WO2016035236A1 - フェライト系ステンレス冷延鋼板 - Google Patents

フェライト系ステンレス冷延鋼板 Download PDF

Info

Publication number
WO2016035236A1
WO2016035236A1 PCT/JP2015/003344 JP2015003344W WO2016035236A1 WO 2016035236 A1 WO2016035236 A1 WO 2016035236A1 JP 2015003344 W JP2015003344 W JP 2015003344W WO 2016035236 A1 WO2016035236 A1 WO 2016035236A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cold
ferrite
range
rolled
Prior art date
Application number
PCT/JP2015/003344
Other languages
English (en)
French (fr)
Inventor
彩子 田
松原 行宏
木村 幸雄
圭輔 中園
正崇 吉野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to ES15837725T priority Critical patent/ES2822273T3/es
Priority to US15/508,362 priority patent/US10550454B2/en
Priority to CN201580047158.7A priority patent/CN106795601B/zh
Priority to KR1020177006039A priority patent/KR101941065B1/ko
Priority to EP15837725.9A priority patent/EP3159423B1/en
Priority to JP2015541724A priority patent/JP5846343B1/ja
Publication of WO2016035236A1 publication Critical patent/WO2016035236A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel cold-rolled steel sheet having excellent formability (elongation, r value) and at the same time excellent surface beauty (roping resistance, surface gloss, ridging resistance, and rough skin resistance). It is.
  • Ferritic stainless steel cold-rolled steel sheets are economical and have excellent corrosion resistance, so they are used in various applications such as building materials, transportation equipment, home appliances, kitchen equipment, chemical plants, water tanks, and automobile parts.
  • the scope of application has been further expanded in recent years.
  • the cold-rolled steel sheet has not only corrosion resistance but also sufficient formability (for example, elongation, average rankford value (hereinafter, referred to as average r value) that can be formed into a predetermined shape. ))
  • average r value average rankford value
  • a ferritic stainless steel cold-rolled steel sheet has irregularities that are parallel to the rolling direction called “riding” and crystal grain irregularities called “skin roughness (orange peel)” during forming. Since these deteriorate the surface aesthetics, they are removed in the subsequent polishing step, and it is desirable to reduce them as much as possible to reduce the polishing load.
  • Patent Document 1 in mass%, C: 0.01 to 0.03%, S: 0.02 to 0.030%, Mn: 0.45 to 1.0%, P: 0.05% or less, S: 0.01% or less, Al : Steel slab containing 0.01 ⁇ 0.20%, N: 0.01 ⁇ 0.06%, Cr: 16.0 ⁇ 18.0%, the balance consisting of Fe and unavoidable impurities, heated above 1050 °C and finished at 800-1000 °C
  • a method of manufacturing a stainless cold-rolled steel sheet is disclosed in which hot rolling is performed at a temperature, pickling, cold rolling, holding at 800 to 950 ° C. for 20 seconds, and then cooling at a cooling rate of 10 ° C./s or more. .
  • the area ratio of the ferrite phase in the entire metal structure is 80 to 97%, and the average crystal grain size of the ferrite phase is 5 to 20 ⁇ m, and TS ⁇ El is 15000 MPa ⁇ % or more, It is said that a ferritic stainless steel cold-rolled steel sheet having a good balance between strength and elongation and having a small ridging during processing can be obtained. That is, in the technique described in Patent Document 1, long-time annealing of hot-rolled steel sheets is omitted, and cold-rolled sheet annealing conditions and cooling conditions are defined. However, in the technique disclosed in Patent Document 1, since the hot-rolled sheet annealing is omitted, the hardened hot-rolled steel sheet is cold-rolled, and the productivity of the cold-rolling process is significantly reduced.
  • Patent Document 2 by mass%, C: 0.02% or less, Si: 0.70% or less, Mn: 0.50% or less, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.15%, N: Contains 0.02% or less, Cr: 16 to 23%, Ni: 0.50% or less, Ti: 0.10% or less, Nb: 0.01% or less, Zr: 0.20 to 0.80%, Zr fixes C and N as precipitates Further, a technique for improving the ridging resistance by making the average grain size of ferrite grains after finish annealing 15 ⁇ m or less by utilizing the effect of suppressing the coarsening of the grain size is disclosed.
  • Zr has succeeded in suppressing the grain size to 15 ⁇ m or less due to the effect of Zr, it contains an appropriate amount of Zr, which causes an increase in manufacturing cost and increases the grain size of Zr-based carbonitride. Since it suppresses by precipitation, there is a problem that the yield strength is remarkably increased due to the pinning effect by the Zr-based carbonitride, and the formability, particularly the elongation at break, is remarkably lowered.
  • Patent Document 3 by using a work roll having a hard and low roughness surface during cold rolling, the amount of oil brought into the roll bite is reduced to suppress oil pits, and at the same time, transfer of roll surface irregularities is performed.
  • a technique for improving the gloss by reducing is disclosed.
  • surface defects caused by materials such as roping, ridging, and rough skin cannot be solved, and further, the polishing load increases and the operation cost of the roll increases. .
  • An object of the present invention is to solve the above problems and to provide a ferritic stainless steel cold-rolled steel sheet having excellent formability as well as excellent surface beauty before and after forming.
  • excellent aesthetics before and after molding means excellent surface gloss and anti-roping property before molding, and excellent ridging resistance and rough skin resistance after molding. .
  • Excellent surface gloss before forming is determined by using the reflected energy (Gs20 °) of light with an incident angle of 20 ° as defined in JIS Z 8741.
  • the glossiness is measured at two points in the directions of 0 ° and 90 °, which means that the average value is 950 or more.
  • Excellent roping resistance means that Rz is 0.2 ⁇ m or less as a result of measuring the surface roughness in a 90 ° direction with respect to the rolling direction in accordance with JIS B 0601-2001.
  • Excellent ridging resistance means that a JIS5 test piece is taken from the center of the plate width in the 0 ° direction with respect to the rolling direction, and after polishing one side with # 600 finish, it is uniaxially tensioned according to JIS Z 2241. 20% pre-strain was applied, and the waviness height of the polished surface at the center of the parallel part of the test piece was measured according to JIS B 0601-2001. As a result, the large waviness (riding height) was 2.5 ⁇ m or less. Means.
  • Excellent surface roughness resistance means that the surface roughness of the polishing surface at the center of the parallel part of the test piece was measured according to JIS B 0601-2001 using a test piece with ridging resistance measured. Means less.
  • JIS13B test specimens are sampled in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction, respectively, and a tensile test is performed in accordance with JIS Z 2241.
  • the average r value obtained by averaging the r value obtained by applying the pre-strain of 15% according to the formula (1) is 0.65 or more.
  • the fracture is 90 ° to the rolling direction. It means that the elongation is 25% or more.
  • r ave (r 0 + r 90 + 2 ⁇ r 45 ) / 4 (1)
  • r ave is an average r value
  • r 0 is an r value in a direction parallel to the rolling direction
  • r 90 is an r value in a direction perpendicular to the rolling direction
  • r 45 is 45 in the rolling direction. The r value in the direction of °.
  • the ferritic stainless steel cold-rolled steel sheet of the present invention is C: 0.005 to 0.05%, Si: 0.02 to 0.75%, Mn: 0.1 to 1.0%, P: 0.04% or less, S: 0.01% or less, Al: 0.001 by mass%. It contains ⁇ 0.10%, N: 0.005 ⁇ 0.06%, Cr: 16.0 ⁇ 18.0%, and the balance consists of Fe and inevitable impurities.
  • the metal structure is composed of a ferrite phase, the average grain size of the ferrite phase is 10 ⁇ m or less, ferrite grains having a grain size of 10 ⁇ m or more and less than 40 ⁇ m are 60% or more in area ratio to the entire metal structure, and ferrite having a grain size of less than 5 ⁇ m Grain is less than 20% in area ratio with respect to the whole metal structure.
  • ferrite grains having a grain size of 10 ⁇ m or more and less than 40 ⁇ m are 60% or more in area ratio to the entire metal structure
  • ferrite having a grain size of less than 5 ⁇ m Grain is less than 20% in area ratio with respect to the whole metal structure.
  • the crystal grain size of the ferrite phase in the present invention is the ferrite grain when the metal structure of the rolling parallel section is revealed (distance between grain boundaries in the rolling parallel direction + distance between grain boundaries in the plate thickness direction) / It means the numerical value obtained by 2.
  • C 0.005-0.05%
  • C promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range where the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. In order to acquire this effect, 0.005% or more needs to be contained.
  • the amount of C is less than 0.005%, the average grain size of ferrite increases because the progress of recrystallization and grain growth is excessively promoted due to the decrease in solid solution C and / or the amount of precipitated carbide.
  • the desired ferrite average particle size of less than 10 ⁇ m cannot be obtained.
  • the C content exceeds 0.05%, the steel sheet becomes hard and the ductility decreases.
  • the C content is in the range of 0.005 to 0.05%. Preferably, it is in the range of 0.01 to 0.03%. More preferably, it is in the range of 0.015 to 0.02%.
  • C content means C content, and the same applies to other components.
  • Si 0.02-0.75%
  • Si is an element that acts as a deoxidizer during steel melting. In order to obtain this effect, a content of 0.02% or more is necessary. However, if the Si content exceeds 0.75%, the steel sheet becomes hard and the rolling load during hot rolling increases, and the ductility after annealing of the cold-rolled sheet decreases. Therefore, the Si content is in the range of 0.02 to 0.75%. Preferably it is 0.10 to 0.50% of range. More preferably, it is 0.15 to 0.35% of range.
  • Mn 0.1-1.0% Mn, like C, promotes the formation of an austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing. In order to obtain this effect, a content of 0.1% or more is necessary. However, if the amount of Mn exceeds 1.0%, the amount of MnS produced increases and the corrosion resistance decreases. Therefore, the Mn content is in the range of 0.1 to 1.0%. Preferably it is 0.55 to 0.90% of range. More preferably, it is in the range of 0.65 to 0.85%.
  • P 0.04% or less Since P is an element that promotes grain boundary fracture due to grain boundary segregation, it is desirable that the amount of P is low, and the upper limit is 0.04%. Preferably it is 0.03% or less.
  • S 0.01% or less
  • S is an element that exists as sulfide inclusions such as MnS and reduces ductility, corrosion resistance, and the like, and particularly when the content exceeds 0.01%, the adverse effects thereof are remarkably generated. Therefore, it is desirable that the S amount be as low as possible.
  • the upper limit of the S amount is 0.01%. Preferably it is 0.007% or less. More preferably, it is 0.005% or less.
  • Al 0.001 to 0.10%
  • Al is an element that acts as a deoxidizer. In order to acquire this effect, 0.001% or more needs to be contained. However, when the Al content exceeds 0.10%, Al-based inclusions such as Al 2 O 3 increase, and the surface properties tend to deteriorate. Therefore, the Al content is set in the range of 0.001 to 0.10%. Preferably it is 0.001 to 0.07% of range. More preferably, it is 0.001 to 0.01%.
  • N 0.005-0.06%
  • N like C and Mn, promotes the formation of the austenite phase and has the effect of expanding the two-phase temperature range in which the ferrite phase and austenite phase appear during hot-rolled sheet annealing.
  • the N content needs to be 0.005% or more.
  • the N content is in the range of 0.005 to 0.06%.
  • it is in the range of 0.01 to 0.03%. More preferably, it is in the range of 0.01 to 0.02%.
  • Cr 16.0-18.0%
  • Cr is an element having an effect of improving the corrosion resistance by forming a passive film on the steel sheet surface.
  • the Cr amount needs to be 16.0% or more.
  • the Cr content is less than 16.0%, recrystallization and grain growth are excessively promoted, so that the average grain size of ferrite becomes large and the desired average grain size of ferrite of the present invention cannot be less than 10 ⁇ m.
  • the Cr content exceeds 18.0%, the austenite phase (transformed into the martensite phase when hot-rolled sheet annealing is cooled) becomes insufficient during hot-rolled sheet annealing, and the martensitic transformation occurs during cold-rolled sheet annealing.
  • the area ratio of the average ferrite particle diameter of 10-40 ⁇ m desired in the present invention is reduced, and predetermined material characteristics cannot be obtained. Therefore, it is 18.0% or less. Preferably it is 16.0 to 17.5% of range. More preferably, it is in the range of 16.5 to 17.0%.
  • the balance is Fe and inevitable impurities.
  • Cu and Ni are elements that improve corrosion resistance.
  • it is effective to contain Cu and / or Ni.
  • Cu and Ni have an effect of promoting the formation of the austenite phase and expanding the two-phase temperature range in which the ferrite phase and the austenite phase appear during hot-rolled sheet annealing. These effects become significant when the content is 0.1% or more.
  • the Cu content exceeds 1.0%, the hot workability may decrease, which is not preferable. Therefore, when Cu is contained, the content is made 0.1 to 1.0%. Preferably it is 0.1 to 0.6% of range.
  • the content is made 0.1 to 1.0%.
  • it is 0.1 to 0.6% of range. More preferably, it is in the range of 0.1 to 0.3%.
  • Mo is an element that improves corrosion resistance, and it is effective to contain Mo particularly when high corrosion resistance is required. This effect becomes significant when the content is 0.1% or more. However, if the Mo content exceeds 0.5%, the austenite phase is not sufficiently generated during hot-rolled sheet annealing, and predetermined material characteristics may not be obtained. Therefore, when it contains Mo, the content is made 0.1 to 0.5%. Preferably it is 0.2 to 0.4% of range.
  • Co is an element that improves toughness. This effect can be obtained by adding 0.01% or more. On the other hand, if the content exceeds 0.3%, productivity may be reduced. Therefore, the amount of addition when Co is added is in the range of 0.01 to 0.3%.
  • V 0.01 to 0.25%
  • Ti 0.001 to 0.015%
  • Nb 0.001 to 0.030%
  • Mg 0.0002 to 0.0050%
  • B 0.0002 to 0.0050%
  • REM One or two selected from 0.01 to 0.10% More than seeds V: 0.01-0.25%
  • V fixes C and N in the steel as precipitates, and reduces solute C and N.
  • the average r value is improved and the moldability is improved.
  • the V content is set to 0.01% or more.
  • V content exceeds 0.25%, the moldability is lowered and the production cost may be increased. Therefore, when V is contained, the content is made 0.01 to 0.25%. Preferably, it is 0.02 to 0.15% of range. More preferably, it is 0.03 to 0.10% of range.
  • Ti and Nb are elements with high affinity with C and N, and precipitate as carbides or nitrides during hot rolling, reducing solid solution C and N in the parent phase, and after finish annealing There is an effect of improving the workability of. In order to obtain these effects, it is necessary to contain 0.001% or more of Ti and 0.001% or more of Nb. If the Ti content is 0.015% or the Nb content exceeds 0.030%, it may be impossible to obtain good surface properties due to the precipitation of excess TiN or NbC.
  • the content when Ti is contained, the content is in the range of 0.001 to 0.015%, and when Nb is contained, the content is in the range of 0.001 to 0.030%.
  • the amount of Ti is preferably in the range of 0.003 to 0.010%.
  • the amount of Nb is preferably in the range of 0.005 to 0.020%. More preferably, it is in the range of 0.010 to 0.015%.
  • Mg 0.0002-0.0050%
  • Mg is an element that has the effect of improving hot workability. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the Mg amount exceeds 0.0050%, the surface quality may deteriorate. Therefore, when Mg is contained, the content is made 0.0002 to 0.0050%. Preferably it is 0.0005 to 0.0030% of range. More preferably, it is in the range of 0.0005 to 0.0010%.
  • B 0.0002-0.0050%
  • B is an effective element for preventing low temperature secondary work embrittlement. In order to acquire this effect, 0.0002% or more needs to be contained. However, when the amount of B exceeds 0.0050%, hot workability may deteriorate. Therefore, when it contains B, the content is made 0.0002 to 0.0050% of range. Preferably it is 0.0005 to 0.0030% of range. More preferably, it is in the range of 0.0005 to 0.0010%.
  • REM 0.01-0.10% REM is an element that improves the oxidation resistance, and in particular has the effect of suppressing the formation of an oxide film at the weld and improving the corrosion resistance of the weld. In order to obtain this effect, addition of 0.01% or more is necessary. However, if added in excess of 0.10%, manufacturability may be degraded, such as descalability with respect to the scale generated during cold rolling annealing. Moreover, since REM is an expensive element, excessive addition causes an increase in manufacturing cost, which is not preferable. Therefore, when it contains REM, the content is made 0.01 to 0.10%.
  • the metal structure of the ferritic stainless steel cold rolled steel sheet according to the present invention will be described. Ferrite single phase. Furthermore, the average particle size of the ferrite phase is 10 ⁇ m or less. By setting it as such a metal structure, it is possible to reduce the rough skin resulting from the undulation of coarse crystal grains. In order to obtain such a structure, a structure in which a large amount of lattice defects that become recrystallization sites exist before cold-rolled sheet annealing, that is, a large amount of dislocations before the cold-rolled sheet anneal, It is necessary to keep the crystal orientation difference between the crystal grains to be large.
  • the metal hardens with increasing dislocations, if a large amount of dislocations are included at the stage before cold rolled sheet annealing as in the present invention, the deformability is already lowered before cold rolled sheet annealing, Surface deformation during cold rolling is suppressed, and rollability defects such as oil pits and transfer marks on roll polishing can be reduced. As a result, it contributes to gloss improvement.
  • the large crystal orientation difference between adjacent crystal grains means that the ferrite grains are randomly oriented, that is, ferrite colonies (aggregates of ferrite grains having similar crystal orientations) are fragmented. Show. Ferrite colonies are already destroyed before cold-rolled sheet annealing, and when recrystallization proceeds by cold-rolled sheet annealing, the plane orientation of adjacent ferrite grains becomes more random, so deformation when stress is applied isotropic Thus, surface undulations that occur along the rolling direction, such as ridging and roping, can be reduced.
  • the upper limit of the range of the average particle size is 10 ⁇ m.
  • the grain growth proceeds as a whole when it exceeds 10 ⁇ m, or it becomes a structure containing coarse ferrite grains, rough skin due to undulations of coarse crystal grains occurs, and ridging and roping are also promoted. .
  • the strength is improved while the formability such as elongation and r value is examined.
  • the present inventors have further studied to solve this problem. As a result, it was found that it is effective to mix grains that have grown to some extent.
  • ferrite phase having a grain size of 10 ⁇ m or more and less than 40 ⁇ m is dominant.
  • ferrite grains having a particle size of 10 ⁇ m or more and less than 40 ⁇ m in an area ratio of 60% or more with respect to the entire metal structure From the standpoint of achieving both better moldability and surface aesthetics, it is preferable to contain 60 to 80% ferrite grains of 10 to 20 ⁇ m.
  • the grain size is less than 5 ⁇ m. It is necessary to keep the ultrafine ferrite phase to less than 20% in terms of the area ratio relative to the entire metal structure.
  • ferrite grains of less than 5 ⁇ m are contained in an amount of 20% or more and further ferrite grains of 10 ⁇ m or more are mainly composed of a metal structure, a mixed grain structure having a bipolar particle diameter is formed, resulting in rough skin and reduced formability.
  • the ferrite grains having a grain size of less than 5 ⁇ m are made less than 15%.
  • the ferrite grains having an average grain size of 10 ⁇ m or less and an area ratio of the ferrite grains having a grain size of 10 ⁇ m or more and less than 40 ⁇ m to the entire metal structure Therefore, it is important that ferrite grains having a grain size of 60% or more and less than 5 ⁇ m satisfy all the conditions of less than 20% in terms of the area ratio with respect to the entire metal structure.
  • the ferrite particle size of the remainder not corresponding to the above range is not particularly limited, but is preferably a ferrite phase having a particle size of 5 ⁇ m or more and less than 10 ⁇ m. Further, the remainder other than the ferrite phase is inevitable precipitates and inclusions.
  • the hot-rolled sheet is subjected to hot-rolled sheet annealing that is held for 10 seconds to 2 minutes at a temperature of 900 to 1050 ° C., which is a two-phase temperature range of a ferrite phase and an austenite phase.
  • Such a method is an effective method for controlling the grain size of the ferrite phase of the cold-rolled steel sheet as the final product.
  • the hot-rolled sheet annealing temperature is less than 900 ° C., or when the hot-rolled sheet annealing time is less than 10 seconds, the martensite generation is insufficient, and the ferrite colony remains and the ferrite remains
  • the average particle size of the phase exceeds the range of the present invention, ridging resistance and roping resistance are deteriorated.
  • the ferrite grains after the cold-rolled sheet annealing are also coarse, the gloss and rough skin resistance are also adversely affected.
  • the hot-rolled sheet annealing temperature exceeds 1050 ° C or the hot-rolled sheet annealing time exceeds 2 minutes
  • the grain growth proceeds excessively and the ferrite grains become coarse, and the amount of martensite phase generated is increased.
  • the amount of fine ferrite grains generated by the decomposition of the martensite phase during cold rolling annealing increases excessively, so the area ratio of ferrite grains of less than 5 ⁇ m exceeds the range of the present invention and has a predetermined formability and gloss. Degree of strength and rough skin resistance are not obtained, and elongation and r value are lowered.
  • the hot-rolled sheet annealing is held at a temperature of 900 to 1050 ° C. for 10 seconds to 2 minutes.
  • the temperature is maintained at 910 to 935 ° C. for 15 to 60 seconds.
  • Perform descaling by pickling or mechanical descaling as necessary.
  • the method is not particularly limited.
  • cold rolling is performed. Either a tandem mill or a cluster mill may be used.
  • the total rolling reduction of cold rolling is not limited in the present invention, the total rolling reduction of cold rolling is preferably 50% or more from the viewpoint of formability and shape correction.
  • cold-rolled sheet annealing needs to be performed in the ferrite single-phase temperature range in order to make the final product a ferrite single-phase structure.
  • the annealing temperature range is 800 to 890 ° C., preferably 850 to 890 ° C.
  • the martensite phase may remain and the elongation may decrease, and the area ratio of ferrite grains less than 5 ⁇ m exceeds the range of the present invention, and the area ratio of ferrite grains less than 10 ⁇ m and less than 40 ⁇ m Below the range of the present invention, predetermined moldability and glossiness cannot be obtained.
  • the temperature is higher than 890 ° C., a new austenite phase is generated and martensitic transformation occurs during cooling, so that the formability may be significantly reduced.
  • the cold-rolled sheet annealing is preferably continuous annealing.
  • the holding time is 5 to 120 seconds.
  • the holding time is preferably 10 to 60 seconds in order to obtain sufficient moldability and at the same time prevent deterioration of the rough skin resistance due to the bipolarization of the particle size distribution.
  • the surface finish is No. There is no limitation such as 2B, BA, polishing or dull processing, and an appropriate surface finish. In order to impart a desired surface roughness and eliminate stretcher strain, temper rolling may be performed in the range of 0.3 to 1.0% elongation.
  • Stainless steel having the chemical composition shown in Table 1 was made into a 250 mm thick slab by a continuous casting method. These were heated to 1200 ° C. and then hot rolled into hot rolled steel sheets having a thickness of 3 mm. At this time, the sheet temperature on the delivery side of the finish rolling mill was 900 to 980 ° C., and the winding temperature was 600 to 800 ° C.
  • the surface is subjected to shot blasting, pickled with two liquids of sulfuric acid, nitric acid and hydrofluoric acid, and descaled Carried out.
  • the obtained hot-rolled annealed sheet was further cold-rolled to a thickness of 0.8 mm, and after cold-rolled sheet annealing was performed under the conditions shown in Table 2, temper rolling with an elongation of 0.3 to 0.9% was performed. And finished product.
  • microstructure observation and performance evaluation were performed on the final product (ferritic stainless steel cold rolled steel sheet) after cold rolling annealing obtained as described above by the following methods.
  • the white portion was the ferrite phase.
  • the average particle diameter of the ferrite phase was calculated in accordance with JIS G 0551, and was the average value of 5 fields of view. These five fields of view were classified into ferrite grains having a particle diameter of less than 5 ⁇ m, and ferrite grains having a particle diameter of 10 ⁇ m to less than 40 ⁇ m and a particle diameter of 40 ⁇ m or more, and the area ratio occupied by each was determined.
  • the crystal grain size of the ferrite phase is determined by measuring the distance between grain boundaries in the rolling parallel direction and the plate thickness direction from the metal structure photograph for the ferrite crystal grains present in each field of view. And an arithmetic average value of the distance between grain boundaries in the plate thickness direction.
  • Table 2 shows the above evaluation results together with the manufacturing conditions.
  • the area ratio of ferrite grains of less than 5 ⁇ m exceeded the range of the present invention, and the area ratio of ferrite grains of 10 ⁇ m or more and less than 40 ⁇ m or less fell below the range of the present invention, and predetermined moldability and glossiness were not obtained.
  • No. C content is less than the scope of the present invention.
  • the average grain size of the ferrite phase exceeded the range of the present invention, and the predetermined roping resistance and rough skin resistance were not obtained.
  • the average particle size of the ferrite phase exceeded the range of the present invention, and predetermined roping resistance, ridging resistance and rough skin resistance were not obtained. No.
  • the ferritic stainless steel cold-rolled steel sheet obtained by the present invention is suitable as a press-formed product mainly composed of a drawing and uses requiring high surface beauty, for example, a ferritic stainless steel cold-rolled steel sheet applied to kitchen utensils and tableware. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 成形前および成形後の表面美麗性に優れるとともに、十分な成形性を有するフェライト系ステンレス冷延鋼板を提供する。 C:0.01~0.05%、Si:0.02~0.75%、Mn:0.1~1.0%、P:0.04%以下、S:0.01%以下、Al:0.001~0.10%、N:0.01~0.06%、Cr:16.0~18.0%を含有し、残部がFeおよび不可避的不純物からなる。金属組織は、フェライト相からなり、フェライト平均粒径が10μm以下であり、粒径10μm以上40μm未満のフェライト粒が金属組織全体に対する面積率で60%以上であり、粒径5μm未満のフェライト粒が金属組織全体に対する面積率で20%未満である。

Description

フェライト系ステンレス冷延鋼板
 本発明は、成形性(伸び、r値)が良好であると同時に、表面美麗性(耐ローピング性、表面光沢、耐リジング性、および耐肌荒れ性)に優れたフェライト系ステンレス冷延鋼板に関するものである。
 フェライト系ステンレス冷延鋼板は、経済的で耐食性に優れているため、建材、輸送機器、家電製品、厨房機器、化学プラント、貯水槽、および自動車部品などの様々な用途に使用されており、その適用範囲は近年さらに拡大しつつある。これらの用途に適用するためには、当該冷延鋼板は耐食性だけでなく、所定の形状に成形できる十分な成形性(例えば、伸び、平均ランクフォード値(以下 平均r値と表記する場合がある))を有すると同時に、成形加工前後の表面美麗性に優れることも必要となる。
 従来、フェライト系ステンレス冷延鋼板では成形加工時に「リジング」と呼ばれる圧延方向と平行な凹凸状の起伏や、「肌荒れ(オレンジピール)」と呼ばれる結晶粒の起伏が生じることが知られている。これらは表面美観を損なうため、続く研磨工程で除去されており、研磨負荷軽減のためには極力低減することが望ましい。
 また、耐食性に優れるステンレス鋼板は、めっきや塗装を施さずに使用される場合が多く、製品そのものの美観も重視される。具体的には、表面の光沢や、反射像の明瞭さといった目視外観が購買意欲を左右するため、これを向上させることも重要である。製品そのものの目視外観は、表面の平滑性や表面欠陥の有無に依存することが知られている。「ローピング」と呼ばれる圧延方向と平行なうねりは反射像の明瞭さを損ない、また、冷間圧延中の潤滑剤の引き込みによって生じる「オイルピット」と呼ばれる凹み疵や、ワークロールの研磨目が転写した疵などに代表される圧延性表面欠陥は表面の白濁感を助長し、いずれも商品価値を下げるため、両者とも抑制して、可能な限り鏡面に近い平滑表面を得ることが望まれている。
 このような要望に対し、特許文献1では、質量%で、C:0.01~0.03%、S:0.02~0.030%、Mn:0.45~1.0%、P:0.05%以下、S:0.01%以下、Al:0.01~0.20%、N:0.01~0.06%、Cr:16.0~18.0%を含み、残部がFeおよび不可避的不純物からなる組成を有する鋼スラブを1050℃超で加熱し、800~1000℃の仕上げ温度で熱間圧延し、酸洗後、冷間圧延し、800~950℃で20秒保持したのち、10℃/s以上の冷却速度で冷却するステンレス冷延鋼板の製造方法が開示されている。これにより、金属組織全体に占めるフェライト相の面積率が80~97%で、かつフェライト相の平均結晶粒径が5~20μmである金属組織を有し、TS×Elが15000MPa・%以上と、良好な強度と伸びのバランスを有し、かつ、加工時のリジングが小さいフェライト系ステンレス冷延鋼板が得られるとしている。すなわち、特許文献1に記載された技術では、熱延鋼板の長時間焼鈍を省略し、冷延板焼鈍条件と冷却条件を規定している。しかしながら、特許文献1で開示された技術では、熱延板焼鈍を省略しているため、硬質化した熱延鋼板を冷間圧延することになり、冷間圧延工程の製造性を著しく低下させる。
 また、特許文献2では、質量%で、C:0.02%以下、Si:0.70%以下、Mn:0.50%以下、P:0.04%以下、S:0.01%以下、Al:0.01~0.15%、N:0.02%以下、Cr;16~23%、Ni:0.50%以下、Ti:0.10%以下、Nb:0.01%以下、Zr:0.20~0.80%を含有し、ZrがCやNを析出物として固定し、粒径の粗大化を抑止する効果を利用して、仕上げ焼鈍後のフェライト粒の平均結晶粒径を15μm以下とし耐リジング性を向上させる技術が開示されている。しかし、Zrの効果により結晶粒径を15μm以下に抑制することに成功しているが、Zrをそれなりの量含むため製造コストの増大を招く上、結晶粒の粗大化をZr系炭窒化物の析出により抑制しているため、Zr系炭窒化物によるピニング効果に起因して降伏強度が著しく上昇し、成形性、特に破断伸びの低下が著しいという問題がある。
 さらに、特許文献3では、冷間圧延時に硬質かつ低粗度表面のワークロールを用いることによって、ロールバイト内への持ち込み油量を低減させてオイルピットを抑制すると同時に、ロール表面凹凸の転写を低減させることによって光沢を向上させる技術が開示されている。しかし、圧延に起因する表面欠陥の除去に一定の効果を発揮する一方で、ローピングやリジング、肌荒れといった素材起因の表面欠陥は解決できず、さらに、研磨負荷が増大しロールの運用コストが増大する。
特開2010-95742号公報 特開2011-256440号公報 特開2000-102802号公報
 本発明は、かかる課題を解決し、成形前および成形後の表面美麗性に優れるとともに、十分な成形性を有するフェライト系ステンレス冷延鋼板を提供することを目的とする。
 なお、本発明において、「成形前および成形後の美麗性に優れる」とは、成形加工前の表面光沢および耐ローピング性と、成形加工後の耐リジング性および耐肌荒れ性に優れることを意味する。
 成形加工前の表面光沢に優れるとは、JIS Z 8741に規定された入射角20°の光の反射エネルギー(Gs20°)を用い、板幅中央部から採取した試験片に対して、圧延方向に対し0°と90°方向で各2点ずつ光沢度を測定し、その平均値が950以上であることを意味する。
 耐ローピング性に優れるとは、JIS B 0601-2001に準拠して圧延方向に対して90°方向に、表面の表面粗さを測定した結果、Rzが0.2μm以下であることを意味する。
 耐リジング性に優れるとは、板幅中央部より圧延方向に対し、0°方向にJIS5号試験片を採取し、片面を#600仕上げで研磨した後、JIS Z 2241に準拠した単軸引張で20%の予歪を付与し、JIS B 0601-2001に準拠して試験片の平行部中央の研磨面のうねり高さを測定した結果、大うねり(リジング高さ)が2.5μm以下であることを意味する。
 耐肌荒れ性に優れるとは、耐リジング性を測定した試験片を用い、JIS B 0601-2001に準拠して試験片の平行部中央の研磨面の表面粗さを測定した結果、Raが0.2μm未満を意味する。
 また、十分な成形性とは、十分な伸びおよび平均r値を示すことを意味する。圧延方向に対し、0°、45°、90°の方向にそれぞれJIS13号B試験片を採取し、JIS Z 2241に準拠して引張試験を行う。15%の予歪を付与した際に得られるr値を(1)式によって平均化した平均r値が0.65以上、さらに、通常の引張試験をした際に、圧延方向に対し90°方向の破断伸びが25%以上であることを意味する。
 rave=(r0+r90+2×r45)/4 ・・・(1)
 ここで、「rave」は平均r値、「r0」は圧延方向と平行な方向のr値、「r90」は圧延方向と直角方向のr値、「r45」は圧延方向と45°方向のr値である。
 課題を解決するために検討した結果、以下を知見した。
冷延板焼鈍後のフェライト相の粒径を平均粒径10μm以下となる小粒径の範囲に制御することによって、結晶粒やコロニーの起伏など素材の変形能の異方性に起因するリジングやローピングおよび肌荒れを抑制できる。
冷延板焼鈍後のフェライト相の平均粒径を10μm以下とするためには、冷延板焼鈍前の時点で多量の転位を含み、冷延板焼鈍時の再結晶サイトを増加させておく必要がある。すなわち、本発明では特許文献1に開示されているようなZr炭窒化物を用いることなく、圧延加工あるいは後述するマルテンサイト相の活用により多量の転位を導入し、冷延板焼鈍後のフェライト相の平均粒径を10μm以下に調整することを達成するものである。この転位の増加に伴い金属は硬質化するが、本発明ではこの金属組織が硬質であることを利用して冷延板焼鈍前に表面の変形能を低下させることで、圧延性欠陥が少ない高光沢表面が得られる。
さらに、大半が再結晶および粒成長が進行したフェライト粒になっている金属組織中に数μmオーダーの微細なフェライト粒を混在させて、平均粒径ならびに粒径分布を適切に制御することによって、伸びや平均r値といった成形性の確保も可能になる。
 本発明は以上の知見に基づいてなされたものであり、以下を要旨とするものである。
[1]質量%で、C:0.005~0.05%、Si:0.02~0.75%、Mn:0.1~1.0%、P:0.04%以下、S:0.01%以下、Al:0.001~0.10%、N:0.005~0.06%、Cr:16.0~18.0%を含有し、残部がFeおよび不可避的不純物からなり、金属組織は、フェライト相からなり、フェライト相の平均粒径が10μm以下であり、粒径10μm以上40μm未満のフェライト粒が金属組織全体に対する面積率で60%以上であり、粒径5μm未満のフェライト粒が金属組織全体に対する面積率で20%未満であることを特徴とするフェライト系ステンレス冷延鋼板。
[2]質量%で、さらに、Cu:0.1~1.0%、Ni:0.1~1.0%、Mo:0.1~0.5%、Co:0.01~0.3%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]に記載のフェライト系ステンレス冷延鋼板。
[3]質量%で、さらに、V:0.01~0.25%、Ti:0.001~0.015%、Nb:0.001~0.030%、Mg:0.0002~0.0050%、B:0.0002~0.0050%、REM:0.01~0.10%のうちから選ばれる1種または2種以上を含むことを特徴とする上記[1]または[2]に記載のフェライト系ステンレス冷延鋼板。
なお、本明細書において、鋼の成分を示す%はすべて質量%である。
 本発明によれば、成形前および成形後の表面美麗性に優れるとともに、十分な成形性を有するフェライト系ステンレス冷延鋼板が得られる。
 以下、本発明を詳細に説明する。
 本発明のフェライト系ステンレス冷延鋼板は、質量%でC:0.005~0.05%、Si:0.02~0.75%、Mn:0.1~1.0%、P:0.04%以下、S:0.01%以下、Al:0.001~0.10%、N:0.005~0.06%、Cr:16.0~18.0%を含有し、残部がFeおよび不可避的不純物からなる。金属組織は、フェライト相からなり、フェライト相の平均粒径が10μm以下であり、粒径10μm以上40μm未満のフェライト粒が金属組織全体に対する面積率で60%以上であり、粒径5μm未満のフェライト粒が金属組織全体に対する面積率で20%未満である。これらは、本発明において重要な要件であり、中でも、フェライト相の粒径とその量を規定することは特に重要な要件である。このようなステンレス冷延鋼板を用いれば、十分な成形性を有しながら、表面光沢に優れ、耐ローピング性、耐リジング性および耐肌荒れ性を有する、すなわち成形前および成形後の表面美麗性に優れるフェライト系ステンレス冷延鋼板を得ることができる。
 なお、本発明におけるフェライト相の結晶粒径は、圧延平行断面の金属組織を現出させた場合のフェライト粒において、(圧延平行方向の粒界間距離+板厚方向の粒界間距離)/2で求められる数値を意味する。
 次に、本発明のフェライト系ステンレス冷延鋼板の成分組成について説明する。
以下、特に断らない限り%は質量%を意味する。
 C: 0.005~0.05%
Cはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.005%以上の含有が必要である。また、C量が0.005%未満では、固溶Cの減少およびまたは析出する炭化物量の減少により再結晶ならびに粒成長の進行が過度に助長されるためにフェライトの平均粒径が大きくなり、本発明の所望するフェライトの平均粒径10μm未満を得られない。しかし、C量が0.05%を超えると鋼板が硬質化して延性が低下する。また、C量が0.05%を超えると熱延板焼鈍時に生成するマルテンサイトの量が多くなり、冷延時の圧延負荷が増大し製造性が低下する。また、冷延板焼鈍前に存在するマルテンサイト量が増加することにより、冷延板焼鈍中のマルテンサイトの分解によって生じる微細なフェライト相の量が増加するため、本発明の所望するフェライトの粒径5μm未満の面積率が多くなり、粒径10-40μmの面積率が少なくなり、所定の材料特性が得られない。そのため、C量は0.005~0.05%の範囲とする。好ましくは0.01~0.03%の範囲である。さらに好ましくは0.015~0.02%の範囲である。C量はC含有量を意味し、他の成分についても同様である。
 Si: 0.02~0.75%
Siは鋼溶製時に脱酸剤として作用する元素である。この効果を得るためには0.02%以上の含有が必要である。しかし、Si量が0.75%を超えると、鋼板が硬質化して熱間圧延時の圧延負荷が増大するとともに、冷延板焼鈍後の延性が低下する。そのため、Si量は0.02~0.75%の範囲とする。好ましくは0.10~0.50%の範囲である。さらに好ましくは0.15~0.35%の範囲である。
 Mn:0.1~1.0%
MnはCと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためには0.1%以上の含有が必要である。しかし、Mn量が1.0%を超えるとMnSの生成量が増加して耐食性が低下する。そのため、Mn量は0.1~1.0%の範囲とする。好ましくは0.55~0.90%の範囲である。さらに好ましくは0.65~0.85%の範囲である。
 P: 0.04%以下
Pは粒界偏析による粒界破壊を助長する元素であるためP量は低い方が望ましく、上限を0.04%とする。好ましくは0.03%以下である。
 S: 0.01%以下
SはMnSなどの硫化物系介在物となって存在して延性や耐食性等を低下させる元素であり、特に含有量が0.01%を超えた場合にそれらの悪影響が顕著に生じる。そのためS量は極力低い方が望ましく、本発明ではS量の上限を0.01%とする。好ましくは0.007%以下である。さらに好ましくは0.005%以下である。
 Al: 0.001~0.10%
AlはSiと同様に脱酸剤として作用する元素である。この効果を得るためには0.001%以上の含有が必要である。しかし、Al量が0.10%を超えると、Al2O3等のAl系介在物が増加し、表面性状が低下しやすくなる。そのため、Al量は0.001~0.10%の範囲とする。好ましくは0.001~0.07%の範囲である。さらに好ましくは0.001~0.01%である。
 N: 0.005~0.06%
Nは、C、Mnと同様にオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。この効果を得るためにはN量を0.005%以上とする必要がある。しかし、N量が0.06%を超えると延性が著しく低下する上、Cr窒化物の析出を助長することによる耐食性の低下が生じる。よって、N量は0.005~0.06%の範囲とする。好ましくは0.01~0.03%の範囲である。さらに好ましくは0.01~0.02%の範囲である。
 Cr:16.0~18.0%
Crは鋼板表面に不動態皮膜を形成して耐食性を向上させる効果を有する元素である。この効果を得るためにはCr量を16.0%以上とする必要がある。また、Cr含有量が16.0%未満では、再結晶および粒成長が過度に促進されるため、フェライトの平均粒径が大きくなり、本発明の所望するフェライトの平均粒径10μm未満を得られない。一方、Cr量が18.0%を超えると、熱延板焼鈍時にオーステナイト相(熱延板焼鈍の冷却時にマルテンサイト相へと変態する)の生成が不十分となり、冷延板焼鈍時にマルテンサイト変態の分解によって生成する微細なフェライト粒の生成量が不十分となるため、本発明の所望するフェライトの平均粒径10-40μmの面積率が少なくなり、所定の材料特性が得られない。よって18.0%以下とする。好ましくは16.0~17.5%の範囲である。さらに好ましくは16.5~17.0%の範囲である。
 残部はFeおよび不可避的不純物である。
 以上の成分組成により本発明の効果は得られる。さらに製造性あるいは材料特性を向上させる目的で以下の元素を含有することができる。
 Cu:0.1~1.0%、Ni: 0.1~1.0%、Mo: 0.1~0.5%、Co: 0.01~0.3%のうちから選ばれる1種または2種以上
 CuおよびNiはいずれも耐食性を向上させる元素であり、特に高い耐食性が要求される場合に、Cuおよび/またはNiを含有することが有効である。また、CuおよびNiにはオーステナイト相の生成を促進し、熱延板焼鈍時にフェライト相とオーステナイト相が出現する二相温度域を拡大する効果がある。これらの効果は各々0.1%以上の含有で顕著となる。しかし、Cu含有量が1.0%を超えると熱間加工性が低下する場合があり好ましくない。そのためCuを含有する場合はその含有量を0.1~1.0%とする。好ましくは0.1~0.6%の範囲である。さらに好ましくは0.3~0.5%の範囲である。Ni含有量が1.0%を超えると加工性が低下するため好ましくない。そのためNiを含有する場合はその含有量を0.1~1.0%とする。好ましくは0.1~0.6%の範囲である。さらに好ましくは0.1~0.3%の範囲である。
 Moは耐食性を向上させる元素であり、特に高い耐食性が要求される場合にMoを含有することが有効である。この効果は0.1%以上の含有で顕著となる。しかし、Mo含有量が0.5%を超えると熱延板焼鈍時にオーステナイト相の生成が不十分となり、所定の材料特性が得られなくなる場合があり好ましくない。そのため、Moを含有する場合はその含有量を0.1~0.5%とする。好ましくは0.2~0.4%の範囲である。
 Coは靭性を向上させる元素である。この効果は0.01%以上の添加によって得られる。一方、含有量が0.3%を超えると製造性を低下させる場合がある。そのため、Coを添加する場合の添加量は0.01~0.3%の範囲とする。
 V: 0.01~0.25%、Ti: 0.001~0.015%、Nb: 0.001~0.030%、Mg: 0.0002~0.0050%、B: 0.0002~0.0050%、REM: 0.01~0.10%のうちから選ばれる1種または2種以上
 V: 0.01~0.25%
 Vは鋼中のCおよびNを析出物として固定して、固溶C、Nを低減する。これにより平均r値が向上し、成形性が向上する。さらに、熱延板焼鈍時に生成するマルテンサイトへの過剰なCの濃化を抑制して、マルテンサイトの過度な硬質化を抑制し、冷延素材の硬度分布を低減する効果を有する。これらの効果を得るためには、V含有量を0.01%以上とする。一方、V含有量が0.25%を超えると成形性が低下するとともに、製造コストの増大を招く場合がある。よって、Vを含有する場合はその含有量を0.01~0.25%の範囲とする。好ましくは、0.02~0.15%の範囲である。さらに好ましくは0.03~0.10%の範囲である。
 Ti: 0.001~0.015%、Nb: 0.001~0.030%
TiおよびNbは、Vと同様に、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶C、Nを低減させ、仕上げ焼鈍後の加工性を向上させる効果がある。これらの効果を得るためには、0.001%以上のTi、0.001%以上のNbを含有する必要がある。Ti量が0.015%あるいはNb量が0.030%を超えると、過剰なTiNあるいはNbCの析出により良好な表面性状を得ることができない場合がある。よって、Tiを含有する場合はその含有量を0.001~0.015%の範囲、Nbを含有する場合はその含有量を0.001~0.030%の範囲とする。Ti量は好ましくは0.003~0.010%の範囲である。Nb量は好ましくは0.005~0.020%の範囲である。さらに好ましくは0.010~0.015%の範囲である。
 Mg: 0.0002~0.0050%
Mgは熱間加工性を向上させる効果がある元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、Mg量が0.0050%を超えると表面品質が低下する場合がある。よって、Mgを含有する場合はその含有量を0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0030%の範囲である。さらに好ましくは0.0005~0.0010%の範囲である。
 B: 0.0002~0.0050%
Bは低温二次加工脆化を防止するのに有効な元素である。この効果を得るためには0.0002%以上の含有が必要である。しかし、B量が0.0050%を超えると熱間加工性が低下する場合がある。よって、Bを含有する場合はその含有量を0.0002~0.0050%の範囲とする。好ましくは0.0005~0.0030%の範囲である。さらに好ましくは0.0005~0.0010%の範囲である。
 REM: 0.01~0.10% 
REMは耐酸化性を向上させる元素であり、特に溶接部の酸化皮膜形成を抑制し溶接部の耐食性を向上させる効果がある。この効果を得るためには0.01%以上の添加が必要である。しかし、0.10%を超えて添加すると冷延焼鈍時に生成するスケールに対する脱スケール性など、製造性を低下させる場合がある。また、REMは高価な元素であるため、過度な添加は製造コストの増加を招くため好ましくない。そのため、REMを含有する場合はその含有量を0.01~0.10%の範囲とする。
 次に、本発明のフェライト系ステンレス冷延鋼板の金属組織について説明する。
フェライト単相とする。さらに、フェライト相の平均粒径は10μm以下である。このような金属組織にすることで、粗大結晶粒の起伏に起因する肌荒れを低減することが可能である。このような組織を得るためには、冷延板焼鈍前に再結晶サイトとなる格子欠陥が多量に存在する組織にしておく、すなわち、冷延板焼鈍前の時点で多量の転位を含み、隣接する結晶粒間の結晶方位差が大きい状態にしておくことが必要である。一般に、転位の増加に伴い金属は硬質化するため、本発明のように冷延板焼鈍前の段階で多量の転位を含有させると、冷延板焼鈍前に既に変形能が低下した状態となり、冷延中の表面変形が抑制され、オイルピットやロール研磨目の転写痕などの圧延性欠陥を低減することが可能となる。その結果、光沢向上に寄与する。
 さらに、隣接する結晶粒間の結晶方位差が大きいことは、フェライト粒の面方位がランダムな状態、つまり、フェライトコロニー(類似な結晶方位を有するフェライト粒の集合体)が分断されていることを示している。冷延板焼鈍前に既にフェライトコロニーが破壊され、さらに、冷延板焼鈍で再結晶が進行すると、隣接するフェライト粒の面方位がよりランダムになるため、応力を付与した際の変形が等方的になり、リジングやローピングのように圧延方向に沿って生じる表面の起伏が低減できる。
 以上の効果は、フェライト相の平均粒径が10μm以下の微細な状態で得られるため、平均粒径の範囲は10μmを上限とする。なお、10μmを超えると全体的に粒成長が進行するか、あるいは、粗大なフェライト粒を含む組織となるため、粗大結晶粒の起伏に起因する肌荒れが生じるほか、リジングやローピングの発生も助長する。
 ところで、検討したところ、冷延板焼鈍後のフェライト相が平均粒径10μm以下の範囲で、全フェライト粒が同等の粒径範囲の場合、強度が向上する一方で、伸びやr値といった成形性が低下することがわかった。本発明者らはこれを解決するためにさらに検討を行った。その結果、ある程度粒成長した粒を混在させることが有効であるとの知見を得た。
 平均粒径が10μm以下という前提のもとで、ある程度大粒径のフェライト粒を含むことによって延性や変形能を確保することが重要である。しかしながら、粒径が40μmよりも粗大な粒が存在すると、平均粒径が10μm以下という制約下では必然的に周囲が小粒径のフェライト粒となり、いわゆる混粒組織となって耐肌荒れ性を悪化させる。そのため、40μm以上のフェライト粒の混在は好ましくない。一方、粒径が10μm以下の微細粒径のフェライト粒が多くなると深絞りや曲げ加工などを実施する際に必要な延性が得られない場合がある。そのため、粒径が10μm以上40μm未満のフェライト相が支配的となる金属組織にする必要がある。十分な成形性を得るためには、粒径が10μm以上40μm未満のフェライト粒を、金属組織全体に対する面積率で、60%以上含有させる必要がある。より良い成形性と表面美麗性を両立させる観点から、好ましくは10~20μmのフェライト粒を60~80%含む状態とする。
 さらに、10μm以上のフェライト粒が存在する状態で、耐肌荒れ性に悪影響を及ぼす混粒組織状態(大小のフェライト粒が二極化して混在する状態)を回避するためには、粒径5μm未満の極微細なフェライト相を、金属組織全体に対する面積率で20%未満に抑える必要がある。5μm未満のフェライト粒が20%以上含まれ、さらに10μm以上のフェライト粒が主体の金属組織になると、粒径が二極化した混粒組織となって肌荒れが生じるほか、成形性も低下する。より滑らかな表面と、十分な成形性を確保する観点より、望ましくは粒径5μm未満のフェライト粒は15%未満とする。
 以上のように、本発明のフェライト系ステンレス冷延鋼板の金属組織においては、フェライト相の平均粒径を10μm以下とした上で、粒径10μm以上40μm未満のフェライト粒が金属組織全体に対する面積率で60%以上、粒径5μm未満のフェライト粒が金属組織全体に対する面積率で20%未満、の全て条件を満たすことが重要である。
 上述の範囲に該当しない残部についてのフェライト粒径は特に限定するものではないが、好ましくは粒径5μm以上10μm未満の範囲のフェライト相である。また、フェライト相以外の残部は不可避的析出物および介在物とする。
 次に本発明のフェライト系ステンレス冷延鋼板の製造方法の一例について説明する。
上記した成分組成からなる溶鋼を、転炉、電気炉または真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊-分塊法により鋼素材(スラブ)とする。このスラブを、1100~1250℃で加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。熱間圧延時、仕上げ圧延をフェライト相とオーステナイト相の二相温度域で終了して熱延板とする。その後コイルに巻き取る際は、その巻取り温度を550~850℃にする。より好ましくは600~700℃である。これによって、短時間で仕上げる熱延板の連続焼鈍によるフェライト相の粒径や再結晶を制御しやすくなる。
その後、上記熱延板に対して、フェライト相とオーステナイト相の二相温度域となる900~1050℃の温度で10秒~2分間保持する熱延板焼鈍を施す。このような方法は、最終製品である冷延鋼板のフェライト相の粒径を制御する上で有効な方法である。この熱延板焼鈍によってマルテンサイト相を生成させることにより、熱延時に形成したフェライトコロニー(類似な結晶方位を有するフェライト粒の集合体)を分断する効果を得ることができ、さらに、冷延および冷延板焼鈍後の金属組織をよりランダムな面方位分布にすることが可能である。また、熱延板焼鈍を短時間かつ高温の連続焼鈍にすることで、冷延前の時点でフェライト粒径を制御することが可能であり、冷延板焼鈍後の最終製品(冷延鋼板)において所望のフェライト粒に制御することが容易になる。ここで、熱延板焼鈍温度が900℃未満の場合、あるいは熱延板焼鈍時間が10秒未満の場合は、マルテンサイトの生成が不十分であり、フェライトコロニーが残存したままとなって、フェライト相の平均粒径が本発明の範囲を超えて、耐リジング性や耐ローピング性が悪化する。また、冷延板焼鈍後のフェライト粒も粗大になるため光沢や耐肌荒れ性にも悪影響を及ぼす。熱延板焼鈍温度が1050℃を超える、あるいは熱延板焼鈍時間が2分を超える長時間焼鈍では、粒成長が過度に進行してフェライト粒が粗大になる上、マルテンサイト相の生成量が多くなり、冷延板焼鈍時にマルテンサイト相の分解によって生成する微細なフェライト粒の量が過度に増加するため、5μm未満のフェライト粒の面積率が本発明の範囲より上回り所定の成形性、光沢度および耐肌荒れ性が得られず、伸びやr値が低下する。これらの理由により、熱延板焼鈍は900~1050℃の温度で10秒~2分間保持する。好ましくは、910~935℃の温度で15~60秒保持する。
 必要に応じて酸洗あるいはメカニカルデスケーリングを施し脱スケールを行う。ただし、方法は特に限定するものではない。
 次いで、冷間圧延(冷延)を行う。タンデムミルまたはクラスターミルいずれを使用しても構わない。本発明で冷延の総圧下率は限定されないが、成形性や形状矯正の観点から、冷延の総圧下率は50%以上が好ましい。
 次いで、冷延板焼鈍を行う。冷延板焼鈍は、最終製品をフェライト単相組織とするため、フェライト単相温度域で実施する必要がある。また、フェライト相とマルテンサイト相の二相組織のまま冷延した鋼板をフェライト単相組織にするため、フェライト単相域温度範囲の中でも極力高温で実施することが望ましい。そのため、焼鈍温度範囲は800~890℃とし、好ましくは850~890℃である。800℃未満の温度範囲ではマルテンサイト相が残存して伸びが低下する場合があり、5μm未満のフェライト粒の面積率が本発明の範囲より上回るとともに10μm以上40μm以未満のフェライト粒の面積率が本発明の範囲より下回り所定の成形性および光沢度が得られない。890℃より高温では新たにオーステナイト相が生成して冷却時にマルテンサイト変態を起こすため、成形性が著しく低下する場合がある。また、製造性の向上と過剰なフェライト再結晶粒の粒成長回避のため、冷延板焼鈍は連続焼鈍であることが好ましい。また、保持時間は5~120秒とする。さらに、十分な成形性を得ると同時に、粒径分布の二極化による耐肌荒れ性の低下を防ぐため、好ましくは保持時間が10~60秒である。
表面仕上げはNo.2B、BA、研磨またはダル加工など限定するものではなく、適当な表面仕上げとする。所望の表面粗さを付与し、ストレッチャーストレインを解消するためには、伸び率0.3~1.0%の範囲で調質圧延を実施すれば良い。
 以下、本発明を実施例により詳細に説明する。
表1に示す化学組成を有するステンレス鋼を連続鋳造法により250mm厚のスラブとした。これらを1200℃に加熱した後、熱間圧延で板厚3mmの熱延鋼板とした。この際、仕上げ圧延機出側の板温は900~980℃、巻取り温度は600~800℃であった。
 次いで、上記熱延板に表2に記載の条件で熱延板焼鈍を施した後、表面にショットブラスト処理を行い、硫酸、および硝酸とふっ酸からなる混酸の2液で酸洗し脱スケールを実施した。得られた熱延焼鈍板をさらに板厚0.8mmまで冷延し、表2に記載の条件で冷延板焼鈍を実施した後、伸び率0.3~0.9%の調質圧延を施し、最終製品とした。
 以上により得られた冷延焼鈍後の最終製品(フェライト系ステンレス冷延鋼板)に対して、以下の方法により、組織観察および性能評価を行った。
 組織観察
板幅中央部から組織観察用試験片を採取し、圧延方向断面を鏡面研磨後、王水で腐食(エッチング)し、光学顕微鏡を用いて板厚中央部を倍率500倍で5視野撮影した。得られた組織写真において、白色の部分をフェライト相とした。フェライト相の平均粒径はJIS G 0551に準拠して算出し5視野の平均値とした。これら5視野について、粒径5μm未満のフェライト粒と、粒径10μm以上40μm未満、粒径40μm以上のフェライト粒に分類し、それぞれが占める面積率を求めた。
 なお、フェライト相の結晶粒径は、各視野中に存在するフェライト結晶粒について、圧延平行方向および板厚方向の粒界間距離を金属組織写真から測長し、圧延平行方向の粒界間距離と板厚方向の粒界間距離の算術平均値で得られた値とした。
 (1)成形性評価
(1-1)破断伸び
 板幅中央部からJIS13B号引張試験片を圧延方向に対し90°方向に採取し、JIS Z 2241に準拠した引張試験を行った。破断伸び(El)が圧延方向に対し90°の方向で30%以上である場合を特に優れて合格(◎)、25%以上である場合を合格(○)、25%未満の場合を不合格(×)とした。
(1-2)平均r値
さらに、同じ箇所からJIS13B号引張試験片を圧延方向に対し0°、45°、90°の三方向に引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。15%の予歪を付与して各々のr値を測定し、下記(1)式により算出される平均r値が0.65以上である場合を合格(○)とし、0.65未満の場合を不合格(×)とした。
 rave=(r0+r90+2×r45)/4 ・・・(1)
 (2)表面美麗性
(2-1)表面光沢(光沢度)
板幅中央部から試験片を採取し、JIS Z 8741に規定されるように、入射角20°の光の反射エネルギー(Gs20°)を用い、圧延方向に対し、0°と90°方向で各2点ずつ測定した平均値を用い、光沢度950以上の場合を光沢に優れる(○)とし、950未満を不合格(×)とした。また、1000を超える場合を特に優れる(◎)とした。
 (2-2)耐ローピング性
板幅中央部から試験片を採取し、JIS B 0601-2001に準拠して圧延方向に90°方向に表面粗さを測定した結果、Rzが0.2μm以下になる場合を合格(○)とし、0.2μmを超える場合を不合格(×)とした。
(2-3)耐リジング性
板幅中央部より圧延方向に対し、0°方向にJIS5号試験片を採取し、片面を#600仕上げで研磨した後、JIS Z 2241に準拠した単軸引張で20%の予歪を付与し、JIS B 0601-2001に準拠して試験片の平行部中央の研磨面のうねり高さを測定した結果、2.5μm以下の場合を合格(○)とし、2.5μm超えの場合を不合格(×)とした。2.0μm未満の場合を特に優れる(◎)とした。
(2-4)耐肌荒れ性
耐リジング性を測定した試験片を用い、JIS B 0601-2001に準拠して試験片の平行部中央の研磨面の表面粗さを測定した結果、Raで0.2μm未満の場合を合格(○)とし、0.2μm以上の場合を不合格とした(×)。
 以上の評価結果を製造条件と併せて表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
鋼成分ならびに製造方法のいずれもが本発明の範囲を満たす場合、十分な成形性(破断伸び、平均r値)を得られ、表面美麗性に優れることを確認した。
Cr含有量が本発明の範囲を下回るNo.11はフェライト相の平均粒径が本発明の範囲を超えて所定の光沢度を得られなかった。Cr含有量が本発明の範囲を上回るNo.12は粒径10μm以上40μm未満のフェライト粒の面積率が本発明の範囲より下回り所定の成形性および光沢度が得られなかった。
C含有量が本発明の範囲を上回るNo.13は5μm未満のフェライト粒の面積率が本発明の範囲より上回るとともに10μm以上40μm以未満のフェライト粒の面積率が本発明の範囲より下回り所定の成形性および光沢度が得られなかった。
C含有量が本発明の範囲を下回るNo.14はフェライト相の平均粒径が本発明の範囲を超えて所定の耐ローピング性および耐肌荒れ性が得られなかった。
熱延板焼鈍温度が低すぎたNo.15はフェライト相の平均粒径が本発明の範囲を超えて所定の耐ローピング性、耐リジング性および耐肌荒れ性が得られなかった。
熱延板焼鈍温度が高すぎたNo.16は5μm未満のフェライト粒の面積率が本発明の範囲より上回り所定の成形性、光沢度および耐肌荒れ性が得られなかった。
冷延板焼鈍温度が低すぎたNo.17は5μm未満のフェライト粒の面積率が本発明の範囲より上回るとともに10μm以上40μm以未満のフェライト粒の面積率が本発明の範囲より下回り所定の成形性および光沢度が得られなかった。
以上より、所定のフェライト相の平均粒径および粒径分布を適切に制御すれば、所定の成形性と、優れた表面性状を有するフェライト系ステンレス冷延鋼板が得られることを確認した。
 本発明で得られるフェライト系ステンレス冷延鋼板は、絞りを主体としたプレス成形品や高い表面美麗性を要求される用途、例えば厨房器具や食器へ適用されるフェライト系ステンレス冷延鋼板として好適である。

Claims (3)

  1.  質量%で、C:0.005~0.05%、Si:0.02~0.75%、Mn:0.1~1.0%、P:0.04%以下、S:0.01%以下、Al:0.001~0.10%、N:0.005~0.06%、Cr:16.0~18.0%を含有し、残部がFeおよび不可避的不純物からなり、
    金属組織は、フェライト相からなり、
    フェライト相の平均粒径が10μm以下であり、粒径10μm以上40μm未満のフェライト粒が金属組織全体に対する面積率で60%以上であり、粒径5μm未満のフェライト粒が金属組織全体に対する面積率で20%未満であることを特徴とするフェライト系ステンレス冷延鋼板。
  2.  質量%で、さらに、Cu:0.1~1.0%、Ni:0.1~1.0%、Mo:0.1~0.5%、Co:0.01~0.3%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1に記載のフェライト系ステンレス冷延鋼板。
  3.  質量%で、さらに、V:0.01~0.25%、Ti:0.001~0.015%、Nb:0.001~0.030%、Mg:0.0002~0.0050%、B:0.0002~0.0050%、REM:0.01~0.10%のうちから選ばれる1種または2種以上を含むことを特徴とする請求項1または2に記載のフェライト系ステンレス冷延鋼板。
PCT/JP2015/003344 2014-09-05 2015-07-02 フェライト系ステンレス冷延鋼板 WO2016035236A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES15837725T ES2822273T3 (es) 2014-09-05 2015-07-02 Chapa de acero inoxidable ferrítico laminada en frío
US15/508,362 US10550454B2 (en) 2014-09-05 2015-07-02 Cold-rolled ferritic stainless steel sheet
CN201580047158.7A CN106795601B (zh) 2014-09-05 2015-07-02 铁素体系不锈钢冷轧钢板
KR1020177006039A KR101941065B1 (ko) 2014-09-05 2015-07-02 페라이트계 스테인리스 냉연 강판
EP15837725.9A EP3159423B1 (en) 2014-09-05 2015-07-02 Cold-rolled ferritic stainless steel sheet
JP2015541724A JP5846343B1 (ja) 2014-09-05 2015-07-02 フェライト系ステンレス冷延鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181023 2014-09-05
JP2014-181023 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035236A1 true WO2016035236A1 (ja) 2016-03-10

Family

ID=55439327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003344 WO2016035236A1 (ja) 2014-09-05 2015-07-02 フェライト系ステンレス冷延鋼板

Country Status (7)

Country Link
US (1) US10550454B2 (ja)
EP (1) EP3159423B1 (ja)
KR (1) KR101941065B1 (ja)
CN (1) CN106795601B (ja)
ES (1) ES2822273T3 (ja)
TW (1) TW201610183A (ja)
WO (1) WO2016035236A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173069A (ja) * 2018-03-27 2019-10-10 日鉄日新製鋼株式会社 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3098330B1 (en) * 2014-01-24 2020-04-22 JFE Steel Corporation Material for cold-rolled stainless steel sheet and method for producing same
CN105960476B (zh) 2014-02-05 2018-10-30 杰富意钢铁株式会社 铁素体系不锈钢热轧退火钢板、其制造方法和铁素体系不锈钢冷轧退火钢板
US10633730B2 (en) 2014-09-05 2020-04-28 Jfe Steel Corporation Material for cold-rolled stainless steel sheet
JP2019111571A (ja) * 2017-12-26 2019-07-11 Jfeスチール株式会社 フェライト系ステンレス鋼帯の冷間圧延方法
KR102123665B1 (ko) * 2018-10-23 2020-06-18 주식회사 포스코 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
BR112021000940B1 (pt) * 2018-11-09 2023-05-02 Nippon Steel Stainless Steel Corporation Chapa de aço inoxidável ferrítico
KR102272790B1 (ko) * 2019-12-18 2021-07-05 주식회사 포스코 클램프용 고강도 페라이트계 스테인리스강 및 그 제조방법
KR102468036B1 (ko) * 2020-11-12 2022-11-17 주식회사 포스코 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
CN113621889A (zh) * 2021-08-10 2021-11-09 山东盛阳金属科技股份有限公司 一种n06600铁镍基合金热连轧板卷及其酸洗工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231954A (ja) * 2001-12-06 2003-08-19 Nippon Steel Corp プレス成形性と作業性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2004197197A (ja) * 2002-12-20 2004-07-15 Jfe Steel Kk 加工性および耐リジング性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2004223536A (ja) * 2003-01-21 2004-08-12 Nippon Steel Corp ローピング性に優れたフェライト系ステンレス鋼板の製造方法
JP2011256440A (ja) * 2010-06-10 2011-12-22 Jfe Steel Corp 耐リジング特性に優れたフェライト系ステンレス鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273227B2 (ja) * 1995-02-16 2002-04-08 新日本製鐵株式会社 耐リビング性に優れたフェライト系ステンレス鋼板の製造方法
JPH09111354A (ja) * 1995-10-13 1997-04-28 Sumitomo Metal Ind Ltd フェライト系ステンレス鋼板の製造方法
JP3382874B2 (ja) 1998-03-24 2003-03-04 川崎製鉄株式会社 高光沢を有するステンレス冷延鋼帯の製造方法
WO2000060134A1 (fr) 1999-03-30 2000-10-12 Kawasaki Steel Corporation Plaque en acier inoxydable ferritique
US6413332B1 (en) * 1999-09-09 2002-07-02 Kawasaki Steel Corporation Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
TW480288B (en) * 1999-12-03 2002-03-21 Kawasaki Steel Co Ferritic stainless steel plate and method
GB2394259B (en) * 2001-07-25 2005-05-25 Leobersdorfer Maschf Multistage compressor for compressing gases
KR100762151B1 (ko) * 2001-10-31 2007-10-01 제이에프이 스틸 가부시키가이샤 딥드로잉성 및 내이차가공취성이 우수한 페라이트계스테인리스강판 및 그 제조방법
JP4519505B2 (ja) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 成形性に優れるフェライト系ステンレス鋼板およびその製造方法
KR100645688B1 (ko) * 2005-08-30 2006-11-14 삼성에스디아이 주식회사 증착장치의 히터 및 이를 채용한 증발원
JP4626484B2 (ja) * 2005-10-27 2011-02-09 Jfeスチール株式会社 プレス成形性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
US20100095742A1 (en) * 2006-10-13 2010-04-22 Symington William A Testing Apparatus For Applying A Stress To A Test Sample
JP5219689B2 (ja) 2008-08-12 2013-06-26 新日鐵住金ステンレス株式会社 加工肌荒れの小さいフェライト系ステンレス鋼板およびその製造方法
JP5338245B2 (ja) * 2008-10-15 2013-11-13 Jfeスチール株式会社 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法
CN104975237B (zh) 2011-06-16 2017-06-23 新日铁住金不锈钢株式会社 抗皱性优良的铁素体系不锈钢板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231954A (ja) * 2001-12-06 2003-08-19 Nippon Steel Corp プレス成形性と作業性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2004197197A (ja) * 2002-12-20 2004-07-15 Jfe Steel Kk 加工性および耐リジング性に優れたフェライト系ステンレス鋼板およびその製造方法
JP2004223536A (ja) * 2003-01-21 2004-08-12 Nippon Steel Corp ローピング性に優れたフェライト系ステンレス鋼板の製造方法
JP2011256440A (ja) * 2010-06-10 2011-12-22 Jfe Steel Corp 耐リジング特性に優れたフェライト系ステンレス鋼板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173069A (ja) * 2018-03-27 2019-10-10 日鉄日新製鋼株式会社 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
JP7013301B2 (ja) 2018-03-27 2022-01-31 日鉄ステンレス株式会社 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材

Also Published As

Publication number Publication date
CN106795601A (zh) 2017-05-31
EP3159423A1 (en) 2017-04-26
EP3159423A4 (en) 2018-01-24
ES2822273T3 (es) 2021-04-30
KR101941065B1 (ko) 2019-01-22
TW201610183A (zh) 2016-03-16
US10550454B2 (en) 2020-02-04
TWI560282B (ja) 2016-12-01
KR20170041240A (ko) 2017-04-14
CN106795601B (zh) 2018-09-28
EP3159423B1 (en) 2020-09-02
US20170283923A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016035236A1 (ja) フェライト系ステンレス冷延鋼板
JP5924459B1 (ja) ステンレス冷延鋼板用素材
JP5321605B2 (ja) 延性に優れる高強度冷延鋼板およびその製造方法
WO2011122237A1 (ja) 延性に優れた高張力鋼板およびその製造方法
JP2008208412A (ja) 加工肌荒れの小さい成形性に優れたフェライト系ステンレス鋼板およびその製造方法
KR20120008033A (ko) 시효성 및 베이킹 경화성이 우수한 냉연 강판 및 그 제조 방법
JP6079726B2 (ja) 高強度鋼板の製造方法
EP3705592A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
KR101949629B1 (ko) 스테인리스강 및 그 제조 방법
KR101850231B1 (ko) 페라이트계 스테인리스강 및 그 제조 방법
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
WO2020189530A1 (ja) 鋼板
WO2014057519A1 (ja) 形状凍結性に優れた冷延鋼板およびその製造方法
WO2017131052A1 (ja) 温間加工用高強度鋼板およびその製造方法
JP5071125B2 (ja) 角筒絞り成形性と形状凍結性に優れた高強度冷延鋼板およびその製造方法ならびに製品形状に優れた自動車用部品
JP2007177293A (ja) 超高強度鋼板およびその製造方法
WO2015133433A1 (ja) 研磨性に優れたフェライト・オーステナイト系二相ステンレス鋼板およびその製造方法
JP5846343B1 (ja) フェライト系ステンレス冷延鋼板
JP2001207244A (ja) 延性、加工性および耐リジング性に優れたフェライト系ステンレス冷延鋼板およびその製造方法
JP2022515107A (ja) 延性及び加工性に優れた高強度鋼板、及びその製造方法
JP5644148B2 (ja) 加工後の表面外観に優れたステンレス冷延鋼板およびその製造方法
JP5338245B2 (ja) 強度−伸びバランスが良好で、かつリジングの小さいステンレス冷延鋼板およびその製造方法
JP5900717B1 (ja) ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015541724

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837725

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015837725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837725

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15508362

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177006039

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE