17~22:4~5:3~7:11~19:17~23:3~6:17~26:4~10:6~11:2~8:7~12:22~46;
进一步优选为7~11:25~29:17~19:3~5:11~13:5~8:19~22:4~5:4~7:12~19:18~23:4~6:19~26:5~10:7~11:3~8:8~12:24~46;
更进一步优选为7~9:25~27:17~18:3~4:11~12:5~7:19~21:4:4~6:12~17:18~21:4~5:19~23:5~8:7~9:3~6:8~10:24~41;
最优选为8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29。
优选地,所述复合材料溶液的质量百分含量为25%~45%,优选为30%~40%。
优选地,所述复合材料溶液中的过渡金属颗粒的粒径为5~30nm。
优选地,所述电极还包括锡-锑涂层,该涂层设置在所述基材与所述复合材料涂层之间,其中,所述锡-锑涂层经锡-锑溶液涂覆、烘干、烧结制备而成,所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,所述溶液中的锡和锑的摩尔比为5-10:2-10;
优选地,所述溶液中的锡和锑的摩尔比为5-9:2-8,
更优选地,所述溶液中的锡和锑的摩尔比为6-9:3-8;
进一步优选地,所述溶液中的锡和锑的摩尔比为6-8:3-7;
更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-7;
再更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-6;
最优选地,所述溶液中的锡和锑的摩尔比为8:5。
优选地,所述溶液中的锡和锑颗粒的粒径为5~30nm。
优选地,所述锡-锑溶液的质量百分体积含量为5%~9%,优选为7%。
优选地,所述复合材料涂层或所述锡-锑涂层的厚度为3-8微米,优选为4-6微米。
优选地,制备所述复合材料涂层或所述锡-锑涂层时烘干温度为100~120℃,优选为110~120℃。
优选地,制备所述复合材料涂层或所述锡-锑涂层时烧结温度为400~680℃,优选为450~600℃。
优选地,所述钛合金按质量百分比计,含Al:4.0%~4.9%;Sn:1.1%~2.5%;Cr:1.1%~2.5%;Mo:1.1%~2.5%;Zr:1.1%~2.5%;Fe:0.11%~0.15%;C:0.08%~0.16%;O:0.11%~0.26%;N:0.004%~0.2%;H:0.06%~0.28%;Si:0.02%~1.0%,其余为钛和不可避免的杂质;
优选地,所述钛合金中,Al为4.1%~4.6%;优选为4.1%~4.4%;
优选地,所述钛合金中,Sn为1.2%~2.1%;优选为1.4%~2.1%;
优选地,所述钛合金中,Cr为1.3%~2.0%;优选为1.4%~2.1%;更优选为1.6%~2.0%;
优选地,所述钛合金中,Mo为1.2%~2.1%;优选为1.3%~2.0%;更优选为1.5%~2.1%;
优选地,所述钛合金中,Zr为1.3%~2.1%;优选为1.4%~2.1%;更优选为1.5%~2.1%;
优选地,所述钛合金中,Fe为0.13%~0.14%:优选为0.13%或0.14%;
优选地,所述钛合金中,C为0.09%~0.10%;优选为0.09%~0.12%;
优选地,所述钛合金中,O为0.13%~0.21%;优选为0.16%~0.21%;更优选为0.16%~0.2%;
优选地,所述钛合金中,N为0.005%~0.02%;优选为0.006%~0.07%;更优选为0.009%~0.04%。
优选地,所述钛合金中,H为0.07%~0.21%;优选为0.08%~0.21%;
优选地,所述钛合金中,Si为0.04%~0.6%,优选为0.04%~0.7%。
另一方面,本发明提供一种制备上述的电极的方法,该方法包括如下步骤:
(1)将复合材料溶液均匀地涂覆在钛或钛合金的外表面上,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,该纳米溶液的质量百分含量为25%~45%,优选为30%~40%,其中所述复合材料溶液中铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~15:23~34:14~21:1~7:9~17:3~12:15~27:3~6:2~9:10~23:15~27:2~8:15~30:3~12:4~14:1~10:6~15:20~50;
(2)在温度为100~120℃,优选为110~120℃下烘干步骤(1)的涂覆有复合材料溶液的电极,直至所述电极外表面无液态为止;
(3)在温度为400~680℃,优选为450~600℃下对步骤(2)烘干的电极进行烧结处理,烧结处理的时间为8~10小时。
优选地,在步骤(1)中,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、锡、锑、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆 和钛的摩尔比为5~13:23~31:14~20:1~6:9~15:5~9:2~8:3~10:15~25:3~6:2~8:10~21:15~25:2~7:15~28:3~11:4~13:1~9:6~13:20~48;
优选为6~13:24~31:16~20:2~6:10~15:6~9:3~8:4~10:17~25:4~6:3~8:11~21:17~25:3~7:17~28:4~11:6~13:2~9:7~13:22~48;
更优选为6~11:24~29:16~19:2~5:10~13:6~8:3~7:4~8:17~22:4~5:3~7:11~19:17~23:3~6:17~26:4~10:6~11:2~8:7~12:22~46;
进一步优选为7~11:25~29:17~19:3~5:11~13:7~8:4~7:5~8:19~22:4~5:4~7:12~19:18~23:4~6:19~26:5~10:7~11:3~8:8~12:24~46;
更进一步优选为7~9:25~27:17~18:3~4:11~12:7~8:4~6:5~7:19~21:4:4~6:12~17:18~21:4~5:19~23:5~8:7~9:3~6:8~10:24~41;
最优选为8:26:17:3:11:8:5:6:20:4:5:15:19:4:21:7:8:5:9:29。
优选地,在步骤(1)中,所述复合材料溶液中的过渡金属颗粒的粒径为5~30nm。
优选地,所述方法还包括:
在钛或钛合金的外表面涂覆复合材料溶液之前,先在钛或钛合金的外表面均匀地涂覆锡-锑溶液,其中所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,该纳米溶液的质量百分含量为5%-9%,优选为7%,其中所述溶液中的锡和锑的摩尔比为5-10:2-10;
优选地,所述溶液中的锡和锑的摩尔比为5-9:2-8,
更优选地,所述溶液中的锡和锑的摩尔比为6-9:3-8;
进一步优选地,所述溶液中的锡和锑的摩尔比为6-8:3-7;
更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-7;
再更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-6;
最优选地,所述溶液中的锡和锑的摩尔比为8:5;
然后,在温度为100~120℃,优选为110~120℃下烘干上述涂覆有锡-锑溶液的电极,直至所述电极外表面无液态为止;
接着,在温度为400~680℃,优选为450~600℃下对上述烘干的电极进行烧结处理,烧结处理的时间为8~10小时。
优选地,所述钛合金按质量百分比计,含Al:4.0%~4.9%;Sn:1.1%~2.5%;Cr:1.1%~2.5%;Mo:1.1%~2.5%;Zr:1.1%~2.5%;Fe:0.11%~0.15%;C: 0.08%~0.16%;O:0.11%~0.26%;N:0.004%~0.2%;H:0.06%~0.28%;Si:0.02%~1.0%,其余为钛和不可避免的杂质;
优选地,所述钛合金中,Al为4.1%~4.6%;优选为4.1%~4.4%;
优选地,所述钛合金中,Sn为1.2%~2.1%;优选为1.4%~2.1%;
优选地,所述钛合金中,Cr为1.3%~2.0%;优选为1.4%~2.1%;更优选为1.6%~2.0%;
优选地,所述钛合金中,Mo为1.2%~2.1%;优选为1.3%~2.0%;更优选为1.5%~2.1%;
优选地,所述钛合金中,Zr为1.3%~2.1%;优选为1.4%~2.1%;更优选为1.5%~2.1%;
优选地,所述钛合金中,Fe为0.13%~0.14%:优选为0.13%或0.14%;
优选地,所述钛合金中,C为0.09%~0.10%;优选为0.09%~0.12%;
优选地,所述钛合金中,O为0.13%~0.21%;优选为0.16%~0.21%;更优选为0.16%~0.2%;
优选地,所述钛合金中,N为0.005%~0.02%;优选为0.006%~0.07%;更优选为0.009%~0.04%。
优选地,所述钛合金中,H为0.07%~0.21%;优选为0.08%~0.21%;
优选地,所述钛合金中,Si为0.04%~0.6%,优选为0.04%~0.7%。
又一方面,本发明提供一种包含前述的电极的装置;优选地,所述装置为食品净化装置、水净化装置或医疗用品净化装置,优选为食品净化装置。
再一方面,本发明提供一种食品净化装置,该装置包含水槽、发生器匣和水触媒发生器,其中,
-水槽一侧壁具有水流通道,发生器匣固定在水槽侧壁的水流通道外侧;
-多孔防护板将发生器匣分隔成为两个仓室,水触媒发生器设置在靠近发生器匣底部的仓室中,靠近水槽侧壁的仓室底部横置曝气管,曝气管壁具有成排曝气孔,曝气管的曝气管接口通往发生器匣外;
-发生器匣另一仓室壁在多孔防护板上方呈弧形形状连接到水槽侧壁的水流通道口;
其中,所述水触媒发生器的阳极电极为前述的电极。
优选地,水槽侧壁与发生器匣之间具有密封圈。
与现有技术相比,本发明至少具有以下有益的技术效果:
1、本发明的复合材料涂层中添加了钽元素,添加钽元素后,涂层组织呈蜂窝状,裂纹不明显。且钽钛之间既产生机械作用又产生化学作用,机械作用可增加基体的有效几何面积,提高涂层与基体的结合力,而化学作用使表面形成Ta-Ti混合化合物,进一步增加涂层抗钝化作用。此外,添加钽可以增加涂层内部活性点,增强涂层的催化作用。
2、本发明的复合材料涂层中添加了钴元素,添加钴元素可细化涂层的晶粒,在钴的摩尔含量小于30%的条件下,增加钴可以明显提高涂层的电催化性能,当钴的摩尔含量高于15%时,涂层的强化寿命可提高40%。
3、本发明中还可以添加锡-锑涂层,添加锡和锑使得电解液难以渗透到钛或钛合金基材表面,提高了涂层对抗溶液侵蚀的能力,延长了使用寿命。因经烧结后涂层中钛和锡形成二氧化钛和二氧化锡,而二氧化钛和二氧化锡均为四方金红石结构,晶格常数相近,形成良好的固溶体,使涂层与钛基体间的结合力增强,涂层不易脱落。
此外,二氧化锡能带范围较宽,具有良好的化学稳定性和电化学稳定性,Sn4+离子半径为0.071nm,可与基体牢固结合,在二氧化锡中掺杂锑原子后,5价的锑原子取代了4价的锡原子后,多余的一个电子进入导带,是导带电子浓度大大增加,可显著提高功能层的导电性能。
4、铈和钛之间的相互作用使复合氧化物具有小的晶粒尺寸和高的比表面积,提高催化活性。同时钆、钇和铈能够增加涂层结构中空穴的浓度,提高电极的导电能力。
附图说明
图1为本发明的食品净化装置的剖视图;
图2为本发明的食品净化装置的左视轴测图;
图3为本发明的食品净化装置的右视轴测图。
附图中标号:
1.水槽,2.水流通道,3.侧壁,4.密封圈,5.多孔防护板,6.孔,7.水触媒发生器,8.发生器匣,9.曝气管,10.曝气孔,11.曝气管接口。
具体实施方式
下面结合实施例对本发明做进一步的说明。这些实施例旨在帮助阐述发 明的内容而不是限制本发明的范围。
实施例1:本发明的电极及制备方法
一种电极,该电极以钛合金为基材,该基材外表面涂覆有一层复合材料涂层,该复合材料涂层经复合材料溶液涂覆、烘干、烧结制备而成,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,所述过渡金属元素为铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8:45。
其中,所述复合材料溶液的质量百分比为30%。
其中,所述复合材料溶液过渡金属颗粒的粒径为20nm。
其中,所述复合材料涂层的厚度为5um。
其中,所述烘干温度为115℃。
其中,所述烧结温度为550℃。
其中,所述钛合金按质量百分比计,含Al:4.2%;Sn:1.9%;Cr:2.1%;Mo:1.1%;Zr:1.8%;Fe:0.11%;C:0.12%;O:0.19%;N:0.09%;H:0.12%;Si:0.8%,其余为钛和不可避免的杂质;
该电极的制备方法如下:
(1)将复合材料溶液分多次、均匀地涂覆在钛合金的外表面上,涂刷次数在10次左右,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,该纳米溶液的质量百分含量为30%,其中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8:45;
(2)每次涂刷后均在在温度为115℃下烘干步骤(1)的涂覆有复合材料溶液的电极,直至所述电极外表面无液态为止;
(3)最后一次烘干后,在温度为500℃下对步骤(2)烘干的电极进行烧结处理,烧结处理的时间为8小时,即得本发明的电极。
在本实施例中,基材也可以为钛。
实施例2:本发明的电极及制备方法
一种电极,该电极以钛合金为基材,该基材外表面涂覆有一层复合材料涂层,该复合材料涂层经复合材料溶液涂覆、烘干、烧结制备而成,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,所述过渡金属元素为铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8:45。
其中,所述复合材料溶液的质量百分比为30%。
其中,所述复合材料溶液中过渡金属颗粒的粒径为20nm。
其中,所述电极还包括锡-锑涂层,该涂层设置在所述基材与所述复合材料涂层之间,其中,所述锡-锑涂层经锡-锑溶液涂覆、烘干、烧结制备而成,所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,所述溶液中的锡和锑的摩尔比为6:7。
其中,所述锡-锑溶液中的锡和锑颗粒的粒径为20nm。
其中,所述复合材料涂层或所述锡-锑涂层的厚度为5μm。
其中,制备所述复合材料涂层或所述锡-锑涂层时的烘干温度为115℃。
其中,制备所述复合材料涂层或所述锡-锑涂层时的烧结温度为500℃。
该电极的制备方法如下:
(1)将锡-锑溶液分多次、均匀地涂覆在钛合金的外表面上,涂刷次数在10次左右,其中所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,该纳米溶液的质量百分含量为10%,其中所述溶液中的锡和锑的摩尔比为6:7;
每次涂刷后均在在温度为115℃下烘干的涂覆有锡-锑溶液的电极,直至所述电极外表面无液态为止;
最后一次烘干后,在温度为500℃下对上述烘干的电极进行烧结处理,烧结处理的时间为8小时。
(2)将复合材料溶液分多次、均匀地涂覆在上述已经涂有锡-锑溶液的钛合金的外表面上,涂刷次数在10次左右,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶 质,该纳米溶液的质量百分含量为30%,其中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为12:27:16:5:12:10:15:4:5:18:21:4:19:9:12:4:8:45;
(3)每次涂刷后均在在温度为115℃下烘干步骤(1)的涂覆有复合材料溶液的电极,直至所述电极外表面无液态为止;
(4)最后一次烘干后,在温度为500℃下对步骤(2)烘干的电极进行烧结处理,烧结处理的时间为8小时,即得本发明的电极。
在本实施例中,基材也可以为钛。
实施例3本发明的食品净化装置
如图1、2、3所示本发明的食品净化装置,也称为纵向旋流净化水槽,主要构件包含水槽1、发生器匣8和水触媒发生器7(其中使用本发明实施例2制备的电极),其中:水槽1一侧壁3开有一水流通道2,发生器匣8固定在水槽1侧壁3的水流通道2外侧,可以是将发生器匣8焊接在水槽1的外侧,或者通过螺栓将发生器匣8固定连接在水槽1的外侧,如果使用螺栓连接应当在水槽1侧壁3与发生器匣8之间使用密封圈4来防止漏水;多孔防护板5将发生器匣8分隔成为两个仓室,水触媒发生器7设置在靠近发生器匣8底部的仓室中,靠近水槽1侧壁3一侧的仓室底部横置曝气管9,曝气管9壁具有成排曝气孔10,曝气管9的曝气管接口11通往发生器匣8外,将气泵通过管路连接在曝气管接口11上;发生器匣8另一仓室壁在多孔防护板5上方呈弧形形状连接到水槽1侧壁3的水流通道2口。
使用时,水槽1中放入水和待洗物,通过气泵打入空气,空气通过曝气管接口11进入曝气管9,从曝气孔10排入水槽1的水中形成大量气泡,气泡在上升过程中带动周围的水上升,当撞击到发生器匣8上部弧形壁时被反射改变流动方向,向水槽另一方向流动,继而撞击水槽1另一侧壁转而向下,然后水平返回曝气管9处,形成纵向旋流,从而使待洗物在纵向旋流和大量气泡的冲击下翻滚被洗净,喷入水中的气泡的爆破作用进一步加强清洗效果,同时旋流的水一部分通过多孔防护板5下部的孔进入发生器匣8底部仓室中,流经水触媒发生器7在电极作用下生成羟基自由基,随水流从多孔防护板5上方的孔进入水槽1中的水中混合,对待洗物进一步净化、消毒、杀菌,多孔防护板5可以防止待洗物撞击损坏水触媒发生器7。
使用上述食品净化装置净化后水果蔬菜表面农药的残留量(mg/kg)如下表所示:
Figure PCTCN2014086222-appb-000001
Figure PCTCN2014086222-appb-000002
Figure PCTCN2014086222-appb-000003
实施例4
采用实施例2中所述的方法制备电极,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:12:9:19:4:6:17:19:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:12:9:19:4:6:17:19:3:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:12:9:19:4:6:17:19:4:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6。其余条件与实施例2相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,以不锈钢合金或钛合金作为阴极,在水槽中加入5L自来水,在水中放入浓度为2.4mg/L的毒死蜱农药1.5ml,混合均匀后,取部分水样作为未净化样品进行检测;开启电源,调整电压均为18V,计时净化10分钟后,分别取净化后的水样进行检测,并进行数据对比。
方案名称 毒死蜱浓度/mg/L 降解率%
未净化水样 0.66  
电极A 0.31 53
电极B 0.25 62.1
电极C 0.19 71.2
从以上数据可以看出,随着钆元素含量的增加,电极对农药的降解率增加,说明钆元素的增加能有效提高电极的催化活性。
实施例5
采用实施例2中所述的方法制备电极,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:9:9:19:4:6:17:19:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:10:9:19:4:6:17:19:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、锡、锑、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:12:9:19:4:6:17:19:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6。其余条件与实施例2相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,以不锈钢合金或钛合金作为阴极,以自来水为介质,在电流强度为10-20mA/cm2,其他元素含量不变,只改变铈元素的含量,三种方案的钛阳极运行电压值如下:
方案名称 运行电压/V 能耗降低%
A 16-19  
B 14-17 10%
C 11-15 21%
从以上结果可以看出,改变铈元素的含量,电极在相同的电流强度工作条件下,输出电压随着铈元素含量的增加而降低,说明铈元素的加入可有效的降低电极的运行能耗,从而节省运行成本。
实施例6
采用实施例2中所述的方法制备电极,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:9:9:19:4:6:17:19:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:9:9:19:4:6:17:21:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6。其余条件与实施例2相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,不锈钢合金或钛合金作为阴极,在水槽中加入5L自来水,在水中放入浓度为2mg/L的敌敌畏农药2ml,混合均匀后,取部分水样作为未净化样品进行检测;开启电源,调整电压均为18V,计时净化10分钟后,分别取净化后的水样进行检测,并进行数据对比:
Figure PCTCN2014086222-appb-000004
从以上数据可以看出,随着钇元素含量的增加,电极对农药的降解率增加,说明钇元素的增加能有效提高电极的催化活性。
实施例7
采用实施例2中所述的方法制备电极A、B、C、D、E,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:15:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:30:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极D中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:12:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极E中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:33:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;其余条件与实施例2相同。
采用实施例1中所述的方法制备电极F,其中电极F中中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29;其余条件与实施例1相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,不锈钢合金或钛合金作为阴极,以自来水为介质,在电流强度为10-20mA/cm2,六种方案的运行电压值及能耗降低水平如下表所示:
Figure PCTCN2014086222-appb-000005
Figure PCTCN2014086222-appb-000006
从上表可以看出,改变钴元素的含量,电极在相同的电流强度工作条件下,输出电压随着钴元素含量的增加而降低,说明钴元素的加入可有效的降低电极的运行能耗,从而节省运行成本。电极A与电极F相比可以看出,在其他元素含量相同的情况下,不加入锡和锑中间层的电极F的运行电压要高于电极A,说明中间层锡和锑能有效的降低输出电压,降低电极的运行能耗。
实施例8
采用实施例2中所述的方法制备电极A、B、C、D,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:15:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极D中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:25:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;其余条件与实施例2相同。采用实施例1中所述的方法制备电极E,其中电极E中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29,其余条件与实施例1相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,不锈钢合金或钛合金作为阴极,以自来水为介质,在电流强度为10-20mA/cm2,五种方案的钛阳极疲劳实验运行时间如下表所示:
方案名称 运行时间/H
电极A 2768
电极B 3379
电极C 3940
电极D 4733
电极E 3467
从以上结果可以看出,改变钽元素的含量,电极在相同的电流强度工作条件下,电极的运行时间随着钽元素含量的增加而增加,说明钽元素的加入可有效的增加电极的运行寿命。电极C与电极E相比可以看出,在其他元素含量相同的情况下,不加入锡和锑中间层的电极E的运行寿命要低于电极C,说明中间层锡和锑能有效的增加运行寿命。
实施例9
采用实施例2中所述的方法制备电极A、B、C、D、E,其中电极A中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:0:5;电极B中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:15:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:2:5;电极C中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:30:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:5:5;电极D中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:12:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:8:5;电极E中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:33:7:8:5:9:29,锡-锑溶液中锡和锑的摩尔比为:12:5;其余条件与实施例2相同。
采用实施例1中所述的方法制备电极F,其中电极F中中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29;其余条件与实施例1相同。
将上述电极安装在实施例3的食品净化水槽上作为阳极,不锈钢合金或钛合金作为阴极,以0.5mol/L H2SO4溶液为介质,在2000A/m2条件下进行快速寿命实验,种方案的运行时间如下表所示:
方案名称 运行时间/H
电极A 130
电极B 176
电极C 247
电极D 364
电极E 341
电极F 124
从以上结果可以看出,锡元素的加入可增加强化寿命运行时间,随着锡元素含量的增加,电极的运行时间增加,说明锡元素的加入可有效的增加电极的寿命。
实施例10
本发明的电极1:采用实施例1的方法制备电极,其中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4:14:35,其余条件与实施例1相同。
本发明的电极2:采用实施例2的方法制备电极,其中复合材料溶液中过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为:11:23:15:3:9:9:19:4:6:17:23:2:18:7:12:4:14:35,锡-锑溶液中的锡和锑的摩尔比为7:6,其余条件与实施例2相同。
对照电极1:ZL201110271764.0中的电极,其中六种粉剂为铂粉、铱粉、钇粉、钌粉、铌粉、钽粉,六种粉剂与无水乙醇混合的质量浓度为3%,该溶液中铂元素、铱元素、钇元素、钌元素、铌元素和钽元素的摩尔比为28: 36:15:30:8:12,复合材料涂层层厚为3微米,采用实施例1的方法进行制备。
将上述电极安装在实施例3的食品净化水槽上作为阳极,不锈钢合金或钛合金作为阴极,,在水槽中加入5L自来水,在水中放入浓度为2mg/L的敌敌畏农药3ml,混合均匀后,取部分水样作为未净化样品进行检测;开启电源,调整电压均为18V,计时净化10分钟后,分别取净化后的水样进行检测,并进行数据对比,结果如下表所示:
方案名称 敌敌畏浓度/mg/L 降解率%
未净化水样 0.86  
对照电极1 0.21 75.6
本发明的电极1 0.15 82.6
本发明的电极2 0.13 84.8
以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (19)

  1. 一种电极,该电极以钛或钛合金为基材,该基材外表面涂覆有一层复合材料涂层,该复合材料涂层经复合材料溶液涂覆、烘干、烧结制备而成,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,所述过渡金属元素为铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~15:23~34:14~21:1~7:9~17:3~12:15~27:3~6:2~9:10~23:15~27:2~8:15~30:3~12:4~14:1~10:6~15:20~50。
  2. 根据权利要求1所述的电极,其特征在于,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~13:23~31:14~20:1~6:9~15:3~10:15~25:3~6:2~8:10~21:15~25:2~7:15~28:3~11:4~13:1~9:6~13:20~48;
    优选为6~13:24~31:16~20:2~6:10~15:4~10:17~25:4~6:3~8:11~21:17~25:3~7:17~28:4~11:6~13:2~9:7~13:22~48;
    更优选为6~11:24~29:16~19:2~5:10~13:4~8:17~22:4~5:3~7:11~19:17~23:3~6:17~26:4~10:6~11:2~8:7~12:22~46;
    进一步优选为7~11:25~29:17~19:3~5:11~13:5~8:19~22:4~5:4~7:12~19:18~23:4~6:19~26:5~10:7~11:3~8:8~12:24~46;
    更进一步优选为7~9:25~27:17~18:3~4:11~12:5~7:19~21:4:4~6:12~17:18~21:4~5:19~23:5~8:7~9:3~6:8~10:24~41;
    最优选为8:26:17:3:11:6:20:4:5:15:19:4:21:7:8:5:9:29。
  3. 根据权利要求1或2所述的电极,其特征在于,所述复合材料溶液的质量百分含量为25%~45%,优选为30%~40%。
  4. 根据权利要求1至3中任一项所述的电极,其特征在于,所述复合材料溶液中的过渡金属颗粒的粒径为5~30nm。
  5. 根据权利要求1至4中任一项所述的电极,其特征在于,所述电极还包括锡-锑涂层,该涂层设置在所述基材与所述复合材料涂层之间,其中,所述锡-锑涂层经锡-锑溶液涂覆、烘干、烧结制备而成,所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,所述溶液中的锡和锑的摩尔比为5-10:2-10;
    优选地,所述溶液中的锡和锑的摩尔比为5-9:2-8,
    更优选地,所述溶液中的锡和锑的摩尔比为6-9:3-8;
    进一步优选地,所述溶液中的锡和锑的摩尔比为6-8:3-7;
    更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-7;
    再更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-6;
    最优选地,所述溶液中的锡和锑的摩尔比为8:5。
  6. 根据权利要求5所述的电极,其特征在于,所述溶液中的锡和锑颗粒的粒径为5~30nm。
  7. 根据权利要求5所述的电极,其特征在于,所述锡-锑溶液的质量百分含量为5%~9%,优选为7%。
  8. 根据权利要求1至7中任一项所述的电极,其特征在于,所述复合材料涂层或所述锡-锑涂层的厚度为3-8微米,优选为4-6微米。
  9. 根据权利要求1至8中任一项所述的电极,其特征在于,制备所述复合材料涂层或所述锡-锑涂层时烘干温度为100~120℃,优选为110~120℃。
  10. 根据权利要求1至9中任一项所述的电极,其特征在于,制备所述复合材料涂层或所述锡-锑涂层时烧结温度为400~680℃,优选为450~600℃。
  11. 根据权利要求1至10中任一项所述的电极,其特征在于,所述钛合金按质量百分比计,含Al:4.0%~4.9%;Sn:1.1%~2.5%;Cr:1.1%~2.5%;Mo:1.1%~2.5%;Zr:1.1%~2.5%;Fe:0.11%~0.15%;C:0.08%~0.16%;O:0.11%~0.26%;N:0.004%~0.2%;H:0.06%~0.28%;Si:0.02%~1.0%,其余为钛和不可避免的杂质;
    优选地,所述钛合金中,Al为4.1%~4.6%;优选为4.1%~4.4%;
    优选地,所述钛合金中,Sn为1.2%~2.1%;优选为1.4%~2.1%;
    优选地,所述钛合金中,Cr为1.3%~2.0%;优选为1.4%~2.1%;更优选 为1.6%~2.0%;
    优选地,所述钛合金中,Mo为1.2%~2.1%;优选为1.3%~2.0%;更优选为1.5%~2.1%;
    优选地,所述钛合金中,Zr为1.3%~2.1%;优选为1.4%~2.1%;更优选为1.5%~2.1%;
    优选地,所述钛合金中,Fe为0.13%~0.14%:优选为0.13%或0.14%;
    优选地,所述钛合金中,C为0.09%~0.10%;优选为0.09%~0.12%;
    优选地,所述钛合金中,O为0.13%~0.21%;优选为0.16%~0.21%;更优选为0.16%~0.2%;
    优选地,所述钛合金中,N为0.005%~0.02%;优选为0.006%~0.07%;更优选为0.009%~0.04%;
    优选地,所述钛合金中,H为0.07%~0.21%;优选为0.08%~0.21%;
    优选地,所述钛合金中,Si为0.04%~0.6%,优选为0.04%~0.7%。
  12. 一种制备权利要求1至11中任一项所述的电极的方法,该方法包括如下步骤:
    (1)将复合材料溶液均匀地涂覆在钛或钛合金的外表面上,其中所述复合材料溶液为过渡金属元素溶于乙醇中形成的纳米溶液,该纳米溶液以过渡金属的颗粒为溶质,该纳米溶液的质量百分含量为25%~45%,优选为30%~40%,其中所述复合材料溶液中铂、铱、钌、金、铈、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~15:23~34:14~21:1~7:9~17:3~12:15~27:3~6:2~9:10~23:15~27:2~8:15~30:3~12:4~14:1~10:6~15:20~50;
    (2)在温度为100~120℃,优选为110~120℃下烘干步骤(1)的涂覆有复合材料溶液的电极,直至所述电极外表面无液态为止;
    (3)在温度为400~680℃,优选为450~600℃下对步骤(2)烘干的电极进行烧结处理,烧结处理的时间为8~10小时。
  13. 根据权利要求12所述的方法,其特征在于,在步骤(1)中,所述复合材料溶液中的过渡金属元素铂、铱、钌、金、铈、锡、锑、铑、钽、锰、镍、钯、钇、钆、钴、铕、镧、钕、锆和钛的摩尔比为5~13:23~31:14~20: 1~6:9~15:5~9:2~8:3~10:15~25:3~6:2~8:10~21:15~25:2~7:15~28:3~11:4~13:1~9:6~13:20~48;
    优选为6~13:24~31:16~20:2~6:10~15:6~9:3~8:4~10:17~25:4~6:3~8:11~21:17~25:3~7:17~28:4~11:6~13:2~9:7~13:22~48;
    更优选为6~11:24~29:16~19:2~5:10~13:6~8:3~7:4~8:17~22:4~5:3~7:11~19:17~23:3~6:17~26:4~10:6~11:2~8:7~12:22~46;
    进一步优选为7~11:25~29:17~19:3~5:11~13:7~8:4~7:5~8:19~22:4~5:4~7:12~19:18~23:4~6:19~26:5~10:7~11:3~8:8~12:24~46;
    更进一步优选为7~9:25~27:17~18:3~4:11~12:7~8:4~6:5~7:19~21:4:4~6:12~17:18~21:4~5:19~23:5~8:7~9:3~6:8~10:24~41;
    最优选为8:26:17:3:11:8:5:6:20:4:5:15:19:4:21:7:8:5:9:29。
  14. 根据权利要求12或13所述的方法,其特征在于,在步骤(1)中,所述复合材料溶液中的过渡金属颗粒的粒径为5~30nm。
  15. 根据权利要求12至14中任一项所述的电极,其特征在于,所述方法还包括:
    在钛或钛合金的外表面涂覆复合材料溶液之前,先在钛或钛合金的外表面均匀地涂覆锡-锑溶液,其中所述锡-锑溶液为锡和锑溶于乙醇中形成的纳米溶液,该纳米溶液以锡和锑的颗粒为溶质,该纳米溶液的质量百分含量为5%~9%,优选为7%,其中所述溶液中的锡和锑的摩尔比为5-10:2-10;
    优选地,所述溶液中的锡和锑的摩尔比为5-9:2-8,
    更优选地,所述溶液中的锡和锑的摩尔比为6-9:3-8;
    进一步优选地,所述溶液中的锡和锑的摩尔比为6-8:3-7;
    更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-7;
    再更进一步优选地,所述溶液中的锡和锑的摩尔比为7-8:4-6;
    最优选地,所述溶液中的锡和锑的摩尔比为8:5;
    然后,在温度为100~120℃,优选为110~120℃下烘干上述涂覆有锡-锑溶液的电极,直至所述电极外表面无液态为止;
    接着,在温度为400~680℃,优选为450~600℃下对上述烘干的电极进 行烧结处理,烧结处理的时间为8~10小时。
  16. 根据权利要求12至15中任一项所述的电极,所述钛合金按质量百分比计,含Al:4.0%~4.9%;Sn:1.1%~2.5%;Cr:1.1%~2.5%;Mo:1.1%~2.5%;Zr:1.1%~2.5%;Fe:0.11%~0.15%;C:0.08%~0.16%;O:0.11%~0.26%;N:0.004%~0.2%;H:0.06%~0.28%;Si:0.02%~1.0%,其余为钛和不可避免的杂质;
    优选地,所述钛合金中,Al为4.1%~4.6%;优选为4.1%~4.4%;
    优选地,所述钛合金中,Sn为1.2%~2.1%;优选为1.4%~2.1%;
    优选地,所述钛合金中,Cr为1.3%~2.0%;优选为1.4%~2.1%;更优选为1.6%~2.0%;
    优选地,所述钛合金中,Mo为1.2%~2.1%;优选为1.3%~2.0%;更优选为1.5%~2.1%;
    优选地,所述钛合金中,Zr为1.3%~2.1%;优选为1.4%~2.1%;更优选为1.5%~2.1%;
    优选地,所述钛合金中,Fe为0.13%~0.14%:优选为0.13%或0.14%;
    优选地,所述钛合金中,C为0.09%~0.10%;优选为0.09%~0.12%;
    优选地,所述钛合金中,O为0.13%~0.21%;优选为0.16%~0.21%;更优选为0.16%~0.2%;
    优选地,所述钛合金中,N为0.005%~0.02%;优选为0.006%~0.07%;更优选为0.009%~0.04%;
    优选地,所述钛合金中,H为0.07%~0.21%;优选为0.08%~0.21%;
    优选地,所述钛合金中,Si为0.04%~0.6%,优选为0.04%~0.7%。
  17. 一种包含权利要求1至11中任一项所述的电极的装置;优选地,所述装置为食品净化装置、水净化装置或医疗用品净化装置,优选为食品净化装置。
  18. 一种食品净化装置,该装置包含水槽、发生器匣和水触媒发生器,其中,
    -水槽一侧壁具有水流通道,发生器匣固定在水槽侧壁的水流通道外侧;
    -多孔防护板将发生器匣分隔成为两个仓室,水触媒发生器设置在靠近 发生器匣底部的仓室中,靠近水槽侧壁的仓室底部横置曝气管,曝气管壁具有成排曝气孔,曝气管的曝气管接口通往发生器匣外;
    -发生器匣另一仓室壁在多孔防护板上方呈弧形形状连接到水槽侧壁的水流通道口;
    其中,所述水触媒发生器的阳极电极为权利要求1至11中任一项所述的电极。
  19. 根据权利要求18所述的食品净化装置,其特征在于,水槽侧壁与发生器匣之间具有密封圈。
PCT/CN2014/086222 2014-09-10 2014-09-10 一种电极及其制备方法和应用 WO2016037329A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES14901665T ES2749619T3 (es) 2014-09-10 2014-09-10 Electrodo, método de preparación del mismo, y usos del mismo
US15/509,380 US10329172B2 (en) 2014-09-10 2014-09-10 Electrode, preparation method therefor, and uses thereof
PCT/CN2014/086222 WO2016037329A1 (zh) 2014-09-10 2014-09-10 一种电极及其制备方法和应用
EP14901665.1A EP3202956B1 (en) 2014-09-10 2014-09-10 Electrode, preparation method therefor, and uses thereof
JP2017533663A JP6481986B2 (ja) 2014-09-10 2014-09-10 電極、その製造方法、およびその用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086222 WO2016037329A1 (zh) 2014-09-10 2014-09-10 一种电极及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016037329A1 true WO2016037329A1 (zh) 2016-03-17

Family

ID=55458254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086222 WO2016037329A1 (zh) 2014-09-10 2014-09-10 一种电极及其制备方法和应用

Country Status (5)

Country Link
US (1) US10329172B2 (zh)
EP (1) EP3202956B1 (zh)
JP (1) JP6481986B2 (zh)
ES (1) ES2749619T3 (zh)
WO (1) WO2016037329A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761314B (zh) * 2019-02-14 2020-11-10 四川大学 反应性多孔锡铋电极的制备方法和多孔锡铋电极及其应用
CN110408949B (zh) * 2019-08-07 2020-11-13 深圳市耐菲尔医疗器械科技有限公司 阳极及其制备方法和应用、臭氧发生系统和洗牙器
CN110560049B (zh) * 2019-09-25 2022-08-12 陕西科技大学 一种用微乳液法制备铂钌钛复合纳米颗粒的方法
KR20210036724A (ko) * 2019-09-26 2021-04-05 주식회사 엘지화학 전기분해용 전극
CN110790348B (zh) * 2019-11-21 2020-09-01 齐齐哈尔大学 一种钛酸钴-二氧化钛复合催化剂电极的制备方法及应用
US20220349075A1 (en) * 2019-12-19 2022-11-03 Lg Chem, Ltd. Electrode for Electrolysis
EP3971328B1 (en) * 2020-01-09 2023-10-18 LG Chem, Ltd. Electrode for electrolysis
CN114315009A (zh) * 2021-10-12 2022-04-12 广东智环创新环境科技有限公司 一种新型的菊酯类农药废水处理工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463304A (zh) * 2001-06-21 2003-12-24 三洋电机株式会社 电解用电极及其制法、用该电极的电解法和电解水生成装置
CN1749436A (zh) * 2004-08-31 2006-03-22 三洋电机株式会社 电解用电极及电解用电极的制造方法
CN101208158A (zh) * 2005-05-03 2008-06-25 胡安·霍恩 餐具和其它厨房器具的清洁、杀菌和消毒的方法和清洁设备
CN201529280U (zh) * 2009-10-30 2010-07-21 姚广兴 一种用水杀菌消毒的设备
CN102370106A (zh) * 2011-09-14 2012-03-14 姚广兴 一种水触媒杀菌解毒装置及其制作和使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1134903A (en) * 1979-02-12 1982-11-02 Mary R. Suchanski Electrode having mixed metal oxide catalysts
JPH0631454B2 (ja) * 1989-03-06 1994-04-27 ダイソー株式会社 酸素発生陽極及びその製法
BRPI0409985B1 (pt) * 2003-05-07 2014-05-20 Eltech Systems Corp Artigo de metal de um substrato de metal de válvula para uso em processos eletrocatalíticos e processo para a produção do referido artigo de metal
GB0328124D0 (en) * 2003-12-04 2004-01-07 Daly James Membrane electrolyser with a two part end design
US20070261968A1 (en) * 2005-01-27 2007-11-15 Carlson Richard C High efficiency hypochlorite anode coating
CN102350228A (zh) * 2011-07-12 2012-02-15 上海中科高等研究院 纳米负载钛基电催化膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463304A (zh) * 2001-06-21 2003-12-24 三洋电机株式会社 电解用电极及其制法、用该电极的电解法和电解水生成装置
CN1749436A (zh) * 2004-08-31 2006-03-22 三洋电机株式会社 电解用电极及电解用电极的制造方法
CN101208158A (zh) * 2005-05-03 2008-06-25 胡安·霍恩 餐具和其它厨房器具的清洁、杀菌和消毒的方法和清洁设备
CN201529280U (zh) * 2009-10-30 2010-07-21 姚广兴 一种用水杀菌消毒的设备
CN102370106A (zh) * 2011-09-14 2012-03-14 姚广兴 一种水触媒杀菌解毒装置及其制作和使用方法

Also Published As

Publication number Publication date
US10329172B2 (en) 2019-06-25
JP2017535675A (ja) 2017-11-30
JP6481986B2 (ja) 2019-03-13
US20170247269A1 (en) 2017-08-31
EP3202956B1 (en) 2019-07-17
EP3202956A4 (en) 2018-08-08
ES2749619T3 (es) 2020-03-23
EP3202956A1 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
WO2016037329A1 (zh) 一种电极及其制备方法和应用
CN101423270B (zh) 一种高效电催化高级氧化技术电极材料
CN109536986B (zh) 一种基于氧化铂合金的钽类化合物电催化剂及其制备方法和应用
CN105454741A (zh) 一种电极及其制备方法和应用
CN107117684B (zh) 基于光催化及电解技术的含油污水净化罐
CN207451671U (zh) 基于光催化及电解技术的含油污水净化装置
CN101368279A (zh) 介孔金属基电生强氧化剂发射材料
CN104055196A (zh) 一种净化装置
CN107265558A (zh) 基于光催化及电解技术的含油污水净化装置
CN104054997A (zh) 一种净化装置
CN104056805A (zh) 一种净化装置
CN104054987A (zh) 一种净化装置
CN104054992A (zh) 一种净化装置
CN109023418B (zh) 一种Pt/碳纤维钛电极的制备方法
CN104054981A (zh) 一种净化装置
CN104054976A (zh) 一种净化装置
CN107265557B (zh) 基于光催化及电解技术的串并联结合含油污水净化系统
CN104055197A (zh) 一种净化装置
CN116282398A (zh) 一种降解自来水中抗生素的电化学方法和装置
CN104056809A (zh) 一种净化装置
CN104054986A (zh) 一种净化装置
CN104054982A (zh) 一种净化装置
CN104054990A (zh) 一种净化装置
CN104056807A (zh) 一种净化装置
CN104054996A (zh) 一种净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901665

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901665

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15509380

Country of ref document: US