WO2016033961A1 - 一种高频电磁感应元件内置底座及高频电磁感应元件 - Google Patents
一种高频电磁感应元件内置底座及高频电磁感应元件 Download PDFInfo
- Publication number
- WO2016033961A1 WO2016033961A1 PCT/CN2015/075107 CN2015075107W WO2016033961A1 WO 2016033961 A1 WO2016033961 A1 WO 2016033961A1 CN 2015075107 W CN2015075107 W CN 2015075107W WO 2016033961 A1 WO2016033961 A1 WO 2016033961A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- built
- electromagnetic induction
- induction element
- frequency electromagnetic
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/06—Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/266—Fastening or mounting the core on casing or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2895—Windings disposed upon ring cores
Definitions
- the present disclosure relates to a fixed structure of a high frequency electromagnetic induction element, and more particularly to a built-in base of a high frequency electromagnetic induction element and a high frequency electromagnetic induction element.
- Inductors and transformers are electromagnetic induction components that are wound with insulated wires (such as enameled wire, yarn wrapped wire, etc.) and are one of the commonly used components in electronic circuits.
- electromagnetic induction components such as inductors or transformers are usually installed in the following ways:
- Solution 1 Drill a through hole in the base insulating plate carrying the electromagnetic induction element, pass the lead of the electromagnetic induction element directly through the insulating plate, and then fill the glue between the pin and the base (usually epoxy glue), and Solder the extended pins to the board under the electromagnetic sensing element for fixing.
- Option 2 Use a steel strip to bundle the inductor or transformer on the insulating base plate, and use insulating paper for electrical isolation between the coil and the steel strip; if the bottom plate is a metal plate, an insulating plate needs to be added between the winding and the bottom plate.
- Option 3 Fix by means of hooks. First place the inductor or transformer horizontally on the base. The hooks pull the inductor or transformer in the vertical direction. The bottom of the hook is threaded. The hook is locked by screws. Tightly fastened to the base.
- Option 4 Place the inductor or transformer in a closed box and use a potting method to completely enclose the inductor or transformer in the case to fix it.
- Option 1 is only applicable to low-power inductors or transformers; and in the process of soldering to the board, the glue used for fixing is easily melted due to high temperature, causing the inductor or transformer to float and fix. Unstable; vibration caused by high-frequency signals during operation, causing noise, and long-term operation may cause fixed failure of the inductor or transformer.
- Option 2 is suitable for low power, medium power and high power.
- the steel strip is fixed in a way that requires more insulating material to ensure sufficient clearance and creepage distance. Since the fixing of the steel strip is mechanically fixed, plus the product High-frequency vibration during operation, there is a risk of failure for long-term operation.
- the fixing method of the hook in scheme 3 is mainly used for medium power and high power. Similar to scheme 2, more insulating materials are needed to ensure clearance and creepage distance; and because different designs of inductors or transformers need to be designed Corresponding hooks cause the cost to rise; in addition, the hooks are fixed by means of nut locking, and there is a risk of looseness and failure due to high-frequency vibration during product operation.
- the inductor or the transformer is enclosed in the box by means of potting, which is difficult to dissipate heat and is expensive.
- neither of the schemes 1 to 3 is suitable for fixing the high-frequency electromagnetic induction component, and the fixing manner has the risk of looseness or even failure under high-frequency vibration.
- the scheme 4 can fix the high frequency electromagnetic induction element, the cost is too high.
- the technical problem to be solved by the present disclosure is how to provide an effective fixing method for high frequency electromagnetic induction elements at low cost.
- an embodiment of the present disclosure provides a built-in base of a high-frequency electromagnetic induction element, including a base disk that is built in the electromagnetic induction element and is bound to the magnetic core through a winding.
- a plurality of support legs extending outside the electromagnetic induction element and supporting the base plate when in use are attached to the base plate.
- the built-in base is a non-metallic material built-in base, so that the non-metallic material non-conductivity can be utilized to prevent the built-in base from vibrating in electromagnetic induction, thereby avoiding additional loss.
- the plurality of support legs are evenly and distributedly connected to the base plate.
- the base disk has a ring shape.
- each of the support legs is provided with a connecting portion; the connecting portion is a screw hole and a through hole Or buckle.
- the base plate is integrally formed with the plurality of support legs.
- a high frequency electromagnetic induction element including a magnetic core and a winding, and further including a built-in base, the base disk of the built-in base being built in the a high-frequency electromagnetic induction element is internally coupled to the magnetic core through the winding, and a plurality of support legs of the built-in base are connected to the base plate and extend outside the high-frequency electromagnetic induction element to support On the support carrier.
- the base disk and the magnetic core are also bonded or screwed to further improve The strength of the connection between the built-in base and the magnetic core further improves the integrity of the built-in base and the high-frequency electromagnetic induction element.
- the base disk of the built-in base may be integrally formed with the plurality of support legs.
- the built-in base is a non-metallic material built-in base, so that the non-metallic material non-conductivity can be utilized to prevent the built-in base from vibrating in electromagnetic induction, thereby avoiding additional loss.
- the built-in base may be a built-in base of engineering plastics, which can meet the insulation requirements and meet the mechanical strength requirements.
- the plurality of support legs are evenly and distributedly connected to the base plate.
- the height of the plurality of support legs may be set in actual use such that the height of the plurality of support feet provides a predetermined electrical clearance and creepage distance between the windings and the support carrier.
- a base disk of the built-in base is built in the high frequency electromagnetic induction element, and is coupled to the magnetic core through the winding Therefore, the built-in base can be firmly fixed together with the magnetic core and formed integrally. This integral connection is different from the mechanical connection in the prior art, so that even high-frequency electromagnetic induction elements are generated.
- the frequency vibration does not loose or even invalidate the connection between the built-in base and the magnetic core, thereby greatly improving the effectiveness of the fixing method of the high-frequency electromagnetic induction element; and the high-frequency electromagnetic induction element of the present disclosure adopts the same Built-in base form with simple structure Fixing is better than the method of using the box package in the prior art, and the heat dissipation performance is good and the cost is low.
- FIG. 1 is a schematic perspective structural view of a high frequency electromagnetic induction element according to an embodiment of the present disclosure
- Figure 2 is a side elevational view of the first direction of the high frequency electromagnetic induction element of Figure 1;
- FIG. 3 is a side view of the second direction of the high frequency electromagnetic induction element shown in FIG. 1, and the second direction is perpendicular to the first direction;
- Figure 4 is a plan view of the high frequency electromagnetic induction element shown in Figure 1;
- FIG. 5 is a schematic perspective structural view of a built-in base of a high frequency electromagnetic induction element according to an embodiment of the present disclosure
- Fig. 6 is a plan view showing the structure of the built-in base of the high-frequency electromagnetic induction element shown in Fig. 5.
- the high frequency electromagnetic induction element 1 provided by the embodiment of the present disclosure includes a magnetic core and a winding (the internal structure is not shown), and further includes a built-in base 2.
- the built-in base 2 includes a base plate 21 and a plurality of support legs 22.
- the base disk 21 of the built-in base 2 is built in the high frequency electromagnetic induction element 1 and is coupled to the magnetic core through the winding.
- the plurality of support legs 22 of the built-in base 2 are connected to the base plate 21 and extend.
- the high frequency electromagnetic induction element 1 is externally supported on the support carrier.
- the base disk 21 may be first aligned with the magnetic core, and then the coil is simultaneously wound on the base disk 21 and the magnetic core to form a winding, thereby coupling the base disk 21 and the magnetic core through the winding. .
- the built-in base 2 since the base disk 21 of the built-in base 2 is built in the inside of the high-frequency electromagnetic induction element 1 and bonded to the magnetic core through the winding, the built-in base 2 can be firmly fixed to the magnetic core. Fixed together and formed into a whole, this integral connection is different from the mechanical connection in the prior art, so even if the high-frequency electromagnetic induction element generates high-frequency vibration, the built-in base 2 and the magnetic core are not The connection between the two is loose or even ineffective, which greatly improves the effectiveness of the fixing method of the high-frequency electromagnetic induction element 1; at the same time, the high-frequency electromagnetic induction element 1 of the present disclosure is simple in this way.
- the built-in base form of the structure is fixed, and the heat dissipation performance is good and the cost is lower than that of the prior art using the box package.
- the electromagnetic induction element in the above embodiment includes an element that operates using the principle of electromagnetic induction, such as an inductor or a transformer.
- the high frequency electromagnetic induction element refers to an electromagnetic induction element whose operating frequency exceeds the intermediate frequency (10 kHz), such as a high frequency transformer.
- the high-frequency transformer is mainly used as a high-frequency switching power supply transformer in a high-frequency switching power supply, and also as a high-frequency inverter power transformer in a high-frequency inverter power supply and a high-frequency inverter welding machine.
- the high frequency can be divided into several grades according to the operating frequency: 10kHz-50kHz, 50kHz-100kHz, 100kHz ⁇ 500kHz, 500kHz ⁇ 1MHz, 1MHz or more.
- the high-frequency vibration generated by the high-frequency electromagnetic induction element in the electromagnetic induction process is often very intense, far greater than the vibration generated by the intermediate frequency or low-frequency electromagnetic induction elements.
- the base disk 21 in the built-in base 2 also adopts a ring structure.
- the structure of the base plate 21 is not limited thereto, and may be changed depending on the applicable occasion.
- the base disk 21 and the magnetic core are also bonded or screwed to further improve the built-in
- the connection strength between the base 2 and the magnetic core further improves the integrity of the built-in base 2 and the high-frequency electromagnetic induction element, so that the built-in base 2 and the high frequency can be generated when the high-frequency electromagnetic induction element generates high-frequency vibration
- the electromagnetic induction elements 1 have better consistency between them, which facilitates better fixing.
- the specific method is as follows: firstly, the base plate 21 and the magnetic core are bonded and fixed by a strong adhesive tape, because the bonding and fixing operation is simple, so it is preferable; secondly, the base plate 21 is bound to the magnetic core through the winding; finally The impregnated built-in base 2, windings and core are vacuum impregnated for higher strength.
- the base tray 21 of the built-in base 2 can be A plurality of support legs 22 are integrally formed. In the integrally formed built-in base 2, no relative vibration is generated between the base plate 21 and the plurality of support legs 22, so that the integrity is better.
- the built-in base 2 can be a non-metallic material built-in base, so that the non-metallic material can be used to prevent the built-in base 2 itself from vibrating in the electromagnetic induction. Thereby avoiding the addition of additional losses.
- the built-in base 2 can be a built-in base of engineering plastics, which can meet the insulation requirements and meet the mechanical strength requirements.
- the built-in base of the engineering plastic can also be integrally molded by using a mold.
- the plurality of support legs 22 are evenly and distributedly coupled to the base tray 21. That is, the plurality of support legs 22 are evenly distributed on the base disk 21.
- four support legs 22 are shown, but the present invention is not limited thereto, and may be two, three, five or more. However, it is preferably three, so that the principle of determining a plane from three points shows that the three support legs 22 can be used to maintain the flatness when mounted on the support carrier, so that the high-frequency electromagnetic induction elements can be mounted after being mounted at any position. It is flat.
- connection portion connected to the support carrier is provided on each of the plurality of support legs 22.
- the connecting portion may be a screw hole or a through hole, or may be a buckle or the like.
- the support carrier here may be a circuit board or a floor or the like.
- the height of the plurality of support legs 22 can be set in actual use, so that the height of the plurality of support legs 22 has a predetermined electrical clearance and creepage distance between the winding and the support carrier, which can save insulation. Use of materials.
- an embodiment of the present disclosure further provides a built-in base 2 for a high-frequency electromagnetic induction element, including a base plate that is built in the electromagnetic induction element and is bound to the magnetic core through a winding. 21, the base plate 21 is connected with a plurality of support legs 22 which extend outside the electromagnetic induction element and support the base plate 21 when in use.
- the built-in base 2 is a non-metallic material built-in base, so that the non-metallic material can be used to prevent the built-in base from vibrating in the electromagnetic induction, thereby avoiding additional loss. .
- the plurality of support legs 22 are evenly and distributedly coupled to the base tray 21.
- the structure and function of the built-in base 2 in this embodiment are the same as those of the built-in base 2 in the above embodiment of the high-frequency electromagnetic induction element, and therefore will not be described again.
- the built-in base 2 in this embodiment can solve the same technical problem and achieve the same expected effect as compared with the built-in base 2 in the above-described high-frequency electromagnetic induction element.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
一种高频电磁感应元件(1),包括磁芯和绕组,还包括内置底座(2),该内置底座(2)的底座盘(21)内置于高频电磁感应元件(1)内部、并通过绕组与磁芯绑定,内置底座(2)的多个支撑脚(22)连接在底座盘(21)上、并伸出高频电磁感应元件(1)外以支撑在支撑载体上。由于将内置底座(2)的底座盘(21)内置于高频电磁感应元件(1)内部、并通过绕组与磁芯绑定,因此内置底座(2)能够与磁芯牢固地固定在一起并形成整体,即使在高频电磁感应元件(1)产生高频震动时,也不会使内置底座(2)与磁芯之间的连接松动甚至失效;同时高频电磁感应元件(1)采用这种具有简单结构的内置底座形式进行固定,散热性能好,且成本较低。
Description
相关申请的交叉引用
本申请主张在2014年9月3日在中国提交的中国专利申请号No.201410447362.5以及在2014年9月3日在中国提交的中国专利申请号No.201420507331.X的优先权,其全部内容通过引用包含于此。
本公开涉及高频电磁感应元件的固定结构,尤其涉及一种高频电磁感应元件内置底座及高频电磁感应元件。
电感器(电感线圈)和变压器均是用绝缘导线(例如漆包线、纱包线等)绕制而成的电磁感应元件,也是电子电路中常用的元器件之一。现有技术中,电感器或变压器等电磁感应元件的安装方式通常有以下几种:
方案1:在承载电磁感应元件的底座绝缘板上钻通孔,将电磁感应元件的引脚直接穿过绝缘板,之后在引脚与底座之间灌胶(通常为环氧树脂胶),并将伸出的引脚焊接于电磁感应元件下方的电路板上,以作固定。
方案2:使用钢带将电感器或者变压器捆扎在绝缘底板上,线圈与钢带之间使用绝缘纸作电气隔离;如果底板为金属板,则绕组与底板之间需要增加绝缘板。
方案3:通过弯钩的方式进行固定,首先将电感器或者变压器水平放置在底座上,弯钩在竖直方向上将电感器或变压器拉近,弯钩底部带螺纹,通过螺丝将弯钩锁紧固定在底座上。
方案4:将电感器或者变压器放置在一个封闭的箱体中,并使用灌封的方式将电感器或者变压器完全封闭在箱体中,起到固定的作用。
但上述各种方案存在如下问题:
方案1仅仅适用于小功率的电感器或者变压器;并且在与电路板焊接过程中,固定用的胶水由于高温容易融化,导致电感器或者变压器上浮,固定
不稳;运行过程中由于高频的信号引起振动,产生噪音,并且长时间运行可能导致电感器或者变压器的固定失效。
方案2适合于小功率,中等功率以及大功率,钢带固定的方式须使用较多的绝缘材料,以保证足够的电气间隙和爬电距离;由于钢带的固定为机械固定,再加上产品运行时的高频震动,长时间运行存在失效的风险。
方案3中弯钩的固定方式主要用于中等功率和大功率,与方案2类似,需要使用较多的绝缘材料,保证电气间隙和爬电距离;并且因为不同设计形式的电感器或者变压器需要设计相应的弯钩,造成成本上升;另外弯钩通过螺母锁紧的方式固定,由于产品运行时的高频震动,存在松动、失效等风险。
方案4采用灌封的方式将电感器或变压器封闭在箱体中,散热困难,成本昂贵。
从以上电磁感应元件的固定方案来看,方案1至方案3均不适于固定高频电磁感应元件,其固定方式在高频震动下存在松动甚至失效等风险。方案4虽然可以固定高频电磁感应元件,但是成本太高。
发明内容
本公开要解决的技术问题是如何在低成本的情况下为高频电磁感应元件提供一种有效的固定方式。
为解决上述技术问题,本公开的实施例一方面提供一种高频电磁感应元件内置底座,包括在使用时内置于电磁感应元件内部、并通过绕组绑定在磁芯上的底座盘,所述底座盘上连接有在使用时伸出所述电磁感应元件外并支撑所述底座盘的多个支撑脚。
在上述方案中,所述内置底座为非金属材料内置底座,这样可以利用非金属材料的不导电性,避免内置底座在电磁感应中产生震动,从而避免增加附加的损耗。
在使用多个支撑脚支撑所述底座盘时,为了保证受力平衡并提高支撑的稳定性,所述多个支撑脚均匀分布式地连接在所述底座盘上。
进一步地,所述底座盘呈环形。
进一步地,每个所述支撑脚上设有连接部;所述连接部为螺钉孔、通孔
或卡扣。
进一步地,所述底座盘与所述多个支撑脚为一体成型。
为解决上述技术问题,本公开另一方面提供一种高频电磁感应元件,所述高频电磁感应元件包括磁芯和绕组,此外还包括内置底座,所述内置底座的底座盘内置于所述高频电磁感应元件内部、并通过所述绕组与所述磁芯绑定,所述内置底座的多个支撑脚连接在所述底座盘上、并伸出所述高频电磁感应元件外以支撑在支撑载体上。
在对上述方案的改进方案中,除通过所述绕组绑定所述底座盘和所述磁芯外,所述底座盘和所述磁芯之间还进行粘接固定或螺纹固定,以进一步提高所述内置底座与所述磁芯的连接强度,从而进一步提高所述内置底座与所述高频电磁感应元件的整体性。
另外,为了更进一步地提高所述内置底座与所述高频电磁感应元件的整体性,可以将所述内置底座的所述底座盘与所述多个支撑脚一体成型。
在上述方案中,所述内置底座为非金属材料内置底座,这样可以利用非金属材料的不导电性,避免内置底座在电磁感应中产生震动,从而避免增加附加的损耗。具体而言,所述内置底座可以为工程塑料内置底座,这样既能满足绝缘要求,又能满足机械强度要求。
在使用多个支撑脚支撑所述底座盘时,为了保证受力平衡并提高支撑的稳定性,所述多个支撑脚均匀分布式地连接在所述底座盘上。
在实际使用时可以设定所述多个支撑脚的高度,以便所述多个支撑脚的高度使所述绕组与所述支撑载体之间具有预定的电气间隙和爬电距离。
本公开的上述技术方案的有益效果如下:
本公开提供的高频电磁感应元件内置底座以及高频电磁感应元件中,由于将所述内置底座的底座盘内置于所述高频电磁感应元件内部、并通过所述绕组与所述磁芯绑定,因此所述内置底座能够与所述磁芯牢固地固定在一起并形成整体,这种整体性的连接方式区别于现有技术中的机械连接方式,因此即使在高频电磁感应元件产生高频震动,也不会使所述内置底座与所述磁芯之间的连接松动甚至失效,大大提高了高频电磁感应元件固定方式的有效性;同时本公开的高频电磁感应元件采用这种具有简单结构的内置底座形式
进行固定,与现有技术中采用箱体封装的方式相比,散热性能好,且成本较低。
图1为本公开实施例高频电磁感应元件的立体结构示意图;
图2为图1所示高频电磁感应元件的第一方向的侧视图;
图3为图1所示高频电磁感应元件的第二方向的侧视图,且所述第二方向与所述第一方向垂直;
图4为图1所示高频电磁感应元件的俯视图;
图5为本公开实施例高频电磁感应元件内置底座的立体结构示意图;
图6为图5所示高频电磁感应元件内置底座的平面结构示意图。
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
如图1至图4所示,本公开实施例提供的高频电磁感应元件1包括磁芯和绕组(内部结构未示出),此外还包括内置底座2。结合图5和图6所示可知,内置底座2包括底座盘21和多个支撑脚22。其中,内置底座2的底座盘21内置于高频电磁感应元件1内部、并通过所述绕组与所述磁芯绑定,内置底座2的多个支撑脚22连接在底座盘21上、并伸出高频电磁感应元件1外以支撑在支撑载体上。具体安装时,可以首先将底座盘21与所述磁芯对准,之后将线圈同时缠绕在底座盘21与所述磁芯上以形成绕组,从而实现通过绕组将底座盘21与磁芯绑定。
在该实施例中,由于将内置底座2的底座盘21内置于高频电磁感应元件1内部、并通过所述绕组与所述磁芯绑定,因此内置底座2能够与所述磁芯牢固地固定在一起并形成整体,这种整体性的连接方式区别于现有技术中的机械连接方式,因此即使在高频电磁感应元件产生高频震动,也不会使内置底座2与所述磁芯之间的连接松动甚至失效,大大提高了高频电磁感应元件1固定方式的有效性;同时本公开的高频电磁感应元件1采用这种具有简单
结构的内置底座形式进行固定,与现有技术中采用箱体封装的方式相比,散热性能好,且成本较低。
这里需要说明的是,上述实施例中的电磁感应元件包括利用电磁感应原理进行工作的元件,例如电感器或变压器等。其中,高频电磁感应元件指的是工作频率超过中频(10kHz)的电磁感应元件,例如高频变压器。高频变压器主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。高频按工作频率高低,可分为几个档次:10kHz-50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。高频电磁感应元件在电磁感应过程中产生的高频震动往往非常激烈,远远大于中频或低频电磁感应元件产生的震动。
另外需要说明的是,上述实施例是以工作在高频下的环形电感器或者环形变压器为例进行的说明,因此所述内置底座2中的底座盘21也采用了环形结构。但应明确,底座盘21的结构并不局限于此,可以根据适用场合的不同而加以变更。
作为对上述实施例的一种改进,除通过所述绕组绑定底座盘21和所述磁芯外,底座盘21和所述磁芯之间还进行粘接固定或螺纹固定,以进一步提高内置底座2与所述磁芯的连接强度,从而进一步提高内置底座2与所述高频电磁感应元件的整体性,这样在高频电磁感应元件产生高频震动时,可以使内置底座2与高频电磁感应元件1之间具有更好的一致性,有利于更好的固定。具体的做法为:首先将底座盘21与磁芯通过强韧的胶带进行粘接固定,因为粘接固定操作简单,因此作为优选;其次再通过绕组将底座盘21绑定在磁芯上;最后对绑定好的内置底座2、绕组和磁芯进行真空含浸,以便具有更高的强度。
另外,作为对上述实施例的另一种改进,为了更进一步地提高内置底座2与高频电磁感应元件1的整体性,并进而提高固定的稳固性,可以将内置底座2的底座盘21与多个支撑脚22一体成型。一体成型的内置底座2中,底座盘21和多个支撑脚22之间不会产生相对震动,因此整体性更好。
在上述实施例中,内置底座2可以为非金属材料内置底座,这样可以利用非金属材料的不导电性,避免内置底座2自身整体在电磁感应中产生震动,
从而避免增加附加的损耗。具体而言,内置底座2可以为工程塑料内置底座,这样既能满足绝缘要求,又能满足机械强度要求。而且工程塑料内置底座还可以使用模具一体注塑成型。
结合图5和图6所示,在使用多个支撑脚22支撑底座盘21时,为了保证受力平衡并提高支撑的稳定性,多个支撑脚22均匀分布式地连接在底座盘21上。即多个支撑脚22在底座盘21上是均布的。在图5和图6所示的实施例中,显示了4个支撑脚22,但也并不限定于此,也可以是2个、3个、5个或更多个。但优选是3个,因此由3点决定一个平面的原理可知,3个支撑脚22可以有利于保持在支撑载体上安装时的平面度,可以使得在任何位置上安装之后高频电磁感应元件都是平整的。
其中,为了便于将内置底座2安装在支撑载体上,在多个支撑脚22中的每个支撑脚上均设有与支撑载体连接的连接部。例如,该连接部可以是螺钉孔或通孔,也可以是卡扣等。这里的支撑载体可以是电路板或者地面等。
另外,在实际使用时可以设定多个支撑脚22的高度,以便多个支撑脚22的高度使所述绕组与所述支撑载体之间具有预定的电气间隙和爬电距离,这样可以节省绝缘材料的使用。
如图5和图6所示,本公开的实施例还提供一种高频电磁感应元件内置底座2,包括在使用时内置于电磁感应元件内部、并通过绕组绑定在磁芯上的底座盘21,底座盘21上连接有在使用时伸出所述电磁感应元件外并支撑底座盘21的多个支撑脚22。
在图5和图6所示的实施例中,内置底座2为非金属材料内置底座,这样可以利用非金属材料的不导电性,避免内置底座在电磁感应中产生震动,从而避免增加附加的损耗。而且,在使用多个支撑脚22支撑底座盘21时,为了保证受力平衡并提高支撑的稳定性,多个支撑脚22均匀分布式地连接在底座盘21上。
这里需要说明的是,由于本实施例中的内置底座2的结构和功能与上述高频电磁感应元件实施例中的内置底座2的结构和功能相同,因此不再赘述。但需明确的是,本实施例中的内置底座2与上述高频电磁感应元件中的内置底座2相比,能够解决相同的技术问题,并达到相同的预期效果。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。
Claims (15)
- 一种高频电磁感应元件内置底座,其中,包括在使用时内置于电磁感应元件内部、并通过绕组绑定在磁芯上的底座盘,所述底座盘上连接有在使用时伸出所述电磁感应元件外并支撑所述底座盘的多个支撑脚。
- 根据权利要求1所述的高频电磁感应元件内置底座,其中,所述内置底座为非金属材料内置底座。
- 根据权利要求1或2所述的高频电磁感应元件内置底座,其中,所述多个支撑脚均匀分布式地连接在所述底座盘上。
- 根据权利要求1或2所述的高频电磁感应元件内置底座,其中,所述底座盘呈环形。
- 根据权利要求1或2所述的高频电磁感应元件内置底座,其中,每个所述支撑脚上设有连接部;所述连接部为螺钉孔、通孔或卡扣。
- 根据权利要求1或2所述的高频电磁感应元件内置底座,其中,所述底座盘与所述多个支撑脚为一体成型。
- 一种高频电磁感应元件,包括磁芯和绕组,其中,还包括内置底座,所述内置底座的底座盘内置于所述高频电磁感应元件内部、并通过所述绕组与所述磁芯绑定,所述内置底座的多个支撑脚连接在所述底座盘上、并伸出所述高频电磁感应元件外以支撑在支撑载体上。
- 根据权利要求7所述的高频电磁感应元件,其中,除通过所述绕组绑定所述底座盘和所述磁芯外,所述底座盘和所述磁芯之间还进行粘接固定或螺纹固定。
- 根据权利要求8所述的高频电磁感应元件,其中,所述内置底座的所述底座盘与所述多个支撑脚为一体成型。
- 根据权利要求7或8或9所述的高频电磁感应元件,其中,所述内置底座为非金属材料内置底座。
- 根据权利要求10所述的高频电磁感应元件,其中,所述内置底座为工程塑料内置底座。
- 根据权利要求7或8或9所述的高频电磁感应元件,其中,所述多 个支撑脚均匀分布式地连接在所述底座盘上。
- 根据权利要求12所述的高频电磁感应元件,其中,所述多个支撑脚的高度使所述绕组与所述支撑载体之间具有预定的电气间隙和爬电距离。
- 根据权利要求7至9中任何一项所述的高频电磁感应元件,其中,所述底座盘呈环形。
- 根据权利要求7至9中任何一项所述的高频电磁感应元件,其中,每个所述支撑脚上设有与所述支撑载体连接的连接部;所述连接部为螺钉孔、通孔或卡扣。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15838766.2A EP3190596A4 (en) | 2014-09-03 | 2015-03-26 | Built-in base for high-frequency electromagnetic induction element and high-frequency electromagnetic induction element |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410447362.5 | 2014-09-03 | ||
CN201420507331.XU CN204117762U (zh) | 2014-09-03 | 2014-09-03 | 一种高频电磁感应元件内置底座及高频电磁感应元件 |
CN201410447362.5A CN105469938A (zh) | 2014-09-03 | 2014-09-03 | 一种高频电磁感应元件内置底座及高频电磁感应元件 |
CN201420507331.X | 2014-09-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016033961A1 true WO2016033961A1 (zh) | 2016-03-10 |
Family
ID=55439086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/075107 WO2016033961A1 (zh) | 2014-09-03 | 2015-03-26 | 一种高频电磁感应元件内置底座及高频电磁感应元件 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3190596A4 (zh) |
WO (1) | WO2016033961A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202957116U (zh) * | 2012-11-16 | 2013-05-29 | 特富特科技(深圳)有限公司 | 一种环形磁性元器件结构 |
CN203055599U (zh) * | 2013-01-08 | 2013-07-10 | 深圳可立克科技股份有限公司 | 一种电感底座及电感 |
CN103824683A (zh) * | 2012-11-16 | 2014-05-28 | 特富特科技(深圳)有限公司 | 一种环形磁性元器件结构 |
CN204117762U (zh) * | 2014-09-03 | 2015-01-21 | 特富特科技(深圳)有限公司 | 一种高频电磁感应元件内置底座及高频电磁感应元件 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2975386A (en) * | 1955-10-11 | 1961-03-14 | Carl E Coy | Toroidal electromagnetic device |
DE3636065C1 (de) * | 1986-10-23 | 1988-04-28 | Klaus Lorenzen | Halterung von elektrischen Bauelementen auf einer Schaltungsplatte |
DE4239818C2 (de) * | 1992-11-26 | 2001-11-29 | Epcos Ag | Bewickelter Ringkern |
DE102006026364A1 (de) * | 2006-02-16 | 2007-08-30 | Klaus Lorenzen | Bauelement für SMD-Leiterplattenbestückung |
-
2015
- 2015-03-26 EP EP15838766.2A patent/EP3190596A4/en not_active Withdrawn
- 2015-03-26 WO PCT/CN2015/075107 patent/WO2016033961A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202957116U (zh) * | 2012-11-16 | 2013-05-29 | 特富特科技(深圳)有限公司 | 一种环形磁性元器件结构 |
CN103824683A (zh) * | 2012-11-16 | 2014-05-28 | 特富特科技(深圳)有限公司 | 一种环形磁性元器件结构 |
CN203055599U (zh) * | 2013-01-08 | 2013-07-10 | 深圳可立克科技股份有限公司 | 一种电感底座及电感 |
CN204117762U (zh) * | 2014-09-03 | 2015-01-21 | 特富特科技(深圳)有限公司 | 一种高频电磁感应元件内置底座及高频电磁感应元件 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3190596A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3190596A4 (en) | 2018-04-25 |
EP3190596A1 (en) | 2017-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9490056B2 (en) | Coil component and electronic module using the same | |
US5161098A (en) | High frequency switched mode converter | |
US7498917B1 (en) | Encapsulated transformer | |
US20140306791A1 (en) | Power converter | |
TW201227764A (en) | Transformer structure | |
CN208433274U (zh) | 多段式气隙变压器 | |
KR100339563B1 (ko) | 전자 부품 장착구조 및 방법 | |
CN204117762U (zh) | 一种高频电磁感应元件内置底座及高频电磁感应元件 | |
KR101168323B1 (ko) | 어댑터용 트랜스포머 | |
TWI608503B (zh) | 平面型電抗器 | |
WO2016033961A1 (zh) | 一种高频电磁感应元件内置底座及高频电磁感应元件 | |
KR101588705B1 (ko) | 초크 코일 | |
CN104051143B (zh) | 具有平面初级绕组的变换器 | |
JP5965820B2 (ja) | 電源装置 | |
KR20160042560A (ko) | 코일 부품 및 그 제조 방법 | |
JP6227245B2 (ja) | チョークコイル装置 | |
JP4802807B2 (ja) | 電磁誘導部品および電源装置 | |
CN105469938A (zh) | 一种高频电磁感应元件内置底座及高频电磁感应元件 | |
JP2005183885A (ja) | リアクトル | |
CN207676780U (zh) | 一种绕组结构绝缘的低频变压器 | |
CN207529799U (zh) | 一种便于固定的大功率环形绕线电感 | |
CN220673640U (zh) | 逆变器总成和储能系统 | |
CN211788572U (zh) | 一种贴片电感 | |
KR101427443B1 (ko) | 변압기의 코어 결합장치 | |
JP2010251672A (ja) | 巻線枠および巻線部品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15838766 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015838766 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015838766 Country of ref document: EP |