WO2016035238A1 - Developer jetting nozzle and developing device - Google Patents

Developer jetting nozzle and developing device Download PDF

Info

Publication number
WO2016035238A1
WO2016035238A1 PCT/JP2015/003436 JP2015003436W WO2016035238A1 WO 2016035238 A1 WO2016035238 A1 WO 2016035238A1 JP 2015003436 W JP2015003436 W JP 2015003436W WO 2016035238 A1 WO2016035238 A1 WO 2016035238A1
Authority
WO
WIPO (PCT)
Prior art keywords
developer
inner member
substrate
outer member
nozzle
Prior art date
Application number
PCT/JP2015/003436
Other languages
French (fr)
Japanese (ja)
Inventor
沙織 谷口
保夫 ▲高▼橋
史弥 岡崎
小椋 浩之
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2016035238A1 publication Critical patent/WO2016035238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • the present invention relates to a developer discharge nozzle and a development processing apparatus.
  • a developer discharge nozzle having a slit-like discharge port is used.
  • the developer discharge nozzle described in Patent Document 1 includes first and second members having water repellency and a third member having hydrophilicity.
  • the first, second, and third members are each provided in a plate shape, and the first and second members are joined to one surface and the other surface of the third member, respectively.
  • a developer flow path is formed between the third member and the second member, and a slit-like discharge port is provided at the lower end thereof.
  • a solution containing a developer and a resist residue adheres to the developer discharge nozzle.
  • a processing solution adheres to the developer discharge nozzle.
  • solids precipitate from the processing solution.
  • the precipitated solid matter causes development defects.
  • the processing solution adheres to the flow path of the developing solution, the processing solution is removed by the flow of the developing solution, so that the solid matter is not easily deposited.
  • the processing solution adheres to a portion where the developer does not flow, the processing solution is difficult to remove. Therefore, there is a possibility that a solid substance is deposited.
  • An object of the present invention is to provide a developer discharge nozzle and a development processing apparatus in which the occurrence of development defects due to precipitation of solid matter is prevented.
  • a developer discharge nozzle includes an inner member having first and second side surfaces directed in opposite directions, a first inner surface and an inner surface facing the first side surface of the inner member. And an outer member having a second inner surface opposed to the second side surface of the material, and a first flow path extending vertically is formed between the first side surface of the inner member and the first inner surface of the outer member. A second flow path extending vertically between the second side surface of the inner member and the second inner surface of the outer member is formed, and an introduction path for introducing the developer into the first and second flow paths is provided outside.
  • a first discharge port formed on the material for discharging the developer is formed at the lower end of the first flow path, and a second discharge port for discharging the developer is the lower end of the second flow path. Formed in the part.
  • a first flow path is formed between the first side surface of the inner member and the first inner surface of the outer member, and the second side surface of the inner member and the second side of the outer member.
  • a second flow path is formed between the inner surface. The developer is guided to the first and second flow paths through the introduction path formed in the external material. The developer guided to the first flow path is discharged from the first discharge port, and the developer guided to the second flow path is discharged from the second discharge port.
  • a solution containing a developing solution, a resist residue, and the like (hereinafter referred to as a processing solution) is a first and second side surface of the inner member that forms the first and second flow paths, and the first and second side surfaces of the outer member. Regardless of which of the second inner surface is attached, the processing solution is removed by the flow of the developer. Thereby, it is prevented that a solid substance precipitates from the attached processing solution. As a result, the occurrence of development defects due to the precipitation of solid matter is prevented.
  • the inner member may have higher hydrophilicity than the outer member.
  • a sufficient liquid reservoir is formed between the lower surface of the inner member and the upper surface of the substrate. Is formed. This prevents the liquid layer from being separated between the lower surface of the inner member and the upper surface of the substrate.
  • the inner member has an upper surface connecting the upper end portion of the first side surface and the upper end portion of the second side surface
  • the outer member has the upper end portion of the first inner surface and the upper end portion of the second inner surface.
  • a communication path that connects the first and second flow paths between the upper surface of the inner member and the third inner surface of the outer member is formed.
  • the introduction path may be formed so as to guide the developer to the communication path.
  • the developer can be guided to the first and second flow paths with a simple configuration.
  • the first and second side surfaces and the upper surface of the inner member respectively form a flow path for the developer, a portion where the processing solution may remain on the surface of the inner member is reduced. Thereby, precipitation of a solid substance is fully prevented.
  • the developer discharge nozzle may further include a locking member that locks the inner member between the first and second inner surfaces of the outer member.
  • the inner member can be fixed between the first and second inner surfaces of the outer member while reducing the cost for processing the inner member.
  • the outer member includes a first member having a first inner surface and a second member having a second inner surface, wherein the first and second members are the first and second inner surfaces.
  • the inner members may be fixed to each other with the inner member interposed therebetween.
  • the assembly of the developer discharge nozzle becomes easy.
  • the inner member is stably held between the first and second inner surfaces by sandwiching the inner member by the first and second members.
  • Each of the first and second discharge ports has a slit shape, and may extend in one direction in parallel with each other. In this case, the liquid layer of the developer can be efficiently formed on the substrate.
  • the first channel protrudes upward from the first belt-like channel formed to extend in one direction along the first discharge port and the upper end of the first belt-like channel.
  • a plurality of first protruding flow paths provided so as to be aligned in one direction, and the second flow path is formed to extend in one direction along the second discharge port.
  • a plurality of second projecting channels provided so as to line up in one direction while projecting upward from the upper end portion of the second strip channel, and the introduction path includes a plurality of second channels
  • a plurality of communication introduction paths provided so as to communicate with the first and second projecting flow paths may be included.
  • the developer is uniformly guided from the plurality of first projecting channels to the entire first strip-shaped channel, and the developer is introduced from the plurality of second projecting channels to the entire second strip-shaped channel. Evenly guided. As a result, the developer can be uniformly discharged from the entire first and second discharge ports. Therefore, the liquid layer of the developer can be stably formed on the substrate.
  • a developing device includes a developer supply nozzle that supplies the developer to the developer discharge nozzle through the introduction path, a substrate holding unit that holds the substrate in a horizontal posture, and a developer holding nozzle. And a moving device that moves the developer discharge nozzle relative to the substrate held by the substrate holding unit.
  • the developer is discharged onto the substrate from the developer discharge nozzle while the developer discharge nozzle is moved relative to the substrate. Thereby, a liquid layer of a developer is formed on the substrate, and the substrate is developed. In this case, since the developer discharge nozzle is used, the occurrence of development defects due to precipitation of solid matter is prevented.
  • the moving device may move the developer discharge nozzle in a direction intersecting the first and second side surfaces of the inner member.
  • the liquid layer of the developer can be efficiently formed on the substrate.
  • FIG. 1 is a schematic plan view of a development processing apparatus according to an embodiment.
  • FIG. 2 is a schematic side view of the development processing apparatus of FIG.
  • FIG. 3 is a diagram showing a moving path of the slit nozzle.
  • FIG. 4 is an external perspective view of the slit nozzle and the nozzle arm.
  • FIG. 5 is an exploded perspective view of the slit nozzle.
  • FIG. 6 is a longitudinal sectional view of the slit nozzle.
  • FIG. 7 is a longitudinal sectional view of the slit nozzle and the nozzle arm. 8 is a cross-sectional view taken along line AA in FIG.
  • FIG. 9 is a side view showing the inner surface of the outer member.
  • FIG. 10 is a side view showing one end of the slit nozzle.
  • FIG. 11 is a schematic cross-sectional view for explaining the supply of the developer to the substrate by the slit nozzle.
  • FIG. 12 is a cross-sectional view showing a configuration
  • the developer discharge nozzle is a slit nozzle having a slit-like discharge port.
  • FIG. 1 is a schematic plan view of a development processing apparatus according to an embodiment.
  • FIG. 2 is a schematic side view of the development processing apparatus of FIG. 1 and FIG. 2 and predetermined drawings after FIG. 3 to be described later are provided with arrows indicating X, Y, and Z directions orthogonal to each other in order to clarify the positional relationship.
  • the X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
  • the development processing apparatus 1 includes a housing 5.
  • three development processing units DEV and a developer supply unit 6 are provided in the housing 5.
  • the three development processing units DEV have the same configuration and are arranged along the X direction.
  • Each development processing unit DEV includes a rotation holding unit 10, a processing cup 20, and a rinse nozzle 30.
  • the rotation holding unit 10 includes a spin chuck 11, a rotation shaft 12, and a motor 13.
  • the spin chuck 11 is provided at the upper end portion of the rotary shaft 12 connected to the motor 13.
  • the spin chuck 11 holds the substrate W in a horizontal posture by vacuum-sucking the substantially central portion of the lower surface of the substrate W.
  • the rotating shaft 12 and the spin chuck 11 are integrally rotated by the motor 13. As a result, the substrate W held by the spin chuck 11 rotates about an axis along the vertical direction (Z direction).
  • a processing cup 20 is provided so as to surround the rotation holding unit 10.
  • the processing cup 20 is moved up and down between a lower position and an upper position by a cup lifting mechanism (not shown).
  • the processing cup 20 When the processing cup 20 is in the lower position, the upper end of the processing cup 20 is lower than the holding position of the substrate W by the spin chuck 11.
  • the processing cup 20 of the development processing unit DEV When the substrate W is loaded into and unloaded from each development processing unit DEV, the processing cup 20 of the development processing unit DEV is disposed at a lower position.
  • the cup lifting mechanism 125 is in the upper position, the upper end of the processing cup 20 is higher than the holding position of the substrate W by the spin chuck 11, and the periphery of the substrate W is surrounded by the processing cup 20.
  • the processing cup 20 is disposed at an upper position, and droplets scattered from the rotated substrate W are received by the processing cup 20. The received droplet is guided to a discharge unit (drain) (not shown).
  • the rinse nozzle 30 is rotatably provided between a retreat position outside the processing cup 20 and a rinse position above the center of the substrate W held by the spin chuck 11.
  • the rinse nozzle 30 supplies a rinse liquid onto the substrate W held by the spin chuck 11 at the rinse position.
  • the developer supply unit 6 includes a slit nozzle 61, a nozzle arm 61a, a nozzle lifting mechanism 62, and a nozzle slide mechanism 63.
  • the slit nozzle 61 is provided so as to extend in the Y direction, and is connected to a nozzle lifting mechanism 62 via a nozzle arm 61a.
  • the slit nozzle 61 is lifted and lowered along the Z direction by the nozzle lifting mechanism 62. Further, the slit nozzle 61 moves along the arrangement direction (X direction) of the three development processing units DEV by the nozzle slide mechanism 63 so as to pass over the substrate W held by each spin chuck 11.
  • the slit nozzle 61 is supplied with developer from a developer supply source (not shown) via a nozzle arm 61a.
  • the slit nozzle 61 discharges the developer onto the substrate W in a band shape while moving above the substrate W held by the spin chuck 11. Thereby, a liquid layer of the developer is formed so as to cover the upper surface of the substrate W.
  • the developer liquid layer may be formed in a state where the substrate W is rotated, or the developer liquid layer may be formed in a state where the rotation of the substrate W is stopped.
  • a standby pod 70 is provided between adjacent development processing units DEV and outside the development processing units DEV located at one end.
  • the slit nozzle 61 stands by on one of the standby pods 70 during a period when the developer is not discharged onto the substrate W.
  • the slit nozzle 61 periodically performs an auto-dispensing process for discharging and discharging the developer staying inside. This prevents the developer having deteriorated or deteriorated with time from being supplied to the substrate W.
  • the slit nozzle 61 is cleaned.
  • Three shutters 7 are provided on one side of the housing 50 so as to face the three development processing units DEV, respectively.
  • the corresponding shutter 7 is opened.
  • the corresponding shutter 7 is closed.
  • FIG. 3 is a diagram illustrating a moving path of the slit nozzle 61.
  • the development processing apparatus 1 includes a control unit 80. The operation of each component of the development processing apparatus 1 is controlled by the control unit 80.
  • the three development processing units DEV are development processing units DEV1, DEV2, and DEV3, respectively, and the three standby pods 70 are standby pods 70a, 70b, and 70c, respectively.
  • the development processing units DEV1, DEV2, and DEV3 are arranged along the X direction in this order.
  • a standby pod 70a is disposed between the development processing units DEV1 and DEV2
  • a standby pod 70b is disposed between the development processing units DEV2 and DEV3
  • a standby pod 70c is disposed outside the development processing unit DEV3.
  • the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV1 by a transfer device (not shown).
  • the substrate W is transferred onto the spin chuck 11 of the development processing unit DEV1 while the processing cup 20 of the development processing unit DEV1 is in the lower position, and the processing cup 20 is raised to the upper position after the substrate W is transferred.
  • the slit nozzle 61 moves to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV1 (the end on the side far from the standby pod 70a in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70a in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70a.
  • the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV2 by a transfer device (not shown).
  • the substrate W is transported onto the spin chuck 11 of the development processing unit DEV2 while the processing cup 20 of the development processing unit DEV2 is in the lower position, and after the substrate W is transported, the processing cup 20 rises to the upper position.
  • the slit nozzle 61 moves to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV2 (end on the side close to the standby pod 70a in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70b in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70b.
  • the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV3 by a transfer device (not shown).
  • the substrate W is transported onto the spin chuck 11 of the development processing unit DEV3 with the processing cup 20 of the development processing unit DEV3 being in the lower position, and after the substrate W is transported, the processing cup 20 is raised to the upper position.
  • the slit nozzle 61 moves up to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV3 (the end on the side close to the standby pod 70b in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70c in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70c.
  • the developer layer is formed on the substrate W by the slit nozzle 61 discharging the developer while moving on the substrate W.
  • the development reaction of the photosensitive film (resist) formed on the substrate W proceeds.
  • the rinse nozzle 30 moves to the rinse position and discharges the rinse liquid. Thereby, the development reaction of the photosensitive film is stopped.
  • the developer on the substrate W is washed away by rotating the substrate W by the rotation holding unit 10 while discharging the rinse liquid onto the substrate W.
  • the substrate W is rotated in a state where the discharge of the rinse liquid is stopped, whereby the rinse liquid is shaken off from the substrate W, and the substrate W is dried.
  • the dried substrate W is transported from above the spin chuck 11 by a transport device (not shown).
  • the processing cup 20 is lowered to the lower position. In the development processing apparatus 1, such a series of operations is repeated.
  • the timing of loading and unloading the substrate W with respect to each of the development processing units DEV1 to DEV3 is not limited to the above example, and depends on the operation speed of each part of the development processing apparatus 1, the development processing time, the operation speed of the transport device, or the like. And may be changed as appropriate. Further, the numbers of the development processing unit DEV, the standby pod 70, and the slit nozzle 61 may be changed as appropriate.
  • FIG. 4 is an external perspective view of a part of the slit nozzle 61 and the nozzle arm 61a.
  • FIG. 5 is an exploded perspective view of the slit nozzle 61.
  • FIG. 6 is a longitudinal sectional view of the slit nozzle 61, and
  • FIG. 7 is a longitudinal sectional view of a part of the slit nozzle 61 and the nozzle arm 61a.
  • the nozzle arm 61a includes a nozzle mounting portion 61b having a substantially L-shaped cross section.
  • the slit nozzle 61 is attached to the nozzle attachment portion 61b.
  • the upper surface and one side surface of the slit nozzle 61 overlap the nozzle mounting portion 61b.
  • the connecting member 630 is attached to the upper surface of the nozzle attachment portion 61b.
  • One end of a suction pipe 635 is connected to the connecting member 630.
  • the other end of the suction pipe 635 is connected to a vacuum generator (exhaust device) (not shown).
  • the slit nozzle 61 includes outer members 71 and 72 and an inner member 73.
  • the outer members 71 and 72 and the inner member 73 each extend in a long shape in the Y direction.
  • the widths of the outer members 71 and 72 in the vertical direction are equal to each other, and the width of the inner member 73 is smaller than that.
  • the inner member 73 is disposed between the outer members 71 and 72.
  • the outer members 71 and 72 are made of, for example, a water repellent material
  • the inner member 73 is made of, for example, a hydrophilic material.
  • PCTFE polychlorotrifluoroethylene
  • PTFE polytetrafluoroethylene
  • quartz is used as the material of the inner member 73.
  • a recess 710 having a certain depth is formed on the inner surface of the outer member 71 (the surface facing the inner member 73).
  • the recess 710 includes a belt-like region 711 and a plurality of protruding regions 712.
  • the belt-like region 711 extends in the Y direction along the lower end portion of the outer member 71.
  • the plurality of projecting regions 712 are provided so as to project upward from the upper end of the belt-shaped region 711 and to be arranged at equal intervals in the Y direction.
  • a plurality of introduction paths 71 a are formed in the outer member 71 so as to correspond to the plurality of protruding regions 712, respectively.
  • each introduction path 71 a opens in the corresponding protruding region 712, and the other end opens on the outer surface of the outer member 71.
  • a plurality of holes 71 b are provided in the upper end portion and both side portions of the outer member 71.
  • a recess 720 having a certain depth is formed on the inner surface of the outer member 72 (the surface facing the inner member 73).
  • the recess 720 includes a band-shaped region 721 and a plurality of protruding regions 722.
  • the belt-like region 721 has the same shape as the belt-like region 711 of the outer member 71
  • each protruding region 722 has the same shape as each protruding region 712 of the outer member 71.
  • a plurality of holes 72 b are provided in the upper end portion and both side portions of the external member 72.
  • Notches 73a are formed on both sides of the inner member 73 from the lower end to a certain height.
  • the inner member 73 is locked between the outer members 71 and 72 by a locking member 75 (FIG. 9) described later.
  • the lower end portions of the outer surfaces of the outer members 71 and 72 are formed so as to be inclined inward. Further, the upper surface and the lower surface of the inner member 73 are provided in a curved shape so as to be continuously connected to one side surface and the other side surface of the inner member 73, respectively.
  • Steps are provided on the inner surface of the outer member 72, and the thickness of the upper portion of the outer member 72 is larger than the thickness of the lower portion.
  • the upper part of the inner surface of the external member 72 is in contact with the upper part of the inner surface of the outer member 71.
  • Recesses 710 and 720 are formed in the lower portions of the inner surfaces of outer members 71 and 72, respectively.
  • the inner member 73 is disposed between the recesses 710 and 720.
  • the flow path FP1a is formed by the band-shaped region 711 of the recess 710 of the external member 71 and one side surface of the inner member 73
  • the flow path FP2a is formed by the band-shaped region 721 of the recess 720 of the outer member 72 and the other side surface of the inner member 73. Is done.
  • a slit-like discharge port OP1 is formed at the lower end of the flow path FP1a
  • a slit-like discharge port OP2 is formed at the lower end of the flow path FP2a.
  • the discharge ports OP1 and OP2 extend in the Y direction in parallel with each other.
  • a plurality of flow paths FP1b are formed by the plurality of protruding regions 712 of the concave portion 710 of the external member 71 and one side surface of the inner member 73, and the other side surface of the plurality of protruding regions 722 of the concave portion 720 of the outer member 72 and the inner member 73.
  • a plurality of flow paths FP2b are formed.
  • FIG. 6 shows only one flow path FP1b and one flow path FP2b.
  • a communication path CP is formed between the upper surface of the inner member 73 and the step surface GP of the outer member 72. The plurality of flow paths FP1b and the plurality of flow paths FP2b communicate with each other through the communication path CP.
  • the introduction path 71a of the outer member 71 is preferably located at a position higher than the upper end portion of the inner member 73.
  • the nozzle mounting portion 61b of the nozzle arm 61a has a mounting bottom surface 611 and a mounting side surface 612.
  • a plurality of screw holes 612a are formed in the attachment side surface 612 so as to be arranged in the Y direction.
  • FIG. 7 shows only one screw hole 612a.
  • the plurality of screws SC pass through the plurality of hole portions 72b of the outer member 72 and the plurality of hole portions 71b of the outer member 71, and the plurality of screw holes 612a of the attachment side surface 612. Screwed into each.
  • the outer members 71 and 72 are fixed to the nozzle attachment portion 61b.
  • the upper surfaces of the external members 71 and 72 are opposed to the mounting bottom surface 611 of the nozzle mounting portion 61b.
  • a suction path 621, a supply path 622, a liquid reservoir 623, and a plurality of supply paths 624 are provided so as to communicate with each other.
  • a suction path 631 is formed inside the connecting member 630.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG.
  • the liquid reservoir 623 extends downward while gradually expanding in the Y direction, and further extends downward with a certain width.
  • the suction path 621 extends from the upper surface of the nozzle attachment portion 61b to the liquid reservoir 623.
  • the suction path 631 of the connecting member 630 communicates with the suction path 621.
  • the suction pipe 635 communicates with the suction path 631.
  • the supply path 622 is adjacent to the liquid reservoir 623 in the X direction and extends in the Y direction. One end of the supply path 622 is bent substantially vertically and opens at the upper end of the liquid reservoir 623. A plurality (five in this example) of supply paths 624 are provided so as to be arranged in the Y direction, and one end of each supply path 624 opens at the lower end of the liquid reservoir 623. Each supply path 624 has a certain width in the Y direction and extends in a strip shape in the X direction. As shown in FIG. 7, each supply path 624 communicates with a plurality of introduction paths 71 a of the outer member 71. In this example, one supply path 624 communicates with the six introduction paths 71a.
  • the developer is supplied to the liquid reservoir 623 through the supply path 622.
  • the developer in the liquid reservoir 623 is guided to the slit nozzle 61 through a plurality of supply paths 624. Further, the gas in the liquid reservoir 623 is sucked through the suction paths 621 and 631 and the suction pipe 635 of FIG. As a result, bubbles are removed from the developer at the liquid reservoir 623.
  • FIGS. 9 and 10 are views for explaining a locking member for locking the inner member 73.
  • FIG. 9 shows the inner surface of the outer member 71
  • FIG. 10 shows one end of the slit nozzle 61.
  • the inner member 73 is indicated by a one-dot chain line
  • the inner member 73 is indicated by a dotted line.
  • each locking member 75 is fixed to the lower ends of the outer members 71 and 72 by a pair of screws 75a. As shown in FIG. 9, a part of each locking member 75 is located in each notch 73 a of the inner member 73. Thereby, both side portions of the inner member 73 are locked by the pair of locking members 75.
  • the length of the upper half of the inner member 73 is larger than the length of the recess 710 of the outer member 71.
  • both end portions of one side surface of the inner member 73 abut on the inner surface of the outer member 71 outside the recess 710. Therefore, one side surface of the inner member 73 is prevented from coming into contact with the bottom surface of the recess 710 of the outer member 71. Therefore, as shown in FIG. 6, flow paths FP1a and FP1b are secured between one side surface of the inner member 73 and the bottom surface of the recess 710.
  • both end portions of the other side surface of the inner member 73 are in contact with the inner surface of the outer member 72 outside the recess 720.
  • the outer members 71 and 72 are screwed, and the inner member 73 is not screwed.
  • the inner member 73 is made of quartz, the cost for processing the inner member 73 increases. Therefore, forming a hole for screwing in the inner member 73 causes a cost increase. Therefore, the increase in cost is suppressed by the inner member 73 being locked by the locking member 75 and being clamped by the outer members 71 and 72 without being screwed.
  • FIG. 11 is a schematic cross-sectional view for explaining the supply of the developer to the substrate W by the slit nozzle 61.
  • the developer is guided to the plurality of introduction paths 71 a of the slit nozzle 61 through the plurality of supply paths 624 from the liquid reservoir 623 of the nozzle mounting section 61 b.
  • the developer is guided to the plurality of flow paths FP1b through the plurality of introduction paths 71a, and the developer is guided to the plurality of paths FP2b through the plurality of communication paths CP.
  • the developer is guided from the plurality of channels FP1b to the discharge port OP1 through the channel FP1a, and the developer is discharged from the discharge port OP1 onto the substrate W.
  • the developer is guided from the plurality of channels FP2b to the discharge port OP2 through the channel FP2a, and the developer is discharged onto the substrate W from the discharge port OP2.
  • the moving direction MD (X direction) of the slit nozzle 61 is perpendicular to the longitudinal direction (Y direction) of the discharge ports OP1 and OP2.
  • the discharge port OP2 is positioned in front of the discharge port OP1.
  • the flow rate and discharge pressure of the developer are compared with the case where the developer is discharged from only one discharge port. Is moderately dispersed. Thereby, the developer can be uniformly discharged onto the substrate W. As a result, a liquid layer of the developer can be stably formed on the substrate W.
  • the inner member 73 has hydrophilicity, a sufficient liquid pool is formed between the lower surface of the inner member 73 and the upper surface of the substrate W. This prevents the liquid layer from being separated between the lower surface of the inner member 73 and the upper surface of the substrate W.
  • the outer members 71 and 72 have water repellency, the phenomenon that the developer rises along the outer surfaces of the outer members 71 and 72 is suppressed. This makes it difficult for the developer to adhere to the outer surfaces of the outer members 71 and 72, and the liquid layer on the substrate W can be stably maintained.
  • FIG. 12 is a cross-sectional view showing a configuration of a slit nozzle according to a comparative example.
  • the difference between the slit nozzle 61x of FIG. 12 and the slit nozzle 61 of FIGS. 4 to 11 will be described.
  • the width of the inner member 73 in the vertical direction is substantially equal to the width of the outer members 71 and 72 in the vertical direction.
  • the flow paths FP2a and FP2b are not formed between the outer member 72 and the inner member 73. Thereby, the developer is discharged only from the discharge port OP1.
  • a liquid layer of a developer was formed on the substrate W, and the results were compared.
  • the moving speed of the slit nozzles 61 and 61x and the flow rate of the developing solution are set to various values, and the distance LL (FIG. 11) in the Y direction from the discharge port OP1 to the front end portion of the liquid layer is within an appropriate range ( In this example, it was examined whether or not it was 10 mm or less. When the distance LL exceeds the appropriate range, it is difficult to appropriately adjust the thickness and the formation range of the liquid layer of the developer, and the development failure of the substrate W may occur.
  • the developer layer was formed in a state where the rotation of the substrate W was stopped.
  • the flow rate of the developer is 1900 ml / min and the moving speed of the slit nozzle 61x is 40 mm / s and 45 mm.
  • the distance LL exceeded the appropriate range when / s.
  • the distance LL exceeded the appropriate range when the flow rate of the developer was 2000 ml / min and the moving speed of the slit nozzle 61x was 40 mm / s, 45 mm / min, and 50 mm / min.
  • the liquid layer of the developer is appropriately formed on the substrate W as compared with the case where the slit nozzle 61x according to the comparative example is used. I understood.
  • the flow paths FP1a and FP1b are formed by the one side surface of the inner member 73 and the concave portion 710 of the outer member 71, and the other side surface and outer member of the inner member 73 are formed.
  • the flow path FP2a, FP2b is formed by the recess 720 of 71. The developer is guided to the flow paths FP1a, FP1b, FP2a, and FP2b through the introduction path 71a formed in the external material 71.
  • the communication path CP is formed between the upper surface of the inner member 73 and the stepped surface GP of the outer member 72, and the flow paths FP1b and FP2b communicate with each other through the communication path CP. Accordingly, the developer can be guided to the flow paths FP1a, FP1b, FP2a, and FP2b with a simple configuration.
  • one and the other side surfaces and the upper surface of the inner member 73 respectively form a flow path for the developer, a portion where the processing solution may remain on the surface of the inner member 73 is reduced. Thereby, precipitation of a solid substance is fully prevented.
  • a strip-shaped flow path FP1a is formed so as to extend in one direction along the discharge port OP1, and a plurality of flow paths FP1b are formed so as to protrude upward from the upper end portion of the flow path FP1a.
  • a strip-shaped flow path FP2a is formed so as to extend in one direction along the discharge port OP2, and a plurality of flow paths FP2b are formed so as to protrude upward from the upper end portion of the flow path FP2a.
  • the developer is uniformly guided from the plurality of channels FP1b to the entire channel FP1a, and the developer is uniformly guided from the plurality of channels FP2b to the entire channel FP2a. Therefore, the developer can be uniformly discharged from the entire discharge ports OP1 and OP2. As a result, a liquid layer of the developer can be stably formed on the substrate W.
  • the flow paths FP1b and FP2b communicate with each other through the communication path CP.
  • the present invention is not limited to this, and the flow paths FP1b and FP2b do not communicate with each other, and the developer is guided to the flow path FP1b.
  • An introduction path that guides the developer to the flow path FP2b may be provided along with the introduction path 71a.
  • the strip-shaped flow paths FP1a and FP2a are formed so as to extend in one direction along the discharge ports OP1 and OP2, respectively, and a plurality of flows are formed so as to protrude upward from the upper ends of the flow paths FP1a and FP2a.
  • the paths FP1b and FP2b are formed, but the shape of each flow path is not limited to this, and may be changed as appropriate.
  • the above embodiment is an example in which the present invention is applied to the slit nozzle 61 having the slit-like discharge ports OP1 and OP2, but the present invention may be applied to other developer discharge nozzles.
  • the present invention may be applied to a developer discharge nozzle having a circular or oval discharge port.
  • the present invention may be applied to a developer discharge nozzle provided with a plurality of discharge ports arranged in one direction.
  • the slit nozzle 61 is an example of the developer discharge nozzle
  • the inner member 73 is an example of the inner member
  • the outer members 71 and 72 are examples of the outer member
  • the flow paths FP1a and FP1b are the first. 1 is an example of the first flow path
  • the flow paths FP2a and FP2b are examples of the second flow path
  • the introduction path 71a is an example of the introduction path and the communication introduction path
  • the discharge port OP1 is the first discharge port.
  • the discharge port OP2 is an example of the second discharge port
  • the Y direction is an example of one direction.
  • the step surface GP is an example of the third inner surface
  • the communication path CP is an example of the communication path
  • the locking member 75 is an example of the locking member
  • the outer member 71 is an example of the first member.
  • the outer member 72 is an example of the second member
  • the flow path FP1a is an example of the first strip-shaped flow path
  • the flow path FP1b is an example of the first protruding flow path
  • the flow path FP2a is the first 2 is an example of a belt-like channel
  • the channel FP2b is an example of a second projecting channel.
  • the development processing apparatus 1 is an example of a development processing apparatus
  • the rotation holding unit 10 is an example of a substrate holding unit
  • the nozzle arm 61a is an example of a developer supply system
  • a nozzle lifting mechanism 62 and a nozzle slide mechanism 63. Is an example of a mobile device.
  • the present invention can be effectively used for development processing of various substrates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Coating Apparatus (AREA)

Abstract

Disclosed is a developer jetting nozzle wherein a first flow channel is formed of a recessed section of an outer member, and one side surface of an inner member, and a second flow channel is formed of a strip-like region of the recessed section of the outer member, and the other side surface of the inner member. A slit-like first jetting port is formed at a lower end of the first flow channel, and a slit-like second jetting port is formed at a lower end of the second flow channel. A communication path is formed between the upper surface of the inner member, and the step surface of the outer member. The first flow channel and the second flow channel are in communication with each other via the communication path. An introducing path for introducing the developer to the first and second flow channels is formed in the outer member.

Description

現像液吐出ノズルおよび現像処理装置Developer discharge nozzle and development processing apparatus
 本発明は、現像液吐出ノズルおよび現像処理装置に関する。 The present invention relates to a developer discharge nozzle and a development processing apparatus.
 現像処理装置においては、例えばスリット状の吐出口を有する現像液吐出ノズルが用いられる。特許文献1に記載される現像液吐出ノズルは、撥水性を有する第1および第2の部材、ならびに親水性を有する第3の部材を含む。第1、第2および第3の部材はそれぞれ板状に設けられ、第3の部材の一面および他面に第1および第2の部材がそれぞれ接合される。第3の部材と第2の部材との間に現像液の流路が形成され、その下端部にスリット状の吐出口が設けられる。
特開平11-221511号公報
In the development processing apparatus, for example, a developer discharge nozzle having a slit-like discharge port is used. The developer discharge nozzle described in Patent Document 1 includes first and second members having water repellency and a third member having hydrophilicity. The first, second, and third members are each provided in a plate shape, and the first and second members are joined to one surface and the other surface of the third member, respectively. A developer flow path is formed between the third member and the second member, and a slit-like discharge port is provided at the lower end thereof.
JP-A-11-221511
 現像処理時には、現像液およびレジスト残渣等を含む溶液(以下、処理溶液と呼ぶ)が、現像液吐出ノズルに付着する。処理溶液が現像液吐出ノズルに付着したまま時間が経過すると、処理溶液から固形物が析出する。析出した固形物は、現像欠陥の要因となる。現像液の流路においては、処理溶液が付着しても、現像液の流動によってその処理溶液が除去されるので、固形物が析出しにくい。一方、現像液が流動しない部分に処理溶液が付着すると、その処理溶液は除去されにくい。そのため、固形物が析出する可能性がある。 During the development process, a solution containing a developer and a resist residue (hereinafter referred to as a processing solution) adheres to the developer discharge nozzle. When time elapses with the processing solution adhering to the developer discharge nozzle, solids precipitate from the processing solution. The precipitated solid matter causes development defects. Even if the processing solution adheres to the flow path of the developing solution, the processing solution is removed by the flow of the developing solution, so that the solid matter is not easily deposited. On the other hand, if the processing solution adheres to a portion where the developer does not flow, the processing solution is difficult to remove. Therefore, there is a possibility that a solid substance is deposited.
 上記特許文献1の現像液吐出ノズルにおいては、第3の部材が親水性であるので、第3の部材の周囲に処理溶液が付着しやすい。第2の部材と第3の部材との間の流路に処理溶液が付着しても、その処理溶液は現像液の流動によって除去される。一方、第1の部材と第3の部材との間に処理溶液が浸入すると、その現像用液を除去することは困難であり、固形物が析出しやすい。また、浸入した現像用液は、毛細管現象によって徐々に内部に進行する。それにより、固形物の析出範囲が拡大する。 In the developer discharge nozzle of Patent Document 1, since the third member is hydrophilic, the processing solution tends to adhere to the periphery of the third member. Even if the processing solution adheres to the flow path between the second member and the third member, the processing solution is removed by the flow of the developer. On the other hand, when the processing solution enters between the first member and the third member, it is difficult to remove the developing solution, and solid matter is likely to precipitate. Further, the developing solution that has entered gradually advances into the interior by capillary action. Thereby, the precipitation range of a solid substance expands.
 本発明の目的は、固形物の析出による現像欠陥の発生が防止された現像液吐出ノズルおよび現像処理装置を提供することである。 An object of the present invention is to provide a developer discharge nozzle and a development processing apparatus in which the occurrence of development defects due to precipitation of solid matter is prevented.
 (1)本発明の一局面に従う現像液吐出ノズルは、互いに逆方向に向けられる第1および第2の側面を有する内部材と、内部材の第1の側面に対向する第1の内面および内部材の第2の側面に対向する第2の内面を有する外部材とを備え、内部材の第1の側面と外部材の第1の内面との間に上下に延びる第1の流路が形成され、内部材の第2の側面と外部材の第2の内面との間に上下に延びる第2の流路が形成され、第1および第2の流路に現像液を導く導入路が外部材に形成され、現像液を吐出するための第1の吐出口が第1の流路の下端部に形成され、現像液を吐出するための第2の吐出口が第2の流路の下端部に形成される。 (1) A developer discharge nozzle according to an aspect of the present invention includes an inner member having first and second side surfaces directed in opposite directions, a first inner surface and an inner surface facing the first side surface of the inner member. And an outer member having a second inner surface opposed to the second side surface of the material, and a first flow path extending vertically is formed between the first side surface of the inner member and the first inner surface of the outer member. A second flow path extending vertically between the second side surface of the inner member and the second inner surface of the outer member is formed, and an introduction path for introducing the developer into the first and second flow paths is provided outside. A first discharge port formed on the material for discharging the developer is formed at the lower end of the first flow path, and a second discharge port for discharging the developer is the lower end of the second flow path. Formed in the part.
 この現像液吐出ノズルにおいては、内部材の第1の側面と外部材の第1の内面との間に第1の流路が形成され、内部材の第2の側面と外部材の第2の内面との間に第2の流路が形成される。外部材に形成された導入路を通して第1および第2の流路に現像液が導かれる。第1の流路に導かれた現像液が第1の吐出口から吐出され、第2の流路に導かれた現像液が第2の吐出口から吐出される。 In this developer discharge nozzle, a first flow path is formed between the first side surface of the inner member and the first inner surface of the outer member, and the second side surface of the inner member and the second side of the outer member. A second flow path is formed between the inner surface. The developer is guided to the first and second flow paths through the introduction path formed in the external material. The developer guided to the first flow path is discharged from the first discharge port, and the developer guided to the second flow path is discharged from the second discharge port.
 このように、第1および第2の流路の各々で現像液が流動する。そのため、現像液およびレジスト残渣等を含む溶液(以下、処理溶液と呼ぶ)が、第1および第2の流路を形成する内部材の第1および第2の側面、ならびに外部材の第1および第2の内面のいずれに付着しても、現像液の流動によってその処理溶液が除去される。それにより、付着した処理溶液から固形物が析出することが防止される。その結果、固形物の析出による現像欠陥の発生が防止される。 Thus, the developer flows in each of the first and second flow paths. Therefore, a solution containing a developing solution, a resist residue, and the like (hereinafter referred to as a processing solution) is a first and second side surface of the inner member that forms the first and second flow paths, and the first and second side surfaces of the outer member. Regardless of which of the second inner surface is attached, the processing solution is removed by the flow of the developer. Thereby, it is prevented that a solid substance precipitates from the attached processing solution. As a result, the occurrence of development defects due to the precipitation of solid matter is prevented.
 (2)内部材は、外部材よりも高い親水性を有してもよい。この場合、現像液吐出ノズルから基板上に現像液が吐出されることによって基板上に現像液の液層が形成される際に、内部材の下面と基板の上面との間に十分な液溜りが形成される。それにより、内部材の下面と基板の上面との間で液層が分離されることが防止される。 (2) The inner member may have higher hydrophilicity than the outer member. In this case, when the developer liquid is formed on the substrate by discharging the developer from the developer discharge nozzle onto the substrate, a sufficient liquid reservoir is formed between the lower surface of the inner member and the upper surface of the substrate. Is formed. This prevents the liquid layer from being separated between the lower surface of the inner member and the upper surface of the substrate.
 (3)内部材は、第1の側面の上端部と第2の側面の上端部とをつなぐ上面を有し、外部材は、第1の内面の上端部と第2の内面の上端部をつなぐとともに内部材の上面に対向する第3の内面を有し、内部材の上面と外部材の第3の内面との間に第1および第2の流路を連通させる連通路が形成され、導入路は、連通路に現像液を導くように形成されてもよい。 (3) The inner member has an upper surface connecting the upper end portion of the first side surface and the upper end portion of the second side surface, and the outer member has the upper end portion of the first inner surface and the upper end portion of the second inner surface. A communication path that connects the first and second flow paths between the upper surface of the inner member and the third inner surface of the outer member is formed. The introduction path may be formed so as to guide the developer to the communication path.
 この場合、簡単な構成で第1および第2の流路に現像液を導くことができる。また、内部材の第1および第2の側面ならびに上面がそれぞれ現像液の流路を形成するので、内部材の表面上において、処理溶液が残存する可能性のある部分が削減される。それにより、固形物の析出が十分に防止される。 In this case, the developer can be guided to the first and second flow paths with a simple configuration. In addition, since the first and second side surfaces and the upper surface of the inner member respectively form a flow path for the developer, a portion where the processing solution may remain on the surface of the inner member is reduced. Thereby, precipitation of a solid substance is fully prevented.
 (4)現像液吐出ノズルは、外部材の第1および第2の内面の間で内部材を係止する係止部材をさらに備えてもよい。 (4) The developer discharge nozzle may further include a locking member that locks the inner member between the first and second inner surfaces of the outer member.
 この場合、内部材の加工のためのコストを削減しつつ、外部材の第1および第2の内面の間に内部材を固定することができる。 In this case, the inner member can be fixed between the first and second inner surfaces of the outer member while reducing the cost for processing the inner member.
 (5)外部材は、第1の内面を有する第1の部材と、第2の内面を有する第2の部材とを含み、第1および第2の部材は、第1および第2の内面の間に内部材が挟まれる状態で互いに固定されてもよい。 (5) The outer member includes a first member having a first inner surface and a second member having a second inner surface, wherein the first and second members are the first and second inner surfaces. The inner members may be fixed to each other with the inner member interposed therebetween.
 この場合、現像液吐出ノズルの組み立てが容易になる。また、第1および第2の部材によって内部材が挟持されることにより、第1および第2の内面の間に内部材が安定に保持される。 In this case, the assembly of the developer discharge nozzle becomes easy. Moreover, the inner member is stably held between the first and second inner surfaces by sandwiching the inner member by the first and second members.
 (6)第1および第2の吐出口は、それぞれスリット状であり、互いに並列に一方向に延びてもよい。この場合、基板上に現像液の液層を効率良く形成することができる。 (6) Each of the first and second discharge ports has a slit shape, and may extend in one direction in parallel with each other. In this case, the liquid layer of the developer can be efficiently formed on the substrate.
 (7)第1の流路は、第1の吐出口に沿って一方向に延びるように形成された第1の帯状流路と、第1の帯状流路の上端部からそれぞれ上方に突出するとともに、一方向に並ぶように設けられた複数の第1の突出流路とを含み、第2の流路は、第2の吐出口に沿って一方向に延びるように形成された第2の帯状流路と、第2の帯状流路の上端部からそれぞれ上方に突出するとともに、一方向に並ぶように設けられた複数の第2の突出流路とを含み、導入路は、複数の第1および第2の突出流路にそれぞれ連通するように設けられた複数の連通導入路を含んでもよい。 (7) The first channel protrudes upward from the first belt-like channel formed to extend in one direction along the first discharge port and the upper end of the first belt-like channel. And a plurality of first protruding flow paths provided so as to be aligned in one direction, and the second flow path is formed to extend in one direction along the second discharge port. A plurality of second projecting channels provided so as to line up in one direction while projecting upward from the upper end portion of the second strip channel, and the introduction path includes a plurality of second channels A plurality of communication introduction paths provided so as to communicate with the first and second projecting flow paths may be included.
 この場合、複数の第1の突出流路から第1の帯状流路の全体に現像液が均一に導かれ、複数の第2の突出流路から第2の帯状流路の全体に現像液が均一に導かれる。それにより、第1および第2の吐出口の全体から均一に現像液を吐出することができる。したがって、基板上に現像液の液層を安定的に形成することができる。 In this case, the developer is uniformly guided from the plurality of first projecting channels to the entire first strip-shaped channel, and the developer is introduced from the plurality of second projecting channels to the entire second strip-shaped channel. Evenly guided. As a result, the developer can be uniformly discharged from the entire first and second discharge ports. Therefore, the liquid layer of the developer can be stably formed on the substrate.
 (8)本発明の他の局面に従う現像装置は、上記の現像液吐出ノズルと、基板を水平姿勢で保持する基板保持部と、導入路を通して現像液吐出ノズルに現像液を供給する現像液供給系と、基板保持部により保持される基板に対して現像液吐出ノズルを相対的に移動させる移動装置とを備える。 (8) A developing device according to another aspect of the present invention includes a developer supply nozzle that supplies the developer to the developer discharge nozzle through the introduction path, a substrate holding unit that holds the substrate in a horizontal posture, and a developer holding nozzle. And a moving device that moves the developer discharge nozzle relative to the substrate held by the substrate holding unit.
 この現像装置においては、現像液吐出ノズルが基板に対して相対的に移動されつつ現像液吐出ノズルから基板上に現像液が吐出される。それにより、基板上に現像液の液層が形成され、基板の現像処理が行われる。この場合、上記の現像液吐出ノズルが用いられるので、固形物の析出による現像欠陥の発生が防止される。 In this developing apparatus, the developer is discharged onto the substrate from the developer discharge nozzle while the developer discharge nozzle is moved relative to the substrate. Thereby, a liquid layer of a developer is formed on the substrate, and the substrate is developed. In this case, since the developer discharge nozzle is used, the occurrence of development defects due to precipitation of solid matter is prevented.
 (9)移動装置は、内部材の第1および第2の側面に交差する方向に現像液吐出ノズルを移動させてもよい。 (9) The moving device may move the developer discharge nozzle in a direction intersecting the first and second side surfaces of the inner member.
 この場合、基板上に現像液の液層を効率良く形成することができる。 In this case, the liquid layer of the developer can be efficiently formed on the substrate.
 本発明によれば、固形物の析出による現像欠陥の発生が防止される。 According to the present invention, development defects due to precipitation of solid matter are prevented.
図1は実施の形態に係る現像処理装置の模式的平面図である。FIG. 1 is a schematic plan view of a development processing apparatus according to an embodiment. 図2は図1の現像処理装置の模式的側面図である。FIG. 2 is a schematic side view of the development processing apparatus of FIG. 図3はスリットノズルの移動経路を示す図である。FIG. 3 is a diagram showing a moving path of the slit nozzle. 図4はスリットノズルおよびノズルアームの外観斜視図である。FIG. 4 is an external perspective view of the slit nozzle and the nozzle arm. 図5はスリットノズルの分解斜視図である。FIG. 5 is an exploded perspective view of the slit nozzle. 図6はスリットノズルの縦断面図である。FIG. 6 is a longitudinal sectional view of the slit nozzle. 図7はスリットノズルおよびノズルアームの縦断面図である。FIG. 7 is a longitudinal sectional view of the slit nozzle and the nozzle arm. 図8は図7のA-A線断面図である。8 is a cross-sectional view taken along line AA in FIG. 図9は外部材の内面を示す側面図である。FIG. 9 is a side view showing the inner surface of the outer member. 図10はスリットノズルの一端部を示す側面図である。FIG. 10 is a side view showing one end of the slit nozzle. 図11はスリットノズルによる基板への現像液の供給について説明するための模式的断面図である。FIG. 11 is a schematic cross-sectional view for explaining the supply of the developer to the substrate by the slit nozzle. 図12は比較例に係るスリットノズルの構成を示す断面図である。FIG. 12 is a cross-sectional view showing a configuration of a slit nozzle according to a comparative example.
 以下、本発明の実施の形態に係る現像液吐出ノズルおよび現像処理装置について図面を参照しながら説明する。以下の実施の形態において、現像液吐出ノズルは、スリット状の吐出口を有するスリットノズルである。 Hereinafter, a developer discharge nozzle and a development processing apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, the developer discharge nozzle is a slit nozzle having a slit-like discharge port.
 (1)現像処理装置の構成
 図1は、実施の形態に係る現像処理装置の模式的平面図である。図2は、図1の現像処理装置の模式的側面図である。図1および図2、ならびに後述の図3以降の所定の図には、位置関係を明確にするために互いに直交するX方向、Y方向およびZ方向を示す矢印を付している。X方向およびY方向は水平面内で互いに直交し、Z方向は鉛直方向に相当する。
(1) Configuration of Development Processing Apparatus FIG. 1 is a schematic plan view of a development processing apparatus according to an embodiment. FIG. 2 is a schematic side view of the development processing apparatus of FIG. 1 and FIG. 2 and predetermined drawings after FIG. 3 to be described later are provided with arrows indicating X, Y, and Z directions orthogonal to each other in order to clarify the positional relationship. The X direction and the Y direction are orthogonal to each other in the horizontal plane, and the Z direction corresponds to the vertical direction.
 図1に示すように、現像処理装置1は、筐体5を備える。筐体5内に、3つの現像処理ユニットDEVおよび現像液供給部6が設けられる。3つの現像処理ユニットDEVは、互いに同じ構成を有し、X方向に沿って並ぶように配置される。各現像処理ユニットDEVは、回転保持部10、処理カップ20およびリンスノズル30を備える。 As shown in FIG. 1, the development processing apparatus 1 includes a housing 5. In the housing 5, three development processing units DEV and a developer supply unit 6 are provided. The three development processing units DEV have the same configuration and are arranged along the X direction. Each development processing unit DEV includes a rotation holding unit 10, a processing cup 20, and a rinse nozzle 30.
 図2に示すように、回転保持部10は、スピンチャック11、回転軸12およびモータ13を含む。スピンチャック11は、モータ13に接続された回転軸12の上端部に設けられる。スピンチャック11は、基板Wの下面の略中心部を真空吸着することにより、基板Wを水平姿勢で保持する。モータ13によって回転軸12およびスピンチャック11が一体的に回転される。それにより、スピンチャック11によって保持された基板Wが鉛直方向(Z方向)に沿った軸の周りで回転する。 As shown in FIG. 2, the rotation holding unit 10 includes a spin chuck 11, a rotation shaft 12, and a motor 13. The spin chuck 11 is provided at the upper end portion of the rotary shaft 12 connected to the motor 13. The spin chuck 11 holds the substrate W in a horizontal posture by vacuum-sucking the substantially central portion of the lower surface of the substrate W. The rotating shaft 12 and the spin chuck 11 are integrally rotated by the motor 13. As a result, the substrate W held by the spin chuck 11 rotates about an axis along the vertical direction (Z direction).
 回転保持部10を取り囲むように処理カップ20が設けられる。処理カップ20は、図示しないカップ昇降機構により下方位置と上方位置との間で昇降される。処理カップ20が下方位置にある場合、処理カップ20の上端がスピンチャック11による基板Wの保持位置よりも低い。各現像処理ユニットDEVに対する基板Wの搬入時および搬出時に、その現像処理ユニットDEVの処理カップ20が下方位置に配置される。カップ昇降機構125が上方位置にある場合、処理カップ20の上端がスピンチャック11による基板Wの保持位置よりも高く、基板Wの周囲が処理カップ20により取り囲まれる。基板Wの現像処理時に、処理カップ20が上方位置に配置され、回転される基板Wから飛散する液滴が処理カップ20により受け止められる。受け止められた液滴は、図示しない排出部(ドレイン)に導かれる。 A processing cup 20 is provided so as to surround the rotation holding unit 10. The processing cup 20 is moved up and down between a lower position and an upper position by a cup lifting mechanism (not shown). When the processing cup 20 is in the lower position, the upper end of the processing cup 20 is lower than the holding position of the substrate W by the spin chuck 11. When the substrate W is loaded into and unloaded from each development processing unit DEV, the processing cup 20 of the development processing unit DEV is disposed at a lower position. When the cup lifting mechanism 125 is in the upper position, the upper end of the processing cup 20 is higher than the holding position of the substrate W by the spin chuck 11, and the periphery of the substrate W is surrounded by the processing cup 20. During the development processing of the substrate W, the processing cup 20 is disposed at an upper position, and droplets scattered from the rotated substrate W are received by the processing cup 20. The received droplet is guided to a discharge unit (drain) (not shown).
 リンスノズル30は、処理カップ20の外側の待避位置とスピンチャック11により保持される基板Wの中心部上方のリンス位置との間で回動可能に設けられる。リンスノズル30は、リンス位置においてスピンチャック11により保持される基板W上にリンス液を供給する。 The rinse nozzle 30 is rotatably provided between a retreat position outside the processing cup 20 and a rinse position above the center of the substrate W held by the spin chuck 11. The rinse nozzle 30 supplies a rinse liquid onto the substrate W held by the spin chuck 11 at the rinse position.
 図1に示すように、現像液供給部6は、スリットノズル61、ノズルアーム61a、ノズル昇降機構62およびノズルスライド機構63を含む。スリットノズル61は、Y方向に延びるように設けられ、ノズルアーム61aを介してノズル昇降機構62に連結される。スリットノズル61は、ノズル昇降機構62によりZ方向に沿って昇降される。また、スリットノズル61は、各スピンチャック11により保持された基板Wの上方を通るように、ノズルスライド機構63により3つの現像処理ユニットDEVの配列方向(X方向)に沿って移動する。 As shown in FIG. 1, the developer supply unit 6 includes a slit nozzle 61, a nozzle arm 61a, a nozzle lifting mechanism 62, and a nozzle slide mechanism 63. The slit nozzle 61 is provided so as to extend in the Y direction, and is connected to a nozzle lifting mechanism 62 via a nozzle arm 61a. The slit nozzle 61 is lifted and lowered along the Z direction by the nozzle lifting mechanism 62. Further, the slit nozzle 61 moves along the arrangement direction (X direction) of the three development processing units DEV by the nozzle slide mechanism 63 so as to pass over the substrate W held by each spin chuck 11.
 スリットノズル61には、図示しない現像液供給源からノズルアーム61aを介して現像液が供給される。スリットノズル61は、スピンチャック11により保持された基板Wの上方を移動しつつ基板W上に現像液を帯状に吐出する。それにより、基板Wの上面を覆うように、現像液の液層が形成される。基板Wが回転される状態で現像液の液層が形成されてもよく、または基板Wの回転が停止された状態で現像液の液層が形成されてもよい。 The slit nozzle 61 is supplied with developer from a developer supply source (not shown) via a nozzle arm 61a. The slit nozzle 61 discharges the developer onto the substrate W in a band shape while moving above the substrate W held by the spin chuck 11. Thereby, a liquid layer of the developer is formed so as to cover the upper surface of the substrate W. The developer liquid layer may be formed in a state where the substrate W is rotated, or the developer liquid layer may be formed in a state where the rotation of the substrate W is stopped.
 隣り合う現像処理ユニットDEV間および一端に位置する現像処理ユニットDEVの外側に待機ポッド70が設けられる。スリットノズル61は、基板W上に現像液を吐出しない期間に、いずれかの待機ポッド70上で待機する。待機ポッド70において、スリットノズル61は、内部に滞留する現像液を吐出して排出するオートディスペンス処理を定期的に行う。これにより、変質または経時劣化した現像液が基板Wに供給されることが防止される。また、待機ポッド70において、スリットノズル61の洗浄処理が行われる。 A standby pod 70 is provided between adjacent development processing units DEV and outside the development processing units DEV located at one end. The slit nozzle 61 stands by on one of the standby pods 70 during a period when the developer is not discharged onto the substrate W. In the standby pod 70, the slit nozzle 61 periodically performs an auto-dispensing process for discharging and discharging the developer staying inside. This prevents the developer having deteriorated or deteriorated with time from being supplied to the substrate W. In the standby pod 70, the slit nozzle 61 is cleaned.
 筐体50の一側面には、3つの現像処理ユニットDEVにそれぞれ対向するように3つのシャッター7が設けられる。各現像処理ユニットDEVに対する基板Wの搬入時および搬出時には、対応するシャッター7が開放される。各現像処理ユニットDEVにおける現像処理時には、対応するシャッター7が閉鎖される。 Three shutters 7 are provided on one side of the housing 50 so as to face the three development processing units DEV, respectively. When the substrate W is loaded into and unloaded from each development processing unit DEV, the corresponding shutter 7 is opened. At the time of development processing in each development processing unit DEV, the corresponding shutter 7 is closed.
 (2)現像処理装置の動作
 現像処理装置1の動作の概要について説明する。図3は、スリットノズル61の移動経路を示す図である。現像処理装置1は、制御部80を含む。制御部80により、現像処理装置1の各構成要素の動作が制御される。図3においては、3つの現像処理ユニットDEVをそれぞれ現像処理ユニットDEV1,DEV2,DEV3とし、3つの待機ポッド70をそれぞれ待機ポッド70a,70b,70cとする。現像処理ユニットDEV1,DEV2,DEV3は、この順でX方向に沿って並ぶ。現像処理ユニットDEV1,DEV2の間に待機ポッド70aが配置され、現像処理ユニットDEV2,DEV3の間に待機ポッド70bが配置され、現像処理ユニットDEV3の外側に待機ポッド70cが配置される。
(2) Operation of Development Processing Apparatus An outline of the operation of the development processing apparatus 1 will be described. FIG. 3 is a diagram illustrating a moving path of the slit nozzle 61. The development processing apparatus 1 includes a control unit 80. The operation of each component of the development processing apparatus 1 is controlled by the control unit 80. In FIG. 3, the three development processing units DEV are development processing units DEV1, DEV2, and DEV3, respectively, and the three standby pods 70 are standby pods 70a, 70b, and 70c, respectively. The development processing units DEV1, DEV2, and DEV3 are arranged along the X direction in this order. A standby pod 70a is disposed between the development processing units DEV1 and DEV2, a standby pod 70b is disposed between the development processing units DEV2 and DEV3, and a standby pod 70c is disposed outside the development processing unit DEV3.
 スリットノズル61が待機ポッド70c上に位置するときに、図示しない搬送装置により現像処理ユニットDEV1のスピンチャック11上に、露光処理後の基板Wが搬送される。この場合、現像処理ユニットDEV1の処理カップ20が下方位置にある状態で現像処理ユニットDEV1のスピンチャック11上に基板Wが搬送され、基板Wの搬送後にその処理カップ20が上方位置に上昇する。続いて、スリットノズル61が、現像処理ユニットDEV1のスピンチャック11により保持される基板Wの一端部(X方向において待機ポッド70aから遠い側の端部)上まで移動し、現像液を吐出しながら基板Wの他端部(X方向において待機ポッド70aに近い側の端部)上まで移動する。その後、スリットノズル61は待機ポッド70a上に移動する。 When the slit nozzle 61 is positioned on the standby pod 70c, the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV1 by a transfer device (not shown). In this case, the substrate W is transferred onto the spin chuck 11 of the development processing unit DEV1 while the processing cup 20 of the development processing unit DEV1 is in the lower position, and the processing cup 20 is raised to the upper position after the substrate W is transferred. Subsequently, the slit nozzle 61 moves to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV1 (the end on the side far from the standby pod 70a in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70a in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70a.
 スリットノズル61が待機ポッド70a上に位置するときに、図示しない搬送装置により現像処理ユニットDEV2のスピンチャック11上に、露光処理後の基板Wが搬送される。この場合、現像処理ユニットDEV2の処理カップ20が下方位置にある状態で現像処理ユニットDEV2のスピンチャック11上に基板Wが搬送され、基板Wの搬送後にその処理カップ20が上方位置に上昇する。続いて、スリットノズル61が、現像処理ユニットDEV2のスピンチャック11により保持される基板Wの一端部(X方向において待機ポッド70aに近い側の端部)上まで移動し、現像液を吐出しながら基板Wの他端部(X方向において待機ポッド70bに近い側の端部)上まで移動する。その後、スリットノズル61は待機ポッド70b上に移動する。 When the slit nozzle 61 is positioned on the standby pod 70a, the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV2 by a transfer device (not shown). In this case, the substrate W is transported onto the spin chuck 11 of the development processing unit DEV2 while the processing cup 20 of the development processing unit DEV2 is in the lower position, and after the substrate W is transported, the processing cup 20 rises to the upper position. Subsequently, the slit nozzle 61 moves to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV2 (end on the side close to the standby pod 70a in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70b in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70b.
 スリットノズル61が待機ポッド70b上に位置するときに、図示しない搬送装置により現像処理ユニットDEV3のスピンチャック11上に、露光処理後の基板Wが搬送される。この場合、現像処理ユニットDEV3の処理カップ20が下方位置にある状態で現像処理ユニットDEV3のスピンチャック11上に基板Wが搬送され、基板Wの搬送後にその処理カップ20が上方位置に上昇する。続いて、スリットノズル61が、現像処理ユニットDEV3のスピンチャック11により保持される基板Wの一端部(X方向において待機ポッド70bに近い側の端部)上まで移動し、現像液を吐出しながら基板Wの他端部(X方向において待機ポッド70cに近い側の端部)上まで移動する。その後、スリットノズル61は待機ポッド70c上に移動する。 When the slit nozzle 61 is positioned on the standby pod 70b, the substrate W after the exposure processing is transferred onto the spin chuck 11 of the development processing unit DEV3 by a transfer device (not shown). In this case, the substrate W is transported onto the spin chuck 11 of the development processing unit DEV3 with the processing cup 20 of the development processing unit DEV3 being in the lower position, and after the substrate W is transported, the processing cup 20 is raised to the upper position. Subsequently, the slit nozzle 61 moves up to one end of the substrate W held by the spin chuck 11 of the development processing unit DEV3 (the end on the side close to the standby pod 70b in the X direction) while discharging the developer. It moves to the other end of the substrate W (the end close to the standby pod 70c in the X direction). Thereafter, the slit nozzle 61 moves onto the standby pod 70c.
 現像処理ユニットDEV1~DEV3の各々において、スリットノズル61が基板W上を移動しながら現像液を吐出することにより、基板W上に現像液の液層が形成される。その状態で、基板W上に形成された感光性膜(レジスト)の現像反応が進行する。現像液の液層が形成されてから予め定められた時間が経過すると、リンスノズル30がリンス位置に移動し、リンス液を吐出する。それにより、感光性膜の現像反応が停止される。続いて、基板W上にリンス液が吐出されつつ回転保持部10により基板Wが回転されることにより、基板W上の現像液が洗い流される。その後、リンス液の吐出が停止された状態で基板Wが回転されることにより、基板Wからリンス液が振り切られ、基板Wが乾燥される。乾燥された基板Wが図示しない搬送装置によりスピンチャック11上から搬送される。スピンチャック11上から基板Wが搬送される際には、処理カップ20が下方位置に下降する。現像処理装置1においては、このような一連の動作が繰り返される。 In each of the development processing units DEV1 to DEV3, the developer layer is formed on the substrate W by the slit nozzle 61 discharging the developer while moving on the substrate W. In this state, the development reaction of the photosensitive film (resist) formed on the substrate W proceeds. When a predetermined time elapses after the developer liquid layer is formed, the rinse nozzle 30 moves to the rinse position and discharges the rinse liquid. Thereby, the development reaction of the photosensitive film is stopped. Subsequently, the developer on the substrate W is washed away by rotating the substrate W by the rotation holding unit 10 while discharging the rinse liquid onto the substrate W. Thereafter, the substrate W is rotated in a state where the discharge of the rinse liquid is stopped, whereby the rinse liquid is shaken off from the substrate W, and the substrate W is dried. The dried substrate W is transported from above the spin chuck 11 by a transport device (not shown). When the substrate W is transported from above the spin chuck 11, the processing cup 20 is lowered to the lower position. In the development processing apparatus 1, such a series of operations is repeated.
 現像処理ユニットDEV1~DEV3の各々に対する基板Wの搬入および搬出のタイミングは、上記の例に限定されず、現像処理装置1の各部の動作速度、現像処理時間、または搬送装置の動作速度等に応じて、適宜変更されてもよい。また、現像処理ユニットDEV、待機ポッド70およびスリットノズル61の数は、適宜変更されてもよい。 The timing of loading and unloading the substrate W with respect to each of the development processing units DEV1 to DEV3 is not limited to the above example, and depends on the operation speed of each part of the development processing apparatus 1, the development processing time, the operation speed of the transport device, or the like. And may be changed as appropriate. Further, the numbers of the development processing unit DEV, the standby pod 70, and the slit nozzle 61 may be changed as appropriate.
 (3)スリットノズルの構成
 スリットノズル61の詳細について説明する。図4は、スリットノズル61およびノズルアーム61aの一部の外観斜視図である。図5は、スリットノズル61の分解斜視図である。図6は、スリットノズル61の縦断面図であり、図7は、スリットノズル61およびノズルアーム61aの一部の縦断面図である。
(3) Configuration of slit nozzle Details of the slit nozzle 61 will be described. FIG. 4 is an external perspective view of a part of the slit nozzle 61 and the nozzle arm 61a. FIG. 5 is an exploded perspective view of the slit nozzle 61. FIG. 6 is a longitudinal sectional view of the slit nozzle 61, and FIG. 7 is a longitudinal sectional view of a part of the slit nozzle 61 and the nozzle arm 61a.
 図4に示すように、ノズルアーム61aは、略L字状の断面を有するノズル取り付け部61bを含む。ノズル取り付け部61bにスリットノズル61が取り付けられる。スリットノズル61の上面および一側面はノズル取り付け部61bに重なる。 As shown in FIG. 4, the nozzle arm 61a includes a nozzle mounting portion 61b having a substantially L-shaped cross section. The slit nozzle 61 is attached to the nozzle attachment portion 61b. The upper surface and one side surface of the slit nozzle 61 overlap the nozzle mounting portion 61b.
 ノズル取り付け部61bの上面には、連結部材630が取り付けられる。連結部材630には、吸引管635の一端が接続される。吸引管635の他端は、図示しない真空発生装置(排気装置)に接続される。 The connecting member 630 is attached to the upper surface of the nozzle attachment portion 61b. One end of a suction pipe 635 is connected to the connecting member 630. The other end of the suction pipe 635 is connected to a vacuum generator (exhaust device) (not shown).
 図5に示すように、スリットノズル61は、外部材71,72および内部材73を含む。外部材71,72および内部材73は、それぞれY方向に長尺状に延びる。上下方向における外部材71,72の幅は互いに等しく、内部材73の幅はそれより小さい。内部材73は、外部材71,72の間に配置される。 As shown in FIG. 5, the slit nozzle 61 includes outer members 71 and 72 and an inner member 73. The outer members 71 and 72 and the inner member 73 each extend in a long shape in the Y direction. The widths of the outer members 71 and 72 in the vertical direction are equal to each other, and the width of the inner member 73 is smaller than that. The inner member 73 is disposed between the outer members 71 and 72.
 外部材71,72は、例えば撥水性材料により形成され、内部材73は、例えば親水性材料により形成される。外部材71,72の材料として、例えば、PCTFE(ポリクロロトリフルオロエチレン)またはPTFE(ポリテトラフルオロエチレン)が用いられる。内部材73の材料として、例えば石英が用いられる。 The outer members 71 and 72 are made of, for example, a water repellent material, and the inner member 73 is made of, for example, a hydrophilic material. For example, PCTFE (polychlorotrifluoroethylene) or PTFE (polytetrafluoroethylene) is used as the material of the external materials 71 and 72. For example, quartz is used as the material of the inner member 73.
 外部材71の内面(内部材73に対向する面)には、一定の深さの凹部710が形成される。凹部710は、帯状領域711および複数の突出領域712を含む。帯状領域711は、外部材71の下端部に沿ってY方向に延びる。複数の突出領域712は、帯状領域711の上端部からそれぞれ上方に突出するとともに、Y方向に等間隔に並ぶように設けられる。また、複数の突出領域712にそれぞれ対応するように、複数の導入路71aが外部材71に形成される。各導入路71aの一端は、対応する突出領域712内で開口し、他端は、外部材71の外面で開口する。また、外部材71の上端部および両側部には、複数の孔部71bが設けられる。 A recess 710 having a certain depth is formed on the inner surface of the outer member 71 (the surface facing the inner member 73). The recess 710 includes a belt-like region 711 and a plurality of protruding regions 712. The belt-like region 711 extends in the Y direction along the lower end portion of the outer member 71. The plurality of projecting regions 712 are provided so as to project upward from the upper end of the belt-shaped region 711 and to be arranged at equal intervals in the Y direction. In addition, a plurality of introduction paths 71 a are formed in the outer member 71 so as to correspond to the plurality of protruding regions 712, respectively. One end of each introduction path 71 a opens in the corresponding protruding region 712, and the other end opens on the outer surface of the outer member 71. In addition, a plurality of holes 71 b are provided in the upper end portion and both side portions of the outer member 71.
 外部材72の内面(内部材73に対向する面)には、一定の深さの凹部720が形成される。凹部720は、帯状領域721および複数の突出領域722を含む。帯状領域721は、外部材71の帯状領域711と同様の形状を有し、各突出領域722は、外部材71の各突出領域712と同様の形状を有する。外部材72の上端部および両側部には、複数の孔部72bが設けられる。 A recess 720 having a certain depth is formed on the inner surface of the outer member 72 (the surface facing the inner member 73). The recess 720 includes a band-shaped region 721 and a plurality of protruding regions 722. The belt-like region 721 has the same shape as the belt-like region 711 of the outer member 71, and each protruding region 722 has the same shape as each protruding region 712 of the outer member 71. A plurality of holes 72 b are provided in the upper end portion and both side portions of the external member 72.
 内部材73の両側部には、下端部から一定の高さまで切り欠き73aがそれぞれ形成される。内部材73は、後述の係止部材75(図9)によって外部材71,72の間で係止される。 Notches 73a are formed on both sides of the inner member 73 from the lower end to a certain height. The inner member 73 is locked between the outer members 71 and 72 by a locking member 75 (FIG. 9) described later.
 図6に示すように、外部材71,72の外面の下端部は、それぞれ内側に傾斜するように形成される。また、内部材73の上面および下面は、内部材73の一方の側面および他方の側面にそれぞれ連続的につながるように曲面状に設けられる。 As shown in FIG. 6, the lower end portions of the outer surfaces of the outer members 71 and 72 are formed so as to be inclined inward. Further, the upper surface and the lower surface of the inner member 73 are provided in a curved shape so as to be continuously connected to one side surface and the other side surface of the inner member 73, respectively.
 外部材72の内面には段差が設けられ、外部材72の上部の厚みは下部の厚みより大きい。外部材72の内面上部は、外部材71の内面上部に当接する。凹部710,720は、外部材71,72の内面下部にそれぞれ形成される。凹部710,720の間に内部材73が配置される。 Steps are provided on the inner surface of the outer member 72, and the thickness of the upper portion of the outer member 72 is larger than the thickness of the lower portion. The upper part of the inner surface of the external member 72 is in contact with the upper part of the inner surface of the outer member 71. Recesses 710 and 720 are formed in the lower portions of the inner surfaces of outer members 71 and 72, respectively. The inner member 73 is disposed between the recesses 710 and 720.
 外部材71の凹部710の帯状領域711および内部材73の一方の側面により流路FP1aが形成され、外部材72の凹部720の帯状領域721および内部材73の他方の側面により流路FP2aが形成される。また、流路FP1aの下端に、スリット状の吐出口OP1が形成され、流路FP2aの下端に、スリット状の吐出口OP2が形成される。吐出口OP1,OP2は、互いに平行にY方向に延びる。 The flow path FP1a is formed by the band-shaped region 711 of the recess 710 of the external member 71 and one side surface of the inner member 73, and the flow path FP2a is formed by the band-shaped region 721 of the recess 720 of the outer member 72 and the other side surface of the inner member 73. Is done. In addition, a slit-like discharge port OP1 is formed at the lower end of the flow path FP1a, and a slit-like discharge port OP2 is formed at the lower end of the flow path FP2a. The discharge ports OP1 and OP2 extend in the Y direction in parallel with each other.
 外部材71の凹部710の複数の突出領域712および内部材73の一方の側面により複数の流路FP1bが形成され、外部材72の凹部720の複数の突出領域722および内部材73の他方の側面により複数の流路FP2bが形成される。図6には、1つの流路FP1bおよび1つの流路FP2bのみが示される。内部材73の上面と外部材72の段差面GPとの間には連通路CPが形成される。連通路CPを介して、複数の流路FP1bと複数の流路FP2bとが互いに連通する。複数の流路FP1bと複数の流路FP2bとの間で現像液を分散させるために、外部材71の導入路71aは内部材73の上端部よりも高い位置にあることが好ましい。 A plurality of flow paths FP1b are formed by the plurality of protruding regions 712 of the concave portion 710 of the external member 71 and one side surface of the inner member 73, and the other side surface of the plurality of protruding regions 722 of the concave portion 720 of the outer member 72 and the inner member 73. Thus, a plurality of flow paths FP2b are formed. FIG. 6 shows only one flow path FP1b and one flow path FP2b. A communication path CP is formed between the upper surface of the inner member 73 and the step surface GP of the outer member 72. The plurality of flow paths FP1b and the plurality of flow paths FP2b communicate with each other through the communication path CP. In order to disperse the developing solution between the plurality of flow paths FP1b and the plurality of flow paths FP2b, the introduction path 71a of the outer member 71 is preferably located at a position higher than the upper end portion of the inner member 73.
 図7に示すように、ノズルアーム61aのノズル取り付け部61bは、取り付け底面611および取り付け側面612を有する。取り付け側面612には、複数のねじ穴612aがY方向に並ぶように形成される。図7には、1つのねじ穴612aのみが示される。外部材71の外面が取り付け側面612に当接する状態で、外部材72の複数の孔部72bおよび外部材71の複数の孔部71bを通して、複数のねじSCが取り付け側面612の複数のねじ穴612aにそれぞれねじ込まれる。これにより、外部材71,72がノズル取り付け部61bに固定される。外部材71,72の上面は、ノズル取り付け部61bの取り付け底面611と対向する。 As shown in FIG. 7, the nozzle mounting portion 61b of the nozzle arm 61a has a mounting bottom surface 611 and a mounting side surface 612. A plurality of screw holes 612a are formed in the attachment side surface 612 so as to be arranged in the Y direction. FIG. 7 shows only one screw hole 612a. In a state where the outer surface of the external member 71 is in contact with the attachment side surface 612, the plurality of screws SC pass through the plurality of hole portions 72b of the outer member 72 and the plurality of hole portions 71b of the outer member 71, and the plurality of screw holes 612a of the attachment side surface 612. Screwed into each. Thereby, the outer members 71 and 72 are fixed to the nozzle attachment portion 61b. The upper surfaces of the external members 71 and 72 are opposed to the mounting bottom surface 611 of the nozzle mounting portion 61b.
 ノズル取り付け部61bの内部には、吸引路621、供給路622、液溜り部623および複数の供給路624が互いに連通するように設けられる。連結部材630の内部には、吸引路631が形成される。以下、ノズル取り付け部61bおよび連結部材630の内部構造について説明する。 In the nozzle attachment portion 61b, a suction path 621, a supply path 622, a liquid reservoir 623, and a plurality of supply paths 624 are provided so as to communicate with each other. A suction path 631 is formed inside the connecting member 630. Hereinafter, the internal structure of the nozzle attachment portion 61b and the connecting member 630 will be described.
 図8は、図7のA-A線断面図である。図8に示すように、液溜り部623は、Y方向に漸次拡大しつつ下方に延び、さらに一定の幅で下方に延びる。吸引路621は、ノズル取り付け部61bの上面から液溜り部623に延びる。連結部材630の吸引路631は、吸引路621に連通する。また、吸引管635は、吸引路631に連通する。 FIG. 8 is a cross-sectional view taken along line AA in FIG. As shown in FIG. 8, the liquid reservoir 623 extends downward while gradually expanding in the Y direction, and further extends downward with a certain width. The suction path 621 extends from the upper surface of the nozzle attachment portion 61b to the liquid reservoir 623. The suction path 631 of the connecting member 630 communicates with the suction path 621. The suction pipe 635 communicates with the suction path 631.
 供給路622は、液溜り部623とX方向に隣り合いかつY方向に延びる。供給路622の一端部は略垂直に屈曲して液溜り部623の上端部で開口する。複数(本例では、5つ)の供給路624はY方向に並ぶように設けられ、各供給路624の一端は液溜り部623の下端部で開口する。各供給路624は、Y方向に一定の幅を有し、X方向に帯状に延びる。図7に示すように、各供給路624は、外部材71の複数の導入路71aに連通する。本例では、1つの供給路624が6つの導入路71aに連通する。 The supply path 622 is adjacent to the liquid reservoir 623 in the X direction and extends in the Y direction. One end of the supply path 622 is bent substantially vertically and opens at the upper end of the liquid reservoir 623. A plurality (five in this example) of supply paths 624 are provided so as to be arranged in the Y direction, and one end of each supply path 624 opens at the lower end of the liquid reservoir 623. Each supply path 624 has a certain width in the Y direction and extends in a strip shape in the X direction. As shown in FIG. 7, each supply path 624 communicates with a plurality of introduction paths 71 a of the outer member 71. In this example, one supply path 624 communicates with the six introduction paths 71a.
 供給路622を通して、液溜り部623に現像液が供給される。液溜り部623の現像液は、複数の供給路624を通して、スリットノズル61に導かれる。また、吸引路621,631および図8の吸引管635を通して、液溜り部623内の気体が吸引される。これにより、液溜り部623において、現像液から気泡が除去される。 The developer is supplied to the liquid reservoir 623 through the supply path 622. The developer in the liquid reservoir 623 is guided to the slit nozzle 61 through a plurality of supply paths 624. Further, the gas in the liquid reservoir 623 is sucked through the suction paths 621 and 631 and the suction pipe 635 of FIG. As a result, bubbles are removed from the developer at the liquid reservoir 623.
 (4)係止部材
 図9および図10は、内部材73を係止する係止部材について説明するための図である。図9には、外部材71の内面が示され、図10には、スリットノズル61の一端部が示される。また、図9においては、内部材73が一点鎖線で示され、図10においては、内部材73が点線で示される。
(4) Locking member FIGS. 9 and 10 are views for explaining a locking member for locking the inner member 73. FIG. 9 shows the inner surface of the outer member 71, and FIG. 10 shows one end of the slit nozzle 61. In FIG. 9, the inner member 73 is indicated by a one-dot chain line, and in FIG. 10, the inner member 73 is indicated by a dotted line.
 図9および図10に示すように、スリットノズル61の両端部には、係止部材75がそれぞれ取り付けられる。図10に示すように、各係止部材75は、一対のねじ75aにより外部材71,72の下端部にそれぞれ固定される。図9に示すように、各係止部材75の一部は、内部材73の各切り欠き73a内に位置する。これにより、内部材73の両側部が一対の係止部材75によって係止される。 As shown in FIGS. 9 and 10, locking members 75 are attached to both ends of the slit nozzle 61, respectively. As shown in FIG. 10, each locking member 75 is fixed to the lower ends of the outer members 71 and 72 by a pair of screws 75a. As shown in FIG. 9, a part of each locking member 75 is located in each notch 73 a of the inner member 73. Thereby, both side portions of the inner member 73 are locked by the pair of locking members 75.
 また、Y方向において、内部材73の上半部の長さは、外部材71の凹部710の長さよりも大きい。それにより、内部材73の一方の側面の両端部が、凹部710の外側で外部材71の内面に当接する。そのため、内部材73の一方の側面が、外部材71の凹部710の底面に当接することが防止される。したがって、図6に示すように、内部材73の一方の側面と凹部710の底面との間に流路FP1a,FP1bが確保される。同様に、内部材73の他方の側面の両端部が、凹部720の外側において、外部材72の内面に当接する。そのため、内部材73の他方の側面が外部材72の凹部720の底面に当接することが防止される。したがって、図6に示すように、内部材73の他方の側面と凹部720の底面との間に流路FP2a,FP2bが確保される。また、内部材73の両側面が外部材71,72の間に挟まれた状態で、図7のねじSCによって外部材71,72がノズル取り付け部61bに固定されることにより、外部材71,72の間で内部材73が挟持される。 Also, in the Y direction, the length of the upper half of the inner member 73 is larger than the length of the recess 710 of the outer member 71. As a result, both end portions of one side surface of the inner member 73 abut on the inner surface of the outer member 71 outside the recess 710. Therefore, one side surface of the inner member 73 is prevented from coming into contact with the bottom surface of the recess 710 of the outer member 71. Therefore, as shown in FIG. 6, flow paths FP1a and FP1b are secured between one side surface of the inner member 73 and the bottom surface of the recess 710. Similarly, both end portions of the other side surface of the inner member 73 are in contact with the inner surface of the outer member 72 outside the recess 720. This prevents the other side surface of the inner member 73 from coming into contact with the bottom surface of the recess 720 of the outer member 72. Therefore, as shown in FIG. 6, flow paths FP <b> 2 a and FP <b> 2 b are ensured between the other side surface of the inner member 73 and the bottom surface of the recess 720. Further, the outer members 71, 72 are fixed to the nozzle mounting portion 61b by the screws SC of FIG. 7 in a state where both side surfaces of the inner member 73 are sandwiched between the outer members 71, 72. The inner member 73 is sandwiched between 72.
 本例では、外部材71,72がそれぞれねじ止めされ、内部材73はねじ止めされない。例えば、内部材73が石英からなる場合、内部材73の加工のためのコストが高くなる。そのため、内部材73にねじ止めのための孔部を形成することは、コスト増大の要因となる。そこで、内部材73が、ねじ止めされることなく、係止部材75によって係止されかつ外部材71,72によって挟持されることにより、コストの増大が抑制される。 In this example, the outer members 71 and 72 are screwed, and the inner member 73 is not screwed. For example, when the inner member 73 is made of quartz, the cost for processing the inner member 73 increases. Therefore, forming a hole for screwing in the inner member 73 causes a cost increase. Therefore, the increase in cost is suppressed by the inner member 73 being locked by the locking member 75 and being clamped by the outer members 71 and 72 without being screwed.
 (5)現像液の供給
 図11は、スリットノズル61による基板Wへの現像液の供給について説明するための模式的断面図である。図11に示すように、ノズル取り付け部61bの液溜り部623から複数の供給路624を通して、スリットノズル61の複数の導入路71aに現像液が導かれる。複数の導入路71aを通して複数の流路FP1bに現像液が導かれるとともに、複数の連通路CPを通して複数の流路FP2bに現像液が導かれる。複数の流路FP1bから流路FP1aを通して吐出口OP1に現像液が導かれ、吐出口OP1から基板W上に現像液が吐出される。また、複数の流路FP2bから流路FP2aを通して吐出口OP2に現像液が導かれ、吐出口OP2から基板W上に現像液が吐出される。
(5) Supply of Developer FIG. 11 is a schematic cross-sectional view for explaining the supply of the developer to the substrate W by the slit nozzle 61. As shown in FIG. 11, the developer is guided to the plurality of introduction paths 71 a of the slit nozzle 61 through the plurality of supply paths 624 from the liquid reservoir 623 of the nozzle mounting section 61 b. The developer is guided to the plurality of flow paths FP1b through the plurality of introduction paths 71a, and the developer is guided to the plurality of paths FP2b through the plurality of communication paths CP. The developer is guided from the plurality of channels FP1b to the discharge port OP1 through the channel FP1a, and the developer is discharged from the discharge port OP1 onto the substrate W. Further, the developer is guided from the plurality of channels FP2b to the discharge port OP2 through the channel FP2a, and the developer is discharged onto the substrate W from the discharge port OP2.
 スリットノズル61の移動方向MD(X方向)は、吐出口OP1,OP2の長手方向(Y方向)に対して垂直である。スリットノズル61の移動方向MDにおいて、吐出口OP2は吐出口OP1より前方に位置する。 The moving direction MD (X direction) of the slit nozzle 61 is perpendicular to the longitudinal direction (Y direction) of the discharge ports OP1 and OP2. In the movement direction MD of the slit nozzle 61, the discharge port OP2 is positioned in front of the discharge port OP1.
 本実施の形態では、スリットノズル61の2つの吐出口OP1,OP2から現像液が吐出されるので、1つの吐出口のみから現像液が吐出される場合と比べて、現像液の流量および吐出圧が適度に分散される。それにより、基板W上に均一に現像液を吐出することができる。その結果、基板W上に現像液の液層を安定的に形成することができる。 In the present embodiment, since the developer is discharged from the two discharge ports OP1 and OP2 of the slit nozzle 61, the flow rate and discharge pressure of the developer are compared with the case where the developer is discharged from only one discharge port. Is moderately dispersed. Thereby, the developer can be uniformly discharged onto the substrate W. As a result, a liquid layer of the developer can be stably formed on the substrate W.
 また、内部材73が親水性を有する場合、内部材73の下面と基板Wの上面との間に十分な液溜りが形成される。そのため、内部材73の下面と基板Wの上面との間で液層が分離されることが防止される。また、外部材71,72が撥水性を有する場合、外部材71,72の外面を伝って現像液が這い上がる現象が抑制される。それにより、外部材71,72の外面に現像液が付着しにくくなるとともに、基板W上の液層を安定に維持することができる。 Further, when the inner member 73 has hydrophilicity, a sufficient liquid pool is formed between the lower surface of the inner member 73 and the upper surface of the substrate W. This prevents the liquid layer from being separated between the lower surface of the inner member 73 and the upper surface of the substrate W. Further, when the outer members 71 and 72 have water repellency, the phenomenon that the developer rises along the outer surfaces of the outer members 71 and 72 is suppressed. This makes it difficult for the developer to adhere to the outer surfaces of the outer members 71 and 72, and the liquid layer on the substrate W can be stably maintained.
 図12は、比較例に係るスリットノズルの構成を示す断面図である。図12のスリットノズル61xについて、図4~図11のスリットノズル61と異なる点を説明する。図12のスリットノズル61xにおいては、上下方向における内部材73の幅が、上下方向における外部材71,72の幅とほぼ等しい。また、外部材72と内部材73との間に流路FP2a,FP2bが形成されない。それにより、吐出口OP1のみから現像液が吐出される。 FIG. 12 is a cross-sectional view showing a configuration of a slit nozzle according to a comparative example. The difference between the slit nozzle 61x of FIG. 12 and the slit nozzle 61 of FIGS. 4 to 11 will be described. In the slit nozzle 61x of FIG. 12, the width of the inner member 73 in the vertical direction is substantially equal to the width of the outer members 71 and 72 in the vertical direction. Further, the flow paths FP2a and FP2b are not formed between the outer member 72 and the inner member 73. Thereby, the developer is discharged only from the discharge port OP1.
 本実施の形態に係るスリットノズル61および上記比較例に係るスリットノズル61xを用いて基板W上に現像液の液層を形成し、その結果を比較した。具体的には、スリットノズル61,61xの移動速度および現像液の流量を種々の値に設定し、吐出口OP1から液層の前端部までのY方向における距離LL(図11)が適正範囲(本例では、10mm以下)にあるか否かを調べた。距離LLが適正範囲を超える場合、現像液の液層の厚みおよび形成範囲を適切に調整することが困難となり、基板Wの現像不良が生じる可能性がある。なお、現像液の液層の形成は、基板Wの回転を停止した状態で行った。 Using the slit nozzle 61 according to the present embodiment and the slit nozzle 61x according to the comparative example, a liquid layer of a developer was formed on the substrate W, and the results were compared. Specifically, the moving speed of the slit nozzles 61 and 61x and the flow rate of the developing solution are set to various values, and the distance LL (FIG. 11) in the Y direction from the discharge port OP1 to the front end portion of the liquid layer is within an appropriate range ( In this example, it was examined whether or not it was 10 mm or less. When the distance LL exceeds the appropriate range, it is difficult to appropriately adjust the thickness and the formation range of the liquid layer of the developer, and the development failure of the substrate W may occur. The developer layer was formed in a state where the rotation of the substrate W was stopped.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2において、「○」は、距離LL(図11)が適正範囲にあることを示し、「×」は、距離LL(図11)が適正範囲を超えることを示す。
Figure JPOXMLDOC01-appb-T000002
In Tables 1 and 2, “◯” indicates that the distance LL (FIG. 11) is within the appropriate range, and “X” indicates that the distance LL (FIG. 11) exceeds the appropriate range.
 表1に示されるように、本実施の形態に係るスリットノズル61を用いた場合には、現像液の流量が2000ml/minであってスリットノズル61の移動速度が40mm/sである場合にのみ、距離LLが適正範囲より大きくなった。 As shown in Table 1, when the slit nozzle 61 according to the present embodiment is used, only when the flow rate of the developer is 2000 ml / min and the moving speed of the slit nozzle 61 is 40 mm / s. The distance LL is larger than the appropriate range.
 一方、表2に示されるように、比較例に係るスリットノズル61xを用いた場合には、現像液の流量が1900ml/minであってスリットノズル61xの移動速度が40mm/sである場合および45mm/sである場合に距離LLが適正範囲を超えた。また、現像液の流量が2000ml/minであってスリットノズル61xの移動速度が40mm/sである場合、45mm/minである場合および50mm/minである場合に距離LLが適正範囲を超えた。 On the other hand, as shown in Table 2, when the slit nozzle 61x according to the comparative example is used, the flow rate of the developer is 1900 ml / min and the moving speed of the slit nozzle 61x is 40 mm / s and 45 mm. The distance LL exceeded the appropriate range when / s. The distance LL exceeded the appropriate range when the flow rate of the developer was 2000 ml / min and the moving speed of the slit nozzle 61x was 40 mm / s, 45 mm / min, and 50 mm / min.
 このように、本実施の形態に係るスリットノズル61が用いられることにより、比較例に係るスリットノズル61xが用いられる場合に比べて、基板W上に現像液の液層が適切に形成されることがわかった。 As described above, by using the slit nozzle 61 according to the present embodiment, the liquid layer of the developer is appropriately formed on the substrate W as compared with the case where the slit nozzle 61x according to the comparative example is used. I understood.
 (6)効果
 本実施の形態に係るスリットノズル61においては、内部材73の一方の側面および外部材71の凹部710により流路FP1a,FP1bが形成され、内部材73の他方の側面および外部材71の凹部720により流路FP2a,FP2bが形成される。外部材71に形成された導入路71aを通して、流路FP1a,FP1b,FP2a,FP2bに現像液が導かれる。
(6) Effects In the slit nozzle 61 according to the present embodiment, the flow paths FP1a and FP1b are formed by the one side surface of the inner member 73 and the concave portion 710 of the outer member 71, and the other side surface and outer member of the inner member 73 are formed. The flow path FP2a, FP2b is formed by the recess 720 of 71. The developer is guided to the flow paths FP1a, FP1b, FP2a, and FP2b through the introduction path 71a formed in the external material 71.
 このような構成により、現像液およびレジスト残渣等を含む溶液(処理溶液)が、内部材73の両側面および外部材71,72の凹部710、720のいずれか付着しても、流路FP1a,FP1b,FP2a,FP2bにおける現像液の流動によってその処理溶液が除去される。それにより、付着した処理溶液から固形物が析出することが防止される。その結果、固形物の析出による現像欠陥の発生が防止される。 With such a configuration, even if a solution (processing solution) containing a developer, a resist residue, or the like adheres to either of the side surfaces of the inner member 73 and the recesses 710 and 720 of the outer members 71 and 72, the flow path FP1a, The processing solution is removed by the flow of the developing solution in FP1b, FP2a, and FP2b. Thereby, it is prevented that a solid substance precipitates from the attached processing solution. As a result, the occurrence of development defects due to the precipitation of solid matter is prevented.
 また、本実施の形態では、内部材73の上面と外部材72の段差面GPとの間に連通路CPが形成され、その連通路CPを介して流路FP1b,FP2bが互いに連通する。これにより、簡単な構成で流路FP1a,FP1b,FP2a,FP2bに現像液を導くことができる。また、内部材73の一方および他方の側面ならびに上面がそれぞれ現像液の流路を形成するので、内部材73の表面上において、処理溶液が残存する可能性のある部分が削減される。それにより、固形物の析出が十分に防止される。 In the present embodiment, the communication path CP is formed between the upper surface of the inner member 73 and the stepped surface GP of the outer member 72, and the flow paths FP1b and FP2b communicate with each other through the communication path CP. Accordingly, the developer can be guided to the flow paths FP1a, FP1b, FP2a, and FP2b with a simple configuration. In addition, since one and the other side surfaces and the upper surface of the inner member 73 respectively form a flow path for the developer, a portion where the processing solution may remain on the surface of the inner member 73 is reduced. Thereby, precipitation of a solid substance is fully prevented.
 また、本実施の形態では、吐出口OP1に沿って一方向に延びるように帯状の流路FP1aが形成され、流路FP1aの上端部から上方に突出するように複数の流路FP1bが形成される。また、吐出口OP2に沿って一方向に延びるように帯状の流路FP2aが形成され、流路FP2aの上端部から上方に突出するように複数の流路FP2bが形成される。 In the present embodiment, a strip-shaped flow path FP1a is formed so as to extend in one direction along the discharge port OP1, and a plurality of flow paths FP1b are formed so as to protrude upward from the upper end portion of the flow path FP1a. The Further, a strip-shaped flow path FP2a is formed so as to extend in one direction along the discharge port OP2, and a plurality of flow paths FP2b are formed so as to protrude upward from the upper end portion of the flow path FP2a.
 これにより、複数の流路FP1bから流路FP1aの全体に均一に現像液が導かれ、かつ複数の流路FP2bから流路FP2aの全体に均一に現像液が導かれる。したがって、吐出口OP1,OP2の全体から均一に現像液を吐出することができる。その結果、基板W上に現像液の液層を安定的に形成することができる。 Thereby, the developer is uniformly guided from the plurality of channels FP1b to the entire channel FP1a, and the developer is uniformly guided from the plurality of channels FP2b to the entire channel FP2a. Therefore, the developer can be uniformly discharged from the entire discharge ports OP1 and OP2. As a result, a liquid layer of the developer can be stably formed on the substrate W.
 (7)他の実施の形態
 (7-1)
 上記実施の形態では、外部材71,72が個別に設けられるが、本発明はこれに限らず、外部材71,72が一体に設けられてもよい。この場合、部品点数が削減される。また、外部材71と外部材72との隙間に現像液が浸入することが防止される。
(7) Other embodiments (7-1)
In the said embodiment, although the outer members 71 and 72 are provided separately, this invention is not limited to this, and the outer members 71 and 72 may be provided integrally. In this case, the number of parts is reduced. Further, the developer is prevented from entering the gap between the outer member 71 and the outer member 72.
 (7-2)
 上記実施の形態では、連通路CPを介して流路FP1b,FP2bが互いに連通するが、本発明はこれに限らない、流路FP1b,FP2bが互いに連通せず、流路FP1bに現像液を導く導入路71aとともに、流路FP2bに現像液を導く導入路が設けられてもよい。
(7-2)
In the above embodiment, the flow paths FP1b and FP2b communicate with each other through the communication path CP. However, the present invention is not limited to this, and the flow paths FP1b and FP2b do not communicate with each other, and the developer is guided to the flow path FP1b. An introduction path that guides the developer to the flow path FP2b may be provided along with the introduction path 71a.
 (7-3)
 上記実施の形態では、吐出口OP1,OP2に沿って一方向に延びるように帯状の流路FP1a,FP2aがそれぞれ形成され、流路FP1a,FP2aの上端部から上方に突出するように複数の流路FP1b,FP2bがそれぞれ形成されるが、各流路の形状はこれに限らず、適宜変更されてもよい。
(7-3)
In the above embodiment, the strip-shaped flow paths FP1a and FP2a are formed so as to extend in one direction along the discharge ports OP1 and OP2, respectively, and a plurality of flows are formed so as to protrude upward from the upper ends of the flow paths FP1a and FP2a. The paths FP1b and FP2b are formed, but the shape of each flow path is not limited to this, and may be changed as appropriate.
 (7-4)
 上記実施の形態は、スリット状の吐出口OP1,OP2を有するスリットノズル61に本発明が適用された例であるが、他の現像液吐出ノズルに本発明が適用されてもよい。例えば、円形または長円形の吐出口を有する現像液吐出ノズルに本発明が適用されてもよい。あるいは、複数の吐出口が一方向に並ぶように設けられた現像液吐出ノズルに本発明が適用されてもよい。
(7-4)
The above embodiment is an example in which the present invention is applied to the slit nozzle 61 having the slit-like discharge ports OP1 and OP2, but the present invention may be applied to other developer discharge nozzles. For example, the present invention may be applied to a developer discharge nozzle having a circular or oval discharge port. Alternatively, the present invention may be applied to a developer discharge nozzle provided with a plurality of discharge ports arranged in one direction.
 (8)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
(8) Correspondence between each constituent element of claim and each element of the embodiment Hereinafter, an example of correspondence between each constituent element of the claim and each element of the embodiment will be described. It is not limited to.
 上記実施の形態では、スリットノズル61が現像液吐出ノズルの例であり、内部材73が内部材の例であり、外部材71,72が外部材の例であり、流路FP1a,FP1bが第1の流路の例であり、流路FP2a,FP2bが第2の流路の例であり、導入路71aが導入路および連通導入路の例であり、吐出口OP1が第1の吐出口の例であり、吐出口OP2が第2の吐出口の例であり、Y方向が一方向の例である。 In the above embodiment, the slit nozzle 61 is an example of the developer discharge nozzle, the inner member 73 is an example of the inner member, the outer members 71 and 72 are examples of the outer member, and the flow paths FP1a and FP1b are the first. 1 is an example of the first flow path, the flow paths FP2a and FP2b are examples of the second flow path, the introduction path 71a is an example of the introduction path and the communication introduction path, and the discharge port OP1 is the first discharge port. It is an example, the discharge port OP2 is an example of the second discharge port, and the Y direction is an example of one direction.
 また、段差面GPが第3の内面の例であり、連通路CPが連通路の例であり、係止部材75が係止部材の例であり、外部材71が第1の部材の例であり、外部材72が第2の部材の例であり、流路FP1aが第1の帯状流路の例であり、流路FP1bが第1の突出流路の例であり、流路FP2aが第2の帯状流路の例であり、流路FP2bが第2の突出流路の例である。 Further, the step surface GP is an example of the third inner surface, the communication path CP is an example of the communication path, the locking member 75 is an example of the locking member, and the outer member 71 is an example of the first member. Yes, the outer member 72 is an example of the second member, the flow path FP1a is an example of the first strip-shaped flow path, the flow path FP1b is an example of the first protruding flow path, and the flow path FP2a is the first 2 is an example of a belt-like channel, and the channel FP2b is an example of a second projecting channel.
 また、現像処理装置1が現像処理装置の例であり、回転保持部10が基板保持部の例であり、ノズルアーム61aが現像液供給系の例であり、ノズル昇降機構62およびノズルスライド機構63が移動装置の例である。 Further, the development processing apparatus 1 is an example of a development processing apparatus, the rotation holding unit 10 is an example of a substrate holding unit, the nozzle arm 61a is an example of a developer supply system, a nozzle lifting mechanism 62 and a nozzle slide mechanism 63. Is an example of a mobile device.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。 As the constituent elements of the claims, various other elements having configurations or functions described in the claims can be used.
 本発明は、種々の基板の現像処理に有効に利用することができる。 The present invention can be effectively used for development processing of various substrates.

Claims (9)

  1. 互いに逆方向に向けられる第1および第2の側面を有する内部材と、
     前記内部材の前記第1の側面に対向する第1の内面および前記内部材の前記第2の側面に対向する第2の内面を有する外部材とを備え、
     前記内部材の前記第1の側面と前記外部材の前記第1の内面との間に上下に延びる第1の流路が形成され、前記内部材の前記第2の側面と前記外部材の前記第2の内面との間に上下に延びる第2の流路が形成され、
     前記第1および第2の流路に現像液を導く導入路が前記外部材に形成され、
     現像液を吐出するための第1の吐出口が前記第1の流路の下端部に形成され、現像液を吐出するための第2の吐出口が前記第2の流路の下端部に形成される、現像液吐出ノズル。
    An inner member having first and second sides directed in opposite directions;
    An outer member having a first inner surface facing the first side surface of the inner member and a second inner surface facing the second side surface of the inner member;
    A first flow path extending vertically is formed between the first side surface of the inner member and the first inner surface of the outer member, and the second side surface of the inner member and the outer surface of the outer member are formed. A second flow path extending vertically is formed between the second inner surface and the second inner surface;
    An introduction path for guiding the developer to the first and second flow paths is formed in the outer member,
    A first discharge port for discharging the developer is formed at the lower end of the first flow path, and a second discharge port for discharging the developer is formed at the lower end of the second flow path. A developer discharge nozzle.
  2. 前記内部材は、前記外部材よりも高い親水性を有する、請求項1記載の現像液吐出ノズル。 The developer discharge nozzle according to claim 1, wherein the inner member has higher hydrophilicity than the outer member.
  3. 前記内部材は、前記第1の側面の上端部と前記第2の側面の上端部とをつなぐ上面を有し、
     前記外部材は、前記第1の内面の上端部と前記第2の内面の上端部をつなぐとともに前記内部材の前記上面に対向する第3の内面を有し、
     前記内部材の前記上面と前記外部材の前記第3の内面との間に前記第1および第2の流路を連通させる連通路が形成され、
     前記導入路は、前記連通路に現像液を導くように形成される、請求項1または2記載の現像液吐出ノズル。
    The inner member has an upper surface connecting the upper end portion of the first side surface and the upper end portion of the second side surface,
    The outer member has a third inner surface connecting the upper end of the first inner surface and the upper end of the second inner surface and facing the upper surface of the inner member,
    A communication path is formed between the upper surface of the inner member and the third inner surface of the outer member to communicate the first and second flow paths;
    The developer discharge nozzle according to claim 1, wherein the introduction path is formed so as to guide the developer to the communication path.
  4. 前記外部材の第1および第2の内面の間で前記内部材を係止する係止部材をさらに備える、請求項1~3のいずれか一項に記載の現像液吐出ノズル。 The developer discharge nozzle according to any one of claims 1 to 3, further comprising a locking member that locks the inner member between the first and second inner surfaces of the outer member.
  5. 前記外部材は、
     前記第1の内面を有する第1の部材と、
     前記第2の内面を有する第2の部材とを含み、
     前記第1および第2の部材は、前記第1および第2の内面の間に前記内部材が挟まれる状態で互いに固定される、請求項1~4のいずれか一項に記載の現像液吐出ノズル。
    The outer member is
    A first member having the first inner surface;
    A second member having the second inner surface,
    The developer discharge according to any one of claims 1 to 4, wherein the first and second members are fixed to each other in a state where the inner member is sandwiched between the first and second inner surfaces. nozzle.
  6. 前記第1および第2の吐出口は、それぞれスリット状であり、互いに並列に一方向に延びる、請求項1~5のいずれか一項に記載の現像液吐出ノズル。 The developer discharge nozzle according to any one of claims 1 to 5, wherein each of the first and second discharge ports has a slit shape and extends in one direction in parallel with each other.
  7. 前記第1の流路は、
     前記第1の吐出口に沿って前記一方向に延びるように形成された第1の帯状流路と、
     前記第1の帯状流路の上端部からそれぞれ上方に突出するとともに、前記一方向に並ぶように設けられた複数の第1の突出流路とを含み、
     前記第2の流路は、
     前記第2の吐出口に沿って前記一方向に延びるように形成された第2の帯状流路と、
     前記第2の帯状流路の上端部からそれぞれ上方に突出するとともに、前記一方向に並ぶように設けられた複数の第2の突出流路とを含み、
     前記導入路は、前記複数の第1および第2の突出流路にそれぞれ連通するように設けられた複数の連通導入路を含む、請求項6記載の現像液吐出ノズル。
    The first flow path is
    A first belt-shaped channel formed to extend in the one direction along the first discharge port;
    A plurality of first projecting channels provided so as to protrude upward from the upper end of the first belt-shaped channel and arranged in the one direction,
    The second flow path is
    A second belt-shaped channel formed so as to extend in the one direction along the second discharge port;
    A plurality of second projecting channels provided so as to protrude upward from the upper ends of the second belt-shaped channels and arranged in the one direction,
    The developer discharge nozzle according to claim 6, wherein the introduction path includes a plurality of communication introduction paths provided so as to communicate with the plurality of first and second projecting flow paths, respectively.
  8. 請求項1~7のいずれか一項に記載の現像液吐出ノズルと、
     基板を水平姿勢で保持する基板保持部と、
     前記導入路を通して前記現像液吐出ノズルに現像液を供給する現像液供給系と、
     前記基板保持部により保持される基板に対して前記現像液吐出ノズルを相対的に移動させる移動装置とを備える、現像処理装置。
    The developer discharge nozzle according to any one of claims 1 to 7,
    A substrate holder for holding the substrate in a horizontal position;
    A developer supply system for supplying a developer to the developer discharge nozzle through the introduction path;
    And a moving device that moves the developer discharge nozzle relative to the substrate held by the substrate holding portion.
  9. 前記移動装置は、前記内部材の前記第1および第2の側面に交差する方向に前記現像液吐出ノズルを移動させる、請求項8記載の現像処理装置。 The development processing apparatus according to claim 8, wherein the moving device moves the developer discharge nozzle in a direction intersecting the first and second side surfaces of the inner member.
PCT/JP2015/003436 2014-09-02 2015-07-08 Developer jetting nozzle and developing device WO2016035238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014178171A JP6316144B2 (en) 2014-09-02 2014-09-02 Developer discharge nozzle and development processing apparatus
JP2014-178171 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035238A1 true WO2016035238A1 (en) 2016-03-10

Family

ID=55439329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003436 WO2016035238A1 (en) 2014-09-02 2015-07-08 Developer jetting nozzle and developing device

Country Status (3)

Country Link
JP (1) JP6316144B2 (en)
TW (1) TWI693105B (en)
WO (1) WO2016035238A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824673B2 (en) * 2016-09-13 2021-02-03 株式会社Screenホールディングス Nozzle cleaning member, nozzle cleaning device, coating device
JP6869305B2 (en) * 2019-09-19 2021-05-12 株式会社Screenホールディングス Slit nozzle and substrate processing equipment

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326554A (en) * 1994-05-30 1995-12-12 Tokyo Electron Ltd Method and device for treatment
JPH09276773A (en) * 1996-04-10 1997-10-28 Dainippon Screen Mfg Co Ltd Substrate treating device
JPH11221511A (en) * 1997-12-05 1999-08-17 Dainippon Screen Mfg Co Ltd Treating liquid discharging nozzle and treating liquid feeding device
JP2002252167A (en) * 2000-12-21 2002-09-06 Toshiba Corp Substrate treatment apparatus and substrate treatment method using the same
JP2003077820A (en) * 2001-09-05 2003-03-14 Tokyo Electron Ltd Developing apparatus and developing method
JP2004095708A (en) * 2002-08-30 2004-03-25 Tokyo Electron Ltd Liquid processing apparatus
JP2005072333A (en) * 2003-08-26 2005-03-17 Tokyo Electron Ltd Method of processing substrate with liquid and liquid processing apparatus for substrate
JP2005175079A (en) * 2003-12-09 2005-06-30 Tokyo Electron Ltd Device and method for coating and developing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326554A (en) * 1994-05-30 1995-12-12 Tokyo Electron Ltd Method and device for treatment
JPH09276773A (en) * 1996-04-10 1997-10-28 Dainippon Screen Mfg Co Ltd Substrate treating device
JPH11221511A (en) * 1997-12-05 1999-08-17 Dainippon Screen Mfg Co Ltd Treating liquid discharging nozzle and treating liquid feeding device
JP2002252167A (en) * 2000-12-21 2002-09-06 Toshiba Corp Substrate treatment apparatus and substrate treatment method using the same
JP2003077820A (en) * 2001-09-05 2003-03-14 Tokyo Electron Ltd Developing apparatus and developing method
JP2004095708A (en) * 2002-08-30 2004-03-25 Tokyo Electron Ltd Liquid processing apparatus
JP2005072333A (en) * 2003-08-26 2005-03-17 Tokyo Electron Ltd Method of processing substrate with liquid and liquid processing apparatus for substrate
JP2005175079A (en) * 2003-12-09 2005-06-30 Tokyo Electron Ltd Device and method for coating and developing

Also Published As

Publication number Publication date
JP2016051882A (en) 2016-04-11
TWI693105B (en) 2020-05-11
JP6316144B2 (en) 2018-04-25
TW201620618A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
US11148150B2 (en) Liquid dispensing nozzle and substrate treating apparatus
US7431038B2 (en) Wet processing device and wet processing method
KR102476174B1 (en) Substrate processing apparatus, substrate processing system and substrate processing method
JP5218781B2 (en) Substrate processing equipment
JP4322469B2 (en) Substrate processing equipment
TWI692827B (en) Film processing unit, substrate processing apparatus and substrate processing method
WO2016035238A1 (en) Developer jetting nozzle and developing device
CN107636803B (en) Substrate processing apparatus and substrate processing method
JP2010093265A (en) Unit for supplying treatment liquid, and apparatus and method for treating substrate using the unit
CN112201591B (en) Apparatus for treating substrate
JP4034280B2 (en) Development processing equipment
JP2008300454A (en) Substrate-treating device and substrate treatment method
JP2005236189A (en) Processing device
JP2006190828A (en) Substrate treatment apparatus
TWI231950B (en) Substrate processing apparatus and cleaning method
JP2012023071A (en) Substrate processing device
KR20210042628A (en) Apparatus and method for treating substrate
WO2005010959A1 (en) Development processing device and development processing method
KR20200072222A (en) Bottle, Apparatus and method for treating substrate
KR100937703B1 (en) Slit coater and photoresist coating device using the same
KR102207310B1 (en) Unit for supplying gas and Apparatus for treating substrate with the unit
WO2023127050A1 (en) Substrate-drying device, substrate treatment device, and method for manufacturing substrate
KR102222458B1 (en) Docking assembly, Apparatus for treating substrate with the assembly, and Docking method using the apparatus
KR101884856B1 (en) Apparatus for treating substrate
KR20070066627A (en) Apparatus for opening/closing a chemical container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838371

Country of ref document: EP

Kind code of ref document: A1