WO2016035297A1 - ガスタービン設備 - Google Patents

ガスタービン設備 Download PDF

Info

Publication number
WO2016035297A1
WO2016035297A1 PCT/JP2015/004326 JP2015004326W WO2016035297A1 WO 2016035297 A1 WO2016035297 A1 WO 2016035297A1 JP 2015004326 W JP2015004326 W JP 2015004326W WO 2016035297 A1 WO2016035297 A1 WO 2016035297A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
mixed fluid
separator
gas turbine
gas
Prior art date
Application number
PCT/JP2015/004326
Other languages
English (en)
French (fr)
Inventor
祥範 秋山
健一 嘉手苅
高橋 武雄
敦夫 木下
斎藤 隆
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016035297A1 publication Critical patent/WO2016035297A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases

Definitions

  • Embodiments of the present invention relate to gas turbine equipment.
  • the combustion reaction between fuel and oxygen occurs in carbon dioxide in a supercritical state, and combustion gas containing carbon dioxide and water vapor is generated.
  • a high-temperature mixed fluid in which carbon dioxide and water vapor are mixed is supplied from the combustor to the turbine, and the turbine is driven.
  • the mixed fluid discharged from the turbine as exhaust gas is sequentially cooled in a heat exchanger and a cooler, and then separated into carbon dioxide gas and liquid phase water in which carbon dioxide is dissolved in a brackish water separator.
  • the carbon dioxide gas separated by the brackish water separator is pressurized to a supercritical state by a compressor, a pump, and the like, and then supplied to the heat exchanger.
  • heat exchanger heat exchange is performed between carbon dioxide, which is a supercritical fluid, and the mixed fluid discharged from the turbine. Then, the supercritical carbon dioxide heated by the heat exchange is supplied to the combustor. In the combustor, combustion gas is generated by burning fuel in the heated supercritical carbon dioxide. As described above, the mixed fluid containing the combustion gas is supplied to the turbine as a working medium.
  • the fuel supplied to the combustor in the gas turbine facility includes incombustible substances such as sulfur compounds in addition to combustible substances such as hydrocarbons (methane and the like).
  • the oxygen supplied as an oxidant to the combustor is one that has been separated from the atmosphere at a high concentration by an air separation device, but contains impurities such as nitrogen (N 2 ). For this reason, impurities such as sulfur oxide (SOx) and nitrogen oxide (NOx) may be contained in the combustion gas generated in the combustor.
  • the combustion gas may contain impurities such as carbon monoxide due to incomplete combustion.
  • solid impurities such as rust and scale may accumulate in the flow path through which the working medium flows in the gas turbine equipment.
  • the problem to be solved by the present invention is to provide a gas turbine facility capable of suppressing the occurrence of reduction in efficiency, equipment deterioration, equipment damage, and the like due to impurities. .
  • the gas turbine equipment of the embodiment includes a combustor, a turbine, a heat exchanger, a cooler, a separator, and a pressurizing unit.
  • a combustor produces
  • the turbine is driven by a mixed fluid supplied from a combustor.
  • the mixed fluid discharged from the turbine passes through the heat exchanger.
  • the cooler cools the mixed fluid that has passed through the heat exchanger.
  • the separator separates the mixed fluid cooled by the cooler into carbon dioxide gas and liquid phase water in which carbon dioxide is dissolved.
  • the pressurizing unit pressurizes the carbon dioxide gas supplied from the separator so as to be in a supercritical state, and supplies it to the heat exchanger.
  • heat exchanger heat exchange is performed between the carbon dioxide pressurized in the pressurizing unit and the mixed fluid discharged from the turbine, and the carbon dioxide subjected to the heat exchange is in a supercritical state in the combustor.
  • the separator is configured to remove impurities from the mixed fluid.
  • FIG. 1 is a system diagram schematically showing the gas turbine equipment according to the first embodiment.
  • FIG. 2 is a diagram illustrating a separator in the gas turbine equipment according to the first embodiment.
  • FIG. 3 is a system diagram schematically showing a gas turbine facility according to a modification of the first embodiment.
  • FIG. 4 is a diagram illustrating a separator in a gas turbine facility according to a modification of the first embodiment.
  • FIG. 5 is a system diagram schematically showing the gas turbine equipment according to the second embodiment.
  • FIG. 6 is a system diagram schematically showing the gas turbine equipment according to the third embodiment.
  • FIG. 1 is a system diagram schematically showing the gas turbine equipment according to the first embodiment.
  • each part which comprises gas turbine equipment is shown typically, and the fluid which flows through each part which comprises gas turbine equipment is shown using the solid line arrow.
  • the gas turbine equipment 1 includes a combustor 10, a turbine 20, a heat exchanger 30, a cooler 40, a separator 50, a compressor 60 (pressurizing unit), and a distributor. 70, a carbon dioxide separator 80, a solid impurity removing device 81, a water quality treatment device 82, and a water quality management device 83. Each part is formed using a metal material.
  • the gas turbine equipment 1 of the present embodiment is a supercritical carbon dioxide circulation power generation system, and uses a part of the exhaust gas discharged from the turbine 20 by circulating it as a working medium.
  • the combustor 10 is supplied with fuel F1 and oxygen F2.
  • the fuel F1 is, for example, natural gas and contains a hydrocarbon such as methane as a combustible gas.
  • the fuel F1 may be coal gasification gas or the like.
  • the oxygen F2 separated from the atmosphere using an air separation device (not shown) is supplied to the combustor 10, for example.
  • Each of the fuel F1 and the oxygen F2 is supplied to the combustor 10 after the flow rate is adjusted by a flow rate adjusting valve (not shown).
  • the combustor 10 is supplied with carbon dioxide F30b in a supercritical state heated by the heat exchanger 30.
  • a combustion reaction between the fuel F1 and the oxygen F2 occurs in the heated supercritical carbon dioxide F30b, and a combustion gas containing carbon dioxide and water vapor is generated.
  • a high-temperature mixed fluid F10 in which carbon dioxide and water vapor are mixed is supplied from the combustor 10 to the turbine 20.
  • Turbine 20 The turbine 20 is driven when the mixed fluid F ⁇ b> 10 is supplied from the combustor 10. Specifically, in the turbine 20, a turbine rotor (not shown) is accommodated in a casing (not shown), and the supplied mixed fluid F10 expands and performs work in the casing. The turbine rotor rotates. In the turbine 20, a rotating shaft of a generator (not shown) is connected to the turbine rotor, and the generator is driven by the rotation of the turbine rotor to generate power.
  • the low-pressure mixed fluid F20 in which carbon dioxide and water vapor are mixed is discharged from the turbine 20 to the heat exchanger 30 as exhaust gas.
  • Heat exchanger 30 The mixed fluid F20 discharged from the turbine 20 as exhaust gas flows into the heat exchanger 30. At the same time, one carbon dioxide F70b distributed by the distributor 70 out of the carbon dioxide F60 pressurized so as to be in a supercritical state in the compressor 60 flows into the heat exchanger 30. In the heat exchanger 30, heat exchange is performed between the mixed fluid F ⁇ b> 20 supplied from the turbine 20 and the carbon dioxide F ⁇ b> 70 b supplied from the distributor 70.
  • the mixed fluid F20 supplied from the turbine 20 is cooled in the heat exchanger 30 and flows out from the heat exchanger 30 to the cooler 40 as a low-temperature mixed fluid F30a.
  • the carbon dioxide F70b supplied from the distributor 70 is heated in the heat exchanger 30 and flows out from the heat exchanger 30 to the combustor 10 as high-temperature supercritical carbon dioxide F30b.
  • Cooler 40 The cooler 40 cools the mixed fluid F30a supplied from the heat exchanger 30. Specifically, in the cooler 40, the mixed fluid F30a flows from the heat exchanger 30, and the mixed fluid F30a is cooled by heat exchange with a cooling medium (not shown). Thereby, the water vapor contained in the mixed fluid F30a is condensed into liquid phase water.
  • a mixed fluid F40 gas-liquid two-phase fluid containing carbon dioxide gas and liquid phase water flows out from the cooler 40 to the separator 50.
  • the separator 50 separates the mixed fluid F40 (gas-liquid two-phase fluid) supplied from the cooler 40 into carbon dioxide gas F50a and liquid phase water F50b in which carbon dioxide is dissolved.
  • the separator 50 is, for example, a brackish water separator (separator).
  • the separator 50 is configured to remove impurities from the mixed fluid F40 supplied from the cooler 40.
  • Compressor 60 pressure unit
  • the compressor 60 pressurizes the carbon dioxide gas F50a supplied from the separator 50.
  • the compressor 60 performs pressurization so that the supplied carbon dioxide gas F50a is in a supercritical state.
  • the compressor 60 is, for example, a centrifugal compressor.
  • the carbon dioxide F60 in the supercritical state flows out from the compressor 60 to the distributor 70.
  • A-7 Distributor 70 The distributor 70 distributes the supercritical carbon dioxide F60 supplied from the compressor 60.
  • the distributor 70 discharges a part of the carbon dioxide F60 supplied from the compressor 60 to the outside.
  • the amount of carbon dioxide F70a discharged from the distributor 70 to the outside corresponds to the amount of carbon dioxide generated in the combustor.
  • the remaining carbon dioxide F70b is supplied to the heat exchanger 30.
  • the carbon dioxide F70b is heated in the heat exchanger 30 and flows out from the heat exchanger 30 to the combustor 10 as high-temperature supercritical carbon dioxide F30b.
  • Carbon dioxide separator 80 The carbon dioxide separator 80 is supplied with liquid phase water F50b in which carbon dioxide is dissolved from the separator 50. Then, the carbon dioxide separator 80 separates the liquid phase water F50b into the carbon dioxide gas F80a and the liquid phase water F80b from which carbon dioxide has been removed.
  • the carbon dioxide separator 80 is, for example, a flasher.
  • the carbon dioxide gas F80a separated by the carbon dioxide separator 80 is supplied to the combustor 10 together with the carbon dioxide gas F50a separated by the separator 50.
  • the liquid phase water F80b separated by the carbon dioxide separator 80 is supplied to the solid impurity removing device 81.
  • Solid impurity removing device 81 removes solid impurities from the liquid phase water F80b discharged from the carbon dioxide separator 80. Specifically, the solid impurity removing device 81 has a filter (not shown), allows the liquid phase water F80b to pass through the filter, and captures solid impurities contained in the liquid phase water F80b. Solid impurities are removed from the phase water F80b.
  • the liquid phase water F81 from which the solid impurities are removed by the solid impurity removing device 81 flows out to the water quality treatment device 82.
  • Water quality treatment device 82 performs a process of removing sulfur oxide (SOx) and nitrogen oxide (NOx) for the liquid phase water F81 supplied from the solid impurity removal device 81.
  • the sulfur oxide is removed by an ion exchange method. Specifically, sulfur dioxide (SO 2 ) and water react to generate sulfurous acid (H 2 SO 3 ), and sulfur trioxide (SO 3 ) and water react to generate sulfuric acid (H 2 SO 4 ). Is done. Then, sulfurous acid (H 2 SO 3 ) is removed by, for example, an ion exchange method.
  • the water quality treatment apparatus 82 removes nitrogen oxides by, for example, an ion exchange method. Specifically, nitric acid (HNO 3 ) and nitrous acid (HNO 2 ) are generated by the reaction between nitrogen dioxide (NO 2) and water. The nitrate nitrogen in the form of nitric acid is removed using, for example, an ion exchange resin.
  • Water quality management device 83 manages the liquid phase water F82 supplied from the water quality treatment device 82.
  • the water quality management device 83 includes a sensor (not shown) and a calculator (not shown).
  • the sensor detects the concentration of impurities such as solid impurities, sulfur oxides, and nitrogen oxides in the liquid phase water F82, and outputs a detection signal.
  • the computing unit determines whether or not the impurity concentration of the liquid phase water F82 is equal to or less than a preset value.
  • the arithmetic unit issues an alarm from the alarm device, for example, by operating an alarm device (not shown). From this alarm, it can be seen that an operation for replacing the filter, the ion exchange resin, or the like is necessary.
  • FIG. 2 is a diagram showing a separator in the gas turbine equipment according to the first embodiment.
  • FIG. 2 schematically shows the configuration of the separator 50.
  • the configuration of the separator shown in FIG. 2 is an example, and other configurations may be used.
  • the separator 50 includes a container 51, a first porous plate portion 52, a second porous plate portion 53, a first spraying portion 54, and a second spraying portion 55.
  • a container 51 a container 51, a first porous plate portion 52, a second porous plate portion 53, a first spraying portion 54, and a second spraying portion 55.
  • the container 51 has a trunk portion 510, an upper plate portion 511, and a bottom plate portion 512, and a supply port 51A, an exhaust port 51B, and a drain port 51C are formed.
  • the trunk portion 510 is cylindrical and has a central axis along the vertical direction, and a supply port 51A is formed.
  • the upper plate portion 511 is provided on the upper side of the trunk portion 510, and an exhaust port 51B is formed.
  • the bottom plate portion 512 is provided on the lower side of the trunk portion 510, and a drain port 51C is formed.
  • the interior of the container 51 is subjected to a corrosion resistance treatment, for example, by installing a lining, performing a corrosion resistant coating, using a corrosion resistant material, or neutralizing.
  • a corrosion resistance treatment for example, by installing a lining, performing a corrosion resistant coating, using a corrosion resistant material, or neutralizing.
  • a corrosion resistant material for example, rubber lining or polyethylene lining is performed.
  • the anti-corrosion coating for example, polytetrafluoroethylene (such as Teflon (registered trademark)) is coated.
  • stainless steel such as SUS304 is used.
  • neutralization treatment neutralization treatment using an alkaline aqueous solution such as a sodium hydroxide aqueous solution is performed.
  • the first perforated plate portion 52 is disposed between the upper plate portion 511 and the bottom plate portion 512 inside the container 51, and is fixed to the inner peripheral surface of the trunk portion 510.
  • the first perforated plate portion 52 includes a perforated plate and is located above the supply port 51A.
  • the second porous plate portion 53 is disposed between the upper plate portion 511 and the bottom plate portion 512 inside the container 51, and is formed on the inner peripheral surface of the trunk portion 510. It is fixed.
  • the second perforated plate portion 53 includes a perforated plate and is located above the first perforated plate portion 52.
  • the first spray unit 54 includes a spray, and is disposed between the first perforated plate portion 52 and the second perforated plate portion 53 inside the container 51.
  • the second spray unit 55 includes a spray, like the first spray unit 54, and is disposed below the second perforated plate unit 53 inside the container 51.
  • a mixed fluid F40 gas-liquid two-phase fluid (see FIG. 1) is supplied into the container 51 through the supply port 51A.
  • the mixed fluid F40 gas-liquid two-phase fluid
  • the carbon dioxide gas F50a moves upward through the first porous plate portion 52 and the second porous plate portion 53 in the inside of the container 51.
  • the carbon dioxide gas F50a is discharged from the inside of the container 51 to the outside through the exhaust port 51B.
  • the liquid phase water F50b in which carbon dioxide is dissolved moves downward in the container 51 and is stored in the lower part of the container 51. Then, the liquid phase water F50b is discharged from the inside of the container 51 to the outside through the drain port 51C.
  • pure water F5 is sprayed from the first spray section 54 inside the container 51.
  • the pure water F5 sprayed by the first spraying part 54 moves downward through the first porous plate part 52 and the second porous plate part 53 in order inside the container 51.
  • the sprayed pure water F5 dissolves sulfur oxides and nitrogen oxides present inside the container 51.
  • the sprayed pure water F5 is mixed into the liquid phase water F50b accumulated in the lower part of the container 51.
  • the liquid phase water F50b accumulated in the lower part of the container 51 is sprayed from the second spray unit 55 inside the container 51.
  • the liquid phase water F50b accumulated in the lower part of the container 51 is supplied to the second spray unit 55 via the pump P50 and sprayed from the second spray unit 55.
  • the liquid phase water F50b sprayed by the second spray part 55 moves downward through the second porous plate part 53 inside the container 51.
  • the sprayed liquid phase water F50b dissolves sulfur oxides and nitrogen oxides present inside the container 51.
  • the sprayed liquid phase water F50b is mixed into the liquid phase water F50b accumulated in the lower part of the container 51.
  • the separator 50 sprays and circulates the separated liquid phase water F50b inside the container 51 to which the mixed fluid F40 (gas-liquid two-phase fluid) is supplied from the cooler 40.
  • the combustor 10 is configured to remove sulfur oxides and nitrogen oxides generated by combustion.
  • the gas turbine equipment 1 of the present embodiment circulates and uses a part of the exhaust gas discharged from the turbine 20 as a working medium.
  • a high-temperature mixed fluid F20 in which carbon dioxide and water vapor are mixed is supplied from the combustor 10 to the turbine 20 and the turbine 20 is driven.
  • the mixed fluid F20 discharged from the turbine 20 as exhaust gas is sequentially cooled in the heat exchanger 30 and the cooler 40, and then in the separator 50, the carbon dioxide gas F50a and the liquid phase water F50b in which carbon dioxide is dissolved. And separated.
  • the liquid phase water F50b in which carbon dioxide is dissolved is separated in a carbon dioxide separator 80 into carbon dioxide gas F80a and liquid phase water F80b from which carbon dioxide has been removed.
  • the carbon dioxide gas F50a separated by the separator 50 and the carbon dioxide gas F80a separated by the carbon dioxide separator 80 are merged and pressurized by the compressor 60 so as to be in a supercritical state. After that, it is supplied to the heat exchanger 30 via the distributor 70.
  • heat exchanger 30 heat exchange is performed between the carbon dioxide F70b, which is a supercritical fluid, and the mixed fluid F20 discharged from the turbine 20.
  • the supercritical carbon dioxide F30b heated by the heat exchange is supplied to the combustor 10.
  • the fuel F1 is burned in the heated supercritical carbon dioxide F30b, thereby generating combustion gas.
  • the mixed fluid F10 containing the combustion gas is supplied to the turbine 20 as a working medium.
  • the separator 50 is configured to remove impurities from the mixed fluid F40 cooled by the cooler 40 in addition to performing gas-liquid separation.
  • the separator 50 scatters and circulates the separated liquid phase water F50b inside the container 51 to which the mixed fluid F40 is supplied, thereby oxidizing sulfur produced by combustion in the combustor 10. And nitrogen oxides are removed from the mixed fluid F40.
  • the gas turbine equipment 1 of the present embodiment can suppress an increase in the ratio of sulfur oxides and nitrogen oxides in the working medium, such as a reduction in efficiency, equipment deterioration, equipment damage, and the like. Can be prevented from occurring.
  • the gas turbine equipment 1 of the present embodiment can effectively reduce the amount of carbon dioxide discharged to the outside.
  • the solid impurity removal device 81 removes solid impurities from the liquid phase water F80b separated by the carbon dioxide separation device 80.
  • the liquid phase water F80b separated by the carbon dioxide separator 80 is supplied to the water quality treatment device 82 via the solid impurity removal device 81, and the water quality treatment device 82 is sulfur with respect to the liquid phase water F80b. A treatment for removing oxide and nitrogen oxide is performed.
  • the liquid phase water F80b separated by the carbon dioxide separator 80 is supplied to the water quality management device 83 via the solid impurity removal device 81 and the water quality treatment device 82, and the water quality management device 83 Liquid phase water F80b is managed. For this reason, the gas turbine equipment 1 of the present embodiment can suppress an increase in the ratio of solid impurities, sulfur oxides, and nitrogen oxides in the working medium. It is possible to prevent the equipment from being damaged.
  • FIG. 3 is a system diagram schematically showing a gas turbine facility according to a modification of the first embodiment.
  • each part constituting the gas turbine equipment is schematically shown, and the fluid flowing through each part constituting the gas turbine equipment is indicated by solid line arrows.
  • both the cooler 40B and the pump 61 may be interposed between the compressor 60 and the distributor 70.
  • the cooler 40B cools the carbon dioxide F60 pressurized by the compressor 60.
  • the pump 61 boosts the carbon dioxide F40B cooled by the cooler 40B.
  • the pump 61 boosts the carbon dioxide F60 whose pressure is lower than the critical pressure so that the pressure becomes equal to or higher than the critical pressure. Then, the carbon dioxide F 61 whose pressure has been increased by the pump 61 is supplied to the distributor 70.
  • the water quality management device 83 has been described with respect to the case where the arithmetic unit (not shown) issues an alarm by operating the alarm device (not shown), but is not limited thereto.
  • the water quality management device 83 operates the switching valve (not shown) according to the result of the computing unit judging whether or not the impurity concentration of the liquid phase water F82 is equal to or less than a preset value. You may be comprised so that the flow path of the liquid phase water F82 may be switched.
  • the flow path is switched so as to discharge the liquid phase water F83a having a low impurity concentration to the outside.
  • the flow path is switched so that the liquid phase water F83b having a high impurity concentration is merged upstream of the solid impurity removing device 81. That is, the liquid phase water F83b having a high impurity concentration is sequentially passed through the solid impurity removing device 81 and the water quality treatment device 82 and circulated.
  • FIG. 4 is a diagram illustrating a separator in a gas turbine facility according to a modification of the first embodiment.
  • FIG. 4 schematically shows the configuration of the separator 50 as in FIG.
  • the separator 50 may be configured to agitate the separated liquid phase water F ⁇ b> 50 b inside the container 51. That is, the separator 50 may be provided with the stirrer 57.
  • the stirrer 57 has a stirring rod 571 and a stirring blade 572.
  • the stirrer 57 has a stirring blade 572 fixed to one end side of the stirring rod 571.
  • the stirrer 57 rotates the stirring rod 571 by a rotation mechanism (not shown), thereby rotating the stirring blade 572 inside the container 51 to stir the liquid phase water F50b.
  • solid impurities such as rust and metal strips
  • the solid impurities can be easily discharged to the outside of the container 51.
  • FIG. 5 is a system diagram schematically showing the gas turbine equipment according to the second embodiment.
  • each part which comprises gas turbine equipment is typically shown, and the fluid which flows through each part which comprises gas turbine equipment is shown using the solid line arrow.
  • the gas turbine equipment 1b of this embodiment includes a combustor 10, a turbine 20, a heat exchanger 30, a cooler 40, a separator 50, and a compressor 60 (pressurizing unit). And a distributor 70.
  • the gas turbine equipment 1b of the present embodiment differs from the carbon dioxide separator 80, the solid impurity removal device 81, the water quality treatment device 82, The water quality management device 83 is not provided.
  • the gas turbine equipment 1b of the present embodiment includes a filter 91, an oxidation treatment unit 92, and a desulfurization and denitration device 93. This embodiment is the same as the case of the first embodiment except for the above points and related points. For this reason, in the present embodiment, the description overlapping with the case of the first embodiment is omitted as appropriate.
  • the filter 91 is configured to remove solid impurities (such as rust) contained as impurities in the mixed fluid F30a supplied from the heat exchanger 30.
  • the filter 91 is a metal filter, and removes solid impurities from the mixed fluid F30a by capturing solid impurities contained in the mixed fluid F30a when the mixed fluid F30a passes through. . Then, the mixed fluid F91 from which solid impurities have been removed by the filter 91 flows out to the oxidation treatment unit 92.
  • the oxidation treatment unit 92 has an oxidation catalyst and is configured to oxidize carbon monoxide contained as an impurity in the mixed fluid F91 supplied from the filter 91.
  • the oxidation catalyst is, for example, a noble metal catalyst such as ruthenium (Ru).
  • Ru ruthenium
  • the desulfurization and denitration apparatus 93 removes sulfur oxides and nitrogen oxides contained as impurities in the mixed fluid F92 supplied from the oxidation treatment unit 92.
  • the desulfurization denitration apparatus 93 is configured to remove sulfur oxides by, for example, a wet lime gypsum method.
  • the desulfurization and denitration apparatus 93 is configured to remove nitrogen oxides by, for example, an ammonia selective catalytic reduction method. Then, the mixed fluid F93 from which sulfur oxides and nitrogen oxides have been removed by the desulfurization denitration apparatus 93 flows out to the cooler 40.
  • the mixed fluid F93 that has passed through the desulfurization and denitrification apparatus 93 is cooled in the cooler 40, and then separated in the separator 50 into carbon dioxide gas F50a and liquid phase water F50b in which carbon dioxide is dissolved.
  • the liquid phase water F50b separated by the separator 50 is discharged to the outside of the gas turbine equipment 1b.
  • the carbon dioxide gas F50a separated by the separator 50 is pressurized so as to be in a supercritical state by the compressor 60 and then supplied to the heat exchanger 30 via the distributor 70. .
  • heat exchanger 30 heat exchange is performed between the carbon dioxide F70b, which is a supercritical fluid, and the mixed fluid F20 discharged from the turbine 20.
  • the supercritical carbon dioxide F30b heated by heat exchange in the heat exchanger 30 is supplied to the combustor 10.
  • the fuel F1 is combusted in the heated supercritical carbon dioxide F30b to generate combustion gas, and the mixed fluid F10 containing the combustion gas is supplied to the turbine 20 as a working medium.
  • the desulfurization denitration apparatus 93 may be arranged at a position other than the above position.
  • a denitration apparatus (not shown) that removes nitrogen oxides by an ammonia selective catalytic reduction method is generally treated at a temperature of about 350 ° C., for example, the heat exchanger 30 It may be arranged in the channel in the middle of the.
  • FIG. 6 is a system diagram schematically showing the gas turbine equipment according to the third embodiment.
  • each part constituting the gas turbine equipment is schematically shown, and the fluid flowing through each part constituting the gas turbine equipment is indicated by solid line arrows.
  • the flow of the electric signal is indicated by using a dashed-dotted arrow.
  • the gas turbine equipment 1c of the present embodiment is similar to the second embodiment in the combustor 10, the turbine 20, the heat exchanger 30, the cooler 40, and the separator 50. And a compressor 60 (pressurizing unit) and a distributor 70.
  • the gas turbine equipment 1c of this embodiment includes a filter 91, an oxidation treatment unit 92, and a desulfurization / denitration device 93, as in the case of the second embodiment.
  • the gas turbine equipment 1c of this embodiment is provided with a plurality of desulfurization and denitration devices 93.
  • a plurality of valves V93 are provided, and a sensor 94 and a control unit 95 are further provided.
  • This embodiment is the same as the case of the second embodiment except for the above points and related points. For this reason, in this embodiment, the description overlapping with the case of the second embodiment is omitted as appropriate.
  • each of the plurality of desulfurization and denitration apparatuses 93 is configured to generate sulfur oxides and nitrogen oxides contained as impurities in the mixed fluid F92 supplied from the oxidation treatment unit 92, as in the second embodiment. Configured to remove.
  • the first desulfurization denitration apparatus 93 ⁇ / b> A, the second desulfurization denitration apparatus 93 ⁇ / b> B, and the third desulfurization denitration apparatus 93 ⁇ / b> C are installed as the desulfurization denitration apparatus 93.
  • the first desulfurization denitration apparatus 93A, the second desulfurization denitration apparatus 93B, and the third desulfurization denitration apparatus 93C are arranged in parallel with each other in the flow path of the mixed fluid F92 supplied from the oxidation treatment unit 92. It is installed as follows.
  • each of the plurality of valves V93 is provided at a position upstream of each of the plurality of desulfurization and denitration apparatuses 93.
  • the first valve V93A, the second valve V93B, and the third valve V93C are respectively upstream of the first desulfurization denitration apparatus 93A, the second desulfurization denitration apparatus 93B, and the third desulfurization denitration apparatus 93C.
  • Each is installed.
  • the opening / closing operation of each of the first valve V93A, the second valve V93B, and the third valve V93C is controlled based on the control signal S95 output from the control unit 95.
  • the sensor 94 detects the concentration of impurities such as sulfur oxides and nitrogen oxides in the mixed fluid F93 that has passed through the desulfurization and denitration device 93. Then, the sensor 94 outputs a detection signal S94 to the control unit 95 based on the detection result.
  • the mixed fluid F94 that has passed through the sensor 94 flows out to the cooler 40 and flows through each part in the same manner as in the second embodiment.
  • the control unit 95 includes an arithmetic unit, and outputs a control signal S95 based on the detection signal S94 output from the sensor 94, thereby opening one of the plurality of valves V93, Keep other valves closed.
  • the controller 95 determines whether or not the impurity concentration of the mixed fluid F93 that has passed through the desulfurization denitration apparatus 93 is equal to or less than a preset value. To do. Then, the control unit 95 sequentially selects and opens one of the plurality of valves V93 by outputting a control signal S95 to each of the plurality of valves V93 according to the determination result.
  • control unit 95 presets the impurity concentration of the mixed fluid F93 that has passed through one desulfurization / denitration device 93 when the one desulfurization / denitration device 93 is opened among the plurality of desulfurization / denitration devices 93.
  • the mixed fluid F92 supplied from the oxidation treatment unit 92 is switched so as to pass through another desulfurization denitration apparatus 93.
  • control unit 95 first opens the first valve V93A and closes the second valve V93B and the third valve V93C, whereby the mixed fluid supplied from the oxidation processing unit 92 is supplied. Control is performed so that F92 passes through the first desulfurization denitration apparatus 93A. In this state, when it is determined that the impurity concentration of the mixed fluid F93 that has passed through the first desulfurization denitration apparatus 93A exceeds a preset value, the control unit 95 closes the first valve V93A and the second valve V93B is opened.
  • the control unit 95 switches the state where the mixed fluid F92 passes through the first desulfurization denitration device 93A to the state where the mixed fluid F92 passes through the second desulfurization denitration device 93B.
  • the control unit 95 closes the second valve V93B, and The valve V93C is opened.
  • the control unit 95 switches the state where the mixed fluid F92 passes through the second desulfurization denitration device 93B to the state where the mixed fluid F92 passes through the third desulfurization denitration device 93C. In this way, the control unit 95 sequentially switches between the first desulfurization denitration apparatus 93A, the second desulfurization denitration apparatus 93B, and the third desulfurization denitration apparatus 93C.
  • the sensor 94 that has a plurality of desulfurization and denitration devices 93 and detects sulfur oxides and nitrogen oxides contained in the mixed fluid F93 that has passed through the desulfurization and denitration devices 93 is provided.
  • the several desulfurization denitration apparatus 93 can be switched and utilized.
  • it is possible to effectively suppress an increase in the ratio of impurities in the working medium, and it is possible to prevent a decrease in efficiency, equipment deterioration, equipment damage, and the like. is there. Along with this, it is possible to easily realize a long life of the equipment.
  • the desulfurization and denitration apparatus 93 (93A to 93C) is arranged downstream of the oxidation treatment unit 92 has been described, but the present invention is not limited to this.
  • the desulfurization and denitration apparatus 93 (93A to 93C) may be disposed at a position other than the above position.
  • a denitration apparatus (not shown) that removes nitrogen oxides by an ammonia selective catalytic reduction method is generally treated at a temperature of about 350 ° C.
  • the heat exchanger 30 may be disposed in the flow path in the middle.
  • water quality management device 91 ... filter, 92 ... oxidation treatment 93, desulfurization denitration apparatus, 93A ... first desulfurization denitration apparatus, 93B ... second desulfurization denitration apparatus, 93C ... third desulfurization denitration apparatus, 94 ... sensor, 95 ... control unit, 510 ... trunk, 511 ... upper plate Part, 512 ... bottom plate part, 571 ... De, 572 ... stirring blade, V93 ... valve, V93A ... first valve, V93B ... second valve, V93C ... third valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

 効率の低下、機器の劣化、および、機器の損傷等が発生することを抑制可能な、ガスタービン設備を提供する。実施形態のガスタービン設備は、燃焼器とタービンと熱交換器と冷却器と分離器と加圧部とを有する。熱交換器は、タービンから排出された混合流体が通過し、冷却器は、熱交換器を通過した混合流体を冷却する。分離器は、冷却器で冷却された混合流体を、二酸化炭素ガスと、二酸化炭素が溶存した液相水とに分離する。加圧部は、分離器から供給された二酸化炭素ガスを超臨界状態になるように加圧して、熱交換器へ供給する。熱交換器では、加圧部において加圧された二酸化炭素と、タービンから排出された混合流体との間において熱交換が行なわれ、その熱交換が行なわれた二酸化炭素が超臨界状態で燃焼器に供給される。また、分離器は、混合流体から不純物を除去するように構成されている。

Description

ガスタービン設備
 本発明の実施形態は、ガスタービン設備に関する。
 ガスタービン設備においては、タービンから排出された排気ガスの一部を作動媒体として循環させて利用する技術が提案されている(たとえば、特許文献1,2参照)。
 具体的には、上記のガスタービン設備では、燃焼器において、燃料と酸素との燃焼反応が超臨界状態の二酸化炭素中で生じ、二酸化炭素と水蒸気とを含む燃焼ガスが生成される。そして、二酸化炭素と水蒸気とが混合した高温な混合流体が、燃焼器からタービンへ供給されて、タービンが駆動する。タービンから排気ガスとして排出された混合流体は、たとえば、熱交換器と冷却器とにおいて順次冷却された後に、汽水分離器において、二酸化炭素ガスと、二酸化炭素が溶存した液相水とに分離される。そして、汽水分離器で分離された二酸化炭素ガスは、圧縮器、ポンプなどによって超臨界状態になるように加圧された後に、熱交換器に供給される。熱交換器では、超臨界流体である二酸化炭素と、タービンから排出された混合流体との間において熱交換が行なわれる。そして、その熱交換によって加熱された超臨界状態の二酸化炭素が、燃焼器に供給される。燃焼器では、その加熱された超臨界状態の二酸化炭素中において燃料が燃焼されることによって、燃焼ガスが生成される。そして、上述したように、その燃焼ガスを含む混合流体がタービンに作動媒体として供給される。
 上記のガスタービン設備では、燃焼器で生成された二酸化炭素に相当する量の二酸化炭素が、作動媒体の流路から外部に排出される。そして、ガスタービン設備において外部に排出されずに残った二酸化炭素は、作動媒体の流路を循環する。
特開2010-180868号公報 特開2011-202668号公報
 ガスタービン設備において燃焼器に供給される燃料には、炭化水素(メタンなど)などの可燃性物質の他に、硫黄化合物などの不燃性物質が含まれる。また、燃焼器に酸化剤として供給される酸素は、空気分離装置によって大気から高濃度に分離されたものが用いられるが、窒素(N)などの不純物を含む。このため、燃焼器で生成される燃焼ガスにおいては、硫黄酸化物(SOx)、窒素酸化物(NOx)などの不純物が、含有する場合がある。また、燃焼ガスにおいては、不完全燃焼によって、一酸化炭素などの不純物が含有する場合がある。その他、ガスタービン設備において作動媒体が流れる流路には、錆やスケールなどの固体不純物が堆積する場合がある。
 上述したように、上記のガスタービン設備においては、タービンから排気ガスとして排出された混合流体の一部が作動媒体の流路を循環する。このため、上述した不純物の割合が作動媒体において増加し、効率の低下、機器の劣化、および、機器の損傷等が発生する場合がある。
 したがって、本発明が解決しようとする課題は、不純物に起因して、効率の低下、機器の劣化、および、機器の損傷等が発生することを抑制可能な、ガスタービン設備を提供することである。
 実施形態のガスタービン設備は、燃焼器とタービンと熱交換器と冷却器と分離器と加圧部とを有する。燃焼器は、燃料を燃焼させることによって燃焼ガスを生成し、二酸化炭素と水蒸気とを含む混合流体を排出する。タービンは、燃焼器から混合流体が供給されることによって駆動する。熱交換器は、タービンから排出された混合流体が通過する。冷却器は、熱交換器を通過した混合流体を冷却する。分離器は、冷却器で冷却された混合流体を、二酸化炭素ガスと、二酸化炭素が溶存した液相水とに分離する。加圧部は、分離器から供給された二酸化炭素ガスを超臨界状態になるように加圧して、熱交換器へ供給する。熱交換器では、加圧部において加圧された二酸化炭素と、タービンから排出された混合流体との間において熱交換が行なわれ、その熱交換が行われた二酸化炭素が超臨界状態で燃焼器に供給される。また、分離器は、混合流体から不純物を除去するように構成されている。
図1は、第1実施形態に係るガスタービン設備について模式的に示す系統図である。 図2は、第1実施形態に係るガスタービン設備において、分離器を示す図である。 図3は、第1実施形態の変形例に係るガスタービン設備について模式的に示す系統図である。 図4は、第1実施形態の変形例に係るガスタービン設備において、分離器を示す図である。 図5は、第2実施形態に係るガスタービン設備について模式的に示す系統図である。 図6は、第3実施形態に係るガスタービン設備について模式的に示す系統図である。
 実施形態について、図面を参照して説明する。
<第1実施形態>
[A]ガスタービン設備1の構成
 図1は、第1実施形態に係るガスタービン設備について模式的に示す系統図である。図1においては、ガスタービン設備を構成する各部を模式的に示すと共に、ガスタービン設備を構成する各部を流れる流体について、実線の矢印を用いて示している。
 図1に示すように、ガスタービン設備1は、燃焼器10と、タービン20と、熱交換器30と、冷却器40と、分離器50と、圧縮器60(加圧部)と、分配器70と、二酸化炭素分離装置80と、固形不純物除去装置81と、水質処理装置82と、水質管理装置83とを有する。各部は金属材料を用いて形成されている。
 詳細については後述するが、本実施形態のガスタービン設備1は、超臨界二酸化炭素循環発電システムであって、タービン20から排出された排気ガスの一部を作動媒体として循環させて利用する。
 ガスタービン設備1を構成する各部について順次説明する。
[A-1]燃焼器10
 燃焼器10は、燃料F1と酸素F2とが供給される。燃料F1は、例えば、天然ガスであって、メタンなどの炭化水素を可燃性ガスとして含有する。燃料F1は、石炭ガス化ガス等でもよい。酸素F2は、たとえば、空気分離装置(図示省略)を用いて大気から分離されたものが、燃焼器10に供給される。燃料F1および酸素F2のそれぞれは、流量調整弁(図示省略)によって流量が調整されて、燃焼器10に供給される。
 この他に、燃焼器10は、熱交換器30で加熱された超臨界状態の二酸化炭素F30bが供給される。そして、燃焼器10では、その加熱された超臨界状態の二酸化炭素F30b中において、燃料F1と酸素F2との間の燃焼反応が生じ、二酸化炭素と水蒸気とを含む燃焼ガスが生成される。
 そして、二酸化炭素と水蒸気とが混合した高温な混合流体F10が、燃焼器10からタービン20へ供給される。
[A-2]タービン20
 タービン20は、燃焼器10から混合流体F10が供給されることによって駆動する。具体的には、タービン20は、ケーシング(図示省略)の内部にタービンロータ(図示省略)が収容されており、ケーシングの内部において、その供給された混合流体F10が膨張して仕事を行うことによって、タービンロータが回転する。タービン20は、タービンロータに発電機(図示省略)の回転軸が連結されており、タービンロータの回転によって発電機が駆動し、発電が行われる。
 そして、二酸化炭素と水蒸気とが混合した低圧な混合流体F20が、タービン20から排気ガスとして熱交換器30へ排出される。
[A-3]熱交換器30
 熱交換器30は、タービン20から排気ガスとして排出された混合流体F20が流入する。これと共に、熱交換器30は、圧縮器60において超臨界状態になるように加圧された二酸化炭素F60のうち、分配器70によって分配された一方の二酸化炭素F70bが流入する。そして、熱交換器30では、タービン20から供給された混合流体F20と、分配器70から供給された二酸化炭素F70bとの間において、熱交換が行われる。
 タービン20から供給された混合流体F20は、熱交換器30において冷却され、低温な混合流体F30aとして熱交換器30から冷却器40に流出する。この一方で、分配器70から供給された二酸化炭素F70bは、熱交換器30において加熱され、高温な超臨界状態の二酸化炭素F30bとして、熱交換器30から燃焼器10に流出する。
[A-4]冷却器40、
 冷却器40は、熱交換器30から供給された混合流体F30aを冷却する。具体的には、冷却器40においては、熱交換器30から混合流体F30aが流入し、その混合流体F30aが冷却媒体(図示省略)との熱交換によって冷却される。これにより、混合流体F30aに含まれる水蒸気が凝縮されて、液相水になる。
 そして、二酸化炭素ガスと液相水とを含む混合流体F40(気液二相流体)が、冷却器40から分離器50へ流出する。
[A-5]分離器50
 分離器50は、冷却器40から供給された混合流体F40(気液二相流体)を、二酸化炭素ガスF50aと、二酸化炭素が溶存した液相水F50bとに分離する。分離器50は、たとえば、汽水分離器(セパレータ)である。
 詳細については後述するが、分離器50は、冷却器40から供給された混合流体F40から不純物を除去するように構成されている。
[A-6]圧縮器60(加圧部)
 圧縮器60は、分離器50から供給された二酸化炭素ガスF50aを加圧する。ここでは、圧縮器60は、その供給された二酸化炭素ガスF50aが超臨界状態になるように加圧を行う。圧縮器60は、たとえば、遠心圧縮器である。
 そして、超臨界状態の二酸化炭素F60が圧縮器60から分配器70へ流出する。
[A-7]分配器70
 分配器70は、圧縮器60から供給された超臨界状態の二酸化炭素F60を分配する。
 具体的には、分配器70は、圧縮器60から供給された二酸化炭素F60の一部を外部に排出する。分配器70から外部へ排出される二酸化炭素F70aの量は、燃焼器で生成される二酸化炭素の量に相当する。この一方で、圧縮器60から供給された二酸化炭素F60のうち、残りの二酸化炭素F70bは、熱交換器30へ供給される。上述したように、その二酸化炭素F70bは、熱交換器30において加熱され、高温な超臨界状態の二酸化炭素F30bとして、熱交換器30から燃焼器10に流出する。
[A-8]二酸化炭素分離装置80
 二酸化炭素分離装置80は、二酸化炭素が溶存した液相水F50bが、分離器50から供給される。そして、二酸化炭素分離装置80は、その液相水F50bを、二酸化炭素ガスF80aと、二酸化炭素が除去された液相水F80bとに分離する。二酸化炭素分離装置80は、たとえば、フラッシャである。
 二酸化炭素分離装置80で分離された二酸化炭素ガスF80aは、分離器50で分離された二酸化炭素ガスF50aと共に、燃焼器10に供給される。この一方で、二酸化炭素分離装置80で分離された液相水F80bは、固形不純物除去装置81に供給される。
[A-9]固形不純物除去装置81
 固形不純物除去装置81は、二酸化炭素分離装置80から排出された液相水F80bから固形の不純物を除去する。具体的には、固形不純物除去装置81は、フィルタ(図示省略)を有し、液相水F80bをフィルタに通過させ、液相水F80bに含まれる固形の不純物をフィルタが捕捉することによって、液相水F80bから固形の不純物を除去する。
 そして、固形不純物除去装置81で固形の不純物が除去された液相水F81は、水質処理装置82に流出する。
[A-10]水質処理装置82
 水質処理装置82は、固形不純物除去装置81から供給された液相水F81について、硫黄酸化物(SOx)および窒素酸化物(NOx)を除去する処理を行う。
 水質処理装置82では、たとえば、イオン交換法によって、硫黄酸化物の除去を行う。具体的には、二酸化硫黄(SO)と水との反応によって亜硫酸(HSO)が生成され、三酸化硫黄(SO)と水との反応によって硫酸(HSO)が生成される。そして、亜硫酸(HSO)について、たとえば、イオン交換法によって除去される。これ同様に、水質処理装置82では、たとえば、イオン交換法によって、窒素酸化物の除去を行う。具体的には、二酸化窒素(NO2)と水との反応によって硝酸(HNO)と亜硝酸(HNO)が生成される。そして、硝酸の形になっている硝酸性窒素は、たとえば、イオン交換樹脂を用いて除去される。
 そして、水質処理装置82で硫黄酸化物および窒素酸化物が除去された液相水F82は、水質管理装置83に流出する。
[A-11]水質管理装置83
 水質管理装置83は、水質処理装置82から供給された液相水F82を管理する。
 具体的には、水質管理装置83は、センサ(図示省略)と演算器(図示省略)とを有する。水質管理装置83において、センサは、液相水F82において、固形不純物、硫黄酸化物、および窒素酸化物などの不純物が含まれる濃度を検出し、検出信号を出力する。そして、その検出信号に基いて、液相水F82の不純物濃度が予め設定した値以下であるか否かを演算器が判断する。そして、その判断結果に応じて、演算器が、たとえば、警報器(図示省略)を操作することによって、警報器から警報を発する。この警報によって、フィルタやイオン交換樹脂などを交換する作業が必要であることがわかる。
[B]分離器50の詳細
 図2は、第1実施形態に係るガスタービン設備において、分離器を示す図である。図2においては、分離器50の構成に関して模式的に示している。なお、図2に示す分離器はの構成は、一例であって、他の構成であってもよい。
 図2に示すように、分離器50は、容器51と、第1の多孔板部52と、第2の多孔板部53と、第1の噴霧部54と、第2の噴霧部55とを有する。
 分離器50を構成する各部について順次説明する。
 分離器50のうち、容器51は、胴部510と上板部511と底板部512とを有し、供給口51Aと排気口51Bと排水口51Cとが形成されている。容器51において、胴部510は、円筒状であって中心軸が鉛直方向に沿っており、供給口51Aが形成されている。上板部511は、胴部510の上側に設けられており、排気口51Bが形成されている。底板部512は、胴部510の下側に設けられており、排水口51Cが形成されている。容器51の内部は、たとえば、ライニングの設置、耐食コーティングの実施、耐食材料の使用、中和処理等によって、耐食処理が施されている。具体的には、ライニングの設置では、たとえば、ゴムライニングあるいはポリエチレンライニング等を行う。耐食コーティングの実施では、たとえば、ポリテトラフルオロエチレン(テフロン(登録商標)など)のコーティングを行う。耐食材料の使用では、SUS304などのステンレス鋼を使用する。中和処理では、水酸化ナトリウム水溶液などのアルカリ性水溶液を用いた中和処理を行う。
 第1の多孔板部52は、容器51の内部において上板部511と底板部512との間に配置されており、胴部510の内周面に固定されている。第1の多孔板部52は、多孔板を含み、供給口51Aよりも上方に位置している。
 第2の多孔板部53は、第1の多孔板部52と同様に、容器51の内部において上板部511と底板部512との間に配置されており、胴部510の内周面に固定されている。第2の多孔板部53は、多孔板を含み、第1の多孔板部52よりも上方に位置している。
 第1の噴霧部54は、スプレーを含み、容器51の内部において第1の多孔板部52と第2の多孔板部53との間に配置されている。
 第2の噴霧部55は、第1の噴霧部54と同様に、スプレーを含み、容器51の内部において第2の多孔板部53の下方に配置されている。
 以下より、分離器50を流れる各流体について説明する。
 分離器50においては、混合流体F40(気液二相流体)(図1参照)が供給口51Aを介して容器51の内部に供給される。その混合流体F40(気液二相流体)は、容器51の内部において、二酸化炭素ガスF50aと、二酸化炭素が溶存した液相水F50bとに分離される。二酸化炭素ガスF50aは、容器51の内部において第1の多孔板部52と第2の多孔板部53とを順次介して上方へ移動する。そして、二酸化炭素ガスF50aは、排気口51Bを介して容器51の内部から外部へ排出される。この一方で、二酸化炭素が溶存した液相水F50bは、容器51の内部において下方へ移動し、容器51の下部で貯留する。そして、その液相水F50bは、排水口51Cを介して容器51の内部から外部へ排出される。
 本実施形態の分離器50では、容器51の内部において、第1の噴霧部54から純水F5が噴霧される。第1の噴霧部54によって噴霧された純水F5は、容器51の内部において、第1の多孔板部52と第2の多孔板部53とを順次介して、下方へ移動する。このとき、噴霧された純水F5は、容器51の内部に存在する硫黄酸化物および窒素酸化物が溶解する。そして、その噴霧された純水F5は、容器51の下部に溜まっている液相水F50bに混入する。
 この他に、本実施形態の分離器50では、容器51の内部において、第2の噴霧部55から、容器51の下部に溜まっている液相水F50bが噴霧される。ここでは、容器51の下部に溜まっている液相水F50bは、ポンプP50を介して、第2の噴霧部55に供給され、第2の噴霧部55から噴霧される。第2の噴霧部55によって噴霧された液相水F50bは、容器51の内部において、第2の多孔板部53を介して、下方へ移動する。このとき、噴霧された液相水F50bは、容器51の内部に存在する硫黄酸化物および窒素酸化物が溶解する。そして、その噴霧された液相水F50bは、容器51の下部に溜まっている液相水F50bに混入する。
 このように、本実施形態において、分離器50は、冷却器40から混合流体F40(気液二相流体)が供給される容器51の内部において、分離した液相水F50bを散布して循環させることによって、燃焼器10において燃焼で生じた硫黄酸化物および窒素酸化物を除去するように構成されている。
[C]まとめ
 以上のように、本実施形態のガスタービン設備1は、タービン20から排出された排気ガスの一部を作動媒体として循環させて利用する。具体的には、本実施形態のガスタービン設備1では、二酸化炭素と水蒸気とが混合した高温な混合流体F20が、燃焼器10からタービン20へ供給されて、タービン20が駆動する。タービン20から排気ガスとして排出された混合流体F20は、熱交換器30と冷却器40とにおいて順次冷却された後に、分離器50において、二酸化炭素ガスF50aと、二酸化炭素が溶存した液相水F50bとに分離される。二酸化炭素が溶存した液相水F50bは、二酸化炭素分離装置80において、二酸化炭素ガスF80aと、二酸化炭素が除去された液相水F80bとに分離される。そして、分離器50で分離された二酸化炭素ガスF50aと、二酸化炭素分離装置80で分離された二酸化炭素ガスF80aとの両者は、合流し、圧縮器60によって超臨界状態になるように加圧された後に、分配器70を介して、熱交換器30に供給される。熱交換器30では、超臨界流体である二酸化炭素F70bと、タービン20から排出された混合流体F20との間において熱交換が行なわれる。そして、その熱交換によって加熱された超臨界状態の二酸化炭素F30bが、燃焼器10に供給される。燃焼器10では、その加熱された超臨界状態の二酸化炭素F30b中において燃料F1が燃焼されることによって、燃焼ガスが生成される。そして、上述したように、その燃焼ガスを含む混合流体F10がタービン20に作動媒体として供給される。
 本実施形態のガスタービン設備1において、分離器50は、気液分離を行う他に、冷却器40で冷却された混合流体F40から不純物を除去するように構成されている。ここでは、分離器50は、上述したように、混合流体F40が供給される容器51の内部において、分離した液相水F50bを散布し循環させることによって、燃焼器10において燃焼で生じた硫黄酸化物および窒素酸化物を混合流体F40から除去する。このため、本実施形態のガスタービン設備1は、硫黄酸化物および窒素酸化物の割合が作動媒体において増加することを抑制可能であって、効率の低下、機器の劣化、および、機器の損傷等が発生することを防止可能である。これと共に、本実施形態のガスタービン設備1は、二酸化炭素を外部へ排出する量を効果的に低減することが可能である。
 また、本実施形態のガスタービン設備1では、固形不純物除去装置81が、二酸化炭素分離装置80で分離された液相水F80bから固形の不純物を除去する。また、本実施形態では、二酸化炭素分離装置80で分離された液相水F80bが固形不純物除去装置81を介して水質処理装置82に供給され、水質処理装置82が、その液相水F80bについて硫黄酸化物および窒素酸化物を除去する処理を行う。さらに、本実施形態では、二酸化炭素分離装置80で分離された液相水F80bが固形不純物除去装置81と水質処理装置82とを介して水質管理装置83に供給され、水質管理装置83が、その液相水F80bを管理する。このため、本実施形態のガスタービン設備1は、固形の不純物、硫黄酸化物、および窒素酸化物の割合が作動媒体において増加することを抑制可能であって、効率の低下、機器の劣化、および、機器の損傷等が発生することを防止可能である。
[D]変形例
[D-1]変形例1-1
 図3は、第1実施形態の変形例に係るガスタービン設備について模式的に示す系統図である。図3においては、図1と同様に、ガスタービン設備を構成する各部を模式的に示すと共に、ガスタービン設備を構成する各部を流れる流体について、実線の矢印を用いて示している。
 図3に示すように、圧縮器60と分配器70との間に、冷却器40Bとポンプ61(加圧部)との両者が介在していてもよい。この場合には、圧縮器60で加圧された二酸化炭素F60を冷却器40Bが冷却する。そして、その冷却器40Bで冷却された二酸化炭素F40Bをポンプ61が昇圧する。ポンプ61は、たとえば、圧力が臨界圧よりも低い二酸化炭素F60を、圧力が臨界圧以上になるように昇圧する。そして、そのポンプ61で昇圧された二酸化炭素F61が分配器70に供給される。
 また、上記の実施形態では、水質管理装置83は、演算器(図示省略)が警報器(図示省略)を操作することによって警報を発する場合について説明したが、これに限らない。水質管理装置83は、液相水F82の不純物濃度が予め設定した値以下であるか否かを演算器が判断した結果に応じて、演算器が切替弁(図示省略)を操作することによって、液相水F82の流路を切り替えるように構成されていてもよい。
 具体的には、液相水F82の不純物濃度が予め設定した値(排出基準値)以下である場合には、その不純物濃度が低い液相水F83aを外部へ排出するように流路を切り替える。この一方で、液相水F82の不純物濃度が予め設定した値よりも高い場合には、その不純物濃度が高い液相水F83bを固形不純物除去装置81の上流に合流させるように流路を切り替える。つまり、その不純物濃度が高い液相水F83bを、固形不純物除去装置81と水質処理装置82とに順次通過させて、循環させる。
[D-2]変形例1-2
 図4は、第1実施形態の変形例に係るガスタービン設備において、分離器を示す図である。図4においては、図2と同様に、分離器50の構成に関して模式的に示している。
 図4に示すように、分離器50は、容器51の内部において、分離した液相水F50bを撹拌するよう構成されていてもよい。つまり、分離器50は、撹拌機57が設置されていてもよい。
 撹拌機57は、撹拌ロッド571と撹拌羽根572とを有する。撹拌機57は、撹拌ロッド571の一端側に撹拌羽根572が固定されている。撹拌機57は、回転機構(図示省略)で撹拌ロッド571を回転させることによって、容器51の内部において撹拌羽根572を回転させて、液相水F50bを撹拌する。これにより、容器51の下部に固形不純物(錆、金属剥離物など)が堆積せず、固形不純物が容器51の外部へ容易に排出可能である。
[D-3]変形例1-3
 上記の実施形態では、二酸化炭素分離装置80で分離された二酸化炭素ガスF80aが、分離器50で分離された二酸化炭素ガスF50aと共に、燃焼器10に供給される場合について説明したが、これに限らない。二酸化炭素分離装置80で分離された二酸化炭素ガスF80aを、燃焼器10に供給せずに、系外へ排出してもよい。ここでは、二酸化炭素ガスF80aを単独で系外へ排出してもよい。この他に、その二酸化炭素ガスF80aを、分配器70から排出された二酸化炭素F70aに合流させた後に、系外へ排出してもよい。
<第2実施形態>
[A]ガスタービン設備1の構成
 図5は、第2実施形態に係るガスタービン設備について模式的に示す系統図である。図5においては、図1と同様に、ガスタービン設備を構成する各部を模式的に示すと共に、ガスタービン設備を構成する各部を流れる流体について、実線の矢印を用いて示している。
 図5に示すように、本実施形態のガスタービン設備1bは、燃焼器10と、タービン20と、熱交換器30と、冷却器40と、分離器50と、圧縮器60(加圧部)と、分配器70とを有する。
 しかし、本実施形態のガスタービン設備1bは、上記の第1実施形態の場合(図1などを参照)と異なり、二酸化炭素分離装置80と、固形不純物除去装置81と、水質処理装置82と、水質管理装置83とを有していない。本実施形態のガスタービン設備1bは、上記の第1実施形態の場合と異なり、フィルタ91と、酸化処理部92と、脱硫脱硝装置93とを有する。本実施形態は、上記の点、及び、関連する点を除き、第1実施形態の場合と同様である。このため、本実施形態において第1実施形態の場合と重複する個所については、適宜、記載を省略する。
 ガスタービン設備1bにおいて、フィルタ91は、熱交換器30から供給される混合流体F30aに不純物として含まれる固形の不純物(錆など)を除去するように構成されている。具体的には、フィルタ91は、金属フィルタであって、混合流体F30aが通過するときに、その混合流体F30aに含まれる固形の不純物を捕捉することによって、混合流体F30aから固形の不純物を除去する。そして、フィルタ91によって固形の不純物が除去された混合流体F91は、酸化処理部92に流出する。
 ガスタービン設備1bにおいて、酸化処理部92は、酸化触媒を有し、フィルタ91から供給される混合流体F91に不純物として含まれる一酸化炭素を酸化するように構成されている。酸化触媒は、たとえば、ルテニウム(Ru)などの貴金属触媒である。酸化処理部92において、一酸化炭素は、混合流体F91に含まれる酸素と反応することによって、二酸化炭素になる。そして、酸化処理部92において一酸化炭素が酸化した混合流体F92は、脱硫脱硝装置93に流出する。
 ガスタービン設備1bにおいて、脱硫脱硝装置93は、酸化処理部92から供給される混合流体F92に不純物として含まれる硫黄酸化物および窒素酸化物を除去する。具体的には、脱硫脱硝装置93は、たとえば、湿式石灰石こう法によって、硫黄酸化物の除去を行うように構成されている。これと共に、脱硫脱硝装置93は、たとえば、アンモニア選択接触還元法によって、窒素酸化物の除去を行うように構成されている。そして、脱硫脱硝装置93で硫黄酸化物および窒素酸化物が除去された混合流体F93は、冷却器40に流出する。
 そして、脱硫脱硝装置93を通過した混合流体F93は、冷却器40において冷却された後に、分離器50において、二酸化炭素ガスF50aと、二酸化炭素が溶存した液相水F50bとに分離される。分離器50で分離された液相水F50bは、ガスタービン設備1bの外部へ排出される。これに対して、分離器50で分離された二酸化炭素ガスF50aは、圧縮器60によって超臨界状態になるように加圧された後に、分配器70を介して、熱交換器30に供給される。熱交換器30では、超臨界流体である二酸化炭素F70bと、タービン20から排出された混合流体F20との間において熱交換が行なわれる。熱交換器30での熱交換によって加熱された超臨界状態の二酸化炭素F30bは、燃焼器10に供給される。燃焼器10では、その加熱された超臨界状態の二酸化炭素F30b中において燃料F1が燃焼されることによって、燃焼ガスが生成され、その燃焼ガスを含む混合流体F10がタービン20に作動媒体として供給される。
[B]まとめ
 以上のように、本実施形態では、熱交換器30を通過した混合流体F30aは、フィルタ91と酸化処理部92と脱硫脱硝装置93とのそれぞれによって、不純物が除去される。このため、本実施形態は、不純物の割合が作動媒体において増加することを抑制可能であって、効率の低下、機器の劣化、および、機器の損傷等が発生することを防止可能である。その結果、設備の長寿命化を容易に実現することができる。
[C]変形例
 上記の実施形態では、脱硫脱硝装置93が酸化処理部92の下流に配置される場合について説明したが、これに限らない。脱硫脱硝装置93に流入する流体の温度に応じて、脱硫脱硝装置93を、上記の位置以外の位置に配置してもよい。たとえば、脱硫脱硝装置93のうち、アンモニア選択接触還元法によって窒素酸化物の除去を行う脱硝装置(図示省略)については、一般に、350℃程度の温度で処理を行うので、たとえば、熱交換器30の途中の流路に、配置されてもよい。
<第3実施形態>
 図6は、第3実施形態に係るガスタービン設備について模式的に示す系統図である。図6においては、図5と同様に、ガスタービン設備を構成する各部を模式的に示すと共に、ガスタービン設備を構成する各部を流れる流体について、実線の矢印を用いて示している。この他に、図6においては、電気信号の流れについて、一点鎖線の矢印を用いて示している。
 図6に示すように、本実施形態のガスタービン設備1cは、第2実施形態の場合と同様に、燃焼器10と、タービン20と、熱交換器30と、冷却器40と、分離器50と、圧縮器60(加圧部)と、分配器70とを有する。この他に、本実施形態のガスタービン設備1cは、第2実施形態の場合と同様に、フィルタ91と、酸化処理部92と、脱硫脱硝装置93とを有する。
 しかし、本実施形態のガスタービン設備1cは、上記の第2実施形態の場合(図5などを参照)と異なり、脱硫脱硝装置93が複数設けられている。また、本実施形態では、複数の弁V93が設けられていると共に、センサ94と制御部95とが更に設けられている。本実施形態は、上記の点、及び、関連する点を除き、第2実施形態の場合と同様である。このため、本実施形態において第2実施形態の場合と重複する個所については、適宜、記載を省略する。
 ガスタービン設備1cにおいて、複数の脱硫脱硝装置93のそれぞれは、第2実施形態の場合と同様に、酸化処理部92から供給される混合流体F92に不純物として含まれる硫黄酸化物および窒素酸化物を除去するように構成されている。本実施形態では、第1脱硫脱硝装置93A、第2脱硫脱硝装置93B、および、第3脱硫脱硝装置93Cが、脱硫脱硝装置93として設置されている。ここでは、第1脱硫脱硝装置93Aと、第2脱硫脱硝装置93Bと、第3脱硫脱硝装置93Cとのそれぞれは、酸化処理部92から供給される混合流体F92の流路において、互いに並列に並ぶように設置されている。
 ガスタービン設備1cにおいて、複数の弁V93のそれぞれは、複数の脱硫脱硝装置93のそれぞれよりも上流側の位置に設けられている。本実施形態では、第1脱硫脱硝装置93Aと第2脱硫脱硝装置93Bと第3脱硫脱硝装置93Cとのそれぞれの上流に、第1の弁V93Aと第2の弁V93Bと第3の弁V93Cとのそれぞれが設置されている。第1の弁V93Aと第2の弁V93Bと第3の弁V93Cとのそれぞれは、制御部95から出力された制御信号S95に基いて、開閉動作が制御される。
 ガスタービン設備1cにおいて、センサ94は、脱硫脱硝装置93を通過した混合流体F93において、硫黄酸化物および窒素酸化物などの不純物が含まれる濃度を検出する。そして、センサ94は、その検出結果に基いて検出信号S94を制御部95へ出力する。センサ94を通過した混合流体F94は、第2実施形態の場合と同様に、冷却器40に流出し、各部を順次流れる。
 ガスタービン設備1cにおいて、制御部95は、演算器を含み、センサ94から出力された検出信号S94に基いて制御信号S95を出力することによって、複数の弁V93のうち、一の弁を開け、他の弁を閉めた状態にする。ここでは、制御部95は、センサ94から出力された検出信号S94に基いて、脱硫脱硝装置93を通過した混合流体F93の不純物濃度が予め設定した値以下であるか否かを演算器が判断する。そして、制御部95は、その判断結果に応じて、複数の弁V93のそれぞれに制御信号S95を出力することによって、複数の弁V93のうち、一の弁を順次選択して開ける。すなわち、制御部95は、複数の脱硫脱硝装置93のうち、一の脱硫脱硝装置93を開けた状態のときに、その一の脱硫脱硝装置93を通過した混合流体F93の不純物濃度が予め設定した値を超えた場合には、酸化処理部92から供給される混合流体F92が、他の脱硫脱硝装置93を通過するように切り替える。
 具体的には、制御部95は、まず、第1の弁V93Aを開け、第2の弁V93Bおよび第3の弁V93Cを閉めた状態にすることによって、酸化処理部92から供給される混合流体F92が第1脱硫脱硝装置93Aを通過するように制御を行う。その状態において、第1脱硫脱硝装置93Aを通過した混合流体F93の不純物濃度が予め設定した値を超えたと判断した場合には、制御部95は、第1の弁V93Aを閉め、第2の弁V93Bを開けた状態にする。これにより、制御部95は、第1脱硫脱硝装置93Aを混合流体F92が通過する状態から、第2脱硫脱硝装置93Bを混合流体F92が通過する状態に切り替える。そして、その状態において、第2脱硫脱硝装置93Bを通過した混合流体F93の不純物濃度が予め設定した値を超えたと判断した場合には、制御部95は、第2の弁V93Bを閉め、第3の弁V93Cを開けた状態にする。これにより、制御部95は、第2脱硫脱硝装置93Bを混合流体F92が通過する状態から、第3脱硫脱硝装置93Cを混合流体F92が通過する状態に切り替える。このように、制御部95は、第1脱硫脱硝装置93Aと第2脱硫脱硝装置93Bと第3脱硫脱硝装置93Cとを順次切り替える。
[B]まとめ
 以上のように、本実施形態では、複数の脱硫脱硝装置93を有すると共に、脱硫脱硝装置93を通過した混合流体F93に含まれる硫黄酸化物および窒素酸化物を検出するセンサ94を有する。このため、本実施形態では、混合流体F93に含まれる硫黄酸化物および窒素酸化物の濃度に応じて、複数の脱硫脱硝装置93を切り替えて利用することができる。その結果、本実施形態では、不純物の割合が作動媒体において増加することを効果的に抑制可能であって、効率の低下、機器の劣化、および、機器の損傷等が発生することを防止可能である。そして、これに伴って、設備の長寿命化を容易に実現することができる。
[C]変形例
 上記の実施形態においては、センサ94から出力された検出信号S94に基いて、制御部95が複数の脱硫脱硝装置93を自動的に切り替えて利用する場合について説明したが、これに限らない。制御部95を設置せずに、センサ94で得られた検出データに応じてマニュアルで複数の脱硫脱硝装置93を切り替えるように構成してもよい。
 また、上記の実施形態では、脱硫脱硝装置93(93A~93C)が酸化処理部92の下流に配置される場合について説明したが、これに限らない。脱硫脱硝装置93(93A~93C)に流入する流体の温度に応じて、脱硫脱硝装置93(93A~93C)を、上記の位置以外の位置に配置してもよい。たとえば、脱硫脱硝装置93(93A~93C)のうち、アンモニア選択接触還元法によって窒素酸化物の除去を行う脱硝装置(図示省略)については、一般に、350℃程度の温度で処理を行うので、たとえば、熱交換器30の途中の流路に、配置されてもよい。
<その他>
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…ガスタービン設備、1b…ガスタービン設備、1c…ガスタービン設備、10…燃焼器、20…タービン、30…熱交換器、40…冷却器、40B…冷却器、50…分離器、51…容器、51A…供給口、51B…排気口、51C…排水口、52…第1多孔板部、53…第2多孔板部、54…第1噴霧部、55…第2噴霧部、57…撹拌機、60…圧縮器、61…ポンプ、70…分配器、80…二酸化炭素分離装置、81…固形不純物除去装置、82…水質処理装置、83…水質管理装置、91…フィルタ、92…酸化処理部、93…脱硫脱硝装置、93A…第1脱硫脱硝装置、93B…第2脱硫脱硝装置、93C…第3脱硫脱硝装置、94…センサ、95…制御部、510…胴部、511…上板部、512…底板部、571…撹拌ロッド、572…撹拌羽根、V93…弁、V93A…第1弁、V93B…第2弁、V93C…第3弁。

Claims (12)

  1.  燃料を燃焼させることによって燃焼ガスを生成し、二酸化炭素と水蒸気とを含む混合流体を排出する燃焼器と、
     前記燃焼器から前記混合流体が供給されることによって駆動するタービンと、
     前記タービンから排出された前記混合流体が通過する熱交換器と、
     前記熱交換器を通過した前記混合流体を冷却する冷却器と、
     前記冷却器で冷却された前記混合流体を、二酸化炭素ガスと、二酸化炭素が溶存した液相水とに分離する分離器と、
     前記分離器から供給された前記二酸化炭素ガスを超臨界状態になるように加圧して、前記熱交換器へ供給する加圧部と
     を有し、
     前記熱交換器では、前記加圧部において加圧された二酸化炭素と、前記タービンから排出された前記混合流体との間において熱交換が行なわれ、当該熱交換が行われた二酸化炭素が超臨界状態で前記燃焼器に供給され、
     前記分離器は、前記混合流体から不純物を除去するように構成されていることを特徴とする、
     ガスタービン設備。
  2.  前記分離器は、前記混合流体が供給される容器の内部において、前記液相水を散布し循環させることによって、前記燃焼器において燃焼で生じた硫黄酸化物および窒素酸化物を前記混合流体から除去する、
     請求項1に記載のガスタービン設備。
  3.  前記分離器は、前記容器の内部が耐食処理されている、
     請求項2に記載のガスタービン設備。
  4.  前記分離器は、前記容器の内部において前記液相水を撹拌するよう構成されている、
     請求項2または3に記載のガスタービン設備。
  5.  前記分離器から前記液相水が供給され、当該液相水を、二酸化炭素ガスと、二酸化炭素が除去された液相水とに分離する二酸化炭素分離装置
     を有する、
     請求項1から4のいずれかに記載のガスタービン設備。
  6.  前記二酸化炭素分離装置において分離された二酸化炭素ガスは、前記分離器において分離された二酸化炭素ガスと共に、前記燃焼器に供給される、
     請求項5に記載のガスタービン設備。
  7.  前記二酸化炭素分離装置から排出された前記液相水から固形の不純物を除去する固形不純物除去装置
     を有する、
     請求項5または6に記載のガスタービン設備。
  8.  前記二酸化炭素分離装置から排出された前記液相水について、硫黄酸化物および窒素酸化物を除去する処理を行う水質処理装置
     を有する、
     請求項5から7のいずれかに記載のガスタービン設備。
  9.  前記二酸化炭素分離装置から排出された前記液相水を管理する水質管理装置
     を有する、
     請求項5から8のいずれかに記載のガスタービン設備。
  10.  前記熱交換器を通過した前記混合流体から固形の不純物を除去するフィルタ
     を有する、
     請求項1から請求項9のいずれかに記載のガスタービン設備。
  11.  前記熱交換器を通過した前記混合流体に含まれる一酸化炭素を酸化する酸化触媒を有する酸化処理部
     を有する、
     請求項1から請求項10のいずれかに記載のガスタービン設備。
  12.  前記熱交換器を通過した前記混合流体について、硫黄酸化物および窒素酸化物を除去する処理を行う脱硫脱硝装置
     を有する、
     請求項1から請求項11のいずれかに記載のガスタービン設備。
PCT/JP2015/004326 2014-09-05 2015-08-27 ガスタービン設備 WO2016035297A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014180810A JP2016056685A (ja) 2014-09-05 2014-09-05 ガスタービン設備
JP2014-180810 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035297A1 true WO2016035297A1 (ja) 2016-03-10

Family

ID=55439381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004326 WO2016035297A1 (ja) 2014-09-05 2015-08-27 ガスタービン設備

Country Status (2)

Country Link
JP (1) JP2016056685A (ja)
WO (1) WO2016035297A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579383A (zh) * 2018-05-09 2018-09-28 中国能源建设集团广东省电力设计研究院有限公司 二氧化碳气源预净化系统及提纯系统
CN108686479A (zh) * 2018-05-23 2018-10-23 长沙埃比林环保科技有限公司 一种高硫氮氧化物废气的处理方法
CN108816032A (zh) * 2018-07-07 2018-11-16 山东瑞嘉通风环保科技有限公司 一种烟气洁净排放的脱硫及低温脱硝系统及工艺
WO2023013015A1 (ja) * 2021-08-06 2023-02-09 日揮グローバル株式会社 二酸化炭素サイクル発電設備を用いた二酸化炭素回収方法および二酸化炭素回収システム

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207813A (ja) * 1989-02-07 1990-08-17 Mitsui Toatsu Chem Inc 排ガス処理装置及び排ガスの処理方法
JPH03100331A (ja) * 1989-09-11 1991-04-25 Japan Atom Energy Res Inst Coレヒートガスタービン・コンバインドサイクルによる発電方法
JP2001017824A (ja) * 1999-07-05 2001-01-23 Ishikawajima Harima Heavy Ind Co Ltd 湿式排煙脱硫装置
JP2001276560A (ja) * 2000-03-31 2001-10-09 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JP2002136965A (ja) * 2000-11-07 2002-05-14 Ube Material Industries Ltd 排水の処理方法
JP2007516835A (ja) * 2003-12-31 2007-06-28 ザ・ビーオーシー・グループ・インコーポレーテッド 廃水のクロマトグラフィー分離によるフッ化物及びアンモニアの選択的除去
JP2008036554A (ja) * 2006-08-08 2008-02-21 Central Res Inst Of Electric Power Ind 水銀除去装置及び方法
JP2008121981A (ja) * 2006-11-13 2008-05-29 Noritz Corp 給湯機用脱窒装置及び給湯機
JP2012245467A (ja) * 2011-05-27 2012-12-13 Nippon Electric Glass Co Ltd 排ガス処理装置、及び排ガス処理方法
JP2013520597A (ja) * 2010-01-28 2013-06-06 パルマー ラボ,エルエルシー 二酸化炭素循環作動流体を用いた高効率発電のためのシステムおよび方法
JP2013543550A (ja) * 2010-09-21 2013-12-05 パルマー ラボ,エルエルシー 高効率発電方法、組立体、及びシステム
JP2014148934A (ja) * 2013-02-01 2014-08-21 Hitachi Ltd 火力発電システム
US20140230401A1 (en) * 2012-08-30 2014-08-21 Enhanced Energy Group LLC Cycle turbine engine power system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207813A (ja) * 1989-02-07 1990-08-17 Mitsui Toatsu Chem Inc 排ガス処理装置及び排ガスの処理方法
JPH03100331A (ja) * 1989-09-11 1991-04-25 Japan Atom Energy Res Inst Coレヒートガスタービン・コンバインドサイクルによる発電方法
JP2001017824A (ja) * 1999-07-05 2001-01-23 Ishikawajima Harima Heavy Ind Co Ltd 湿式排煙脱硫装置
JP2001276560A (ja) * 2000-03-31 2001-10-09 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JP2002136965A (ja) * 2000-11-07 2002-05-14 Ube Material Industries Ltd 排水の処理方法
JP2007516835A (ja) * 2003-12-31 2007-06-28 ザ・ビーオーシー・グループ・インコーポレーテッド 廃水のクロマトグラフィー分離によるフッ化物及びアンモニアの選択的除去
JP2008036554A (ja) * 2006-08-08 2008-02-21 Central Res Inst Of Electric Power Ind 水銀除去装置及び方法
JP2008121981A (ja) * 2006-11-13 2008-05-29 Noritz Corp 給湯機用脱窒装置及び給湯機
JP2013520597A (ja) * 2010-01-28 2013-06-06 パルマー ラボ,エルエルシー 二酸化炭素循環作動流体を用いた高効率発電のためのシステムおよび方法
JP2013543550A (ja) * 2010-09-21 2013-12-05 パルマー ラボ,エルエルシー 高効率発電方法、組立体、及びシステム
JP2012245467A (ja) * 2011-05-27 2012-12-13 Nippon Electric Glass Co Ltd 排ガス処理装置、及び排ガス処理方法
US20140230401A1 (en) * 2012-08-30 2014-08-21 Enhanced Energy Group LLC Cycle turbine engine power system
JP2014148934A (ja) * 2013-02-01 2014-08-21 Hitachi Ltd 火力発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579383A (zh) * 2018-05-09 2018-09-28 中国能源建设集团广东省电力设计研究院有限公司 二氧化碳气源预净化系统及提纯系统
CN108686479A (zh) * 2018-05-23 2018-10-23 长沙埃比林环保科技有限公司 一种高硫氮氧化物废气的处理方法
CN108816032A (zh) * 2018-07-07 2018-11-16 山东瑞嘉通风环保科技有限公司 一种烟气洁净排放的脱硫及低温脱硝系统及工艺
WO2023013015A1 (ja) * 2021-08-06 2023-02-09 日揮グローバル株式会社 二酸化炭素サイクル発電設備を用いた二酸化炭素回収方法および二酸化炭素回収システム

Also Published As

Publication number Publication date
JP2016056685A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2016035297A1 (ja) ガスタービン設備
JP5674281B2 (ja) ガスタービンNOxの乾式三元触媒還元法
JP5773687B2 (ja) 海水排煙脱硫システムおよび発電システム
JP5215185B2 (ja) 少なくとも1つのガスタービンにより製造される酸素含有ガスを用いて合成ガスを製造するための方法
TWI488682B (zh) Seawater desulfurization system and power generation system
EA017140B1 (ru) Способ (варианты) и система для извлечения сероводорода из потока высокосернистого газа
EA039851B1 (ru) Система и способ выработки энергии с использованием частичного окисления
JP2012179521A5 (ja)
AU2013264029A1 (en) Discharge gas treatment device
JP2013108108A (ja) 直接還元鉄製造システム
JP5441029B2 (ja) 排気ガスの処理方法および処理装置
US11198828B2 (en) Process for hydrogen sulfide scrubbing and method for ferric ion regeneration
WO2013115108A1 (ja) 酸化槽、海水排煙脱硫システムおよび発電システム
CA3043669A1 (en) Removal of impurities from a process stream by contacting it with an oxidant and with an aqueous stream
Long et al. Desulfurization scrubbing in a squared spray column for a 720 kW marine diesel engine: design, construction, simulation, and experiment
JP2012087794A (ja) 発電プラント
JP2021505364A (ja) 硫黄回収ユニットのテールガス処理システム
EP2851344B1 (en) Method and system for seawater foam control
JP2013173898A (ja) Coシフト反応装置及びガス化ガス精製システム
JP5392676B2 (ja) 排気ガスの処理方法および処理装置
EP4331709A1 (en) Ship
JP2012152658A (ja) エアレーション装置及びこれを備えた海水排煙脱硫装置、エアレーション装置の運転方法
JP2020531262A (ja) 酸性ガスの処理および発電のプロセス
KR102538599B1 (ko) 선박의 휘발성 유기화합물 처리 시스템
US9616374B2 (en) Multi-stage temperature based separation of gas impurities

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837315

Country of ref document: EP

Kind code of ref document: A1